WO2019175982A1 - Compact unmanned flight vehicle - Google Patents

Compact unmanned flight vehicle Download PDF

Info

Publication number
WO2019175982A1
WO2019175982A1 PCT/JP2018/009782 JP2018009782W WO2019175982A1 WO 2019175982 A1 WO2019175982 A1 WO 2019175982A1 JP 2018009782 W JP2018009782 W JP 2018009782W WO 2019175982 A1 WO2019175982 A1 WO 2019175982A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
flying object
control device
camera
small unmanned
Prior art date
Application number
PCT/JP2018/009782
Other languages
French (fr)
Japanese (ja)
Inventor
村上 一幸
Original Assignee
株式会社ドローンネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ドローンネット filed Critical 株式会社ドローンネット
Priority to JP2020505999A priority Critical patent/JP7011040B2/en
Priority to PCT/JP2018/009782 priority patent/WO2019175982A1/en
Publication of WO2019175982A1 publication Critical patent/WO2019175982A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/80UAVs characterised by their small size, e.g. micro air vehicles [MAV]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/10Simultaneous control of position or course in three dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors

Definitions

  • the present invention relates to a small unmanned air vehicle that can be automatically operated, and in particular, after an unmanned air vehicle equipped with a camera held by a user automatically flies to a preset position and photographs the user,
  • the present invention relates to a small unmanned aerial vehicle that can automatically take a self-portrait that moves back to the user.
  • a self-shooting stick is a camera that is installed at the tip of the stick by installing the camera at the tip of the stick and holding the grip at the other end of the stick and operating the switch installed at the grip. It is a device that can press the shutter. This eliminates the problem of being too close to the subject, but it is necessary to carry a rod-shaped device and to devise ways to avoid camera shake amplitude. There was a problem that there was a risk of doing.
  • the control unit inside the drone body determines the flight distance according to the magnitude of the external force applied to the drone from the subject person, determines the flight direction from the direction of the external force, and controls during the drone flight
  • a technique is disclosed in which a person photographs a subject person by controlling a digital camera and the drone returns to a place where an external force is applied after the photographing.
  • the present invention relates to a small unmanned air vehicle that can be automatically controlled to solve the above-mentioned problem, and in particular, an unmanned air vehicle equipped with a user's camera automatically flies to a preset position to follow the user. It is an object of the present invention to provide a small unmanned air vehicle capable of automatically and accurately taking a beautiful self-portrait, which automatically returns to the user after shooting.
  • a small unmanned aerial vehicle comprises a plurality of rotary wings, a plurality of drive devices for applying rotational power to each rotary wing, and a drive device.
  • a control device that individually controls the driving speed of the camera, a shooting camera, a frame unit that holds the driving device and the control device, and an outside of the flying vehicle for wirelessly controlling the control device and the shooting camera.
  • a ground station, and the control device detects a barometric pressure outside the aircraft and measures the air pressure in order to measure the altitude of the flying vehicle, and measures the altitude of the flying vehicle and the landing location of the flying vehicle.
  • An optical flow sensor installed at the lower part of the front of the aircraft that detects and signals the relative velocity between the aircraft and other objects to detect a stop, and measures the orientation of the aircraft
  • a magnetic sensor that detects and signals magnetic force
  • a gyro sensor that detects and signals angular velocity to measure the angle of the flying object
  • an acceleration sensor that measures and signals the flying object acceleration
  • a vibration sensor that detects and signals that vibration has been applied to the flying object
  • a face authentication camera for detecting and recognizing a subject to be photographed by the photographing camera, and a voice outside the flying object.
  • a speech recognition microphone that converts the signal into a signal and an arithmetic device that processes signals transmitted from the sensors, the camera, and the microphone, and the arithmetic device detects vibration applied to the vibration sensor.
  • the initial position of the flying object is measured based on signals transmitted from the atmospheric pressure sensor, the optical flow sensor, the gyro sensor, and the acceleration sensor, and the driving device is controlled.
  • the drive device is controlled so that the shooting camera of the flying object is directed toward the subject and the distance from the subject is kept constant, and an instruction signal from the ground station is used as a basis.
  • the subject was photographed, and the flying object was returned to the initial position based on a preset signal transmitted from the voice recognition microphone, and it was detected that the position of the flying object coincided with the initial position. It is the structure which cancels
  • the arithmetic unit of the control device causes the flying object to fly at a horizontal distance of 1 to 1.5 m and a vertical distance of 1 to 1.5 m from the initial position measured by controlling the driving device. It is the structure which controls to stop to this position above. Further, the control device is provided with a plurality of distance sensors that measure the distance from each installation location to the object and are converted into a signal by being installed on all sides and above and below the flying object in order to prevent the flying object from contacting an obstacle. It is the configuration equipped with.
  • the ground station is equipped with a user interface for transmitting a command signal desired by the user to the control device so that the user can arbitrarily operate the flying object, and the user interface by the user. It is the structure equipped with the switching means for switching the usability of.
  • the arithmetic unit measures the current position of the flying object based on signals transmitted from the barometric sensor, optical flow sensor, gyro sensor, and acceleration sensor, and the ground station is measured by the arithmetic unit.
  • the ground station is composed of a tablet portable terminal or a personal computer, and the control device is controlled by software installed in the tablet portable terminal or personal computer.
  • the small unmanned air vehicle Since the small unmanned air vehicle according to the present invention has the configuration as described in detail above, it has the following effects. 1. Since the atmospheric pressure sensor, the optical flow sensor, the gyro sensor, and the acceleration sensor are installed, it is possible to accurately measure the initial position of the flying object and the current position during movement, and it is possible to reciprocate to a preset position. In addition, since a magnetic sensor and face authentication camera are installed, the control device can arbitrarily determine the orientation of the camera by controlling the orientation of the flying object based on tracking information, etc., and can also follow the movement of the subject It becomes. 2. Since the flying object is stopped at a horizontal distance / vertical distance of 1 to 1.5 m from the initial position, the flying object can be stopped at a position optimal for photography.
  • the ground station is a tablet-type portable terminal or a personal computer, it is easy to carry the ground station and it is possible to operate the flying object using a familiar device.
  • FIG. 1 is a perspective view of a small unmanned aerial vehicle according to the present invention
  • FIG. 2 is a diagram showing a use state of the small unmanned aerial vehicle.
  • a small unmanned aerial vehicle 100 includes a rotary wing 110, a driving device 120, a control device 130, a photographing camera 140, a frame unit 150, and a ground station 200. It is a small unmanned aerial vehicle capable of performing a series of self-taking processes of automatically flying to a set position and photographing a user and then automatically returning to the user.
  • the small unmanned air vehicle 100 is equipped with a control device, but is light in weight with a total weight of 200 grams or less. With this configuration, a self-portrait picture can be taken by flying the small unmanned air vehicle 100 that can be controlled at an arbitrary place.
  • the rotary wings 110 are a plurality of rotary fans installed on the small unmanned aerial vehicle 100 in order to give lift to the small unmanned air vehicle 100.
  • four rotary wings 110 are mounted on four sides of the main body of the small unmanned air vehicle 100.
  • the present invention is not limited to this, and a configuration in which three or less or five or more rotor blades 110 are installed is also possible.
  • the driving device 120 is a device that applies rotational power to a plurality of rotor blades 110 installed in the main body of the small unmanned air vehicle 100, and is installed for each rotor blade 110.
  • the driving device 120 is configured by a motor that operates using electricity in the present embodiment, but is not limited thereto, and the driving device 120 has a sufficient output for the small unmanned air vehicle 100 such as a small engine to obtain lift. Any driving device that generates the signals can be selected and used as appropriate.
  • the control device 130 is a device that individually controls the drive speed of the drive device 120, and is a member having a calculation function that is installed in one small unmanned air vehicle 100 according to the present invention.
  • the control device 130 individually issues a command to the drive device 120 to control the attitude of the small unmanned air vehicle 100 based on the user's instruction and / or information from various sensors. Stabilization of the movement of the small unmanned air vehicle 100 in suspension or any movement according to a command is enabled.
  • the photographing camera 140 is a camera for photographing a self-portrait photograph, and photographs the subject s by an instruction from a user or automatic operation.
  • any camera having a weight (lightness) that can be mounted on the small unmanned air vehicle 100 can be appropriately selected and used.
  • the frame unit 150 is a frame member that serves as a base of the small unmanned air vehicle 100, and is a member that serves as a housing for holding the plurality of drive devices 120 and the control device 130.
  • the material is made of plastic in order to reduce the weight of the small unmanned air vehicle 100.
  • the material is not limited to this, and any light material such as carbon can be selected and used as appropriate. is there.
  • the ground station 200 is a control base for wirelessly controlling a control device 130 for controlling the flight direction and attitude of the small unmanned air vehicle 100 and a photographing camera 140 for taking a self-portrait photograph. 100 outside.
  • the application (software) for controlling the small unmanned aerial vehicle 100 is installed and used in a portable device such as a tablet terminal or a smartphone.
  • the present invention is not limited thereto.
  • the control device 130 includes an atmospheric pressure sensor 131, an optical flow sensor 132, a magnetic sensor 133, a gyro sensor 134, an acceleration sensor 135, a vibration sensor 136, a face authentication camera 137, a voice recognition microphone 138, It is the structure equipped with the arithmetic unit 139.
