WO2019174148A1 - 太赫兹发射天线和太赫兹光谱探测装置 - Google Patents
太赫兹发射天线和太赫兹光谱探测装置 Download PDFInfo
- Publication number
- WO2019174148A1 WO2019174148A1 PCT/CN2018/092449 CN2018092449W WO2019174148A1 WO 2019174148 A1 WO2019174148 A1 WO 2019174148A1 CN 2018092449 W CN2018092449 W CN 2018092449W WO 2019174148 A1 WO2019174148 A1 WO 2019174148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terahertz
- antenna
- transmitting
- transmitting antenna
- spectrum
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 85
- 230000003595 spectral effect Effects 0.000 claims abstract description 46
- 230000005540 biological transmission Effects 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims description 19
- 238000010183 spectrum analysis Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 229910021389 graphene Inorganic materials 0.000 claims description 15
- 230000008054 signal transmission Effects 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 25
- 239000013076 target substance Substances 0.000 abstract description 10
- 238000005516 engineering process Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 238000000862 absorption spectrum Methods 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 239000000383 hazardous chemical Substances 0.000 description 6
- 238000000411 transmission spectrum Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 206010000369 Accident Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 238000003255 drug test Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/24—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/255—Details, e.g. use of specially adapted sources, lighting or optical systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/225—Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/52—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
- H01Q1/521—Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0006—Particular feeding systems
- H01Q21/0075—Stripline fed arrays
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
- H01Q21/065—Patch antenna array
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/30—Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/20—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
- H01Q5/22—RF wavebands combined with non-RF wavebands, e.g. infrared or optical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/0442—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/12—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
- H01Q19/17—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
Definitions
- the present application relates to the field of terahertz spectroscopy application technology, and in particular to a terahertz transmitting antenna and a terahertz spectrum detecting device.
- the bandwidth of the entire system required for terahertz spectral detection systems to achieve identification of multiple material components should be above 1 THz.
- Existing terahertz source technologies typically have tens to hundreds of GHz of bandwidth at a single frequency point.
- the power of existing terahertz sources is still very low, generally only a few milliwatts.
- a terahertz transmitting antenna comprising:
- a substrate including a first surface and a second surface opposite the first surface
- microstrip feed line disposed on the first surface
- At least two antenna switches are disposed at intervals on the second surface
- At least one conductive plate is disposed on the second surface, and one of the conductive plates is disposed between each two adjacent antenna switches;
- At least two antenna patches are spaced apart from the surface of the insulating layer away from the substrate;
- Each of the antenna switches is disposed opposite one of the antenna patches such that terahertz waves transmitted in the microstrip feed line generate excitation to the antenna patch through the antenna switch.
- the method further includes:
- At least two conductive electrodes are disposed on the insulating layer, and each of the conductive electrodes is disposed opposite to one of the antenna switches;
- the closing and opening of the antenna switch opposite the one conductive electrode is controlled by changing the voltage between one of the conductive electrodes and the conductive plate.
- the widths of the at least two antenna switches are different, and each of the antenna switches of different widths corresponds to transmitting terahertz waves of different frequency widths.
- the width of the at least two antenna switches decreases in a fixed direction, and the transmission frequencies of the at least two antenna switches increase in the fixed direction.
- the material of the at least two antenna switches is a material having dielectric properties.
- the material of the at least two antenna switches is graphene, which is laid on the second surface.
- a terahertz spectrum detecting device comprising:
- a terahertz spectral transmission unit coupled to the terahertz spectral transmitting unit signal
- terahertz spectral transmission unit connecting the terahertz spectral transmitting unit to the terahertz transmit antenna signal
- a terahertz spectrum receiving unit for receiving a signal of a terahertz frequency transmitted by the terahertz transmitting antenna
- a terahertz spectral analysis identification unit is coupled to the terahertz spectral receiving unit signal.
- signal transmission at the terahertz frequency is directly achieved between the terahertz transmit antenna and the terahertz spectral receive unit.
- a mirror is further included;
- a signal transmission at a terahertz frequency is achieved by the mirror between the terahertz transmit antenna and the terahertz spectral receiving unit.
- a terahertz spectral display unit is further included;
- the terahertz spectral display unit is electrically coupled to the terahertz spectral analysis identification unit for displaying the detected information.
- the application provides a terahertz transmit antenna comprising: a microstrip feed line, a substrate, at least two antenna switches, at least one conductive plate, an insulating layer, and at least two antenna patches.
- the terahertz transmitting antenna is provided with at least two of the antenna switches and corresponding at least two antenna patches, which substantially increases the transmission bandwidth of the terahertz transmitting antenna and increases the corresponding transmitting power.
- the terahertz transmitting antenna with high RF bandwidth and high transmitting power can be applied to a small terahertz spectrum detecting device to assist the transmitting source to transmit signals in the terahertz band.
- the terahertz transmitting antenna adopts a multi-frequency transmission switching technology, which can reduce the operation time of the fingerprint spectrum recognition algorithm to realize rapid identification of a specific target substance.
- 1 is a schematic structural view of the terahertz transmitting antenna in one embodiment
- FIG. 2 is a schematic structural view of the terahertz transmitting antenna in one embodiment
- FIG. 3 is a schematic structural view of the terahertz spectrum detecting device in one embodiment
- FIG. 4 is a block diagram showing the structure of the terahertz spectrum detecting device in one embodiment.
- a terahertz transmitting antenna 10 including: a microstrip feeder 100, a substrate 200, at least two antenna switches 310, a conductive plate 300, an insulating layer 400, and at least two antenna patches 500.
- the substrate 200 may be silicon dioxide.
- the substrate 200 has a first surface 201 and a second surface 202.
- the first surface 201 and the second surface 202 are oppositely disposed.
- the bottom surface of the substrate 200 is the first surface 201.
- the top surface of the substrate 200 is the second surface 202.
- the microstrip feed line 100 is disposed on the first surface 201.
- the conductive plates 300 are spaced apart at the second surface 202.
- the method of disposing the microstrip feed line 100 and disposing the conductive plate 300 may be a physical or chemical deposition method.
- the microstrip feed line 100 can be configured as a conductive copper strip.
- the conductive plate 300 may be provided as a conductive copper film.
- the microstrip feed line 100 is disposed on the first surface 201.
- a terahertz wave can be transmitted in the microstrip feed line 100.
- a terahertz wave transmitted by the microstrip feed line 100 can generate an excitation to the antenna patch 500.
- the terahertz waves in the microstrip feed line 100 can continue to be transmitted in the direction of the microstrip feed line 100.
- the antenna switch 310 is located in the same layer as the spaced-apart conductive plates 300.
- the antenna switch 310 has a thickness of about 1 micrometer.
- the thickness of the antenna switch 310 may be a layer of graphene or a two-layer graphene material.
- the conductive plate 300 is disposed at intervals of at least two of the antenna switches 310. It can also be understood that the antenna switch 310 is disposed at intervals of two adjacent conductive plates 300.
- the antenna switch 310 can be in two states, a closed state and an open state. When the antenna switch 310 is in the off state, terahertz waves in the microstrip feed line 100 may be transmitted to the antenna patch 500 via the antenna switch 310.
- the antenna switch 310 When the antenna switch 310 is in an open state, terahertz waves in the microstrip feed line 100 cannot be transmitted to the antenna patch 500 through the antenna switch 310. The terahertz waves in the microstrip feed line 100 continue to travel in the direction of the microstrip feed line 100.
- the antenna switch 310 may not be the same thickness as the conductive plate 300. The thickness of the antenna switch 310 may be less than the thickness of the conductive plate 300.
- the insulating layer 400 is disposed on a surface of the conductive plate 300 and the antenna switch 310 away from the substrate 200.
- the insulating layer 400 is used to block electrical connection between the conductive plate 300 and the antenna patch 500.
- the material of the insulating layer 400 is not specifically limited.
- the insulating layer 400 may be made of high-resistance silicon.
- the antenna patch 500 is disposed in one-to-one correspondence with the antenna switch 310.
- two antenna switches 310 are provided, and one antenna patch 500 is disposed at a corresponding position of each of the antenna switches 310.
