WO2019172328A1 - Bearing vibration damping device - Google Patents

Bearing vibration damping device Download PDF

Info

Publication number
WO2019172328A1
WO2019172328A1 PCT/JP2019/008919 JP2019008919W WO2019172328A1 WO 2019172328 A1 WO2019172328 A1 WO 2019172328A1 JP 2019008919 W JP2019008919 W JP 2019008919W WO 2019172328 A1 WO2019172328 A1 WO 2019172328A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical particles
vibration damping
bearing
damping device
housing
Prior art date
Application number
PCT/JP2019/008919
Other languages
French (fr)
Japanese (ja)
Inventor
智也 中村
奈央 林
聡 川崎
満 島垣
Original Assignee
Ntn株式会社
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 国立研究開発法人宇宙航空研究開発機構 filed Critical Ntn株式会社
Publication of WO2019172328A1 publication Critical patent/WO2019172328A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/06Elastic or yielding bearings or bearing supports, for exclusively rotary movement by means of parts of rubber or like materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/01Vibration-dampers; Shock-absorbers using friction between loose particles, e.g. sand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/02Vibration-dampers; Shock-absorbers with relatively-rotatable friction surfaces that are pressed together
    • F16F7/04Vibration-dampers; Shock-absorbers with relatively-rotatable friction surfaces that are pressed together in the direction of the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces

Definitions

  • the present invention relates to a vibration damping device for a bearing that suppresses vibrations of a bearing that supports a high-speed rotating shaft such as a rocket engine turbo pump.
  • shaft vibration such as forced vibration and self-excited vibration at dangerous speeds is often a problem.
  • Jet engines and the like employ a squeeze film damper that obtains a vibration damping effect using the viscosity of a lubricating oil as a vibration damping device for a rotating shaft.
  • a vibration damping device for a high-speed rotation shaft such as a rocket engine turbo pump
  • a ring-shaped wire mesh is disposed between the rotation shaft and the equipment housing, and the force generated by the vibration of the rotation shaft
  • a vibration damping device called a wire mesh damper which deforms a ring-shaped wire mesh and dissipates vibration energy by friction generated between the wires to attenuate the vibration of the rotating shaft, was introduced in Patent Document 1. ing.
  • Non-Patent Document 1 introduces the use of spherical particles as a damper element as a vibration damping device for devices operating at extremely low temperatures and oil-free devices, similar to wire mesh dampers.
  • the vibration damping device using spherical particles as a damper element introduced in Non-Patent Document 1 generally has the following structure shown in FIG.
  • a vibration damping device 21 using spherical particles 20 as a damper element shown in FIG. 5 includes a device housing 24 of a rotating machine arranged on the outer surface of a bearing 23 that supports a rotating shaft 22 in the rotating machine, and the device.
  • An inner cylinder 25 that is disposed between the inner peripheral surface of the housing 24 and the outer surface of the bearing 23 and can be displaced in the radial direction with respect to the device housing 24, and the outer peripheral surface of the inner tube 25 and the inner periphery of the device housing 24
  • a storage space 26 provided between the surface and filled with the spherical particles 20 that generate a damping action by vibration friction, and the storage space 26 disposed at the end in the axial direction of the storage space 26 is filled.
  • a preload ring 27 for applying a preload in the axial direction to the spherical particles 20.
  • the vibration damping device 21 using the spherical particles 20 as a damper element, when radial axial vibration is generated on the rotary shaft 22 of the rotary machine, a radial displacement is generated in the inner cylinder 25 via the bearing 23, and the displacement is caused by the displacement.
  • the spherical particles 20 in the housing space 26 flow, and this flow causes friction between the spherical particles 20, between the spherical particles 20 and the inner cylinder 25, and between the spherical particles 20 and the equipment housing 24. Vibration energy is dissipated by this, and it acts as a damper.
  • the parameters that are considered to affect the characteristics include the particle diameter of the spherical particle 20, the outer diameter of the inner cylinder 25, the inner diameter of the device housing 24, the length of the accommodating space 26, and the preload.
  • the preload by the ring 27, the particle material of the spherical particles 20, the coefficient of friction between the spherical particles 20, and the equipment (controlled by the surface material), these can be industrially controlled and compared to the wire mesh damper Therefore, improvement of quality stability can be expected.
  • the vibration damping device 21 using the spherical particles 20 as a damper element when used in a cryogenic environment, the friction surface is prevented from sticking due to freezing of water existing in the storage space 26 filled with the spherical particles 20. Without this, a sufficient damper function cannot be maintained.
  • the present invention can be used even in a cryogenic environment by preventing wear powder from flowing out of the storage space filled with spherical particles to the outside, and preventing freezing of moisture in the storage space. It is an object of the present invention to obtain a vibration damping device using a spherical particle as a damper element.
  • the present invention provides a device housing disposed at an interval on an outer surface of a bearing that supports a rotating shaft in a rotating machine, an inner peripheral surface of the device housing, and an outer surface of the bearing.
  • An inner cylinder that is disposed with a gap therebetween and is radially displaceable with respect to the device housing, and vibration friction that is provided between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the device housing.
  • the wear particles of the spherical particles are removed from gaps provided between the inner peripheral surface of the device housing and the outer peripheral surface of the inner cylinder on both sides in the axial direction of the storage space filled with the spherical particles. Dust resistant to prevent outflow Characterized in that a Lumpur.
  • an air vent channel that connects the inside of the housing space and the external environment is provided in the device housing.
  • air vent channel air inside the accommodation space is discharged to the outside environment, and cryogenic gas or cryogenic liquid flows into the accommodation space from the outside environment.
  • air can be replaced with a cryogenic gas or a cryogenic liquid, and the movement between particles is prevented from being suppressed due to the solidification of moisture contained in the air present in the storage space. Attenuation characteristics can be obtained by generating particle movement even in a low temperature environment.
  • the material forming the dust-proof filter is preferably a nonwoven fabric made of meta-type wholly aromatic polyamide or polytetrafluoroethylene (PTFE).
  • the non-woven fabric can prevent the wear particles of the spherical particles from flowing out, and the air inside the housing space is released to the external environment while the dust-proof filter is installed in the air vent flow path.
  • the cryogenic gas or the cryogenic liquid can flow into the housing space.
  • the material forming the dust-proof filter can be a porous sintered metal using austenitic stainless steel such as SUS304 or SUS316.
  • austenitic stainless steel such as SUS304 or SUS316.
  • the shape and size of the mesh can be selected in accordance with the shape of the foreign material by austenitic stainless steel.
  • the spherical particles may be made of SUS440C or Si3N4, and may be of the same size or a combination of different sizes.
  • the space between the outer peripheral surface of the inner cylinder that forms the accommodating space filled with the spherical particles that generate the damping action by vibration friction and the inner peripheral surface of the equipment housing is filled by installing dust-proof seals on both sides in the axial direction of the storage space for filling the spherical particles. It is possible to prevent the wear powder generated by the friction of the spherical particles from leaking to the outside environment.
  • both ends of the housing space in the axial direction are sealed with a dust-proof seal as described above, air can not be ventilated between the spherical particles filled in the housing space, so that the interior of the housing space is connected to the external environment.
  • the air vent flow path in the equipment housing, in the case of equipment used at cryogenic temperatures, use the air vent flow path to move the air in the housing space to hydrogen gas or Since it can be replaced with oxygen gas, it is possible to prevent the moisture contained in the air in the storage space filled with the spherical particles from freezing.
  • FIG. 1 It is a schematic sectional drawing which shows embodiment of the vibration damping device which used the spherical particle which concerns on this invention as the damper element. It is an enlarged view of the accommodation space part with which the spherical particle
  • the rotary shaft 2 in the rotary machine of this embodiment is rotatably supported on the inner peripheral surface of a cylindrical device housing 3 via an inner cylinder 4 and a bearing 5.
  • a rolling bearing including an inner ring 5a, an outer ring 5b, and a rolling element 5c accommodated between the inner ring 5a and the outer ring 5b is used.
  • a storage space 7 for storing spherical particles 6 that are damper elements is provided.
  • nickel alloy As a material for forming the device housing 3 and the inner cylinder 4, nickel alloy, SUS304, SUS304L, SUS316, SUS16L, SUS316LN, or the like can be used.
  • the inner cylinder 4 At one end in the axial direction of the inner cylinder 4, the inner cylinder 4 is supported so as to be displaceable in the radial direction with respect to the equipment housing 3, and the inner cylinder is supported elastically so as to match the axis of the equipment housing 3.
  • the springs 8 are provided at equal intervals in the circumferential direction.
  • the inner cylinder supporting spring 8 includes a protruding piece 8a extending outward in the axial direction of the device housing 3, and a radially outer diameter side from the outer end of the protruding piece 8a.
  • the bent piece 8b is formed into a U-shape composed of a bent piece 8b and a folded piece 8c folded in the axial direction from the outer diameter end of the bent piece 8b. Is engaged.
  • An inward flange 3 a that forms one end surface of the accommodation space 7 is formed at one end of the inner peripheral surface of the device housing 3. Between the inner peripheral surface of the inward flange 3 a and the outer peripheral surface of the inner cylinder 4. Is provided with a gap a that allows the inner cylinder 4 to be displaced in the radial direction.
  • the gap a is set to a size that prevents the spherical particles 6 that are damper elements from leaking out.
  • a fixing flange 3b protruding toward the outer diameter in the radial direction is formed on the outer peripheral surface opposite to the outer peripheral surface of the device housing 3 with which the inner cylinder supporting spring 8 is engaged.
  • a ring plate 9 forming the other end face of the accommodation space 7 is fixed by a bolt 10.
  • a pair of fixing rings 11a and 11b that do not move in the axial direction are disposed at both ends of the housing space 7 in the axial direction.
  • a gap b that enables displacement of the inner cylinder 4 in the radial direction, and this gap b is a damper element. Is set to a size that prevents the spherical particles 6 from leaking out.
  • a preloading ring 13b is provided on the housing space 7 side of one of the pair of fixing rings 11a and 11b via a preloading spring 13a so as to be movable in the axial direction.
  • a gap c that allows the inner cylinder 4 to be displaced in the radial direction.
  • the gap c is a spherical particle that is a damper element. 6 is set to a size that does not leak.
  • the storage space 7 is filled with spherical particles 6.
  • spherical particle 6 for example, a steel ball (SUS440C) or a ceramic ball (Si3N4) having a particle diameter of about 1 mm can be used.
  • the spherical particles 6 may all be the same size or may be a combination of different sizes.
  • the dust-proof seals 12a and 12b have low rigidity so that the radial displacement of the inner cylinder 4 is not hindered, and have an initial interference that does not cause a gap even if the radial displacement of the inner cylinder 4 occurs. doing.
  • the rocket engine turbo pump is a rotary machine that pumps a propellant to the combustor, and mainly uses liquid oxygen and liquid hydrogen as the propellant, so that the vicinity of the bearing 5 of the rotating shaft 2 is in a cryogenic environment. .
  • the air in the accommodation space 7 is prevented from freezing before the water is contained in the accommodation space 7 filled with the spherical particles 6 before the cryogenic environment.
  • a propellant gas for example, hydrogen gas or oxygen gas
  • an air vent channel 14 that connects the inside of the housing space 7 and the external environment is provided between the device housing 3 and the ring plate 9.
  • a dust-proof filter 15 is installed at the outlet of the air vent channel 14.
  • the exciting force causes the inner cylinder 4 to change in the radial direction through the bearing 5 as shown by the arrow X2. Due to the fluctuation of the inner cylinder 4, the spherical particles 6 filled in the accommodation space 7 between the inner cylinder 4 and the device housing 3 flow, and the spherical particles 6, the spherical particles 6 and the inner cylinder 4, and the spherical particles 6. And the device housing 3, friction is generated, and the frictional energy is dissipated by the friction to attenuate the vibration.
  • Vibration damping device 2 Rotating shaft 3: Equipment housing 4: Inner cylinder 5: Bearing 6: Spherical particle 7: Accommodating space 8: Spring for supporting inner cylinder 9: Ring plate 10: Bolts 11a and 11b: Fixed ring 12a, 12b: Dust resistant seal 13a: Preload spring 13b: Preload ring 14: Air vent flow path 15: Dust resistant filter

