WO2019173987A1 - 感应模组的检测方法、触控芯片、触摸屏及其组装方法 - Google Patents

感应模组的检测方法、触控芯片、触摸屏及其组装方法 Download PDF

Info

Publication number
WO2019173987A1
WO2019173987A1 PCT/CN2018/078977 CN2018078977W WO2019173987A1 WO 2019173987 A1 WO2019173987 A1 WO 2019173987A1 CN 2018078977 W CN2018078977 W CN 2018078977W WO 2019173987 A1 WO2019173987 A1 WO 2019173987A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing
channels
channel
module
group
Prior art date
Application number
PCT/CN2018/078977
Other languages
English (en)
French (fr)
Inventor
陈之友
黄海泉
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to CN201880000287.4A priority Critical patent/CN110678766B/zh
Priority to PCT/CN2018/078977 priority patent/WO2019173987A1/zh
Publication of WO2019173987A1 publication Critical patent/WO2019173987A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Definitions

  • the present application relates to the field of testing technologies, and in particular, to a sensing module detecting method, a touch chip, a touch screen, and an assembling method thereof.
  • the double-layer structure touch screen comprises two single-sided modules pressed together; each single-sided module is formed with a plurality of sensing channels arranged in sequence and not intersecting each other, and the sensing channels on each single-sided module are selectable Sexually acts as an RX channel or a TX channel, and the sensing channels on the two single-sided modules are perpendicular to each other.
  • the double-layer structure touch screen includes two single-sided modules; one single-sided module includes a single substrate 11 and an RX channel 12 imprinted on the single substrate 11, and the other single-sided module includes a single
  • the body substrate 21 and the TX channel 22 imprinted on the single substrate 21, the two single-sided modules are bonded by the OCA optical glue 30 (the pressed TX channel and the RX channel are perpendicular to each other), and then connected to the touch
  • the chip forms a two-layer structure touch screen; wherein the monomer substrate is a single film or a single glass cover.
  • Method 1 After the two single-sided module structures are pressed together, the mutual-capacity coding method is used for detection (the sensing channel in one single-sided module is used as The transmitting channel TX and the sensing channel in the other single-sided module are used as the receiving channel RX), that is, by receiving the TX code and sampling the RX channel to receive the mutual capacitance matrix data, and judging the size thereof, thereby determining whether there is a TX.
  • the channel or the RX channel is open; the second method is to use the self-capacitance coding method for each single-sided module to detect, that is, to configure an iron plate equivalent to the system ground, and change the self-capacitance by changing the distance between the sensing channel and the system ground. Size, to quantify this difference in self-capacitance to determine whether there is an open circuit of the sensing channel.
  • the inventors have found that at least the following problems exist in the prior art: for the first mode, if the detection result is unqualified (at least one sensing channel has an open circuit phenomenon), then the entire double-layer structure touch screen (two single-sided modules) will If the application is scrapped, the loss is high.
  • the second method an additional iron plate corresponding to the system ground is needed to assist the test. The detection cost is high, and the distance between the iron plate and the sensing channel needs to be adjusted during the detection. The detection process is cumbersome. .
  • the purpose of some embodiments of the present application is to provide a sensing module detection method, a touch chip, a touch screen, and an assembly method thereof, and the sensing module is detected based on the mutual capacitance detection principle, and the detection cost is low and simple; It can be applied to the detection of a single sensing module in a two-layer structure touch screen, so that a single sensing module with an open circuit phenomenon is eliminated in time before the double-layer structure touch screen is assembled, thereby reducing subsequent wear and tear.
  • the embodiment of the present application provides a method for detecting a sensing module, which includes: performing floating sampling on a plurality of mutually dissimilar sensing channels included in the sensing module to obtain first sampling data of each sensing channel; Each sensing channel is a group, and each group of sensing channels is separately tested for mutual capacitance.
  • the mutual capacitance detection includes: coding one sensing channel in each group of sensing channels, and sampling another sensing channel to obtain another a second sampling data of the sensing channel, wherein any one sensing channel is included in at least one of the sensing channels; and for each sensing channel in which the second sampling data exists, according to the second sampling data and the first sampling data of each sensing channel The detection result of the open circuit of the sensor module is obtained.
  • the embodiment of the present application further provides a method for assembling a two-layer structure touch screen, comprising: providing a first single-sided module for assembling a double-layer structure touch screen, and connecting the first single-sided module to the touch The chip; the touch chip detects the first single-sided module according to the above detection method, and obtains the detection result of whether the first single-sided module has an open circuit; if the detection result of the first single-sided module is There is no open circuit phenomenon, and a second single-sided module for assembling the double-layer structure touch screen is provided, and the second single-sided module is connected to the touch chip; the touch chip is according to the above detection method, Two single-sided modules are tested, and whether the second single-sided module has an open circuit detection result; if the second single-sided module detects that there is no open circuit, the first single mode is Pressed together with the second single-sided module to form a two-layer structure touch screen.
  • the touchpad is connected to the sensing module, and the sensing module includes a plurality of sensing channels that are sequentially arranged and do not intersect each other.
  • the touch chip includes: a control unit, a coding unit, and a sampling unit and an analysis unit; the control unit is configured to dively sample a plurality of mutually dissimilar sensing channels included in the sensing module to obtain first sampling data of each sensing channel; and the control unit is further configured to use two sensing The channel is a group, and each group of sensing channels is separately tested for mutual capacitance.
  • the mutual capacitance detection includes: the control unit is configured to control the coding unit to code one sensing channel in each group of sensing channels, and control the sampling unit to another One sensing channel is sampled to obtain second sampling data of another sensing channel, wherein any one sensing channel is included in at least one of the sensing channels; and the analyzing unit is configured for each sensing channel in which the second sampling data exists, according to The second sampling data and the first sampling data of each sensing channel obtain a detection result of whether the sensing module has an open circuit phenomenon
  • the embodiment of the present application further provides a two-layer touch panel comprising: the above touch chip, and two single-sided modules respectively connected to the touch chip and pressed together.
  • the embodiment of the present application firstly controls all the sensing channels in the sensing module to be in a floating state, and respectively performs floating sampling on each sensing channel to obtain first sampling data of each sensing channel;
  • the sensing channels are a group, and each group of sensing channels are respectively subjected to mutual capacitance detection, thereby obtaining second sampling data of each sensing channel in which the second sampling data exists; finally, according to the second sampling data of each sensing channel and the first sampling data
  • the difference data of the sampled data obtains the detection result of whether the sensing module has an open circuit phenomenon.
  • the sensing module is detected based on the mutual capacitance detection principle, and the detection cost is low and simple; and at the same time, it can be applied to the detection of a single sensing module in the double-layer structure touch screen, thereby eliminating the double-layer structure touch screen before assembly.
  • a single sensing module with open circuit reduces subsequent wear and tear.
  • two sensing channels are grouped, and mutual sensing is performed for each group of sensing channels, specifically: two adjacent sensing channels are grouped, and mutual sensing is performed for each group of sensing channels.
  • two adjacent sensing channels are grouped into one group, and the distance between adjacent sensing channels is relatively close, the signal to noise is relatively high, and the detection result is more accurate.
  • This embodiment provides an implementation manner of a pair of adjacent sensing channels. Except for the sensing channels arranged at the beginning and the end, the sensing channels located in the middle are tested twice, and the detection reliability is higher.
  • any one of the sensing channels is included in only one of the sensing channels; or, one of the sensing channels is included in the two sensing channels, and the remaining sensing channels are included in only one of the sensing channels.
  • This embodiment provides another implementation manner of the adjacent sensing channels as a group. Each group of sensing channels only needs to perform a single detection, and the detection is relatively simple and the speed is fast.
  • the mutual capacitance detection specifically includes: coding the previous sensing channel in each group of sensing channels, and sampling the subsequent sensing channel to obtain the second sampling data of the subsequent sensing channel; or, for each group of sensing The latter sensing channel in the channel performs coding, and samples the previous sensing channel to obtain the second sampling data of the previous sensing channel.
  • This embodiment provides a specific manner of coding sampling. At this time, the second sampling data of each sensing channel except the first sensing channel can be obtained, so that the detection result is more accurate.
  • a detection result of whether the sensing module has an open circuit phenomenon is obtained, which specifically includes: Each sensing channel obtains a second characteristic value of the sensing channel according to the second sampling data of the sensing channel, and obtains a first characteristic value of the sensing channel according to the first sampling data of the sensing channel; and calculates a first characteristic value and a sensing of the sensing channel a difference between the second eigenvalues of the channel, and the difference is used as a detection value corresponding to the sensing channel; determining whether the detection value corresponding to the at least one sensing channel is smaller than the corresponding group of the sensing channel in the detection value corresponding to each sensing channel The preset threshold value; if it exists, it is determined that the detection result of the sensing module is that there is an open circuit phenomenon; if not, the detection result of the sensing module is determined to be that there is no open circuit phenomenon.
  • the method is applied to a touch chip, and the sensing module is connected to the touch chip.
  • the detection is completed by using the touch chip, which is more convenient and quick.
  • the sensing module is a single-sided module in a two-layer structure touch screen.
  • This embodiment provides a specific scenario in which the detection method is applied; the single sensing module in which the open circuit exists can be removed in time before the double-layer structure touch screen is assembled, thereby reducing subsequent wear and tear.
  • FIG. 1 is a schematic view of a two-layer structure touch screen according to the prior art
  • FIG. 2 is a specific flowchart of a method for detecting a sensing module according to a first embodiment of the present application
  • FIG. 3 is a schematic diagram of a sensing module connected to a touch chip according to a first embodiment of the present application
  • FIG. 4 is a specific flowchart of a method for detecting a sensing module according to a second embodiment of the present application
  • FIG. 5 is a schematic diagram of a sensing module connected to a touch chip according to a second embodiment of the present invention, wherein the sensing module is formed by a group of an i-th sensing channel and an i+1th sensing channel;
  • FIG. 6 is a schematic diagram of a sensing module connected to a touch chip according to a second embodiment of the present application, wherein only one sensing channel of the sensing module is included in two sets of sensing channels, and the remaining sensing channels are included in only one of the sensing channels.
  • FIG. 7 is a schematic diagram of a sensing module connected to a touch chip according to a second embodiment of the present application, wherein any sensing channel of the sensing module is included only in one of the sensing channels;
  • FIG. 8 is a specific flowchart of a method for detecting a sensing module according to a third embodiment of the present application.
  • FIG. 9 is a specific flowchart of a method for assembling a two-layer structure touch screen according to a fourth embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a touch chip according to a fifth embodiment of the present application.
  • FIG. 11 is a block schematic diagram of a touch chip in a seventh embodiment of the present application.
  • the first embodiment of the present invention relates to a method for detecting a sensing module, which is applied to a touch chip, and the touch chip is connected to the sensing module to detect whether the sensing module has an open circuit.
  • the sensing module and the touch chip The flexible printed circuit (FPC) extended above is pressed together.
  • the sensing module can also be detected by a special testing tool.
  • the sensing module is connected to the testing tool.
  • the touch chip is connected to the sensing module and the sensing module is detected by the touch chip, and the sensing module is detected. The result is that when there is no open circuit phenomenon, it means that the touch screen (finished product) is qualified, and it is very convenient and quick to connect with the touch chip without detecting the success.
  • the sensing module includes a plurality of sensing channels that are sequentially arranged and do not intersect each other.
  • the sensing module may be a single-sided module in a two-layer structure touch screen or a sensing module in a single-layer structure touch screen.
  • the double-layer structure touch screen in this embodiment is, for example, a double-layer indium tin oxide (ITO) line touch screen, and the structure thereof can be referred to FIG. 1 .
  • ITO indium tin oxide
  • the sensing module is a single-sided module 41 in a two-layer structure touch screen (uncompressed single-sided mode)
  • the single-sided module 41 has n TX channels as an example, and the single-sided module 41 is connected to the touch chip 42 , and the n TX channels of the single-sided module 41 and the flexible extension of the touch chip 42
  • the circuit board FPC43 is pressed together; the plurality of sensing channels in the sensing module are n TX channels of the single-sided module 41.