- the width of one of the antenna patches 500 is greater than or equal to the width of the corresponding antenna switch 310, so that terahertz waves transmitted through the microstrip feed line 100 can be transmitted to the antenna patch 500 through the antenna switch 310. .
- At least two antenna switches 310 and corresponding at least two antenna patches 500 are provided, which substantially increases the transmission bandwidth of the terahertz transmitting antenna 10 and increases the corresponding transmitting power.
- the terahertz transmitting antenna 10 having a high radio frequency bandwidth and a high transmitting power can be applied to a small terahertz spectrum detecting device to assist the transmitting source to transmit a signal in the terahertz band.
- the terahertz transmitting antenna 10 splices a plurality of terahertz sources of different transmission bands through a multi-frequency transmitting antenna array to realize spectral detection of a wide frequency band.
- the terahertz transmitting antenna 10 can realize spatial adjustment of the beam, can improve the gain of the beam in a specific direction, and make up for the insufficient total transmitting power. defect. Since the terahertz transmitting antenna 10 adopts a multi-frequency transmission switching technology, the operation time of the fingerprint spectrum recognition algorithm can be reduced to realize rapid recognition of a specific target substance.
- the terahertz transmitting antenna 10 further includes a conductive electrode 410. At least two of the conductive electrodes 410 are disposed on the insulating layer 400. Each of the conductive electrodes 410 is disposed opposite to one of the antenna switches 310. Specifically, the conductive electrode 410 and the antenna switch 310 are spaced apart, and the insulating layer 400 is deposited at a spacing between the conductive electrode 410 and the antenna switch 310. The conductive electrode 410 and the antenna switch 310 are spaced apart to avoid direct contact between the conductive electrode 410 and the antenna switch 310. The spacing between the conductive electrode 410 and the antenna switch 310 can also prevent direct contact of the conductive plate 300 and the conductive electrode 410.
- the off state or the open state of the antenna switch 310 can be changed by applying a voltage to the conductive electrode 410 and the conductive plate 300.
- the antenna switch 310 can be configured as a graphene material.
- the electrical conductivity of the graphene is 666.67 S/m.
- the graphene material behaves as a dielectric property, at which time the antenna switch 310 is in an open state.
- the terahertz wave transmitted in the microstrip feed line 100 can generate excitation to the upper antenna patch 500 through the antenna switch 310.
- the graphene conductivity becomes 107 S/m, which is a conductor characteristic, and the antenna switch 310 is in a closed state.
- the terahertz waves in the microstrip feed line 100 can continue to travel along the microstrip feed line 100.
- the open and closed states of the antenna switch 310 can be adjusted by the difference in voltage applied between the conductive electrode 410 and the conductive plate 300.
- the terahertz transmit antenna 10 excites at least two antenna patches 500 having different transmit frequencies through the microstrip feed line 100, respectively.
- the antenna switch 310 is disposed at an interval where adjacent conductive plates 300 are disposed at intervals. Each of the antenna switches 310 corresponds to a different frequency band. Setting the antenna switch 310 can improve the isolation of each frequency band and reduce the loss of terahertz wave energy of the antennas in other frequency bands.
- graphene has a characteristic of complex conductivity in the terahertz band, and the characteristic of switching between the conductor and the dielectric by an applied bias voltage can make graphene a switch of the antenna.
- the widths of the at least two antenna switches 310 are different, and each of the antenna switches 310 of different widths corresponds to transmitting terahertz waves of different frequency widths.
- the terahertz transmitting antenna 10 may include four of the antenna switches 310.
- the width of the four antenna switches 310 is different.
- the entire terahertz transmit antenna 10 is comprised of four sets of coupled slot microstrip antennas.
- Each set of microstrip sub-antennas includes at least one set of said microstrip feed lines 100, and the size of said antenna patch 500 and said antenna switch 310 of each set of microstrip sub-antennas correspond to different transmit frequency bands.
- the width of the at least two antenna switches 310 decreases in a fixed direction.
- the transmission frequencies of the at least two antenna switches 310 are increased along the fixed direction. It can be understood that when the widths of the at least two antenna switches 310 are changed along a fixed direction, they may be sequentially incremented, sequentially decremented, or irregularly changed.
- the fixed direction may be such that the widths of the two antenna switches 310 adjacent from left to right as shown in FIG. 1 or FIG. 2 are sequentially decreased.
- the width of each decrement can be related to the transmission frequency of the terahertz transmitting antenna 10. Specifically, the variation of the width of the at least two antenna switches 310 may be different according to the terahertz frequency that the device needs to transmit.
- the widths of the four antenna switches 310 are sequentially decreased from left to right to achieve a continuous change in the transmission frequency of the terahertz transmitting antenna 10.
- the scanning frequency band of the terahertz transmitting antenna 10 may sequentially correspond to four terahertz quantum cascade lasers of 1.0 THz-1.5 THz, 1.5 THz-2.0 THz, 2.0 THz-2.5 THz, and 2.5 THz-3.0 THz.
- the terahertz transmit antennas 10 can be combined into a 1 THz-3 THz detection bandwidth.
- the terahertz transmit antenna 10 has a swept frequency band of 1.0 THz to 3.0 THz. Since the terahertz transmitting antenna 10 has a wider sweep frequency, the terahertz spectrum detecting device 20 is capable of realizing the identification of various substance components.
- the material of the at least two antenna switches 310 is a material having dielectric properties.
- the material of the antenna switch 310 may be a material having a variable electrical conductivity.
- the conductivity of the material of the antenna switch 310 can be adjusted by varying the voltage applied to the antenna switch 310.
- the conductivity of the material of the antenna switch 310 changes, and the antenna switch 310 is turned off or on.
- the closed or open state of the antenna switch 310 changes to further change the transmission of the terahertz transmit antenna 10.
- the preparation process of the terahertz transmitting antenna 10 can be as follows.
- a silicon dioxide dielectric layer is provided as the substrate 200.
- a copper strip is deposited on the lower surface of the substrate 200 to form the microstrip feed line 100.
- a copper film is deposited on the upper surface of the substrate 200.
- Four slits are etched on the upper copper film, and the structure and size of each slit are designed according to the emission band of the terahertz transmitting antenna 10.
- the same size of graphene was transferred into the slit by a CVD method, and the entire copper film was used as the conductive plate 300, and was grounded.
- Graphene is deposited in the four slits as the antenna switch 310.
- High-resistance silicon is grown over the copper film as the insulating layer 400.
- a polysilicon electrode is formed as a conductive electrode 410 above the graphene in each slit. Different voltages are applied across the conductive electrode 410 and the conductive plate 300 to adjust the conductivity of the graphene in each slit. Above the graphene in each slit, the surface of the insulating layer 400 is respectively provided with a corresponding size of the antenna patch 500 for a single frequency band. The longer the wavelength, the larger the feature size of the slit.
- the terahertz wave is input from the left end, and the size of the slit in the terahertz transmitting antenna 10 can be set to increase from left to right, and the corresponding transmitting frequency is high to low.
- a terahertz spectral sensing device 20 comprising: a terahertz spectral emission unit 1, a terahertz spectral transmission unit 2, the terahertz transmitting antenna 10, a terahertz spectral receiving unit 3, and a terahertz spectrum.
- the identification unit 4 is analyzed.
- the terahertz spectral emission unit 1 is used to generate a broadband terahertz wave signal.
- the terahertz spectral emission unit 1 may be a broad spectrum array composed of a terahertz wave source capable of emitting a broad spectrum terahertz wave or a plurality of single frequency terahertz wave sources.
- the terahertz spectral emission unit 1 may be a multi-stage electronic frequency doubling link terahertz source, an optically rectified tunable terahertz source, a terahertz quantum cascade laser, or the like.
- the terahertz spectral transmission unit 2 is configured to transmit a broadband terahertz wave transmitted by a broadband terahertz emission source to the terahertz transmitting antenna 10.
- the terahertz spectrum transmission unit 2 may be waveguide transmission, microstrip line transmission, dielectric microstrip line transmission, photonic crystal fiber transmission, or the like.
- the terahertz transmit antenna 10 may be an antenna array composed of a plurality of antennas having different transmit bands.