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Support Of The Bearing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Gasket Seals (AREA)
  • Vibration Dampers (AREA)

Abstract

The present invention addresses the problem of preventing an external flow of worn powder from an accommodating space filled with spherical particles in a vibration damping device using the spherical particles as a damper element. This bearing vibration damping device is characterized by: an inner cylinder (4) that can be displaced in a radial direction with respect to an apparatus housing (3); and anti-powder dust seals (12a)(12b) which, in order to prevent a flow of worn powder from an accommodating space (7) provided between an outer peripheral surface of the inner cylinder (4) and an inner peripheral surface of the apparatus housing (3) and filled with spherical particles (6) for producing an anti-vibration action using vibrational friction, are disposed on both sides in an axial direction of the accommodating space (7) filled with the spherical particles (6).

Description

軸受の振動減衰装置Vibration damping device for bearing
 この発明は、ロケットエンジンターボポンプなどの高速回転軸を支持する軸受の振動を抑制する軸受の振動減衰装置に関するものである。 The present invention relates to a vibration damping device for a bearing that suppresses vibrations of a bearing that supports a high-speed rotating shaft such as a rocket engine turbo pump.
 ロケットエンジンターボポンプなどの高速回転軸では、危険速度での強制振動や自励振動など、軸振動が問題になることが多い。 高速 In high-speed rotating shafts such as rocket engine turbo pumps, shaft vibration such as forced vibration and self-excited vibration at dangerous speeds is often a problem.
 ジェットエンジンなどでは、回転軸の振動減衰装置として、スクイーズフィルムダンパという、潤滑油の粘性を用いて振動減衰効果を得るものが採用されている。 Jet engines and the like employ a squeeze film damper that obtains a vibration damping effect using the viscosity of a lubricating oil as a vibration damping device for a rotating shaft.
 しかしながら、オイルレス機器や、極低温下で運転されるロケットエンジンターボポンプなどでは、潤滑油を用いることができない。 However, lubricating oil cannot be used in oilless equipment or rocket engine turbo pumps operated at extremely low temperatures.
 このため、従来、ロケットエンジンターボポンプなどの高速回転軸の振動減衰装置として、回転軸と、機器ハウジングとの間に、リング状のワイヤーメッシュを配置し、回転軸の振動によって生じた力により、リング状のワイヤーメッシュを変形させて、ワイヤー間で生じる摩擦により、振動エネルギーを散逸させて、回転軸の振動を減衰させるワイヤーメッシュダンパと呼ばれている振動減衰装置が、特許文献1に紹介されている。 For this reason, conventionally, as a vibration damping device for a high-speed rotation shaft such as a rocket engine turbo pump, a ring-shaped wire mesh is disposed between the rotation shaft and the equipment housing, and the force generated by the vibration of the rotation shaft A vibration damping device called a wire mesh damper, which deforms a ring-shaped wire mesh and dissipates vibration energy by friction generated between the wires to attenuate the vibration of the rotating shaft, was introduced in Patent Document 1. ing.
 この特許文献1に紹介されているワイヤーメッシュダンパは、回転軸に減衰力を直接作用させることはできるものの、ワイヤーメッシュをリング状に圧縮させて減衰作用を得るため、装置ごとにワイヤーメッシュの配置や形状が異なり易く、減衰性能にばらつきが生じるという問題がある。
 ところで、非特許文献1には、ワイヤーメッシュダンパと同様、極低温下で作動する機器やオイルフリー機器を対象とした振動減衰装置として、球状粒子をダンパ要素にすることが紹介されている。
Although the wire mesh damper introduced in this Patent Document 1 can directly apply a damping force to the rotating shaft, the wire mesh is arranged in a ring shape to obtain a damping action, so that the wire mesh is arranged for each device. There is a problem that the shape is easily different and the attenuation performance varies.
By the way, Non-Patent Document 1 introduces the use of spherical particles as a damper element as a vibration damping device for devices operating at extremely low temperatures and oil-free devices, similar to wire mesh dampers.
 この非特許文献1に紹介されている球状粒子をダンパ要素にした振動減衰装置は、概ね、図5に示す次のような構造である。 The vibration damping device using spherical particles as a damper element introduced in Non-Patent Document 1 generally has the following structure shown in FIG.
 図5に示す球状粒子20をダンパ要素にした振動減衰装置21は、回転機械における回転軸22を支持する軸受23の外面に、間隔をあけて配置される回転機械の機器ハウジング24と、この機器ハウジング24の内周面と軸受23の外面との間に配置された、機器ハウジング24に対して半径方向に変位可能な内筒25と、この内筒25の外周面と機器ハウジング24の内周面との間に設けられた、振動摩擦により制振作用を生じる球状粒子20を充填した収容空間26と、この収容空間26の軸方向の端部に配置された、収容空間26内に充填された球状粒子20に対して軸方向の予圧を与える予圧リング27とを備えている。 A vibration damping device 21 using spherical particles 20 as a damper element shown in FIG. 5 includes a device housing 24 of a rotating machine arranged on the outer surface of a bearing 23 that supports a rotating shaft 22 in the rotating machine, and the device. An inner cylinder 25 that is disposed between the inner peripheral surface of the housing 24 and the outer surface of the bearing 23 and can be displaced in the radial direction with respect to the device housing 24, and the outer peripheral surface of the inner tube 25 and the inner periphery of the device housing 24 A storage space 26 provided between the surface and filled with the spherical particles 20 that generate a damping action by vibration friction, and the storage space 26 disposed at the end in the axial direction of the storage space 26 is filled. And a preload ring 27 for applying a preload in the axial direction to the spherical particles 20.
 この球状粒子20をダンパ要素にした振動減衰装置21は、回転機械における回転軸22にラジアル方向の軸振動が発生すると、軸受23を介して内筒25に半径方向の変位が生じ、その変位によって収容空間26内の球状粒子20が流動し、この流動により、球状粒子20どうし、球状粒子20と内筒25との間、球状粒子20と機器ハウジング24との間で摩擦が発生し、この摩擦によって振動エネルギーが散逸し、ダンパとしての役割を果たす。 In the vibration damping device 21 using the spherical particles 20 as a damper element, when radial axial vibration is generated on the rotary shaft 22 of the rotary machine, a radial displacement is generated in the inner cylinder 25 via the bearing 23, and the displacement is caused by the displacement. The spherical particles 20 in the housing space 26 flow, and this flow causes friction between the spherical particles 20, between the spherical particles 20 and the inner cylinder 25, and between the spherical particles 20 and the equipment housing 24. Vibration energy is dissipated by this, and it acts as a damper.