  • the single-sided module in the double-layer structure touch screen is taken as an example.
  • Step 101 Perform floating sampling on the plurality of mutually dissimilar sensing channels included in the sensing module to obtain first sampling data of each sensing channel.
  • the touch chip generally includes a coding unit and a sampling unit, and the touch chip dively samples each TX channel by the sampling unit to obtain first sampling data of each TX channel; the suspended sampling is specifically controlled to be sampled.
  • the TX channel is only connected to the sampling unit, and the first sampling data of the TX channel is collected by the sampling unit.
  • the other TX channels are in a floating state to avoid mutual interference.
  • the TX channel in the floating state means that the TX channel is not connected to the coding unit and the sampling unit.
  • the floating sampling of the first sampling data of the multiple TX channels may be performed in parallel, or may be performed sequentially and in groups, depending on the hardware (such as the number of ADCs) in the system or the configuration of the software parameters.
  • Step 102 taking two sensing channels as a group, and performing mutual capacitance detection on each group of sensing channels.
  • one of the two TX channels of the n TX channels is used as a coding channel, and the other channel is used as a sampling channel to obtain second sampling data of the other channel.
  • Mutual capacitance detection is performed on each group of channels in sequence to obtain corresponding second sampling data. That is, any two sensing channels are grouped as one, and any one of the TX channels is included in at least one of the sensing channels; then, the mutual sensing of each group of sensing channels is performed separately, specifically, a group of sensing is connected inside the touch chip.
  • Two TX channels in the channel control one channel of the group of sensing channels and sample the other channel, so that the second sampling data of the other channel can be obtained.
  • Each group of sensing channels performs mutual capacitance detection in sequence. That is, only one group of sensing channels is used for mutual capacitance detection at the same time. When one group of sensing channels performs mutual capacitance detection, the other groups of sensing channels are in a floating state to avoid mutual interference.
  • step 101 and step 102 are only schematically shown in FIG. 2, but is not limited thereto, that is, step 102 may be performed first and then step 101 may be performed.
  • Step 103 For each sensing channel in which the second sampling data exists, according to the second sampling data and the first sampling data of each sensing channel, a detection result of whether the sensing module has an open circuit phenomenon is obtained.
  • the sensing channels in the sensing module are in a floating state, and each sensing channel is separately suspended to obtain the first sampling data of each sensing channel; then, two The sensing channels are a group, and each group of sensing channels are respectively subjected to mutual capacitance detection, thereby obtaining second sampling data of each sensing channel in which the second sampling data exists; finally, according to the second sampling data of each sensing channel and the first The difference data of the sampled data obtains a detection result of whether the sensing module has an open circuit phenomenon.
  • the sensing module is detected based on the mutual capacitance detection principle, and the detection cost is low and simple; and at the same time, it can be applied to the detection of a single sensing module in the double-layer structure touch screen, thereby eliminating the double-layer structure touch screen before assembly.
  • a single sensing module with open circuit reduces subsequent wear and tear.
  • the second embodiment of the present application relates to a method for detecting a sensing module.
  • the embodiment is a refinement based on the first embodiment.
  • the main refinement is that two adjacent sensing channels are used as a group.
  • FIG. 4 The specific process of the detection method of the sensing module in this embodiment is shown in FIG. 4 .
  • Step 201 and step 203 are substantially the same as steps 101 and 103, and are not described here.
  • the main difference is that step 202 is specifically:
  • Step 202 taking two adjacent sensing channels as a group, and performing mutual capacitance detection on each group of sensing channels.
  • two adjacent sensing channels are used as a group, and the distance between adjacent sensing channels is relatively close, and the signal to noise ratio is relatively high, so that the more accurate the sampled data is, and the detection result is more accurate.
  • two adjacent sensing channels are used as a group, and two schemes are included, as follows:
  • the sensor module taking the sensor module as a single-sided module with 9 TX channels as an example, then eight sets of sensing channels can be obtained, the first group of sensing channels: TX1, TX2, and the second group of sensing channels: TX2, TX3
  • the third group of sensing channels: TX3, TX4, and so on, can obtain eight sets of sensing channels; in the mutual capacitance detection, except for the first and the last two sensing channels, the middle sensing channels are tested twice, and the detection reliability is more high.
  • the previous sensing channel in each group of sensing channels is coded, and the latter sensing channel is sampled to obtain a second sampling of the latter sensing channel.
  • the code sampling mode is: coding TX1, sampling TX2, coding TX2, sampling TX3, coding TX3, and coding TX4 Sampling, and so on, so that the second sampling data of the channels TX2 to TX9 can be obtained; or, the TX9 is coded, and the TX8 is sampled, the TX8 is coded, and the TX7 is sampled, and the TX7 is played.
  • the code, and the TX6 is sampled, and so on, so that the second sampled data of the channels TX8 to TX1 can be obtained.
  • the second sampling data of the eight TX channels in the nine TX channels can be obtained, that is, the second sampling data of the n-1 sensing channels in the n sensing channels can be obtained, so that The detection result obtained by the step 303 analysis is more reliable.
  • Solution 2 When the total number n of sensing channels included in the sensing module is an odd number, only one sensing channel of all sensing channels is included in two sensing channels, and the remaining sensing channels are only included in one of the sensing channels. In the middle, the (n-1)/2+1 group sensing channel can be obtained.
  • the sensing module is a single-sided module with 9 TX channels, for example, 9 of the single-sided modules.
  • the TX channel can be divided into five groups, the first group of sensing channels: TX1, TX2, the second group of sensing channels: TX3, TX4, the third group of sensing channels: TX5, TX6, the fourth group of sensing channels: TX7, TX8, fifth Group sensing channel: TX8, TX9; when the total number of sensing channels included in the sensing module is even, any sensing channel is only included in one of the sensing channels, and n/2 sensing channels can be obtained; 7 , taking the sensor module as a single-sided module with 8 TX channels as an example, the 8 TX channels in the single-sided module can be divided into four groups, and the first group of sensing channels: TX1, TX2, Two groups of sensing channels: TX3, TX4, the third group of sensing channels: TX5, TX6, the fourth group of sensing channels: TX7, TX8; in the mutual capacitance detection, when the sensing module includes an odd number of sensing channels, except for the last penultimate sens
  • two adjacent sensing channels are used as a group.
  • the present invention is not limited thereto. In the case where the gap between adjacent channels is sufficiently small and the signal-to-noise ratio is sufficiently high, the phase may be different.
  • the two sensing channels of the neighbor are taken as a group. Taking the single-sided module in FIG. 7 as an example, the channels TX1 and TX3 are grouped into one group, the channels TX5 and TX7 are grouped, and the channels TX2 and TX4 are grouped into one group.
  • Channels TX6 and TX8 are grouped into one group, or channels TX1 and TX2 are grouped into one group, channels TX1 and TX3 are grouped into one group, channels TX2 and TX4 are grouped into one group, channels TX5 and TX7 are grouped into one group, and channel TX6 is divided into one group. TX8 is divided into a group.
  • the third embodiment of the present invention relates to a method for detecting a sensing module.
  • the embodiment is a refinement based on the second embodiment.
  • the main refinement is to provide a method for determining whether an inductive module has an open circuit. method.
  • Step 301 and step 302 are substantially the same as steps 201 and 202, and are not described here again. The main differences are:
  • Step 301 Suspending spatial sampling of the plurality of mutually dissimilar sensing channels included in the sensing module to obtain first sampling data of each sensing channel.
  • Step 302 taking two sensing channels as a group, and performing mutual capacitance detection on each group of sensing channels.
  • the sensing module includes n sensing channels.
  • the ith sensing channel and the i+1th sensing channel are taken as an example, and the n-1 group is obtained.
  • the sensing channel when the mutual capacitance detection is performed, the previous sensing channel in each sensing channel is coded, and the latter sensing channel is sampled, so as to obtain the second sampling data of the latter sensing channel as an example, Second sampled data of n-1 sensing channels other than the first sensing channel.
  • Step 303 For each sensing channel in which the second sampling data exists, according to the second sampling data and the first sampling data of each sensing channel, the detection result of whether the sensing module has an open circuit phenomenon is obtained, which specifically includes:
  • Sub-step 3031 for each sensing channel in which the second sampling data exists, obtaining a second characteristic value of the sensing channel according to the second sampling data of the sensing channel, and obtaining a first characteristic value of the sensing channel according to the first sampling data of the sensing channel .
  • the second characteristic value of the channel is obtained from the second sampled data of the n-1 sensing channels, and the second characteristic value of the sensing channel is represented by D_RAW; specifically, the second sensing channel
  • the second characteristic value is represented as D_RAW2
  • the second characteristic value of the third sensing channel is represented as D_RAW3, ...
  • the second characteristic value of the nth sensing channel is represented as D_RAWn, that is, the second to nth pieces can be obtained
  • the second characteristic values D_RAW2 to D_RAWn of the sensing channel are examples of the sensing channel.
  • filtering, smoothing, and the like of the first sampled data of each sensing channel is performed to filter out noise interference in the first sampled data, thereby acquiring a first characteristic value of each sensing channel; that is, from n-1
  • the first characteristic value of each sensing channel is obtained in the first sampling data of the sensing channel, and the first characteristic value of the sensing channel is represented by D_REF; specifically, the first characteristic value of the second sensing channel is represented as D_REF2, the third sensing The first characteristic value of the channel is represented as D_REF3, ..., and the first characteristic value of the nth sensing channel is represented as D_REFn, that is, the first characteristic values D_REF2 to D_REFn of the second to nth sensing channels can be obtained.
  • Sub-step 3032 calculating a difference between the first characteristic value of the sensing channel and the second characteristic value of the sensing channel, and using the difference as the detection value corresponding to the sensing channel.
  • the detection value corresponding to the second sensing channel is represented as DIFF2
  • the detection value corresponding to the third sensing channel is represented as DIFF3, ...
  • the detection value corresponding to the nth sensing channel is represented as DIFFn, that is, the second to the second
  • the detected values corresponding to the n sensing channels are DIFF2 to DIFFn.
  • the difference between the first eigenvalue of the sensing channel and the second eigenvalue of the sensing channel can be understood as the difference between the first eigenvalue minus the second eigenvalue, or the second eigenvalue minus the first The difference between a feature value.
  • Sub-step 3033 determining whether the detection value corresponding to the at least one sensing channel is smaller than the preset threshold corresponding to the group of the sensing channel in the detection value corresponding to each sensing channel; if yes, determining that the detection result of the sensing module is open If it does not exist, it is determined that the detection result of the sensing module is that there is no open circuit.
  • the first characteristic value D_REF of the sensing channel and the second characteristic value D_RAW should be There is a large difference (that is, the detection value is large), that is, the detection value of the sensing channel is greater than the preset threshold corresponding to the sensing channel, and the detection values corresponding to the second to the nth sensing channels are DIFF2 to DIFFn. If there is at least one preset threshold corresponding to the group in which it is located, it indicates that at least one of the sensing channels of the second to the nth sensing channels is open, and the detection result of the sensing module is determined to be open; otherwise, the sensing is determined.
  • the test result of the module is that there is no open circuit.
  • the preset threshold is set by the tester according to experience; specifically, the preset threshold of each group of sensing channels is related to the distance between the two sensing channels in the group of sensing channels, and between the two sensing channels.
  • the preset thresholds of the sensing channels of each group are equal; if the adjacent sensing channels are not grouped, the preset thresholds of the sensing channels of each group need to be set according to the division manner of each group. set.
  • step 302 according to the first scheme in the second embodiment: taking the i-th sensing channel and the i+1th sensing channel as a group, the specific determination manner of whether each sensing channel is open is as follows, wherein THR Indicates a preset threshold.
  • the sensing channel 1 is open.
  • the sensing channel i-1 is open.
  • the sensing channel i+1 is open.
  • the sensing channel n is open.
  • the continuous multiple sensing channels can be manually detected to specifically determine the open sensing channel among the plurality of sensing channels.
  • step 302 according to the second scheme in the second embodiment, only one sensing channel is included in two sets of sensing channels or any one sensing channel is included in only one of the sensing channels;
  • the channel performs mutual capacitance detection to code the first sensing channel in each group of sensing channels, and samples the latter sensing channel to obtain the second sampling data of the latter sensing channel as an example, and can obtain each group of sensing
  • the second sampled data of the next sensing channel in the channel, and then the second sampled value and the first sampled value of the next sensing channel in each group of sensing channels are obtained, and the detected value of the next sensing channel in each group of sensing channels is calculated.