- the terahertz transmitting antenna 10 has a switch therein, and can be switched to a transmitting antenna of a specific frequency band as needed.
- a single antenna element may be a microstrip antenna, a leaky wave antenna, a lens antenna, a horn antenna, or a parabolic antenna.
- the terahertz transmitting antenna 10 may include: a microstrip feeder 100, a substrate 200, at least two antenna switches 310, at least one conductive plate 300, an insulating layer 400, and at least two antenna patches 500.
- the substrate 200 includes a first surface 201 and a second surface 202 opposite the first surface 201.
- the microstrip feed line 100 is disposed on the first surface 201.
- the at least two antenna switches 310 are spaced apart from the second surface 202.
- the at least one conductive plate 300 is disposed on the second surface 202.
- One of the conductive plates 300 is disposed between each two adjacent antenna switches 310.
- the insulating layer 400 covers the at least one conductive plate 300 and the at least two antenna switches 310.
- the at least one conductive plate 300 and the at least two antenna switches 310 are disposed between the insulating layer 400 and the substrate 200.
- the at least two antenna patches 500 are spaced apart from the surface of the insulating layer 400 away from the substrate 200.
- Each of the antenna switches 310 is disposed opposite to one of the antenna patches 500 such that terahertz waves transmitted in the microstrip feeder 100 generate excitation to the antenna patch 500 through the antenna switch 310.
- the terahertz transmitting antenna 10 further includes: at least two conductive electrodes 410 disposed on the insulating layer 400. Each of the conductive electrodes 410 is disposed opposite to one of the antenna switches 310. The closing and opening of the antenna switch 310 opposite the one conductive electrode 410 is controlled by changing the voltage between one of the conductive electrodes 410 and the conductive plate 300.
- the terahertz spectrum receiving unit 3 is configured to receive an absorption spectrum of the terahertz wave emitted by the terahertz transmitting antenna 10 after passing through the target substance.
- the terahertz spectrum receiving unit 3 may be a differential detector, a superconducting Josephson junction detector, a pyroelectric detector, or the like.
- the terahertz spectrum receiving unit 3 is configured to receive an absorption spectrum of a terahertz frequency transmitted by the terahertz transmitting antenna 10.
- the terahertz spectral analysis identification unit 4 is configured to quickly analyze and identify the terahertz absorption spectrum of the target substance.
- the terahertz spectral analysis identification unit 4 stores a terahertz spectral database of common hazardous chemicals.
- the terahertz spectral analysis identification unit 4 can learn algorithms such as a vector quantization network clustering algorithm, an artificial neural network algorithm, and a Mahalanobis distance classification method.
- the terahertz spectral analysis identification unit 4 can quickly identify information such as the type and concentration of the target substance.
- the terahertz spectral emission unit 1 is signally coupled to the terahertz spectral transmission unit 2.
- the terahertz spectral transmission unit 2 is signally coupled to the terahertz transmit antenna 10.
- the terahertz spectrum receiving unit 3 is configured to receive a signal of a terahertz frequency transmitted by the terahertz transmitting antenna 10.
- the terahertz spectrum receiving unit 3 is signally connected to the terahertz spectral analysis identification unit 4.
- the terahertz spectral emission unit 1, the terahertz spectral transmission unit 2, and the terahertz transmitting antenna 10 may constitute a transmitting system.
- the terahertz spectrum receiving unit 3 and the terahertz spectral analysis identifying unit 4 constitute a receiving system.
- a certain gap between the transmitting system and the receiving system is a detecting area.
- Substances within the detection zone can be detected and analyzed by the terahertz spectral detection device 20.
- the unit included in the transmitting system and the receiving system may be packaged inside the terahertz spectrum detecting device 20.
- the specific configuration of the terahertz spectrum detecting device 20 is not limited.
- the size of the terahertz spectrum detecting device 20 is smaller than that of the existing spectral detecting device of the same frequency range.
- the terahertz transmit antenna 10 has an effective range and power of the transmit source, and the distance between the transmit system and the receive system can be set in the range of a few centimeters to tens of centimeters. In use, the height of the transmitting system and the receiving system are the same so that the terahertz spectrum of a wider frequency band can be accurately transmitted.
- the terahertz spectrum detecting device 20 is based on a miniaturized, portable terahertz transmitting antenna 10.
- the terahertz spectrum detecting device 20 can efficiently transmit the terahertz transmitting antenna 10 after tuning or multi-frequency splicing of the broadband terahertz signal.
- the terahertz spectrum detecting device 20 can effectively solve the problem that the existing terahertz source has low transmission power and narrow transmission band.
- the terahertz spectrum detecting device 20 can be conveniently applied to various dangerous chemical accident scenes, directly obtaining the transmission spectrum of the target substance in the terahertz band, and realizing rapid detection of the types and contents of dangerous chemicals in the atmospheric environment.
- the transmitting system composed of the terahertz spectral transmitting unit 1, the terahertz spectral transmission unit 2, and the terahertz transmitting antenna 10 is located at a left position.
- the receiving system consists of the terahertz spectrum receiving unit 3 and the terahertz spectral analysis identifying unit 4 located at the right position.
- a certain gap between the transmitting system and the receiving system is a detecting area.
- the terahertz transmitting antenna 10 transmits a signal of a terahertz frequency to the terahertz spectrum receiving unit 3 via the detection area.
- the transmitting system and the receiving system are directly disposed opposite each other.
- the transmitting system can be placed in an upper position of the terahertz spectral sensing device 20.
- the receiving system is in a lower position of the terahertz spectrum detecting device 20.
- a position between the transmitting system and the receiving system is a detecting area.
- the terahertz spectrum detecting device 20 is of a transmissive type. A detection area is between the terahertz transmitting antenna 10 and the terahertz spectrum receiving unit 3.
- the terahertz spectrum detecting device 20 can acquire a terahertz transmission spectrum of a sample located in the detection region.
- the terahertz spectral analysis identification unit 4 analyzes the obtained terahertz transmission spectrum to obtain information such as the type and concentration of the sample. For example, when detecting dangerous chemicals in the atmosphere at the scene of a dangerous chemical accident or a biochemical terrorist attack, the detection area of the terahertz spectrum detecting device 20 is directly in the atmospheric environment of the accident site.
- the terahertz spectrum detecting device 20 is capable of detecting the type and concentration of dangerous chemicals contained in the atmospheric environment at the location.
- the terahertz spectrum detecting device 20 further includes a mirror 6.
- the terahertz spectral transmitting unit 1, the terahertz spectral transmission unit 2, and the terahertz transmitting antenna 10 constitute the transmitting system at a position on the upper left.
- the terahertz spectrum receiving unit 3 and the terahertz spectral analysis identifying unit 4 constitute the receiving system at a position on the lower left.
- the terahertz transmitting antenna 10 and the terahertz spectrum receiving unit 3 are realized by the mirror 6.
- the relative positions of the transmitting system and the receiving system are fixed, and the specific ones may not be limited to the upper left and lower left positions.
- the transmitting system and the receiving system may also be upper right and lower right positions, or more optional positions.
- the relative position of the transmitting system and the receiving system is such that the transmission of the signal is required between the terahertz transmitting antenna 10 and the terahertz spectrum receiving unit 3 through the mirror 6.
- the terahertz spectrum detecting device 20 is of a reflective type.
- the reflective terahertz spectral sensing device 20 is applied in a similar manner to the transmissive.
- the terahertz transmission spectrum of the sample is measured by the terahertz spectrum receiving unit 3.
- a terahertz spectrum signal is transmitted to the mirror 6 via the terahertz transmitting antenna 10.
- the mirror 6 is reflected by the mirror 6 to the terahertz spectrum receiving unit 3.
- the transmitting system and the receiving system are on the same side with a mirror 6 interposed therebetween.
- the mirror 6 can be a parabolic mirror.
- the terahertz spectral sensing device 20 is characterized by being compact and portable.
- the terahertz spectrum detecting device 20 can be brought to the detection site quickly and conveniently.
- the terahertz spectrum detecting device 20 can be applied to a hazardous chemical accident scene and a biochemical terrorist attack site.
- the terahertz spectrum detecting device 20 is capable of detecting and identifying the type and content of hazardous gases in the atmosphere in a fast color.