  • the atmospheric pressure sensor 131 is a sensor for detecting the atmospheric pressure outside the small unmanned air vehicle 100 and converting it into a signal, and it is possible to measure the altitude of the air vehicle using this.
  • the optical flow sensor 132 is a sensor for detecting the relative speed between the small unmanned air vehicle 100 and another object and converting it into a signal, and is configured at the lower front of the air vehicle. Thereby, it is detected that the small unmanned air vehicle 100 has stopped descending to the landing location. Further, by analyzing the information detected by the atmospheric pressure sensor 131 and the optical flow sensor 132, it is possible to accurately measure the altitude of the flying object.
  • the magnetic sensor 133 is a sensor that detects a magnetic force and converts it into a signal. In this embodiment, the magnetic sensor 133 is used to measure the orientation of the small unmanned air vehicle 100.
  • the gyro sensor 134 is a sensor for detecting and converting the angular velocity into a signal. In this embodiment, the gyro sensor 134 is used for measuring the angle of the small unmanned air vehicle 100.
  • the acceleration sensor 135 is a sensor for measuring and converting the acceleration of the small unmanned air vehicle 100 into a signal.
  • the small unmanned air vehicle 100 according to the present invention is intended to perform self-portrait photography, by controlling the attitude of the air vehicle body when used outdoors or when the subject s moves. It is necessary to follow the moving subject s while correcting the blur quickly and accurately. By using these sensors in an integrated manner, it is possible to control the flying object more precisely and to perform accurate self-portrait photography.
  • the vibration sensor 136 is a sensor for detecting that a vibration has been applied to the small unmanned aerial vehicle 100 and converting it into a signal.
  • the vibration sensor 136 activates the small unmanned aerial vehicle 100 by detecting a vibration having a certain amplitude. Perform initial startup processing.
  • the small unmanned aerial vehicle 100 is separately equipped with a camera for face authentication 137 in addition to the camera for photographing 140.
  • the face authentication camera 137 is a camera that detects a part that seems to be a human face from a digital image sensed by the camera.
  • the face authentication camera 137 is installed in the same direction as the photographing camera 140 of the small unmanned aerial vehicle 100. It is a configuration. It is possible to extract only a specific person using a face recognition algorithm that detects the relative position of each part of the face and extracts features. Accordingly, when the face authentication camera 137 detects a human (or a specific user), a tracking signal is transmitted, and a signal indicating that the photographing camera 140 can be photographed can be output.
  • a face is detected from a digital image sensed by the face authentication camera 137
  • information relating to the position in the detected image is converted into a signal (tracking signal) and calculated by the control device 130, thereby photographing the subject s.
  • the orientation of the camera 140 can be calculated, and the driving device 120 is individually controlled based on the calculation result to perform posture control and tracking so that the shooting camera 140 faces the direction of the subject s. Is possible.
  • the voice recognition microphone 138 is a microphone that detects and converts a voice outside the small unmanned air vehicle 100 into a signal. By recognizing a specific voice, it is possible to control the small unmanned air vehicle 100 to return to the initial position.
  • the computing device 139 is a device for computing the signals transmitted from the sensors, cameras, and microphones. Thereby, it is possible to perform self-portrait shooting by controlling the driving device 120, the shooting camera 140, and the like based on information from various sensors.
  • the small unmanned aerial vehicle 100 automatically jumps from the user (subject s), moves to a certain position and stops, detects and recognizes the subject s, and performs automatic shooting (or shooting by instructing the user). After the operation, the operation of automatically returning to the user (subject s) is performed.
  • the user gives a vibration as a trigger to the small unmanned air vehicle 100 according to the present invention.
  • the arithmetic device 139 issues a command to the drive device 120 by receiving a signal indicating that the vibration sensor 136 has detected vibration, and starts flying.
  • the control device 130 measures the initial position of the small unmanned air vehicle 100 based on the signals detected and transmitted by the atmospheric pressure sensor 131, the optical flow sensor 132, the gyro sensor 134, and the acceleration sensor 135.
  • control device 130 controls the driving device 120 by the arithmetic processing of the arithmetic device 139 to cause the small unmanned air vehicle 100 to fly from the measured initial position to the position of the preset horizontal distance and vertical distance. Then, the control which stops the small unmanned air vehicle 100 in this position is performed.
  • the control device 130 controls the driving device 120 by the arithmetic processing of the arithmetic device 139, and a signal transmitted from the magnetic sensor 133 and a tracking signal identified by the ground station 200 and transmitted from the face authentication camera 137. Based on the above, calculation processing such as the current altitude / position and direction with respect to the user (subject s) is performed, and processing for directing the photographing camera 140 of the small unmanned air vehicle 100 toward the subject s is performed. Further, the driving device 120 is controlled so as to keep the distance from the subject s constant.
  • a process of photographing the subject s is performed based on an instruction signal from the grand station 200 based on a user operation or a signal that is automatically generated upon detection of a photographable state.
  • the voice recognition microphone 138 detects the voice, and the control device 130 uses a preset signal transmitted therefrom.
  • the arithmetic device 139 performs arithmetic processing to perform processing for causing the small unmanned air vehicle 100 to fly back to the initial position.
  • the small unmanned air vehicle 100 placed on the palm of the user (subject s) is shaken (giving vibration) to start flying, and the user holds after moving to a certain distance.
  • a self-portrait can be taken by issuing a shooting instruction from a tablet or smartphone, etc., or a shooting process can be automatically performed, and then the user (subject s) can give a voice instruction to return to the camera.
  • the flying object 100 returns to the palm position of the original user (subject s), it is possible to perform a process of turning off the power, and it is possible to easily take a self-portrait.
  • the computing device 139 of the control device 130 is configured to cause the flying object to fly at a horizontal distance of 1 to 1.5 m and a vertical distance of 1 to 1.5 m from the initial position, and to stop at the position.
  • the arithmetic device 139 controls the driving device 120 to measure, for example, the position of the user's (subject s) hand as an initial state, and then starts flying with the signal generated by the vibration as a cue. It is the structure which stops on diagonally. With this configuration, the small unmanned aerial vehicle 100 can be stopped at a distance and an angle most suitable for self-portrait shooting, and self-portrait shooting can be performed.
  • the control device 130 is equipped with a plurality of distance sensors 300.
  • the distance sensor 300 is a sensor that measures and signals a distance to an object, is installed on all sides and above and below the small unmanned air vehicle 100, and measures the distance from each installation location to another object. With this configuration, it is possible to prevent the small unmanned air vehicle 100 from coming into contact with an obstacle. For example, it is possible to prevent injury from coming into contact with another person, or contact with another object. It is possible to prevent damage and crash.
  • the grand station 200 is configured to include a user interface 210 for transmitting a command signal desired by the user to the control device 130. If the user interface 210 is a tablet terminal or the like, the command signal is transmitted by various buttons displayed on the liquid crystal screen, and if the user interface 210 is an aircraft transmitter (proportional system), the command signal is transmitted by a lever. It is the structure which transmits.
  • the switching means 220 is a means for switching whether or not the user interface 210 can be used by the user. For a tablet terminal or the like, the switching means 220 transmits a switching instruction by a button or the like displayed on the liquid crystal screen, and transmits the aircraft. In the case of a propo (proportional system), a switching instruction is transmitted by a lever. With this configuration, it is possible to switch between automatic flight and arbitrary operation according to a user instruction.
  • the arithmetic device 130 measures the current position of the small unmanned air vehicle 100 based on signals transmitted from the atmospheric pressure sensor 131, the optical flow sensor 132, the gyro sensor 134, and the acceleration sensor 135.
  • the ground station 200 measures the vertical and horizontal distances between the current position of the small unmanned air vehicle 100 measured by the arithmetic device 130 and the ground station 200. When the measured distance exceeds a preset value, the control device 130 performs control to stop the horizontal and / or vertical movement of the small unmanned air vehicle 100. By adopting this configuration, it is possible to fly the small unmanned air vehicle 100 within a range that can be controlled by the user.
  • the grand station 200 can be configured by a tablet-type portable terminal or a personal computer.
  • Control device 130 is controlled by software 230 installed in a tablet-type portable terminal or personal computer.
  • the ground station 200 can be easily carried and the small unmanned air vehicle 100 can be operated using a familiar device.
  • the perspective view of the small unmanned air vehicle according to the present invention Diagram showing the usage state of a small unmanned air vehicle

Abstract

[Problem] To provide a compact unmanned flight vehicle for taking a selfie photo, such that an unmanned flight vehicle held by a user automatically navigates to a preset position and, after taking a photo while tracking the user, automatically returns to the user. [Solution] This compact unmanned flight vehicle is configured to comprise a plurality of rotor blades, a plurality of drive devices, a control device, a camera for photographing, a frame unit, and a ground station, the control device comprising an atmospheric pressure sensor, an optical flow sensor, a magnetic sensor, a gyro sensor, an acceleration sensor, a vibration sensor, a camera for face authentication, a microphone for voice recognition, and an arithmetic device. The arithmetic device measures the initial position of the flight vehicle and controls the drive device, causes the flight vehicle to fly to the set position and stop in said position, turns the camera for photographing toward a subject, controls the drive device so as to maintain the distance to the subject, photographs the subject on the basis of a command signal from the ground station, and turns off supplied electricity after flying to the initial position on the basis of a signal from the microphone for voice recognition.