  • the determined sensing channel is determined. At least one sensing channel has an open circuit phenomenon; then, it can be determined by manual detection to determine which sensing channel has an open circuit or two There is an open circuit in the strip sensing channels. That is, in this grouping method, the sensing channel in which the open circuit phenomenon may exist may be determined in a small range relatively quickly.
  • this embodiment provides a specific method for determining whether an inductive module has an open circuit. It should be noted that the embodiment may also be refinement based on the first embodiment.
  • the two sensing channels that are not adjacent may be used as a group, and the same technical effect can be achieved.
  • the fourth embodiment of the present invention relates to a method for assembling a two-layer structure touch screen.
  • FIG. 9 it is a specific flowchart of a method for assembling a two-layer structure touch screen.
  • Step 401 providing a first single-sided module for assembling into a two-layer structure touch screen, and connecting the first single-sided module to the touch chip.
  • a first single-sided module for forming a two-layer structure is provided.
  • the first single-sided module has a TX channel or an RX channel, and the first single-sided module and the touch chip are extended.
  • the FPC is pressed together.
  • Step 402 The touch chip detects the first single-sided module according to the detecting method of the sensing module according to any one of the first to third embodiments, and obtains whether the first single-sided module has an open circuit. Test results.
  • Step 403 If the detection result of the first single-sided module is that there is no open circuit, provide a second single-sided module for assembling the double-layer structure touch screen, and connect the second single-sided module to Touch chip.
  • the first single-sided module is good, and can be used to make a double-layer structure touch screen; and then, provided for assembly
  • the second single-sided module of the double-layer structure touch screen the second single-sided module has a different type of channel than the first single-sided module (ie, the second single-sided module has an RX channel or a TX channel),
  • the second single-sided module is pressed together with the FPC extended on the touch chip; if the detection result of the first single-sided module is open circuit, the first single-sided module needs to be removed.
  • another single-sided module is re-provided, and the re-provided single-sided module is connected to the touch chip, and is detected according to the method in step 402 until a single-sided module without an open circuit phenomenon is obtained.
  • Step 404 The touch chip detects the second single-sided module according to the detecting method of the sensing module according to any one of the first to third embodiments, and obtains whether the second single-sided module has an open circuit. Test results.
  • Step 405 If the detection result of the second single-sided module is that there is no open circuit, the first single mode and the second single-sided module are pressed together to form a double-layer structure touch screen.
  • the second single-sided module is good, and can be used to make a double-layer structure touch screen; then, there will be no open circuit phenomenon.
  • the first single-sided module is pressed together with the second single-sided module that does not have an open circuit phenomenon, and the pressed TX channel and the RX channel on the two single-sided modules are perpendicular to each other to form a double Layer structure touch screen, double-layer structure touch screen as shown in Figure 1.
  • the detection result of the second single-sided module is that there is an open circuit, the second single-sided module needs to be removed, another single-sided module is re-provided, and the re-provided single-sided module is touched.
  • the control chip is connected, and the detection is performed in the manner of step 404 until a single-sided module without an open circuit phenomenon is obtained.
  • the touch chip is connected to the single-sided module and the touch chip is used.
  • the single-sided module is tested.
  • the detection result of the single-sided module is that there is no open circuit, it indicates that the single-sided module is qualified, and the other single-sided module is continuously assembled and tested, only to ensure two single-sided After the modules are all qualified, the pressing is performed, so that the sensing module can be detected during the touch screen assembly process, which is very convenient and fast; and the formed double-layer structure touch screen can be ensured that there is no open circuit and the loss is reduced.
  • the fifth embodiment of the present invention relates to a touch chip, and the touch chip is connected to the sensing module. Specifically, the FPC extended on the touch chip is pressed together with the sensing module.
  • the touch chip includes a control unit 1, a coding unit 2, a sampling unit 3, and an analysis unit 4.
  • the control unit 1 is configured to dively sample a plurality of mutually dissimilar sensing channels included in the sensing module to obtain first sampling data of each sensing channel; wherein, when one sensing channel is sampled, other sensing channels are in Dangling state.
  • the control unit 1 is further configured to use two sensing channels as a group, and perform mutual capacitance detection on each group of sensing channels.
  • the mutual capacitance detection includes: the control unit 1 is configured to control the coding unit 2 to code one sensing channel in each group of sensing channels, and control the sampling unit 3 to sample another sensing channel to obtain another sensing channel. Two sampled data; wherein any one of the sensing channels is included in at least one of the sensing channels;
  • the analyzing unit 4 is configured to obtain, according to the second sampling data and the first sampling data of each sensing channel, the detection result of whether the sensing module has an open circuit phenomenon for each sensing channel in which the second sampling data exists.
  • the present embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still effective in this embodiment, and the technical effects that can be achieved in the first embodiment can also be implemented in the present embodiment. To reduce repetition, details are not described herein again. Accordingly, the related art details mentioned in the embodiment can also be applied to the first embodiment.
  • the sensing channels in the sensing module are in a floating state, and each sensing channel is separately suspended to obtain the first sampling data of each sensing channel; then, two The sensing channels are a group, and each group of sensing channels are respectively subjected to mutual capacitance detection, thereby obtaining second sampling data of each sensing channel in which the second sampling data exists; finally, according to the second sampling data of each sensing channel and the first The difference data of the sampled data obtains a detection result of whether the sensing module has an open circuit phenomenon.
  • the sensing module is detected based on the mutual capacitance detection principle, and the detection cost is low and simple; and at the same time, it can be applied to the detection of a single sensing module in the double-layer structure touch screen, thereby eliminating the double-layer structure touch screen before assembly.
  • a single sensing module with open circuit reduces subsequent wear and tear.
  • the sixth embodiment of the present application relates to a touch chip.
  • the present embodiment is a refinement based on the fifth embodiment.
  • the main refinement is that two adjacent sensing channels are used as a group.
  • control unit 1 takes two adjacent sensing channels as a group, and performs mutual capacitance detection on each group of sensing channels respectively; and the two adjacent sensing channels are grouped, including the following two schemes. details as follows:
  • the sensor module taking the sensor module as a single-sided module with 9 TX channels as an example, then eight sets of sensing channels can be obtained, the first group of sensing channels: TX1, TX2, and the second group of sensing channels: TX2, TX3
  • the third group of sensing channels: TX3, TX4, and so on, can obtain eight sets of sensing channels; in the mutual capacitance detection, except for the first and the last two sensing channels, the middle sensing channels are tested twice, and the detection reliability is more high.
  • the control chip 1 performs mutual capacitance detection on each group of sensing channels, and specifically includes: controlling the coding unit 2 to code the previous sensing channel in each group of sensing channels, and controlling the sampling unit 3 to perform the subsequent sensing channel. Sampling to obtain second sampling data of the next sensing channel; or, the control unit 1 is configured to control the coding unit 2 to code the next sensing channel in each group of sensing channels, and control the sampling unit 3 to sense the previous sensing The channel is sampled to obtain the second sampled data of the previous sensing channel. Please refer to FIG.
  • the sensing module as a single-sided module with 9 TX channels as an example, performing code sampling according to the above manner, and obtaining second sampling data of 8 TX channels in 9 TX channels, that is, The second sampling data of n-1 sensing channels in the n sensing channels can be obtained, so that the detection result obtained by the subsequent analysis is more reliable.
  • Solution 2 When the total number n of sensing channels included in the sensing module is an odd number, only one sensing channel of all sensing channels is included in two sensing channels, and the remaining sensing channels are only included in one of the sensing channels. In the middle, the (n-1)/2+1 group sensing channel can be obtained.
  • the sensing module is a single-sided module with 9 TX channels, for example, 9 of the single-sided modules.
  • the TX channel can be divided into five groups, the first group of sensing channels: TX1, TX2, the second group of sensing channels: TX3, TX4, the third group of sensing channels: TX5, TX6, the fourth group of sensing channels: TX7, TX8, fifth Group sensing channel: TX8, TX9; when the total number of sensing channels included in the sensing module is even, any sensing channel is only included in one of the sensing channels, and n/2 sensing channels can be obtained; 7 , taking the sensor module as a single-sided module with 8 TX channels as an example, the 8 TX channels in the single-sided module can be divided into four groups, and the first group of sensing channels: TX1, TX2, Two groups of sensing channels: TX3, TX4, the third group of sensing channels: TX5, TX6, the fourth group of sensing channels TX7, TX8; in the mutual capacitance detection, when the sensing module includes an odd number of sensing channels, except for the last penultimate sensing
  • the present embodiment can be implemented in cooperation with the second embodiment.
  • the technical details mentioned in the second embodiment are still effective in this embodiment, and the technical effects that can be achieved in the second embodiment can also be implemented in the embodiment. To reduce the repetition, details are not described herein again. Accordingly, the related art details mentioned in the embodiment can also be applied to the second embodiment.
  • the present embodiment uses two adjacent sensing channels as a group, and the distance between adjacent sensing channels is relatively close, the signal-to-noise ratio is relatively high, and the detection result is more accurate.
  • the seventh embodiment of the present application relates to a touch chip.
  • the present embodiment is a refinement based on the fifth embodiment.
  • the main refinement is as follows: Referring to FIG. 11, the analyzing unit 4 includes a data processing sub-unit 41. The subunit 42 and the judging subunit 43 are calculated.
  • the data processing sub-unit 41 is configured to obtain a second characteristic value of the sensing channel according to the second sampling data of the sensing channel for each sensing channel in which the second sampling data exists, and obtain the sensing channel according to the first sampling data of the sensing channel. A feature value.
  • the calculating sub-unit 42 is configured to calculate a difference between the first characteristic value of the sensing channel and the second characteristic value of the sensing channel, and use the difference value as the detection value corresponding to the sensing channel.
  • the determining sub-unit 43 is configured to determine whether the detection value corresponding to the at least one sensing channel is smaller than the preset threshold corresponding to the group in which the sensing channel is located in the detection value corresponding to each sensing channel; if yes, determining that the detection result of the sensing module is present Open circuit phenomenon; if it does not exist, it is determined that the detection result of the sensing module is that there is no open circuit.
  • the present embodiment can be implemented in cooperation with the third embodiment.
  • the technical details mentioned in the third embodiment are still effective in this embodiment, and the technical effects that can be achieved in the third embodiment can also be implemented in this embodiment. To reduce repetition, details are not described herein again. Accordingly, the related art details mentioned in the embodiment can also be applied to the third embodiment.
  • this embodiment provides a specific method for determining whether an inductive module has an open circuit. It should be noted that the present embodiment can also be refined as the sixth embodiment, and the same technical effects can be achieved.
  • the eighth embodiment of the present invention relates to a two-layer touch panel, comprising the touch chip of any one of the fourth to seventh embodiments, and two single-sided modules respectively connected to the touch chip and pressed together .
  • the two single-sided modules that are pressed together are the single-sided module that detects the absence of an open circuit by the detecting method of the sensing module according to any one of the first to third embodiments.
  • the sensing channels in the sensing module are in a floating state, and each sensing channel is separately suspended to obtain the first sampling data of each sensing channel; then, two The sensing channels are a group, and each group of sensing channels are respectively subjected to mutual capacitance detection, thereby obtaining second sampling data of each sensing channel in which the second sampling data exists; finally, according to the second sampling data of each sensing channel and the first The difference data of the sampled data obtains a detection result of whether the sensing module has an open circuit phenomenon.
  • the sensing module is detected based on the mutual capacitance detection principle, and the detection cost is low and simple; and at the same time, it can be applied to the detection of a single sensing module in the double-layer structure touch screen, thereby eliminating the double-layer structure touch screen before assembly.
  • a single sensing module with open circuit reduces subsequent wear and tear.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种感应模组的检测方法、触控芯片、触摸屏及其组装方法,所述感应模组的检测方法包括对感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各感应通道的第一采样数据(301);以两个感应通道为一组,并对各组感应通道分别进行互容检测(302),互容检测包括,对每组感应通道中的一条感应通道进行打码,并对另一条感应通道进行采样,以得到另一条感应通道的第二采样数据;其中,任意一条感应通道至少包含于其中一组感应通道中;对于存在第二采样数据的各感应通道,根据各感应通道的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果。利用上述基于互容检测原理对感应模组进行检测,检测成本较低且简便易行。