- the terahertz spectrum detecting device 20 is not limited to gas detection, and is equally applicable to terahertz fingerprint detection and identification of solid and liquid. For example, drug screening, drug testing, and various material characterization based on terahertz spectroscopy.
- the terahertz spectral sensing device 20 further includes a terahertz spectral display unit 5.
- the terahertz spectrum display unit 5 is electrically connected to the terahertz spectral analysis identification unit 4 for displaying the detected information.
- the terahertz spectrum display unit 5 is configured to display the detection result.
- the detected information may include information such as the type and concentration of the dangerous chemicals.
- the terahertz spectrum detecting device 20 is provided to directly detect the terahertz absorption spectrum of the target substance in the frequency domain, without requiring a femtosecond laser and a complicated time delay system.
- the terahertz spectrum detecting device 20 has the characteristics of miniaturization and portability, and can be quickly applied to various complicated scenes.
- the use of the terahertz transmitting antenna 10 reduces the requirement for the transmission bandwidth of the terahertz source.
- the terahertz spectrum detecting device 20 may not need to use an ultra-wideband terahertz emission source, a broadband tuned terahertz emission source, or a combination of several narrow-frequency emission sources of several typical dangerous chemical fingerprint positions. .
- the use of the terahertz transmitting antenna 10 is more advantageous for miniaturization and cost reduction of the terahertz spectrum detecting device 20.
- Modulating the spatial beam of the transmitted terahertz wave by the high-gain terahertz transmit antenna 10 enhances the effective terahertz optical path in the terahertz spectral detection device 20.
- the terahertz spectrum detecting device 20 adopts a multi-frequency emission sweeping technique, which can effectively reduce the interference of each component on the fingerprint spectrum characteristics of a specific target substance and reduce the fingerprint spectrum identification when applied to multi-component group detection.
- the algorithm's computation time enables fast identification of specific target substances.
- the terahertz spectrum detecting device 20 can perform detection of solid, liquid, and gaseous substances.
- the terahertz spectrum detecting device 20 is used to detect dangerous chemicals in the atmosphere.
- HCN gas may be generated at the site of a hazardous chemical fire accident.
- a characteristic peak of the terahertz absorption spectrum of HCN is 1.24 THz.
- the terahertz spectrum detecting device 20 can be taken to the detection point of the fire scene. At this time, the detection area of the terahertz spectrum detecting device 20 is in the atmospheric environment of the detected position.
- the terahertz absorption spectrum received by the terahertz spectrum receiving system will have an absorption peak at 1.24 THz.
- the algorithm built in the terahertz spectral analysis identification unit 4 can acquire the absorption peak corresponding to the HCN.
- the concentration of HCN can be calculated from the intensity of the absorption spectrum and the terahertz path length of the detection region, and these results can be displayed by the terahertz spectrum display unit 5.
- the terahertz spectrum detecting device 20 When the terahertz spectrum detecting device 20 is used to detect a solid or liquid sample, the sample is directly placed in the detection area, and the terahertz transmission spectrum is measured. For example, to detect if a package contains RDX explosives. The position of the terahertz absorption peak of the RDX explosive is 1.26 THz and 1.73 THz. Also using the terahertz spectral detection device 20, the terahertz spectral detection device 20 is capable of detecting a frequency range of 1-3 THz. In the terahertz spectrum detecting device 20, the terahertz transmitting antenna 10 is sequentially swept in four frequency bands of 1.0-1.5 THz, 1.5-2.0 THz, 2.0-2.5 THz, and 2.5-3.0 THz.