Description

小型無人飛行体Small unmanned aerial vehicle
 本発明は、自動操縦が可能な小型の無人飛行体に関し、特に、ユーザが保持するカメラを搭載した無人飛行体が予め設定された位置まで自動飛行してユーザを撮影した後、自動的に該ユーザの元へ戻る動作をする、自動的に自撮りを行う事を可能とした小型無人飛行体に関する。 The present invention relates to a small unmanned air vehicle that can be automatically operated, and in particular, after an unmanned air vehicle equipped with a camera held by a user automatically flies to a preset position and photographs the user, The present invention relates to a small unmanned aerial vehicle that can automatically take a self-portrait that moves back to the user.
 従来より、無線によって操縦可能な小型の飛行体が数多く開発され利用されている。特に近年、ドローンと呼ばれる小型の飛行体が数多く開発されており、撮影等に用いられるとともに、機体の小型化が進んでおり、その用途は現在では多岐に渡っている。 Conventionally, many small flying vehicles that can be controlled by radio have been developed and used. In recent years, a large number of small flying vehicles called drones have been developed and used for shooting and the like, and the size of the aircraft has been reduced, and its uses are now diverse.
 近年、自らを写真撮影する自撮りを楽しむ人が増加しており、自撮りを行うための道具が多く開発されている。自撮りを行うには、古くから、カメラに内蔵されたタイマーを利用し、ユーザが写ろうとする位置において撮影することが可能となるようにカメラを所望の位置に固定設置した上で、タイマーを用いてシャッターを押すことが行われていた。 In recent years, an increasing number of people enjoy taking selfies, and many tools for taking selfies have been developed. In order to take a self-portrait, the timer built in the camera has been used since ancient times, and the camera is fixedly installed at a desired position so that the user can take a picture at a position where the user wants to take a picture. Used to press the shutter.
 しかしながら、カメラの設置に手間を要する事と、タイマーの設定時間内に設定した撮影位置に移動する必要があり、気軽に撮影ことができないという問題点があった。最近では、カメラのレンズを被写体である自分の方へ向けてシャッターを押すことが頻繁に行われているが、正確に被写体である自分を撮影することが困難であるとともに、レンズと被写体の距離が近すぎて正確にピントの合った美しい自撮り写真を撮影するのが難しいという問題があった。 However, there are problems in that it takes time to install the camera, and it is necessary to move to the shooting position set within the set time of the timer, so that it is not possible to take pictures easily. Recently, it is often done to press the shutter with the camera lens toward the subject, but it is difficult to accurately photograph the subject and the distance between the lens and the subject. There was a problem that it was difficult to take beautiful self-portrait photos that were too close to each other.
 このような問題点を解決する為に、いわゆる自撮り棒が開発され使用されている。自撮り棒とは、カメラを棒の先端に設置するとともに、棒の他端部の把持部をユーザが持ち、把持部に設置されたスイッチを操作することにより、棒の先端に設置したカメラのシャッターを押すことが出来る装置である。これにより、被写体と距離が近すぎるという問題は解消されるが、棒状の装置を持ち歩く必要があるとともに、手ぶれの振幅を回避する工夫が必要であるうえ、長尺の装置が周囲の他人に接触する危険性があるという問題点があった。 In order to solve such problems, so-called selfie sticks have been developed and used. A self-shooting stick is a camera that is installed at the tip of the stick by installing the camera at the tip of the stick and holding the grip at the other end of the stick and operating the switch installed at the grip. It is a device that can press the shutter. This eliminates the problem of being too close to the subject, but it is necessary to carry a rod-shaped device and to devise ways to avoid camera shake amplitude. There was a problem that there was a risk of doing.
 このような問題点を解決するための技術として、特開2017-65467号公報が存在する。ここでは、ドローンの本体内部の制御部が、被写体人物からドローンに加えられた外力の大きさに応じて飛行距離を決定するとともに、外力の向きから飛行方向を決定し、ドローンの飛行中に制御部がデジタルカメラを制御することにより被写体人物を撮影し、撮影後にドローンが外力を加えられた場所に帰還する技術が開示されている。 As a technique for solving such problems, there is JP-A-2017-65467. Here, the control unit inside the drone body determines the flight distance according to the magnitude of the external force applied to the drone from the subject person, determines the flight direction from the direction of the external force, and controls during the drone flight A technique is disclosed in which a person photographs a subject person by controlling a digital camera and the drone returns to a place where an external force is applied after the photographing.
 確かにこの技術によれば、棒が他人に当たるなどの危険性がなく、正確に被写体を撮影することが可能となるが、ドローンの飛行距離や撮影角度が毎回異なる事となり、必ずしも安定的に所望する自撮り写真を撮影できるとは言えないという問題点があった。 Certainly, according to this technology, there is no danger of a stick hitting another person and it is possible to photograph the subject accurately, but the flying distance and shooting angle of the drone will be different each time, so it is not always desirable There is a problem that it cannot be said that it can shoot a self-portrait.
 ドローン等の無人飛行体を用いてピントの合った美しい自撮り写真を撮影するには、ドローンが飛行する距離、方向、角度が一定であることが望ましい。また、被写体を追随する必要がある。そこで、予め設定された位置にドローン等の無人飛行体を飛行させるとともに、被写体を追随しつつ撮影する、自動的に自撮りを行う事を可能とした小型無人飛行体の開発が望まれていた。
特開2017-65467号公報
In order to take a beautiful self-portrait picture in focus using an unmanned aerial vehicle such as a drone, it is desirable that the distance, direction, and angle at which the drone flies be constant. It is also necessary to follow the subject. Therefore, there has been a demand for the development of a small unmanned aerial vehicle that allows an unmanned aerial vehicle such as a drone to fly to a preset position and that can automatically shoot while following the subject. .
JP 2017-65467 A
 本発明は、上記問題を解決するための、自動操縦が可能な小型の無人飛行体に関し、特に、ユーザのカメラを搭載した無人飛行体が予め設定された位置まで自動飛行してユーザを追随しつつ撮影した後、自動的に該ユーザの元へ戻る、自動的かつ正確に美しい自撮り写真の撮影を行う事を可能とした小型無人飛行体を提供する事を目的とする。 The present invention relates to a small unmanned air vehicle that can be automatically controlled to solve the above-mentioned problem, and in particular, an unmanned air vehicle equipped with a user's camera automatically flies to a preset position to follow the user. It is an object of the present invention to provide a small unmanned air vehicle capable of automatically and accurately taking a beautiful self-portrait, which automatically returns to the user after shooting.
 上記目的を達成するため本発明に係る小型無人飛行体は、制御装置を備えた小型無人飛行体が、複数の回転翼と、各回転翼に回転動力を付与する複数の駆動装置と、駆動装置の駆動速度を個別に制御する制御装置と、撮影用カメラと、前記駆動装置および制御装置を保持するフレーム部と、前記制御装置および撮影用カメラを無線によって制御するための飛行体外部に設けられるグランドステーションと、からなり、前記制御装置は、飛行体の高度を計測するために飛行体外部の気圧を検知して信号化する気圧センサと、飛行体の高度を計測するとともに飛行体の着陸箇所への停止を検出するために飛行体と他の物体との相対速度を検知して信号化する飛行体の前面下部に設置されるオプティカルフローセンサと、飛行体の向きを計測するために磁力を検知して信号化する磁気センサと、飛行体の角度を計測するために角速度を検知して信号化するジャイロセンサと、飛行体の加速度を計測して信号化する加速度センサと、飛行体に振動が加えられたことを検知して信号化する振動センサと、前記撮影用カメラで撮影する被写体を検知して認識するための顔認証用カメラと、飛行体外部の音声を検知して信号化する音声認識用マイクと、前記各センサ、カメラおよびマイクから伝送される信号を処理する演算装置と、からなるとともに、前記演算装置は、前記振動センサに与えた振動を検知することにより作動し、前記気圧センサ、オプティカルフローセンサ、ジャイロセンサおよび加速度センサから送信される信号を基に飛行体の初期位置を計測するとともに前記駆動装置を制御して該初期位置から予め設定された水平距離および垂直距離の位置に飛行体を飛翔した上で該位置に停止させ、前記磁気センサから送信される信号およびグランドステーションによって特定され顔認証用カメラから送信されるトラッキング信号を基に、被写体の方向へ飛行体の撮影用カメラの設置側を向けるとともに被写体との距離を一定に保つように前記駆動装置を制御し、グランドステーションからの指示信号を基に被写体を撮影し、音声認識用マイクから送信される予め設定された信号を基に、飛行体を前記初期位置へ飛翔帰還し、前記飛行体の位置と前記初期位置が一致したことを検出した上で通電を解除する構成である。 In order to achieve the above object, a small unmanned aerial vehicle according to the present invention comprises a plurality of rotary wings, a plurality of drive devices for applying rotational power to each rotary wing, and a drive device. A control device that individually controls the driving speed of the camera, a shooting camera, a frame unit that holds the driving device and the control device, and an outside of the flying vehicle for wirelessly controlling the control device and the shooting camera. A ground station, and the control device detects a barometric pressure outside the aircraft and measures the air pressure in order to measure the altitude of the flying vehicle, and measures the altitude of the flying vehicle and the landing location of the flying vehicle. An optical flow sensor installed at the lower part of the front of the aircraft that detects and signals the relative velocity between the aircraft and other objects to detect a stop, and measures the orientation of the aircraft A magnetic sensor that detects and signals magnetic force, a gyro sensor that detects and signals angular velocity to measure the angle of the flying object, an acceleration sensor that measures and signals the flying object acceleration, A vibration sensor that detects and signals that vibration has been applied to the flying object, a face authentication camera for detecting and recognizing a subject to be photographed by the photographing camera, and a voice outside the flying object. A speech recognition microphone that converts the signal into a signal and an arithmetic device that processes signals transmitted from the sensors, the camera, and the microphone, and the arithmetic device detects vibration applied to the vibration sensor. The initial position of the flying object is measured based on signals transmitted from the atmospheric pressure sensor, the optical flow sensor, the gyro sensor, and the acceleration sensor, and the driving device is controlled. Then, after flying the flying object to the position of the horizontal distance and the vertical distance set in advance from the initial position and stopping at the position, the signal transmitted from the magnetic sensor and the face station camera identified by the ground station Based on the transmitted tracking signal, the drive device is controlled so that the shooting camera of the flying object is directed toward the subject and the distance from the subject is kept constant, and an instruction signal from the ground station is used as a basis. The subject was photographed, and the flying object was returned to the initial position based on a preset signal transmitted from the voice recognition microphone, and it was detected that the position of the flying object coincided with the initial position. It is the structure which cancels | releases electricity supply above.