Description

感应模组的检测方法、触控芯片、触摸屏及其组装方法 技术领域
本申请涉及测试技术领域,特别涉及一种感应模组的检测方法、触控芯片、触摸屏及其组装方法。
背景技术
双层结构触摸屏包括压合在一起的两个单面模组;每个单面模组上形成有依次排列且互不相交的多条感应通道,每个单面模组上的感应通道可选择性的作为RX通道或者TX通道,且两个单面模组上的各条感应通道相互垂直。请参考图1,双层结构触摸屏包括两个单面模组;一个单面模组包括单体基材11以及刻印在单体基材11上的RX通道12,另一个单面模组包括单体基材21以及刻印在单体基材21的TX通道22,两个单面模组通过OCA光学胶30进行粘合(压合后的TX通道与RX通道相互垂直),然后连接至触控芯片形成双层结构触摸屏;其中,单体基材为单体膜材或单体玻璃盖板。
触摸屏在出厂前都要经过检测,只有检测合格,例如各感应通道都不存在开路现象后才能出厂。对于双层结构触摸屏而言,一般采用如下方式:方式一、将两个单面模组结构压合在一起后,使用互容打码方式进行检测(其中一个单面模组中的感应通道作为发射通道TX,另一个单面模组中的感应通道作为接收通道RX),即通过对TX打码、对RX通道采样来接收互容矩阵数据, 并对其大小来判断,从而判断是否有TX通道或RX通道开路;方式二、对各单面模组分别使用自容打码方式进行检测,即配置一个相当于系统地的铁板,通过改变感应通道与系统地间的距离来改变自电容大小,以量化此自电容差异来判断是否有感应通道开路。
然而,发明人发现现有技术至少存在以下问题:对于上述方式一,如果检测结果为不合格(至少一条感应通道存在开路现象),那么,整个双层结构触摸屏(两个单面模组)都会报废掉,损耗较高;对于上述方式二,需要另外配置一个相当于系统地的铁板以辅助测试,检测成本较高,且检测中需要调整铁板相对于感应通道的距离,检测过程较为繁琐。
发明内容
本申请部分实施例的目的在于提供一种感应模组的检测方法、触控芯片、触摸屏及其组装方法,基于互容检测原理对感应模组进行检测,检测成本较低且简便易行;同时,能够应用于双层结构触摸屏中单个感应模组的检测,从而在双层结构触摸屏组装之前及时剔除存在开路现象的单个感应模组,减少后续耗损。
本申请实施例提供了一种感应模组的检测方法,包括:对感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各感应通道的第一采样数据;以两个感应通道为一组,并对各组感应通道分别进行互容检测,互容检测包括:对每组感应通道中的一条感应通道进行打码,并对另一条感应通道进行采样,以得到另一条感应通道的第二采样数据,其中,任意一条感应通道至少包含于其中一组感应通道中;对于存在第二采样数据的各感应通道,根据 各感应通道的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果。
本申请实施例还提供了一种双层结构触摸屏的组装方法,包括:提供用于组装成双层结构触摸屏的第一个单面模组,并将第一个单面模组连接至触控芯片;触控芯片根据上述的检测方法,对第一个单面模组进行检测,并得到第一个单面模组是否存在开路的检测结果;若第一个单面模组的检测结果为不存在开路现象,则提供用于组装成双层结构触摸屏的第二个单面模组,并将第二个单面模组连接至触控芯片;触控芯片根据上述的检测方法,对第二个单面模组进行检测,并得到第二个单面模组是否存在开路的检测结果;若第二个单面模组的检测结果为不存在开路现象,则将第一个单体模与第二个单面模组压合在一起,以形成双层结构触摸屏。
本申请实施例还提供了一种触控芯片,触控芯片连接于感应模组,感应模组包括依次排列且互不相交的多条感应通道;触控芯片包括:控制单元、打码单元、采样单元以及分析单元;控制单元用于对感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各感应通道的第一采样数据;控制单元还用于以两个感应通道为一组,并对各组感应通道分别进行互容检测,互容检测包括,控制单元用于控制打码单元对每组感应通道中的一条感应通道进行打码,并控制采样单元对另一条感应通道进行采样,以得到另一条感应通道的第二采样数据,其中,任意一条感应通道至少包含于其中一组感应通道中;分析单元用于对于存在第二采样数据的各感应通道,根据各感应通道的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果。
本申请实施例还提供了一种双层结构触摸屏包括:上述的触控芯片,以 及分别连接于触控芯片且压合在一起的两个单面模组。
本申请实施例相对于现有技术而言,首先,控制感应模组中的所有感应通道处于悬空状态,并对各感应通道分别进行悬空采样得到各感应通道的第一采样数据;然后,以两个感应通道为一组,并对各组感应通道分别进行互容检测,从而得到了存在第二采样数据的各感应通道的第二采样数据;最后,根据各感应通道的第二采样数据和第一采样数据的差异量数据,得到该感应模组是否存在开路现象的检测结果。即,基于互容检测原理对感应模组进行检测,检测成本较低且简便易行;同时,能够应用于双层结构触摸屏中单个感应模组的检测,从而在双层结构触摸屏组装之前及时剔除存在开路现象的单个感应模组,减少后续耗损。
另外,以两个感应通道为一组,并对各组感应通道分别进行互容检测,具体为:以相邻的两个感应通道为一组,并对各组感应通道分别进行互容检测。本实施例中,将相邻的两个感应通道分为一组,相邻感应通道之间距离较近,信噪比较高,检测结果更准确。
另外,以相邻的两个感应通道为一组,并对各组感应通道分别进行互容检测,具体为:以第i个感应通道和第i+1个感应通道为一组,并对各组感应通道分别进行互容检测;其中,各感应通道按照排列顺序依次编号,且i=1、2、3、……、n-1,n为感应通道的总数。本实施例提供了一种相邻感应通道作为一组的实现方式,除排列在首尾的感应通道外,位于中间的各感应通道均进行两次检测,检测可靠性更高。
另外,任意一条感应通道仅包含于其中一组感应通道中;或者,所有感应通道中,仅有一条感应通道包含于两组感应通道中,其余感应通道都仅包含 于其中一组感应通道中。本实施例提供了另一种相邻感应通道作为一组的实现方式,各组感应通道只需进行单次检测,检测较为简单且速度较快。
另外,互容检测具体包括,对每组感应通道中的前一条感应通道进行打码,并对后一条感应通道进行采样,以得到后一条感应通道的第二采样数据;或者,对每组感应通道中的后一条感应通道进行打码,并对前一条感应通道进行采样,以得到前一条感应通道的第二采样数据。本实施例提供了打码采样的具体方式,此时能够得到除了第一条感应通道以外的其他每个感应通道的第二采样数据,使得检测结果更准确。
另外,对于存在第二采样数据的各感应通道,根据各感应通道的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果,具体包括:对于存在第二采样数据的每个感应通道,根据感应通道的第二采样数据得到感应通道的第二特征值,且根据感应通道的第一采样数据得到感应通道的第一特征值;计算感应通道的第一特征值和感应通道的第二特征值之间的差值,并将差值作为感应通道对应的检测值;判断各感应通道对应的检测值中,是否存在至少一个感应通道对应的检测值小于感应通道所在组对应的预设阈值;若存在,则判定感应模组的检测结果为存在开路现象;若不存在,则判定感应模组的检测结果为不存在开路现象。本实施例提供了一种判断感应模组是否存在开路现象的具体方法。
另外,方法应用于触控芯片,感应模组连接于触控芯片。本实施例中,利用触摸芯片完成检测,更加方便快捷。
另外,感应模组为双层结构触摸屏中的单面模组。本实施例提供了检测方法所应用的具体场景;可以在双层结构触摸屏组装之前及时剔除存在开路现 象的单个感应模组,减少后续耗损。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是根据现有技术中的双层结构触摸屏的示意图;
图2是根据本申请第一实施例中的感应模组的检测方法的具体流程图;
图3是根据本申请第一实施例中的感应模组连接于触控芯片的示意图;
图4是根据本申请第二实施例中的感应模组的检测方法的具体流程图;
图5是根据本申请第二实施例中的感应模组连接于触控芯片的示意图,其中,感应模组以第i个感应通道和第i+1个感应通道为一组;
图6是根据本申请第二实施例中的感应模组连接于触控芯片的示意图,其中,感应模组仅有一条感应通道包含于两组感应通道中,其余感应通道都仅包含于其中一组感应通道中;
图7是根据本申请第二实施例中的感应模组连接于触控芯片的示意图,其中,感应模组任意一条感应通道仅包含于其中一组感应通道中;
图8是根据本申请第三实施例中的感应模组的检测方法的具体流程图;
图9是根据本申请第四实施例中的双层结构触摸屏的组装方法的具体流程图;
图10是根据本申请第五实施例中的触控芯片的方框示意图;
图11是根据本申请第七实施例中的触控芯片的方框示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请第一实施例涉及一种感应模组的检测方法,应用于触控芯片,触控芯片连接于感应模组以检测该感应模组是否存在开路现象,其中,感应模组与触控芯片上延伸出来的柔性电路板(Flexible Printed Circuit,简称FPC)压合在一起。然不限于此,也可以通过专门的测试工具对感应模组进行检测,此时,感应模组连接于该测试工具。需要说明的是,由于感应模组与触控芯片组装在一起后可以形成触摸屏,因此,将触控芯片连接于感应模组并利用触控芯片对感应模组进行检测,当感应模组的检测结果为不存在开路现象时,表示触摸屏(成品)合格,而无需检测成功后再与触控芯片连接,非常方便快捷。
本实施例中,感应模组包括依次排列且互不相交的多条感应通道,感应模组可以为双层结构触摸屏中的单面模组,或者为单层结构触摸屏中的感应模组。其中,本实施例中的双层结构触摸屏例如双层氧化铟锡(Indium tin oxide,简称ITO)线路触摸屏,其结构可参考图1。
本实施例的感应模组的检测方法的具体流程如图2所示,其中,请参考图3,以感应模组为双层结构触摸屏中的单面模组41(未压合的单面模组)、且该单面模组41具有n条TX通道为例,单面模组41连接于触控芯片42,单面模组41的n条TX通道与触控芯片42上延伸出来的柔性电路板FPC43压合在一起;感应模组中的多条感应通道则为单面模组41的n条TX通道。需要说 明的是,本实施例以及之后的实施例中均以感应模组为双层结构触摸屏中的单面模组为例进行说明。
步骤101,对感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各感应通道的第一采样数据。
具体而言,触控芯片一般包括打码单元与采样单元,触控芯片通过采样单元分别对各TX通道进行悬空采样,得到各TX通道的第一采样数据;悬空采样具体为,控制被采样的TX通道仅连接于采样单元,通过采样单元采集该TX通道的第一采样数据。其中,在对其中一条TX通道进行悬空采样时,其他TX通道均处于悬空状态,以免产生相互干扰;其中,处于悬空状态的TX通道是指该TX通道与打码单元、采样单元均不连接。然不限于此,多条TX通道的第一采样数据的悬空采样可以并行进行,也可以依次进行、分组依次进行,具体可以根据系统中硬件(比如ADC的数量)或者软件参数的配置而定。
步骤102,以两个感应通道为一组,并对各组感应通道分别进行互容检测。