- the terahertz spectral analysis identification unit 4 and the terahertz spectrum display unit 5 then analyze whether the frequency of the detected sample has an absorption peak at two frequencies of 1.26 THz and 1.73 THz. If there is an absorption peak of 1.26 THz and 1.73 THz, it is shown to contain RDX. If there is no absorption peak of 1.26 THz and 1.73 THz, the display is safe.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Toxicology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本申请涉及一种太赫兹发射天线,包括:微带馈线、衬底、至少两个天线开关、至少一个导电板、绝缘层和至少两个天线贴片。所述太赫兹发射天线设置至少两个所述天线开关和对应的至少两个天线贴片,充分的增加了所述太赫兹发射天线的发射带宽和提高了相应的发射功率。发射频带宽和发射功率高的所述太赫兹发射天线能够应用于小型太赫兹光谱探测装置中,协助发射源将太赫兹频段的信号发射出去。所述太赫兹发射天线通过多频发射天线阵列将多个不同发射频带的太赫兹源拼接起来,实现宽频带的光谱探测。所述太赫兹发射天线采用多频发射切换技术,可以减少指纹谱识别算法的运算时间实现对特定目标物质的快速识别。
Description
相关申请
本申请要求2018年03月12日申请的,申请号为201810201229.X,名称为“太赫兹发射天线和太赫兹光谱探测装置”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请涉及太赫兹光谱应用技术领域,特别是涉及一种太赫兹发射天线和太赫兹光谱探测装置。
在危险化学用品事故中,为了迅速的做出应急反应,快速有效的实施紧急安全措施,首先必须要快速的掌握危险化学用品的组分、含量和分布范围信息。常见危险化学用品所包含的有机分子的振动频率或者转动频率位于太赫兹波段(0.1THz-10THz),在此波段表现出很强指纹谱特征。因此,太赫兹光谱技术对于大气中的危险化学用品进行探测具有重要的现实意义。
然而,太赫兹光谱探测系统要实现多种物质组分的识别需要的整个系统的带宽要达到1THz以上。现有的太赫兹源技术在单个频点处的带宽一般只有几十到几百GHz。并且,现存的太赫兹源的功率都还很低,一般只有几个毫瓦。
发明内容
基于此,有必要针对传统的太赫兹源频带窄、功率较低的问题,提供一种太赫兹发射天线及太赫兹光谱探测装置。
一种太赫兹发射天线,包括:
衬底,包括第一表面和与所述第一表面相对的第二表面;
微带馈线,设置于所述第一表面;
至少两个天线开关,间隔设置于所述第二表面;
至少一个导电板设置于所述第二表面,每两个相邻的所述天线开关之间设置有一个所述导电板;
绝缘层,覆盖所述至少一个导电板和所述至少两个天线开关,所述至少一个导电板和 所述至少两个天线开关设置于所述绝缘层和所述衬底之间;
至少两个天线贴片,间隔设置于所述绝缘层远离所述衬底的表面;
每个所述天线开关与一个所述天线贴片相对设置,以使所述微带馈线中传输的太赫兹波通过所述天线开关对所述天线贴片产生激励。
在一个实施例中,还包括:
至少两个导电电极,设置于所述绝缘层,每个所述导电电极与一个所述天线开关间隔相对设置;
通过改变一个所述导电电极和所述导电板之间的电压,控制与所述一个导电电极相对的所述天线开关的关闭与打开。
在一个实施例中,所述至少两个天线开关的宽度不相同,不同宽度的每个所述天线开关对应传输不同频率宽度的太赫兹波。
在一个实施例中,所述至少两个天线开关的宽度沿着固定方向递减,所述至少两个天线开关的传输频率沿着所述固定方向递增。
在一个实施例中,所述至少两个天线开关的材料为具有电介质特性的材料。
在一个实施例中,所述至少两个天线开关的材料为石墨烯,铺设于所述第二表面。
一种太赫兹光谱探测装置,包括:
太赫兹光谱发射单元;
太赫兹光谱传输单元,与所述太赫兹光谱发射单元信号连接;
太赫兹发射天线,所述太赫兹光谱传输单元将所述太赫兹光谱发射单元与所述太赫兹发射天线信号连接;
太赫兹光谱接收单元,用于接收所述太赫兹发射天线传输的太赫兹频率的信号;以及
太赫兹光谱分析识别单元,与所述太赫兹光谱接收单元信号连接。
在一个实施例中,所述太赫兹发射天线和所述太赫兹光谱接收单元之间直接实现太赫兹频率的信号传输。
在一个实施例中,还包括反射镜;
所述太赫兹发射天线与所述太赫兹光谱接收单元之间通过所述反射镜实现太赫兹频率的信号传输。
在一个实施例中,还包括太赫兹光谱显示单元;
所述太赫兹光谱显示单元与所述太赫兹光谱分析识别单元电连接,用于显示检测到的信息。
本申请提供一种太赫兹发射天线,包括:微带馈线、衬底、至少两个天线开关、至少 一个导电板、绝缘层和至少两个天线贴片。所述太赫兹发射天线设置至少两个所述天线开关和对应的至少两个天线贴片,充分的增加了所述太赫兹发射天线的发射带宽和提高了相应的发射功率。发射频带宽和发射功率高的所述太赫兹发射天线能够应用于小型太赫兹光谱探测装置中,协助发射源将太赫兹频段的信号发射出去。所述太赫兹发射天线采用多频发射切换技术,可以减少指纹谱识别算法的运算时间实现对特定目标物质的快速识别。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为在一个实施例中所述太赫兹发射天线的结构示意图;
图2为在一个实施例中所述太赫兹发射天线的结构示意图;
图3为在一个实施例中所述太赫兹光谱探测装置的结构示意图;
图4为在一个实施例中所述太赫兹光谱探测装置的结构示意图。
附图标号说明:
太赫兹发射天线 10
微带馈线 100
衬底 200
第一表面 201
第二表面 202
导电板 300
天线开关 310
绝缘层 400
导电电极 410
天线贴片 500
太赫兹光谱探测装置 20
太赫兹光谱发射单元 1
太赫兹光谱传输单元 2
太赫兹光谱接收单元 3
太赫兹光谱分析识别单元 4
太赫兹光谱显示单元 5
反射镜 6
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,提供一种太赫兹发射天线10,包括:微带馈线100、衬底200、至少两个天线开关310、导电板300、绝缘层400和至少两个天线贴片500。
所述衬底200材料的选取并不作具体的限定,比如,所述衬底200可以是二氧化硅。所述衬底200具有第一表面201和第二表面202。所述第一表面201和所述第二表面202相对设置。比如,所述衬底200的底面为所述第一表面201。所述衬底200的顶面为所述第二表面202。
在所述第一表面201设置所述微带馈线100。在所述第二表面202间隔设置所述导电板300。具体的,设置所述微带馈线100和设置所述导电板300的方法可以是物理或者化学沉积的方法。所述微带馈线100可以设置为导电铜条。所述导电板300可以设置为导电铜薄膜。所述微带馈线100设置于所述第一表面201。所述微带馈线100中可以传输太赫兹波。在一种情况下,所述微带馈线100传输的太赫兹波可以对所述天线贴片500产生激励。在另一种情况下,所述微带馈线100中的太赫兹波可以继续沿所述微带馈线100的方向进行传输。
所述天线开关310与所述间隔设置的导电板300位于同一层。所述太赫兹发射天线10中,所述天线开关310的厚度约为1微米。所述天线开关310的厚度可以是一层石墨烯,也可以是两层石墨烯材料。至少两个所述天线开关310的间隔处设置所述导电板300。同样可以理解为,相邻的两个所述导电板300的间隔处设置所述天线开关310。所述天线开关310可以处于两种状态,即关闭状态和打开状态。当所述天线开关310处于关闭状态时,所述微带馈线100中的太赫兹波可以经过所述天线开关310传输至所述天线贴片500。当所述天线开关310处于打开状态时,所述微带馈线100中的太赫兹波不能经过所述天线开关310传输至所述天线贴片500。所述微带馈线100中的太赫兹波继续沿着所述微带馈线100的方向继续传输。所述天线开关310可以与所述导电板300不是同一个厚度。所述天线开关310的厚度可以小于所述导电板300的厚度。
所述绝缘层400设置于所述导电板300和所述天线开关310远离所述衬底200的表面。所述绝缘层400用于隔断所述导电板300和所述天线贴片500之间的电连接。具体的,所述绝缘层400的材料并不做具体的限定,比如,所述绝缘层400可以选用高阻硅。
所述天线贴片500与所述天线开关310一一对应设置。比如,设置两个所述天线开关310,在每一个所述天线开关310的对应位置设置一个所述天线贴片500。一个所述天线贴片500的宽度大于等于对应的所述天线开关310的宽度,以使得通过所述微带馈线100发送的太赫兹波可以通过所述天线开关310传输至所述天线贴片500。
本实施例中,设置至少两个所述天线开关310和对应的至少两个天线贴片500,充分的增加了所述太赫兹发射天线10的发射带宽和提高了相应的发射功率。发射频带宽和发射功率高的所述太赫兹发射天线10能够应用于小型太赫兹光谱探测装置中,协助发射源将太赫兹频段的信号发射出去。所述太赫兹发射天线10通过多频发射天线阵列将多个不同发射频带的太赫兹源拼接起来,实现宽频带的光谱探测。将所述太赫兹发射天线10应用到太赫兹光谱探测装置中,通过所述太赫兹发射天线10可以实现对波束的空间调控,可以提升波束在特定方向上的增益,弥补总体发射功率的不足的缺陷。由于,所述太赫兹发射天线10采用多频发射切换技术,可以减少指纹谱识别算法的运算时间实现对特定目标物质的快速识别。
请参阅图2,在一个实施例中,所述太赫兹发射天线10,还包括导电电极410。至少两个所述导电电极410设置于所述绝缘层400。每个所述导电电极410与一个所述天线开关310间隔相对设置。具体的,所述导电电极410和所述天线开关310间隔设置,在所述导电电极410和所述天线开关310间隔处沉积所述绝缘层400。所述导电电极410和所述天线开关310间隔设置,避免了所述导电电极410与所述天线开关310之间的直接接触。所述导电电极410和所述天线开关310间隔设置还可以防止所述导电板300和所述导电电极410的直接接触。可以通过在所述导电电极410和所述导电板300施加电压改变所述天线开关310的关闭状态或是打开状态。比如,所述天线开关310可以设置为石墨烯材料。在所述导电电极410和所述导电板300之间外加偏压0V时,石墨烯的电导率为666.67S/m。石墨烯材料表现为电介质特性,此时所述天线开关310处于打开状态。所述微带馈线100中传输的太赫兹波可以通过所述天线开关310对上方的所述天线贴片500产生激励。而当在所述导电电极410和所述导电板300之间的外加偏压为14V时,石墨烯电导率变为107S/m表现为导体特性,此时所述天线开关310处于关闭状态。所述微带馈线100中的太赫兹波可以继续沿所述微带馈线100向前传输。