 球状粒子20をダンパ要素にした場合、その特性に影響を及ぼすと考えられるパラメータは、球状粒子20の粒子直径、内筒25の外径、機器ハウジング24の内径、収容空間26の長さ、予圧リング27による予荷重、球状粒子20の粒子材料、球状粒子20どうし、および機器との摩擦係数(表面材質で管理)であり、これらは工業的に特性管理が可能であり、ワイヤーメッシュダンパに比べて品質安定性の向上が期待できる。 When the spherical particle 20 is used as a damper element, the parameters that are considered to affect the characteristics include the particle diameter of the spherical particle 20, the outer diameter of the inner cylinder 25, the inner diameter of the device housing 24, the length of the accommodating space 26, and the preload. The preload by the ring 27, the particle material of the spherical particles 20, the coefficient of friction between the spherical particles 20, and the equipment (controlled by the surface material), these can be industrially controlled and compared to the wire mesh damper Therefore, improvement of quality stability can be expected.
特開平3-41211号公報Japanese Patent Laid-Open No. 3-42111
 ところで、非特許文献1で紹介されている球状粒子20をダンパ要素にした振動減衰装置21の実用化を考えた場合、球状粒子20どうしの衝突、球状粒子20と内筒25との間の衝突、あるいは球状粒子20と機器ハウジング24との間での衝突によって生じる摩耗粉による周辺機器への汚染対策が必要となる。 By the way, when the practical application of the vibration damping device 21 using the spherical particle 20 introduced in Non-Patent Document 1 as a damper element is considered, the collision between the spherical particles 20, the collision between the spherical particles 20 and the inner cylinder 25. Alternatively, it is necessary to take measures against contamination of peripheral equipment due to wear powder generated by collision between the spherical particles 20 and the equipment housing 24.
 また、球状粒子20をダンパ要素にした振動減衰装置21を極低温環境下で使用する場合には、球状粒子20を充填した収容空間26内に存在する水分の凍結による摩擦面の固着を防止しなければ、十分なダンパ機能を維持できない。 Further, when the vibration damping device 21 using the spherical particles 20 as a damper element is used in a cryogenic environment, the friction surface is prevented from sticking due to freezing of water existing in the storage space 26 filled with the spherical particles 20. Without this, a sufficient damper function cannot be maintained.
 そこで、この発明は、球状粒子を充填した収容空間から外部への摩耗粉の流出を防止し、また、収容空間内での水分の凍結を防止することにより、極低温環境下でも使用することができる球状粒子をダンパ要素にした振動減衰装置を得ることを課題とするものである。 Therefore, the present invention can be used even in a cryogenic environment by preventing wear powder from flowing out of the storage space filled with spherical particles to the outside, and preventing freezing of moisture in the storage space. It is an object of the present invention to obtain a vibration damping device using a spherical particle as a damper element.
 前記の課題を解決するために、この発明は、回転機械における回転軸を支持する軸受の外面に、間隔をあけて配置される機器ハウジングと、この機器ハウジングの内周面と軸受の外面との間に隙間をあけて配置された、機器ハウジングに対して半径方向に変位可能な内筒と、この内筒の外周面と機器ハウジングの内周面との間に設けられた、振動摩擦により制振作用を生じる球状粒子を充填する収容空間と、この収容空間の軸方向の側方に配置された、収容空間内に充填された球状粒子に対して軸方向の予圧を与える予圧リングとを備える軸受の振動減衰装置において、前記球状粒子を充填する収容空間の軸方向の両側に、機器ハウジングの内周面と内筒の外周面との間に設けられた隙間から前記球状粒子の摩耗粉の流出を防止する耐粉塵シールを設けたことを特徴とする。 In order to solve the above-described problems, the present invention provides a device housing disposed at an interval on an outer surface of a bearing that supports a rotating shaft in a rotating machine, an inner peripheral surface of the device housing, and an outer surface of the bearing. An inner cylinder that is disposed with a gap therebetween and is radially displaceable with respect to the device housing, and vibration friction that is provided between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the device housing. A storage space filled with spherical particles that generate a vibration action, and a preload ring that is disposed on the side of the storage space in the axial direction and applies axial preload to the spherical particles filled in the storage space. In the vibration damping device for a bearing, the wear particles of the spherical particles are removed from gaps provided between the inner peripheral surface of the device housing and the outer peripheral surface of the inner cylinder on both sides in the axial direction of the storage space filled with the spherical particles. Dust resistant to prevent outflow Characterized in that a Lumpur.
 また、前記収容空間の内部と外部環境とを繋ぐ空気抜き用流路を機器ハウジングに設けておくことが好ましい。
 前記空気抜き用流路により、前記収容空間内部の空気を外部環境に放出し、外部環境から前記収容空間内部に極低温気体または極低温液体と流入させる。これにより、空気と極低温気体または極低温液体と置換することができ、前記収容空間の内部に存在する空気に含まれる水分の凝固により、粒子間の動きが抑制されることを防止し、極低温環境でも粒子の動きを発生させ、減衰特性を得ることができる。
In addition, it is preferable that an air vent channel that connects the inside of the housing space and the external environment is provided in the device housing.
By the air vent channel, air inside the accommodation space is discharged to the outside environment, and cryogenic gas or cryogenic liquid flows into the accommodation space from the outside environment. As a result, air can be replaced with a cryogenic gas or a cryogenic liquid, and the movement between particles is prevented from being suppressed due to the solidification of moisture contained in the air present in the storage space. Attenuation characteristics can be obtained by generating particle movement even in a low temperature environment.
 この空気抜き用流路に耐粉塵フィルタを設置しておくことが好ましい。
 前記耐粉塵フィルタを形成する材質としては、メタ型全芳香族ポリアミドまたはポリテトラフルオロエチレン(PTFE)からなる不織布とすることが好ましい。前記不織布により前記球状粒子の摩耗粉の流出防止ができ、かつ、前記耐粉塵フィルタが前記空気抜き用流路に設置された状態のまま、前記収容空間内部の空気を外部環境に放出し、外部環境から前記収容空間内部に極低温気体または極低温液体と流入させることができる。
It is preferable to install a dust-proof filter in the air vent channel.
The material forming the dust-proof filter is preferably a nonwoven fabric made of meta-type wholly aromatic polyamide or polytetrafluoroethylene (PTFE). The non-woven fabric can prevent the wear particles of the spherical particles from flowing out, and the air inside the housing space is released to the external environment while the dust-proof filter is installed in the air vent flow path. The cryogenic gas or the cryogenic liquid can flow into the housing space.
 前記耐粉塵フィルタを形成する材質としては、SUS304、SUS316などのオーステナイト系ステンレスなどを用いた多孔質焼結金属とすることができる。オーステナイト系ステンレスにより異物の形状に合わせて、メッシュの形状および寸法を選択することができる。 The material forming the dust-proof filter can be a porous sintered metal using austenitic stainless steel such as SUS304 or SUS316. The shape and size of the mesh can be selected in accordance with the shape of the foreign material by austenitic stainless steel.
 前記球状粒子は、SUS440CまたはSi3N4からなるものを使用することができ、すべて同一サイズであるもの、または、異なるサイズのものを組み合わせて使用してもよい。 The spherical particles may be made of SUS440C or Si3N4, and may be of the same size or a combination of different sizes.