具体而言,以n条TX通道中的任意两个TX通道中的其中一条通道作为打码通道,另外一条通道则作为采样通道获得该另一条通道的第二采样数据。依次对各组通道进行互容检测,获得对应的第二采样数据。即,将任意两根感应通道作为一组,并且任意一条TX通道至少包含于其中一组感应通道中;然后对各组感应通道分别进行互容检测,具体为,触控芯片内部连接一组感应通道中的两条TX通道,控制对该组感应通道中的一条通道进行打码,并对另一条通道进行采样,从而可以得到另一条通道的第二采样数据。其中,各组感应通道依次进行互容检测,即,同一时刻只有一组感应通道进行互容检测,一组 感应通道进行互容检测时其他组感应通道均处于悬空状态,以避免相互干扰。
需要说明的是,图2中仅示意性表示步骤101与步骤102的执行顺序,然不限于此,即也可以先执行步骤102再执行步骤101。
步骤103,对于存在第二采样数据的各感应通道,根据各感应通道的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果。
具体而言,对于存在第二采样数据的TX通道,根据TX通道的第二采样数据和第一采样数据的差异量数据,可以得到该单面模组(感应模组)是否存在开路现象的检测结果。
本实施例相对于现有技术而言,首先,控制感应模组中的所有感应通道处于悬空状态,并对各感应通道分别进行悬空采样得到各感应通道的第一采样数据;然后,以两个感应通道为一组,并对各组感应通道分别进行互容检测,从而得到了存在第二采样数据的各感应通道的第二采样数据;最后,根据各感应通道的第二采样数据和第一采样数据的差异量数据,得到该感应模组是否存在开路现象的检测结果。即,基于互容检测原理对感应模组进行检测,检测成本较低且简便易行;同时,能够应用于双层结构触摸屏中单个感应模组的检测,从而在双层结构触摸屏组装之前及时剔除存在开路现象的单个感应模组,减少后续耗损。
本申请第二实施例涉及一种感应模组的检测方法,本实施例是在第一实施例基础上的细化,主要细化之处在于:以相邻的两个感应通道作为一组。
本实施例中的感应模组的检测方法的具体流程如图4所示。
其中,步骤201、步骤203与步骤101、步骤103大致相同,此处不再赘述,主要不同之处在于,步骤202,具体为:
步骤202,以相邻的两个感应通道为一组,并对各组感应通道分别进行互容检测。
本实施例中,以相邻的两个感应通道作为一组,相邻感应通道之间距离较近,信噪比较高,使得采样得到的数据越准确,从而检测结果更准确。
本实施例中,以相邻的两个感应通道为一组,包括两种方案,具体如下:
方案一:以第i个感应通道和第i+1个感应通道为一组,并对各组感应通道分别进行互容检测;其中,各感应通道按照物理位置排列顺序依次编号,且i=1、2、3、……、n-1,n为感应通道总数;以第i个感应通道和第i+1个感应通道作为一组,可以得到n-1组感应通道;其中,无论n为奇数或者偶数,均可以按照上述方式以第i个感应通道和第i+1个感应通道为一组。请参考图5,以感应模组为具有9条TX通道的单面模组为例,则可以得到八组感应通道,第一组感应通道:TX1、TX2,第二组感应通道:TX2、TX3,第三组感应通道:TX3、TX4,以此类推,可以得到八组感应通道;在互容检测时,除首尾两根感应通道,中间的各感应通道均进行两次检测,检测可靠性更高。
较佳的,对各组感应通道分别进行互容检测时,对每组感应通道中的前一条感应通道进行打码,并对后一条感应通道进行采样,以得到后一条感应通道的第二采样数据;或者,对每组感应通道中的后一条感应通道进行打码,并对前一条感应通道进行采样,以得到前一条感应通道的第二采样数据。以图5的单面模组为例,打码采样方式为:对TX1进行打码、并对TX2进行采样,对TX2进行打码、并对TX3进行采样,对TX3进行打码、并对TX4进行采样,以此类推,从而可以得到通道TX2至TX9的第二采样数据;或者,对TX9进行打码、并对TX8进行采样,对TX8进行打码、并对TX7进行采样,对TX7 进行打码、并对TX6进行采样,以此类推,从而可以得到通道TX8至TX1的第二采样数据。按照上述方式进行打码采样,能够得到9条TX通道中的8条TX通道的第二采样数据,即,可以得到n条感应通道中的n-1条感应通道的第二采样数据,使得在步骤303分析得到的检测结果更加可靠。
方案二:当感应模组包括的感应通道的总条数n为奇数时,所有感应通道中,仅有一条感应通道包含于两组感应通道中,其余感应通道都仅包含于其中一组感应通道中,可以得到(n-1)/2+1组感应通道,请参考图6,以感应模组为具有9条TX通道的单面模组为例,则该单面模组中的9条TX通道可以分为五组,第一组感应通道:TX1、TX2,第二组感应通道:TX3、TX4,第三组感应通道:TX5、TX6,第四组感应通道:TX7、TX8,第五组感应通道:TX8、TX9;当感应模组包括的感应通道的总条数n为偶数时,任意一条感应通道仅包含于其中一组感应通道中,可以得到n/2组感应通道;请参考图7,以感应模组为具有8条TX通道的单面模组为例,则该单面模组中的8条TX通道可以分为四组,第一组感应通道:TX1、TX2,第二组感应通道:TX3、TX4,第三组感应通道:TX5、TX6,第四组感应通道:TX7、TX8;在互容检测时,当感应模组包括奇数条感应通道时,除了最后倒数第二根感应通道,其他感应通道只需进行单次检测;当感应模组包括偶数条感应通道时,各组感应通道只需进行单次检测,检测较为简单且速度较快。
需要说明的是,本实施例中,以相邻的两个感应通道作为一组,然不限于此,在相邻通道的间隙足够小、信噪比足够高的情况下,也可以以不相邻的两个感应通道作为一组,以图7中的单面模组为例,将通道TX1、TX3分为一组,通道TX5、TX7分为一组,通道TX2、TX4分为一组,通道TX6、TX8 分为一组,或者,将通道TX1、TX2分为一组,通道TX1、TX3分为一组,通道TX2、TX4分为一组,通道TX5、TX7分为一组,通道TX6、TX8分为一组。
本申请第三实施例涉及一种感应模组的检测方法,本实施例是在第二实施例基础上的细化,主要细化之处在于:提供了一种判断感应模组是否存在开路具体方法。
本实施例中的感应模组的检测方法的具体流程如图8所示。
其中,步骤301、步骤302与步骤201、步骤202大致相同,此处不再赘述,主要不同之处在于:
步骤301,对感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各感应通道的第一采样数据。
步骤302,以两个感应通道为一组,并对各组感应通道分别进行互容检测。
具体而言,以感应模组包括n条感应通道,按照第二实施例中的方案一以第i个感应通道和第i+1个感应通道作为一组为例,则可以得到n-1组感应通道,进行互容检测时,以对每组感应通道中的前一条感应通道进行打码,并对后一条感应通道进行采样,以得到后一条感应通道的第二采样数据为例,可以得到除第1条感应通道以外的n-1条感应通道的第二采样数据。
步骤303,对于存在第二采样数据的各感应通道,根据各感应通道的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果,具体包括:
子步骤3031,对于存在第二采样数据的每个感应通道,根据感应通道的第二采样数据得到感应通道的第二特征值,且根据感应通道的第一采样数据得 到感应通道的第一特征值。
具体而言,对于存在第二采样数据的每个感应通道,对每个感应通道的第二采样数据进行滤波、平滑等处理,以滤除第二采样数据中的噪声干扰,从而获取每个感应通道的第二特征值;即从n-1条感应通道的第二采样数据中得到各感应通道的第二特征值,以D_RAW表示感应通道的第二特征值;具体的,第2条感应通道的第二特征值表示为D_RAW2、第3条感应通道的第二特征值表示为D_RAW3、……,第n条感应通道的第二特征值表示为D_RAWn,即可以得到第2条至第n条感应通道的第二特征值D_RAW2至D_RAWn。同理,对每个感应通道的第一采样数据进行滤波、平滑等处理,以滤除第一采样数据中的噪声干扰,从而获取每个感应通道的第一特征值;即从n-1条感应通道的第一采样数据中得到各感应通道的第一特征值,以D_REF表示感应通道的第一特征值;具体的,第2条感应通道的第一特征值表示为D_REF2、第3条感应通道的第一特征值表示为D_REF3、……,第n条感应通道的第一特征值表示为D_REFn,即可以得到第2条至第n条感应通道的第一特征值D_REF2至D_REFn。
子步骤3032,计算感应通道的第一特征值和感应通道的第二特征值之间的差值,并将差值作为感应通道对应的检测值。
具体而言,计算每条感应通道的第一特征值和第二特征值之间的差值,并将差值作为感应通道对应的检测值;以DIFF表示感应通道对应的检测值,具体的,第2条感应通道对应的检测值表示为DIFF2、第3条感应通道对应的检测值表示为DIFF3、……,第n条感应通道对应的检测值表示为DIFFn,即可以得到第2条至第n条感应通道对应的检测值DIFF2至DIFFn。需要说明的 是,感应通道的第一特征值和感应通道的第二特征值之间的差值,可以理解为第一特征值减去第二特征值之差,或者第二特征值减去第一特征值之差。
子步骤3033,判断各感应通道对应的检测值中,是否存在至少一个感应通道对应的检测值小于感应通道所在组对应的预设阈值;若存在,则判定感应模组的检测结果为存在开路现象;若不存在,则判定感应模组的检测结果为不存在开路现象。
具体而言,对于每条感应通道来说,若其所在的一组感应通道中的两条感应通道均无开路现象,则该感应通道的第一特征值D_REF与第二特征值D_RAW之间应会存在较大的差异(即检测值较大),即,该感应通道的检测值大于该组感应通道对应的预设阈值,若第2条至第n条感应通道对应的检测值DIFF2至DIFFn中存在至少一个小于其所在组对应的预设阈值,则说明第2条至第n条感应通道中的至少一个感应通道开路,判定感应模组的检测结果为存在开路现象;否则,则判定感应模组的检测结果为不存在开路现象。其中,预设阈值由测试人员根据经验设定;具体的说,各组感应通道的预设阈值的大小与该组感应通道中的两条感应通道之间的距离有关,两条感应通道之间的距离越小,耦合性能越大;即当打码信号相同时,该组感应通道中的两条感应通道之间的距离越小,第二采样数据与第一采样数据的差距越大;因此,如果将预设阈值设定为同一条感应通道对应的第二特征值(由第二采样数据处理得到)与第一特征值(由第一采样数据处理得到)的差值时,两条感应通道之间的距离越小,则预设阈值越大;反之,两条感应通道之间的距离越大,预设阈值越小。若以相邻感应通道为一组,那么各组感应通道的预设阈值相等;若不以相邻感应通道为一组,则各组感应通道的预设阈值需要根据各组的划分方式来设 定。
本实施例中,在判断出感应模组的检测结果存在开路现象的情况下,还可以对各感应通道是否开路进行进一步判断。
若在步骤302中,按照第二实施例中的方案一:以第i个感应通道和第i+1个感应通道作为一组为例,则各感应通道是否开路的具体判断方式如下,其中THR表示预设阈值。
(1)i=1时,则:
DIFF2≥THR,则感应通道1正常。
DIFF2<THR且DIFF3≥THR,则感应通道1开路。
(2)1<i<n时,则:
DIFFi≥THR且DIFFi+1≥THR,则感应通道i正常。
DIFFi<THR且DIFFi+1≥THR,则感应通道i-1开路。
DIFFi≥THR且DIFFi+1<THR,则感应通道i+1开路。
(3)i=n时,则:
DIFFn≥THR,则感应通道n正常。
DIFFn<THR且DIFFn-1≥THR,则感应通道n开路。
另外,若连续多条通道的检测值DIFF均小于预设阈值,则可以对这连续多条感应通道进行人工检测,以具体判断连续多条感应通道中的处于开路的感应通道。
