WO2019175959A1 - Method for assessing cell state and device for assessing cell state - Google Patents

Method for assessing cell state and device for assessing cell state Download PDF

Info

Publication number
WO2019175959A1
WO2019175959A1 PCT/JP2018/009698 JP2018009698W WO2019175959A1 WO 2019175959 A1 WO2019175959 A1 WO 2019175959A1 JP 2018009698 W JP2018009698 W JP 2018009698W WO 2019175959 A1 WO2019175959 A1 WO 2019175959A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
image
texture feature
state determination
colony
Prior art date
Application number
PCT/JP2018/009698
Other languages
French (fr)
Japanese (ja)
Inventor
礼子 赤澤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2018/009698 priority Critical patent/WO2019175959A1/en
Publication of WO2019175959A1 publication Critical patent/WO2019175959A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters

Definitions

  • the present invention relates to a cell state determination method and a cell state determination apparatus for non-invasively determining a cell state in a process of culturing pluripotent stem cells (ES cells and iPS cells), and more specifically, for observing cells.
  • the present invention relates to a cell state determination method and a cell state determination device suitable for determining whether a pluripotent stem cell is in an undifferentiated state or an undifferentiated deviation state based on the observed image.
  • pluripotent stem cells such as iPS cells and ES cells
  • undifferentiated deviant cells cells that have deviated from the undifferentiated state (cells that have already differentiated or are likely to differentiate, hereinafter referred to as “undifferentiated deviant cells”) have occurred in the cultured cells, If undifferentiated cells are found, they need to be removed quickly.
  • Whether or not a pluripotent stem cell maintains an undifferentiated state can be reliably determined by staining with an undifferentiated marker.
  • undifferentiated marker staining cannot be performed for determination of pluripotent stem cells for regenerative medicine.
  • the observer is an undifferentiated cell based on the morphological observation of the cell using a phase contrast microscope.
  • the phase contrast microscope is used because cells are generally transparent and difficult to observe with a normal optical microscope.
  • skill is required to make an accurate determination using such a method.
  • it is based on human judgment it is inevitable that the judgment will vary. Therefore, such conventional methods are not suitable for industrially mass-producing pluripotent stem cells.
  • Patent Document 1 a texture feature amount of a cell internal structure is calculated from a plurality of cell observation images acquired at predetermined time intervals, and a difference or correlation value of the texture feature amount with respect to the plurality of cell observation images is calculated.
  • a method for discriminating cell activity based on the time series change is described. In this method, for example, when the difference value of the texture feature amount with time elapses, it can be determined that the activity of the cell is decreasing.
  • Patent Document 2 describes a method of predicting cell quality such as a proliferation rate by performing fuzzy neural network (FNN) analysis using a plurality of index values acquired from a cell observation image. This document also describes that a texture feature amount obtained by image processing on a cell observation image is used as an index value.
  • FNN fuzzy neural network
  • the texture feature amount used in the above-described conventional cell evaluation method is calculated for each cell colony that is an aggregate of cells in the cell observation image, or calculated for each specific region in the cell observation image. It has been done. However, when the texture feature amount is calculated for a certain area in the image, even if a pattern different from the other part appears only in a part of the area, it is difficult to appear in the calculated value.
  • morphological information of cells or colonies may be used when calculating feature quantities for cell evaluation.
  • colonies grow adjacent colonies may be combined, but it is difficult to treat such a combined colony as a single colony. For this reason, it is necessary to perform image processing after separating the combined colonies into single colonies, but inaccuracy of such separation processing and changes in form information due to separation can also be a cause of erroneous determination.
  • the present invention has been made in order to solve the above-described problems, and the object of the present invention is to perform non-invasive and accurate determination of a cell state such as whether or not an undifferentiated departure cell exists in a part of a stem cell colony. It is providing the cell state determination method and cell state determination apparatus which can be implemented in this.
  • the cell state determination method made to solve the above problems is a cell state for determining the state of a cell or a cell in a colony based on an observation image of a cell or a colony that is an aggregate of cells.
  • a determination method comprising: a) calculating a texture feature amount by performing texture analysis for each of a plurality of first small regions set on the observed image, and creating a texture feature image indicating a two-dimensional distribution of the texture feature amount Texture feature image creation step; b) For one or a plurality of second small regions on the texture feature image, a plurality of types of index values related to the feature amount distribution in the small regions are calculated based on the texture feature amounts respectively included in the second small regions.
  • An index value calculating step, c) a determination step of determining a state of a cell included in the second small area based on a plurality of types of index values calculated for each second small area in the index value calculating step; It is characterized by carrying out.
  • the cell state determination device made to solve the above-mentioned problems is a device for carrying out the above-described cell state determination method, and is based on an observation image of a colony that is a cell or an aggregate of cells.
  • a cell state determination device for determining the state of a cell or a cell in a colony, a) calculating a texture feature amount by performing texture analysis for each of a plurality of first small regions set on the observed image, and creating a texture feature image indicating a two-dimensional distribution of the texture feature amount
  • a texture feature image creation unit b) For one or a plurality of second small regions on the texture feature image, a plurality of types of index values related to the feature amount distribution in the small regions are calculated based on the texture feature amounts respectively included in the second small regions.
  • cells to be determined are typically pluripotent stem cells such as iPS cells and ES cells.
  • the determination of the cell state performed in the determination step is typically performed by determining whether a single cell or a cell in a colony is an undifferentiated cell, an undifferentiated departure cell, or a differentiated cell. is there.
  • the texture feature image creation step texture analysis is performed for each of the plurality of first small regions on the observation image of the cell or colony. A texture feature amount is calculated. Then, a texture feature image showing a two-dimensional distribution of texture feature quantities is created. Since the size of the first small region is desirably a size that can easily detect a change in the acquired pattern information, it may be appropriately determined in advance according to the size of the cell to be measured.
  • texture analysis is roughly divided into structural texture analysis and statistical texture analysis.
  • the former is suitable for extracting structural or regular features of the pattern or pattern of the entire image
  • the latter is suitable for extracting local features of the pattern or pattern in the image.
  • statistical texture analysis is suitable as texture analysis. Note that general descriptions of image texture analysis, texture characteristics, and the like are described in detail in Non-Patent Document 1 and the like.
  • Non-Patent Document 2 proposes 14 types of texture feature amounts in texture analysis using a density co-occurrence matrix, and the properties represented by the feature amounts proposed in Reference 2 are described in Non-Patent Document 3. Explained. In this way, by using not only one type but also a plurality of types of texture feature amounts, it is possible to improve the accuracy of determination.
  • the small region for one second small region or each of the plurality of second small regions set in one or a plurality of texture feature images created in the texture feature image creation step A plurality of predetermined index values are calculated based on a plurality of texture feature amounts included in the. For example, when determining the state of the cells in the colony, the entire colony may be used as the second small area, or a plurality of second small areas having a size that includes one or more appropriate numbers of cells. An area may be defined. That is, the second region can be a cell colony or a region corresponding to one or a plurality of cells. Further, as the index value, statistics such as an average value, standard deviation, variance, maximum value, minimum value, median value, and mode value of a plurality of feature amounts in the second small region can be used.
  • the state of the cells included in the second small region from which the index value is calculated For example, it is determined whether an undifferentiated departure cell or a differentiated cell is contained in the colony.
  • the state of the cell may be determined by comparing a plurality of types of index values with predetermined threshold values.
  • the state of the cell may be determined by machine learning based on a plurality of types of index values. Further, various multivariate analysis methods other than machine learning may be used.
  • the size of the first small region is set to about the size of the thinly spread cell, a texture feature image showing the distribution of the texture feature amount for each small region is created, and the index value is obtained from the texture feature image.
  • the presence of thinly spread cells is easily reflected in the index value. As a result, it is possible to detect a region where undifferentiated departure cells exist with high accuracy.
  • the observation image may be an observation image obtained by a general optical microscope.
  • the cells are usually transparent, it is difficult to clearly observe the boundary between the cells and the background with a general optical microscope. . Therefore, a phase image obtained with a phase contrast microscope may be used as the observation image.
  • digital holographic microscopes using digital holography technology have been put into practical use, and phase images are obtained by performing data processing such as phase recovery and image reconstruction on hologram data obtained with digital holographic microscopes. has been established (see Patent Documents 3 and 4).
  • a phase image is suitable as the observation image in the present invention.
  • phase information at an arbitrary distance can be calculated at the stage of arithmetic processing after acquiring a hologram, so that it is not necessary to perform focusing every time during shooting, and the measurement time is shortened. be able to. For these reasons, it is more preferable to use an image created by processing based on hologram data acquired by a digital holographic microscope as the observation image in the present invention.
  • the cell state determination apparatus preferably further includes a digital holographic microscope and a phase image creation unit that creates a phase image by processing based on hologram data acquired by the digital holographic microscope.
  • the phase image may be provided as the observation image to the texture feature image creation unit.
  • the present invention for example, in a site where pluripotent stem cells such as iPS cells and ES cells are cultured, whether the cells being cultured are in an undifferentiated state or undifferentiated state, or in a colony It is possible to determine whether or not there are undifferentiated cells in a non-invasive manner with high accuracy. Thereby, the quality control of the cells in culture becomes easy, and the productivity in cell culture can be improved.
  • the schematic block diagram of the cell state determination apparatus by one Example of this invention The flowchart which shows the procedure of the cell state determination process in the apparatus of a present Example. Explanatory drawing of the texture analysis by the density
  • FIG. 1 is a schematic configuration diagram of an embodiment of a cell state determination apparatus for carrying out the cell state determination method according to the present invention.
  • the cell state determination apparatus of the present embodiment includes a microscopic observation unit 1, a control / processing unit 2, an input unit 3 and a display unit 4 which are user interfaces.
  • the microscopic observation unit 1 is an in-line holographic microscope (IHM), and includes a light source unit 10 including a laser diode or the like and an image sensor 11, and between the light source unit 10 and the image sensor 11, A culture plate 12 including a colony (or a single cell) 13 to be determined is arranged.
  • the control / processing unit 2 controls the operation of the microscopic observation unit 1 and processes data acquired by the microscopic observation unit 1, and includes an imaging control unit 20, a data storage unit 21, and a phase information calculation unit 22.
  • a phase image creation unit 23 and a cell state evaluation unit 24 are provided as functional blocks.
  • the cell state evaluation unit 24 includes a texture feature amount calculation unit 241, a texture feature image creation unit 242, a cell region extraction unit 243, an index value calculation unit 244, and a state determination processing unit 245 as lower functional blocks. Include as.
  • the entity of the control / processing unit 2 is a personal computer or a higher-performance workstation, and the functions of the above-described functional blocks are realized by operating dedicated control / processing software installed in the computer on the computer. Can be configured. Further, the function of the control / processing unit 2 may be shared by a plurality of computers connected via a communication network, as will be described later, instead of a single computer.
  • the cell state determination apparatus of the present embodiment operations and processes until a phase image that is an observation image used when determining a cell state will be described.
  • a phase image that is an observation image used when determining a cell state.
  • the imaging control unit 20 controls the microscopic observation unit 1 to acquire hologram data as follows.
  • the light source unit 10 irradiates a predetermined region of the culture plate 12 with coherent light having a small angle spread of about 10 °.
  • the coherent light (object light 15) that has passed through the culture plate 12 and the colony 13 reaches the image sensor 11 while interfering with the light (reference light 14) that has passed through a region close to the colony 13 on the culture plate 12.
  • the object light 15 is light whose phase has changed when passing through the colony 13.
  • the reference light 14 is light which does not pass through the colony 13 and thus does not undergo phase change due to the colony 13. Accordingly, on the detection surface (image surface) of the image sensor 11, an interference image (hologram) between the object light 15 whose phase has been changed by the colony 13 and the reference light 14 whose phase has not changed is formed.
  • the light source unit 10 and the image sensor 11 are sequentially moved in the X axis-Y axis direction (in a plane perpendicular to the paper surface of FIG. 1) by a moving mechanism (not shown). Thereby, the irradiation area
  • hologram data obtained by the microscopic observation unit 1 (two-dimensional light intensity distribution data of a hologram formed on the detection surface of the image sensor 11) is sequentially sent to the control / processing unit 2 for data storage.
  • the phase information calculation unit 22 reads the hologram data from the data storage unit 21, and calculates phase information for the entire observation region by executing a predetermined calculation process for phase recovery.
  • the phase image creation unit 23 creates a phase image of the entire observation region based on the calculated phase information.
  • phase image creation unit 23 may create a reproduced image based on these.
  • the cell state is determined using the phase image, but the cell state may be determined using the intensity image, the pseudo phase image, or the like.
  • the cell state evaluation unit 24 executes a cell state determination process according to the procedure of the flowchart shown in FIG.
  • the texture feature quantity calculation unit 241 obtains data constituting the phase image created by the phase image creation unit 23, that is, intensity value data for each pixel of the phase image (step S1). Then, a large number of first small areas obtained by dividing the phase image composed of the intensity value data, for example, for each predetermined size are set, and predetermined statistical texture analysis is executed for each first small area. As a result of the texture analysis, a plurality of types of texture feature amounts are obtained for each first small area. Then, the texture feature image creation unit 242 creates a texture feature image indicating a two-dimensional distribution of the texture feature value for each type of the texture feature value (step S2).
  • the first small area may be a first small area by grouping a plurality of adjacent pixels.
  • the texture feature amount of the reference pixel is set as the texture feature amount of the pixel.
  • the reference pixel may be set at the center of the first small area.
  • the size of the first small region is desirably a size that is easy to detect, such as a change in the pattern of cells or cell colonies on the phase image, and classifies undifferentiated cells, undifferentiated cells to be described later, etc. according to the size. The accuracy of is affected. Therefore, the size of the first small region may be appropriately determined in advance according to the type of cell to be measured, the cell, the size of the cell colony, and the like. Further, the phase image to be processed in step S1 does not have to be an image of the entire observation area, and may be an image limited to a range designated by the user (worker), for example.
  • FIG. 3 is a conceptual diagram for explaining the density co-occurrence matrix.
  • the angle ⁇ is four directions of 0 °, 45 °, 90 °, and 135 °. Therefore, when the number of gradations of the image is g, the density co-occurrence matrix P (i, j; d, ⁇ ) is a matrix having a size of g ⁇ g in one direction.
  • Non-Patent Document 2 as shown in the following equation (1), elements in all directions of the concentration co-occurrence matrix P (i, j; d, ⁇ ) are added to obtain P (i, j), and ( As shown in the equation (2), the elements of P (i, j) are normalized and expressed.
  • texture feature values are representatively selected from those having relatively different image properties that are estimated to be represented, and are not necessarily optimal combinations. Therefore, an appropriate type of texture feature amount may be added or reduced.
  • FIG. 5 shows IHM phase images of colonies containing only undifferentiated cells (undifferentiated colonies) and colonies including undifferentiated deviation cells (undifferentiated deviation colonies), and three types of textures created based on the phase images. It is a comparative example of a feature image. Although the undifferentiated departure area can be visually recognized even in the IHM phase image shown at the left end, the clarity is not necessarily high. On the other hand, in the three types of texture feature images on the right side, the difference between the undifferentiated departure area and the surrounding undifferentiated areas is clear, and the undifferentiated departure area is very easy to visually recognize.
  • step S2 texture feature images are obtained for each of the six types of texture feature amounts, so that six texture feature images are obtained from one phase image.
  • the cell region extraction unit 243 extracts a region where cells or colonies are estimated to exist based on the texture feature image, and obtains data indicating the outline of the cell region or colony region (step S3).
  • a well-known image processing algorithm described in Patent Document 5 can be used.
  • a mask for limiting the small region for calculating the index value on the texture feature image is generated.
  • FIG. 6 shows an example of calculating the index value for the colony region in the texture feature image. This is an example of an undifferentiated departure colony, and FIG. 6 selectively shows only three types of texture feature images. As shown in FIG. 4, the different types of texture feature amounts reflect different properties of the images, and therefore, the four types of index values tend to be different from the texture feature amounts.
  • the state determination processing unit 245 determines whether or not there is an undifferentiated departure area in the colony region based on the plurality of index values, that is, whether or not there are undifferentiated departure cells in the colony region.
  • the apparatus of this embodiment uses supervised machine learning for the determination, specifically, a support vector machine (SVM), which is a typical two-class classification method as a machine learning method (step S5).
  • SVM support vector machine
  • a learning model was constructed using index value data acquired based on phase images prepared in advance for each of undifferentiated colonies and undifferentiated deviation colonies, and index value data acquired based on unknown phase images was input.
  • the state determination processing unit 245 displays such a determination result on the screen of the display unit 4.
  • the method for determining the state of a cell based on a plurality of index values is not limited to machine learning.
  • a simple method whether or not undifferentiated deviation cells (or differentiated cells) are included in a colony depending on a combination of conditions in which a threshold value is set in advance for a plurality of index values and the index value is greater than or less than the threshold value. It may be determined. Further, a method other than the support vector machine may be used as the machine learning, or a multivariate analysis method that is not included in the machine learning in a narrow sense may be used.
  • the index value is calculated only for one colony region determined by the mask created in step S3.
  • a colony, a cell, or a specific part in the cell is displayed on the texture feature image.
  • Set appropriate subregions for cells such as cell nuclei, etc., calculate index values for each of the subregions, and independently determine the cell state for each subregion Also good. As a result, it is possible to identify at which position the undifferentiated departure cell exists in a state where a large number of cells exist or in a colony.
  • a personal computer connected to the microscopic observation unit 1 may be used as a terminal device, and a computer system in which this terminal device and a server that is a high-performance computer are connected via a communication network such as the Internet or an intranet may be used.
  • an in-line holographic microscope is used as the microscopic observation unit 1, but other microscopes such as an off-axis (off-axis) type and a phase shift type may be used as long as the microscope can obtain a hologram. Naturally, it can be replaced with a holographic microscope of the above type. Moreover, you may implement the process as shown in FIG. 2 based on the phase image obtained with a general phase contrast microscope instead of the phase image obtained with a holographic microscope.
  • the type of observation image is not limited as long as the target cell or colony is an image that can be observed relatively clearly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