 以上のように、この発明に係る軸受の振動減衰装置では、振動摩擦により制振作用を生じる球状粒子を充填する収容空間を形成する内筒の外周面と、機器ハウジングの内周面との間には、内筒の半径方向の変位を可能にする隙間を設けなければならないので、球状粒子を充填する収容空間の軸方向の両側に、耐粉塵シールを設置することにより、収容空間に充填した球状粒子の摩擦によって発生する摩耗粉の外部環境への漏れだしを防止することができる。 As described above, in the vibration damping device for a bearing according to the present invention, the space between the outer peripheral surface of the inner cylinder that forms the accommodating space filled with the spherical particles that generate the damping action by vibration friction and the inner peripheral surface of the equipment housing. Since it is necessary to provide a gap that allows displacement of the inner cylinder in the radial direction, the storage space is filled by installing dust-proof seals on both sides in the axial direction of the storage space for filling the spherical particles. It is possible to prevent the wear powder generated by the friction of the spherical particles from leaking to the outside environment.
 前記収容空間の軸方向の両端を、前記のように、耐粉塵シールによって密封すると、前記収容空間内に充填された球状粒子間の空気抜きができないため、前記収容空間の内部と外部環境とを繋ぐ空気抜き用流路を機器ハウジングに設置することにより、極低温で使用される機器の場合、極低温環境にする前に、空気抜き用流路を使用して、収容空間内の空気を、水素ガスや酸素ガスに置換することができるので、球状粒子を充填した収容空間内の空気に含まれる水分の凍結を防止できる。 If both ends of the housing space in the axial direction are sealed with a dust-proof seal as described above, air can not be ventilated between the spherical particles filled in the housing space, so that the interior of the housing space is connected to the external environment. By installing the air vent flow path in the equipment housing, in the case of equipment used at cryogenic temperatures, use the air vent flow path to move the air in the housing space to hydrogen gas or Since it can be replaced with oxygen gas, it is possible to prevent the moisture contained in the air in the storage space filled with the spherical particles from freezing.
この発明に係る球状粒子をダンパ要素にした振動減衰装置の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment of the vibration damping device which used the spherical particle which concerns on this invention as the damper element. 図1の球状粒子を充填した収容空間部分の拡大図である。It is an enlarged view of the accommodation space part with which the spherical particle | grains of FIG. 1 were filled. 図1の振動減衰装置の機器ハウジングと内筒との関係を示す斜視図である。It is a perspective view which shows the relationship between the apparatus housing and inner cylinder of the vibration damping apparatus of FIG. 図1の振動減衰装置の空気抜き用流路に耐粉塵フィルタを設置した実施形態を示す概略断面図である。It is a schematic sectional drawing which shows embodiment which installed the dust-proof filter in the flow path for ventilation of the vibration damping device of FIG. 非特許文献1に紹介されている球状粒子をダンパ要素にした振動減衰装置の概略図である。It is the schematic of the vibration damping device which made the spherical particle introduced into the nonpatent literature 1 the damper element.
 以下、この発明に係る球状粒子をダンパ要素にした振動減衰装置1の第1の実施形態を添付図面に基づいて説明する。 Hereinafter, a first embodiment of a vibration damping device 1 using spherical particles as damper elements according to the present invention will be described with reference to the accompanying drawings.
 この実施形態の回転機械における回転軸2は、円筒形の機器ハウジング3の内周面に、内筒4と軸受5を介して回転可能に支持されている。この実施形態においては、軸受5として、内輪5aと、外輪5bと、内輪5aと外輪5bの間に収容される転動体5cとからなる転がり軸受を使用している。 The rotary shaft 2 in the rotary machine of this embodiment is rotatably supported on the inner peripheral surface of a cylindrical device housing 3 via an inner cylinder 4 and a bearing 5. In this embodiment, as the bearing 5, a rolling bearing including an inner ring 5a, an outer ring 5b, and a rolling element 5c accommodated between the inner ring 5a and the outer ring 5b is used.
 前記機器ハウジング3の内周面と内筒4の外周面との間には、ダンパ要素である球状粒子6を収容する収容空間7が設けられている。 Between the inner peripheral surface of the device housing 3 and the outer peripheral surface of the inner cylinder 4, a storage space 7 for storing spherical particles 6 that are damper elements is provided.
 前記機器ハウジング3および内筒4を形成する材質としては、ニッケル合金、SUS304、SUS304L、SUS316、SUS16L、SUS316LNなどを使用することができる。 As a material for forming the device housing 3 and the inner cylinder 4, nickel alloy, SUS304, SUS304L, SUS316, SUS16L, SUS316LN, or the like can be used.
 内筒4の軸方向の一端には、内筒4を機器ハウジング3に対して半径方向に変位可能に支持し、内筒4を機器ハウジング3の軸に一致させるように弾性支持する内筒支持用ばね8が周方向に等間隔で設けられている。 At one end in the axial direction of the inner cylinder 4, the inner cylinder 4 is supported so as to be displaceable in the radial direction with respect to the equipment housing 3, and the inner cylinder is supported elastically so as to match the axis of the equipment housing 3. The springs 8 are provided at equal intervals in the circumferential direction.
 内筒支持用ばね8は、図1および図3に示すように、機器ハウジング3の軸方向の外方に延びる突出片8aと、この突出片8aの外方端から半径方向の外径側に屈曲する屈曲片8bと、この屈曲片8bの外径端から軸方向に折り返された折返し片8cとからなるコ字形をしており、折返し片8cの端部が機器ハウジング3の外径部に係合している。 As shown in FIGS. 1 and 3, the inner cylinder supporting spring 8 includes a protruding piece 8a extending outward in the axial direction of the device housing 3, and a radially outer diameter side from the outer end of the protruding piece 8a. The bent piece 8b is formed into a U-shape composed of a bent piece 8b and a folded piece 8c folded in the axial direction from the outer diameter end of the bent piece 8b. Is engaged.
 機器ハウジング3の内周面の一端には、収容空間7の一方の端面を形成する内向きフランジ3aが形成され、この内向きフランジ3aの内周面と、内筒4の外周面との間には、内筒4の半径方向の変位を可能にする隙間aを設けており、この隙間aはダンパ要素である球状粒子6が漏れ出さない大きさに設定されている。 An inward flange 3 a that forms one end surface of the accommodation space 7 is formed at one end of the inner peripheral surface of the device housing 3. Between the inner peripheral surface of the inward flange 3 a and the outer peripheral surface of the inner cylinder 4. Is provided with a gap a that allows the inner cylinder 4 to be displaced in the radial direction. The gap a is set to a size that prevents the spherical particles 6 that are damper elements from leaking out.
 前記内筒支持用ばね8が係合する機器ハウジング3の外周面と反対側の外周面には、半径方向の外径に向かって突出する固定フランジ3bが形成され、この固定フランジ3bに、前記収容空間7の他方の端面を形成するリング板9がボルト10によって固定されている。 A fixing flange 3b protruding toward the outer diameter in the radial direction is formed on the outer peripheral surface opposite to the outer peripheral surface of the device housing 3 with which the inner cylinder supporting spring 8 is engaged. A ring plate 9 forming the other end face of the accommodation space 7 is fixed by a bolt 10.