若步骤302中,按照第二实施例中的方案二,即仅有一条感应通道包含于两组感应通道中或任意一条感应通道仅包含于其中一组感应通道中;此时,对每组感应通道进行互容检测,以对每组感应通道中的前一条感应通道进行打 码,并对后一条感应通道进行采样,以得到后一条感应通道的第二采样数据为例,可以得到各组感应通道中后一条感应通道的第二采样数据,继而可以获取各组感应通道中后一条感应通道的第二采样值与第一采样值,计算得到各组感应通道中后一条感应通道的检测值,当该检测值大于其所在组对应的预设阈值时,判定其所在组中的两条感应通道均未开路;当该检测值小于其所在组对应的预设阈值时,判定该组感应通道中至少一条感应通道存在开路现象;然后可以通过人工检测的方式确定具体为哪一条感应通道存在开路现象或者两条感应通道都存在开路现象。即,这种分组方式中,可以较快速地在小范围内确定可能存在开路现象的感应通道。
本实施例相对于第一实施例而言,提供了一种判断感应模组是否存在开路具体方法。需要说明的是,本实施例也可以作为第一实施例基础上的细化,则在步骤302中,也可以不相邻的两个感应通道作为一组,可以达到同样的技术效果。
本申请第四实施例涉及一种双层结构触摸屏的组装方法,请参考图9,为双层结构触摸屏的组装方法的具体流程图。
步骤401,提供用于组装成双层结构触摸屏的第一个单面模组,并将第一个单面模组连接至触控芯片。
具体而言,提供用于组成双层结构的第一个单面模组,第一个单面模组具有TX通道或RX通道,将该第一个单面模组与触控芯片上延伸出来的FPC压合在一起。
步骤402,触控芯片根据第一至第三实施例中任一项的感应模组的检测方法,对第一个单面模组进行检测,并得到第一个单面模组是否存在开路的检 测结果。
步骤403,若第一个单面模组的检测结果为不存在开路现象,则提供用于组装成双层结构触摸屏的第二个单面模组,并将第二个单面模组连接至触控芯片。
具体而言,若第一个单面模组的检测结果为不存在开路现象,则说明该第一个单面模组为良品,可以用来制作双层结构触摸屏;继而,提供用于组装成双层结构触摸屏的第二个单面模组,第二单面模组具有与第一个单面模组不同类型的通道(即第二个单面模组具有RX通道或TX通道),将该第二个单面模组与触控芯片上延伸出来的FPC压合在一起;若第一个单面模组的检测结果为存在开路现象,则需将该第一个单面模组拆下,重新提供另一个单面模组,并将重新提供的单面模组与触控芯片连接,按照步骤402的方式进行检测,直至得到一个不存开路现象的单面模组。
步骤404,触控芯片根据第一至第三实施例中任一项的感应模组的检测方法,对第二个单面模组进行检测,并得到第二个单面模组是否存在开路的检测结果。
步骤405,若第二个单面模组的检测结果为不存在开路现象,则将第一个单体模与第二个单面模组压合在一起,以形成双层结构触摸屏。
具体而言,若第二个单面模组的检测结果为不存在开路现象,则说明该第二个单面模组为良品,可以用来制作双层结构触摸屏;继而,将不存开路现象的第一个单面模组与不存在开路现象的第二个单面模组压合在一起,压合后的位于两个单面模组上的TX通道与RX通道相互垂直,以形成双层结构触摸屏,双层结构触摸屏如图1所示。若第二个单面模组的检测结果为存在开路现 象,则需将该第二个单面模组拆下,重新提供另一个单面模组,并将重新提供的单面模组与触控芯片连接,按照步骤404的方式进行检测,直至得到一个不存开路现象的单面模组。
本实施例相对于现有技术而言,由于两个单面模组与触控芯片组装在一起后可以形成双层结构触摸屏,因此,将触控芯片连接于单面模组并利用触控芯片对单面模组进行检测,当单面模组的检测结果为不存在开路现象时,表示该单面模组合格,继续组装另一个单面模组并进行测试,只有在确保两个单面模组全部合格后才进行压合,因此可以在触摸屏组装过程中对感应模组进行检测,非常方便快捷;并能够确保形成的双层结构触摸屏不存在开路现象,减少了损耗。
本申请第五实施例涉及一种触控芯片,触控芯片连接于感应模组,具体为,触控芯片上延伸出来的FPC与感应模组压合在一起。请参考图10,触控芯片包括控制单元1、打码单元2、采样单元3以及分析单元4。
控制单元1用于对感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各感应通道的第一采样数据;其中,一条感应通道被采样时,其他感应通道均处于悬空状态。
控制单元1还用于以两个感应通道为一组,并对各组感应通道分别进行互容检测。互容检测包括,控制单元1用于控制打码单元2对每组感应通道中的一条感应通道进行打码,并控制采样单元3对另一条感应通道进行采样,以得到另一条感应通道的第二采样数据;其中,任意一条感应通道至少包含于其中一组感应通道中;
分析单元4用于对于存在第二采样数据的各感应通道,根据各感应通道 的第二采样数据和第一采样数据,得到感应模组是否存在开路现象的检测结果。
由于第一实施例与本实施例相互对应,因此本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,在第一实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
本实施例相对于现有技术而言,首先,控制感应模组中的所有感应通道处于悬空状态,并对各感应通道分别进行悬空采样得到各感应通道的第一采样数据;然后,以两个感应通道为一组,并对各组感应通道分别进行互容检测,从而得到了存在第二采样数据的各感应通道的第二采样数据;最后,根据各感应通道的第二采样数据和第一采样数据的差异量数据,得到该感应模组是否存在开路现象的检测结果。即,基于互容检测原理对感应模组进行检测,检测成本较低且简便易行;同时,能够应用于双层结构触摸屏中单个感应模组的检测,从而在双层结构触摸屏组装之前及时剔除存在开路现象的单个感应模组,减少后续耗损。
本申请第六实施例涉及一种触控芯片,本实施例是在第五实施例基础上的细化,主要细化之处在于:以相邻的两个感应通道作为一组。
本实施例中,控制单元1以相邻的两个感应通道作为一组,并对各组感应通道分别进行互容检测;以相邻的两个感应通道为一组,包括下面两种方案,具体如下:
方案一:以第i个感应通道和第i+1个感应通道为一组,并对各组感应通道分别进行互容检测;其中,各感应通道按照物理位置排列顺序依次编号, 且i=1、2、3、……、n-1,n为感应通道总数;以第i个感应通道和第i+1个感应通道作为一组,可以得到n-1组感应通道;其中,无论n为奇数或者偶数,均可以按照上述方式以第i个感应通道和第i+1个感应通道为一组。请参考图5,以感应模组为具有9条TX通道的单面模组为例,则可以得到八组感应通道,第一组感应通道:TX1、TX2,第二组感应通道:TX2、TX3,第三组感应通道:TX3、TX4,以此类推,可以得到八组感应通道;在互容检测时,除首尾两根感应通道,中间的各感应通道均进行两次检测,检测可靠性更高。
较佳的,控制芯片1对各组感应通道进行互容检测具体包括,控制打码单元2对每组感应通道中的前一条感应通道进行打码,并控制采样单元3对后一条感应通道进行采样,以得到后一条感应通道的第二采样数据;或者,控制单元1用于控制打码单元2对每组感应通道中的后一条感应通道进行打码,并控制采样单元3对前一条感应通道进行采样,以得到前一条感应通道的第二采样数据。请参考图5,以感应模组为具有9条TX通道的单面模组为例,按照上述方式进行打码采样,能够得到9条TX通道中的8条TX通道的第二采样数据,即,可以得到n条感应通道中的n-1条感应通道的第二采样数据,使得使得后续分析得到的检测结果更加可靠。
方案二:当感应模组包括的感应通道的总条数n为奇数时,所有感应通道中,仅有一条感应通道包含于两组感应通道中,其余感应通道都仅包含于其中一组感应通道中,可以得到(n-1)/2+1组感应通道,请参考图6,以感应模组为具有9条TX通道的单面模组为例,则该单面模组中的9条TX通道可以分为五组,第一组感应通道:TX1、TX2,第二组感应通道:TX3、TX4,第三组感应通道:TX5、TX6,第四组感应通道:TX7、TX8,第五组感应通道:TX8、 TX9;当感应模组包括的感应通道的总条数n为偶数时,任意一条感应通道仅包含于其中一组感应通道中,可以得到n/2组感应通道;请参考图7,以感应模组为具有8条TX通道的单面模组为例,则该单面模组中的8条TX通道可以分为四组,第一组感应通道:TX1、TX2,第二组感应通道:TX3、TX4,第三组感应通道:TX5、TX6,第四组感应通道:TX7、TX8;在互容检测时,当感应模组包括奇数条感应通道时,除了最后倒数第二根感应通道,其他感应通道只需进行单次检测;当感应模组包括偶数条感应通道时,各组感应通道只需进行单次检测,检测较为简单且速度较快。
由于第二实施例与本实施例相互对应,因此本实施例可与第二实施例互相配合实施。第二实施例中提到的相关技术细节在本实施例中依然有效,在第二实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第二实施例中。
本实施例相对于第五实施例而言,以相邻的两个感应通道作为一组,相邻感应通道之间距离较近,信噪比较高,检测结果更准确。
本申请第七实施例涉及一种触控芯片,本实施例是在第五实施例基础上的细化,主要细化之处在于:请参考图11,分析单元4包括数据处理子单元41、计算子单元42以及判断子单元43。
数据处理子单元41用于对于存在第二采样数据的每个感应通道,根据感应通道的第二采样数据得到感应通道的第二特征值,且根据感应通道的第一采样数据得到感应通道的第一特征值。
计算子单元42用于计算感应通道的第一特征值和感应通道的第二特征 值之间的差值,并将差值作为感应通道对应的检测值。
判断子单元43用于判断各感应通道对应的检测值中,是否存在至少一个感应通道对应的检测值小于感应通道所在组对应的预设阈值;若存在,则判定感应模组的检测结果为存在开路现象;若不存在,则判定感应模组的检测结果为不存在开路现象。
由于第三实施例与本实施例相互对应,因此本实施例可与第三实施例互相配合实施。第三实施例中提到的相关技术细节在本实施例中依然有效,在第三实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第三实施例中。
本实施例相对于第五实施例而言,提供了一种判断感应模组是否存在开路具体方法。需要说明的是,本实施例也可以作为第六实施例基础上的细化,可以达到同样的技术效果。
本申请第八实施例涉及一种双层结构触摸屏,包括第四至第七实施例中任一项的触控芯片,以及分别连接于触控芯片且压合在一起的两个单面模组。
本实施例中,压合在一起的两个单面模组为经过第一至第三实施例中任一项的感应模组的检测方法检测不存在开路现象的单面模组。
本实施例相对于现有技术而言,首先,控制感应模组中的所有感应通道处于悬空状态,并对各感应通道分别进行悬空采样得到各感应通道的第一采样数据;然后,以两个感应通道为一组,并对各组感应通道分别进行互容检测,从而得到了存在第二采样数据的各感应通道的第二采样数据;最后,根据各感应通道的第二采样数据和第一采样数据的差异量数据,得到该感应模组是否存 在开路现象的检测结果。即,基于互容检测原理对感应模组进行检测,检测成本较低且简便易行;同时,能够应用于双层结构触摸屏中单个感应模组的检测,从而在双层结构触摸屏组装之前及时剔除存在开路现象的单个感应模组,减少后续耗损。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (16)