A microscope observation unit (1) acquires hologram data pertaining to a culture plate (12) that includes a colony (13), and a phase information calculation unit (22) and a moving image creation unit (23) perform prescribed processing on the data to thereby create a phase image. A texture feature value computation unit (241) and a texture feature image creation unit (242) perform statistical texture analysis on each small region of the phase image and create multiple types of texture feature images. A cell region extraction unit (243) extracts a colony region from a texture feature image, and an index value calculation unit (244) computes index values such as the mean or standard deviation from the feature values included in the colony region on the texture feature image. A state assessment processing unit (245) assesses whether there are undifferentiated aberrant cells in the colony by machine learning in which multiple types of index values are used. This makes it possible to accurately and non-invasively assess whether cells, or cells in a colony, are in an undifferentiated aberrant state.

Description

細胞状態判定方法及び細胞状態判定装置Cell state determination method and cell state determination device
 本発明は、多能性幹細胞(ES細胞やiPS細胞)を培養する過程等において細胞の状態を非侵襲で判定する細胞状態判定方法及び細胞状態判定装置に関し、さらに詳しくは、細胞の観察するための観察画像に基づいて多能性幹細胞が未分化状態又は未分化逸脱状態のいずれかを判定するのに好適な細胞状態判定方法及び細胞状態判定装置に関する。 The present invention relates to a cell state determination method and a cell state determination apparatus for non-invasively determining a cell state in a process of culturing pluripotent stem cells (ES cells and iPS cells), and more specifically, for observing cells. The present invention relates to a cell state determination method and a cell state determination device suitable for determining whether a pluripotent stem cell is in an undifferentiated state or an undifferentiated deviation state based on the observed image.
 再生医療分野では、近年、iPS細胞やES細胞等の多能性幹細胞を用いた研究が盛んに行われている。こうした多能性幹細胞を利用した再生医療の研究・開発においては、多能性を維持した状態の未分化の細胞を大量に培養する必要がある。そのため、適切な培養環境の選択と環境の安定的な制御が必要であるとともに、培養中の細胞の状態を高い頻度で確認する必要がある。例えば、細胞コロニー内の細胞が未分化状態から逸脱すると、この場合、細胞コロニー内にある全ての細胞は分化する能力を有しているために、最終的にはコロニー内の細胞全てが未分化逸脱状態に遷移してしまう。そのため、観察者は培養している細胞中に未分化状態を逸脱した細胞(すでに分化した細胞や分化しそうな細胞、以下「未分化逸脱細胞」という)が発生していないかを日々確認し、未分化逸脱細胞を見つけた場合にはこれを迅速に除去する必要がある。 In the field of regenerative medicine, research using pluripotent stem cells such as iPS cells and ES cells has been actively conducted in recent years. In the research and development of regenerative medicine using such pluripotent stem cells, it is necessary to culture a large amount of undifferentiated cells that maintain pluripotency. For this reason, it is necessary to select an appropriate culture environment and to stably control the environment, and it is necessary to check the state of cells in culture at a high frequency. For example, if cells in a cell colony deviate from an undifferentiated state, in this case, all the cells in the cell colony have the ability to differentiate, so eventually all the cells in the colony are undifferentiated. Transition to a deviating state. Therefore, the observer checks every day whether cells that have deviated from the undifferentiated state (cells that have already differentiated or are likely to differentiate, hereinafter referred to as “undifferentiated deviant cells”) have occurred in the cultured cells, If undifferentiated cells are found, they need to be removed quickly.
 多能性幹細胞が未分化状態を維持しているか否かの判定は、未分化マーカによる染色を行うことで確実に行うことができる。しかしながら、染色を行った細胞は死滅するため、再生医療用の多能性幹細胞の判定には未分化マーカ染色を実施することができない。そこで、現在の再生医療用細胞培養の現場では、位相差顕微鏡を用いた細胞の形態的観察に基づいて、観察者が未分化細胞であるか否かを判定するようにしている。位相差顕微鏡を用いるのは、一般に細胞は透明であって通常の光学顕微鏡では観察しにくいためである。しかしながら、こうした方法で正確な判定を行うには熟練が必要である。また、人間の判断に基づくために判定にばらつきが生じることは避けられない。そのため、こうした従来の手法は多能性幹細胞を工業的に大量生産するのには適さない。 Whether or not a pluripotent stem cell maintains an undifferentiated state can be reliably determined by staining with an undifferentiated marker. However, since the stained cells are killed, undifferentiated marker staining cannot be performed for determination of pluripotent stem cells for regenerative medicine. In view of this, in the current field of cell culture for regenerative medicine, it is determined whether or not the observer is an undifferentiated cell based on the morphological observation of the cell using a phase contrast microscope. The phase contrast microscope is used because cells are generally transparent and difficult to observe with a normal optical microscope. However, skill is required to make an accurate determination using such a method. In addition, since it is based on human judgment, it is inevitable that the judgment will vary. Therefore, such conventional methods are not suitable for industrially mass-producing pluripotent stem cells.
 こうした課題に対し、細胞の観察画像を画像処理することで細胞の状態を評価する技術が従来提案されている。
 例えば特許文献1には、所定時間隔てて取得された複数の細胞観察画像からそれぞれ細胞内部構造のテクスチャ特徴量を算出し、その複数の細胞観察画像に対するテクスチャ特徴量の差分や相関値を計算してその時系列変化に基づいて細胞の活性度を判別する方法が記載されている。この方法では例えば、時間経過に伴うテクスチャ特徴量の差分値が減少傾向である場合に、その細胞の活性度は減少している等と判断することができる。
In order to solve such a problem, a technique for evaluating the state of a cell by performing image processing on an observation image of the cell has been conventionally proposed.
For example, in Patent Document 1, a texture feature amount of a cell internal structure is calculated from a plurality of cell observation images acquired at predetermined time intervals, and a difference or correlation value of the texture feature amount with respect to the plurality of cell observation images is calculated. A method for discriminating cell activity based on the time series change is described. In this method, for example, when the difference value of the texture feature amount with time elapses, it can be determined that the activity of the cell is decreasing.
 また特許文献2には、細胞観察画像から取得した複数の指標値を用いてファジィニューラルネットワーク(FNN)解析を実施し、増殖率などの細胞の品質を予測する方法が記載されている。該文献には、細胞観察画像に対する画像処理により求まるテクスチャ特徴量を指標値として利用することも記載されている。 Further, Patent Document 2 describes a method of predicting cell quality such as a proliferation rate by performing fuzzy neural network (FNN) analysis using a plurality of index values acquired from a cell observation image. This document also describes that a texture feature amount obtained by image processing on a cell observation image is used as an index value.
 上述した従来の細胞評価方法において用いられているテクスチャ特徴量は、細胞観察画像内の細胞の集合体である細胞コロニー毎に算出されたもの、或いは該細胞観察画像内の特定の領域毎に算出されたものである。しかしながら、画像内の或る領域についてテクスチャ特徴量を算出した場合、その領域中の一部分にのみ他の部分と異なる模様が出現してもそれは計算値に現れにくい。 The texture feature amount used in the above-described conventional cell evaluation method is calculated for each cell colony that is an aggregate of cells in the cell observation image, or calculated for each specific region in the cell observation image. It has been done. However, when the texture feature amount is calculated for a certain area in the image, even if a pattern different from the other part appears only in a part of the area, it is difficult to appear in the calculated value.
 上述したように多能性幹細胞を大量に培養する場合、コロニー中の一部が未分化逸脱細胞であることが判明したならば、それを取り除いたり或いはその培養自体を中止したりする必要がある。そのためには、未分化逸脱細胞を細胞が不良な状態であると認識し、幹細胞コロニーの観察画像において、そのコロニー中の一部分が不良な状態であるという事象を検出することが求められる。しかしながら、その不良な状態である領域つまりは未分化逸脱細胞の領域がテクスチャ特徴量を算出する領域のごく一部であると、その特徴量の計算値から不良な状態を検出することは困難である。 As described above, when pluripotent stem cells are cultured in large quantities, if it is found that some of the colonies are undifferentiated cells, it is necessary to remove them or to stop the culture itself . For that purpose, it is required to recognize an undifferentiated departure cell as a cell in a defective state and to detect an event that a part of the colony is in a defective state in an observation image of a stem cell colony. However, if the region in the poor state, that is, the region of undifferentiated departure cells is a small part of the region for calculating the texture feature amount, it is difficult to detect the defective state from the calculated value of the feature amount. is there.
 また、上記従来方法では、細胞評価のための特徴量を算出する際に、細胞やコロニーの形態情報が利用される場合がある。細胞の形態情報を得るには、まず細胞観察画像内で細胞領域を正確に認識する必要があり、細胞領域の認識が正確に行われないと(例えば実際には二つの細胞領域を一つの細胞領域であると誤認識した場合など)形態情報に基づく特徴量は不正確になり、誤判定の大きな原因となり得る。また、コロニーが成長すると隣接するコロニー同士が結合する場合があるが、こうした結合コロニーを単体のコロニーと同じ扱いとすることは難しい。そのため、結合コロニーは単体コロニーに分離したうえで画像処理を行う必要があるが、こうした分離処理の不正確さや分離による形態情報の変化も誤判定の要因となり得る。 In addition, in the above-described conventional method, morphological information of cells or colonies may be used when calculating feature quantities for cell evaluation. In order to obtain cell shape information, it is first necessary to accurately recognize the cell region in the cell observation image. If the cell region is not correctly recognized (for example, two cell regions are actually converted into one cell). The feature quantity based on the form information becomes inaccurate (for example, when it is erroneously recognized as an area), and may cause a large misjudgment. Further, when colonies grow, adjacent colonies may be combined, but it is difficult to treat such a combined colony as a single colony. For this reason, it is necessary to perform image processing after separating the combined colonies into single colonies, but inaccuracy of such separation processing and changes in form information due to separation can also be a cause of erroneous determination.
特許第4968595号公報Japanese Patent No. 4968595 特許第5181385号公報Japanese Patent No. 5181385 国際特許公開第2016/084420号International Patent Publication No. 2016/084420 特開平10-268740号公報JP-A-10-268740 国際特許公開第2013/099772号International Patent Publication No. 2013/097772
 本発明は上記課題を解決するためになされたものであり、その目的とするところは、幹細胞コロニー中の一部に未分化逸脱細胞が存在するか否かといった細胞状態の判定を非侵襲で正確に実施することができる細胞状態判定方法及び細胞状態判定装置を提供することである。 The present invention has been made in order to solve the above-described problems, and the object of the present invention is to perform non-invasive and accurate determination of a cell state such as whether or not an undifferentiated departure cell exists in a part of a stem cell colony. It is providing the cell state determination method and cell state determination apparatus which can be implemented in this.
 上記課題を解決するために成された本発明に係る細胞状態判定方法は、細胞又は細胞の集合体であるコロニーについての観察画像に基づいて細胞、又はコロニー中の細胞の状態を判定する細胞状態判定方法であって、
 a)前記観察画像上に設定された複数の第1の小領域毎にテクスチャ解析を行うことでテクスチャ特徴量を算出し、該テクスチャ特徴量の二次元的な分布を示すテクスチャ特徴画像を作成するテクスチャ特徴画像作成ステップと、
 b)前記テクスチャ特徴画像上の一又は複数の第2の小領域について、第2の小領域にそれぞれ含まれるテクスチャ特徴量に基づいて該小領域内の特徴量分布に関する複数種類の指標値を算出する指標値算出ステップと、