 また、前記制御装置の演算装置は、前記駆動装置を制御して計測された前記初期位置から1乃至1.5mの水平距離および1乃至1.5mの垂直距離の位置に飛行体を飛翔させた上で該位置に停止するよう制御する構成である。
 また、前記制御装置は、飛行体が障害物に接触することを防止するため、飛行体の四方および上下に設置され各設置個所から物体までの距離を計測して信号化する複数からなる距離センサを装備した構成である。
Further, the arithmetic unit of the control device causes the flying object to fly at a horizontal distance of 1 to 1.5 m and a vertical distance of 1 to 1.5 m from the initial position measured by controlling the driving device. It is the structure which controls to stop to this position above.
Further, the control device is provided with a plurality of distance sensors that measure the distance from each installation location to the object and are converted into a signal by being installed on all sides and above and below the flying object in order to prevent the flying object from contacting an obstacle. It is the configuration equipped with.
 また、前記グランドステーションは、ユーザが前記飛行体を任意に操作可能とするため、前記制御装置に対してユーザが所望する指令信号を送信するためのユーザインタフェースを装備するとともに、ユーザによる前記ユーザインタフェースの使用可否の切替えを行うための切替手段を装備した構成である。 The ground station is equipped with a user interface for transmitting a command signal desired by the user to the control device so that the user can arbitrarily operate the flying object, and the user interface by the user. It is the structure equipped with the switching means for switching the usability of.
 また、前記演算装置は、前記気圧センサ、オプティカルフローセンサ、ジャイロセンサおよび加速度センサから送信される信号を基に飛行体の現在位置を測定するとともに、前記グランドステーションは、前記演算装置によって測定された飛行体の現在位置とグランドステーションとの垂直および水平距離を測定し、該距離が予め設定された値を超えた場合に、前記制御装置が飛行体の水平移動および/または垂直移動を停止する制御を行う構成である。 The arithmetic unit measures the current position of the flying object based on signals transmitted from the barometric sensor, optical flow sensor, gyro sensor, and acceleration sensor, and the ground station is measured by the arithmetic unit. Control for measuring the vertical and horizontal distance between the current position of the flying object and the ground station, and when the distance exceeds a preset value, the control device stops the horizontal movement and / or vertical movement of the flying object. It is the structure which performs.
 更に、前記グランドステーションは、タブレット型携帯端末またはパーソナルコンピュータからなり、該タブレット型携帯端末またはパーソナルコンピュータにインストールされたソフトウェアによって前記制御装置の制御を行う構成でもある。 Furthermore, the ground station is composed of a tablet portable terminal or a personal computer, and the control device is controlled by software installed in the tablet portable terminal or personal computer.
 本発明に係る小型無人飛行体は、上記詳述した通りの構成であるので、以下のような効果がある。
1.気圧センサ、オプティカルフローセンサ、ジャイロセンサおよび加速度センサを設置したため、飛行体の初期位置および移動中の現在位置を精確に計測可能となり、予め設定された位置までの往復飛行が可能となる。また、磁気センサおよび顔認証カメラを設置したため、制御装置がトラッキング情報等をもとに飛行体の向きを制御してカメラの向きを任意に決定でき、また、被写体の動きに追従させることも可能となる。
2.初期位置から1乃至1.5mの水平距離・垂直距離で飛行体を停止する構成としたため、写真撮影に最適な位置に飛行体を静止する事が可能となる。
Since the small unmanned air vehicle according to the present invention has the configuration as described in detail above, it has the following effects.
1. Since the atmospheric pressure sensor, the optical flow sensor, the gyro sensor, and the acceleration sensor are installed, it is possible to accurately measure the initial position of the flying object and the current position during movement, and it is possible to reciprocate to a preset position. In addition, since a magnetic sensor and face authentication camera are installed, the control device can arbitrarily determine the orientation of the camera by controlling the orientation of the flying object based on tracking information, etc., and can also follow the movement of the subject It becomes.
2. Since the flying object is stopped at a horizontal distance / vertical distance of 1 to 1.5 m from the initial position, the flying object can be stopped at a position optimal for photography.
3.飛行体の四方および上下に距離センサを設けたため、飛行体が障害物に接触することを防止することが可能となる。
4.グランドステーションに切替手段を装備したため、ユーザの指示により自動飛行と任意操作の切替を行う事が可能となる。
3. Since distance sensors are provided on the four sides and above and below the flying object, it is possible to prevent the flying object from contacting an obstacle.
4). Since the ground station is equipped with a switching means, it is possible to switch between automatic flight and arbitrary operation according to a user instruction.
5.飛行体の現在位置とグランドステーションとの垂直および水平距離が予め設定された値を超えた場合に、飛行体の水平移動および/または垂直移動を停止する構成としたため、制御可能な範囲で飛行体を飛行させることが可能となる。
6.グランドステーションをタブレット型携帯端末またはパーソナルコンピュータとしたため、グランドステーションの持ち運びが手軽になるとともに、使い慣れた装置を用いて飛行体を操作することが可能となる。
5. When the vertical and horizontal distances between the current position of the flying object and the ground station exceed preset values, the horizontal movement and / or vertical movement of the flying object is stopped. Can be made to fly.
6). Since the ground station is a tablet-type portable terminal or a personal computer, it is easy to carry the ground station and it is possible to operate the flying object using a familiar device.
 以下、本発明に係る小型無人飛行体を図面に示す実施例に基づいて詳細に説明する。
 図1は、本発明に係る小型無人飛行体の斜視図であり、図2は、小型無人飛行体の使用状態を示す図である。
Hereinafter, a small unmanned aerial vehicle according to the present invention will be described in detail based on an embodiment shown in the drawings.
FIG. 1 is a perspective view of a small unmanned aerial vehicle according to the present invention, and FIG. 2 is a diagram showing a use state of the small unmanned aerial vehicle.
 本発明に係る小型無人飛行体100は、回転翼110と、駆動装置120と、制御装置130と、撮影用カメラ140と、フレーム部150と、グランドステーション200と、からなり、無人飛行体が予め設定された位置まで自動飛行してユーザを撮影した後自動的に該ユーザの元へ戻るという一連の自撮り処理を行う事を可能とした小型無人飛行体である。 A small unmanned aerial vehicle 100 according to the present invention includes a rotary wing 110, a driving device 120, a control device 130, a photographing camera 140, a frame unit 150, and a ground station 200. It is a small unmanned aerial vehicle capable of performing a series of self-taking processes of automatically flying to a set position and photographing a user and then automatically returning to the user.
 本発明に係る小型無人飛行体100は、制御装置が備えられてはいるが、総重量が200グラム以下という軽量からなる。この構成とすることにより、任意の場所で制御自在な小型無人飛行体100を飛行させて自撮り写真の撮影を行う事が出来る。 The small unmanned air vehicle 100 according to the present invention is equipped with a control device, but is light in weight with a total weight of 200 grams or less. With this configuration, a self-portrait picture can be taken by flying the small unmanned air vehicle 100 that can be controlled at an arbitrary place.
 回転翼110は、小型無人飛行体100に揚力を与えるため小型無人飛行体100に複数設置される回転ファンであり、本実施例では、小型無人飛行体100の本体の四方に4つ搭載する構成となっているが、これに限定されることはなく、3つ以下や5つ以上の回転翼110を設置する構成とすることも可能である。 The rotary wings 110 are a plurality of rotary fans installed on the small unmanned aerial vehicle 100 in order to give lift to the small unmanned air vehicle 100. In this embodiment, four rotary wings 110 are mounted on four sides of the main body of the small unmanned air vehicle 100. However, the present invention is not limited to this, and a configuration in which three or less or five or more rotor blades 110 are installed is also possible.
 駆動装置120は、小型無人飛行体100の本体に複数設置される回転翼110に回転動力を付与する装置であり、回転翼110毎に設置される。駆動装置120は、本実施例では電気を用いて動作するモータからなる構成としているが、これに限定されることはなく、小型エンジン等小型無人飛行体100が揚力を得るのに十分な出力を発生する駆動装置であれば、適宜選択して使用する事が可能である。 The driving device 120 is a device that applies rotational power to a plurality of rotor blades 110 installed in the main body of the small unmanned air vehicle 100, and is installed for each rotor blade 110. The driving device 120 is configured by a motor that operates using electricity in the present embodiment, but is not limited thereto, and the driving device 120 has a sufficient output for the small unmanned air vehicle 100 such as a small engine to obtain lift. Any driving device that generates the signals can be selected and used as appropriate.
 制御装置130は、駆動装置120の駆動速度を個別に制御する装置であり、本発明に係る小型無人飛行体100の全体に1つ設置される演算機能を有する部材である。本実施例では、制御装置130がユーザの指示および/または各種センサーからの情報を基に、小型無人飛行体100の姿勢を制御するように駆動装置120に対して個別に指令を出すことにより、浮遊中の小型無人飛行体100の移動の安定化乃至指令による任意の移動を可能とする。 The control device 130 is a device that individually controls the drive speed of the drive device 120, and is a member having a calculation function that is installed in one small unmanned air vehicle 100 according to the present invention. In the present embodiment, the control device 130 individually issues a command to the drive device 120 to control the attitude of the small unmanned air vehicle 100 based on the user's instruction and / or information from various sensors. Stabilization of the movement of the small unmanned air vehicle 100 in suspension or any movement according to a command is enabled.
 撮影用カメラ140は、自撮り写真を撮影するためのカメラであり、ユーザからの指示または自動操作により被写体sを撮影する。本実施例では、小型無人飛行体100に搭載可能な程度の重量(軽さ)からなるカメラであれば適宜選択して使用する事が可能である。 The photographing camera 140 is a camera for photographing a self-portrait photograph, and photographs the subject s by an instruction from a user or automatic operation. In the present embodiment, any camera having a weight (lightness) that can be mounted on the small unmanned air vehicle 100 can be appropriately selected and used.