本实施例中,通过所述导电电极410和所述导电板300之间施加的电压的不同可以调 控所述天线开关310所处的打开和关闭的状态。所述太赫兹发射天线10通过所述微带馈线100分别激励至少两个具有不同发射频率的所述天线贴片500。在相邻的间隔设置所述导电板300的间隔处设置所述天线开关310。各个所述天线开关310对应不同的频段。设置所述天线开关310可以提高各个频段的隔离度,减少其他频段的天线对太赫兹波能量的损耗。在一个实施例中,利用石墨烯在太赫兹频段下具有复电导率的特性,通过外加偏压可以在导体和电介质之间切换的特性可以将石墨烯做成天线的开关。
请再次参见图2,在一个实施例中,所述至少两个天线开关310的宽度不相同,不同宽度的每个所述天线开关310对应传输不同频率宽度的太赫兹波。比如:所述太赫兹发射天线10可以包括四个所述天线开关310。四个所述天线开关310的宽度不相同。也可以理解,整个所述太赫兹发射天线10由四组耦合狭缝微带子天线构成。每组微带子天线包括至少一组所述微带馈线100,每组微带子天线的所述天线贴片500和所述天线开关310的尺寸对应不同的发射频带。
在一个实施例中,所述至少两个天线开关310的宽度沿着固定方向递减。所述至少两个天线开关310的传输频率沿着所述固定方向递增。可以理解,所述至少两个天线开关310的宽度沿着固定的方向进行变化的时候,可以为依次递增、依次递减或者不规律的变化。所述固定方向可以是如图1或者图2所示从左到右相邻的两个所述天线开关310的宽度依次递减。每次递减的宽度可以根据所述太赫兹发射天线10的发射频率有关。具体的所述至少两个天线开关310的宽度的变化情况可以根据设备需要传输的太赫兹频率的不同而不同。
比如,所述太赫兹发射天线10中,四个所述天线开关310的宽度从左到右依次递减,以实现所述太赫兹发射天线10传输频率的连续性变化。比如,所述太赫兹发射天线10的扫描频段可以依次对应1.0THz-1.5THz,1.5THz-2.0THz,2.0THz-2.5THz,2.5THz-3.0THz的四个太赫兹量子级联激光器。所述太赫兹发射天线10可以组合成1THz-3THz探测带宽。
在一个实施例中,所述太赫兹发射天线10的扫频频段为1.0THz到3.0THz。由于所述太赫兹发射天线10具有较宽的扫频频率,所述太赫兹光谱探测装置20能够实现多种物质组分的识别。
在一个实施例中,所述至少两个天线开关310的材料为具有电介质特性的材料。比如,所述天线开关310的材料可以是具有可变电导率的材料。在具有电介质特性的材料中,通过改变加在所述天线开关310的电压可以调整所述天线开关310材料的电导率。所述天线开关310材料的电导率发生改变,所述天线开关310的关闭或者打开状态。所述天线开关310的关闭或者打开状态发生变化,进一步改变所述太赫兹发射天线10的发射。
所述太赫兹发射天线10的制备过程可以按照以下步骤。提供二氧化硅介质层作为所述衬底200。在所述衬底200的下表面沉积铜条带以形成所述微带馈线100。在所述衬底200的上表面沉积一层铜膜。在上层铜膜上刻蚀上四条狭缝,每条狭缝的结构和尺寸根据所述太赫兹发射天线10的发射频带进行设计。通过CVD法将同样尺寸的石墨烯转移到狭缝中,整个铜膜作为所述导电板300,并作接地处理。四条狭缝中沉积石墨烯,作为所述天线开关310。铜膜上方生长高阻硅作为所述绝缘层400。在每片狭缝中的石墨烯上方做成多晶硅电极,作为所述导电电极410。在所述导电电极410和所述导电板300的两端施加不同的电压,分别调控每片狭缝中石墨烯的电导率。每片狭缝中石墨烯的上方,所述绝缘层400的表面分别对单个频带设置相应尺寸的所述天线贴片500。由于波长越长,狭缝的特征尺寸越大。太赫兹波从左端输入,可以设置所述太赫兹发射天线10中狭缝的尺寸由左至右依次增大,对应的发射频率由高到低。
在一个实施例中,提供一种太赫兹光谱探测装置20,包括:太赫兹光谱发射单元1、太赫兹光谱传输单元2、所述太赫兹发射天线10、太赫兹光谱接收单元3和太赫兹光谱分析识别单元4。
所述太赫兹光谱发射单元1用于产生宽带的太赫兹波信号。所述太赫兹光谱发射单元1可以是能够发射宽谱太赫兹波的太赫兹波源或者多个单频太赫兹波源组成的宽谱阵列。比如,所述太赫兹光谱发射单元1可以是多级电子倍频链路太赫兹源,光整流的可调谐太赫兹光源,太赫兹量子级联激光器等。
所述太赫兹光谱传输单元2用于将宽带太赫兹发射源发射的宽带太赫兹波传输到所述太赫兹发射天线10。所述太赫兹光谱传输单元2可以是波导传输、微带线传输、介质微带线传输、光子晶体光纤传输等。
所述太赫兹发射天线10可以是由多个发射频段不同的天线组成的天线阵列。所述太赫兹发射天线10内有切换开关,可以根据需要切换到特定频段的发射天线工作。单个天线阵元可以是微带天线、漏波天线、透镜天线、喇叭天线、抛物面天线。具体的,所述太赫兹发射天线10可以包括:微带馈线100、衬底200、至少两个天线开关310、至少一个导电板300、绝缘层400和至少两个天线贴片500。所述衬底200包括第一表面201和与所述第一表面201相对的第二表面202。所述微带馈线100,设置于所述第一表面201。所述至少两个天线开关310间隔设置于所述第二表面202。所述至少一个导电板300设置于所述第二表面202。每两个相邻的所述天线开关310之间设置有一个所述导电板300。所述绝缘层400,覆盖所述至少一个导电板300和所述至少两个天线开关310。所述至少一个导电板300和所述至少两个天线开关310设置于所述绝缘层400和所述衬底200之间。 所述至少两个天线贴片500,间隔设置于所述绝缘层400远离所述衬底200的表面。每个所述天线开关310与一个所述天线贴片500相对设置,以使所述微带馈线100中传输的太赫兹波通过所述天线开关310对所述天线贴片500产生激励。
在一个实施例中,所述太赫兹发射天线10还包括:至少两个导电电极410设置于所述绝缘层400。每个所述导电电极410与一个所述天线开关310间隔相对设置。通过改变一个所述导电电极410和所述导电板300之间的电压,控制与所述一个导电电极410相对的所述天线开关310的关闭与打开。
所述太赫兹光谱接收单元3用于接收所述太赫兹发射天线10发射的太赫兹波经过目标物质之后的吸收谱。所述太赫兹光谱接收单元3可以是差分探测器、超导约瑟夫森结探测器、热释电探测器等。所述太赫兹光谱接收单元3用于接收所述太赫兹发射天线10发送的太赫兹频率的吸收谱。
所述太赫兹光谱分析识别单元4用于对目标物质的太赫兹吸收谱进行快速分析识别。所述太赫兹光谱分析识别单元4储存有常见危险化学用品的太赫兹光谱数据库。所述太赫兹光谱分析识别单元4可以学习矢量量化网络聚类算法、人工神经网络算法、马氏距离分类法等算法。所述太赫兹光谱分析识别单元4可以快速的识别出目标物质的种类和浓度等信息。
所述太赫兹光谱发射单元1与所述太赫兹光谱传输单元2信号连接。所述太赫兹光谱传输单元2与所述的太赫兹发射天线10信号连接。所述太赫兹光谱接收单元3用于接收所述太赫兹发射天线10传输的太赫兹频率的信号。所述太赫兹光谱接收单元3与太赫兹光谱分析识别单元4信号连接。所述太赫兹光谱发射单元1、所述太赫兹光谱传输单元2和所述太赫兹发射天线10可以组成发射系统。所述太赫兹光谱接收单元3和所述太赫兹光谱分析识别单元4组成接收系统。所述发射系统和所述接收系统之间具有一定的空隙是探测区域。处于所述探测区域内的物质可以被所述太赫兹光谱探测装置20探测和分析。所述发射系统和所述接收系统所包括的单元可以被封装在所述太赫兹光谱探测装置20的内部。
所述太赫兹光谱探测装置20的具体构造并不限定。所述太赫兹光谱探测装置20的尺寸比现有的、相同频率范围的光谱探测装置的尺寸小。考虑到,所述太赫兹发射天线10有效射程和发射源的功率,所述发射系统和所述接收系统之间的距离可以设置在几厘米到几十厘米的范围。在使用过程中,所述发射系统和所述接收系统的高度要一致,以便较宽频带的太赫兹波谱能够准确传输。
本实施例中,所述太赫兹光谱探测装置20基于小型化、便携式的所述太赫兹发射天 线10。所述太赫兹光谱探测装置20利用所述太赫兹发射天线10可以将调谐或者多频拼接的宽带太赫兹信号调控之后高效的发射出去。所述太赫兹光谱探测装置20可以有效的解决现存的太赫兹源的发射功率低、发射频带窄的问题。所述太赫兹光谱探测装置20可以方便的应用于各种危险化学用品事故现场,直接得到目标物质的在太赫兹波段的透射谱,实现对大气环境中的危险化学用品种类和含量的快速探测。
请参阅图3,在一个实施例中,由所述太赫兹光谱发射单元1、所述太赫兹光谱传输单元2和所述太赫兹发射天线10组成的所述发射系统位于左侧位置。由所述太赫兹光谱接收单元3和所述太赫兹光谱分析识别单元4组成接收系统位于右侧位置。所述发射系统和所述接收系统之间具有一定的空隙是探测区域。所述太赫兹发射天线10将太赫兹频率的信号经过所述探测区域传输至所述太赫兹光谱接收单元3。本实施例中,所述发射系统和所述接收系统直接相对设置。再比如,可以设置所述发射系统处于所述太赫兹光谱探测装置20的上方位置。所述接收系统处于所述太赫兹光谱探测装置20的下方位置。在所述发射系统和所述接收系统之间的位置为探测区域。
本实施例中,所述太赫兹光谱探测装置20为透射式。所述太赫兹发射天线10和所述太赫兹光谱接收单元3之间为探测区域。所述太赫兹光谱探测装置20可以获取位于所述探测区域内样品的太赫兹透射谱。所述太赫兹光谱分析识别单元4对得到的太赫兹透射谱进行分析得到样品的种类和浓度等信息。比如,用于危险化学用品事故现场或者生化恐怖袭击现场的大气中的危险化学用品探测时,所述太赫兹光谱探测装置20的探测区域直接处于事故现场的大气环境中。所述太赫兹光谱探测装置20就能够探测所处位置的大气环境中所含的危险化学用品的种类和浓度。
请参阅图4,在一个实施例中,所述太赫兹光谱探测装置20,还包括反射镜6。所述太赫兹光谱发射单元1、所述太赫兹光谱传输单元2和所述太赫兹发射天线10组成所述发射系统,位于左上方的位置。所述太赫兹光谱接收单元3和所述太赫兹光谱分析识别单元4组成所述接收系统,位于左下方的位置。所述太赫兹发射天线10与所述太赫兹光谱接收单元3之间通过所述反射镜6实现。这里,所述发射系统和所述接收系统的相对位置是固定的,具体的可以不限定是左上和左下的位置。比如,所述发射系统和所述接收系统还可以是右上和右下的位置,或者更多的可选位置。所述发射系统和所述接收系统的相对位置满足:所述太赫兹发射天线10和所述太赫兹光谱接收单元3之间需要通过反射镜6才能完成信号的传输。