 c)前記指標値算出ステップにおいて第2の小領域毎に算出された複数種類の指標値に基づいて、その第2の小領域に含まれる細胞の状態を判定する判定ステップと、
 を実施することを特徴としている。
The cell state determination method according to the present invention made to solve the above problems is a cell state for determining the state of a cell or a cell in a colony based on an observation image of a cell or a colony that is an aggregate of cells. A determination method comprising:
a) calculating a texture feature amount by performing texture analysis for each of a plurality of first small regions set on the observed image, and creating a texture feature image indicating a two-dimensional distribution of the texture feature amount Texture feature image creation step;
b) For one or a plurality of second small regions on the texture feature image, a plurality of types of index values related to the feature amount distribution in the small regions are calculated based on the texture feature amounts respectively included in the second small regions. An index value calculating step,
c) a determination step of determining a state of a cell included in the second small area based on a plurality of types of index values calculated for each second small area in the index value calculating step;
It is characterized by carrying out.
 また上記課題を解決するために成された本発明に係る細胞状態判定装置は上記細胞状態判定方法を実施するための装置であり、細胞又は細胞の集合体であるコロニーについての観察画像に基づいて細胞、又はコロニー中の細胞の状態を判定する細胞状態判定装置であって、
 a)前記観察画像上に設定された複数の第1の小領域毎にテクスチャ解析を行うことでテクスチャ特徴量を算出し、該テクスチャ特徴量の二次元的な分布を示すテクスチャ特徴画像を作成するテクスチャ特徴画像作成部と、
 b)前記テクスチャ特徴画像上の一又は複数の第2の小領域について、第2の小領域にそれぞれ含まれるテクスチャ特徴量に基づいて該小領域内の特徴量分布に関する複数種類の指標値を算出する指標値算出部と、
 c)前記指標値算出部により第2の小領域毎に算出された複数種類の指標値に基づいて、その第2の小領域に含まれる細胞の状態を判定する判定実行部と、
 を備えることを特徴としている。
Moreover, the cell state determination device according to the present invention made to solve the above-mentioned problems is a device for carrying out the above-described cell state determination method, and is based on an observation image of a colony that is a cell or an aggregate of cells. A cell state determination device for determining the state of a cell or a cell in a colony,
a) calculating a texture feature amount by performing texture analysis for each of a plurality of first small regions set on the observed image, and creating a texture feature image indicating a two-dimensional distribution of the texture feature amount A texture feature image creation unit;
b) For one or a plurality of second small regions on the texture feature image, a plurality of types of index values related to the feature amount distribution in the small regions are calculated based on the texture feature amounts respectively included in the second small regions. An index value calculation unit to
c) a determination execution unit that determines a state of a cell included in the second small region based on a plurality of types of index values calculated for each second small region by the index value calculation unit;
It is characterized by having.
 本発明において、判定対象である細胞は典型的にはiPS細胞やES細胞などの多能性幹細胞である。また、上記判定ステップにおいて実施される細胞状態の判定は典型的には、細胞単体又はコロニー中の細胞が、未分化細胞であるか、それとも未分化逸脱細胞又は分化細胞であるか、の判定である。 In the present invention, cells to be determined are typically pluripotent stem cells such as iPS cells and ES cells. In addition, the determination of the cell state performed in the determination step is typically performed by determining whether a single cell or a cell in a colony is an undifferentiated cell, an undifferentiated departure cell, or a differentiated cell. is there.
 本発明に係る細胞状態判定装置により具現化される細胞状態判定方法において、テクスチャ特徴画像作成ステップでは、細胞又はコロニーについての観察画像に対し複数の第1の小領域毎にテクスチャ解析を行うことでテクスチャ特徴量が算出される。そして、テクスチャ特徴量の二次元分布を示すテクスチャ特徴画像が作成される。この第1の小領域のサイズは取得した模様情報の変化を検出し易いサイズであることが望ましいから、測定対象の細胞の大きさなどに応じて予め適宜に定めるとよい。 In the cell state determination method embodied by the cell state determination apparatus according to the present invention, in the texture feature image creation step, texture analysis is performed for each of the plurality of first small regions on the observation image of the cell or colony. A texture feature amount is calculated. Then, a texture feature image showing a two-dimensional distribution of texture feature quantities is created. Since the size of the first small region is desirably a size that can easily detect a change in the acquired pattern information, it may be appropriately determined in advance according to the size of the cell to be measured.
 周知のように、テクスチャ解析には大別して構造的テクスチャ解析と統計的テクスチャ解析とがある。一般に前者は画像全体の模様やパターンの構造的な或いは規則的な特徴を抽出するのに適しており、後者は画像内の局所的な模様やパターンの特徴を抽出するのに適している。ここでは、コロニー中の一部の細胞に対応するような画像内の狭い範囲における特徴を把握したいので、テクスチャ解析として統計的テクスチャ解析が適している。なお、画像のテクスチャ解析やテクスチャ特徴などについての全般的な説明は非特許文献1等に詳細に記載されている。 As is well known, texture analysis is roughly divided into structural texture analysis and statistical texture analysis. In general, the former is suitable for extracting structural or regular features of the pattern or pattern of the entire image, and the latter is suitable for extracting local features of the pattern or pattern in the image. Here, since it is desired to grasp the characteristics in a narrow range in the image corresponding to some cells in the colony, statistical texture analysis is suitable as texture analysis. Note that general descriptions of image texture analysis, texture characteristics, and the like are described in detail in Non-Patent Document 1 and the like.
 統計的テクスチャ解析には、濃度ヒストグラムを用いる濃度ヒストグラム法、差分統計量を用いる濃度レベル差分法、同時生起行列を用いる空間濃度レベル依存法、濃度共起行列を用いる方法など、様々な方法がある。そのため、適宜の方法を選択すればよいが、本発明者の実験的な検討によれば、濃度共起行列を用いた方法で十分に信頼に足る判定が可能であることが確認されている。非特許文献2には、濃度共起行列を用いたテクスチャ解析における14種類のテクスチャ特徴量が提案されており、該文献2で提案されている特徴量が表している性質については非特許文献3で説明されている。このように1種類のみでなく複数種類のテクスチャ特徴量を併用することで、判定の精度の向上が可能である。 There are various methods for statistical texture analysis, such as a density histogram method using a density histogram, a density level difference method using a difference statistic, a spatial density level dependency method using a co-occurrence matrix, and a method using a density co-occurrence matrix. . For this reason, an appropriate method may be selected. However, according to an experimental study by the present inventor, it has been confirmed that a sufficiently reliable determination can be made by a method using a concentration co-occurrence matrix. Non-Patent Document 2 proposes 14 types of texture feature amounts in texture analysis using a density co-occurrence matrix, and the properties represented by the feature amounts proposed in Reference 2 are described in Non-Patent Document 3. Explained. In this way, by using not only one type but also a plurality of types of texture feature amounts, it is possible to improve the accuracy of determination.
 次いで指標値算出ステップでは、テクスチャ特徴画像作成ステップにおいて作成された1又は複数のテクスチャ特徴画像中に設定した一つの第2の小領域について又は複数の第2の小領域のそれぞれについて、その小領域に含まれる複数のテクスチャ特徴量に基づいて所定の複数種類の指標値を算出する。例えばコロニー中の細胞の状態を判定する場合には、そのコロニー全体を第2の小領域としてもよいし、一以上の適宜の個数の細胞が含まれる程度のサイズを有する複数の第2の小領域を定めてもよい。即ち、第2の領域は細胞コロニー又は1個若しくは複数個の細胞に対応する領域とすることができる。また、指標値としては、第2の小領域内の複数の特徴量の平均値、標準偏差、分散、最大値、最小値、中央値、最頻値などの統計量を用いることができる。 Next, in the index value calculation step, the small region for one second small region or each of the plurality of second small regions set in one or a plurality of texture feature images created in the texture feature image creation step A plurality of predetermined index values are calculated based on a plurality of texture feature amounts included in the. For example, when determining the state of the cells in the colony, the entire colony may be used as the second small area, or a plurality of second small areas having a size that includes one or more appropriate numbers of cells. An area may be defined. That is, the second region can be a cell colony or a region corresponding to one or a plurality of cells. Further, as the index value, statistics such as an average value, standard deviation, variance, maximum value, minimum value, median value, and mode value of a plurality of feature amounts in the second small region can be used.
 そして判定ステップでは、上述したように算出された一又は複数のテクスチャ特徴量に対する複数種類の指標値に基づいて、その指標値の算出元である第2の小領域内に含まれる細胞の状態、例えばコロニー中に未分化逸脱細胞又は分化細胞が含まれるか否かを判定する。簡易的な判定方法としては、複数種類の指標値をそれぞれ予め定めた閾値と比較することで細胞の状態を判定すればよい。また、より精度の高い判定を行うには、複数種類の指標値に基づく機械学習により細胞の状態を判定してもよい。また、機械学習以外の様々な多変量解析の手法を利用してもよい。 In the determination step, based on a plurality of types of index values for one or a plurality of texture feature amounts calculated as described above, the state of the cells included in the second small region from which the index value is calculated, For example, it is determined whether an undifferentiated departure cell or a differentiated cell is contained in the colony. As a simple determination method, the state of the cell may be determined by comparing a plurality of types of index values with predetermined threshold values. Further, in order to make a more accurate determination, the state of the cell may be determined by machine learning based on a plurality of types of index values. Further, various multivariate analysis methods other than machine learning may be used.
 例えばヒトiPS細胞では、未分化状態であると密集してコロニーを形成するのに対し、未分化状態から逸脱すると薄く広がるという変化が起こることが多い。そこで、第1の小領域のサイズをこのように薄く広がった細胞のサイズ程度に定めて、その小領域毎のテクスチャ特徴量の分布を示すテクスチャ特徴画像を作成し、そのテクスチャ特徴画像から指標値を算出すると、薄く広がった細胞が存在することが指標値に反映され易くなる。これによって、未分化逸脱細胞が存在する領域を高い確度で検出することができる。 For example, in human iPS cells, a colony is formed densely in an undifferentiated state, but often changes thinly when deviating from the undifferentiated state. Therefore, the size of the first small region is set to about the size of the thinly spread cell, a texture feature image showing the distribution of the texture feature amount for each small region is created, and the index value is obtained from the texture feature image. When it is calculated, the presence of thinly spread cells is easily reflected in the index value. As a result, it is possible to detect a region where undifferentiated departure cells exist with high accuracy.