 フレーム部150は、小型無人飛行体100のベースとなる枠部材であり、複数の駆動装置120と制御装置130とを保持するための筐体となる部材である。本実施例では、小型無人飛行体100の軽量化を図るため素材はプラスチックからなるが、これに限定されることはなく、カーボン等軽量な材質であれば適宜選択して使用する事が可能である。 The frame unit 150 is a frame member that serves as a base of the small unmanned air vehicle 100, and is a member that serves as a housing for holding the plurality of drive devices 120 and the control device 130. In this embodiment, the material is made of plastic in order to reduce the weight of the small unmanned air vehicle 100. However, the material is not limited to this, and any light material such as carbon can be selected and used as appropriate. is there.
 グランドステーション200は、小型無人飛行体100の飛行方向や姿勢を制御するための制御装置130および自撮り写真を撮影する撮影用カメラ140を無線によって制御するためのコントロール基地であり、小型無人飛行体100の外部に設けられる。本実施例では、後述するように、タブレット端末やスマートフォンなど、携帯可能な装置に小型無人飛行体100の制御用のアプリケーション(ソフトウェア)をインストールして使用する構成としているが、これに限定されることはなく、航空機用の送信器であるプロポ(プロポーショナル・システム)に撮影用カメラ140のシャッターを押すためのスイッチを付加したものを用いることも可能である。 The ground station 200 is a control base for wirelessly controlling a control device 130 for controlling the flight direction and attitude of the small unmanned air vehicle 100 and a photographing camera 140 for taking a self-portrait photograph. 100 outside. In the present embodiment, as will be described later, the application (software) for controlling the small unmanned aerial vehicle 100 is installed and used in a portable device such as a tablet terminal or a smartphone. However, the present invention is not limited thereto. However, it is also possible to use a transmitter (proportional system) that is a transmitter for an aircraft, to which a switch for pressing the shutter of the photographing camera 140 is added.
 次に制御装置130の詳細について説明する。制御装置130は、気圧センサ131と、オプティカルフローセンサ132と、磁気センサ133と、ジャイロセンサ134と、加速度センサ135と、振動センサ136と、顔認証用カメラ137と、音声認識用マイク138と、演算装置139とを装備した構成である。 Next, details of the control device 130 will be described. The control device 130 includes an atmospheric pressure sensor 131, an optical flow sensor 132, a magnetic sensor 133, a gyro sensor 134, an acceleration sensor 135, a vibration sensor 136, a face authentication camera 137, a voice recognition microphone 138, It is the structure equipped with the arithmetic unit 139.
 気圧センサ131は、小型無人飛行体100の外部の気圧を検知して信号化するためのセンサであり、これを用いて飛行体の高度を計測する事が可能となる。また、オプティカルフローセンサ132は、小型無人飛行体100と他の物体との相対速度を検知して信号化するためのセンサであり、飛行体の前面下部に設置される構成である。これにより、小型無人飛行体100が着陸箇所へ降下停止したことを検出する。また、気圧センサ131とオプティカルフローセンサ132とが検知した情報を解析することで、正確な飛行体の高度を計測する事が可能となる。 The atmospheric pressure sensor 131 is a sensor for detecting the atmospheric pressure outside the small unmanned air vehicle 100 and converting it into a signal, and it is possible to measure the altitude of the air vehicle using this. The optical flow sensor 132 is a sensor for detecting the relative speed between the small unmanned air vehicle 100 and another object and converting it into a signal, and is configured at the lower front of the air vehicle. Thereby, it is detected that the small unmanned air vehicle 100 has stopped descending to the landing location. Further, by analyzing the information detected by the atmospheric pressure sensor 131 and the optical flow sensor 132, it is possible to accurately measure the altitude of the flying object.
 磁気センサ133は、磁力を検知して信号化するセンサであり、本実施例では、小型無人飛行体100の向きを計測するために使用する。また、ジャイロセンサ134は、角速度を検知して信号化するためのセンサであり、本実施例では、小型無人飛行体100の角度を計測するために使用する。更に、加速度センサ135は、小型無人飛行体100の加速度を計測して信号化するためのセンサである。これら3つのセンサにより、小型無人飛行体100の飛行姿勢や向きなどに関する情報を細かく取得して演算し、演算結果を基に駆動装置120を個別に制御して姿勢制御を行う事としている。特に、本発明に係る小型無人飛行体100は、自撮り撮影を行う事を目的としているため、屋外で使用した場合や被写体sが動いた場合などに、飛行体本体の姿勢制御を行う事によりブレを素早く正確に補正しながら移動する被写体sを追従する必要がある。これらセンサを統合的に使用する事により、より細かな飛行体の制御を行う事が可能となり、正確な自撮り撮影を行う事が可能となる。 The magnetic sensor 133 is a sensor that detects a magnetic force and converts it into a signal. In this embodiment, the magnetic sensor 133 is used to measure the orientation of the small unmanned air vehicle 100. The gyro sensor 134 is a sensor for detecting and converting the angular velocity into a signal. In this embodiment, the gyro sensor 134 is used for measuring the angle of the small unmanned air vehicle 100. Further, the acceleration sensor 135 is a sensor for measuring and converting the acceleration of the small unmanned air vehicle 100 into a signal. With these three sensors, information regarding the flight attitude and orientation of the small unmanned air vehicle 100 is acquired and calculated in detail, and the attitude control is performed by individually controlling the drive device 120 based on the calculation result. In particular, since the small unmanned air vehicle 100 according to the present invention is intended to perform self-portrait photography, by controlling the attitude of the air vehicle body when used outdoors or when the subject s moves. It is necessary to follow the moving subject s while correcting the blur quickly and accurately. By using these sensors in an integrated manner, it is possible to control the flying object more precisely and to perform accurate self-portrait photography.
 振動センサ136は、小型無人飛行体100に振動が加えられたことを検知して信号化するためのセンサであり、一定の振り幅からなる振動を検知することにより、小型無人飛行体100の起動などの初期始動処理を行う。 The vibration sensor 136 is a sensor for detecting that a vibration has been applied to the small unmanned aerial vehicle 100 and converting it into a signal. The vibration sensor 136 activates the small unmanned aerial vehicle 100 by detecting a vibration having a certain amplitude. Perform initial startup processing.
 小型無人飛行体100は撮影用カメラ140の他、顔認証用カメラ137を別途装備する構成である。顔認証用カメラ137は、カメラが感知したデジタル画像から、人間の顔と思われる部分を検知するカメラであり、本実施例では、小型無人飛行体100の撮影用カメラ140と同じ方向に設置する構成である。顔の各パーツの相対位置を検出し特徴を抽出する顔認識アルゴリズムを利用して、特定の人物のみを抽出する構成とすることも可能である。これにより、人間(または特定のユーザ)を顔認証用カメラ137が検知すると、トラッキング信号が送信され、撮影用カメラ140が撮影可能となったことを示す信号を出すことが可能となる。また、顔認証用カメラ137が感知したデジタル画像から顔を検出した際に、検出した画像中の位置に関する情報を信号化(トラッキング信号)して制御装置130が演算することにより、被写体sに対する撮影用カメラ140の向きを算出することが可能となり、演算結果を基に駆動装置120を個別に制御して撮影用カメラ140が被写体sの方向を向くように姿勢制御と追従を行う構成とすることが可能となる。 The small unmanned aerial vehicle 100 is separately equipped with a camera for face authentication 137 in addition to the camera for photographing 140. The face authentication camera 137 is a camera that detects a part that seems to be a human face from a digital image sensed by the camera. In this embodiment, the face authentication camera 137 is installed in the same direction as the photographing camera 140 of the small unmanned aerial vehicle 100. It is a configuration. It is possible to extract only a specific person using a face recognition algorithm that detects the relative position of each part of the face and extracts features. Accordingly, when the face authentication camera 137 detects a human (or a specific user), a tracking signal is transmitted, and a signal indicating that the photographing camera 140 can be photographed can be output. In addition, when a face is detected from a digital image sensed by the face authentication camera 137, information relating to the position in the detected image is converted into a signal (tracking signal) and calculated by the control device 130, thereby photographing the subject s. The orientation of the camera 140 can be calculated, and the driving device 120 is individually controlled based on the calculation result to perform posture control and tracking so that the shooting camera 140 faces the direction of the subject s. Is possible.
 音声認識用マイク138は、小型無人飛行体100の外部の音声を検知して信号化するマイクである。特定の音声を認識することで、小型無人飛行体100を初期位置に戻すように制御することが可能となる。 The voice recognition microphone 138 is a microphone that detects and converts a voice outside the small unmanned air vehicle 100 into a signal. By recognizing a specific voice, it is possible to control the small unmanned air vehicle 100 to return to the initial position.
 演算装置139は、上記各センサ、カメラおよびマイクから伝送される信号を演算処理するための装置である。これにより、駆動装置120、撮影用カメラ140などを各種センサからの情報をもとに制御して自撮り撮影を行う事を可能としている。 The computing device 139 is a device for computing the signals transmitted from the sensors, cameras, and microphones. Thereby, it is possible to perform self-portrait shooting by controlling the driving device 120, the shooting camera 140, and the like based on information from various sensors.
 次に、本発明に係る小型無人飛行体100の一連の動作について説明する。小型無人飛行体100は、自動的にユーザ(被写体s)の元から飛び立って一定の位置に移動静止した上で、被写体sを検知して認識し、自動撮影(またはユーザに指示による撮影)を行った後、自動的にユーザ(被写体s)のところに戻ってくる動作をする構成である。 Next, a series of operations of the small unmanned air vehicle 100 according to the present invention will be described. The small unmanned aerial vehicle 100 automatically jumps from the user (subject s), moves to a certain position and stops, detects and recognizes the subject s, and performs automatic shooting (or shooting by instructing the user). After the operation, the operation of automatically returning to the user (subject s) is performed.
 まず、ユーザ(被写体s)が本発明に係る小型無人飛行体100にトリガーとなる振動を与える。演算装置139は、振動センサ136が振動を検知した旨の信号を受信することによって、駆動装置120に指令を出し、飛行を開始する。制御装置130は、気圧センサ131と、オプティカルフローセンサ132と、ジャイロセンサ134および加速度センサ135が検知して送信する信号を基に、小型無人飛行体100の初期位置を計測する。 First, the user (subject s) gives a vibration as a trigger to the small unmanned air vehicle 100 according to the present invention. The arithmetic device 139 issues a command to the drive device 120 by receiving a signal indicating that the vibration sensor 136 has detected vibration, and starts flying. The control device 130 measures the initial position of the small unmanned air vehicle 100 based on the signals detected and transmitted by the atmospheric pressure sensor 131, the optical flow sensor 132, the gyro sensor 134, and the acceleration sensor 135.