  1. 一种感应模组的检测方法,其特征在于,包括:
    对所述感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各所述感应通道的第一采样数据;
    以两个所述感应通道为一组,并对各组感应通道分别进行互容检测,所述互容检测包括:对每组感应通道中的一条感应通道进行打码,并对另一条感应通道进行采样,以得到所述另一条感应通道的第二采样数据,其中,任意一条所述感应通道至少包含于其中一组感应通道中;
    对于存在第二采样数据的各所述感应通道,根据各所述感应通道的第二采样数据和第一采样数据,得到所述感应模组是否存在开路现象的检测结果。
  2. 如权利要求1所述的感应模组的检测方法,其特征在于,所述以两个所述感应通道为一组,并对各组感应通道分别进行互容检测包括:以相邻的两个所述感应通道为一组,并对各组感应通道分别进行互容检测。
  3. 如权利要求2所述的感应模组的检测方法,其特征在于,以相邻的两个所述感应通道为一组,并对各组感应通道分别进行互容检测包括:以第i个所述感应通道和第i+1个所述感应通道为一组,并对各组感应通道分别进行互容检测,其中,各所述感应通道按照排列顺序依次编号,且i=1、2、3、……、n-1,n为所述感应通道的总数。
  4. 如权利要求3所述的感应模组的检测方法,其特征在于,所述互容检测具体包括,对每组感应通道中的前一条感应通道进行打码,并对后一条感应通道进行采样,以得到后一条所述感应通道的第二采样数据;或者,
    对每组感应通道中的后一条感应通道进行打码,并对前一条感应通道进行采样,以得到前一条所述感应通道的第二采样数据。
  5. 如权利要求2所述的感应模组的检测方法,其特征在于,任意一条所述感应通道仅包含于其中一组感应通道中;或者,所有感应通道中,仅有一条感应通道包含于两组感应通道中,其余感应通道都仅包含于其中一组感应通道中。
  6. 如权利要求1所述的感应模组的检测方法,其特征在于,所述对于存在第二采样数据的各所述感应通道,根据各所述感应通道的第二采样数据和第一采样数据,得到所述感应模组是否存在开路现象的检测结果,包括:
    对于存在第二采样数据的每个所述感应通道,根据所述感应通道的第二采样数据得到所述感应通道的第二特征值,且根据所述感应通道的第一采样数据得到所述感应通道的第一特征值;
    计算所述感应通道的第一特征值和所述感应通道的第二特征值之间的差值,并将所述差值作为所述感应通道对应的检测值;
    判断各所述感应通道对应的检测值中,是否存在至少一个所述感应通道对应的检测值小于所述感应通道所在组对应的预设阈值;若存在,则判定所述感应模组的检测结果为存在开路现象;若不存在,则判定所述感应模组的检测结果为不存在开路现象。
  7. 如权利要求1所述的感应模组的检测方法,其特征在于,所述方法应用于触控芯片,所述感应模组连接于所述触控芯片。
  8. 如权利要求1至7中任一项所述的感应模组的检测方法,其特征在于,所述感应模组为双层结构的触摸屏中的单面模组。
  9. 一种触摸屏的组装方法,其特征在于,包括:
    提供用于组装成触摸屏的第一个单面模组,并将所述第一个单面模组连接至触控芯片;
    所述触控芯片根据权利要求8所述的检测方法,对所述第一个单面模组进行检测,并得到所述第一个单面模组是否存在开路的检测结果;
    若所述第一个单面模组的检测结果为不存在开路现象,则提供用于组装成所述双层结构触摸屏的第二个单面模组,并将所述第二个单面模组连接至所述触控芯片;
    所述触控芯片根据权利要求8所述的检测方法,对所述第二个单面模组进行检测,并得到所述第二个单面模组是否存在开路的检测结果;
    若所述第二个单面模组的检测结果为不存在开路现象,则将所述第一个单体模与所述第二个单面模组压合在一起,以形成双层结构的触摸屏。
  10. 一种触控芯片,其特征在于,所述触控芯片连接于感应模组,所述感应模组包括依次排列且互不相交的多条感应通道;所述触控芯片包括:控制单元、打码单元、采样单元以及分析单元;
    所述控制单元用于对所述感应模组所包含的多条互不相交的感应通道分别进行悬空采样,以得到各所述感应通道的第一采样数据;
    所述控制单元还用于以两个所述感应通道为一组,并对各组感应通道分别进行互容检测,所述互容检测包括,所述控制单元用于控制所述打码单元对每组感应通道中的一条感应通道进行打码,并控制所述采样单元对另一条感应通道进行采样,以得到所述另一条感应通道的第二采样数据;其中,任意一条所述感应通道至少包含于其中一组感应通道中;
    所述分析单元用于对于存在第二采样数据的各所述感应通道,根据各所述感应通道的第二采样数据和第一采样数据,得到所述感应模组是否存在开路现象的检测结果。
  11. 如权利要求10所述的触控芯片,其特征在于,所述控制单元具体用于以相邻的两个所述感应通道为一组,并对各组感应通道分别进行互容检测。
  12. 如权利要求11所述的触控芯片,其特征在于,所述控制单元具体用于以第i个所述感应通道和第i+1个所述感应通道为一组,并对各组感应通道分别进行互容检测;其中,各所述感应通道按照排列顺序依次编号,且i=1、2、3、……、n-1,n为所述感应通道的总数。
  13. 如权利要求11所述的触控芯片,其特征在于,任意一条所述感应通道仅包含于其中一组感应通道中;或者,所有感应通道中,仅有一条感应通道包含于两组感应通道中,其余感应通道都仅包含于其中一组感应通道中。
  14. 如权利要求12所述的触控芯片,其特征在于,所述互容检测具体包括,所述控制单元用于控制所述打码单元对每组感应通道中的前一条感应通道进行打码,并控制所述采样单元对后一条感应通道进行采样,以得到后一条所述感应通道的第二采样数据;或者,
    所述控制单元用于控制所述打码单元对每组感应通道中的后一条感应通道进行打码,并控制所述采样单元对前一条感应通道进行采样,以得到前一条所述感应通道的第二采样数据。
  15. 如权利要求10所述的触控芯片,其特征在于,所述分析单元包括:
    数据处理子单元,用于对于存在第二采样数据的每个所述感应通道,根据所述感应通道的第二采样数据得到所述感应通道的第二特征值,且根据所述感应通道的第一采样数据得到所述感应通道的第一特征值;
    计算子单元,用于计算所述感应通道的第一特征值和所述感应通道的第二特征值之间的差值,并将所述差值其作为所述感应通道对应的检测值;
    判断子单元,用于判断各所述感应通道对应的检测值中,是否存在至少一个所述感应通道对应的检测值小于所述感应通道所在组对应的预设阈值;若存在,则判定所述感应模组的检测结果为存在开路现象;若不存在,则判定所述感应模组的检测结果为不存在开路现象。
  16. 一种触摸屏,其特征在于,包括:权利要求10至15任一项所述的触控芯片,以及分别连接于所述触控芯片且压合在一起的两个单面模组。
PCT/CN2018/078977 2018-03-14 2018-03-14 感应模组的检测方法、触控芯片、触摸屏及其组装方法 WO2019173987A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880000287.4A CN110678766B (zh) 2018-03-14 2018-03-14 感应模组的检测方法、触控芯片、触摸屏及其组装方法
PCT/CN2018/078977 WO2019173987A1 (zh) 2018-03-14 2018-03-14 感应模组的检测方法、触控芯片、触摸屏及其组装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078977 WO2019173987A1 (zh) 2018-03-14 2018-03-14 感应模组的检测方法、触控芯片、触摸屏及其组装方法