本实施例中,所述太赫兹光谱探测装置20为反射式。反射式的所述太赫兹光谱探测装置20的应用方式同透射式相似。通过所述太赫兹光谱接收单元3测量样品的太赫兹透 射谱。如图4所示,经过所述太赫兹发射天线10将太赫兹波谱信号传输至所述反光镜6。经所述反光镜6反射至所述太赫兹光谱接收单元3。在反射式结构中,所述发射系统和所述接收系统位于同侧,在它们之间加入一个反射镜6。所述反射镜6可以是抛物镜。
图3和图4给出的实施例中,所述太赫兹光谱探测装置20具有小型化、便携式的特点。所述太赫兹光谱探测装置20可以快速、方便的带到探测现场。所述太赫兹光谱探测装置20可以应用在危险化学用品事故现场和生化恐怖袭击现场。所述太赫兹光谱探测装置20能够快色的探测和识别大气环境中危化气体的种类和含量。所述太赫兹光谱探测装置20并不局限于气体探测,同样适用于固体和液体的太赫兹指纹谱探测和识别。比如药品筛选、毒品检测和各种基于太赫兹光谱技术的材料特性标定等。
在一个实施例中,所述太赫兹光谱探测装置20,还包括太赫兹光谱显示单元5。所述太赫兹光谱显示单元5与所述太赫兹光谱分析识别单元4电连接,用于显示检测到的信息。具体的,所述太赫兹光谱显示单元5用于显示探测结果。在采用所述太赫兹光谱探测装置20检测环境中危险化学用品状态时,检测到的信息可以包括危险化学用品的种类、浓度等信息。
本实施例中,提供的所述太赫兹光谱探测装置20可以直接在频域内探测目标物质的太赫兹吸收谱,不需要飞秒激光器和复杂的时间延迟系统。所述太赫兹光谱探测装置20具有小型化、便携式的特点,能够快速的应用于各种复杂的场景。本实施例中,采用所述太赫兹发射天线10降低了对太赫兹发射源的发射带宽的要求。所述太赫兹光谱探测装置20可以不必采用超宽带的太赫兹发射源、宽带调谐太赫兹发射源,也可以使用几个发射频率在几种典型危险化学用品指纹谱位置的窄频的发射源组合。采用所述太赫兹发射天线10更有利于所述太赫兹光谱探测装置20的小型化和降低成本。采用高增益的所述太赫兹发射天线10对发射太赫兹波的空间波束进行调制,可以提升所述太赫兹光谱探测装置20中的有效的太赫兹光程。所述太赫兹光谱探测装置20采用多频发射扫频技术,当应用于多组分基团探测时,可以有效的减少各组分对特定目标物质的指纹谱特征的干扰,并减少指纹谱识别算法的运算时间实现对特定目标物质的快速识别。
所述太赫兹光谱探测装置20可以完成对固体、液体和气体物质的探测。采用所述太赫兹光谱探测装置20探测大气环境中的危险化学用品。比如,危险化学用品火灾事故现场可能会产生HCN气体,HCN的太赫兹吸收谱的一个特征峰是1.24THz。当用于探测火灾现场是否产生有HCN气体以及HCN的浓度时,可以将所述太赫兹光谱探测装置20拿到火灾现场的探测点。此时,所述太赫兹光谱探测装置20的探测区域即处于所探测位置的大气环境中。如果此时探测点的大气环境中含有HCN,太赫兹光谱接收系统接收到的太 赫兹吸收谱中在1.24THz位置处会有吸收峰。通过所述太赫兹光谱分析识别单元4内置的算法可以获取该吸收峰对应的是HCN。而且由吸收谱的强度和探测区域的太赫兹光程长度可以计算出HCN的浓度,这些结果可以通过所述太赫兹光谱显示单元5显示出来。
采用所述太赫兹光谱探测装置20探测固体或液体样品时,直接将样品放置在探测区域,测量其太赫兹透射谱即可。比如,要探测一个包裹中是否含有RDX爆炸物。RDX爆炸物的太赫兹吸收谱峰的位置是1.26THz和1.73THz。同样使用所述太赫兹光谱探测装置20,所述太赫兹光谱探测装置20能够探测的频率范围是1-3THz。在所述太赫兹光谱探测装置20中,通过所述太赫兹发射天线10依次在1.0-1.5THz,1.5-2.0THz,2.0-2.5THz,2.5-3.0THz四个频段扫频。然后由所述太赫兹光谱分析识别单元4和所述太赫兹光谱显示单元5分析探测样品的频率是否在1.26THz和1.73THz两个频点有吸收峰。如果存在1.26THz和1.73THz的吸收峰,则显示含有RDX。如果不存在1.26THz和1.73THz的吸收峰,则显示安全。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种太赫兹发射天线,其特征在于,包括:衬底(200),包括第一表面(201)和与所述第一表面(201)相对的第二表面(202);微带馈线(100),设置于所述第一表面(201);至少两个天线开关(310),间隔设置于所述第二表面(202);至少一个导电板(300)设置于所述第二表面(202),每两个相邻的所述天线开关(310)之间设置有一个所述导电板(300);绝缘层(400),覆盖所述至少一个导电板(300)和所述至少两个天线开关(310),所述至少一个导电板(300)和所述至少两个天线开关(310)设置于所述绝缘层(400)和所述衬底(200)之间;至少两个天线贴片(500),间隔设置于所述绝缘层(400)远离所述衬底(200)的表面;每个所述天线开关(310)与一个所述天线贴片(500)相对设置,以使所述微带馈线(100)中传输的太赫兹波通过所述天线开关(310)对所述天线贴片(500)产生激励。
- 如权利要求1所述的太赫兹发射天线,其特征在于,还包括:至少两个导电电极(410),设置于所述绝缘层(400),每个所述导电电极(410)与一个所述天线开关(310)间隔相对设置;通过改变一个所述导电电极(410)和所述导电板(300)之间的电压,控制与所述一个导电电极(410)相对的所述天线开关(310)的关闭与打开。
- 如权利要求1所述的太赫兹发射天线,其特征在于,所述至少两个天线开关(310)的宽度不相同,不同宽度的每个所述天线开关(310)对应传输不同频率宽度的太赫兹波。
- 如权利要求3所述的太赫兹发射天线,其特征在于,所述至少两个天线开关(310)的宽度沿着固定方向递减,所述至少两个天线开关(310)的传输频率沿着所述固定方向递增。
- 如权利要求1所述的太赫兹发射天线,其特征在于,所述至少两个天线开关(310)的材料为具有电介质特性的材料。
- 如权利要求5所述的太赫兹发射天线,其特征在于,所述至少两个天线开关(310)的材料为石墨烯,铺设于所述第二表面(202)。
- 一种太赫兹光谱探测装置,其特征在于,包括:太赫兹光谱发射单元(1);太赫兹光谱传输单元(2),与所述太赫兹光谱发射单元(1)信号连接;如权利要求1-6中任一项所述的太赫兹发射天线(10),所述太赫兹光谱传输单元(2)将所述太赫兹光谱发射单元(1)与所述太赫兹发射天线(10)信号连接;太赫兹光谱接收单元(3),用于接收所述太赫兹发射天线(10)传输的太赫兹频率的信号;以及太赫兹光谱分析识别单元(4),与所述太赫兹光谱接收单元(3)信号连接。
- 如权利要求7所述的太赫兹光谱探测装置,其特征在于,所述太赫兹发射天线(10)和所述太赫兹光谱接收单元(3)之间直接实现太赫兹频率的信号传输。
- 如权利要求7所述的太赫兹光谱探测装置,其特征在于,还包括反射镜(6);所述太赫兹发射天线(10)与所述太赫兹光谱接收单元(3)之间通过所述反射镜(6)实现太赫兹频率的信号传输。
- 如权利要求7-9中任一项所述的太赫兹光谱探测装置,其特征在于,还包括太赫兹光谱显示单元(5);所述太赫兹光谱显示单元(5)与所述太赫兹光谱分析识别单元(4)电连接,用于显示检测到的信息。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/438,462 US10739252B2 (en) | 2018-03-12 | 2019-06-11 | Terahertz antenna based on multi-frequency transmission switching and spectral detection device thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810201229.X | 2018-03-12 | ||
CN201810201229.XA CN108511896B (zh) | 2018-03-12 | 2018-03-12 | 太赫兹发射天线和太赫兹光谱探测装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/438,462 Continuation US10739252B2 (en) | 2018-03-12 | 2019-06-11 | Terahertz antenna based on multi-frequency transmission switching and spectral detection device thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019174148A1 true WO2019174148A1 (zh) | 2019-09-19 |
Family
ID=63377463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/092449 WO2019174148A1 (zh) | 2018-03-12 | 2018-06-22 | 太赫兹发射天线和太赫兹光谱探测装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10739252B2 (zh) |
CN (1) | CN108511896B (zh) |
WO (1) | WO2019174148A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4118571A4 (en) * | 2020-03-13 | 2023-07-26 | Fingerprint Cards Anacatum IP AB | UNDER-DISPLAY PASSIVE BIOMETRIC TERAHERTZ IMAGING DEVICE |
CN114008690A (zh) * | 2020-03-13 | 2022-02-01 | 指纹卡安娜卡敦知识产权有限公司 | 太赫兹生物特征成像封装 |