 次に、制御装置130は、演算装置139の演算処理により、駆動装置120を制御して、計測した初期位置から予め設定された水平距離および垂直距離の位置に小型無人飛行体100を飛翔させた後、該位置に小型無人飛行体100を停止する制御を行う。 Next, the control device 130 controls the driving device 120 by the arithmetic processing of the arithmetic device 139 to cause the small unmanned air vehicle 100 to fly from the measured initial position to the position of the preset horizontal distance and vertical distance. Then, the control which stops the small unmanned air vehicle 100 in this position is performed.
 停止後、制御装置130は、演算装置139の演算処理により、駆動装置120を制御して、磁気センサ133から送信される信号およびグランドステーション200によって特定され顔認証用カメラ137から送信されるトラッキング信号を基に、現在高度・位置やユーザ(被写体s)に対する方向等の演算処理を行い、被写体sの方向へ小型無人飛行体100の撮影用カメラ140を向ける処理を行う。更に、被写体sとの距離を一定に保つように駆動装置120を制御する。 After the stop, the control device 130 controls the driving device 120 by the arithmetic processing of the arithmetic device 139, and a signal transmitted from the magnetic sensor 133 and a tracking signal identified by the ground station 200 and transmitted from the face authentication camera 137. Based on the above, calculation processing such as the current altitude / position and direction with respect to the user (subject s) is performed, and processing for directing the photographing camera 140 of the small unmanned air vehicle 100 toward the subject s is performed. Further, the driving device 120 is controlled so as to keep the distance from the subject s constant.
 その後、ユーザ操作に基づくグランドステーション200からの指示信号または撮影可能な状態を検知して自動的に生成する信号を基に、被写体sを撮影する処理を行う。撮影終了後は、ユーザ(被写体s)が、予め決められた音声を発すると、音声認識用マイク138がその音声を検知し、制御装置130は、これより送信される予め設定された信号を基に、演算装置139が演算処理して、小型無人飛行体100を初期位置へ飛翔帰還移動させる処理を行う。演算装置139の演算処理により、小型無人飛行体100の現在位置と初期位置が一致したことを検出した上で、小型無人飛行体100の通電を解除する処理を行う。 Thereafter, a process of photographing the subject s is performed based on an instruction signal from the grand station 200 based on a user operation or a signal that is automatically generated upon detection of a photographable state. After the end of shooting, when the user (subject s) utters a predetermined voice, the voice recognition microphone 138 detects the voice, and the control device 130 uses a preset signal transmitted therefrom. In addition, the arithmetic device 139 performs arithmetic processing to perform processing for causing the small unmanned air vehicle 100 to fly back to the initial position. After detecting that the current position and the initial position of the small unmanned aerial vehicle 100 coincide with each other by the arithmetic processing of the arithmetic device 139, a process of releasing the energization of the small unmanned air vehicle 100 is performed.
 以上の一連の処理を行う事により、例えばユーザ(被写体s)の手のひらに乗せた小型無人飛行体100を揺らす(振動を与える)ことで飛行を開始させ、一定距離まで移動した後にユーザが保有するタブレットやスマートフォン等から撮影指示を出すことで自撮り撮影を行い、或は自動的に撮影処理を行い、その後、戻ってくるようにユーザ(被写体s)が声で指示を出すことで、小型無人飛行体100は元のユーザ(被写体s)の手のひらの位置に戻ってきた後、電源が切れるという処理を行う事が可能となり、容易に自撮りを行うことが可能となる。 By performing the series of processes described above, for example, the small unmanned air vehicle 100 placed on the palm of the user (subject s) is shaken (giving vibration) to start flying, and the user holds after moving to a certain distance. A self-portrait can be taken by issuing a shooting instruction from a tablet or smartphone, etc., or a shooting process can be automatically performed, and then the user (subject s) can give a voice instruction to return to the camera. After the flying object 100 returns to the palm position of the original user (subject s), it is possible to perform a process of turning off the power, and it is possible to easily take a self-portrait.
 制御装置130の演算装置139は、初期位置から1乃至1.5mの水平距離および1乃至1.5mの垂直距離の位置に飛行体を飛翔させ、該位置に停止させる構成である。演算装置139は、駆動装置120を制御し、例えばユーザ(被写体s)の手の位置を初期状態として計測した後、振動によって出された信号を合図に飛翔を開始し、ユーザ(被写体s)の斜め上で停止する構成である。この構成とすることにより、自撮り撮影に最も適した距離および角度で小型無人飛行体100を停止させることができ、自撮り撮影を行う事が可能となる。 The computing device 139 of the control device 130 is configured to cause the flying object to fly at a horizontal distance of 1 to 1.5 m and a vertical distance of 1 to 1.5 m from the initial position, and to stop at the position. The arithmetic device 139 controls the driving device 120 to measure, for example, the position of the user's (subject s) hand as an initial state, and then starts flying with the signal generated by the vibration as a cue. It is the structure which stops on diagonally. With this configuration, the small unmanned aerial vehicle 100 can be stopped at a distance and an angle most suitable for self-portrait shooting, and self-portrait shooting can be performed.
 制御装置130は、複数の距離センサ300を装備した構成である。距離センサ300は、物体までの距離を計測して信号化するセンサであり、小型無人飛行体100の四方および上下に設置され、各設置個所から他の物体までの距離を計測する。この構成とすることにより、小型無人飛行体100が障害物に接触することを防止する事が可能となり、例えば他の人に接触して怪我をさせることを防止したり、他の物に接触して破損・墜落することを防止することが可能となる。 The control device 130 is equipped with a plurality of distance sensors 300. The distance sensor 300 is a sensor that measures and signals a distance to an object, is installed on all sides and above and below the small unmanned air vehicle 100, and measures the distance from each installation location to another object. With this configuration, it is possible to prevent the small unmanned air vehicle 100 from coming into contact with an obstacle. For example, it is possible to prevent injury from coming into contact with another person, or contact with another object. It is possible to prevent damage and crash.
 グランドステーション200は、制御装置130に対してユーザが所望する指令信号を送信するためのユーザインタフェース210を装備する構成である。ユーザインタフェース210は、タブレット端末等であれば、液晶画面に表示される各種ボタン等によって指令信号を送信し、航空機用の送信器であるプロポ(プロポーショナル・システム)であれば、レバーによって指令信号を送信する構成である。また、切替手段220は、ユーザによるユーザインタフェース210の使用可否の切替えを行う手段であり、タブレット端末等であれば、液晶画面に表示されるボタン等によって切替指示を送信し、航空機用の送信器であるプロポ(プロポーショナル・システム)であれば、レバーによって切替指示を送信する構成である。この構成とすることにより、ユーザの指示により自動飛行と任意操作の切替を行う事が可能となる。 The grand station 200 is configured to include a user interface 210 for transmitting a command signal desired by the user to the control device 130. If the user interface 210 is a tablet terminal or the like, the command signal is transmitted by various buttons displayed on the liquid crystal screen, and if the user interface 210 is an aircraft transmitter (proportional system), the command signal is transmitted by a lever. It is the structure which transmits. The switching means 220 is a means for switching whether or not the user interface 210 can be used by the user. For a tablet terminal or the like, the switching means 220 transmits a switching instruction by a button or the like displayed on the liquid crystal screen, and transmits the aircraft. In the case of a propo (proportional system), a switching instruction is transmitted by a lever. With this configuration, it is possible to switch between automatic flight and arbitrary operation according to a user instruction.
 演算装置130は、本実施例では、気圧センサ131、オプティカルフローセンサ132、ジャイロセンサ134および加速度センサ135から送信される信号を基に、小型無人飛行体100の現在位置を測定する。また、グランドステーション200は、演算装置130によって測定された小型無人飛行体100の現在位置とグランドステーション200との垂直および水平距離を測定する。測定した距離が、予め設定された値を超えた場合には、制御装置130が小型無人飛行体100の水平および/または垂直移動を停止する制御を行う構成である。この構成とすることにより、ユーザが制御可能な範囲で小型無人飛行体100を飛行させることが可能となる。 In the present embodiment, the arithmetic device 130 measures the current position of the small unmanned air vehicle 100 based on signals transmitted from the atmospheric pressure sensor 131, the optical flow sensor 132, the gyro sensor 134, and the acceleration sensor 135. In addition, the ground station 200 measures the vertical and horizontal distances between the current position of the small unmanned air vehicle 100 measured by the arithmetic device 130 and the ground station 200. When the measured distance exceeds a preset value, the control device 130 performs control to stop the horizontal and / or vertical movement of the small unmanned air vehicle 100. By adopting this configuration, it is possible to fly the small unmanned air vehicle 100 within a range that can be controlled by the user.
 グランドステーション200は、本実施例では、タブレット型携帯端末またはパーソナルコンピュータからなる構成とすることが可能である。タブレット型携帯端末またはパーソナルコンピュータにインストールされたソフトウェア230によって制御装置130の制御を行う。この構成とすることにより、グランドステーション200の持ち運びが手軽になるとともに、使い慣れた装置を用いて小型無人飛行体100の操作を行うことが可能となった。 In this embodiment, the grand station 200 can be configured by a tablet-type portable terminal or a personal computer. Control device 130 is controlled by software 230 installed in a tablet-type portable terminal or personal computer. With this configuration, the ground station 200 can be easily carried and the small unmanned air vehicle 100 can be operated using a familiar device.
本発明に係る小型無人飛行体の斜視図The perspective view of the small unmanned air vehicle according to the present invention 小型無人飛行体の使用状態を示す図Diagram showing the usage state of a small unmanned air vehicle
 100  小型無人飛行体
 110  回転翼
 120  駆動装置
 130  制御装置
 131  気圧センサ
 132  オプティカルフローセンサ
 133  磁気センサ
 134  ジャイロセンサ
 135  加速度センサ
 136  振動センサ
 137  顔認証用カメラ
 138  音声認識用マイク
 139  演算装置
 140  撮影用カメラ
 150  フレーム部
 200  グランドステーション
 210  ユーザインタフェース
 220  切替手段
 230  ソフトウェア
 300  距離センサ
DESCRIPTION OF SYMBOLS 100 Small unmanned air vehicle 110 Rotary wing 120 Drive apparatus 130 Control apparatus 131 Atmospheric pressure sensor 132 Optical flow sensor 133 Magnetic sensor 134 Gyro sensor 135 Acceleration sensor 136 Vibration sensor 137 Face authentication camera 138 Voice recognition microphone 139 Arithmetic device 140 Camera for photography 150 Frame part 200 Grand station 210 User interface 220 Switching means 230 Software 300 Distance sensor