 本発明において、観察画像は一般的な光学顕微鏡による観察画像でもよいが、通常、細胞は透明であるため、一般的な光学顕微鏡では細胞とバックグラウンドとの境界を観明瞭に観察することが難しい。そのため、観察画像としては、位相差顕微鏡により得られる位相画像を用いるとよい。また、近年、デジタルホログラフィ技術を用いたデジタルホログラフィック顕微鏡が実用に供されており、デジタルホログラフィック顕微鏡で得られたホログラムデータに対し位相回復や画像再構成等のデータ処理を行うことで位相画像を作成する技術が確立されている(特許文献3、4等参照)。通常、こうした位相画像は光強度画像や可視画像などに比べて細胞の模様情報がより鮮明に現れているため、本発明における前記観察画像としては位相画像が好適である。 In the present invention, the observation image may be an observation image obtained by a general optical microscope. However, since the cells are usually transparent, it is difficult to clearly observe the boundary between the cells and the background with a general optical microscope. . Therefore, a phase image obtained with a phase contrast microscope may be used as the observation image. In recent years, digital holographic microscopes using digital holography technology have been put into practical use, and phase images are obtained by performing data processing such as phase recovery and image reconstruction on hologram data obtained with digital holographic microscopes. Has been established (see Patent Documents 3 and 4). Usually, in such a phase image, cell pattern information appears more clearly than a light intensity image, a visible image or the like, and therefore a phase image is suitable as the observation image in the present invention.
 また、一般的な位相差顕微鏡では顕微画像を撮影する際に焦点合わせを行う必要があるため、広い観察対象領域を細かく区画したそれぞれの小領域についての顕微画像を取得する場合に測定に時間が掛かる。これに対し、デジタルホログラフィック顕微鏡では、ホログラムを取得したあとの演算処理の段階で任意の距離における位相情報を算出することができるため、撮影時にいちいち焦点合わせを行う必要がなく測定時間を短くすることができる。こうしたことから、本発明における前記観察画像として、デジタルホログラフィック顕微鏡で取得されたホログラムデータに基づく処理によって作成された画像を用いるとより好ましい。 In addition, since it is necessary to perform focusing when taking a microscopic image in a general phase contrast microscope, it takes time for measurement when acquiring microscopic images of each small area obtained by finely dividing a wide observation target area. It takes. In contrast, in a digital holographic microscope, phase information at an arbitrary distance can be calculated at the stage of arithmetic processing after acquiring a hologram, so that it is not necessary to perform focusing every time during shooting, and the measurement time is shortened. be able to. For these reasons, it is more preferable to use an image created by processing based on hologram data acquired by a digital holographic microscope as the observation image in the present invention.
 そこで上記本発明に係る細胞状態判定装置において、好ましくは、デジタルホログラフィック顕微鏡と、該デジタルホログラフィック顕微鏡で取得されたホログラムデータに基づく処理によって位相画像を作成する位相画像作成部と、を更に備え、前記位相画像を前記観察画像として前記テクスチャ特徴画像作成部に提供する構成とするとよい。 Therefore, the cell state determination apparatus according to the present invention preferably further includes a digital holographic microscope and a phase image creation unit that creates a phase image by processing based on hologram data acquired by the digital holographic microscope. The phase image may be provided as the observation image to the texture feature image creation unit.
 本発明によれば、例えばiPS細胞やES細胞などの多能性幹細胞を培養する現場において、培養中の細胞が未分化状態を維持しているのか未分化逸脱状態であるのか、或いは、コロニー中に未分化逸脱細胞が存在するか否か等を、非侵襲で且つ高い精度で以て判定することができる。それにより、培養中の細胞の品質管理が容易になり、細胞培養における生産性の向上を図ることができる。 According to the present invention, for example, in a site where pluripotent stem cells such as iPS cells and ES cells are cultured, whether the cells being cultured are in an undifferentiated state or undifferentiated state, or in a colony It is possible to determine whether or not there are undifferentiated cells in a non-invasive manner with high accuracy. Thereby, the quality control of the cells in culture becomes easy, and the productivity in cell culture can be improved.
本発明の一実施例による細胞状態判定装置の概略構成図。The schematic block diagram of the cell state determination apparatus by one Example of this invention. 本実施例の装置における細胞状態判定処理の手順を示すフローチャート。The flowchart which shows the procedure of the cell state determination process in the apparatus of a present Example. 本実施例の装置で用いられる濃度共起行列によるテクスチャ解析の説明図。Explanatory drawing of the texture analysis by the density | concentration co-occurrence matrix used with the apparatus of a present Example. 本実施例の装置におけるテクスチャ解析で算出されるテクスチャ特徴量の種類とそれが表していると推定される画像の性質を示す図。The figure which shows the kind of texture feature-value calculated by the texture analysis in the apparatus of a present Example, and the property of the image estimated that it represents. インライン型ホログラフィック顕微鏡により得られる位相画像と該位相画像から求まる各種のテクスチャ特徴画像との比較例を示す図。The figure which shows the comparative example of the various texture characteristic images calculated | required from the phase image obtained by an in-line type holographic microscope, and this phase image. テクスチャ特徴画像内のコロニー領域についての指標値の算出例を示す図。The figure which shows the example of calculation of the index value about the colony area | region in a texture characteristic image. テクスチャ特徴画像上での小領域毎の指標値算出処理の説明図。Explanatory drawing of the index value calculation process for every small area | region on a texture characteristic image.
 以下、本発明に係る細胞状態判定方法及び細胞状態判定装置の一実施例について、添付図面を参照して説明する。
 図1は本発明に係る細胞状態判定方法を実施するための細胞状態判定装置の一実施例の概略構成図である。
Hereinafter, an embodiment of a cell state determination method and a cell state determination device according to the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic configuration diagram of an embodiment of a cell state determination apparatus for carrying out the cell state determination method according to the present invention.
 本実施例の細胞状態判定装置は、顕微観察部1と、制御・処理部2と、ユーザーインターフェイスである入力部3及び表示部4と、を備える。
 顕微観察部1はインライン型ホログラフィック顕微鏡(In-line Holographic Microscopy:IHM)であり、レーザダイオードなどを含む光源部10とイメージセンサ11とを備え、光源部10とイメージセンサ11との間に、判定対象であるコロニー(又は細胞単体)13を含む培養プレート12が配置される。制御・処理部2は顕微観察部1の動作を制御するとともに顕微観察部1で取得されたデータを処理するものであって、撮影制御部20と、データ記憶部21と、位相情報算出部22と、位相画像作成部23と、細胞状態評価部24と、を機能ブロックとして備える。また、細胞状態評価部24は、テクスチャ特徴量計算部241と、テクスチャ特徴画像作成部242と、細胞領域抽出部243と、指標値算出部244と、状態判定処理部245とを下位の機能ブロックとして含む。
The cell state determination apparatus of the present embodiment includes a microscopic observation unit 1, a control / processing unit 2, an input unit 3 and a display unit 4 which are user interfaces.
The microscopic observation unit 1 is an in-line holographic microscope (IHM), and includes a light source unit 10 including a laser diode or the like and an image sensor 11, and between the light source unit 10 and the image sensor 11, A culture plate 12 including a colony (or a single cell) 13 to be determined is arranged. The control / processing unit 2 controls the operation of the microscopic observation unit 1 and processes data acquired by the microscopic observation unit 1, and includes an imaging control unit 20, a data storage unit 21, and a phase information calculation unit 22. And a phase image creation unit 23 and a cell state evaluation unit 24 are provided as functional blocks. In addition, the cell state evaluation unit 24 includes a texture feature amount calculation unit 241, a texture feature image creation unit 242, a cell region extraction unit 243, an index value calculation unit 244, and a state determination processing unit 245 as lower functional blocks. Include as.
 制御・処理部2の実体はパーソナルコンピュータ又はより高性能なワークステーションであり、そうしたコンピュータにインストールされた専用の制御・処理ソフトウェアを該コンピュータ上で動作させることで上記各機能ブロックの機能が実現されるように構成することができる。また、制御・処理部2の機能を一つのコンピュータでなく、後述するように、通信ネットワークを介して接続された複数のコンピュータで分担する構成とすることもできる。 The entity of the control / processing unit 2 is a personal computer or a higher-performance workstation, and the functions of the above-described functional blocks are realized by operating dedicated control / processing software installed in the computer on the computer. Can be configured. Further, the function of the control / processing unit 2 may be shared by a plurality of computers connected via a communication network, as will be described later, instead of a single computer.
 まず本実施例の細胞状態判定装置において、細胞状態を判定する際に使用される観察画像である位相画像を作成するまでの作業及び処理について述べる。なお、以下の例では、コロニー中に未分化逸脱細胞又は分化細胞が存在していないかどうかを判定するものとする。
 オペレータがコロニー13を含む培養プレート12を所定位置にセットして入力部3で所定の操作を行うと、撮影制御部20は顕微観察部1を制御して以下のようにホログラムデータを取得する。
First, in the cell state determination apparatus of the present embodiment, operations and processes until a phase image that is an observation image used when determining a cell state will be described. In the following example, it is determined whether undifferentiated departure cells or differentiated cells are present in the colony.
When the operator sets the culture plate 12 including the colony 13 at a predetermined position and performs a predetermined operation with the input unit 3, the imaging control unit 20 controls the microscopic observation unit 1 to acquire hologram data as follows.
 即ち、光源部10は10°程度の微小角度の広がりを持つコヒーレント光を培養プレート12の所定の領域に照射する。培養プレート12及びコロニー13を透過したコヒーレント光(物体光15)は、培養プレート12上でコロニー13に近接する領域を透過した光(参照光14)と干渉しつつイメージセンサ11に到達する。物体光15はコロニー13を透過する際に位相が変化した光であり、他方、参照光14はコロニー13を透過しないので該コロニー13に起因する位相変化を受けない光である。したがって、イメージセンサ11の検出面(像面)上には、コロニー13により位相が変化した物体光15と位相が変化していない参照光14との干渉像(ホログラム)が形成される。 In other words, the light source unit 10 irradiates a predetermined region of the culture plate 12 with coherent light having a small angle spread of about 10 °. The coherent light (object light 15) that has passed through the culture plate 12 and the colony 13 reaches the image sensor 11 while interfering with the light (reference light 14) that has passed through a region close to the colony 13 on the culture plate 12. The object light 15 is light whose phase has changed when passing through the colony 13. On the other hand, the reference light 14 is light which does not pass through the colony 13 and thus does not undergo phase change due to the colony 13. Accordingly, on the detection surface (image surface) of the image sensor 11, an interference image (hologram) between the object light 15 whose phase has been changed by the colony 13 and the reference light 14 whose phase has not changed is formed.
 なお、光源部10及びイメージセンサ11は図示しない移動機構によって、X軸-Y軸方向(図1の紙面に垂直な面内)に順次移動される。これにより、光源部10から発せられたコヒーレント光の照射領域(観察領域)を培養プレート12上で移動させ、広い2次元領域に亘るホログラムを取得することができる。 The light source unit 10 and the image sensor 11 are sequentially moved in the X axis-Y axis direction (in a plane perpendicular to the paper surface of FIG. 1) by a moving mechanism (not shown). Thereby, the irradiation area | region (observation area | region) of the coherent light emitted from the light source part 10 can be moved on the culture plate 12, and the hologram over a wide two-dimensional area | region can be acquired.
 上述したように顕微観察部1で得られたホログラムデータ(イメージセンサ11の検出面で形成されたホログラムの2次元的な光強度分布データ)は逐次、制御・処理部2に送られ、データ記憶部21に格納される。制御・処理部2において、位相情報算出部22はデータ記憶部21からホログラムデータを読み出し、位相回復のための所定の演算処理を実行することで観察領域全体の位相情報を算出する。位相画像作成部23は、算出された位相情報に基づいて観察領域全体の位相画像を作成する。 As described above, hologram data obtained by the microscopic observation unit 1 (two-dimensional light intensity distribution data of a hologram formed on the detection surface of the image sensor 11) is sequentially sent to the control / processing unit 2 for data storage. Stored in the unit 21. In the control / processing unit 2, the phase information calculation unit 22 reads the hologram data from the data storage unit 21, and calculates phase information for the entire observation region by executing a predetermined calculation process for phase recovery. The phase image creation unit 23 creates a phase image of the entire observation region based on the calculated phase information.