Publications (1)

Publication Number Publication Date
WO2019173987A1 true WO2019173987A1 (zh) 2019-09-19

Family

ID=67907467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078977 WO2019173987A1 (zh) 2018-03-14 2018-03-14 感应模组的检测方法、触控芯片、触摸屏及其组装方法

Country Status (2)

Country Link
CN (1) CN110678766B (zh)
WO (1) WO2019173987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363083A (zh) * 2020-11-25 2021-02-12 烟台正海科技股份有限公司 一种电容触摸屏传感器电路检测板及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278789A (zh) * 2015-12-11 2016-01-27 广州中国科学院先进技术研究所 一种大尺寸电容触控面板及处理方法
CN105676053A (zh) * 2016-02-23 2016-06-15 上海芯什达电子技术有限公司 一种触摸屏缺陷检测系统
CN205983421U (zh) * 2016-05-20 2017-02-22 深圳市汇顶科技股份有限公司 一种触摸屏感测图案及电容式触摸传感器
CN106775081A (zh) * 2016-12-13 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示面板及压力感应显示装置
WO2017214789A1 (zh) * 2016-06-13 2017-12-21 深圳市汇顶科技股份有限公司 一种压力检测系统、模组及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7920134B2 (en) * 2007-06-13 2011-04-05 Apple Inc. Periodic sensor autocalibration and emulation by varying stimulus level
TWI433016B (zh) * 2010-04-30 2014-04-01 Elan Microelectronics Corp The capacitive touch panel sensing unit, and a sensing circuit sensing method
CN202422046U (zh) * 2011-07-26 2012-09-05 比亚迪股份有限公司 感应单元、触摸屏检测装置及触控装置
CN102830882B (zh) * 2012-09-04 2015-05-13 北京集创北方科技有限公司 一种电容触摸屏触摸检测电路
CN103926496B (zh) * 2013-01-10 2017-07-28 上海东软载波微电子有限公司 触摸屏模组的测试装置和方法以及触摸屏模组
CN103969538B (zh) * 2013-01-24 2016-11-16 上海天马微电子有限公司 内嵌式触摸屏的电测试方法
CN103345436B (zh) * 2013-06-14 2017-11-07 业成光电(深圳)有限公司 检测电路及检测方法
CN103376971A (zh) * 2013-06-28 2013-10-30 敦泰科技有限公司 基于电容式触摸屏的近距离感应方法和装置以及通信终端
KR102084543B1 (ko) * 2013-09-25 2020-03-04 엘지디스플레이 주식회사 터치 스크린 구동 장치
CN103631464A (zh) * 2013-10-28 2014-03-12 业成光电(深圳)有限公司 触摸屏模组及触摸检测方法
CN203643994U (zh) * 2013-11-20 2014-06-11 敦泰科技有限公司 单层电容式触摸屏
CN106680643B (zh) * 2016-12-30 2020-06-09 武汉华星光电技术有限公司 Incell自容模组面板的检测方法
WO2018145299A1 (zh) * 2017-02-10 2018-08-16 深圳市汇顶科技股份有限公司 压力检测方法及其装置以及电子终端
CN107037928B (zh) * 2017-04-27 2019-11-05 厦门天马微电子有限公司 一种触控面板及其测试方法
CN107086242A (zh) * 2017-06-26 2017-08-22 信利光电股份有限公司 一种阵列基板、触控显示面板以及驱动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105278789A (zh) * 2015-12-11 2016-01-27 广州中国科学院先进技术研究所 一种大尺寸电容触控面板及处理方法
CN105676053A (zh) * 2016-02-23 2016-06-15 上海芯什达电子技术有限公司 一种触摸屏缺陷检测系统
CN205983421U (zh) * 2016-05-20 2017-02-22 深圳市汇顶科技股份有限公司 一种触摸屏感测图案及电容式触摸传感器
WO2017214789A1 (zh) * 2016-06-13 2017-12-21 深圳市汇顶科技股份有限公司 一种压力检测系统、模组及方法
CN106775081A (zh) * 2016-12-13 2017-05-31 上海天马有机发光显示技术有限公司 有机发光显示面板及压力感应显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112363083A (zh) * 2020-11-25 2021-02-12 烟台正海科技股份有限公司 一种电容触摸屏传感器电路检测板及其检测方法

Also Published As

Publication number Publication date
CN110678766A (zh) 2020-01-10
CN110678766B (zh) 2021-10-26

Similar Documents

Publication Publication Date Title
TWI506513B (zh) 使用單一接腳量測自身電容之方法及裝置
CN102043508B (zh) 信号量测的方法与装置
KR101837879B1 (ko) 자기 용량 터치 감지 회로
US10268324B2 (en) Peak detection schemes for touch position detection
US8766938B2 (en) Signal processing method of a touch panel
US9563319B2 (en) Capacitive sensing without a baseline
US11209927B2 (en) Apparatus for sensing user input
CN105045437A (zh) 一种触控感测电极、触控感测方法及设备
KR20150026504A (ko) 터치 센서를 갖는 전자장치와 이의 구동 방법
US20140152612A1 (en) Touch system and method of determining low-noise frequency of the same
TW201118686A (en) Method and device for dual-differential sensing
CN209562594U (zh) 智能设备按键控制装置
US20150029134A1 (en) Driving and sensing method for single-layer mutual capacitive multi-touch screen
WO2015154570A1 (zh) 触摸屏感应方法和装置
WO2019173987A1 (zh) 感应模组的检测方法、触控芯片、触摸屏及其组装方法
US8942951B2 (en) Touch device and detection method thereof
WO2012161843A2 (en) System and method for determining user input and interference on an input device
WO2016106148A1 (en) Method and system for dual node sensing
CN206441136U (zh) 一种触控显示基板、触控显示面板及触控显示装置
CN104185832A (zh) 触摸屏系统
TWI470496B (zh) 觸控面板之觸點座標的取樣方法
KR101486493B1 (ko) 자기 커패시턴스 감지 및 상호 커패시턴스 감지를 혼용하는 터치 감지 장치 및 그 방법
US20140145965A1 (en) Touch device and driving method of touch panel thereof
CN111587415A (zh) 触摸检测方法、触控芯片及电子设备
CN102043509B (zh) 分析位置的方法与装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909730

Country of ref document: EP

Kind code of ref document: A1