Claims (6)

  1.  制御装置を備えた小型無人飛行体(100)が、複数の回転翼(110)と、各回転翼に回転動力を付与する複数の駆動装置(120)と、駆動装置の駆動速度を個別に制御する制御装置(130)と、撮影用カメラ(140)と、前記駆動装置および制御装置を保持するフレーム部(150)と、前記制御装置および撮影用カメラを無線によって制御するための飛行体外部に設けられるグランドステーション(200)と、からなり、
     前記制御装置(130)は、飛行体の高度を計測するために飛行体外部の気圧を検知して信号化する気圧センサ(131)と、飛行体の高度を計測するとともに飛行体の着陸箇所への停止を検出するために飛行体と他の物体との相対速度を検知して信号化する飛行体の前面下部に設置されるオプティカルフローセンサ(132)と、飛行体の向きを計測するために磁力を検知して信号化する磁気センサ(133)と、飛行体の角度を計測するために角速度を検知して信号化するジャイロセンサ(134)と、飛行体の加速度を計測して信号化する加速度センサ(135)と、飛行体に振動が加えられたことを検知して信号化する振動センサ(136)と、前記撮影用カメラで撮影する被写体(s)を検知して認識するための顔認証用カメラ(137)と、飛行体外部の音声を検知して信号化する音声認識用マイク(138)と、前記各センサ、カメラおよびマイクから伝送される信号を処理する演算装置(139)と、からなるとともに、
     前記演算装置(139)は、前記振動センサ(136)に与えた振動を検知することにより作動し、前記気圧センサ(131)、オプティカルフローセンサ(132)、ジャイロセンサ(134)および加速度センサ(135)から送信される信号を基に飛行体の初期位置を計測するとともに前記駆動装置(120)を制御して該初期位置から予め設定された水平距離および垂直距離の位置に飛行体を飛翔した上で該位置に停止させ、前記磁気センサ(133)から送信される信号およびグランドステーションによって特定され顔認証用カメラ(137)から送信されるトラッキング信号を基に、被写体(s)の方向へ飛行体の撮影用カメラ(140)の設置側を向けるとともに被写体(s)との距離を一定に保つように前記駆動装置(120)を制御し、グランドステーション(200)からの指示信号を基に被写体(s)を撮影し、音声認識用マイク(138)から送信される予め設定された信号を基に、飛行体を前記初期位置へ飛翔帰還し、前記飛行体の位置と前記初期位置が一致したことを検出した上で通電を解除することを特徴とする小型無人飛行体。
    A small unmanned air vehicle (100) equipped with a control device individually controls a plurality of rotor blades (110), a plurality of drive devices (120) that apply rotational power to each rotor blade, and a drive speed of the drive device A control device (130), a photographing camera (140), a frame portion (150) holding the driving device and the control device, and an outside of the flying vehicle for wirelessly controlling the control device and the photographing camera. It consists of a grand station (200)
    In order to measure the altitude of the flying object, the control device (130) detects the atmospheric pressure outside the flying object and converts it into a signal, and measures the altitude of the flying object and returns to the landing point of the flying object. An optical flow sensor (132) installed at the lower front of the flying object that detects and signals the relative speed between the flying object and other objects to detect the stop of the aircraft, and to measure the orientation of the flying object Magnetic sensor (133) that detects and signals magnetic force, gyro sensor (134) that detects and signals angular velocity to measure the angle of the aircraft, and measures and signals the acceleration of the aircraft An acceleration sensor (135), a vibration sensor (136) that detects and signals that vibration has been applied to the flying object, and a face for detecting and recognizing the subject (s) photographed by the photographing camera For authentication camera (137) and voice recognition that detects and signals the sound outside the aircraft A microphone (138) and an arithmetic device (139) for processing signals transmitted from the sensors, the camera, and the microphone, and
    The arithmetic unit (139) operates by detecting the vibration applied to the vibration sensor (136), and the atmospheric pressure sensor (131), the optical flow sensor (132), the gyro sensor (134), and the acceleration sensor (135). ) To measure the initial position of the flying object based on the signal transmitted from the control unit (120) and control the driving device (120) to fly the flying object from the initial position to a position of a preset horizontal distance and vertical distance. In the direction of the subject (s) based on the signal transmitted from the magnetic sensor (133) and the tracking signal identified by the ground station and transmitted from the face authentication camera (137). The driving device (120) is controlled so that the installation side of the shooting camera (140) is directed and the distance from the subject (s) is kept constant, and the subject (based on the instruction signal from the ground station (200)) s) Based on the preset signal transmitted from the microphone (138), the flying object is returned to the initial position, and the energization is canceled after detecting that the position of the flying object matches the initial position. A small unmanned aerial vehicle characterized by
  2.  前記制御装置(130)の演算装置(139)は、前記駆動装置(120)を制御して計測された前記初期位置から1乃至1.5mの水平距離および1乃至1.5mの垂直距離の位置に飛行体を飛翔させた上で該位置に停止するよう制御することを特徴とする請求項1記載の小型無人飛行体。 The calculation device (139) of the control device (130) is a position having a horizontal distance of 1 to 1.5 m and a vertical distance of 1 to 1.5 m from the initial position measured by controlling the driving device (120). The small unmanned aerial vehicle according to claim 1, wherein the vehicle is controlled to stop at the position after flying the aircraft.
  3.  前記制御装置(130)は、飛行体が障害物に接触することを防止するため、飛行体の四方および上下に設置され各設置個所から物体までの距離を計測して信号化する複数からなる距離センサ(300)を装備したことを特徴とする請求項1記載の小型無人飛行体。 In order to prevent the flying object from contacting the obstacle, the control device (130) includes a plurality of distances that are measured on the four sides of the flying object and above and below to measure the distance from each installation point to the object and convert it to a signal. The small unmanned air vehicle according to claim 1, further comprising a sensor (300).
  4.  前記グランドステーション(200)は、ユーザが前記飛行体を任意に操作可能とするため、前記制御装置(130)に対してユーザが所望する指令信号を送信するためのユーザインタフェース(210)を装備するとともに、ユーザによる前記ユーザインタフェースの使用可否の切替えを行うための切替手段(220)を装備したことを特徴とする請求項1記載の小型無人飛行体。 The ground station (200) is equipped with a user interface (210) for transmitting a command signal desired by the user to the control device (130) so that the user can arbitrarily operate the flying object. The small unmanned air vehicle according to claim 1, further comprising switching means (220) for switching whether or not the user interface can be used by a user.
  5.  前記演算装置(130)は、前記気圧センサ(131)、オプティカルフローセンサ(132)、ジャイロセンサ(134)および加速度センサ(135)から送信される信号を基に飛行体の現在位置を測定するとともに、前記グランドステーション(200)は、前記演算装置(130)によって測定された飛行体の現在位置とグランドステーション(200)との垂直および水平距離を測定し、該距離が予め設定された値を超えた場合に、前記制御装置(130)が飛行体の水平移動および/または垂直移動を停止する制御を行うことを特徴とする請求項4記載の小型無人飛行体。 The arithmetic unit (130) measures the current position of the flying object based on signals transmitted from the barometric sensor (131), optical flow sensor (132), gyro sensor (134), and acceleration sensor (135). The ground station (200) measures the vertical and horizontal distance between the current position of the flying object measured by the arithmetic unit (130) and the ground station (200), and the distance exceeds a preset value. 5. The small unmanned aerial vehicle according to claim 4, wherein the control device (130) performs control to stop the horizontal movement and / or the vertical movement of the flying object in the event of a failure.
  6.  前記グランドステーション(200)は、タブレット型携帯端末またはパーソナルコンピュータからなり、該タブレット型携帯端末またはパーソナルコンピュータにインストールされたソフトウェア(230)によって前記制御装置(130)の制御を行うことを特徴とする請求項1記載の小型無人飛行体。