 前記収容空間7の軸方向の両端には、軸方向に移動しない一対の固定リング11a、11bが配置されている。この一対の固定リング11a、11bの内周面と内筒4の外周面との間には、内筒4の半径方向の変位を可能にする隙間bを設けており、この隙間bはダンパ要素である球状粒子6が漏れ出さない大きさに設定されている。 A pair of fixing rings 11a and 11b that do not move in the axial direction are disposed at both ends of the housing space 7 in the axial direction. Between the inner peripheral surface of the pair of fixing rings 11a and 11b and the outer peripheral surface of the inner cylinder 4, there is provided a gap b that enables displacement of the inner cylinder 4 in the radial direction, and this gap b is a damper element. Is set to a size that prevents the spherical particles 6 from leaking out.
 この一対の固定リング11a、11bの一方の固定リング11bの前記収容空間7側には、予圧用ばね13aを介して予圧リング13bが軸方向に移動可能に設けられている。この予圧リング13bの内周面と内筒4の外周面との間にも、内筒4の半径方向の変位を可能にする隙間cを設けており、この隙間cはダンパ要素である球状粒子6が漏れ出さない大きさに設定されている。 A preloading ring 13b is provided on the housing space 7 side of one of the pair of fixing rings 11a and 11b via a preloading spring 13a so as to be movable in the axial direction. Between the inner peripheral surface of the preload ring 13b and the outer peripheral surface of the inner cylinder 4, there is provided a gap c that allows the inner cylinder 4 to be displaced in the radial direction. The gap c is a spherical particle that is a damper element. 6 is set to a size that does not leak.
 前記収容空間7には、球状粒子6が充填されている。球状粒子6としては、例えば、粒子直径が1mm程度の鋼球(SUS440C)やセラミック球(Si3N4)などを使用することができる。前記球状粒子6は、すべて同一サイズでもよいし、異なるサイズの組み合わせでもよい。 The storage space 7 is filled with spherical particles 6. As the spherical particle 6, for example, a steel ball (SUS440C) or a ceramic ball (Si3N4) having a particle diameter of about 1 mm can be used. The spherical particles 6 may all be the same size or may be a combination of different sizes.
 前記収容空間7に設けられた固定リング11a、11bの軸方向の外方には、収容空間7に充填した球状粒子6の摩擦によって発生する摩耗粉が外部に漏れださないように、耐粉塵シール12a、12bを設置している。 In the axial direction of the fixing rings 11a and 11b provided in the storage space 7, dust particles are prevented so that wear powder generated by friction of the spherical particles 6 filled in the storage space 7 does not leak to the outside. Seals 12a and 12b are provided.
 この耐粉塵シール12a、12bは、内筒4の半径方向の変位を阻害しないように、低剛性で、かつ、内筒4の半径方向の変位が生じてもすきまが生じない初期しめしろを有している。 The dust- proof seals 12a and 12b have low rigidity so that the radial displacement of the inner cylinder 4 is not hindered, and have an initial interference that does not cause a gap even if the radial displacement of the inner cylinder 4 occurs. doing.
 ところで、ロケットエンジンターボポンプは、燃焼器に推進剤を圧送する回転機械であり、推進剤として主に液体酸素および液体水素を使用するため、回転軸2の軸受5の近傍は極低温環境になる。このような、極低温で使用される機器の場合、極低温環境にする前に、球状粒子6を充填した収容空間7内の空気に含まれる水分が凍らないように、収容空間7内の空気を、推進剤のガス(例えば、水素ガス、酸素ガス)で置換しておくことが望ましい。 By the way, the rocket engine turbo pump is a rotary machine that pumps a propellant to the combustor, and mainly uses liquid oxygen and liquid hydrogen as the propellant, so that the vicinity of the bearing 5 of the rotating shaft 2 is in a cryogenic environment. . In the case of such a device used at a very low temperature, the air in the accommodation space 7 is prevented from freezing before the water is contained in the accommodation space 7 filled with the spherical particles 6 before the cryogenic environment. Is preferably replaced with a propellant gas (for example, hydrogen gas or oxygen gas).
 ところが、前記収容空間7を、前記のように、耐粉塵シール12a、12bによって密封すると、前記収容空間7内に充填された球状粒子6間の空気抜きができないため、前記収容空間7内を推進剤のガスで置換することができない。 However, if the storage space 7 is sealed with the dust- proof seals 12a and 12b as described above, air can not be ventilated between the spherical particles 6 filled in the storage space 7, so that the propellant is contained in the storage space 7. It cannot be replaced with gas.
 このため、図1に示す実施形態では、前記収容空間7の内部と外部環境とを繋ぐ空気抜き用流路14を機器ハウジング3とリング板9との間に設置している。 Therefore, in the embodiment shown in FIG. 1, an air vent channel 14 that connects the inside of the housing space 7 and the external environment is provided between the device housing 3 and the ring plate 9.
 また、図4に示す第2の実施形態では、前記空気抜き用流路14の出口に耐粉塵フィルタ15を設置している。 Further, in the second embodiment shown in FIG. 4, a dust-proof filter 15 is installed at the outlet of the air vent channel 14.
 次に、球状粒子6をダンパ要素にした振動減衰装置の作用について説明する。 Next, the operation of the vibration damping device using the spherical particle 6 as a damper element will be described.
 図1の矢印X1に示すように、振動によって軸変位が生じた場合、加振力は軸受5を通じて、内筒4を矢印X2に示すように、半径方向に変動させる。この内筒4の変動により、内筒4と機器ハウジング3との間の収容空間7に充填された球状粒子6が流動し、球状粒子6どうし、球状粒子6と内筒4間、球状粒子6と機器ハウジング3との間でそれぞれ摩擦が生じ、この摩擦によって振動エネルギーが散逸し、振動が減衰される。 As shown by the arrow X1 in FIG. 1, when an axial displacement occurs due to vibration, the exciting force causes the inner cylinder 4 to change in the radial direction through the bearing 5 as shown by the arrow X2. Due to the fluctuation of the inner cylinder 4, the spherical particles 6 filled in the accommodation space 7 between the inner cylinder 4 and the device housing 3 flow, and the spherical particles 6, the spherical particles 6 and the inner cylinder 4, and the spherical particles 6. And the device housing 3, friction is generated, and the frictional energy is dissipated by the friction to attenuate the vibration.
 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。 As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to the thing of embodiment shown in figure. Various modifications and variations can be made to the illustrated embodiment within the same range or equivalent range as the present invention.
1   :振動減衰装置
2   :回転軸
3   :機器ハウジング
4   :内筒
5   :軸受
6   :球状粒子
7   :収容空間
8   :内筒支持用ばね
9   :リング板
10  :ボルト
11a、11b :固定リング
12a、12b :耐粉塵シール
13a :予圧用ばね
13b :予圧リング
14  :空気抜き用流路
15  :耐粉塵フィルタ
1: Vibration damping device 2: Rotating shaft 3: Equipment housing 4: Inner cylinder 5: Bearing 6: Spherical particle 7: Accommodating space 8: Spring for supporting inner cylinder 9: Ring plate 10: Bolts 11a and 11b: Fixed ring 12a, 12b: Dust resistant seal 13a: Preload spring 13b: Preload ring 14: Air vent flow path 15: Dust resistant filter