US11749015B2 (en) | 2020-03-13 | 2023-09-05 | Fingerprint Cards Anacatum Ip Ab | Under display terahertz biometric imaging arrangement |
US12075701B2 (en) | 2020-10-31 | 2024-08-27 | Epir, Inc. | HgCdTe metasurface-based terahertz source and detector |
CN113198110A (zh) * | 2021-03-17 | 2021-08-03 | 浙江新研坤科技有限公司 | 一种可改善身体的多波频共振系统 |
CN117441262A (zh) * | 2021-05-14 | 2024-01-23 | 联邦科学和工业研究组织 | 用于与电磁辐射相互作用的装置 |
CN114216853B (zh) * | 2021-12-13 | 2023-12-29 | 清华大学 | 基于太赫兹漏波天线的实时探测系统以及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130340624A1 (en) * | 2012-06-22 | 2013-12-26 | Steven Dee Wayne Webber | Fermentation temperature management |
CN103855228A (zh) * | 2014-02-21 | 2014-06-11 | 上海大学 | 一种基于光学天线的太赫兹探测器件 |
CN106654594A (zh) * | 2017-03-01 | 2017-05-10 | 清华大学 | 太赫兹发射天线系统 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2908931B1 (fr) * | 2006-11-21 | 2009-02-13 | Centre Nat Rech Scient | Antenne et emetteur/recepteur terahertz integres,et procede pour leur fabrication. |
CN104900999A (zh) * | 2015-05-13 | 2015-09-09 | 南京大学 | 一种基于集成电路工艺的太赫兹双频天线 |
-
2018
- 2018-03-12 CN CN201810201229.XA patent/CN108511896B/zh active Active
- 2018-06-22 WO PCT/CN2018/092449 patent/WO2019174148A1/zh active Application Filing
-
2019
- 2019-06-11 US US16/438,462 patent/US10739252B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130340624A1 (en) * | 2012-06-22 | 2013-12-26 | Steven Dee Wayne Webber | Fermentation temperature management |
CN103855228A (zh) * | 2014-02-21 | 2014-06-11 | 上海大学 | 一种基于光学天线的太赫兹探测器件 |
CN106654594A (zh) * | 2017-03-01 | 2017-05-10 | 清华大学 | 太赫兹发射天线系统 |
Non-Patent Citations (1)
Title |
---|
DONG, JIANMENG ET AL.: "Progress of Detection Technology of Ultra-Broadband THz Time-Domain Spectroscopy", SPECTROSCOPY AND SPECTRAL ANALYSIS, vol. 36, no. 5, 31 May 2016 (2016-05-31) * |
Also Published As
Publication number | Publication date |
---|---|
CN108511896B (zh) | 2019-12-27 |
US20200049620A1 (en) | 2020-02-13 |
US10739252B2 (en) | 2020-08-11 |
CN108511896A (zh) | 2018-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019174148A1 (zh) | 太赫兹发射天线和太赫兹光谱探测装置 | |
US6348683B1 (en) | Quasi-optical transceiver having an antenna with time varying voltage | |
EP0828143B1 (en) | Optical system employing terahertz radiation | |
Okamoto et al. | Terahertz sensor using photonic crystal cavity and resonant tunneling diodes | |
Verghese et al. | Generation and detection of coherent terahertz waves using two photomixers | |
EP1903328B1 (en) | High frequency electrical signal control device and sensing system | |
Dobroiu et al. | Terahertz-wave sources and imaging applications | |
US5351127A (en) | Surface plasmon resonance measuring instruments | |
EP1801939B1 (en) | Infrared light emitting device, infrared light detecting device, time-domain pulsed spectrometer apparatus, and infrared light emitting method | |
Zhong | Design and measurement of a narrow band metamaterial absorber in terahertz range | |
Malhotra et al. | Analysis of highly directive photoconductive dipole antenna at terahertz frequency for sensing and imaging applications | |
US20050162658A1 (en) | Terahertz modulation spectrometer | |
Khiabani | Modelling, design and characterisation of terahertz photoconductive antennas | |
Tantiwanichapan et al. | Herbicide/pesticide sensing with metamaterial absorber in THz regime | |
Nissiyah et al. | A simple equivalent circuit model of photoconductive dipole antenna for the study of terahertz intensity modulation | |
Mouret et al. | Gas filter correlation instrument for air monitoring at submillimeter wavelengths | |
CN208026605U (zh) | 一种小型化的太赫兹时域光谱仪装置 | |
US20150014535A1 (en) | Terahertz detection assembly and methods for use in detecting terahertz radiation | |
Rämer et al. | A terahertz time-domain spectroscopy-based network analyzer | |
Schmidt et al. | THz measurement technologies and applications | |
US10020593B1 (en) | System and method for terahertz integrated circuits | |
Didi et al. | Study and design of the Terahertz antenna array | |
US7091506B2 (en) | Semiconductor surface-field emitter for T-ray generation | |
Malhotra et al. | Analysis, design and characterization of small-gap photoconductive dipole antenna for terahertz imaging applications | |
Shimizu et al. | Active gas sensing with sub-terahertz waves reflected from a wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18909656 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18909656 Country of ref document: EP Kind code of ref document: A1 |