     
    The ground station (200) includes a tablet mobile terminal or a personal computer, and the control device (130) is controlled by software (230) installed in the tablet mobile terminal or personal computer. The small unmanned air vehicle according to claim 1.

PCT/JP2018/009782 2018-03-13 2018-03-13 Compact unmanned flight vehicle WO2019175982A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020505999A JP7011040B2 (en) 2018-03-13 2018-03-13 Small unmanned aircraft
PCT/JP2018/009782 WO2019175982A1 (en) 2018-03-13 2018-03-13 Compact unmanned flight vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009782 WO2019175982A1 (en) 2018-03-13 2018-03-13 Compact unmanned flight vehicle

Publications (1)

Publication Number Publication Date
WO2019175982A1 true WO2019175982A1 (en) 2019-09-19

Family

ID=67907172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009782 WO2019175982A1 (en) 2018-03-13 2018-03-13 Compact unmanned flight vehicle

Country Status (2)

Country Link
JP (1) JP7011040B2 (en)
WO (1) WO2019175982A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016101774A (en) * 2014-11-27 2016-06-02 みこらった株式会社 Vertically taking off and flying table
JP2016524567A (en) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ Controlled flight of multicopters subject to faults affecting effectors
JP2016212465A (en) * 2015-04-28 2016-12-15 株式会社ニコン Electronic device and imaging system
JP2017185928A (en) * 2016-04-07 2017-10-12 カシオ計算機株式会社 Flight type camera device, flight type camera system, terminal device, and control method and program of flight type camera device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016524567A (en) * 2013-06-09 2016-08-18 アイトゲネシシェ・テヒニシェ・ホーホシューレ・チューリヒ Controlled flight of multicopters subject to faults affecting effectors
JP2016101774A (en) * 2014-11-27 2016-06-02 みこらった株式会社 Vertically taking off and flying table
JP2016212465A (en) * 2015-04-28 2016-12-15 株式会社ニコン Electronic device and imaging system
JP2017185928A (en) * 2016-04-07 2017-10-12 カシオ計算機株式会社 Flight type camera device, flight type camera system, terminal device, and control method and program of flight type camera device

Also Published As

Publication number Publication date
JP7011040B2 (en) 2022-01-26
JPWO2019175982A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US11188101B2 (en) Method for controlling aircraft, device, and aircraft
US11022969B2 (en) Systems and methods for controlling an unmanned aerial vehicle
CN110687902B (en) System and method for controller-free user drone interaction
CN108572659B (en) Method for controlling unmanned aerial vehicle and unmanned aerial vehicle supporting same
WO2018209702A1 (en) Method for controlling unmanned aerial vehicle, unmanned aerial vehicle and machine-readable storage medium
CN108298078B (en) Remote control method and terminal
CN111596649B (en) Single hand remote control device for an air system
US20190061941A1 (en) Autonomous self-stabilizing aerial system and method
US11530038B2 (en) Detachable protection structure for unmanned aerial systems
JP2020501969A (en) Deformable device
WO2018214071A1 (en) Method and device for controlling unmanned aerial vehicle, and unmanned aerial vehicle system
JP6957304B2 (en) Overhead line photography system and overhead line photography method
CN110615095B (en) Hand-held remote control device and flight system set
US20180307225A1 (en) Method for piloting a rotary wing drone, related computer program, electronic apparatus and drone
CN204287973U (en) flight camera
JP6269735B2 (en) Flight apparatus, method, and program
JP6910785B2 (en) Mobile imager and its control method, as well as imager and its control method, unmanned aerial vehicle, program, storage medium
US10308359B2 (en) Moving device, method of controlling moving device and storage medium
CN105807783A (en) Flight camera
US11435743B2 (en) Throwable unmanned aerial vehicle and method of operation
WO2019104684A1 (en) Unmanned aerial vehicle control method, device and system
WO2019175982A1 (en) Compact unmanned flight vehicle
JP2018140686A (en) Mobile body device and mobile body system
CN207809802U (en) A kind of aircraft inclination flight Self-stabilization holder
WO2020042159A1 (en) Rotation control method and apparatus for gimbal, control device, and mobile platform

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020505999

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18910088

Country of ref document: EP

Kind code of ref document: A1