 なお、こうした位相情報の算出や位相画像の作成の際には、特許文献3、4等に開示されている周知のアルゴリズムを用いればよい。なお、ホログラムデータに基づいて強度情報、擬似位相情報なども併せて算出し、位相画像作成部23はこれらに基づく再生像を作成してもよい。以下の説明では、位相画像を利用して細胞状態を判定しているが、強度画像や擬似位相画像などを利用して細胞状態を判定可能な場合もある。 In addition, when calculating such phase information or creating a phase image, a known algorithm disclosed in Patent Documents 3 and 4 may be used. In addition, intensity information, pseudo phase information, and the like may be calculated based on the hologram data, and the phase image creation unit 23 may create a reproduced image based on these. In the following description, the cell state is determined using the phase image, but the cell state may be determined using the intensity image, the pseudo phase image, or the like.
 上記のように判定対象であるコロニーが像として反映された位相画像が得られると、細胞状態評価部24は、図2に示すフローチャートの手順に従って細胞状態判定処理を実行する。 When a phase image in which a colony that is a determination target is reflected as an image is obtained as described above, the cell state evaluation unit 24 executes a cell state determination process according to the procedure of the flowchart shown in FIG.
 まずテクスチャ特徴量計算部241は、位相画像作成部23により作成された位相画像を構成するデータ、つまりは位相画像の画素毎の強度値データを取得する(ステップS1)。そして、その強度値データで構成される位相画像を例えば所定サイズ毎に区切った多数の第1の小領域を設定し、その第1の小領域毎に所定の統計的テクスチャ解析を実行する。そして、そのテクスチャ解析の結果として第1の小領域毎に複数種類のテクスチャ特徴量を得る。そして、テクスチャ特徴画像作成部242は、上記テクスチャ特徴量の種類毎に、テクスチャ特徴量の値の二次元分布を示すテクスチャ特徴画像を作成する(ステップS2)。 First, the texture feature quantity calculation unit 241 obtains data constituting the phase image created by the phase image creation unit 23, that is, intensity value data for each pixel of the phase image (step S1). Then, a large number of first small areas obtained by dividing the phase image composed of the intensity value data, for example, for each predetermined size are set, and predetermined statistical texture analysis is executed for each first small area. As a result of the texture analysis, a plurality of types of texture feature amounts are obtained for each first small area. Then, the texture feature image creation unit 242 creates a texture feature image indicating a two-dimensional distribution of the texture feature value for each type of the texture feature value (step S2).
 第1の小領域は隣接する複数の画素をまとめて第1の小領域としてもよい。この場合には、基準とする画素のテクスチャ特徴量をその画素のテクスチャ特徴量とする。基準とする画素は第1の小領域の中央に設定するとよい。この第1の小領域のサイズは位相画像上の細胞や細胞コロニーの模様の変化など検出し易いサイズであることが望ましく、そのサイズによって、後述する未分化細胞、未分化逸脱細胞等のクラス分けの精度が影響を受ける。したがって、測定対象である細胞の種類や細胞、細胞コロニーの大きさなどに応じて、第1の小領域のサイズを予め適切に決めるとよい。また、上記ステップS1における処理対象の位相画像は観察領域全体の画像でなくてもよく、例えばユーザ(作業者)により指定された範囲のみに限定された画像でもよい。 The first small area may be a first small area by grouping a plurality of adjacent pixels. In this case, the texture feature amount of the reference pixel is set as the texture feature amount of the pixel. The reference pixel may be set at the center of the first small area. The size of the first small region is desirably a size that is easy to detect, such as a change in the pattern of cells or cell colonies on the phase image, and classifies undifferentiated cells, undifferentiated cells to be described later, etc. according to the size. The accuracy of is affected. Therefore, the size of the first small region may be appropriately determined in advance according to the type of cell to be measured, the cell, the size of the cell colony, and the like. Further, the phase image to be processed in step S1 does not have to be an image of the entire observation area, and may be an image limited to a range designated by the user (worker), for example.
 よく知られているように統計的テクスチャ解析には様々な手法があるが、本実施例の装置では、画像解析に広く利用されている濃度共起行列を用いたテクスチャ解析を利用している。濃度共起行列はハラリックらにより非特許文献2において提案された、代表的なテクスチャ解析法である。図3は濃度共起行列を説明するための概念図である。 As is well known, there are various methods for statistical texture analysis. In the apparatus of this embodiment, texture analysis using a density co-occurrence matrix widely used for image analysis is used. The density co-occurrence matrix is a typical texture analysis method proposed in Non-Patent Document 2 by Haralick et al. FIG. 3 is a conceptual diagram for explaining the density co-occurrence matrix.
 いま、x、yの直交する二軸上の画素位置情報を有する画像f(x,y)において、相対的な位置関係が(d,θ)である二つの画素P1(x1,y1)、P2(x2,y2)を考える。濃度共起行列P(i,j;d,θ)は画素P1、P2の画素対においてその濃度が(i、j)になる頻度を表す。画素P1、P2の距離dは、d=max(|x1-x2|,|y1-y2|)であり、二つの画素P1、P2を通る直線と水平線とが成す角度θは0°、45°、90°、135°の四方向である。したがって、画像の階調数がgであるとき、濃度共起行列P(i,j;d,θ)は一方向につきg×gのサイズの行列となる。 Now, in an image f (x, y) having pixel position information on two axes perpendicular to x and y, two pixels P 1 (x 1 , y 1 ) whose relative positional relationship is (d, θ). ), P 2 (x 2 , y 2 ). The density co-occurrence matrix P (i, j; d, θ) represents the frequency at which the density becomes (i, j) in the pixel pair of the pixels P 1 and P 2 . The distance d between the pixels P 1 and P 2 is d = max (| x 1 −x 2 |, | y 1 −y 2 |), and a straight line passing through the two pixels P 1 and P 2 and a horizontal line are formed. The angle θ is four directions of 0 °, 45 °, 90 °, and 135 °. Therefore, when the number of gradations of the image is g, the density co-occurrence matrix P (i, j; d, θ) is a matrix having a size of g × g in one direction.
 非特許文献2では、次の(1)式に示すように濃度共起行列P(i,j;d,θ)の全方向の要素を加算してP(i,j)とするとともに、(2)式に示すようにP(i,j)の要素を正規化して表している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
In Non-Patent Document 2, as shown in the following equation (1), elements in all directions of the concentration co-occurrence matrix P (i, j; d, θ) are added to obtain P (i, j), and ( As shown in the equation (2), the elements of P (i, j) are normalized and expressed.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 この文献では、この濃度共起行列P(i,j)を用いたテクスチャ特徴量として、Entropy、Angular Second Moment、Contrast、Correlation、Sum of Squares、Inverse Difference Moment、Sum Average、Sum Variance、Sum Entropy、Difference Variance、Difference Entropy、2種類のInformation Measures of Correlation、Maximal Correlation Coefficientの14種類が提案されているが、本実施例の装置では、そのうち6種類(Entropy、Angular Second Moment、Contrast、Correlation、Sum of Squares、Inverse Difference Moment)を選定し使用している。図4に、本実施例の装置で使用した6種類のテクスチャ特徴量、その計算式、及びその特徴量が表していると推定される画像の性質を示している。なお、この画像の性質は非特許文献3に記載されているものである。 In this document, Entropy, Angular Second Moment, Contrast, Correlation, Sum of Squares, Inverse Difference Moment, Sum Average, Sum Variance, Sum Entropy, as texture feature quantities using this density co-occurrence matrix P (i, j) 14 types of Difference Variance, Difference Entropy, 2 types of Information Measures of Correlation, Maximal Correlation Coefficient have been proposed. In the apparatus of this embodiment, 6 types (Entropy, Angular Second Moment, Contrast, Correlation, Sum of, Squares and Inverse Difference Moment) are selected and used. FIG. 4 shows the six types of texture feature quantities used in the apparatus of this embodiment, their calculation formulas, and the properties of the image estimated to represent the feature quantities. The nature of this image is described in Non-Patent Document 3.
 なお、上記6種類のテクスチャ特徴量は、表していると推定される画像の性質が比較的異なるものを代表的に選んだ結果であり、必ずしも最適な組み合わせとは限らない。したがって、適宜の種類のテクスチャ特徴量を加えたり減らしたりしても構わない。 It should be noted that the above six types of texture feature values are representatively selected from those having relatively different image properties that are estimated to be represented, and are not necessarily optimal combinations. Therefore, an appropriate type of texture feature amount may be added or reduced.
 図5は、未分化細胞のみのコロニー(未分化コロニー)及び未分化逸脱細胞を含むコロニー(未分化逸脱コロニー)のそれぞれのIHM位相画像と、その位相画像に基づいて作成された3種類のテクスチャ特徴画像の比較例である。左端に示されているIHM位相画像でも未分化逸脱領域を視認することはできるものの、その明瞭性は必ずしも高くない。これに対し、その右側の3種類のテクスチャ特徴画像ではいずれも、未分化逸脱領域とその周りの未分化領域との相違が明瞭であり、未分化逸脱領域の視認がかなり容易である。 FIG. 5 shows IHM phase images of colonies containing only undifferentiated cells (undifferentiated colonies) and colonies including undifferentiated deviation cells (undifferentiated deviation colonies), and three types of textures created based on the phase images. It is a comparative example of a feature image. Although the undifferentiated departure area can be visually recognized even in the IHM phase image shown at the left end, the clarity is not necessarily high. On the other hand, in the three types of texture feature images on the right side, the difference between the undifferentiated departure area and the surrounding undifferentiated areas is clear, and the undifferentiated departure area is very easy to visually recognize.
 ステップS2の処理では6種類のテクスチャ特徴量毎にテクスチャ特徴画像が得られるから、一つの位相画像から六つのテクスチャ特徴画像が得られる。次に、細胞領域抽出部243はテクスチャ特徴画像に基づいて細胞又はコロニーが存在すると推定される領域を抽出し、その細胞領域又はコロニー領域の輪郭を示すデータを求める(ステップS3)。この領域抽出処理には、例えば特許文献5等に記載の周知の画像処理アルゴリズムを用いることができる。そして、細胞又はコロニーの領域の輪郭が求まったならば、テクスチャ特徴画像上で指標値を算出するための小領域を限定するためのマスクを生成する。 In the process of step S2, texture feature images are obtained for each of the six types of texture feature amounts, so that six texture feature images are obtained from one phase image. Next, the cell region extraction unit 243 extracts a region where cells or colonies are estimated to exist based on the texture feature image, and obtains data indicating the outline of the cell region or colony region (step S3). For this region extraction processing, for example, a well-known image processing algorithm described in Patent Document 5 can be used. When the outline of the cell or colony region is obtained, a mask for limiting the small region for calculating the index value on the texture feature image is generated.
 指標値算出部244は、まず上記6種類のテクスチャ特徴画像にステップS3で作成したマスクを適用することでコロニー領域(又は細胞領域など)を選定する。そして、各テクスチャ特徴画像においてコロニー領域に含まれる小領域毎のテクスチャ特徴量の値に基づいて、統計量である複数の指標値を計算する(ステップS4)。一般的に統計量としては平均値、標準偏差、分散、最大値、最小値、中央値、最頻値などが知られているが、本実施例の装置では、平均値、標準偏差、最大値、最小値の4種類を指標値として用いている。テクスチャ特徴画像が6種類であり指標値が4種類であるから、一つのコロニー領域について、全部で6×4=24個の指標値が求まる。 The index value calculation unit 244 first selects a colony region (or cell region or the like) by applying the mask created in step S3 to the six types of texture feature images. Then, based on the texture feature value for each small region included in the colony region in each texture feature image, a plurality of index values that are statistics are calculated (step S4). Generally, the average value, standard deviation, variance, maximum value, minimum value, median value, mode value, etc. are known as statistics, but in the apparatus of this embodiment, the average value, standard deviation, maximum value are known. The four types of minimum values are used as index values. Since there are six types of texture feature images and four types of index values, a total of 6 × 4 = 24 index values are obtained for one colony region.