Claims (6)

  1.  回転機械における回転軸を支持する軸受の外面に、間隔をあけて配置される機器ハウジングと、この機器ハウジングの内周面と軸受の外面との間に隙間をあけて配置された、機器ハウジングに対して半径方向に変位可能な内筒と、この内筒の外周面と機器ハウジングの内周面との間に設けられた、振動摩擦により制振作用を生じる球状粒子を充填する収容空間と、この収容空間の軸方向の側方に配置された、収容空間内に充填された球状粒子に対して軸方向の予圧を与える予圧リングとを備える軸受の振動減衰装置において、前記球状粒子を充填する収容空間の軸方向の両側に、機器ハウジングの内周面と内筒の外周面との間に設けられた隙間から前記球状粒子の摩耗粉の流出を防止する耐粉塵シールを設けたことを特徴とする軸受の振動減衰装置。 An equipment housing that is arranged at an interval on the outer surface of a bearing that supports a rotating shaft in a rotating machine, and an equipment housing that is arranged with a gap between the inner peripheral surface of the equipment housing and the outer surface of the bearing. An inner cylinder that is displaceable in the radial direction, and a housing space that is provided between the outer peripheral surface of the inner cylinder and the inner peripheral surface of the equipment housing, and that is filled with spherical particles that generate vibration damping action by vibration friction; In a vibration damping device for a bearing comprising a preloading ring that is arranged on the side of the housing space in the axial direction and applies a preload in the axial direction to the spherical particles filled in the housing space, the spherical particles are filled. A dust-proof seal is provided on both sides of the housing space in the axial direction to prevent the spherical particles from flowing out from the gap between the inner peripheral surface of the device housing and the outer peripheral surface of the inner cylinder. Bearing vibration Decay apparatus.
  2.  前記収容空間の内部と外部環境とを繋ぐ空気抜き用流路を機器ハウジングに設けたことを特徴とする請求項1記載の軸受の振動減衰装置。 2. The vibration damping device for a bearing according to claim 1, wherein a flow path for venting air connecting the inside of the housing space and the external environment is provided in the equipment housing.
  3.  前記空気抜き用流路に耐粉塵フィルタを設置したことを特徴とする請求項2記載の軸受の振動減衰装置。 3. The vibration damping device for a bearing according to claim 2, wherein a dust filter is installed in the air vent flow path.
  4.  前記球状粒子がSUS440CまたはSi3N4からなる請求項1~3のいずれかに記載の軸受の振動減衰装置。 4. The vibration damping device for a bearing according to claim 1, wherein the spherical particles are made of SUS440C or Si3N4.
  5.  前記球状粒子がすべて同一サイズである請求項4に記載の軸受の振動減衰装置。 The bearing vibration damping device according to claim 4, wherein all of the spherical particles have the same size.
  6.  前記球状粒子が異なるサイズの組み合わせからなる請求項5に記載の軸受の振動減衰装置。 The bearing vibration damping device according to claim 5, wherein the spherical particles are made of a combination of different sizes.
PCT/JP2019/008919 2018-03-07 2019-03-06 Bearing vibration damping device WO2019172328A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040475A JP2019157869A (en) 2018-03-07 2018-03-07 Vibration damping device of bearing
JP2018-040475 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019172328A1 true WO2019172328A1 (en) 2019-09-12