 図6はテクスチャ特徴画像内のコロニー領域についての指標値の算出例を示している。これは未分化逸脱コロニーの例であり、図6では3種類のテクスチャ特徴画像のみを選択的に示している。図4に示したように、異なる種類のテクスチャ特徴量はそれぞれ画像の異なる性質を反映しているため、テクスチャ特徴量に4種類の指標値は異なる傾向を示している。 FIG. 6 shows an example of calculating the index value for the colony region in the texture feature image. This is an example of an undifferentiated departure colony, and FIG. 6 selectively shows only three types of texture feature images. As shown in FIG. 4, the different types of texture feature amounts reflect different properties of the images, and therefore, the four types of index values tend to be different from the texture feature amounts.
 次に状態判定処理部245は上記複数の指標値に基づいて、コロニー領域に未分化逸脱領域があるか否か、つまりはコロニー領域中に未分化逸脱細胞があるか否かを判定する。本実施例の装置ではその判定に教師ありの機械学習、具体的には、機械学習法として代表的な2クラス分類手法であるサポートベクタマシン(SVM)を用いている(ステップS5)。即ち、未分化コロニー、未分化逸脱コロニーそれぞれについて予め用意した位相画像に基づいて取得した指標値データを教師データとして学習モデルを構築し、未知の位相画像に基づいて取得した指標値データを入力した結果として未分化コロニー又は未分化逸脱コロニーへのクラス分け結果を出力する。状態判定処理部245はこうした判定結果を表示部4の画面上に表示する。 Next, the state determination processing unit 245 determines whether or not there is an undifferentiated departure area in the colony region based on the plurality of index values, that is, whether or not there are undifferentiated departure cells in the colony region. The apparatus of this embodiment uses supervised machine learning for the determination, specifically, a support vector machine (SVM), which is a typical two-class classification method as a machine learning method (step S5). In other words, a learning model was constructed using index value data acquired based on phase images prepared in advance for each of undifferentiated colonies and undifferentiated deviation colonies, and index value data acquired based on unknown phase images was input. As a result, the classification result to an undifferentiated colony or an undifferentiated departure colony is output. The state determination processing unit 245 displays such a determination result on the screen of the display unit 4.
 もちろん、複数の指標値に基づく細胞の状態判定の方法は機械学習に限らない。簡易的な方法としては、複数の指標値に予め閾値を設定しておき、指標値が閾値以上又は以下になる条件の組み合わせによって、コロニーに未分化逸脱細胞(又は分化細胞)が含まれるか否かを判定してもよい。また、機械学習としてサポートベクタマシン以外の手法を利用してもよいし、狭い意味では機械学習に含まれない多変量解析の手法を用いてもよい。 Of course, the method for determining the state of a cell based on a plurality of index values is not limited to machine learning. As a simple method, whether or not undifferentiated deviation cells (or differentiated cells) are included in a colony depending on a combination of conditions in which a threshold value is set in advance for a plurality of index values and the index value is greater than or less than the threshold value. It may be determined. Further, a method other than the support vector machine may be used as the machine learning, or a multivariate analysis method that is not included in the machine learning in a narrow sense may be used.
 また、上記例では、ステップS3で作成されたマスクで定まる一つのコロニー領域についてのみ指標値を算出しているが、後述するように、テクスチャ特徴画像上にコロニー、細胞又は細胞中の特定の部位(例えば細胞核など)等の細胞に関する適宜の複数の小領域を設定し、その複数の小領域のそれぞれについて指標値を算出し、その小領域毎に細胞状態の判定を独立して行うようにしてもよい。これにより、多数の細胞が存在する状態やコロニーの中で、どの位置に未分化逸脱細胞が存在するのかを識別することが可能となる。 In the above example, the index value is calculated only for one colony region determined by the mask created in step S3. However, as will be described later, a colony, a cell, or a specific part in the cell is displayed on the texture feature image. Set appropriate subregions for cells such as cell nuclei, etc., calculate index values for each of the subregions, and independently determine the cell state for each subregion Also good. As a result, it is possible to identify at which position the undifferentiated departure cell exists in a state where a large number of cells exist or in a colony.
  [実験例1]
 本発明者らは、上述した手順による方法の有効性を確認するために、未分化コロニーと未分化逸脱コロニーとを識別する実験を行った。具体的には、フィーダー細胞(SNL)上で培養したヒトiPS細胞のコロニー66個を上記方法で解析したところ、交差検証による評価で84.8%の正解率が得られた。
[Experimental Example 1]
In order to confirm the effectiveness of the method according to the above-described procedure, the present inventors conducted an experiment for discriminating undifferentiated colonies from undifferentiated colonies. Specifically, when 66 colonies of human iPS cells cultured on feeder cells (SNL) were analyzed by the above method, an accuracy rate of 84.8% was obtained by cross-validation evaluation.
  [実験例2]
 また、フィーダー細胞を使用しない培養方法で培養したヒトiPS細胞についても、未分化逸脱細胞の存在の判定を実施した。ただし、この実験では、コロニー領域中のいずれの部分に未分化逸脱細胞が存在するのかの判定を行うために、図7に示すように、コロニーに対するIHM位相画像上に矩形状の小領域を格子状に設定し、コロニー領域が一部にでも含まれる各小領域について指標値を算出した。一つの小領域のサイズは細胞が十数個程度含まれるサイズである。指標値に基づく細胞状態の判定は、未分化細胞が占めているものと、少しでも(実際には面積で10%程度以上と見積もった)未分化逸脱細胞が混入しているものとの二つのクラスに分類するようにした。も実施した。この実験でも、実験例1に示したフィーダー細胞上の培養の場合と同様に、交差検証による評価で、正解率、感度、及び特異度の全てにおいて80%以上の結果が得られた。これにより、本方法の有効性が確認できた。
[Experiment 2]
The presence of undifferentiated cells was also determined for human iPS cells cultured by a culture method that does not use feeder cells. However, in this experiment, in order to determine in which part of the colony region the undifferentiated departure cells exist, a rectangular small region is gridded on the IHM phase image for the colony as shown in FIG. The index value was calculated for each small region including a part of the colony region. The size of one small region is a size that includes about a dozen cells. The determination of the cell state based on the index value is divided into two types: one in which undifferentiated cells occupy and one in which undifferentiated deviation cells are mixed (as much as 10% or more in actual area is estimated). Classify into classes. Was also implemented. In this experiment, as in the case of the culture on the feeder cells shown in Experimental Example 1, the evaluation by cross-validation gave a result of 80% or more in all of the accuracy rate, sensitivity, and specificity. This confirmed the effectiveness of the method.
 なお、図1に示した実施例の構成では、制御・処理部2において全ての処理を実施しているが、一般に、ホログラムデータに基づく位相情報の計算やその計算結果の画像化には膨大な量の計算が必要である。そのため、通常使用されているパーソナルコンピュータでは計算に多大な時間が掛かり効率的な解析作業は難しい。そこで、顕微観察部1に接続されたパーソナルコンピュータを端末装置とし、この端末装置と高性能なコンピュータであるサーバとがインターネットやイントラネット等の通信ネットワークを介して接続されたコンピュータシステムを利用するとよい。この場合、ホログラムデータに基づく位相情報の計算や位相像の作成などの複雑な処理はサーバ側で実施し、それによって作成された画像データを端末装置が受け取って、この画像データにより構成される位相画像に対する処理、つまりは上述した細胞状態評価部24による処理を端末装置側で行うようにするとよい。こうした構成では、図1に示した制御・処理部2の機能ブロックが端末装置側とサーバ側とに分離されることになる。このように、制御・処理部2の機能は複数のコンピュータで分担しても構わない。 In the configuration of the embodiment shown in FIG. 1, all processing is performed in the control / processing unit 2. However, in general, calculation of phase information based on hologram data and imaging of the calculation result are enormous. A quantity calculation is required. For this reason, a normally used personal computer takes a long time for calculation, and an efficient analysis work is difficult. Therefore, a personal computer connected to the microscopic observation unit 1 may be used as a terminal device, and a computer system in which this terminal device and a server that is a high-performance computer are connected via a communication network such as the Internet or an intranet may be used. In this case, complicated processing such as calculation of phase information based on hologram data and creation of a phase image is performed on the server side, and the terminal device receives the image data created thereby, and the phase configured by this image data The processing on the image, that is, the processing by the cell state evaluation unit 24 described above may be performed on the terminal device side. In such a configuration, the functional blocks of the control / processing unit 2 shown in FIG. 1 are separated into the terminal device side and the server side. As described above, the functions of the control / processing unit 2 may be shared by a plurality of computers.
 また上記実施例の細胞状態判定装置では、顕微観察部1としてインライン型ホログラフィック顕微鏡を用いていたが、ホログラムが得られる顕微鏡であれば、オフアクシス(軸外し)型、位相シフト型などの他の方式のホログラフィック顕微鏡に置換え可能であることは当然である。また、ホログラフィック顕微鏡により得られる位相画像ではなく、一般的な位相差顕微鏡で得られる位相画像に基づいて図2に示したような処理を実施してもよい。ここでは、目的とする細胞やコロニーが比較的明瞭に観察可能な画像でありさえすれば、観察画像の種類は問わない。 In the cell state determination apparatus of the above embodiment, an in-line holographic microscope is used as the microscopic observation unit 1, but other microscopes such as an off-axis (off-axis) type and a phase shift type may be used as long as the microscope can obtain a hologram. Naturally, it can be replaced with a holographic microscope of the above type. Moreover, you may implement the process as shown in FIG. 2 based on the phase image obtained with a general phase contrast microscope instead of the phase image obtained with a holographic microscope. Here, the type of observation image is not limited as long as the target cell or colony is an image that can be observed relatively clearly.
 また、上記実施例や上記の各種変形例も本発明の一例であり、本発明の趣旨の範囲でさらに適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは明らかである。 Further, the above-described embodiments and the above-described various modifications are examples of the present invention, and it is apparent that even if appropriate modifications, corrections, and additions are made within the scope of the present invention, they are included in the scope of the claims of the present application. is there.
1…顕微観察部
10…光源部
11…イメージセンサ
12…培養プレート
13…コロニー
14…参照光
15…物体光
2…制御・処理部
20…撮影制御部
21…データ記憶部
22…位相情報算出部
23…位相画像作成部
24…細胞状態評価部
241…テクスチャ特徴量計算部
242…テクスチャ特徴画像作成部
243…細胞領域抽出部
244…指標値算出部
245…状態判定処理部
3…入力部
4…表示部
DESCRIPTION OF SYMBOLS 1 ... Microscopic observation part 10 ... Light source part 11 ... Image sensor 12 ... Culture plate 13 ... Colony 14 ... Reference light 15 ... Object light 2 ... Control and processing part 20 ... Imaging control part 21 ... Data storage part 22 ... Phase information calculation part 23 ... Phase image creation unit 24 ... Cell state evaluation unit 241 ... Texture feature amount calculation unit 242 ... Texture feature image creation unit 243 ... Cell region extraction unit 244 ... Index value calculation unit 245 ... State determination processing unit 3 ... Input unit 4 ... Display section

Claims (10)

  1.  細胞又は細胞の集合体であるコロニーについての観察画像に基づいて細胞、又はコロニー中の細胞の状態を判定する細胞状態判定方法であって、
     a)前記観察画像上に設定された複数の第1の小領域毎にテクスチャ解析を行うことでテクスチャ特徴量を算出し、該テクスチャ特徴量の二次元的な分布を示すテクスチャ特徴画像を作成するテクスチャ特徴画像作成ステップと、
     b)前記テクスチャ特徴画像上の一又は複数の第2の小領域について、第2の小領域にそれぞれ含まれるテクスチャ特徴量に基づいて該小領域内の特徴量分布に関する複数種類の指標値を算出する指標値算出ステップと、
     c)前記指標値算出ステップにおいて第2の小領域毎に算出された複数種類の指標値に基づいて、その第2の小領域に含まれる細胞の状態を判定する判定ステップと、
     を実施することを特徴とする細胞状態判定方法。
    A cell state determination method for determining a state of a cell or a cell in a colony based on an observation image about a colony which is a cell or a collection of cells,
    a) calculating a texture feature amount by performing texture analysis for each of a plurality of first small regions set on the observed image, and creating a texture feature image indicating a two-dimensional distribution of the texture feature amount Texture feature image creation step;
    b) For one or a plurality of second small regions on the texture feature image, a plurality of types of index values related to the feature amount distribution in the small regions are calculated based on the texture feature amounts respectively included in the second small regions. An index value calculating step,
    c) a determination step of determining a state of a cell included in the second small area based on a plurality of types of index values calculated for each second small area in the index value calculating step;
    The cell state determination method characterized by implementing.
  2.  請求項1に記載の細胞状態判定方法であって、
     前記第2の領域は細胞コロニー又は1個の細胞に対応する領域であることを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 1,
    The cell state determination method, wherein the second region is a cell colony or a region corresponding to one cell.
  3.  請求項1に記載の細胞状態判定方法であって、
     前記テクスチャ解析は統計的テクスチャ解析であり、使用するテクスチャ特徴量の種類は1種類又は複数種類であることを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 1,
    The texture analysis is statistical texture analysis, and the type of texture feature used is one type or a plurality of types.
  4.  請求項3に記載の細胞状態判定方法であって、
     前記テクスチャ解析は、濃度共起行列を用いたテクスチャ解析であることを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 3,
    The cell state determination method, wherein the texture analysis is texture analysis using a density co-occurrence matrix.
  5.  請求項1に記載の細胞状態判定方法であって、
     前記観察画像は、デジタルホログラフィック顕微鏡で取得されたホログラムデータに基づく処理によって作成される画像であることを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 1,
    The cell state determination method, wherein the observation image is an image created by a process based on hologram data acquired by a digital holographic microscope.
  6.  請求項1に記載の細胞状態判定方法であって、
     測定対象の細胞はヒトiPS細胞を含む多能性幹細胞であり、前記判定ステップでは、細胞が未分化細胞であるか、それとも未分化逸脱細胞又は分化細胞であるかを判定することを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 1,
    The cell to be measured is a pluripotent stem cell including a human iPS cell, and in the determination step, it is determined whether the cell is an undifferentiated cell, an undifferentiated departure cell, or a differentiated cell. Cell state determination method.
  7.  請求項1に記載の細胞状態判定方法であって、
     前記判定ステップでは、前記複数種類の指標値に基づく機械学習により細胞の状態を判定することを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 1,
    In the determination step, the cell state determination method includes determining a cell state by machine learning based on the plurality of types of index values.
  8.  請求項1に記載の細胞状態判定方法であって、
     前記判定ステップでは、前記複数種類の指標値をそれぞれ所定の閾値と比較することにより細胞の状態を判定することを特徴とする細胞状態判定方法。
    The cell state determination method according to claim 1,
    In the determination step, the cell state is determined by comparing each of the plurality of types of index values with a predetermined threshold value.
  9.  細胞又は細胞の集合体であるコロニーについての観察画像に基づいて細胞、又はコロニー中の細胞の状態を判定する細胞状態判定装置であって、
     a)前記観察画像上に設定された複数の第1の小領域毎にテクスチャ解析を行うことでテクスチャ特徴量を算出し、該テクスチャ特徴量の二次元的な分布を示すテクスチャ特徴画像を作成するテクスチャ特徴画像作成部と、
     b)前記テクスチャ特徴画像上の一又は複数の第2の小領域について、第2の小領域にそれぞれ含まれるテクスチャ特徴量に基づいて該小領域内の特徴量分布に関する複数種類の指標値を算出する指標値算出部と、
     c)前記指標値算出部により第2の小領域毎に算出された複数種類の指標値に基づいて、その第2の小領域に含まれる細胞の状態を判定する判定実行部と、
     を備えることを特徴とする細胞状態判定装置。
    A cell state determination device for determining the state of a cell or a cell in a colony based on an observation image of a cell or a colony that is an aggregate of cells,
    a) calculating a texture feature amount by performing texture analysis for each of a plurality of first small regions set on the observed image, and creating a texture feature image indicating a two-dimensional distribution of the texture feature amount A texture feature image creation unit;
    b) For one or a plurality of second small regions on the texture feature image, a plurality of types of index values related to the feature amount distribution in the small regions are calculated based on the texture feature amounts respectively included in the second small regions. An index value calculation unit to
    c) a determination execution unit that determines a state of a cell included in the second small region based on a plurality of types of index values calculated for each second small region by the index value calculation unit;
    A cell state determination device comprising:
  10.  請求項9に記載の細胞状態判定装置であって、
     デジタルホログラフィック顕微鏡と、
     該デジタルホログラフィック顕微鏡で取得されたホログラムデータに基づく処理によって位相画像を作成する位相画像作成部と、
     を更に備え、前記位相画像を前記観察画像として前記テクスチャ特徴画像作成部に提供することを特徴とする細胞状態判定装置。
    The cell state determination device according to claim 9,
    A digital holographic microscope,
    A phase image creating unit that creates a phase image by processing based on hologram data acquired by the digital holographic microscope;
    The cell state determination apparatus, further comprising: providing the phase image as the observation image to the texture feature image creation unit.
PCT/JP2018/009698 2018-03-13 2018-03-13 Method for assessing cell state and device for assessing cell state WO2019175959A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009698 WO2019175959A1 (en) 2018-03-13 2018-03-13 Method for assessing cell state and device for assessing cell state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009698 WO2019175959A1 (en) 2018-03-13 2018-03-13 Method for assessing cell state and device for assessing cell state