Family

ID=67847123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008919 WO2019172328A1 (en) 2018-03-07 2019-03-06 Bearing vibration damping device

Country Status (2)

Country Link
JP (1) JP2019157869A (en)
WO (1) WO2019172328A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113818584A (en) * 2021-10-22 2021-12-21 同济大学 Assembled energy dissipation cantilever structure based on particle damping
CN114439769A (en) * 2022-03-09 2022-05-06 合肥通用机械研究院有限公司 High damping vibration attenuation base that fan was used
CN115143218A (en) * 2022-06-30 2022-10-04 重庆大学 Magneto-rheological tuned particle mass damper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341211A (en) * 1989-07-07 1991-02-21 Ishikawajima Harima Heavy Ind Co Ltd Bearing supporting device for rotating body
JP2005098410A (en) * 2003-09-25 2005-04-14 Toyota Motor Corp Bearing lubricating structure
DE102008040508A1 (en) * 2008-07-17 2010-01-21 Zf Lenksysteme Gmbh Device for pressing steering rack at pinion in steering mechanism i.e. electro-steering mechanism, of motor vehicle, has pressure piece comprising chamber for receiving grain-like particles, where volume of chamber is variable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341211A (en) * 1989-07-07 1991-02-21 Ishikawajima Harima Heavy Ind Co Ltd Bearing supporting device for rotating body
JP2005098410A (en) * 2003-09-25 2005-04-14 Toyota Motor Corp Bearing lubricating structure
DE102008040508A1 (en) * 2008-07-17 2010-01-21 Zf Lenksysteme Gmbh Device for pressing steering rack at pinion in steering mechanism i.e. electro-steering mechanism, of motor vehicle, has pressure piece comprising chamber for receiving grain-like particles, where volume of chamber is variable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113818584A (en) * 2021-10-22 2021-12-21 同济大学 Assembled energy dissipation cantilever structure based on particle damping
CN113818584B (en) * 2021-10-22 2022-08-16 同济大学 Assembled energy dissipation cantilever structure based on particle damping
CN114439769A (en) * 2022-03-09 2022-05-06 合肥通用机械研究院有限公司 High damping vibration attenuation base that fan was used
CN115143218A (en) * 2022-06-30 2022-10-04 重庆大学 Magneto-rheological tuned particle mass damper
CN115143218B (en) * 2022-06-30 2024-06-04 重庆大学 Magnetorheological tuning particle mass damper

Also Published As

Publication number Publication date
JP2019157869A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
US7648277B2 (en) Device for supporting and guiding a rotating shaft
WO2019172328A1 (en) Bearing vibration damping device
JP6484231B2 (en) Journal bearing assembly and method of assembling the same
JP6409061B2 (en) Hermetically sealed damper assembly and method of assembling the damper assembly
US8308364B2 (en) Auxiliary bearing system for magnetically supported rotor system
US7431504B1 (en) High temperature damper for a roller bearing
US8167494B2 (en) Squeeze-film damper arrangement
JP5627707B2 (en) Rotating machine with damping system
JPS60263723A (en) Compression film damper
JP2015522773A (en) Gasket device for turbomachine bearings, including two elastic seals
WO2019188342A1 (en) Vibration damping apparatus for bearing
WO2020054133A1 (en) Damper bearing and damper
Iacobellis et al. Effect of hole feed system on the response of a squeeze film damper supported rotor
JP2019157871A (en) Vibration damping device of bearing
JP2019157870A (en) Vibration damping device of bearing
JP2015004402A (en) Bearing device with attenuation mechanism
JP2006509164A (en) Slide ring seal assembly
JP5092896B2 (en) Rotating machine
JP6613109B2 (en) Rotation resistance device
WO2017135073A1 (en) Ball bearing for spindle with built-in motor
JP2022143204A (en) Bearing device, and rotary machine
JP2021521392A (en) Floating ring seal
JPH04106569U (en) Bellows type mechanical seal for low temperature fluids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763713

Country of ref document: EP

Kind code of ref document: A1