Publications (1)

Publication Number Publication Date
WO2019175959A1 true WO2019175959A1 (en) 2019-09-19

Family

ID=67906500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009698 WO2019175959A1 (en) 2018-03-13 2018-03-13 Method for assessing cell state and device for assessing cell state

Country Status (1)

Country Link
WO (1) WO2019175959A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224722A1 (en) * 2021-04-21 2022-10-27 富士フイルム株式会社 Method for acquiring evaluation value
EP4119674A4 (en) * 2020-04-21 2023-09-13 FUJIFILM Corporation Method for estimating culture state, information processing device, and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138513A1 (en) * 2012-03-13 2013-09-19 The Regents Of The University Of California Application of light scattering patterns to determine differentiation status of stem cells and stem cell colonies
WO2015025506A1 (en) * 2013-08-22 2015-02-26 富士フイルム株式会社 Stem cell differentiation assessment device, method and program
WO2017126615A1 (en) * 2016-01-19 2017-07-27 国立大学法人 東京大学 Method and system for cell collection based on information regarding change over time

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013138513A1 (en) * 2012-03-13 2013-09-19 The Regents Of The University Of California Application of light scattering patterns to determine differentiation status of stem cells and stem cell colonies
WO2015025506A1 (en) * 2013-08-22 2015-02-26 富士フイルム株式会社 Stem cell differentiation assessment device, method and program
WO2017126615A1 (en) * 2016-01-19 2017-07-27 国立大学法人 東京大学 Method and system for cell collection based on information regarding change over time

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHALUT, K. J. ET AL.: "Quantifying cellular differentiation by physical phenotype using digital holographic microscopy", INTEGR. BIOL., vol. 4, no. 3, 2012, pages 280 - 284, ISSN: 1757-9708 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4119674A4 (en) * 2020-04-21 2023-09-13 FUJIFILM Corporation Method for estimating culture state, information processing device, and program
WO2022224722A1 (en) * 2021-04-21 2022-10-27 富士フイルム株式会社 Method for acquiring evaluation value

Similar Documents

Publication Publication Date Title
US10025271B2 (en) Method and system for detecting and/or classifying cancerous cells in a cell sample
US11978211B2 (en) Cellular image analysis method, cellular image analysis device, and learning model creation method
TWI496112B (en) Cell image segmentation method and a nuclear-to-cytoplasmic ratio evaluation method using the same
US8189900B2 (en) Image-based methods for measuring global nuclear patterns as epigenetic markers of cell differentiation
JP5984559B2 (en) Necrotic cell region detection apparatus and method, and necrotic cell region detection program
US20090081775A1 (en) Microscope system and screening method for drugs, physical therapies and biohazards
CN109564617A (en) The method of characterization and imaging micro-object
US20130051650A1 (en) Systems and methods for tissue classification
EP2946190A1 (en) Cell-based tissue analysis
Haleem et al. Retinal area detector from scanning laser ophthalmoscope (SLO) images for diagnosing retinal diseases
Malm et al. Debris removal in Pap-smear images
US11609537B2 (en) Cell analysis method and cell analysis system using a holographic microscope
WO2019175959A1 (en) Method for assessing cell state and device for assessing cell state
Foucart et al. Artifact identification in digital pathology from weak and noisy supervision with deep residual networks
JP4985480B2 (en) Method for classifying cancer cells, apparatus for classifying cancer cells, and program for classifying cancer cells
Xiong et al. Automatic area classification in peripheral blood smears
Alexandratou et al. Texture analysis of tissues in Gleason grading of prostate cancer
Saxena et al. Study of Computerized Segmentation & Classification Techniques: An Application to Histopathological Imagery
JP7445672B2 (en) Gate area estimation program, gate area estimation device, learning model generation method
RU2293524C2 (en) Method for differential diagnostics of follicular adenoma and follicular thyroid cancer
Bapure Automated image analysis for nuclear morphometry using h&e and feulgen stains in prostate biopsies
Jitaree et al. Classifying breast cancer regions in microscopic image using texture analysis and neural network
Tsibidis et al. Semi-automated Acanthamoeba polyphaga detection and computation of Salmonella typhimurium concentration in spatio-temporal images
Bi et al. Automatic monolayer identification based on genetic neural network
Siva Quantifying the Frequency and Orientation of Mitoses in Embryonic Epithelia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP