WO2019172261A1 - Esophageal stricture preventing material - Google Patents

Esophageal stricture preventing material Download PDF

Info

Publication number
WO2019172261A1
WO2019172261A1 PCT/JP2019/008651 JP2019008651W WO2019172261A1 WO 2019172261 A1 WO2019172261 A1 WO 2019172261A1 JP 2019008651 W JP2019008651 W JP 2019008651W WO 2019172261 A1 WO2019172261 A1 WO 2019172261A1
Authority
WO
WIPO (PCT)
Prior art keywords
esophageal
polysaccharide
group
alginic acid
composition
Prior art date
Application number
PCT/JP2019/008651
Other languages
French (fr)
Japanese (ja)
Inventor
大知 伊藤
誠一 太田
蟠 戚
光弘 藤城
陽介 辻
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2019172261A1 publication Critical patent/WO2019172261A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/734Alginic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/39Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/32Proteins, polypeptides; Degradation products or derivatives thereof, e.g. albumin, collagen, fibrin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system

Definitions

  • the present invention relates to a composition for covering an esophageal damaged part.
  • the esophagus is a tube that connects the pharynx and stomach, and serves to send food from the pharynx to the stomach.
  • the wall of the esophagus is divided into four layers from the inside toward the outside: the mucosa, the submucosa, the intrinsic muscle layer, and the outer membrane.
  • the mucosa is divided into three layers from the inside to the outside: the stratified squamous epithelium, the lamina intestinal, and the mucosal lamina.
  • Esophageal cancer is a cancer that kills about 11,000 people annually in Japan and is difficult to detect, and is a cancer that is more likely to progress, metastasize, recur, and is difficult to treat than other gastrointestinal organs. It is. Esophageal cancer treatment methods can be broadly divided into four categories: surgery, endoscopic treatment, chemotherapy, and radiation therapy.
  • Endoscopic mucosal resection (EMR) which is an endoscopic treatment method, is a standard treatment method particularly for early esophageal cancer in which cancer is confined to the mucosa. There are important organs such as the heart and lungs around the esophagus, and surgery is difficult and highly invasive. Therefore, it is expected to expand the indication of endoscopic treatment that is the least invasive and resectable. Yes.
  • ESD endoscopic submucosal dissection
  • HA hyaluronic acid
  • Steroid local injection requires multiple treatments, and injection of steroids into the muscle layer during treatment may cause the muscle layer to dissolve and may cause delayed perforation.
  • balloon dilatation requires a plurality of treatments, tearing not only to the surface of the esophagus but also deeper than the surface of the esophagus may cause pain and perforation of the esophagus.
  • existing esophageal stents are made of metal or plastic, and recently made of biodegradable materials. Previous studies have reported metal stent perforations, ulcers, formation of new stenosis, and recurrence rate of stenosis after removal as high as 50%, and plastic stents have a migration rate of 30% to 80%. In recent years, biodegradable stents that degrade in about 8 to 10 weeks are often used, but due to the high prevalence of inflammation and granulation tissue overgrowth, it has been pointed out that their effectiveness and safety are still insufficient. Yes.
  • Patent Document 1 describes a balloon having a drug coating.
  • excipients for drug coating include alginate, and examples of applying a balloon include treatment of esophageal stricture.
  • alginic acid or a derivative thereof or a salt thereof is used as a wound covering prevention material or an adhesion prevention material (Patent Documents 2 and 3).
  • Non-Patent Document 1 describes maleimide-modified alginic acid derivatives.
  • the present inventors have cross-linked with an ion-crosslinkable polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof) cross-linked with a curing agent, and optionally with transglutaminase.
  • an esophageal lesion covering material containing a protein or a polysaccharide having an amino group is suitable for coating an esophageal lesion, and thus completed the present invention.
  • the present invention is as follows. [1-1] containing an ionically crosslinkable polysaccharide, The ion-crosslinkable polysaccharide is cross-linked with a curing agent and used to coat the esophageal lesion with a protein or amino group cross-linked using transglutaminase. A composition for covering an esophageal lesion. [1-2] The composition according to [1-1] above, wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof.
  • composition according to [1-2] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
  • the modification is performed via a spacer.
  • Any one of the above [1-2] to [1-4], wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative.
  • [1-6] The above [1-1] to [1], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+.
  • [1-7] The composition according to any one of [1-1] to [1-6] above, wherein the protein or polysaccharide having an amino group is gelatin.
  • [1-8] The composition according to any one of the above [1-1] to [1-7], wherein the composition is in the form of fluid liquid or powder.
  • particle diameter of the powder is in the range of 10 ⁇ m to 500 ⁇ m.
  • [1-13] The composition according to any one of [1-1] to [1-12] above, which is used for preventing esophageal stricture.
  • the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof.
  • the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
  • the modification is performed via a spacer.
  • [3-1] Applying ion-crosslinkable polysaccharide and protein or amino group-containing polysaccharide to the target esophageal lesion,
  • the ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Cover the damaged part of the esophagus with sugars, How to cover esophageal lesions.
  • [4-1] containing an ion-crosslinkable polysaccharide The ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to cover the esophageal lesion.
  • a composition for covering an esophageal lesion A composition for covering an esophageal lesion.
  • the ion-crosslinkable polysaccharide is cross-linked with a curing agent, and is used so as to cover the esophageal lesion with a protein or amino-group cross-linked using transglutaminase.
  • [4-13] The composition according to any one of [4-1] to [4-12] above, which is used in combination with another drug.
  • [4-14] The composition according to any one of [4-1] to [4-13] above, for hemostasis.
  • [4-15] The composition according to any one of [4-1] to [4-14] above, which is used for preventing esophageal stricture.
  • the ionic crosslinkable polysaccharide is cross-linked with a curing agent and is used to cover the esophageal lesion with the cross-linked ionic crosslinkable polysaccharide. Kit for covering the damaged part of the esophagus.
  • the ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group.
  • kit Used to cover esophageal lesions with sugars, The kit according to [5-1] above. [5-3] The above-mentioned [5-1] or [5-2], wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof. kit. [5-4] The kit according to [5-3] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group. [5-5] The kit according to [5-4] above, wherein the modification is performed via a spacer.
  • the ionic crosslinkable polysaccharide, and if present, the protein or polysaccharide having an amino group is in powder form, and the ionic crosslinkable polysaccharide, and if present, the protein or amino group
  • [5-12] The kit according to [5-9] or [5-11] above, wherein the particle diameter of the powder is in the range of 10 ⁇ m to 500 ⁇ m.
  • [5-13] The kit according to any one of [5-1] to [5-12] above, which is used in combination with another drug.
  • [6-3] The above-mentioned [6-1] or [6-2], wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof.
  • Method. [6-4] The method according to [6-3] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
  • [6-5] The method described in [6-4] above, wherein the modification is performed via a spacer.
  • the method according to item. [6-7] The above [6-1] to [6], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+.
  • [6-8] The method according to any one of [6-1] to [6-7] above, wherein the protein or polysaccharide having an amino group is gelatin.
  • [6-11] The ion-crosslinkable polysaccharide, and if present, the protein or polysaccharide having an amino group is in powder form, and the ion-crosslinkable polysaccharide, and if present, the protein or amino group
  • [6-12] The method described in [6-9] or [6-11] above, wherein the particle diameter of the powder is in the range of 10 ⁇ m to 500 ⁇ m.
  • [6-13] The method according to any one of [6-1] to [6-12] above, wherein another drug is administered.
  • composition for covering an esophageal lesion is provided.
  • (A) Graph showing the adhesion rate (vertical axis) at each bonding time (horizontal axis) of the material containing Alg-Mal and the material containing Alg
  • (A) Graph showing the adhesion rate (vertical axis) at each adhesion time (horizontal axis) of the material containing Alg when CaSO 4 is added or not added, (B) 5 days when the material containing Alg is applied Photographs of the normal mucosa of the eye and the submucosa of the fourth day. It is a figure which shows the result of the tissue adhesiveness evaluation of the material in the case of Gela particle size 45-90 ⁇ m in normal mucosa and submucosa. It is a figure which shows the result of the tissue adhesiveness evaluation of the material in the case of Gela particle size 90-180 ⁇ m in normal mucosa and submucosa.
  • An esophageal lesion coating composition is provided.
  • the esophageal lesion coating composition of some embodiments comprises an ionically crosslinkable polysaccharide, The ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to coat the esophageal lesion along with the protein or amino group-crosslinked polysaccharide using transglutaminase.
  • composition for coating an esophageal lesion in this embodiment is described with reference to FIG. 1 so that maleimide-modified alginic acid crosslinked with Ca 2+ is coated with gelatin crosslinked with transglutaminase.
  • maleimide-modified alginic acid crosslinked with Ca 2+ is coated with gelatin crosslinked with transglutaminase.
  • the case where it is used will be described as an example.
  • FIG. 1 (A) shows that a solution containing maleimide-modified alginic acid and transglutaminase (“Alg-Mal / TG”) and a solution containing gelatin and Ca 2+ (Gela / Ca 2+ ) are sprayed together to esophageal lesions.
  • maleimide-modified alginic acid is cross-linked with Ca 2+ and gelatin is cross-linked with transglutaminase at the esophageal lesion.
  • FIG. 1 (A) shows that a solution containing maleimide-modified alginic acid and transglutaminase (“Alg-Mal / TG”) and a solution containing gelatin and Ca 2+ (Gela / Ca 2+ ) are sprayed together to esophageal lesions.
  • Alg-Mal / TG a solution containing maleimide-modified alginic acid and transglutaminase
  • gelatin is cross
  • FIG. 1 (B) shows an esophagus by spraying a powder containing alginic acid and gelatin (“Alg / Gelatin Powder”) and spraying a cross-linking agent solution containing “transglutaminase and Ca 2+ ” (“TG / Ca 2+ Crosslinking agent”). It is applied to an injured part, and shows a state in which alginic acid is cross-linked with Ca 2+ and gelatin is cross-linked with transglutaminase in the esophageal injured part.
  • the esophageal lesion is covered with a material formed from the composition for covering an esophageal lesion.
  • the material formed from the composition for covering an esophageal lesion may be referred to as “esophageal lesion covering material”.
  • mucin secreted from esophageal gland cells on the normal esophageal mucosal epithelial surface.
  • this mucin is composed of one central region having many O-linked oligosaccharide chains (serine / threonine-linked sugar chains) and two sub-sites having many cysteines adjacent to both sides of the central region. It consists of a mucosal glycoprotein containing a domain (Cysteine rich region), and the cysteine contained in the primary structure of the mucosal glycoprotein exceeds 10% (Immunol Rev.
  • a mucin monomer binds to the Cystein rich region of this mucosal glycoprotein, and a three-dimensional network of mucosal gel layers is constructed by disulfide bonds. Moreover, it is known that mucin contains many glutamine residues and lysine residues.
  • Collagen collagen
  • Gelatin (“Gela”) is a denatured collagen, and when it is cooled in a sol state during heating, it partially becomes a triple helical structure and gels. Because of its high biocompatibility and cell affinity and biodegradability, it is expected to be used as a scaffold material for tissue engineering and a carrier for a drug delivery system (DDS). However, the gelatin solution prepared by cooling easily transitions to the sol state at 37 ° C. which is the in-vivo temperature. Therefore, the gelatin molecule is covalently cross-linked to improve its strength. Is desirable.
  • Transglutaminase is an enzyme that binds glutamine and lysine residues contained in proteins or peptides. Since gelatin has unique glutamine and lysine residues, hydrogels can be made. Since the collagen layer is abundant in the submucosal layer exposed on the surface of the esophagus at the esophageal injury site, the collagen is cross-linked by gelatin and TG, whereby the esophageal injury site covering material can adhere to the wound site. Furthermore, not only cell adhesion but also cell migration can be promoted by selecting an appropriate TG dose and hydrogel concentration.
  • gelatin cross-linked with transglutaminase can promote the healing process of the mucosal epithelial layer after ESD.
  • the mucin on the surface of normal esophageal mucosa also contains glutamine residues and lysine residues as described above, the mucin is cross-linked by gelatin and TG, so that the esophageal lesion covering material is wounded. It can also adhere to the normal mucosal layer around the site.
  • Alginic acid is a polymer composed of two kinds of D-mannuronic acid and L-guluronic acid, and is considered to have high biocompatibility and does not worsen the inflammatory reaction. Further, when Ca 2+ is added to a monovalent metal salt of alginic acid (“Alg”), an Egg Box Junction is formed and gelled. In addition, the monovalent metal salt of alginic acid can be expected to have an effect as a hemostatic material in addition to the effect as a wound dressing material that rapidly epithelizes the wound.
  • Alg monovalent metal salt of alginic acid
  • sodium alginate adheres to the mucous membranes of the stomach and esophagus and plays a role in protecting the mucous membranes from attacks such as gastric juice and food. It is also used as a peptic ulcer agent (trade name: Alloid G).
  • the cysteine residue present in the mucin on the surface of normal esophageal mucosa exceeds 10% as described above.
  • the maleimide functional group has a high reactivity to the cysteine residue present on the protein surface via the Michael addition reaction, by using maleimide-modified alginic acid, it binds to cysteine in normal mucosa by thiol-maleimide reaction, The adhesiveness of the esophageal damaged part coating material to the esophageal mucosa can be improved.
  • the esophageal damaged part coating material formed from the composition for covering an esophageal damaged part can be used to cover the esophageal damaged part. It was difficult to fix the material to the damaged part of the esophagus due to the peristaltic movement of the esophagus, the passage of food and saliva, the difficulty of adhesion to the mucous membrane, etc.
  • the esophageal lesion covering material formed from the composition can be well adhered to such esophageal lesions.
  • FIG. 1 (C) is a diagram showing the surface of the esophagus after healing. Furthermore, the esophageal damage part coating material formed from the composition for covering an esophageal damage part suppresses the formation of ulcers in the esophageal damage part, like the esophageal surface after healing shown in FIG. This can prevent stricture of the esophagus.
  • Esophageal lesion is a tube that connects the pharynx and stomach and serves to send food from the pharynx to the stomach.
  • the wall of the esophagus is divided into four layers from the inside toward the outside: the mucosa, the submucosa, the intrinsic muscle layer, and the outer membrane.
  • the mucosa is divided into three layers from the inside to the outside: the stratified squamous epithelium, the lamina basement, and the mucosal lamina.
  • Esophageal damaged part to which the esophageal damaged part coating material is applied is a part that has suffered esophageal damage.
  • Esophageal damage includes, for example, esophageal damage associated with resection of esophageal cancer, esophageal damage due to accidental ingestion, esophageal damage due to acid reflux, accidental damage during endoscopy, and acids, alkalis or drugs This includes damage to the esophagus caused by corrosive esophagitis.
  • the esophageal injury is esophageal injury associated with resection of esophageal cancer. Resection of esophageal cancer is, for example, resection of esophageal cancer by surgery and endoscopic treatment.
  • Endoscopic treatment is, for example, endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (EMR).
  • ESD endoscopic submucosal dissection
  • EMR endoscopic mucosal resection
  • the endoscopic treatment is ESD.
  • Esophageal “damage” is damage to at least one of the mucosa, submucosa, intrinsic muscle layer, and outer membrane of the esophagus, such as (i) damage to the esophageal mucosa, (ii) mucosa and mucosa of the esophagus. Including submucosal damage, (iii) esophageal mucosa, submucosa and proper muscle layer damage, and (iv) esophageal mucosa, submucosa, proper muscle layer, and adventitia damage.
  • esophageal “damage” is (ii) damage to the mucosa and submucosa of the esophagus, where the submucosa is exposed on the surface of the esophagus.
  • the esophageal lesion is a post-ESD esophageal lesion, which is a damaged portion of the esophagus mucosa and submucosa, and the submucosa is exposed on the surface of the esophagus.
  • an esophageal lesion covering composition includes an ion-crosslinkable polysaccharide, and the ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to cover the esophageal lesion.
  • the composition for covering an esophageal lesion includes an ionic crosslinkable polysaccharide, the ionic crosslinkable polysaccharide is cross-linked with a curing agent and has a protein or amino group cross-linked using transglutaminase. Used to cover esophageal lesions with polysaccharides.
  • the composition for covering an esophageal lesion may contain a monovalent metal salt of alginic acid or a derivative thereof, and the monovalent metal salt of alginic acid or a derivative thereof is crosslinked with a curing agent, and the esophagus together with a protein crosslinked using transglutaminase. It may be used to cover the damaged part.
  • Also provided is a method for covering an esophageal lesion including applying the composition for covering an esophageal lesion to a subject that needs to cover the esophageal lesion. More specifically, in the method of covering the esophageal lesion, the ion-crosslinkable polysaccharide is applied to the target esophageal lesion, the ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the crosslinked ionic crosslinking is possible. This is a method of covering the damaged part of the esophagus with a polysaccharide.
  • an ionically crosslinkable polysaccharide and a protein or amino group-containing polysaccharide are applied to a target esophageal lesion, and the ionically crosslinkable polysaccharide is crosslinked with a curing agent.
  • a protein or a polysaccharide having an amino group is crosslinked using transglutaminase, and the esophageal lesion is covered with a crosslinked ion-crosslinkable polysaccharide and a crosslinked protein or polysaccharide having an amino group.
  • a monovalent metal salt of alginic acid or a derivative thereof and a protein are applied to a target esophageal lesion, the monovalent metal salt of alginic acid or a derivative thereof is crosslinked with a curing agent, and the protein is trans-transfected.
  • kits used for a method for covering an esophageal damaged part includes an ionic crosslinkable polysaccharide, the ionic crosslinkable polysaccharide is cross-linked with a curing agent, and is used to cover an esophageal lesion with the cross-linked ionic crosslinkable polysaccharide.
  • the esophageal damaged part coating kit includes an ionic crosslinkable polysaccharide, the ionic crosslinkable polysaccharide is cross-linked with a curing agent, and is used to cover an esophageal lesion with the cross-linked ionic crosslinkable polysaccharide.
  • the kit of some embodiments comprises (a) an ionic crosslinkable polysaccharide, and (b) a protein or polysaccharide with an amino group, the ionic crosslinkable polysaccharide is crosslinked with a curing agent, and the protein or Polysaccharides with amino groups are cross-linked using transglutaminase and used to cover esophageal lesions with cross-linked ionic cross-linkable polysaccharides and cross-linked proteins or polysaccharides with amino groups It is a kit for.
  • the kit may comprise (a) a monovalent metal salt of alginic acid or a derivative thereof, and (b) a protein, wherein the monovalent metal salt of alginic acid or a derivative thereof is crosslinked with a curing agent, and the protein uses transglutaminase. And may be used to coat esophageal lesions with monovalent metal salts of crosslinked alginic acid or derivatives thereof and crosslinked proteins.
  • composition for covering an esophageal damaged part may be simply referred to as “composition for covering an esophageal damaged part” or “composition”.
  • compositions for covering an esophageal injury part use a combination of (a) an ion-crosslinkable polysaccharide and (b) a polysaccharide having a protein or an amino group.
  • the composition for covering an esophageal lesion may be used by combining (a) a monovalent metal salt of alginic acid or a derivative thereof and (b) a protein.
  • cross-linked ionic cross-linkable polysaccharides eg monovalent metal salts of cross-linked alginic acid or derivatives thereof
  • polysaccharides cross-linked using transglutaminase, ie esophageal damage Cover the esophageal lesions that appeared on the inner surface of the esophagus with the covering material.
  • the esophageal lesion covering material includes a cross-linked ion cross-linkable polysaccharide (eg, cross-linked alginic acid or a monovalent metal salt thereof) and a curing agent.
  • the esophageal lesion covering material is a crosslinked ionically crosslinkable polysaccharide (eg, a crosslinked monovalent metal salt of alginic acid or a derivative thereof), a curing agent, a crosslinked protein, or a polysaccharide having an amino group. Contains sugars and transglutaminase.
  • the composition for covering an esophageal lesion comprises (a) an ion-crosslinkable polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof) and (b) a polysaccharide having a protein or an amino group.
  • Use. “Use in combination” means to use in combination.
  • the component (a) and the component (b) are used in combination, when the composition is applied to the target, the component (a) and the component (b) are included in the composition, or the target is the composition. It means that (a) component and (b) component should just be contained in the esophageal damage part coating
  • the component (b) may be provided in the form of a composition previously blended with the component (a), and two types of compositions obtained by separately preparing the component (a) and the component (b). You may provide as a kit which combined and packaged.
  • a composition in which the component (a) and the component (b) are preliminarily blended is provided, and separately from this composition, a composition in which transglutaminase and a curing agent are blended in advance is prepared.
  • the composition in which the component (a) and the component (b) are blended in advance is in a powder form
  • the composition in which transglutaminase and a curing agent are blended in advance is in a liquid form.
  • the powdered composition is applied to the surface of the esophageal lesion by spraying, while the liquid composition is applied by spraying.
  • blended (a) component, (b) component, and transglutaminase was provided previously, and a hardening
  • the composition in which the component (a), the component (b), and transglutaminase are blended in advance is in a powder form, and the curing agent is in a liquid form or a powder form.
  • the powdered composition is applied to the surface of the esophageal lesion by spraying or spraying, while the liquid or powdery curing agent is sprayed.
  • a composition is provided in which (a) component, (b) component, transglutaminase and a curing agent are all blended in advance.
  • the composition in which all of component (a), component (b), transglutaminase, and curing agent are blended in advance is in a powder form.
  • the powdered composition is applied to the surface of the esophageal lesion by spraying.
  • a composition comprising component (a) is provided, and separately from this composition, component (b), transglutaminase, and a curing agent are provided separately.
  • the composition containing the component (a), the component (b), the transglutaminase, and the curing agent are each in powder form.
  • the composition containing the powdery component (a), the powdery component (b), the powdery transglutaminase, and the powdery curing agent are applied to the surface of the esophageal lesion by spraying.
  • a composition in which the component (a) and transglutaminase are preliminarily blended is provided, and in addition to the composition, a composition in which the component (b) is premixed with the curing agent is provided.
  • the composition in which the component (a) and the transglutaminase are blended in advance and the composition in which the component (b) and the curing agent are blended in advance are in a liquid or powder form. In this case, these liquid or powdery compositions are applied to the surface of the esophageal lesion by spraying or spraying.
  • a composition in which the component (a) and transglutaminase are previously blended is provided, and separately from the composition, the component (b) and the curing agent are prepared separately.
  • the composition in which the component (a) and the transglutaminase are blended in advance, the component (b), and the curing agent are all in liquid or powder form.
  • these liquid or powdery compositions are applied to the surface of the esophageal lesion by spraying or spraying.
  • Each of the component (a) and the component (b) may be provided in a solution state using a solvent, or a solid state such as a powder state (for example, a lyophilized product, particularly a lyophilized powder). It may be provided as a product.
  • a solid state such as a powder state (for example, a lyophilized product, particularly a lyophilized powder).
  • the component (a) and the component (b) may be used in a state where each of them or a mixture has a fluidity such as a solution or a gel using a solvent at the time of administration. Alternatively, it may be used in a solid state.
  • component (a) and component (b) are each in the form of a solid selected from the group consisting of sheet, sponge, or powder; semisolid; Or may be used in a gel form.
  • the term “powder” can be restated as “powder”, “powder” or “powder”.
  • the solvent is not particularly limited as long as it is a solvent applicable to a living body.
  • water for injection purified water, distilled water, ion-exchanged water (or deionized water), milli-Q water, physiological saline, phosphate buffered physiological Examples include saline (PBS).
  • PBS saline
  • Preferred are water for injection, distilled water, physiological saline and the like that can be used for treatment of humans and animals.
  • the content of the ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof) in the coating material formed from the composition is 0.00.
  • the content of a protein or a polysaccharide having an amino group (eg, gelatin) is about 1 wt% to 30 wt%. More preferably, the content of the ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or a derivative thereof) in the coating material formed from the composition is about 1 wt% to 20 wt%, and the protein or amino group is contained.
  • the content of polysaccharide is about 15 wt% to 50 wt%.
  • the polysaccharide: protein or polysaccharide having an amino group is preferably 1: 0.1 to 1: 100, more preferably 1: 5 to 1:30.
  • Subjects are human or non-human warm-blooded animals, such as birds, and non-human mammals such as cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, horses. In some embodiments, the “subject” is a human.
  • the method for applying the composition for covering an esophageal lesion to a subject is not particularly limited.
  • a nebulizer in the form of a composition, or in the form of a liquid in which the form of (a) component and / or (b) component is fluid
  • centrifugal atomizer for example, rotating cup atomizer, rotating disk atomizer and wheel atomizer
  • electrostatic atomizer for example, ultrasonic atomizer, resonance atomizer, etc.
  • the form of the component is in the form of powder, for example, on the surface of the esophageal lesion with a duster (eg, Altoshooter (Kaigen Pharma), etc.), syringe, gel pipette, or dedicated filler It may be applied directly.
  • a duster eg, Altoshooter (Kaigen Pharma), etc.
  • syringe eg., gel pipette, or dedicated filler
  • dedicated filler e.g., syringe, gel pipette, or dedicated filler
  • it is applied directly to the surface of the esophageal lesion by means of a nebulizer or spreader (eg duster), more preferably by a nebulizer or spreader (eg duster) through an endoscope channel.
  • the liquid spraying tube for example, Fine Jet (Top Co., Ltd.), Pentacus An endoscopic cannula (38813000) and a multi-lumen catheter (Fortegro Medical JC02003)
  • the form of the composition or the form of the component (a) and / or the component (b) is in the form of powder, it should be used by connecting it to a spraying tube (Fine Jet (Top)). May be.
  • component (b), curing agent, transglutaminase, and other components are prepared, depending on the form of these components, it may be applied to the subject in the same manner as in the above method. it can.
  • the composition may be applied to the subject only once, or twice at intervals (eg, 6 hours, 12 hours, 1 day, 2 days, 3 days or 1 week intervals). You may make it apply above (for example, 2 times, 3 times, 4 times, 5 times, or 6 times).
  • the form of the composition for covering an esophageal lesion, or the form of the component (a) and / or the component (b) is, for example, a fluid liquid (that is, a solution); a sheet, a sponge, or a powder (Especially lyophilized powder) or the like; semisolid; or gel. “Having fluidity” means having the property of changing its form into an indefinite form.
  • the composition or (a) component and / or (b) component hereinafter sometimes referred to as “composition etc.” is enclosed in a nebulizer or syringe to cause esophageal damage. It is desirable to have fluidity that can be applied by spraying or pouring onto the surface of the part.
  • a gel-like composition or the like can be easily applied to the surface of an esophageal lesion by using a syringe, a gel pipette, a dedicated syringe, or the like.
  • a powdery composition or the like can also be applied to the surface of the esophageal lesion by being sprayed with a spraying device (for example, a duster).
  • a spraying device for example, a duster
  • sheet-like, sponge-like, powder-like, gel-like, and fluid liquid compositions are compatible with any surface shape and come into contact with the entire surface of the esophageal lesion to which the composition is applied. You can also The sheet form is a flat plate having a suitable thickness and flexibility, and the sponge form is processed into a porous state.
  • composition can also be made into a semi-solid state with a freezing or hardening
  • the gel can be prepared by covalently bonding the composition with a polyvalent cation or a cross-linking reagent as a curing agent (cross-linking agent).
  • the form of the composition or the like is preferably in the form of a fluid liquid (ie, solution) that can be applied to spraying by a sprayer, or a powder that can be applied to spraying by a sprayer. is there.
  • a fluid liquid ie, solution
  • a powder that can be applied to spraying by a sprayer.
  • the particle diameter of the powder in the case of powder may be controlled using a sieve or the like so as to be within a predetermined range.
  • the particle size can be appropriately selected depending on the type of the spreader. In the present specification, the particle size is measured using, for example, a particle size distribution meter (Parica mini, HORIBA).
  • the particle size of the powder such as the composition is, for example, 5 ⁇ m to 1000 ⁇ m, preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 500 ⁇ m, and even more preferably 45 ⁇ m to 180 ⁇ m. It is.
  • the ratio of the component (a) to the component (b) used in combination (a) component (weight) :( b) component (weight)) is, for example, 1: 0. It is 1 to 1: 100, and preferably 1: 5 to 1:30.
  • Ion-crosslinkable polysaccharides are polysaccharides that form a gel when mixed with a curing agent described below.
  • the ion-crosslinkable polysaccharide is, for example, at least one selected from the group consisting of alginic acid, carrageenan, pectin, derivatives thereof, or salts thereof.
  • the ionically crosslinkable polysaccharide is preferably at least one selected from the group consisting of alginic acid, derivatives thereof, and salts thereof.
  • Alginic acid is a biodegradable polymeric polysaccharide and is a polymer in which two types of uronic acids, D-mannuronic acid (M) and L-guluronic acid (G), are polymerized in a straight chain. More specifically, D-mannuronic acid homopolymer fraction (MM fraction), L-guluronic acid homopolymer fraction (GG fraction), and D-mannuronic acid and L-guluronic acid are randomly arranged. This is a block copolymer in which the fractions (MG fraction) are bound arbitrarily.
  • the composition ratio (M / G ratio) of D-mannuronic acid and L-guluronic acid of alginic acid varies depending on the type of organism mainly derived from seaweed, etc. It ranges from a high G type with an M / G ratio of about 0.4 to a high M type with an M / G ratio of about 5.
  • Alginic acid derivatives are those obtained by subjecting alginic acid to any modification.
  • Optional modifications made to alginic acid include, for example, maleimide modification, thiol modification, acrylate modification, aldehyde modification, and disulfide modification (eg, pyridyl disulfide).
  • the alginic acid derivative is maleimide-modified alginic acid, thiol-modified alginic acid, or acrylate-modified alginic acid, preferably maleimide-modified alginic acid.
  • the maleimide modification of alginic acid is to introduce a maleimide group into the carboxy group part of alginic acid.
  • the cysteine residues present in mucins on the surface of normal esophageal mucosal epithelium are greater than 10%. Since the maleimide functional group has a high reactivity to the cysteine residue present on the protein surface via the Michael addition reaction, by using maleimide-modified alginic acid, it binds to cysteine in normal mucosa by thiol-maleimide reaction, The adhesiveness of the esophageal damaged part coating material to the esophageal mucosa can be improved.
  • the maleimide group is, for example, the following general formula (1):
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or R 1 and R 2 are a 5-membered ring together with the carbon atom to which they are bonded. Or a 6-membered hydrocarbon group is formed) It is group represented by these.
  • Such 5-membered or 6-membered hydrocarbon groups are specifically a cyclopentyl group and a cyclohexyl group.
  • the maleimide group is a group in which R 1 and R 2 are hydrogen atoms in the general formula (1).
  • the maleimide modification can be performed, for example, according to the method described in Progress in Polymer Science (2012) 37, p106-126; or Biomacromolecules (2014) 15, p445-455, or the like. Specifically, alginic acid is dissolved in 0.3 M NaCl-containing 0.1 M Mes Buffer, and water-soluble carbodiimide (WSCD) and N-hydroxysuccinimide (NHS) are necessary equivalents to the carboxy group of alginic acid (for example, 2 Equivalent, 5 equivalents, or 8 equivalents) Dissolve in Mes Buffer, add dropwise to the alginate solution and stir for an additional 30 minutes. After 30 minutes, 0.5 equivalent of maleimide solution is dropped into Mes Buffer.
  • WSCD water-soluble carbodiimide
  • NHS N-hydroxysuccinimide
  • the modification rate is a value expressed as a percentage of the number of uronic acid monosaccharide units into which a modifying group (for example, a maleimide group) is introduced among uronic acid monosaccharide units that are repeating units of alginic acids.
  • the modification rate is, for example, 0.5% to 60%, preferably 1% to 30%, more preferably 1% to 10%.
  • the modification rate can be adjusted by a known method or a method analogous thereto.
  • the modification rate can be adjusted as follows. That is, for example, the modification rate of maleimide can be increased by increasing the equivalents of WSCD and NHS.
  • the modification rate can be calculated by 1 H-NMR measurement (D 2 O).
  • a spacer may be used when performing maleimide modification.
  • Usable spacers may be those commonly used in the field (for example, spacers described in Greg T. Hermanson, Bioconjugate Technologies, Third Edition (2013)), and more specifically, polyethylene glycol, Polyamides such as peptides, and hydrocarbons are included.
  • the monovalent metal salt of alginic acid or a derivative thereof is a water-soluble salt formed by ion exchange of the hydrogen atom of the 6-position carboxylic acid of alginic acid or a derivative thereof with a monovalent metal ion such as Na + or K +. is there.
  • Specific examples of the monovalent metal salt of alginic acid or a derivative thereof include sodium alginate, potassium alginate, a sodium salt of an alginate derivative, or a potassium salt of an alginate derivative.
  • the monovalent metal salt of alginic acid or a derivative thereof is sodium alginate or a sodium salt of an alginic acid derivative.
  • a solution of a monovalent metal salt of alginic acid or a derivative thereof forms a gel when mixed with a curing agent.
  • the monovalent metal salt of alginic acid or a derivative thereof is a high molecular polysaccharide, and it is difficult to accurately determine the molecular weight, but generally the weight average molecular weight is 10 to 10 million, preferably 10,000 to 10 million.
  • the range is preferably 20,000 to 3 million.
  • a preferable range of the weight average molecular weight measured by gel permeation chromatography (GPC) method is 300,000 to 2,000,000.
  • GPC-MALS method is 1,000 to 300,000, and a more preferable range is 50,000 to 300,000.
  • a measurement error of 10 to 20% or more may occur.
  • the value may vary in the range of about 32 to 480,000 for 400,000, 400,000 to 600,000 for 500,000, and about 800 to 1,200,000 for 1,000,000. Therefore, a suitable weight average molecular weight range for the monovalent metal salt of alginic acid or a derivative thereof is at least 20,000, more preferably 50,000, and even more preferably 100,000. If the molecular weight is too high, it is difficult to produce and causes problems such as excessively high viscosity when used as an aqueous solution, poor solubility, and difficulty in maintaining physical properties during long-term storage. Is preferably 5 million or less, more preferably 3 million or less.
  • a polymer substance derived from a natural product does not have a single molecular weight but is an aggregate of molecules having various molecular weights, and thus is measured as a molecular weight distribution having a certain width.
  • a typical measurement technique is gel filtration chromatography. Representative information on the molecular weight distribution obtained by gel filtration chromatography includes weight average molecular weight (Mw), number average molecular weight (Mn), and dispersion ratio (Mw / Mn).
  • the weight average molecular weight places importance on the contribution to the average molecular weight of a polymer having a large molecular weight and is represented by the following formula.
  • the number average molecular weight is calculated by dividing the total weight of the polymer by the total number of polymers.
  • W is the total weight of the polymer
  • Wi is the weight of the i-th polymer
  • Mi is the molecular weight at the i-th elution time
  • Ni is the number of molecular weights Mi
  • Hi is the height at the i-th elution time.
  • the molecular weight of a high molecular weight substance derived from a natural product may vary depending on the measurement method (examples of hyaluronic acid: Chikako YOMOTA et.al., Bull. Natl. Health Sci., Vol. 117, pp 135-139 (1999), Chikako YOMOTA et.al., Bull. Natl. Inst. Health Sci., Vol. 121, pp 30-33 (2003)).
  • the molecular weight measurement of alginate there is a method of calculating from intrinsic viscosity (Intrinsic viscosity), SEC-MALLS (Size Exclusion Chromatography with Multiple Laser Light Scattering, which is calculated by the Ft.
  • the molecular weight of the monovalent metal salt of alginic acid or its derivative is specified, it is a weight average molecular weight calculated by gel filtration chromatography unless otherwise specified.
  • Typical conditions for gel filtration chromatography include using a calibration curve with pullulan as a standard substance.
  • the molecular weight of pullulan used as the standard substance is preferably at least 1.6 million, 788,000, 404,000, 212,000 and 112,000 as the standard substance.
  • eluent 200 mM sodium nitrate solution
  • column conditions it is preferable to use a polymethacrylate resin filler and use at least one to three columns having an exclusion limit molecular weight of 10 million or more.
  • Typical columns are TSKgel GMPW x1 (diameter 7.8 mm ⁇ 300 mm) and G2500PW XL (diameter 7.8 mm ⁇ 300 mm) (manufactured by Tosoh Corporation).
  • Alginic acid is initially extracted from brown algae and has a high molecular weight and a high viscosity.
  • the molecular weight decreases and the viscosity becomes low. Therefore, it is possible to produce a monovalent metal salt of alginic acid or a derivative thereof having a different molecular weight by appropriately controlling the temperature in each step of the production.
  • a monovalent metal salt of alginic acid or a derivative thereof having a high molecular weight can be obtained by controlling the temperature in each step of the production to be lower, and a monovalent metal salt of alginic acid or a derivative thereof having a low molecular weight can be obtained as the temperature increases. .
  • the monovalent metal salt of alginic acid or its derivative from which molecular weight differs can also be manufactured by the method of selecting the brown algae used as a raw material suitably, or performing the fractionation by molecular weight in a manufacturing process. Furthermore, about the monovalent metal salt of alginic acid or its derivative produced by each method, after measuring the molecular weight or viscosity, by mixing with the monovalent metal salt of alginic acid or its derivative of another lot having a different molecular weight or viscosity, It is also possible to obtain a monovalent metal salt of alginic acid having a target molecular weight or a derivative thereof.
  • the alginic acid used here may be naturally derived or synthetic, but is preferably naturally derived.
  • naturally occurring alginic acid include those extracted from brown algae.
  • brown alga containing alginic acid is nowadays in coastal areas around the world, seaweed that can actually be used as a raw material for alginic acid is limited, such as Lessonia in South America, Macrocystis in North America, Laminaria and Ascofilum in Europe, Australia Typical examples are Daviglia.
  • brown algae used as a raw material for alginic acid include, for example, the genus Lesonia, the genus Macrocystis, the genus Laminaria (comb), the genus Ascophyllum, the genus Durvillea, Examples include the genus Eisenia and the genus Ecklonia.
  • the curing agent cures by crosslinking a solution of an ion-crosslinked polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof).
  • an ion-crosslinked polysaccharide for example, a monovalent metal salt of alginic acid or a derivative thereof
  • the curing agent is, for example, a divalent or higher metal ion compound such as Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ , Fe 3+ , Examples thereof include a crosslinkable reagent having 4 amino groups.
  • a metal ion compound having a valence of 2 or more CaCl 2 , MgCl 2 , CaSO 4 , ZnCl 2 , FeCl 3 , BaCl 2 , SrCl 2, etc.
  • a crosslinkable reagent having 2 to 4 amino groups in the molecule, a lysyl group (—COCH (NH 2 ) — (CH 2 ) 4 on the nitrogen atom
  • Diaminoalkanes that may have —NH 2
  • diaminoalkanes and derivatives in which the amino group is substituted with a lysyl group to form a lysylamino group specifically include diaminoethane, diaminopropane, N— (Lysyl) -diaminoethane and the like can be mentioned.
  • the amount of the curing agent used depends on the amount and molecular weight of the ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or its derivative), the G / M ratio of the monovalent metal salt of alginic acid or its derivative, etc. It is desirable to adjust appropriately.
  • the amount of the curing agent used is, for example, 3 mM to 200 mM at a final molar concentration in a solution of an ion-crosslinkable polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof).
  • the amount of the curing agent used is, for example, 5% to 30% by weight relative to the weight of the ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or a derivative thereof). Preferably, it is 15 to 25% by weight.
  • the ion-crosslinkable polysaccharide eg, monovalent metal salt of alginic acid or a derivative thereof.
  • it is 15 to 25% by weight.
  • Proteins or polysaccharides having amino groups are proteins or polysaccharides having amino groups capable of cross-linking molecules using transglutaminase.
  • proteins include, for example, gelatin, casein, lactoferrin, collagen, keratin, transferrin, albumin, and elastin.
  • chitosan can also be used as such a polysaccharide having an amino group.
  • the protein or polysaccharide with an amino group is a protein, in particular gelatin.
  • Gelatin is a denatured collagen that is in a sol state when heated and partially gels when cooled and partially forms a triple helical structure. Because of its high biocompatibility and cell affinity and biodegradability, it is expected to be used as a scaffold material for tissue engineering and a carrier for DDS. Gelatin solution prepared by cooling easily transitions to the sol state at 37 ° C, which is the in-vivo temperature, but its strength is improved by covalently cross-linking gelatin molecules with transglutaminase. Can be made.
  • the gelatin used here is derived from, for example, fish, pig, cow, jellyfish or bird, and preferably derived from fish or pig.
  • Gelatin having a weight average molecular weight of, for example, 30,000 to 200,000 is used.
  • the measurement method of the weight average molecular weight of gelatin can use the same measurement method as the weight average molecular weight of the monovalent metal salt of alginic acid or its derivative.
  • Such gelatin can be produced by using various known methods, or commercially available products can be purchased (for example, from Nitta Gelatin).
  • the amount of the protein or polysaccharide having amino group used is the kind of polysaccharide having protein or amino group (for example, gelatin or casein), or ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or its derivative). It is desirable to adjust appropriately according to the usage amount, molecular weight, etc.
  • the amount of gelatin used when the type of protein or polysaccharide having an amino group is gelatin is, for example, 5 wt% with respect to a solution of an ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof). % To 40 wt%, preferably 15 wt% to 25 wt%.
  • casein When the type of polysaccharide having protein or amino group is casein, the amount of casein used is, for example, 5 to 5 with respect to a solution of an ionically crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof). 20 wt%.
  • an ionically crosslinkable polysaccharide for example, monovalent metal salt of alginic acid or a derivative thereof.
  • an ionically crosslinkable polysaccharide eg, a monovalent metal salt of alginic acid or a derivative thereof
  • a polysaccharide having a protein or amino group eg, gelatin
  • the ratio of (ionically crosslinkable polysaccharide: protein or polysaccharide having amino groups (weight ratio)) is preferably 1: 0.1 to 1: 100, more preferably 1: 5 to 1: 30.
  • Transglutaminase Transglutaminase is an enzyme that binds glutamine and lysine residues contained in proteins or peptides. Since proteins have unique glutamine and lysine residues, hydrogels can be generated by binding these residues between proteins and crosslinking the proteins together.
  • Various types of TG can be used, for example, those derived from animals, plants, or microorganisms, or variants thereof, preferably those derived from microorganisms, or variants thereof. More specifically, TG is Activa (trade name) available from Ajinomoto Co., Ltd., Novosirteen (trade name) available from Novo Nordisk Pharma Co., Ltd. Name).
  • the amount of TG used is preferably adjusted as appropriate according to the type of protein or polysaccharide having an amino group, the amount used, the molecular weight, the amount of lysine and glutamine residues or the amount of amino groups.
  • the amount of TG used is, for example, 0.5% to 40% by weight, preferably 1% to 5% by weight, based on the weight of the protein solution.
  • the amount of TG used when the composition is in powder form is, for example, 1% to 50% by weight, preferably 10% to 25% by weight, based on the weight of gelatin.
  • an ion crosslinkable polysaccharide eg, a monovalent metal salt of alginic acid or a derivative thereof
  • a low endotoxin ion crosslinkable polysaccharide eg, a monovalent of a low endotoxin alginic acid or a derivative thereof.
  • the ion crosslinkable polysaccharide eg, monovalent metal salt of alginic acid or a derivative thereof
  • Proteins or amino group-containing polysaccharides used with these ion-crosslinkable polysaccharides may be low endotoxin proteins or low endotoxin polysaccharides having amino groups. Alternatively, it may not be a low endotoxin protein or a low endotoxin polysaccharide having an amino group.
  • Low endotoxins are those in which endotoxin levels have been reduced to such an extent that they do not substantially cause inflammation or fever. That is, it has been subjected to low endotoxin treatment.
  • the low endotoxin treatment can be performed by a known method or a method analogous thereto.
  • the method of Takada et al. See, for example, JP-A-9-32001 for purifying sodium hyaluronate
  • the method of Yoshida et al. Eg, JP-A-8-269102 for purifying ⁇ 1,3-glucan. Etc.
  • a method of William et al. for example, see JP-T-2002-530440, etc.
  • biopolymer salts such as alginate, gellan gum, etc.
  • James et al. For example, international publication for purifying polysaccharides, etc.
  • the low endotoxin treatment of the present invention is not limited thereto, but is washed, filtered with a filter (such as an endotoxin removal filter or a charged filter), ultrafiltration, a column (an endotoxin adsorption affinity column, a gel filtration column, a column with an ion exchange resin, etc.) ), Adsorption to hydrophobic substances, resin or activated carbon, organic solvent treatment (extraction with organic solvent, precipitation / precipitation by addition of organic solvent, etc.), surfactant treatment (for example, JP-A-2005-036036) It can be carried out by a known method such as a gazette) or a combination thereof. These processing steps may be appropriately combined with known methods such as centrifugation. It is desirable to select appropriately according to the type of alginic acid or its derivative, the type of protein or polysaccharide having an amino group, and the like.
  • the endotoxin level can be confirmed by a known method, and can be measured, for example, by a method using Limulus reagent (LAL), a method using Enspercy (registered trademark) ES-24S set (Seikagaku Corporation), or the like. .
  • LAL Limulus reagent
  • Enspercy registered trademark
  • ES-24S set Seikagaku Corporation
  • the method for treating endotoxin of an ion-crosslinkable polysaccharide is not particularly limited.
  • the endotoxin content of the monovalent metal salt is preferably 500 endotoxin units (EU) / g or less, more preferably 100 EU / g or less, and more preferably 100 EU / g or less, when endotoxin measurement is performed using a Limulus reagent (LAL).
  • LAL Limulus reagent
  • Low endotoxin-treated sodium alginate is commercially available, for example, Sea Matrix (sterilized) (Kimika Co., Ltd. Mochida International), PRONOVA TM UP LVG (FMC), and the like.
  • the endotoxin content of a polysaccharide having a protein or amino group is not limited, but as a result, the endotoxin content of a polysaccharide having a protein or amino group is measured when endotoxin is measured with a Limulus reagent (LAL). 500 endotoxin units (EU) / g or less, more preferably 100 EU / g or less, still more preferably 50 EU / g or less, particularly preferably 30 EU / g or less.
  • EU endotoxin units
  • Such a polysaccharide having a protein or amino group can be obtained by subjecting it to the above endotoxin treatment.
  • the esophageal damage covering composition of some embodiments is a fluid liquid, ie, a solution.
  • the viscosity of the composition of this embodiment is not particularly limited, but is, for example, 5 mPa ⁇ s to 100,000 mPa ⁇ s, preferably 10 mPa ⁇ s to 20000 mPa ⁇ s.
  • Some embodiments of the composition are viscosities that can be applied to the subject, such as with a syringe.
  • the viscosity of the composition is preferably about 10 mPa ⁇ s or more from the viewpoint of adhesion, and preferably about 20000 mPa ⁇ s or less from the viewpoint of ease of handling of the composition, more preferably 2000 mPa ⁇ s to 10000 mPa ⁇ s, 1000 mPa ⁇ s to 5000 mPa ⁇ s, or 10 mPa ⁇ s to 10000 mPa ⁇ s.
  • the viscosity of the composition may be, for example, the concentration of an ionic crosslinkable polysaccharide (eg, alginic acid or derivative thereof), the molecular weight of the ionic crosslinkable polysaccharide (eg, alginic acid or derivative thereof), the M / G of alginic acid or derivative thereof. It can be adjusted by controlling the ratio, the concentration of the polysaccharide having protein or amino group, the molecular weight, temperature, pH, counter ion, etc. of the polysaccharide having protein or amino group.
  • the viscosity of a solution of an ion-crosslinkable polysaccharide is high when the concentration of the ion-crosslinkable polysaccharide (eg, alginate concentration) in the solution is high. It becomes low when the polysaccharide concentration (for example, alginic acid concentration) which can be ion-crosslinked is low. Moreover, when the molecular weight of polysaccharide (for example, alginic acid) which can be ion-crosslinked is large, it becomes high, and when small, it becomes low.
  • an ion-crosslinkable polysaccharide eg, monovalent metal salt of alginic acid or a derivative thereof
  • an aqueous alginate solution of about 1% w / v to 3% w / v may be used.
  • alginic acid having a smaller molecular weight it is necessary to increase the concentration of alginic acid.
  • the viscosity of the aqueous alginate solution can be measured by a known method using, for example, a rotational viscometer (cone plate type) (TVE-20LT, TOKI SANGYO CO., LTD. JAPAN).
  • a known method is, for example, the 16th revision Japanese Pharmacopoeia, General Test Method Viscosity Measurement Method (cone-plate rotational viscometer).
  • the viscosity of a monovalent metal salt solution of alginic acid or a derivative thereof is affected by the M / G ratio, for example, an alginic acid having a preferable M / G ratio can be selected depending on the viscosity of the solution.
  • the M / G ratio of alginic acid used in the present invention is about 0.4 to 4.0, preferably about 0.8 to 3.0, more preferably about 1.0 to 1.6.
  • the type of brown algae used as a raw material affects the viscosity of a solution of a monovalent metal salt of alginic acid or a derivative thereof.
  • the alginic acid used in the present invention is preferably derived from a brown algae of the genus Lessonia, Macrocystis, Laminaria, Ascofilum, Davilia, more preferably a brown alga of the genus Lessonia, particularly preferably Lessonia It is derived from Niscens (Lessonia nigrescens).
  • the viscosity of a protein or polysaccharide solution with amino groups is high when the concentration of the protein or polysaccharide with amino groups is high and the concentration of the protein or polysaccharide with amino groups in the solution is low. Lower. Moreover, it is high when the molecular weight of the polysaccharide having protein or amino group is large, and low when it is small. For example, in order to obtain a viscosity of 400 mPa ⁇ s to 20000 mPa ⁇ s using gelatin having a molecular weight of about 100,000, a gelatin aqueous solution of about 0.5% w / v to 40% w / v can be used. Good.
  • the viscosity of the protein aqueous solution can be measured by a known method using, for example, a rotational viscometer (cone plate type) (TVE-20LT, TOKI SANGYO CO., LTD. JAPAN).
  • a known method is, for example, the 16th revision Japanese Pharmacopoeia, General Test Method Viscosity Measurement Method (cone-plate rotational viscometer).
  • the viscosity of the composition obtained by mixing an ionically crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid) and a polysaccharide having a protein or amino group is the same as that of each solution before mixing, It becomes almost the same as before mixing.
  • the viscosity of one solution before mixing is high, the viscosity of the composition obtained can be lowered
  • the solution of one viscosity before mixing is low, the viscosity of the composition obtained can be raised by mixing the other solution of high viscosity with this. In this way, a viscosity of 5 mPa ⁇ s to 100,000 mPa ⁇ s can be obtained.
  • the mixing method of the component (a) and the component (b) is not particularly limited as long as the component (a) and the component (b) can be mixed uniformly.
  • a mixing method for example, a method using a static mixer, a method using a double syringe, a method of spraying two liquids simultaneously or continuously, a method of spraying two powdery components simultaneously or continuously, a powder And a method of using a mixer for mixing.
  • Static mixer refers to a static mixing device without a drive unit. More specifically, a static mixer usually consists of a tube and a mixing element without a drive fixed in the tube, thereby splitting the flow and diverting or reversing the flow direction, so that the flow is longitudinal. It is a mixing device that mixes fluids by repeating division, conversion and inversion in the horizontal direction. Some types of static mixers are equipped with a jacket for heat exchange on the outer periphery of the tube, and others are equipped with a tube for heat exchange through which the heat medium passes through the mixing element itself. . For details on the static mixer, see, for example, Thakur et al. (2003) Trans IchemE, 81, Part A: 787-826, which can be referred to.
  • the static mixer a known one can be used.
  • the known static mixer include, for example, Kenix type (for example, manufactured by Nordson and Noritake); Kenics (Chemineer Inc.); low pressure drop ( Ross Engineering Inc.); SMV (Koch-Glitsch Inc.); SMXL (Koch-Glitsch Inc.); Interfacial Surface Generator. ); Inliner series 50 (Lightnin Inc.); Inli er series 45 (Lightnin Inc.); Custody transfer mixer ( Komax systems Inc.); and SMR (. Koch-Glitsch, Inc) and the like.
  • the double syringe is a device that has a container for separately filling the components to be mixed and is uniformly mixed and discharged when the components are discharged from the double syringe.
  • double syringe a known one can be used.
  • Examples of known double syringes include those manufactured by Baxter.
  • the static mixer and the double syringe can be a custom product made to mix the composition.
  • the composition for covering an esophageal injury site in some embodiments can be used to prevent esophageal stenosis, for example, in an esophageal injury site of a subject in need of preventing esophageal stenosis.
  • “Applying” means that an esophageal lesion covering material formed from the composition is used so as to cover the esophageal lesion on the surface of the esophagus, and preferably covers the normal esophageal surface in and around the esophageal lesion. Means that it is used in a sufficient amount.
  • esophageal injury part esophageal injury part coating composition
  • target esophageal injury part coating composition
  • Preventing esophageal stricture means that esophageal stricture is completely prevented, or that the formation of esophageal stricture is suppressed as compared to the case where the composition for covering an esophageal lesion is not applied, or It means that the formation of stenosis is delayed.
  • composition for covering an esophageal lesion is used for hemostasis of the esophageal lesion.
  • it is used so as to be applied to an esophageal damaged part of a subject that needs to stop hemostasis of the esophageal damaged part.
  • “Applying” means that an esophageal lesion covering material formed from the composition is used so as to cover the esophageal lesion on the surface of the esophagus, and preferably covers the normal esophageal surface in and around the esophageal lesion. Means that it is used in a sufficient amount.
  • “Stop hemostasis” means that bleeding is completely stopped, or that bleeding is suppressed or hemostasis is accelerated compared to the case where the composition for covering an esophageal injury is not applied.
  • composition for covering an esophageal injury site may be used in combination with other drugs. Specifically, before applying the composition for covering an esophageal lesion to the esophageal lesion, simultaneously with or after, an antibiotic such as streptomycin, penicillin, tobramycin, amikacin, gentamicin, neomycin and amphotericin B, aspirin Non-steroidal antipyretic analgesics (NSAIDs), anti-inflammatory drugs such as acetaminophen, steroidal anti-inflammatory drugs such as triamcinolone acetonide (Kenacort-A), antitumor drugs matomycin C, 5-fluorouracil, etc. A concomitant drug may be administered. These agents may be used by being mixed in the composition for covering an esophageal lesion.
  • Example 1 Preparation of monovalent metal salt of maleimide-modified alginic acid
  • Maleimide-modified alginic acid was prepared as follows. Sodium alginate (I-3G) (Kimika; Kimika Argin High ⁇ G series; viscosity (20 ° C.): 300 to 400 mPa ⁇ s (1% aqueous solution)) 500.0 mg, 0.3 M NaCl (200% eggplant type flask) 100 ml of 0.1M MES buffer (Wako Pure Chemicals No. 349-01623) containing Wako Pure Chemicals No. 191-01665) was added and stirred overnight to dissolve. While stirring, 2.3963 g WSCD / HCl (Peptide Laboratories No.
  • NaHCO 3 solid (Wako Pure Chemicals No. 199-05985) was added to bring the pH to 7.50 and the reaction was stopped. The solution was transferred to a dialysis membrane (6-8 kDa) and dialyzed against NaCl for 3 days. Transfered to water and dialyzed for 5 days. Lyophilization was carried out for 5 days to obtain maleimide-modified alginic acid (Alg-Mal) as a white compound (yield 50%). The modification rate of maleimide modification was 20%.
  • Example 2 Evaluation of tissue adhesion of a material containing a monovalent metal salt of alginic acid and gelatin (test by liquid spray) The tissue adhesiveness of monovalent metal salt (Alg) of high viscosity alginic acid was evaluated. The tissue adhesion of maleimide-modified Alg (Alg-Mal) was also evaluated in the same manner except that 2 wt% Alg-Mal was used instead of 2 wt% Alg (I-3G).
  • the A liquid and the B liquid were prepared as follows.
  • TG powder (90% maltodextrin content, effective TG concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% with respect to the total amount of A solution, was dissolved in the Alg solution and stirred for 30 minutes or more in order to distribute it uniformly.
  • 0.1 wt% of blue food dye Koreanitsu Foods Co., Ltd .; food color blue
  • B 20 wt% gelatin (Nitta Gelatin Co., Ltd .; Japanese Pharmacopoeia Gelatin (manufactured exclusively) GLS250) was placed in pure water and stirred at 50 ° C. until completely dissolved.
  • CaCl 2 Wi Pure Chemicals No. 036-00485 that was 0.1 M with respect to the total amount of B solution was dissolved in the gelatin solution and stirred for 30 minutes or more in order to distribute it uniformly.
  • the washing water was prepared as follows. 0.9% NaCl was dissolved in pure water, 0.1% methyl benzoate was added, and the mixture was stirred until completely dissolved. The resulting solution was sterilized by autoclaving.
  • the porcine esophagus was cut out 2 cm and opened vertically.
  • the mucous membrane was separated from the open esophagus with scissors, the mucosal tissue and the tissue exposing the submucosa were placed on the parafilm, and the weight of each parafilm was measured (W 0 ).
  • W 0 weight of each parafilm was measured.
  • 0.5 mL each of A liquid and B liquid was sprayed simultaneously on the sample using nitrogen gas (4 L / min).
  • the tissue sample to which the material was administered was placed in a 37 ° C. incubator, and gelation was waited for 10 minutes.
  • the esophageal sample was lifted and the gel on the parafilm was washed away with tap water.
  • the esophageal sample was reapplied and the weight was measured (W 1 ).
  • the gel adhering to the mucous membrane and mucosal surface was washed away with 30 mL of water.
  • the weight was measured as 0 hour weight (W 2 ).
  • washing with tap water was repeated 3 to 4 times, and after confirming that the material did not peel off, the gel surface of the sample was directed downward and immersed in 60 mL of washing water. It was placed on a shaker and shaken in a 37 ° C. incubator. A sample was taken out after a certain time, and after wiping off moisture, the weight was measured as the weight of each time (W 2 ).
  • the adhesion to tissue was further improved by maleimide modification. From this, it can be considered that the adhesion time of AlgAlg-Mal becomes 1 to 2 weeks, stays longer in the postoperative site where stenosis is likely to occur, and prevents stenosis more effectively.
  • Example 3 tissue adhesive Evaluation Ca 2+ upon addition of CaSO 4 in the material containing a monovalent metal salt and gelatin alginate escapes with time, the possibility of decomposition is accelerated in the cross-linked alginate verified Therefore, CaSO 4 was added to the material and the tissue adhesion was evaluated.
  • the above solution A and washing water were prepared as described in Example 2.
  • the solution B-2 was prepared as follows. 20 wt% gelatin was put into pure water and stirred at 50 ° C. until completely dissolved. CaCl 2 (Wako Pure Chemicals product number 036-00485) which becomes 0.1M with respect to the total amount of the B-2 solution and CaSO 4 (Wako Pure Chemicals product number 031-00935) which becomes 0.1M with respect to the total amount of the B-2 solution. ) was dissolved in the gelatin solution and stirred for 30 minutes or more in order to distribute it uniformly.
  • Tissue adhesion evaluation was performed in the same procedure as in Example 2, except that the B-2 solution was used instead of the B solution.
  • Example 4 Evaluation of tissue adhesion of a material containing a monovalent metal salt of alginic acid and casein [Material]
  • A-3 2 wt% Alg (I-3G) / 1 wt% TG (effective concentration 0.1 wt%) (+ Blue food dye)
  • B-3 10 wt% casein / 0.1 MCa 2+ 0.5 mL
  • Washing water 0.1% methyl benzoate / 0.9% NaCl
  • the washing water was prepared as described in Example 2, specifically, the A-3 and B-3 liquids as follows.
  • the A-3 solution was prepared as follows. 2 wt% Alg (I-3G) was put into pure water and stirred until dissolved. TG powder (containing 90% maltodextrin, effective TG concentration 0.1 wt%) that is 1 wt% with respect to the total amount of liquid A was dissolved in the Alg solution and stirred for 30 minutes or more in order to distribute it uniformly. In order to make it easy to confirm the material visually, 0.1 wt% of blue food dye for food staining was added.
  • the B-3 solution was prepared as follows.
  • casein (Wako Pure Chemicals product number 03-323271) in pure water, adjust to pH 7.0 with 0.1M NaOH (Wako Pure Chemicals product number 192-07935) while stirring, and continue stirring overnight.
  • the micelle was sufficiently swollen with water to obtain a casein solution.
  • CaCl 2 (Wako Pure Chemicals No. 036-00485), which is 0.1 M based on the total amount of B solution, was dissolved in the casein solution and stirred for 30 minutes or more in order to distribute it uniformly.
  • Tissue adhesion evaluation was performed in the same procedure as in Example 2 except that the A-3 and B-3 solutions were used instead of the A and B solutions.
  • Example 5 Evaluation of tissue adhesion of a material containing a monovalent metal salt of alginic acid and gelatin (test by powder spraying) The tissue adhesiveness of monovalent metal salt (Alg) of high viscosity alginic acid was evaluated.
  • A-5 powder and B-5 liquid were prepared as follows.
  • A-5 powder Alg (I-3G) and gelatin (Sigma G1890) were stirred at a weight ratio of 1:10 using a mixer.
  • the size of the powder was adjusted as follows.
  • the gelatin for spraying was passed through a sieve having a mesh size of 500 ⁇ m, 355 ⁇ m, 180 ⁇ m, 90 ⁇ m and 45 ⁇ m (manufactured by Tokyo Screen Co., Ltd., JIS Z 8801) to control the size of the particles.
  • the particle size is measured using a particle size distribution meter (Parica mini, HORIBA).
  • Solution B-5 CaCl 2 (Wako Pure Chemicals No.
  • the washing water was prepared as follows. 0.9% NaCl was dissolved in pure water, 0.1% methyl benzoate was added, and the mixture was stirred until completely dissolved. The resulting solution was sterilized by autoclaving.
  • porcine esophagus was cut out 2 cm and opened vertically.
  • the mucous membrane was separated from the opened esophagus with scissors, and each esophageal sample exposing the mucosal tissue and submucosa was placed on the parafilm, and the weight of each parafilm was measured. This measured value was regarded as “tissue inherent weight”.
  • the vertical and horizontal lengths of the esophageal sample were measured, and the area was calculated. This calculated value was regarded as “tissue area”.
  • the tissue sample to which the material was administered was placed in a 37 ° C. incubator, and gelation was waited for 10 minutes.
  • the esophageal sample was lifted and the gel on the parafilm was washed away with tap water. After wiping off moisture, the esophageal sample was reapplied and the weight was measured. This measured value was regarded as “weight of tissue after spraying powder and liquid crosslinking agent”.
  • the gel adhering to the mucous membrane and mucosal surface was washed away with 30 mL of water. After wiping off the moisture, the weight was measured as the weight of 0 hours.
  • washing with tap water was repeated 3 to 4 times, and after confirming that the material did not peel off, the gel surface of the sample was directed downward and immersed in 60 mL of washing water. It was placed on a shaker and shaken in a 37 ° C. incubator. A sample was taken out after a certain time, and after wiping off moisture, the weight was measured as the weight of each time.
  • Powder adhesion amount (mg / cm 2 ) (weight of tissue after powder dispersion (mg) ⁇ original weight of tissue (mg)) / tissue area (cm 2 )
  • Gel amount after administration of cross-linking agent (mg / cm 2 ) (weight of tissue after spraying powder and liquid cross-linking agent (mg) ⁇ original weight of tissue (mg)) / tissue area (cm 2 )
  • Material Weight (g) tissue weight at each time point (g) ⁇ tissue original weight (g)
  • Alg (I-3G) absorbs and swells quickly, so it may swell considerably after absorption and become larger than Gela particles. Moreover, Alg (I-3G) is rapidly cross-linked by Ca 2+ , and the outside of the Gela particles is covered with Alg (I-3G), and the contact area between the tissue, solution, or Gela is reduced, and Gela and mucin by TG are reduced. The cross-linking reaction may be slightly reduced. Consistent with this hypothesis is that the adhesion is improved when the Gela particles are larger.
  • Example 6 Evaluation of stenosis after administration of In vivo rat esophageal powder material Evaluation of stenosis after administration of In vivo rat esophageal powder material was performed. [Equipment] Suture: Non-absorbing thread 3-0, 6-0, Absorbing thread 4-0 16G Surfflow Round Diamond File
  • Alg group Alg single administration group: Powder material (A-6-1): Alg (I-3G) 10 mg / animal Liquid cross-linking agent (B-6-1): 0.1 MCa 2+ 0.2 mL / animal
  • Gela group (Gela alone administration group): Powder material (A-6-2): Gelatin 10 mg / animal Liquid cross-linking agent (B-6-2): 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
  • the powder materials (A-6-1) to (A-6-3) were respectively prepared as follows. Powder material (A-6-1): Alg (I-3G) was weighed at 10 mg / animal. Powder material (A-6-2): Gelatin was weighed at 10 mg / animal. Powder material (A-6-3): Alg (I-3G) and Gelatin were stirred at a weight ratio of 1:10 using a mixer.
  • liquid crosslinking agents (B-6-1) to (B-6-3) were specifically prepared as follows.
  • Liquid cross-linking agent (B-6-1) CaCl 2 (Wako Pure Chemicals No. 036-00485) of 0.1 M with respect to the total amount of the solution was placed in pure water and stirred until it was completely dissolved.
  • Liquid cross-linking agent (B-6-3) CaCl 2 (Wako Pure Chemicals No. 036-00485) of 0.1 M with respect to the total amount of the solution was placed in pure water and stirred until it was completely dissolved.
  • TG powder containing 90% maltodextrin, effective TG concentration 0.5 wt%) that is 5 wt% with respect to the total amount of the solution was put into the solution and stirred until it was completely dissolved.
  • the rat abdomen was incised 3 cm in length.
  • the stomach was pulled out from the abdominal incision and placed on the gauze.
  • a cut of about 3 mm was made in the upper part of the stomach with scissors.
  • a file was inserted from the upper cut of the stomach and scrubbed in about 6-7 times in the top, bottom, left and right directions.
  • the file was extracted, and about 15 mm from the stomach was ligated with a 3-0 thread, and the knot was pinched with a pair of pears to fix the surflow.
  • 0.05 w / v% trypsin EDTA was injected and maintained for 1 minute. I released the ligature and pulled out the surf.
  • the file was scrubbed about 6-7 times in each of the vertical and horizontal directions to extract the file. Then, the following treatment was performed in each of the Control group and the material group.
  • Control group The incision of the stomach was sutured with 6-0 non-absorbing thread and closed with 4-0 absorbing thread and 3-0 non-absorbing thread.
  • Material group After administration of powder material with a spraying device, liquid cross-linking agent was injected, the stomach cut was closed, and the abdomen was closed.
  • atipamezole hydrochloride was mixed with 9.25 mL of physiological saline, and 0.5 mL was administered to 100 g of rat body weight as a binding agent for three types of mixed anesthesia, and awakened from anesthesia.
  • Weight change rate (%) [weight at each time point (g) / preoperative weight (g)] ⁇ 100
  • Intake amount (g) [100 g ⁇ remaining amount of food (g)]
  • the body weight decreased until the 5th, and the amount of food consumption increased after that, but the body weight remained almost unchanged.
  • the Gela group gained weight the day after returning to food, but continued to decrease until the day of recovery.
  • Figure 8 shows the esophageal opening rate.
  • the esophageal opening rate on the 14th day after surgery was slightly lower than that on the 7th day.
  • the Alg group and the Alg / Gela group were significantly higher than the esophageal opening rate of the Control group. It is considered that the severity of the esophagus was reduced in the Alg group and the Alg / Gela group.
  • Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
  • Example 7 Histological evaluation of stenosis after administration of In vivo rat esophageal powder material A histological evaluation of stenosis after administration of In vivo rat esophageal powder material was performed.
  • the esophageal sample was prepared as follows. Esophageal specimens were excised from rats euthanized by carbon dioxide and cut in the longitudinal direction with the esophageal epithelium side up.
  • the length of the regenerated epithelium was measured with ImageJ (NIH: ImageJ ver. 1.51) based on the photograph of HE staining, and the reepithelialization rate was calculated. Specifically, the method for calculating the re-epithelialization rate is as follows. The length of the part from which the mucosal muscle was removed was defined as the length of the submucosal exfoliation wound. The length of the portion not covered by the epithelium was defined as the length that was not re-epithelialized.
  • Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
  • the secondary antibody diluted 500 times was placed on the sample and reacted for 1 h. Washed with PBST for 10 min ⁇ 3 times. It dehydrated with 100 v / v% ethanol. Cleared with remozole. A drop of Vectashield mounting agent was added to the slide, and the cover glass was gently pushed to remove excess moisture around it. Coverslip with clear nail police and dry.
  • Example 8 Evaluation of stenosis after administration of an in vivo rat esophageal gel material An evaluation of stenosis after administration of an in vivo rat esophageal gel material was performed.
  • Equipment Suture: Non-absorbing thread 3-0, 6-0, Absorbing thread 4-0 16G Surfflow Round Diamond File
  • Alg group (Alg single administration group): Liquid material (A-8-1): 2 wt% Alg (I-3G) 0.2 mL / animal Liquid cross-linking agent (B-8-1): 12 wt% carboxymethylcellulose (CMC) +0.1 MCa 2+ 0.2 mL / animal
  • Gela group (Gela alone administration group): Liquid material (A-8-2): 20 wt% Gelatin 0.2 mL / animal Liquid cross-linking agent (B-8-2): 12 wt% CMC + 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
  • Alg / Gela group Liquid material (A-8-3): 2 wt% Alg (I-3G) / 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
  • Alg-Mal / Gela group Liquid material (A-8-4): 2 wt% Alg-Mal / 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
  • Alg-Mal / Gela_TA (triamcinolone acetonide) group Liquid material (A-8-5): 2 wt% Alg-Mal / 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
  • the liquid materials (A-8-1) to (A-8-5) were specifically prepared as follows.
  • TG effective concentration 0.5 wt%, Ajinomoto Co., Inc.
  • Liquid material (A-8-4) 2 wt% Alg-Mal was added to pure water and stirred until dissolved.
  • TG effective concentration 0.5 wt%, Ajinomoto Co., Inc.
  • Liquid material (A-8-5) 2 wt% Alg-Mal was added to pure water and stirred until dissolved.
  • TG effective concentration 0.5 wt%, Ajinomoto Co., Inc.
  • liquid crosslinking agents (B-8-1) to (B-8-5) were specifically prepared as follows.
  • Liquid cross-linking agent (B-8-1): 12 wt% CMC was added to pure water and stirred until dissolved.
  • CaCl 2 Wiako Pure Chemicals No. 036-00485
  • Liquid crosslinking agent (B-8-2): 12 wt% CMC was added to pure water and stirred until dissolved.
  • TG effective concentration 0.5 wt%) that was 5 wt% based on the total amount of the B-8-2 solution was dissolved and stirred for 30 minutes or more.
  • Liquid cross-linking agent (B-8-3) 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved.
  • CaCl 2 (Wako Pure Chemicals No. 036-00485), which is 0.1 M based on the total amount of the B-8-3 solution, was dissolved in the gelatin solution and stirred for 30 minutes or more.
  • Liquid cross-linking agent (B-8-4) 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved.
  • CaCl2 (Wako Pure Chemicals product number 036-00485), which becomes 0.1 M with respect to the total amount of the B-8-4 solution, was dissolved in the gelatin solution and stirred for 30 minutes or more.
  • Liquid cross-linking agent (B-8-5) 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved.
  • CaCl2 (Wako Pure Chemicals product number 036-00485), which is 0.1 M based on the total amount of the B-8-5 solution, was dissolved in the gelatin solution and stirred for 30 minutes or more.
  • 400 ⁇ g of TA (Wako 205-10963) was mixed with gelatin solution for 0.2 mL of B-8-5 solution, and stirred for 30 minutes or more.
  • the rat abdomen was incised 3 cm in length.
  • the stomach was pulled out from the abdominal incision and placed on the gauze.
  • a cut of about 3 mm was made in the upper part of the stomach with scissors.
  • a file was inserted from the upper cut of the stomach and scrubbed in about 6-7 times in the top, bottom, left and right directions.
  • the file was extracted, and about 15 mm from the stomach was ligated with a 3-0 thread, and the knot was pinched with a pair of pears to fix the surflow.
  • 0.05 w / v% trypsin EDTA was injected and maintained for 1 minute. I released the ligature and pulled out the surf.
  • the file was scrubbed about 6-7 times in each of the vertical and horizontal directions to extract the file. Then, the following treatment was performed in each of the Control group and the material group.
  • Control group The incision of the stomach was sutured with 6-0 non-absorbing thread and closed with 4-0 absorbing thread and 3-0 non-absorbing thread.
  • Material group Liquid material and liquid cross-linking agent were placed in a 1 mL syringe, injected by surflow, the stomach incision was closed, and the abdomen was closed.
  • atipamezole hydrochloride was mixed with 9.25 mL of physiological saline, and 0.5 mL was administered to 100 g of rat body weight as a binding agent for three types of mixed anesthesia, and awakened from anesthesia.
  • Weight change rate (%) [weight at each time point (g) / preoperative weight (g)] ⁇ 100
  • Food intake (g) [100 g-remaining food (g)]
  • Figure 14 shows the esophageal opening rate.
  • the esophageal opening rate on the 14th day after surgery was slightly lower than that on the 7th day.
  • the Alg group, the Alg / Gela group, the Alg-Mal / Gela group and the Alg-Mal / Gela_TA group It was significantly higher than the esophageal opening rate of the Control group.
  • the Alg group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group it is considered that the severity of esophageal stricture was reduced.
  • Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
  • Example 9 Histological evaluation of stenosis in administration of gel material to in vivo rat esophagus A histological evaluation of stenosis in administration of gel material to in vivo rat esophagus was performed.
  • the esophageal sample was prepared as follows. Esophageal specimens were excised from rats euthanized by carbon dioxide and cut in the longitudinal direction with the esophageal epithelium side up.
  • the length of the regenerated epithelium was measured with ImageJ based on the HE stained photograph, and the re-epithelialization rate was calculated. Specifically, the method for calculating the re-epithelialization rate is as follows. The length of the part from which the mucosal muscle was removed was defined as the length of the submucosal exfoliation wound. The length of the portion not covered by the epithelium was defined as the length that was not re-epithelialized.
  • the Alg group, Gela group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group were all on the 14th day (DAY14) rather than the 7th day (DAY7).
  • Epithelial development was seen.
  • the epithelialization rate was faster in the Alg group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group than in the Gela group, and the Alg-Mal / Gela group was the fastest.
  • Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
  • the secondary antibody diluted 500 times was placed on the sample and reacted for 1 h. Washed with PBST for 10 min ⁇ 3 times. It dehydrated with 100 v / v% ethanol. Cleared with remozole. A drop of Vectashield mounting agent was added to the slide, and the cover glass was gently pushed to remove excess moisture around it. Coverslip with clear nail police and dry.
  • Example 10 Examination of the hemostatic effect of the powder material In order to verify the hemostatic effect of the powder material, an experiment was conducted using a mouse bleeding model. [animal] ICR mouse male 8 weeks old, weight 33-37g [reagent] Saline forceps 3.24 wt% sodium citrate aqueous solution
  • the powder materials (A-10-1) and (A-10-2) were prepared as follows. Powder material (A-10-1): Alg (I-3G) and Gelatin were stirred at a weight ratio of 1:10 using a mixer. Powder material (A-10-2): Alg (I-3G) and Gelatin were stirred at a weight ratio of 1:10 using a mixer.
  • liquid crosslinking agent (B-10-2) was specifically prepared as follows. Liquid cross-linking agent (B-10-2): CaCl 2 (Wako Pure Chemicals No. 036-00485) of 0.1 M with respect to the total amount of the solution was put in pure water and stirred until it was completely dissolved. TG (effective concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% based on the total amount of the solution, was added to the solution and stirred until it was completely dissolved.
  • TG effective concentration 0.5 wt%, Ajinomoto Co., Inc.
  • Control group After incision with a scalpel, no material was administered and bleeding was performed for 3 minutes.
  • Powder group After incision with a scalpel, powder material (A-10-1) was administered to the incision site and allowed to bleed for 3 minutes.
  • Crosslinked group After incision with a scalpel, powder material (A-10-2) was administered to the incision site, and then liquid cross-linking agent (B-10-2) was immediately administered and allowed to bleed for 3 minutes. After 3 minutes, the filter paper was collected, placed in a 50 mL centrifuge tube, and 50 mL pure water was added to hemolyze the blood adhering to the filter paper.
  • 0.1 mL blood was collected from the heart of the mouse after the test using a 1 mL syringe containing 0.1 mL of a 3.24 wt% sodium citrate aqueous solution, and used for preparing a calibration curve when the amount of bleeding was converted.
  • 500 ⁇ L of hemolyzed blood was placed in a microcell, the amount of hemoglobin was measured at an absorbance of 540 nm, and the amount of bleeding was calculated.
  • the amount of bleeding was calculated as follows: blood collected from the heart of a mouse was mixed with 0.01 mL, 0.1 mL, 0.5 mL, and 1 mL in 50 mL of pure water, and the wavelength was 540 nm. Absorbance was measured with an ultraviolet-visible spectrophotometer (JASCO V-630). A calibration curve was drawn based on the measured absorbance and blood loss. The absorbance of each sample was measured and converted into a bleeding amount using a calibration curve.
  • FIG. 18 shows the results of evaluating the amount of bleeding using the absorbance derived from hemoglobin in order to examine the hemostatic effect. It was clarified that the amount of bleeding in the material administration group was significantly reduced compared to the Control group, and the hemostatic effect of Alg / Gelatin was shown. On the other hand, there was no significant difference between the cross-linking agent administration and the non-administration group.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides a composition for coating an injured portion of an esophagus which comprises ionically crosslinkable polysaccharides that are crosslinked with a curing agent, and which is used to coat an injured portion of the esophagus. Thus, a novel composition for coating an injured portion of the esophagus is provided.

Description

食道狭窄防止材料Esophageal stricture prevention material
 本発明は、食道損傷部被覆用組成物などに関する。 The present invention relates to a composition for covering an esophageal damaged part.
 食道は、咽頭と胃の間をつなぐ管であり、食物を咽頭から胃へ送る働きをする。食道の壁は、内側から外側に向かって粘膜、粘膜下層、固有筋層および外膜の4つの層に分かれている。粘膜は、内側から外側に向かって、重層扁平上皮、粘膜固有層、および粘膜筋板の3つの層に分かれている。 The esophagus is a tube that connects the pharynx and stomach, and serves to send food from the pharynx to the stomach. The wall of the esophagus is divided into four layers from the inside toward the outside: the mucosa, the submucosa, the intrinsic muscle layer, and the outer membrane. The mucosa is divided into three layers from the inside to the outside: the stratified squamous epithelium, the lamina propria, and the mucosal lamina.
 食道癌は日本で年間約1万1000人が死亡する癌であり、発見が困難であり、他の消化管臓器と比較して、進行、転移、および再発しやすく治療が困難な癌腫の一つである。食道癌の治療法は手術、内視鏡治療、化学療法、放射線療法の4つに大きく分けられる。特に癌が粘膜内に限局する早期食道癌では、内視鏡治療法である内視鏡的粘膜切除術(EMR)が、スタンダードな治療法となっている。食道の周囲には、心臓や肺などの重要な臓器が存在し、手術は難易度が高く、侵襲が高くなるため、最も低侵襲性で切除可能な内視鏡治療の適応拡大が期待されている。 Esophageal cancer is a cancer that kills about 11,000 people annually in Japan and is difficult to detect, and is a cancer that is more likely to progress, metastasize, recur, and is difficult to treat than other gastrointestinal organs. It is. Esophageal cancer treatment methods can be broadly divided into four categories: surgery, endoscopic treatment, chemotherapy, and radiation therapy. Endoscopic mucosal resection (EMR), which is an endoscopic treatment method, is a standard treatment method particularly for early esophageal cancer in which cancer is confined to the mucosa. There are important organs such as the heart and lungs around the esophagus, and surgery is difficult and highly invasive. Therefore, it is expected to expand the indication of endoscopic treatment that is the least invasive and resectable. Yes.
 近年では、従来のEMR法よりも一度で広い範囲の癌を切除できる内視鏡的粘膜下層剥離術(ESD)が開発され、胃癌に引き続き食道癌にも普及しつつある。ESDは、内視鏡を使用して癌を切除する治療法であり、具体的には、病変の下にある粘膜下層に生理食塩水、ヒアルロン酸(HA)などを注入し、注入により盛り上がった部分をメスなどで剥ぎ取ることにより病変を切除する治療法である。ところが、広範な病変のESD後に生じる潰瘍は大きく、潰瘍に起因する狭窄が問題となる。食道3/4周(亜全周)以上の広範囲切除例では、術後狭窄が高頻度に起こり、術後狭窄の治療が非常に困難で、術後狭窄の治療として頻回の内視鏡的バルーン拡張術を患者は受けなければならず、クオリティ・オブ・ライフ(QOL)の低下を引き起こしてしまう。 In recent years, endoscopic submucosal dissection (ESD) has been developed that can remove a wide range of cancers at a time compared with conventional EMR methods, and is becoming popular for esophageal cancer following gastric cancer. ESD is a treatment method for resecting cancer using an endoscope. Specifically, physiological saline, hyaluronic acid (HA), etc. were injected into the submucosal layer under the lesion, and it was raised by the injection. This is a treatment method in which the lesion is removed by removing the part with a scalpel or the like. However, the ulcer that occurs after ESD of a wide range of lesions is large, and stenosis caused by the ulcer is a problem. In patients with extensive resection of esophagus 3/4 or more (sub-total circumference), postoperative stenosis occurs frequently, and postoperative stenosis is very difficult to treat. Frequent endoscopic treatment for postoperative stenosis Patients must undergo balloon dilatation, causing a reduction in quality of life (QOL).
 食道狭窄の予防方法としてステロイド局注術、その治療法としてバルーン拡張術およびステント留置術が行われている一方、いずれもまだ次のような問題点がある。 While steroid local injection is used as a preventive method for esophageal stricture, and balloon dilation and stent placement are used as treatment methods, all of them still have the following problems.
 ステロイド局注術は複数回の施術が求められ、施術中に筋層までステロイド注射すると、筋層が溶解する可能性があり、遅発性穿孔の恐れがある。また、バルーン拡張術も複数回の施術の必要があるため、食道表面だけではなく、食道表面よりも深いところまで裂けてしまうことにより、痛みと食道穿孔の恐れがある。ステント留置術では既存の食道ステントとして、金属やプラスチック、また近年は生分解性材料によって作られたものが使われている。既往研究により、金属ステントによる穿孔、潰瘍、新しい狭窄の形成、また除去後の狭窄再発率が50%ほどと高く、プラスチックステントは移動の発生率が30%~80%と報告された。また近年は8~10週間程度で分解する生分解性ステントがよく使われているが、炎症、肉芽組織過増殖の高罹患率により、その有効性と安全性はまだ不十分だと指摘されている。 Steroid local injection requires multiple treatments, and injection of steroids into the muscle layer during treatment may cause the muscle layer to dissolve and may cause delayed perforation. In addition, since balloon dilatation requires a plurality of treatments, tearing not only to the surface of the esophagus but also deeper than the surface of the esophagus may cause pain and perforation of the esophagus. In stent placement, existing esophageal stents are made of metal or plastic, and recently made of biodegradable materials. Previous studies have reported metal stent perforations, ulcers, formation of new stenosis, and recurrence rate of stenosis after removal as high as 50%, and plastic stents have a migration rate of 30% to 80%. In recent years, biodegradable stents that degrade in about 8 to 10 weeks are often used, but due to the high prevalence of inflammation and granulation tissue overgrowth, it has been pointed out that their effectiveness and safety are still insufficient. Yes.
 さらに、ESD後に狭窄防止材料を使用する場合、シート状材料は内視鏡のチャンネルを通じて患部までデリバリーするには、高度な技術と長い施術時間が必要になるため、術者側は大きく負担を感じる。 Furthermore, when using a material for preventing stenosis after ESD, it requires a high level of technology and a long operation time to deliver the sheet-like material to the affected area through the endoscope channel. .
 ここで、特許文献1には、薬剤コーティングを有するバルーンが記載され、薬剤コーティングの賦形剤の例としてアルギン酸塩が挙げられ、また、バルーンを適用する例として食道狭窄の処置が挙げられている。また、アルギン酸もしくはその誘導体またはそれらの塩を創傷被覆防止材や癒着防止材として用いることが知られている(特許文献2および3)。また、非特許文献1には、マレイミド修飾アルギン酸誘導体が記載されている。 Here, Patent Document 1 describes a balloon having a drug coating. Examples of excipients for drug coating include alginate, and examples of applying a balloon include treatment of esophageal stricture. . In addition, it is known that alginic acid or a derivative thereof or a salt thereof is used as a wound covering prevention material or an adhesion prevention material (Patent Documents 2 and 3). Non-Patent Document 1 describes maleimide-modified alginic acid derivatives.
米国特許出願公開第2016/0213890号公報US Patent Application Publication No. 2016/0213890 特開2007-75425号公報JP 2007-75425 A 国際公開2016/114355号パンフレットInternational Publication No. 2016/114355 Pamphlet
 このような状況の下、新たな食道損傷部被覆用組成物が求められていた。 Under such circumstances, a new composition for covering the damaged part of the esophagus has been demanded.
 本発明者らは、鋭意検討を重ねた結果、硬化剤で架橋されたイオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)と、任意選択でトランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類とを含む食道損傷部被覆材料が、食道損傷部を被覆するのに適していることなどを見出し、本発明を完成するに至った。 As a result of extensive studies, the present inventors have cross-linked with an ion-crosslinkable polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof) cross-linked with a curing agent, and optionally with transglutaminase. The present inventors have found that an esophageal lesion covering material containing a protein or a polysaccharide having an amino group is suitable for coating an esophageal lesion, and thus completed the present invention.
 本発明は以下のとおりである。[1-1] イオン架橋可能な多糖類を含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、トランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類とともに食道損傷部を被覆するように用いられる、
 食道損傷部被覆用組成物。
[1-2] イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、上記[1-1]に記載の組成物。
[1-3] アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、上記[1-2]に記載の組成物。
[1-4] 修飾がスペーサーを介して行われる、上記[1-3]に記載の組成物。
[1-5] アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、上記[1-2]~[1-4]のいずれか1項に記載の組成物。
[1-6] 硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、上記[1-1]~[1-5]のいずれか1項に記載の組成物。
[1-7] タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、上記[1-1]~[1-6]のいずれか1項に記載の組成物。
[1-8] 組成物が、流動性を有する液体状、または粉末状である、上記[1-1]~[1-7]のいずれか1項に記載の組成物。
[1-9] 組成物が、流動性を有する液体状であり、噴霧により食道損傷部表面に適用する、上記[1-1]~[1-8]のいずれか1項に記載の組成物。
[1-10] 組成物が、粉末状であり、散布により食道損傷部表面に適用する、上記[1-1]~[1-8]のいずれか1項に記載の組成物。
[1-11] 粉末の粒子径が10μm~500μmの範囲である、上記[1-8]または[1-10]に記載の組成物。
[1-12] 他の薬剤と組み合わせて用いられる、上記[1-1]~[1-11]のいずれか1項に記載の組成物。
[1-13] 食道狭窄を防止するのに用いるための、上記[1-1]~[1-12]のいずれか1項に記載の組成物。
The present invention is as follows. [1-1] containing an ionically crosslinkable polysaccharide,
The ion-crosslinkable polysaccharide is cross-linked with a curing agent and used to coat the esophageal lesion with a protein or amino group cross-linked using transglutaminase.
A composition for covering an esophageal lesion.
[1-2] The composition according to [1-1] above, wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof.
[1-3] The composition according to [1-2] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
[1-4] The composition according to [1-3] above, wherein the modification is performed via a spacer.
[1-5] Any one of the above [1-2] to [1-4], wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative. The composition according to item.
[1-6] The above [1-1] to [1], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. The composition according to any one of [5].
[1-7] The composition according to any one of [1-1] to [1-6] above, wherein the protein or polysaccharide having an amino group is gelatin.
[1-8] The composition according to any one of the above [1-1] to [1-7], wherein the composition is in the form of fluid liquid or powder.
[1-9] The composition according to any one of [1-1] to [1-8] above, wherein the composition is in a liquid form having fluidity and is applied to the surface of the esophageal lesion by spraying. .
[1-10] The composition according to any one of [1-1] to [1-8] above, wherein the composition is in a powder form and is applied to the surface of an esophageal injury site by spraying.
[1-11] The composition according to [1-8] or [1-10] above, wherein the particle diameter of the powder is in the range of 10 μm to 500 μm.
[1-12] The composition according to any one of [1-1] to [1-11] above, which is used in combination with another drug.
[1-13] The composition according to any one of [1-1] to [1-12] above, which is used for preventing esophageal stricture.
[2-1] (a)イオン架橋可能な多糖類、および(b)タンパク質またはアミノ基を持つ多糖類を含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆するように用いられる、
 食道損傷部被覆用キット。
[2-2] イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、上記[2-1]に記載のキット。
[2-3] アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、上記[2-2]に記載のキット。
[2-4] 修飾がスペーサーを介して行われる、上記[2-3]に記載のキット。
[2-5] アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、上記[2-2]~[2-4]のいずれか1項に記載のキット。
[2-6] 硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、上記[2-1]~[2-5]のいずれか1項に記載のキット。
[2-7] タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、上記[2-1]~[2-6]のいずれか1項に記載のキット。
[2-8] (a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類が、流動性を有する液体状、または粉末状である、上記[2-1]~[2-7]のいずれか1項に記載のキット。
[2-9] (a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類が流動性を有する液体状であり、(a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類を噴霧により食道損傷部表面に適用する、上記[2-1]~[2-8]のいずれか1項に記載のキット。
[2-10] (a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類が粉末状であり、(a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類を散布により食道損傷部表面に適用する、上記[2-1]~[2-8]のいずれか1項に記載のキット。
[2-11] 粉末の粒子径が10μm~500μmの範囲である、上記[2-8]または[2-10]に記載のキット。
[2-12] さらに、他の薬剤を含む、上記[2-1]~[2-11]のいずれか1項に記載のキット。
[2-13] 食道狭窄を防止するのに用いるための、上記[2-1]~[2-12]のいずれか1項に記載のキット。
[2-1] (a) a polysaccharide capable of ion crosslinking, and (b) a polysaccharide having a protein or an amino group,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Used to cover esophageal lesions with sugars,
Kit for covering the damaged part of the esophagus.
[2-2] The kit according to [2-1] above, wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof.
[2-3] The kit according to [2-2] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
[2-4] The kit according to [2-3] above, wherein the modification is performed via a spacer.
[2-5] Any one of the above [2-2] to [2-4], wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative. Kit according to item.
[2-6] The above [2-1] to [2], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. The kit according to any one of -5].
[2-7] The kit according to any one of [2-1] to [2-6] above, wherein the protein or polysaccharide having an amino group is gelatin.
[2-8] The above [2-1] to [2], wherein (a) the ion-crosslinkable polysaccharide and (b) the protein or the polysaccharide having an amino group are in a liquid or powder form having fluidity. The kit according to any one of [-7].
[2-9] (a) an ion-crosslinkable polysaccharide and (b) a protein or polysaccharide having an amino group is in a liquid form having fluidity, and (a) an ion-crosslinkable polysaccharide and (b) a protein Alternatively, the kit according to any one of [2-1] to [2-8] above, wherein the polysaccharide having an amino group is applied to the surface of the esophageal lesion by spraying.
[2-10] (a) An ion-crosslinkable polysaccharide and (b) a protein or polysaccharide having an amino group are in powder form, (a) an ion-crosslinkable polysaccharide and (b) a protein or amino group The kit according to any one of [2-1] to [2-8] above, wherein the possessed polysaccharide is applied to the surface of the esophageal lesion by spraying.
[2-11] The kit according to [2-8] or [2-10] above, wherein the particle diameter of the powder is in the range of 10 μm to 500 μm.
[2-12] The kit according to any one of [2-1] to [2-11], further comprising another drug.
[2-13] The kit according to any one of [2-1] to [2-12] above, which is used for preventing esophageal stricture.
[3-1] 対象の食道損傷部に、イオン架橋可能な多糖類とタンパク質またはアミノ基を持つ多糖類を適用し、
 イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆する、
 食道損傷部の被覆方法。
[3-2] イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、上記[3-1]に記載の方法。
[3-3] アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、上記[3-2]に記載の方法。
[3-4] 修飾がスペーサーを介して行われる、上記[3-3]に記載の方法。
[3-5] アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、上記[3-2]~[3-4]のいずれか1項に記載の方法。
[3-6] 硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、上記[3-1]~[3-5]のいずれか1項に記載の方法。
[3-7] タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、上記[3-1]~[3-6]のいずれか1項に記載の方法。
[3-8] (a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類が、流動性を有する液体状、または粉末状である、上記[3-1]~[3-7]のいずれか1項に記載の方法。
[3-9] (a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類が流動性を有する液体状であり、(a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類を噴霧により食道損傷部表面に適用する、上記[3-1]~[3-8]のいずれか1項に記載の方法。
[3-10] (a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類が粉末状であり、(a)イオン架橋可能な多糖類および(b)タンパク質またはアミノ基を持つ多糖類を散布により食道損傷部表面に適用する、上記[3-1]~[3-8]のいずれか1項に記載の方法。
[3-11] 粉末の粒子径が10μm~500μmの範囲である、上記[3-8]または[3-10]に記載の方法。
[3-12] さらに他の薬剤を投与する、上記[3-1]~[3-11]のいずれか1項に記載の方法。
[3-13] 食道狭窄を防止する方法である、上記[3-1]~[3-12]のいずれか1項に記載の方法。
[3-1] Applying ion-crosslinkable polysaccharide and protein or amino group-containing polysaccharide to the target esophageal lesion,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Cover the damaged part of the esophagus with sugars,
How to cover esophageal lesions.
[3-2] The method according to [3-1] above, wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof.
[3-3] The method according to [3-2] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
[3-4] The method according to [3-3] above, wherein the modification is performed via a spacer.
[3-5] Any one of [3-2] to [3-4] above, wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative. The method according to item.
[3-6] The above [3-1] to [3], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. The method according to any one of -5].
[3-7] The method according to any one of [3-1] to [3-6] above, wherein the protein or polysaccharide having an amino group is gelatin.
[3-8] The above [3-1] to [3], wherein (a) the ion-crosslinkable polysaccharide and (b) the protein or the polysaccharide having an amino group are in a liquid or powder form having fluidity. The method according to any one of [-7].
[3-9] (a) an ion-crosslinkable polysaccharide and (b) a protein or polysaccharide having an amino group is in a fluid liquid state, (a) an ion-crosslinkable polysaccharide and (b) a protein Alternatively, the method according to any one of [3-1] to [3-8] above, wherein the polysaccharide having an amino group is applied to the surface of the esophageal lesion by spraying.
[3-10] (a) An ion-crosslinkable polysaccharide and (b) a protein or a polysaccharide having an amino group are in powder form, (a) an ion-crosslinkable polysaccharide and (b) a protein or an amino group The method according to any one of [3-1] to [3-8] above, wherein the polysaccharide possessed is applied to the surface of the esophageal lesion by spraying.
[3-11] The method according to [3-8] or [3-10] above, wherein the particle diameter of the powder is in the range of 10 μm to 500 μm.
[3-12] The method according to any one of [3-1] to [3-11] above, wherein another drug is administered.
[3-13] The method according to any one of [3-1] to [3-12] above, which is a method for preventing esophageal stricture.
[4-1] イオン架橋可能な多糖類を含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、食道損傷部を被覆するように用いられる、
 食道損傷部被覆用組成物。
[4-2] イオン架橋可能な多糖類は硬化剤で架橋され、トランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類とともに食道損傷部を被覆するように用いられる、
 上記[4-1]に記載の組成物。
[4-3] イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、上記[4-1]または[4-2]に記載の組成物。
[4-4] アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、上記[4-3]に記載の組成物。
[4-5] 修飾がスペーサーを介して行われる、上記[4-4]に記載の組成物。
[4-6] アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、上記[4-3]~[4-5]のいずれか1項に記載の組成物。
[4-7] 硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、上記[4-1]~[4-6]のいずれか1項に記載の組成物。
[4-8] タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、上記[4-1]~[4-7]のいずれか1項に記載の組成物。
[4-9] 組成物が、流動性を有する液体状、または粉末状である、上記[4-1]~[4-8]のいずれか1項に記載の組成物。
[4-10] 組成物が、流動性を有する液体状であり、噴霧により食道損傷部表面に適用する、上記[4-1]~[4-9]のいずれか1項に記載の組成物。
[4-11] 組成物が、粉末状であり、散布により食道損傷部表面に適用する、上記[4-1]~[4-10]のいずれか1項に記載の組成物。
[4-12] 粉末の粒子径が10μm~500μmの範囲である、上記[4-9]または[4-11]に記載の組成物。
[4-13] 他の薬剤と組み合わせて用いられる、上記[4-1]~[4-12]のいずれか1項に記載の組成物。
[4-14] 止血のための、上記[4-1]~[4-13]のいずれか1項に記載の組成物。
[4-15] 食道狭窄を防止するのに用いるための、上記[4-1]~[4-14]のいずれか1項に記載の組成物。
[4-1] containing an ion-crosslinkable polysaccharide,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to cover the esophageal lesion.
A composition for covering an esophageal lesion.
[4-2] The ion-crosslinkable polysaccharide is cross-linked with a curing agent, and is used so as to cover the esophageal lesion with a protein or amino-group cross-linked using transglutaminase.
The composition according to the above [4-1].
[4-3] The polysaccharide according to [4-1] or [4-2] above, wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof. Composition.
[4-4] The composition according to [4-3] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
[4-5] The composition described in [4-4] above, wherein the modification is performed via a spacer.
[4-6] Any one of [4-3] to [4-5] above, wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative. The composition according to item.
[4-7] The above [4-1] to [4], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. The composition according to any one of -6].
[4-8] The composition according to any one of [4-1] to [4-7] above, wherein the protein or polysaccharide having an amino group is gelatin.
[4-9] The composition according to any one of [4-1] to [4-8] above, wherein the composition is in a liquid form or a powder form having fluidity.
[4-10] The composition according to any one of the above [4-1] to [4-9], wherein the composition is in a liquid form having fluidity and is applied to the surface of the esophageal lesion by spraying. .
[4-11] The composition according to any one of the above [4-1] to [4-10], wherein the composition is in a powder form and is applied to the surface of the esophageal lesion by spraying.
[4-12] The composition according to [4-9] or [4-11] above, wherein the particle diameter of the powder is in the range of 10 μm to 500 μm.
[4-13] The composition according to any one of [4-1] to [4-12] above, which is used in combination with another drug.
[4-14] The composition according to any one of [4-1] to [4-13] above, for hemostasis.
[4-15] The composition according to any one of [4-1] to [4-14] above, which is used for preventing esophageal stricture.
[5-1] イオン架橋可能な多糖類を含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、架橋したイオン架橋可能な多糖類により食道損傷部を被覆するように用いられる、
 食道損傷部被覆用キット。
[5-2] タンパク質またはアミノ基を持つ多糖類をさらに含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆するように用いられる、
 上記[5-1]に記載のキット。
[5-3] イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、上記[5-1]または[5-2]に記載のキット。
[5-4] アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、上記[5-3]に記載のキット。
[5-5] 修飾がスペーサーを介して行われる、上記[5-4]に記載のキット。
[5-6] アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、上記[5-3]~[5-5]のいずれか1項に記載のキット。
[5-7] 硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、上記[5-1]~[5-6]のいずれか1項に記載のキット。
[5-8] タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、上記[5-1]~[5-7]のいずれか1項に記載のキット。
[5-9] イオン架橋可能な多糖類が、流動性を有する液体状、または粉末状である、上記[5-1]~[5-8]のいずれか1項に記載のキット。
[5-10] イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類が流動性を有する液体状であり、イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類を噴霧により食道損傷部表面に適用する、上記[5-1]~[5-9]のいずれか1項に記載のキット。
[5-11] イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類が粉末状であり、イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類を散布により食道損傷部表面に適用する、上記[5-1]~[5-10]のいずれか1項に記載のキット。
[5-12] 粉末の粒子径が10μm~500μmの範囲である、上記[5-9]または[5-11]に記載のキット。
[5-13] 他の薬剤と組み合わせて用いられる、上記[5-1]~[5-12]のいずれか1項に記載のキット。
[5-14] 止血のための、上記[5-1]~[5-13]のいずれか1項に記載のキット。
[5-15] 食道狭窄を防止するのに用いるための、上記[5-1]~[5-14]のいずれか1項に記載のキット。
[5-1] containing an ion-crosslinkable polysaccharide,
The ionic crosslinkable polysaccharide is cross-linked with a curing agent and is used to cover the esophageal lesion with the cross-linked ionic crosslinkable polysaccharide.
Kit for covering the damaged part of the esophagus.
[5-2] Further comprising a protein or a polysaccharide having an amino group,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Used to cover esophageal lesions with sugars,
The kit according to [5-1] above.
[5-3] The above-mentioned [5-1] or [5-2], wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof. kit.
[5-4] The kit according to [5-3] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
[5-5] The kit according to [5-4] above, wherein the modification is performed via a spacer.
[5-6] Any one of the above [5-3] to [5-5], wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative. Kit according to item.
[5-7] The above [5-1] to [5], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. The kit according to any one of -6].
[5-8] The kit according to any one of [5-1] to [5-7] above, wherein the polysaccharide having protein or amino group is gelatin.
[5-9] The kit according to any one of [5-1] to [5-8] above, wherein the ion-crosslinkable polysaccharide is in a liquid form or a powder form having fluidity.
[5-10] Ionically crosslinkable polysaccharide, and if present, a protein or polysaccharide having an amino group is in a liquid form with fluidity, and ionically crosslinkable polysaccharide, and if present, protein Alternatively, the kit according to any one of [5-1] to [5-9] above, wherein the polysaccharide having an amino group is applied to the surface of the esophageal lesion by spraying.
[5-11] The ionic crosslinkable polysaccharide, and if present, the protein or polysaccharide having an amino group is in powder form, and the ionic crosslinkable polysaccharide, and if present, the protein or amino group The kit according to any one of [5-1] to [5-10] above, wherein the possessed polysaccharide is applied to the surface of the esophageal lesion by spraying.
[5-12] The kit according to [5-9] or [5-11] above, wherein the particle diameter of the powder is in the range of 10 μm to 500 μm.
[5-13] The kit according to any one of [5-1] to [5-12] above, which is used in combination with another drug.
[5-14] The kit according to any one of [5-1] to [5-13] above for hemostasis.
[5-15] The kit according to any one of [5-1] to [5-14] above, which is used for preventing esophageal stricture.
[6-1] 対象の食道損傷部に、イオン架橋可能な多糖類を適用し、
 イオン架橋可能な多糖類は硬化剤で架橋され、架橋したイオン架橋可能な多糖類により食道損傷部を被覆する、
 食道損傷部の被覆方法。
[6-2] 対象の食道損傷部に、タンパク質またはアミノ基を持つ多糖類をさらに適用し、
 イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆する、
 上記[6-1]に記載の方法。
[6-3] イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、上記[6-1]または[6-2]に記載の方法。
[6-4] アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、上記[6-3]に記載の方法。
[6-5] 修飾がスペーサーを介して行われる、上記[6-4]に記載の方法。
[6-6] アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、上記[6-3]~[6-5]のいずれか1項に記載の方法。
[6-7] 硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、上記[6-1]~[6-6]のいずれか1項に記載の方法。
[6-8] タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、上記[6-1]~[6-7]のいずれか1項に記載の方法。
[6-9] イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類が、流動性を有する液体状、または粉末状である、上記[6-1]~[6-8]のいずれか1項に記載の方法。
[6-10] イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類、流動性を有する液体状であり、イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類が噴霧により食道損傷部表面に適用する、上記[6-1]~[6-9]のいずれか1項に記載の方法。
[6-11] イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類が粉末状であり、イオン架橋可能な多糖類、および存在する場合にはタンパク質またはアミノ基を持つ多糖類を散布により食道損傷部表面に適用する、上記[6-1]~[6-10]のいずれか1項に記載の方法。
[6-12] 粉末の粒子径が10μm~500μmの範囲である、上記[6-9]または[6-11]に記載の方法。
[6-13] さらに他の薬剤を投与する、上記[6-1]~[6-12]のいずれか1項に記載の方法。
[6-14] 止血する方法である、上記[6-1]~[6-13]のいずれか1項に記載の方法。
[6-15] 食道狭窄を防止する方法である、上記[6-1]~[6-14]のいずれか1項に記載の方法。
[6-1] Applying ion-crosslinkable polysaccharide to the target esophageal lesion,
The ionically crosslinkable polysaccharide is crosslinked with a curing agent, and the esophageal lesion is covered with the crosslinked ionically crosslinkable polysaccharide.
How to cover esophageal lesions.
[6-2] Further applying a protein or a polysaccharide having an amino group to the target esophageal lesion,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Cover the damaged part of the esophagus with sugars,
The method according to [6-1] above.
[6-3] The above-mentioned [6-1] or [6-2], wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, a derivative thereof, and a salt thereof. Method.
[6-4] The method according to [6-3] above, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
[6-5] The method described in [6-4] above, wherein the modification is performed via a spacer.
[6-6] Any one of the above [6-3] to [6-5], wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, sodium salt of alginic acid derivative, or potassium salt of alginic acid derivative. The method according to item.
[6-7] The above [6-1] to [6], wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. The method according to any one of -6].
[6-8] The method according to any one of [6-1] to [6-7] above, wherein the protein or polysaccharide having an amino group is gelatin.
[6-9] The above-mentioned [6-1] to [6], wherein the ion-crosslinkable polysaccharide and the polysaccharide having a protein or amino group, if present, are in a liquid or powder form having fluidity. The method according to any one of [8].
[6-10] Ionically crosslinkable polysaccharide, and if present, a polysaccharide having a protein or amino group, a fluid liquid, ionically crosslinkable polysaccharide, and a protein if present Alternatively, the method according to any one of [6-1] to [6-9] above, wherein the polysaccharide having an amino group is applied to the surface of the esophageal lesion by spraying.
[6-11] The ion-crosslinkable polysaccharide, and if present, the protein or polysaccharide having an amino group is in powder form, and the ion-crosslinkable polysaccharide, and if present, the protein or amino group The method according to any one of [6-1] to [6-10] above, wherein the polysaccharide possessed is applied to the surface of the esophageal lesion by spraying.
[6-12] The method described in [6-9] or [6-11] above, wherein the particle diameter of the powder is in the range of 10 μm to 500 μm.
[6-13] The method according to any one of [6-1] to [6-12] above, wherein another drug is administered.
[6-14] The method according to any one of [6-1] to [6-13] above, which is a method for hemostasis.
[6-15] The method according to any one of [6-1] to [6-14] above, which is a method for preventing esophageal stricture.
 本発明によれば、食道損傷部被覆用組成物が提供される。 According to the present invention, a composition for covering an esophageal lesion is provided.
食道損傷部被覆用組成物を適用した食道損傷部と、治癒後の食道表面を示す図である。(A)食道損傷部にゲル材料投与、(B)食道損傷部に粉体材料投与、(C)治癒後の食道表面。It is a figure which shows the esophageal damage part to which the composition for esophageal damage part coating | cover is applied, and the esophageal surface after healing. (A) Gel material administration to esophageal injury site, (B) Powder material administration to esophageal injury site, (C) Esophageal surface after healing. 正常粘膜および粘膜下層での各材料の組織接着性評価の結果を示す図である。(A)Alg-Malを含む材料とAlgを含む材料の各接着時間(横軸)における接着率(縦軸)を示すグラフ、(B)Alg-Malを含む材料を適用した10日目の正常粘膜と13日目の粘膜下層の写真。It is a figure which shows the result of the tissue adhesiveness evaluation of each material in a normal mucous membrane and a submucosa. (A) Graph showing the adhesion rate (vertical axis) at each bonding time (horizontal axis) of the material containing Alg-Mal and the material containing Alg, (B) Normal on the 10th day when the material containing Alg-Mal was applied Photo of mucous membrane and 13th day submucosa. 正常粘膜および粘膜下層での各材料の組織接着性評価の結果を示す図である。(A)CaSOを添加したとき、または添加しないときのAlgを含む材料の各接着時間(横軸)における接着率(縦軸)を示すグラフ、(B)Algを含む材料を適用した5日目の正常粘膜と4日目の粘膜下層の写真。It is a figure which shows the result of the tissue adhesiveness evaluation of each material in a normal mucous membrane and a submucosa. (A) Graph showing the adhesion rate (vertical axis) at each adhesion time (horizontal axis) of the material containing Alg when CaSO 4 is added or not added, (B) 5 days when the material containing Alg is applied Photographs of the normal mucosa of the eye and the submucosa of the fourth day. 正常粘膜および粘膜下層でのGela粒子サイズ45~90μmの場合の材料の組織接着性評価の結果を示す図である。It is a figure which shows the result of the tissue adhesiveness evaluation of the material in the case of Gela particle size 45-90 μm in normal mucosa and submucosa. 正常粘膜および粘膜下層でのGela粒子サイズ90~180μmの場合の材料の組織接着性評価の結果を示す図である。It is a figure which shows the result of the tissue adhesiveness evaluation of the material in the case of Gela particle size 90-180 μm in normal mucosa and submucosa. In vivoラット食道粉体材料投与の狭窄評価の結果を示す図である(体重変化率)。It is a figure which shows the result of the stenosis evaluation of in vivo rat esophageal powder material administration (weight change rate). In vivoラット食道粉体材料投与の狭窄評価の結果を示す図である(摂餌量変化)。It is a figure which shows the result of the stenosis evaluation of in vivo rat esophageal powder material administration (feeding quantity change). In vivoラット食道粉体材料投与の狭窄評価の結果を示す図である(食道開通率)。It is a figure which shows the result of stenosis evaluation of in vivo rat esophageal powder material administration (esophageal patency rate). In vivoラット食道粉体材料投与の狭窄評価の結果を示す図である(HE染色)。It is a figure which shows the result of stenosis evaluation of In vivo rat esophageal powder material administration (HE dyeing | staining). In vivoラット食道粉体材料投与の狭窄評価の結果を示す図である(Sirius red染色)。It is a figure which shows the result of stenosis evaluation of in vivo rat esophageal powder material administration (Sirius red staining). In vivoラット食道粉体材料投与の狭窄評価の結果を示す図である(α-SMA染色)。It is a figure which shows the result of the stenosis evaluation of in vivo rat esophageal powder material administration (α-SMA staining). In vivoラット食道ゲル材料投与の狭窄評価の結果を示す図である(体重変化率)。It is a figure which shows the result of the stenosis evaluation of in vivo rat esophageal gel material administration (weight change rate). In vivoラット食道ゲル材料投与の狭窄評価の結果を示す図である(摂餌量変化)。It is a figure which shows the result of the stenosis evaluation of In vivo rat esophageal gel material administration (feeding amount change). In vivoラット食道ゲル材料投与の狭窄評価の結果を示す図である(食道開通率)。It is a figure which shows the result of stenosis evaluation of in vivo rat esophageal gel material administration (esophageal patency rate). In vivoラット食道ゲル材料投与の狭窄評価の結果を示す図である(HE染色)。It is a figure which shows the result of stenosis evaluation of In vivo rat esophageal gel material administration (HE dyeing | staining). In vivoラット食道ゲル材料投与の狭窄評価の結果を示す図である(Sirius red染色)。It is a figure which shows the result of the stenosis evaluation of in vivo rat esophageal gel material administration (Sirius red dyeing | staining). In vivoラット食道ゲル材料投与の狭窄評価の結果を示す図である(α-SMA染色)。It is a figure which shows the result of the stenosis evaluation of in vivo rat esophageal gel material administration ((alpha) -SMA dyeing | staining). In vivo粉体材料の止血効果の結果を示す図である。It is a figure which shows the result of the hemostatic effect of In vivo powder material.
 以下、本発明を詳細に説明するが、以下の実施の形態は本発明を説明するための例示であり、本発明はその要旨を逸脱しない限りさまざまな形態で実施することができる。 Hereinafter, the present invention will be described in detail. The following embodiments are examples for explaining the present invention, and the present invention can be implemented in various forms without departing from the gist thereof.
1.概要
 ここでは、イオン架橋可能な多糖類を含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、食道損傷部を被覆するように用いられる、
 食道損傷部被覆用組成物が提供される。
 いくつかの態様の食道損傷部被覆用組成物は、イオン架橋可能な多糖類を含み、
 イオン架橋可能な多糖類は硬化剤で架橋され、トランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類とともに食道損傷部を被覆するように用いられる。
1. Overview This includes ionic crosslinkable polysaccharides,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to cover the esophageal lesion.
An esophageal lesion coating composition is provided.
The esophageal lesion coating composition of some embodiments comprises an ionically crosslinkable polysaccharide,
The ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to coat the esophageal lesion along with the protein or amino group-crosslinked polysaccharide using transglutaminase.
 この態様の食道損傷部被覆用組成物の概要を、図1を参照しながら、Ca2+で架橋されたマレイミド修飾アルギン酸を、トランスグルタミナーゼを用いて架橋されたゼラチンとともに食道損傷部を被覆するように用いる場合を例に挙げて説明する。 An outline of the composition for coating an esophageal lesion in this embodiment is described with reference to FIG. 1 so that maleimide-modified alginic acid crosslinked with Ca 2+ is coated with gelatin crosslinked with transglutaminase. The case where it is used will be described as an example.
 図1(A)は、マレイミド修飾アルギン酸とトランスグルタミナーゼを含む溶液(「Alg-Mal/TG」)とゼラチンとCa2+を含む溶液(Gela/Ca2+)を一緒に噴霧することにより食道損傷部に適用し、食道損傷部で、マレイミド修飾アルギン酸をCa2+で架橋し、ゼラチンをトランスグルタミナーゼを用いて架橋した様子を示すものである。
 一方、図1(B)は、アルギン酸とゼラチンを含む粉末(「Alg/Gelatin Powder」)を散布により、トランスグルタミナーゼとCa2+を含む架橋剤溶液(「TG/Ca2+ Crosslinking agent」を噴霧により食道損傷部に適用し、食道損傷部で、アルギン酸をCa2+で架橋し、ゼラチンをトランスグルタミナーゼを用いて架橋した様子を示すものである。
 食道損傷部は、食道損傷部被覆用組成物から形成される材料で被覆されている。ここで、本明細書中、食道損傷部被覆用組成物から形成される材料を「食道損傷部被覆材料」という場合がある。
FIG. 1 (A) shows that a solution containing maleimide-modified alginic acid and transglutaminase (“Alg-Mal / TG”) and a solution containing gelatin and Ca 2+ (Gela / Ca 2+ ) are sprayed together to esophageal lesions. When applied, maleimide-modified alginic acid is cross-linked with Ca 2+ and gelatin is cross-linked with transglutaminase at the esophageal lesion.
On the other hand, FIG. 1 (B) shows an esophagus by spraying a powder containing alginic acid and gelatin (“Alg / Gelatin Powder”) and spraying a cross-linking agent solution containing “transglutaminase and Ca 2+ ” (“TG / Ca 2+ Crosslinking agent”). It is applied to an injured part, and shows a state in which alginic acid is cross-linked with Ca 2+ and gelatin is cross-linked with transglutaminase in the esophageal injured part.
The esophageal lesion is covered with a material formed from the composition for covering an esophageal lesion. Here, in this specification, the material formed from the composition for covering an esophageal lesion may be referred to as “esophageal lesion covering material”.
 正常の食道粘膜上皮表面には食道腺細胞より分泌した上皮性、分泌型の酸性ムチン(スルホムチン)が存在している。また、このムチン(Mucin)は、多くのO-結合オリゴ糖鎖(セリン・スレオニン結合型糖鎖)を有する一つの中心領域と、その中心領域の両側に隣接するシステインがたくさん存在する2つのサブドメイン(Cysteine rich領域)を含む粘膜糖タンパク質から成り、その粘膜糖タンパク質の一次構造中に含むシステインは10%を超えている(Immunol Rev.(2014)260(1),p8-20.doi:10.1111/imr.12182.)。この粘膜糖タンパク質のCysteine rich領域に、ムチンモノマーが結合してジスルフィド結合により粘膜ゲル層の三次元ネットワークが構築される。また、ムチンには、グルタミン残基やリジン残基が多く含まれていることが知られている。 There is epithelial and secreted acidic mucin (sulfomucin) secreted from esophageal gland cells on the normal esophageal mucosal epithelial surface. In addition, this mucin is composed of one central region having many O-linked oligosaccharide chains (serine / threonine-linked sugar chains) and two sub-sites having many cysteines adjacent to both sides of the central region. It consists of a mucosal glycoprotein containing a domain (Cysteine rich region), and the cysteine contained in the primary structure of the mucosal glycoprotein exceeds 10% (Immunol Rev. (2014) 260 (1), p8-20.doi: 10.1111 / imr.12182.). A mucin monomer binds to the Cystein rich region of this mucosal glycoprotein, and a three-dimensional network of mucosal gel layers is constructed by disulfide bonds. Moreover, it is known that mucin contains many glutamine residues and lysine residues.
 一方、食道損傷部においては、食道の表面に露出した粘膜下層にコラーゲン(「Collagen」)が豊富に存在する。 On the other hand, in the esophageal lesion, collagen (“Collagen”) is abundant in the submucosal layer exposed on the surface of the esophagus.
 ゼラチン(「Gela」)はコラーゲンを変性させたものであり、加熱時にゾル状態冷却すると部分的に三重らせん構造になりゲル化する。その生体親和性、細胞親和性が高く、生分解性を有することから組織工学用の足場材料やドラックデリバリーシステム(DDS)用のキャリアーとしての利用が期待されている。しかし、冷却により作製したゼラチン溶液は生体内温度である37℃環境下では容易にゾル状態へと相転移することから、ゼラチン分子同士を共有結合的に架橋することで、その強度を向上させるのが望ましい。 Gelatin (“Gela”) is a denatured collagen, and when it is cooled in a sol state during heating, it partially becomes a triple helical structure and gels. Because of its high biocompatibility and cell affinity and biodegradability, it is expected to be used as a scaffold material for tissue engineering and a carrier for a drug delivery system (DDS). However, the gelatin solution prepared by cooling easily transitions to the sol state at 37 ° C. which is the in-vivo temperature. Therefore, the gelatin molecule is covalently cross-linked to improve its strength. Is desirable.
 トランスグルタミナーゼ(TG)はタンパク質あるいはペプチドに含まれるグルタミン残基とリジン残基を結合させる酵素である。ゼラチンは固有のグルタミン残基及びリジン残基を有するため、ハイドロゲルを作成することが可能である。食道損傷部において食道の表面に露出した粘膜下層ではコラーゲンが豊富であるので、このコラーゲンがゼラチンとTGによって架橋されることで、食道損傷部被覆材料が創傷部位に接着することができる。さらに、適切なTG投与量およびハイドロゲル濃度を選択することにより、細胞接着性だけでなく、細胞移動も促進できる。これにより、トランスグルタミナーゼを用いて架橋されたゼラチン(Gela/TG)はESD後粘膜上皮層の治癒過程を促進することができる。また、正常の食道粘膜上皮表面のムチンにも、前述の通りグルタミン残基やリジン残基が含まれているため、このムチンがゼラチンとTGによって架橋されることで、食道損傷部被覆材料が創傷部位の周囲の正常の粘膜層にも接着することができる。 Transglutaminase (TG) is an enzyme that binds glutamine and lysine residues contained in proteins or peptides. Since gelatin has unique glutamine and lysine residues, hydrogels can be made. Since the collagen layer is abundant in the submucosal layer exposed on the surface of the esophagus at the esophageal injury site, the collagen is cross-linked by gelatin and TG, whereby the esophageal injury site covering material can adhere to the wound site. Furthermore, not only cell adhesion but also cell migration can be promoted by selecting an appropriate TG dose and hydrogel concentration. Thereby, gelatin cross-linked with transglutaminase (Gela / TG) can promote the healing process of the mucosal epithelial layer after ESD. In addition, since the mucin on the surface of normal esophageal mucosa also contains glutamine residues and lysine residues as described above, the mucin is cross-linked by gelatin and TG, so that the esophageal lesion covering material is wounded. It can also adhere to the normal mucosal layer around the site.
 アルギン酸はD-マンヌロン酸とL-グルロン酸の2種から構成するポリマーであり、生体適合性が高く、炎症反応を悪化させないとされている。また、アルギン酸の1価金属塩(「Alg」)にCa2+を添加するとEgg Box Junctionが形成しゲル化する。また、アルギン酸の1価金属塩は創を速く上皮化させる創傷被覆材としての効果のほかに、止血材としての効果も期待できる。さらに、アルギン酸の1価金属塩のうちアルギン酸ナトリウムは胃や食道の粘膜に付着して、胃液・食物などの攻撃から粘膜を保護する役割を果たし、且つ、胃生検の出血時の止血にも用いられる消化性潰瘍用剤(商品名:アルロイドG)としても使用されている。 Alginic acid is a polymer composed of two kinds of D-mannuronic acid and L-guluronic acid, and is considered to have high biocompatibility and does not worsen the inflammatory reaction. Further, when Ca 2+ is added to a monovalent metal salt of alginic acid (“Alg”), an Egg Box Junction is formed and gelled. In addition, the monovalent metal salt of alginic acid can be expected to have an effect as a hemostatic material in addition to the effect as a wound dressing material that rapidly epithelizes the wound. Furthermore, of the monovalent metal salt of alginic acid, sodium alginate adheres to the mucous membranes of the stomach and esophagus and plays a role in protecting the mucous membranes from attacks such as gastric juice and food. It is also used as a peptic ulcer agent (trade name: Alloid G).
 ここで、正常の食道粘膜上皮表面のムチンに存在するシステイン残基は、前述の通り、10%を超える。マレイミド官能基はマイケル付加反応を介してタンパク質表面に存在するシステイン残基に対する高い反応性を持っているため、マレイミド修飾アルギン酸を用いることで、チオール-マレイミド反応によって正常粘膜内のシステインと結合し、食道損傷部被覆材料の食道粘膜への接着性を向上させることができる。 Here, the cysteine residue present in the mucin on the surface of normal esophageal mucosa exceeds 10% as described above. Since the maleimide functional group has a high reactivity to the cysteine residue present on the protein surface via the Michael addition reaction, by using maleimide-modified alginic acid, it binds to cysteine in normal mucosa by thiol-maleimide reaction, The adhesiveness of the esophageal damaged part coating material to the esophageal mucosa can be improved.
 以上のことから、食道損傷部被覆用組成物から形成させる食道損傷部被覆材料は、食道損傷部を被覆するよう用いることができる。食道の蠕動運動があること、食物や唾液が通過すること、粘膜への接着が難しいこと、などから材料を食道損傷部に固着するのが難点であったところ、好ましい態様の食道損傷部被覆用組成物から形成させる食道損傷部被覆材料は、そのような食道損傷部に良好に固着させることができる。 From the above, the esophageal damaged part coating material formed from the composition for covering an esophageal damaged part can be used to cover the esophageal damaged part. It was difficult to fix the material to the damaged part of the esophagus due to the peristaltic movement of the esophagus, the passage of food and saliva, the difficulty of adhesion to the mucous membrane, etc. The esophageal lesion covering material formed from the composition can be well adhered to such esophageal lesions.
 図1(C)は、治癒後の食道表面を示す図である。さらに好ましい態様の食道損傷部被覆用組成物から形成させる食道損傷部被覆材料は、図1(C)に示す治癒後の食道表面のように、食道損傷部での潰瘍の形成を抑制することができ、これにより食道の狭窄を防止することができる。 FIG. 1 (C) is a diagram showing the surface of the esophagus after healing. Furthermore, the esophageal damage part coating material formed from the composition for covering an esophageal damage part suppresses the formation of ulcers in the esophageal damage part, like the esophageal surface after healing shown in FIG. This can prevent stricture of the esophagus.
2.食道損傷部
 「食道」は、咽頭と胃の間をつなぐ管であり、食物を咽頭から胃へ送る働きをする。食道の壁は、内側から外側に向かって粘膜、粘膜下層、固有筋層および外膜の4つの層に分かれている。粘膜は、内側から外側に向かって、重層扁平上皮、粘膜固有層、および粘膜筋板の3つの層に分かれている。
2. Esophageal lesion "Esophagus" is a tube that connects the pharynx and stomach and serves to send food from the pharynx to the stomach. The wall of the esophagus is divided into four layers from the inside toward the outside: the mucosa, the submucosa, the intrinsic muscle layer, and the outer membrane. The mucosa is divided into three layers from the inside to the outside: the stratified squamous epithelium, the lamina propria, and the mucosal lamina.
 食道損傷部被覆材料を適用する「食道損傷部」は、食道の損傷を被った部分である。 “Esophageal damaged part” to which the esophageal damaged part coating material is applied is a part that has suffered esophageal damage.
 食道の損傷には、例えば、食道癌の切除に伴う食道の損傷、誤飲に伴う食道の損傷、胃酸逆流に伴う食道の損傷、内視鏡検査時の偶発的損傷、および酸、アルカリもしくは薬物による腐食性食道炎に伴う食道の損傷などが含まれる。いくつかの態様では、食道の損傷は、食道癌の切除に伴う食道の損傷である。食道癌の切除は、例えば、外科手術、および内視鏡的治療による食道癌の切除である。 Esophageal damage includes, for example, esophageal damage associated with resection of esophageal cancer, esophageal damage due to accidental ingestion, esophageal damage due to acid reflux, accidental damage during endoscopy, and acids, alkalis or drugs This includes damage to the esophagus caused by corrosive esophagitis. In some embodiments, the esophageal injury is esophageal injury associated with resection of esophageal cancer. Resection of esophageal cancer is, for example, resection of esophageal cancer by surgery and endoscopic treatment.
 内視鏡的治療は、例えば、内視鏡的粘膜下層剥離術(ESD)、および内視鏡的粘膜切除術(EMR)である。いくつかの態様では、内視鏡的治療は、ESDである。 Endoscopic treatment is, for example, endoscopic submucosal dissection (ESD) and endoscopic mucosal resection (EMR). In some aspects, the endoscopic treatment is ESD.
 食道の「損傷」は、食道の粘膜、粘膜下層、固有筋層、および外膜の少なくとも1つが損傷することであり、例えば、(i)食道の粘膜の損傷、(ii)食道の粘膜および粘膜下層の損傷、(iii)食道の粘膜、粘膜下層および固有筋層の損傷、ならびに(iv)食道の粘膜、粘膜下層、固有筋層、および外膜の損傷が含まれる。いくつかの態様では、食道の「損傷」は、(ii)食道の粘膜および粘膜下層の損傷であり、粘膜下層が食道表面に露出している。 Esophageal “damage” is damage to at least one of the mucosa, submucosa, intrinsic muscle layer, and outer membrane of the esophagus, such as (i) damage to the esophageal mucosa, (ii) mucosa and mucosa of the esophagus. Including submucosal damage, (iii) esophageal mucosa, submucosa and proper muscle layer damage, and (iv) esophageal mucosa, submucosa, proper muscle layer, and adventitia damage. In some embodiments, esophageal “damage” is (ii) damage to the mucosa and submucosa of the esophagus, where the submucosa is exposed on the surface of the esophagus.
 いくつかの態様では、食道損傷部は、ESD後の食道損傷部であり、これは、食道の粘膜および粘膜下層の損傷を被った部分であり、粘膜下層が食道表面に露出している。 In some embodiments, the esophageal lesion is a post-ESD esophageal lesion, which is a damaged portion of the esophagus mucosa and submucosa, and the submucosa is exposed on the surface of the esophagus.
3.食道損傷部被覆用組成物
 ここでは、食道損傷部被覆用組成物が提供される。食道損傷部被覆用組成物は、イオン架橋可能な多糖類を含み、イオン架橋可能な多糖類は硬化剤で架橋され、食道損傷部を被覆するように用いられる。いくつかの態様の食道損傷部被覆用組成物は、イオン架橋可能な多糖類を含み、イオン架橋可能な多糖類は硬化剤で架橋され、トランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類とともに食道損傷部を被覆するように用いられる。食道損傷部被覆用組成物は、アルギン酸またはその誘導体の1価金属塩を含んでよく、アルギン酸またはその誘導体の1価金属塩は硬化剤で架橋され、トランスグルタミナーゼを用いて架橋されたタンパク質とともに食道損傷部を被覆するように用いられてよい。
3. Esophageal lesion covering composition Here, an esophageal lesion covering composition is provided. The composition for covering an esophageal lesion includes an ion-crosslinkable polysaccharide, and the ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to cover the esophageal lesion. In some embodiments, the composition for covering an esophageal lesion includes an ionic crosslinkable polysaccharide, the ionic crosslinkable polysaccharide is cross-linked with a curing agent and has a protein or amino group cross-linked using transglutaminase. Used to cover esophageal lesions with polysaccharides. The composition for covering an esophageal lesion may contain a monovalent metal salt of alginic acid or a derivative thereof, and the monovalent metal salt of alginic acid or a derivative thereof is crosslinked with a curing agent, and the esophagus together with a protein crosslinked using transglutaminase. It may be used to cover the damaged part.
 また、食道損傷部被覆用組成物を、食道損傷部の被覆を必要とする対象に適用することを含む、食道損傷部被覆方法が提供される。より具体的には、食道損傷部の被覆方法は、対象の食道損傷部に、イオン架橋可能な多糖類を適用し、イオン架橋可能な多糖類は硬化剤で架橋され、架橋したイオン架橋可能な多糖類により食道損傷部を被覆する、方法である。いくつかの態様の食道損傷部被覆方法は、対象の食道損傷部に、イオン架橋可能な多糖類とタンパク質またはアミノ基を持つ多糖類を適用し、イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆する、方法である。食道損傷部被覆方法は、対象の食道損傷部に、アルギン酸またはその誘導体の1価金属塩とタンパク質を適用し、アルギン酸またはその誘導体の1価金属塩は硬化剤で架橋され、かつ、タンパク質はトランスグルタミナーゼを用いて架橋され、架橋したアルギン酸またはその誘導体の1価金属塩および架橋したタンパク質により食道損傷部を被覆することを含んでよい。 Also provided is a method for covering an esophageal lesion including applying the composition for covering an esophageal lesion to a subject that needs to cover the esophageal lesion. More specifically, in the method of covering the esophageal lesion, the ion-crosslinkable polysaccharide is applied to the target esophageal lesion, the ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the crosslinked ionic crosslinking is possible. This is a method of covering the damaged part of the esophagus with a polysaccharide. In some embodiments of the esophageal lesion covering method, an ionically crosslinkable polysaccharide and a protein or amino group-containing polysaccharide are applied to a target esophageal lesion, and the ionically crosslinkable polysaccharide is crosslinked with a curing agent. In addition, a protein or a polysaccharide having an amino group is crosslinked using transglutaminase, and the esophageal lesion is covered with a crosslinked ion-crosslinkable polysaccharide and a crosslinked protein or polysaccharide having an amino group. . In the esophageal lesion covering method, a monovalent metal salt of alginic acid or a derivative thereof and a protein are applied to a target esophageal lesion, the monovalent metal salt of alginic acid or a derivative thereof is crosslinked with a curing agent, and the protein is trans-transfected. Covering the esophageal lesion with a monovalent metal salt of cross-linked alginic acid or a derivative thereof and a cross-linked protein, which is cross-linked with glutaminase.
 さらに、食道損傷部被覆方法に用いられるキットが提供される。より具体的には、キットは、イオン架橋可能な多糖類を含み、イオン架橋可能な多糖類は硬化剤で架橋され、架橋したイオン架橋可能な多糖類により食道損傷部を被覆するように用いられる、食道損傷部被覆用キットである。いくつかの態様のキットは、(a)イオン架橋可能な多糖類、および(b)タンパク質またはアミノ基を持つ多糖類を含み、イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆するように用いられる、食道損傷部被覆用キットである。キットは、(a)アルギン酸またはその誘導体の1価金属塩、および(b)タンパク質を含んでよく、アルギン酸またはその誘導体の1価金属塩は硬化剤で架橋され、かつ、タンパク質はトランスグルタミナーゼを用いて架橋され、架橋したアルギン酸またはその誘導体の1価金属塩および架橋したタンパク質により食道損傷部を被覆するように用いられてよい。 Furthermore, a kit used for a method for covering an esophageal damaged part is provided. More specifically, the kit includes an ionic crosslinkable polysaccharide, the ionic crosslinkable polysaccharide is cross-linked with a curing agent, and is used to cover an esophageal lesion with the cross-linked ionic crosslinkable polysaccharide. The esophageal damaged part coating kit. The kit of some embodiments comprises (a) an ionic crosslinkable polysaccharide, and (b) a protein or polysaccharide with an amino group, the ionic crosslinkable polysaccharide is crosslinked with a curing agent, and the protein or Polysaccharides with amino groups are cross-linked using transglutaminase and used to cover esophageal lesions with cross-linked ionic cross-linkable polysaccharides and cross-linked proteins or polysaccharides with amino groups It is a kit for. The kit may comprise (a) a monovalent metal salt of alginic acid or a derivative thereof, and (b) a protein, wherein the monovalent metal salt of alginic acid or a derivative thereof is crosslinked with a curing agent, and the protein uses transglutaminase. And may be used to coat esophageal lesions with monovalent metal salts of crosslinked alginic acid or derivatives thereof and crosslinked proteins.
 本明細書中、食道損傷部被覆用組成物、食道損傷部被覆方法、および食道損傷部被覆用キットを、単に「食道損傷部被覆用組成物」または「組成物」と記載する場合がある。 In the present specification, the composition for covering an esophageal damaged part, the method for coating an esophageal damaged part, and the kit for covering an esophageal damaged part may be simply referred to as “composition for covering an esophageal damaged part” or “composition”.
 すなわち、いくつかの態様の食道損傷部被覆用組成物は、(a)イオン架橋可能な多糖類と、(b)タンパク質またはアミノ基を持つ多糖類を組み合わせて用いる。食道損傷部被覆用組成物は、(a)アルギン酸またはその誘導体の1価金属塩と、(b)タンパク質を組み合わせて用いてよい。架橋されたイオン架橋可能な多糖類(例えば、架橋されたアルギン酸またはその誘導体の1価金属塩)とトランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類を含む材料、すなわち、食道損傷部被覆材料で食道の内側表面に現れた食道損傷部を被覆する。食道損傷部被覆材料は、架橋されたイオン架橋可能な多糖類(例えば、架橋されたアルギン酸またはその誘導体の1価金属塩)および硬化剤を含む。いくつかの態様の食道損傷部被覆材料は、架橋されたイオン架橋可能な多糖類(例えば、架橋されたアルギン酸またはその誘導体の1価金属塩)、硬化剤、架橋したタンパク質またはアミノ基を持つ多糖類、およびトランスグルタミナーゼを含む。 That is, some embodiments of the composition for covering an esophageal injury part use a combination of (a) an ion-crosslinkable polysaccharide and (b) a polysaccharide having a protein or an amino group. The composition for covering an esophageal lesion may be used by combining (a) a monovalent metal salt of alginic acid or a derivative thereof and (b) a protein. Materials containing cross-linked ionic cross-linkable polysaccharides (eg monovalent metal salts of cross-linked alginic acid or derivatives thereof) and polysaccharides cross-linked using transglutaminase, ie esophageal damage Cover the esophageal lesions that appeared on the inner surface of the esophagus with the covering material. The esophageal lesion covering material includes a cross-linked ion cross-linkable polysaccharide (eg, cross-linked alginic acid or a monovalent metal salt thereof) and a curing agent. In some embodiments, the esophageal lesion covering material is a crosslinked ionically crosslinkable polysaccharide (eg, a crosslinked monovalent metal salt of alginic acid or a derivative thereof), a curing agent, a crosslinked protein, or a polysaccharide having an amino group. Contains sugars and transglutaminase.
 いくつかの態様の食道損傷部被覆用組成物は、(a)イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)と(b)タンパク質またはアミノ基を持つ多糖類を組合せて用いる。「組合せて用いる」とは、併用することである。(a)成分と(b)成分を組合せて用いる場合、組成物を対象に適用する際に、(a)成分と(b)成分が組成物に含まれているか、あるいは、組成物を対象に適用後に形成される食道損傷部被覆材料に(a)成分と(b)成分が含まれていればよいことを意味する。したがって、「組合せて用いる」という用語は、販売を含む流通段階における形態を特に問うものではない。 In some embodiments, the composition for covering an esophageal lesion comprises (a) an ion-crosslinkable polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof) and (b) a polysaccharide having a protein or an amino group. Use. “Use in combination” means to use in combination. When the component (a) and the component (b) are used in combination, when the composition is applied to the target, the component (a) and the component (b) are included in the composition, or the target is the composition. It means that (a) component and (b) component should just be contained in the esophageal damage part coating | covering material formed after application. Therefore, the term “used in combination” does not particularly refer to the form in the distribution stage including sales.
 例えば(a)成分と(b)成分を組合せて用いる場合、
(1)(a)成分と(b)成分とがあらかじめ組み合わされた形態、または
(2)(a)成分と(b)成分を別々に用意して得られる2種類の組成物とし、適用する際に組合せて使用する形態のいずれでもよい。
 すなわち、(b)成分は、(a)成分と予め配合した組成物の形態で提供してもよく、(a)成分と(b)成分とを別々に用意して得られる2種類の組成物を組合せてパッケージ化したキットとして提供してもよい。
 いくつかの形態では、(a)成分と(b)成分とを予め配合した組成物が提供され、この組成物とは別に、トランスグルタミナーゼと硬化剤とを予め配合した組成物が用意される。好ましくは、(a)成分と(b)成分とを予め配合した組成物は粉末状であり、トランスグルタミナーゼと硬化剤とを予め配合した組成物は液体状である。この場合、粉末状の組成物を散布により、一方、液体状の組成物を噴霧により食道損傷部表面に適用する。
 別のいくつかの形態では、(a)成分と(b)成分とトランスグルタミナーゼとを予め配合した組成物が提供され、この組成物とは別に、硬化剤が用意される。好ましくは、(a)成分と(b)成分とトランスグルタミナーゼとを予め配合した組成物は粉末状であり、硬化剤は液体状または粉末状である。この場合、粉末状の組成物を散布により、一方、液体状または粉末状の硬化剤を噴霧または散布により食道損傷部表面に適用する。
 さらに別のいくつかの形態では、(a)成分と(b)成分とトランスグルタミナーゼと硬化剤の全てを予め配合した組成物が提供される。好ましくは、(a)成分と(b)成分とトランスグルタミナーゼと硬化剤の全てを予め配合した組成物は粉末状である。この場合、粉末状の組成物を散布により、食道損傷部表面に適用する。
 さらに別のいくつかの態様では、(a)成分を含む組成物が提供され、この組成物とは別に、(b)成分、トランスグルタミナーゼ、および硬化剤が別々に用意される。好ましくは、(a)成分を含む組成物、(b)成分、トランスグルタミナーゼ、およぶ硬化剤は、それぞれ粉末状である。この場合、粉末状の(a)成分を含む組成物、粉末状の(b)成分、粉末状のトランスグルタミナーゼ、およぶ粉末状の硬化剤を散布により、食道損傷部表面に適用する。
 さらに別のいくつかの形態では、(a)成分とトランスグルタミナーゼを予め配合した組成物が提供され、この組成物とは別に、(b)成分と硬化剤を予め配合した組成物が用意される。好ましくは、(a)成分とトランスグルタミナーゼを予め配合した組成物、および(b)成分と硬化剤とを予め配合した組成物は、いずれも液体状または粉末状である。この場合、液体状または粉末状のこれらの組成物を噴霧または散布により食道損傷部表面に適用する。
 さらに別のいくつかの形態では、(a)成分とトランスグルタミナーゼを予め配合した組成物が提供され、この組成物とは別に、(b)成分、および硬化剤が別々に用意される。好ましくは、(a)成分とトランスグルタミナーゼを予め配合した組成物、(b)成分、および硬化剤は、いずれも液体状または粉末状である。この場合、液体状または粉末状のこれらの組成物を噴霧または散布により食道損傷部表面に適用する。
For example, when using (a) component and (b) component in combination,
(1) (a) component and (b) component are combined in advance, or (2) two types of compositions obtained by separately preparing (a) component and (b) component are applied. Any of the forms used in combination may be used.
That is, the component (b) may be provided in the form of a composition previously blended with the component (a), and two types of compositions obtained by separately preparing the component (a) and the component (b). You may provide as a kit which combined and packaged.
In some forms, a composition in which the component (a) and the component (b) are preliminarily blended is provided, and separately from this composition, a composition in which transglutaminase and a curing agent are blended in advance is prepared. Preferably, the composition in which the component (a) and the component (b) are blended in advance is in a powder form, and the composition in which transglutaminase and a curing agent are blended in advance is in a liquid form. In this case, the powdered composition is applied to the surface of the esophageal lesion by spraying, while the liquid composition is applied by spraying.
In another some form, the composition which mix | blended (a) component, (b) component, and transglutaminase was provided previously, and a hardening | curing agent is prepared separately from this composition. Preferably, the composition in which the component (a), the component (b), and transglutaminase are blended in advance is in a powder form, and the curing agent is in a liquid form or a powder form. In this case, the powdered composition is applied to the surface of the esophageal lesion by spraying or spraying, while the liquid or powdery curing agent is sprayed.
In still another embodiment, a composition is provided in which (a) component, (b) component, transglutaminase and a curing agent are all blended in advance. Preferably, the composition in which all of component (a), component (b), transglutaminase, and curing agent are blended in advance is in a powder form. In this case, the powdered composition is applied to the surface of the esophageal lesion by spraying.
In some further embodiments, a composition comprising component (a) is provided, and separately from this composition, component (b), transglutaminase, and a curing agent are provided separately. Preferably, the composition containing the component (a), the component (b), the transglutaminase, and the curing agent are each in powder form. In this case, the composition containing the powdery component (a), the powdery component (b), the powdery transglutaminase, and the powdery curing agent are applied to the surface of the esophageal lesion by spraying.
In still another embodiment, a composition in which the component (a) and transglutaminase are preliminarily blended is provided, and in addition to the composition, a composition in which the component (b) is premixed with the curing agent is provided. . Preferably, the composition in which the component (a) and the transglutaminase are blended in advance and the composition in which the component (b) and the curing agent are blended in advance are in a liquid or powder form. In this case, these liquid or powdery compositions are applied to the surface of the esophageal lesion by spraying or spraying.
In still another embodiment, a composition in which the component (a) and transglutaminase are previously blended is provided, and separately from the composition, the component (b) and the curing agent are prepared separately. Preferably, the composition in which the component (a) and the transglutaminase are blended in advance, the component (b), and the curing agent are all in liquid or powder form. In this case, these liquid or powdery compositions are applied to the surface of the esophageal lesion by spraying or spraying.
 (a)成分と(b)成分は、それぞれが、または混合物が、溶媒を用いて溶液状態で提供されてもよいし、粉末状態(例えば凍結乾燥体、特には凍結乾燥粉体)などの固形物として提供されてもよい。固形物として提供される場合、(a)成分と(b)成分は、それぞれが、または混合物が、投与時には溶媒を用いて、溶液状、ゲル状などの流動性を有する状態で使用されてもよいし、あるいは固形物の状態で用いてもよい。 Each of the component (a) and the component (b) may be provided in a solution state using a solvent, or a solid state such as a powder state (for example, a lyophilized product, particularly a lyophilized powder). It may be provided as a product. When provided as a solid substance, the component (a) and the component (b) may be used in a state where each of them or a mixture has a fluidity such as a solution or a gel using a solvent at the time of administration. Alternatively, it may be used in a solid state.
 いくつかの態様の組成物では、(a)成分と(b)成分は、それぞれが、または混合物が、シート状、スポンジ状、または粉末状からなる群から選択される固形物状;半固形状;またはゲル状で使用されてもよい。
 ここで、「粉末」という用語は、「粉粒体」、「粉体」または「パウダー」と言い換えることができる。
In some embodiments of the composition, component (a) and component (b) are each in the form of a solid selected from the group consisting of sheet, sponge, or powder; semisolid; Or may be used in a gel form.
Here, the term “powder” can be restated as “powder”, “powder” or “powder”.
 溶媒は、生体へ適用可能な溶媒であれば特に限定されないが、例えば、注射用水、精製水、蒸留水、イオン交換水(または脱イオン化水)、ミリQ水、生理食塩水、リン酸緩衝生理食塩水(PBS)などが挙げられる。好ましくは、ヒトおよび動物の治療に用いることが可能な注射用水、蒸留水、生理食塩水などである。 The solvent is not particularly limited as long as it is a solvent applicable to a living body. For example, water for injection, purified water, distilled water, ion-exchanged water (or deionized water), milli-Q water, physiological saline, phosphate buffered physiological Examples include saline (PBS). Preferred are water for injection, distilled water, physiological saline and the like that can be used for treatment of humans and animals.
 好ましい態様の食道損傷部被覆用組成物の場合、当該組成物から形成される被覆材料中でのイオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の含有量は0.5wt%~30wt%程度であり、タンパク質またはアミノ基を持つ多糖類(例えば、ゼラチン)の含有量は1wt%~30wt%程度である。より好ましくは、組成物から形成される被覆材料中でのイオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の含有量は1wt%~20wt%程度、タンパク質またはアミノ基を持つ多糖類(例えば、ゼラチン)の含有量は15wt%~50wt%程度である。
 組成物から形成される被覆材料中でのイオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)とタンパク質またはアミノ基を持つ多糖類(例えば、ゼラチン)の比率(イオン架橋可能な多糖類:タンパク質またはアミノ基を持つ多糖類(重量比))は、好ましくは、1:0.1~1:100であり、より好ましくは、1:5~1:30である。
In the case of the composition for covering an esophageal lesion in a preferred embodiment, the content of the ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof) in the coating material formed from the composition is 0.00. The content of a protein or a polysaccharide having an amino group (eg, gelatin) is about 1 wt% to 30 wt%. More preferably, the content of the ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or a derivative thereof) in the coating material formed from the composition is about 1 wt% to 20 wt%, and the protein or amino group is contained. The content of polysaccharide (for example, gelatin) is about 15 wt% to 50 wt%.
Ratio of ionic crosslinkable polysaccharide (eg monovalent metal salt of alginic acid or a derivative thereof) to polysaccharide with protein or amino group (eg gelatin) in the coating material formed from the composition (ionic crosslinkable) The polysaccharide: protein or polysaccharide having an amino group (weight ratio) is preferably 1: 0.1 to 1: 100, more preferably 1: 5 to 1:30.
 「対象」は、ヒトまたは非ヒト温血動物、例えばトリ、およびウシ、サル、ネコ、マウス、ラット、モルモット、ハムスター、ブタ、イヌ、ウサギ、ヒツジ、ウマなどの非ヒト哺乳動物である。いくつかの態様では、「対象」は、ヒトである。 “Subjects” are human or non-human warm-blooded animals, such as birds, and non-human mammals such as cows, monkeys, cats, mice, rats, guinea pigs, hamsters, pigs, dogs, rabbits, sheep, horses. In some embodiments, the “subject” is a human.
 食道損傷部被覆用組成物を対象に適用する方法は、特に限定されないが、例えば、噴霧器(組成物の形態、あるいは(a)成分および/または(b)成分の形態が流動性のある液体状の場合は、例えば、遠心アトマイザー(例えば、回転カップアトマイザー、回転円板アトマイザーおよびホイールアトマイザー)、静電アトマイザー、超音波アトマイザー、共鳴アトマイザーなど)、散布器(組成物の形態、あるいは(a)成分および/または(b)成分の形態が粉末状である場合は、例えば、散粉器(例えば、アルトシューター(カイゲンファーマ)など))、シリンジ、ゲル用ピペット、専用充填器で食道損傷部の表面に直接適用するようにしてよい。好ましくは、噴霧器または散布器(例えば、散粉器)により、より好ましくは、内視鏡のチャネルを通じて噴霧器または散布器(例えば、散粉器)により食道損傷部の表面に直接適用する。
 組成物の形態あるいは(a)成分および/または(b)成分の形態が流動性のある液体状の場合は、噴霧器に、液体散布用チューブ(例えば、ファイン・ジェット(株式会社トップ)、ペンタクッス内視鏡用カニューレ(38813000)、およびマルチルーメンカテーテル(フォルテグロウメディカルJC02003))をつないで用いるようにしてもよい。
 また、組成物の形態あるいは(a)成分および/または(b)成分の形態が粉末状の場合は、散布器に、散布用チューブ(ファイン・ジェット(株式会社トップ))につないで用いるようにしてもよい。
 組成物とは別に、(b)成分、硬化剤、トランスグルタミナーゼ、およびその他の成分が用意される場合には、それらの成分の形態に応じて、上記方法と同様に、対象に適用することができる。
 組成物は、対象に1回のみ適用するようにしてもよいし、あるいは、間隔を空けて(例えば、6時間、12時間、1日、2日、3日または1週間の間隔)、2回以上(例えば、2回、3回、4回、5回または6回)適用するようにしてもよい。
The method for applying the composition for covering an esophageal lesion to a subject is not particularly limited. For example, a nebulizer (in the form of a composition, or in the form of a liquid in which the form of (a) component and / or (b) component is fluid) In the case of, for example, centrifugal atomizer (for example, rotating cup atomizer, rotating disk atomizer and wheel atomizer), electrostatic atomizer, ultrasonic atomizer, resonance atomizer, etc. And / or (b) when the form of the component is in the form of powder, for example, on the surface of the esophageal lesion with a duster (eg, Altoshooter (Kaigen Pharma), etc.), syringe, gel pipette, or dedicated filler It may be applied directly. Preferably, it is applied directly to the surface of the esophageal lesion by means of a nebulizer or spreader (eg duster), more preferably by a nebulizer or spreader (eg duster) through an endoscope channel.
When the form of the composition or the form of the component (a) and / or the component (b) is a fluid liquid, the liquid spraying tube (for example, Fine Jet (Top Co., Ltd.), Pentacus An endoscopic cannula (38813000) and a multi-lumen catheter (Fortegro Medical JC02003)) may be connected and used.
In addition, when the form of the composition or the form of the component (a) and / or the component (b) is in the form of powder, it should be used by connecting it to a spraying tube (Fine Jet (Top)). May be.
Apart from the composition, when component (b), curing agent, transglutaminase, and other components are prepared, depending on the form of these components, it may be applied to the subject in the same manner as in the above method. it can.
The composition may be applied to the subject only once, or twice at intervals (eg, 6 hours, 12 hours, 1 day, 2 days, 3 days or 1 week intervals). You may make it apply above (for example, 2 times, 3 times, 4 times, 5 times, or 6 times).
 食道損傷部被覆用組成物の形態、あるいは(a)成分および/または(b)成分の形態は、例えば、流動性のある液体状(すなわち、溶液状);シート状、スポンジ状、または粉末状(特に、凍結乾燥粉体)などの固形物状;半固形状;またはゲル状である。「流動性を有する」とは、その形態を不定形に変化させる性質を持つことを意味する。流動性のある液体状の場合は、例えば、組成物、あるいは(a)成分および/または(b)成分(以下、「組成物等」という場合がある)を噴霧器またはシリンジに封入し、食道損傷部の表面へ噴霧または注入により適用することができるような流動性を有することが望ましい。ゲル状である組成物等は、シリンジ、ゲル用ピペット、専用注射器などで食道損傷部の表面に容易に適用することができる。粉末状の組成物等も、散布装置(例えば、散粉器)などで散布することにより食道損傷部の表面に適用することができる。また、シート状、スポンジ状、粉末状、ゲル状、および流動性のある液体状の組成物等は、いずれの表面形状にも適合し、組成物を適用する食道損傷部の表面全体に接触することもできる。シート状とは適した厚さ、柔軟性を有する平板の状態であり、スポンジ状は多孔性を有した状態に加工したものを示す。また、組成物を溶液にしたものを凍結または硬化剤により半固形状態にすることもできる。さらにゲル状は組成物を硬化剤(架橋剤)となる多価陽イオンや架橋性試薬で共有結合させることにより作製することができる。 The form of the composition for covering an esophageal lesion, or the form of the component (a) and / or the component (b) is, for example, a fluid liquid (that is, a solution); a sheet, a sponge, or a powder (Especially lyophilized powder) or the like; semisolid; or gel. “Having fluidity” means having the property of changing its form into an indefinite form. In the case of fluid liquid, for example, the composition or (a) component and / or (b) component (hereinafter sometimes referred to as “composition etc.”) is enclosed in a nebulizer or syringe to cause esophageal damage. It is desirable to have fluidity that can be applied by spraying or pouring onto the surface of the part. A gel-like composition or the like can be easily applied to the surface of an esophageal lesion by using a syringe, a gel pipette, a dedicated syringe, or the like. A powdery composition or the like can also be applied to the surface of the esophageal lesion by being sprayed with a spraying device (for example, a duster). In addition, sheet-like, sponge-like, powder-like, gel-like, and fluid liquid compositions are compatible with any surface shape and come into contact with the entire surface of the esophageal lesion to which the composition is applied. You can also The sheet form is a flat plate having a suitable thickness and flexibility, and the sponge form is processed into a porous state. Moreover, what made the composition a solution can also be made into a semi-solid state with a freezing or hardening | curing agent. Further, the gel can be prepared by covalently bonding the composition with a polyvalent cation or a cross-linking reagent as a curing agent (cross-linking agent).
 組成物等の形態は、好ましくは、噴霧器による噴霧に適用することができるような流動性のある液体状(すなわち、溶液状)、または散布器による散布に適用することができるような粉末状である。 The form of the composition or the like is preferably in the form of a fluid liquid (ie, solution) that can be applied to spraying by a sprayer, or a powder that can be applied to spraying by a sprayer. is there.
 粉末状である場合の粉末の粒子径は、篩などを用いて所定の範囲内に収まるように制御されてよい。粒子サイズは、散布器の種類に応じて適宜選択することができる。本明細書中、粒子サイズは、例えば、粒度分布計(Parica mini、HORIBA)を用いて測定したものである。
 いくつかの態様では、組成物等の粉末の粒子サイズは、例えば、5μm~1000μmであり、好ましくは、10μm~500μmであり、より好ましくは、20μm~500μmであり、さらに好ましくは、45μm~180μmである。
 上記各粒子サイズであることに加えて、組合わせて用いる(a)成分と(b)成分の比率(a)成分(重量):(b)成分(重量))は、例えば、1:0.1~1:100であり、好ましくは、1:5~1:30である。
The particle diameter of the powder in the case of powder may be controlled using a sieve or the like so as to be within a predetermined range. The particle size can be appropriately selected depending on the type of the spreader. In the present specification, the particle size is measured using, for example, a particle size distribution meter (Parica mini, HORIBA).
In some embodiments, the particle size of the powder such as the composition is, for example, 5 μm to 1000 μm, preferably 10 μm to 500 μm, more preferably 20 μm to 500 μm, and even more preferably 45 μm to 180 μm. It is.
In addition to the above particle sizes, the ratio of the component (a) to the component (b) used in combination (a) component (weight) :( b) component (weight)) is, for example, 1: 0. It is 1 to 1: 100, and preferably 1: 5 to 1:30.
4.イオン架橋可能な多糖類
 イオン架橋可能な多糖類は、後述の硬化剤と混合したときにゲルを形成する多糖類である。イオン架橋可能な多糖類は、例えば、アルギン酸、カラーギナン、ペクチン、それらの誘導体、またはそれらの塩からなる群から選択される少なくとも1つである。イオン架橋可能な多糖類は、好ましくは、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1つである。
4). Ion-crosslinkable polysaccharides Ion-crosslinkable polysaccharides are polysaccharides that form a gel when mixed with a curing agent described below. The ion-crosslinkable polysaccharide is, for example, at least one selected from the group consisting of alginic acid, carrageenan, pectin, derivatives thereof, or salts thereof. The ionically crosslinkable polysaccharide is preferably at least one selected from the group consisting of alginic acid, derivatives thereof, and salts thereof.
 アルギン酸は、生分解性の高分子多糖類であって、D-マンヌロン酸(M)とL-グルロン酸(G)という2種類のウロン酸が直鎖状に重合したポリマーである。より具体的には、D-マンヌロン酸のホモポリマー画分(MM画分)、L-グルロン酸のホモポリマー画分(GG画分)、およびD-マンヌロン酸とL-グルロン酸がランダムに配列した画分(MG画分)が任意に結合したブロック共重合体である。アルギン酸のD-マンヌロン酸とL-グルロン酸の構成比(M/G比)は、主に海藻等の由来となる生物の種類によって異なり、また、その生物の生育場所や季節による影響を受け、M/G比が約0.4の高G型からM/G比が約5の高M型まで高範囲にわたる。 Alginic acid is a biodegradable polymeric polysaccharide and is a polymer in which two types of uronic acids, D-mannuronic acid (M) and L-guluronic acid (G), are polymerized in a straight chain. More specifically, D-mannuronic acid homopolymer fraction (MM fraction), L-guluronic acid homopolymer fraction (GG fraction), and D-mannuronic acid and L-guluronic acid are randomly arranged. This is a block copolymer in which the fractions (MG fraction) are bound arbitrarily. The composition ratio (M / G ratio) of D-mannuronic acid and L-guluronic acid of alginic acid varies depending on the type of organism mainly derived from seaweed, etc. It ranges from a high G type with an M / G ratio of about 0.4 to a high M type with an M / G ratio of about 5.
 アルギン酸誘導体は、アルギン酸に任意の修飾を施したものである。アルギン酸に施す任意の修飾には、例えば、マレイミド修飾、チオール修飾、アクリレート修飾、アルデヒド修飾、およびジスルフィド修飾(例えば、ピリジルジスルフィド)が含まれる。いくつかの態様では、アルギン酸誘導体は、マレイミド修飾アルギン酸、チオール修飾アルギン酸、またはアクリレート修飾アルギン酸であり、好ましくは、マレイミド修飾アルギン酸である。 Alginic acid derivatives are those obtained by subjecting alginic acid to any modification. Optional modifications made to alginic acid include, for example, maleimide modification, thiol modification, acrylate modification, aldehyde modification, and disulfide modification (eg, pyridyl disulfide). In some embodiments, the alginic acid derivative is maleimide-modified alginic acid, thiol-modified alginic acid, or acrylate-modified alginic acid, preferably maleimide-modified alginic acid.
 アルギン酸のマレイミド修飾は、アルギン酸のカルボキシ基部分にマレイミド基を導入するものである。正常の食道粘膜上皮表面のムチンに存在するシステイン残基は、10%を超える。マレイミド官能基はマイケル付加反応を介してタンパク質表面に存在するシステイン残基に対する高い反応性を持っているため、マレイミド修飾アルギン酸を用いることで、チオール-マレイミド反応によって正常粘膜内のシステインと結合し、食道損傷部被覆材料の食道粘膜への接着性を向上させることができる。 The maleimide modification of alginic acid is to introduce a maleimide group into the carboxy group part of alginic acid. The cysteine residues present in mucins on the surface of normal esophageal mucosal epithelium are greater than 10%. Since the maleimide functional group has a high reactivity to the cysteine residue present on the protein surface via the Michael addition reaction, by using maleimide-modified alginic acid, it binds to cysteine in normal mucosa by thiol-maleimide reaction, The adhesiveness of the esophageal damaged part coating material to the esophageal mucosa can be improved.
 マレイミド基は、例えば、以下の一般式(1): The maleimide group is, for example, the following general formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは、それぞれ独立して、水素原子、または炭素原子数1~6のアルキル基であり、あるいはRおよびRは、それらが結合する炭素原子とともに5員環もしくは6員環炭化水素基を形成する)
で表される基である。そのような、5員環もしくは6員環炭化水素基は、具体的には、シクロペンチル基、およびシクロヘキシル基である。いくつかの態様では、マレイミド基は、一般式(1)中、RおよびRが水素原子である基である。
Wherein R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or R 1 and R 2 are a 5-membered ring together with the carbon atom to which they are bonded. Or a 6-membered hydrocarbon group is formed)
It is group represented by these. Such 5-membered or 6-membered hydrocarbon groups are specifically a cyclopentyl group and a cyclohexyl group. In some embodiments, the maleimide group is a group in which R 1 and R 2 are hydrogen atoms in the general formula (1).
 マレイミド修飾は、例えば、Progress in Polymer Science(2012)37、p106-126;またはBiomacromolecules(2014)15,p445-455に記載の方法またはそれに準じて行うことができる。具体的には、アルギン酸を0.3M NaCl含有0.1M Mes Bufferに溶解し、水溶性カルボジイミド(WSCD)、およびN-ヒドロキシスクシンイミド(NHS)をアルギン酸のカルボキシ基に対して必要当量(例えば、2当量、5当量、または8当量)Mes Bufferに溶解し、アルギン酸溶液に滴下し、さらに30分撹拌する。30分後、Mes Bufferにマレイミド溶液を0.5等量滴下する。pHを6に合わせて20時間撹拌した後、炭酸水素ナトリウムをpH7.5になるまで加えて反応を停止する。3日間塩化ナトリウムを含む純水で透析した後、3日間純水で透析し、凍結乾燥を経て目的の生成物を回収する。より具体的なマレイミド修飾の方法は、後述の実施例に記載の通りである。 The maleimide modification can be performed, for example, according to the method described in Progress in Polymer Science (2012) 37, p106-126; or Biomacromolecules (2014) 15, p445-455, or the like. Specifically, alginic acid is dissolved in 0.3 M NaCl-containing 0.1 M Mes Buffer, and water-soluble carbodiimide (WSCD) and N-hydroxysuccinimide (NHS) are necessary equivalents to the carboxy group of alginic acid (for example, 2 Equivalent, 5 equivalents, or 8 equivalents) Dissolve in Mes Buffer, add dropwise to the alginate solution and stir for an additional 30 minutes. After 30 minutes, 0.5 equivalent of maleimide solution is dropped into Mes Buffer. After adjusting the pH to 6 and stirring for 20 hours, the reaction is stopped by adding sodium bicarbonate until pH 7.5. After dialyzing with pure water containing sodium chloride for 3 days, dialyzing with pure water for 3 days and recovering the desired product through freeze-drying. More specific maleimide modification methods are as described in Examples below.
 その他の修飾(例えば、チオール修飾、アクリレート修飾、アルデヒド修飾、およびジスルフィド修飾)も、公知の方法またはそれに準ずる方法にて行うことができる。 Other modifications (for example, thiol modification, acrylate modification, aldehyde modification, and disulfide modification) can also be performed by a known method or a method analogous thereto.
 修飾率は、アルギン酸類の繰り返し単位であるウロン酸単糖単位のうち修飾基(例えば、マレイミド基)が導入されたウロン酸単糖単位の数を百分率で表した値である。修飾率は、例えば0.5%~60%、好ましくは1%~30%、より好ましくは1%~10%である。修飾率は、公知の方法またはそれに準ずる方法にて調整することができる。マレイミド修飾の場合、修飾率は次のように調整することができる。すなわち、例えば、WSCDおよびNHSの当量を増加させることでマレイミドの修飾率を高めることが可能である。また、修飾率はH-NMR測定(DO)によって算出することができる。 The modification rate is a value expressed as a percentage of the number of uronic acid monosaccharide units into which a modifying group (for example, a maleimide group) is introduced among uronic acid monosaccharide units that are repeating units of alginic acids. The modification rate is, for example, 0.5% to 60%, preferably 1% to 30%, more preferably 1% to 10%. The modification rate can be adjusted by a known method or a method analogous thereto. In the case of maleimide modification, the modification rate can be adjusted as follows. That is, for example, the modification rate of maleimide can be increased by increasing the equivalents of WSCD and NHS. The modification rate can be calculated by 1 H-NMR measurement (D 2 O).
 マレイミド修飾を行う際にスペーサーを用いてもよい。使用可能なスペーサーには、当該分野で一般的なものを用いればよく(例えば、Greg T.Hermanson,Bioconjugate Techniques,Third Edition(2013)に記載のスペーサー)、より具体的には、ポリエレングリコール、ペプチドなどのポリアミド、および炭化水素が含まれる。 A spacer may be used when performing maleimide modification. Usable spacers may be those commonly used in the field (for example, spacers described in Greg T. Hermanson, Bioconjugate Technologies, Third Edition (2013)), and more specifically, polyethylene glycol, Polyamides such as peptides, and hydrocarbons are included.
 アルギン酸またはその誘導体の1価金属塩は、アルギン酸またはその誘導体の6位のカルボン酸の水素原子を、NaやKなどの1価金属イオンとイオン交換することでつくられる水溶性の塩である。アルギン酸またはその誘導体の1価金属塩としては、具体的には、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩などを挙げることができる。いくつかの態様では、アルギン酸またはその誘導体の1価金属塩は、アルギン酸ナトリウムまたはアルギン酸誘導体のナトリウム塩である。アルギン酸またはその誘導体の1価金属塩の溶液は、硬化剤と混合したときにゲルを形成する。 The monovalent metal salt of alginic acid or a derivative thereof is a water-soluble salt formed by ion exchange of the hydrogen atom of the 6-position carboxylic acid of alginic acid or a derivative thereof with a monovalent metal ion such as Na + or K +. is there. Specific examples of the monovalent metal salt of alginic acid or a derivative thereof include sodium alginate, potassium alginate, a sodium salt of an alginate derivative, or a potassium salt of an alginate derivative. In some embodiments, the monovalent metal salt of alginic acid or a derivative thereof is sodium alginate or a sodium salt of an alginic acid derivative. A solution of a monovalent metal salt of alginic acid or a derivative thereof forms a gel when mixed with a curing agent.
 アルギン酸またはその誘導体の1価金属塩は高分子多糖類であり、分子量を正確に定めることは困難であるが、一般的に重量平均分子量で1000~1000万、好ましくは1万~1000万、より好ましくは2万~300万の範囲である。例えば、ゲル浸透クロマトグラフィー(GPC)法により測定した重量平均分子量の好ましい範囲として、30万~200万が挙げられる。また、例えば、GPC-MALS法により測定した重量平均分子量の好ましい範囲として、1000~30万、より好ましい範囲として5万~30万が挙げられる。 The monovalent metal salt of alginic acid or a derivative thereof is a high molecular polysaccharide, and it is difficult to accurately determine the molecular weight, but generally the weight average molecular weight is 10 to 10 million, preferably 10,000 to 10 million. The range is preferably 20,000 to 3 million. For example, a preferable range of the weight average molecular weight measured by gel permeation chromatography (GPC) method is 300,000 to 2,000,000. Further, for example, a preferable range of the weight average molecular weight measured by GPC-MALS method is 1,000 to 300,000, and a more preferable range is 50,000 to 300,000.
 通常、高分子多糖類の分子量をゲルろ過クロマトグラフィーにより算出する場合、10~20%以上の測定誤差を生じうる。例えば、40万であれば32~48万、50万であれば40~60万、100万であれば80~120万程度の範囲で値の変動が生じうる。したがって、アルギン酸の1価金属塩又はその誘導体について、好適な重量平均分子量範囲は、少なくとも2万以上、より好ましくは5万以上、さらに好ましくは10万以上である。分子量が高すぎるものは製造が困難であるとともに、水溶液とする際に粘度が高くなりすぎる、溶解性が低下する、長期間の保存で物性を維持しにくいなどの問題を生じるため、重量平均分子量が500万以下であることが好ましく、より好ましくは300万以下である。 Usually, when the molecular weight of the high molecular polysaccharide is calculated by gel filtration chromatography, a measurement error of 10 to 20% or more may occur. For example, the value may vary in the range of about 32 to 480,000 for 400,000, 400,000 to 600,000 for 500,000, and about 800 to 1,200,000 for 1,000,000. Therefore, a suitable weight average molecular weight range for the monovalent metal salt of alginic acid or a derivative thereof is at least 20,000, more preferably 50,000, and even more preferably 100,000. If the molecular weight is too high, it is difficult to produce and causes problems such as excessively high viscosity when used as an aqueous solution, poor solubility, and difficulty in maintaining physical properties during long-term storage. Is preferably 5 million or less, more preferably 3 million or less.
 一般に天然物由来の高分子物質は、単一の分子量を持つのではなく、種々の分子量を持つ分子の集合体であるため、ある一定の幅を持った分子量分布として測定される。代表的な測定手法はゲルろ過クロマトグラフィーである。ゲルろ過クロマトグラフィーにより得られる分子量分布の代表的な情報としては、重量平均分子量(Mw)、数平均分子量(Mn)、分散比(Mw/Mn)が挙げられる。 Generally, a polymer substance derived from a natural product does not have a single molecular weight but is an aggregate of molecules having various molecular weights, and thus is measured as a molecular weight distribution having a certain width. A typical measurement technique is gel filtration chromatography. Representative information on the molecular weight distribution obtained by gel filtration chromatography includes weight average molecular weight (Mw), number average molecular weight (Mn), and dispersion ratio (Mw / Mn).
 分子量の大きい高分子の平均分子量への寄与を重視したのが重量平均分子量であり、下記式で表される。
 Mw=Σ(WiMi)/W=Σ(HiMi)/Σ(Hi)
 数平均分子量は、高分子の総重量を高分子の総数で除して算出される。
 Mn=W/ΣNi=Σ(MiNi)/ΣNi=Σ(Hi)/Σ(Hi/Mi)
 ここで、Wは高分子の総重量、Wiはi番目の高分子の重量、Miはi番目の溶出時間における分子量、Niは分子量Miの個数、Hiはi番目の溶出時間における高さである。
The weight average molecular weight places importance on the contribution to the average molecular weight of a polymer having a large molecular weight and is represented by the following formula.
Mw = Σ (WiMi) / W = Σ (HiMi) / Σ (Hi)
The number average molecular weight is calculated by dividing the total weight of the polymer by the total number of polymers.
Mn = W / ΣNi = Σ (MiNi) / ΣNi = Σ (Hi) / Σ (Hi / Mi)
Here, W is the total weight of the polymer, Wi is the weight of the i-th polymer, Mi is the molecular weight at the i-th elution time, Ni is the number of molecular weights Mi, and Hi is the height at the i-th elution time. .
 天然物由来の高分子物質の分子量測定では、測定方法により値に違いが生じうることが知られている(ヒアルロン酸の例:Chikako YOMOTA et.al.,Bull.Natl.Health Sci.,Vol.117,pp135-139(1999)、Chikako YOMOTA et.al.,Bull.Natl.Inst.Health Sci.,Vol.121,pp30-33(2003))。アルギン酸塩の分子量測定については、固有粘度(Intrinsic viscosity)から算出する方法、SEC-MALLS(Size Exclusion Chromatography with Multiple Angle Laser Light Scattering Detection)により算出する方法が記載された文献がある(ASTM F2064-00 (2006),ASTM International発行)。なお、当該文献では、サイズ排除クロマトグラフィー(=ゲルろ過クロマトグラフィー)により分子量を測定するにあたっては、プルランを標準物質として用いた較正曲線に加え多角度光散乱検出器(Multi Angle Light Scattering:MALS)を併用すること(=SEC-MALSによる測定)を推奨している。また、SEC-MALSによる分子量を、アルギン酸塩のカタログ上の規格値として用いている例もある(FMC Biopolymer社、PRONOVATM sodium alginates catalogue)。 It is known that the molecular weight of a high molecular weight substance derived from a natural product may vary depending on the measurement method (examples of hyaluronic acid: Chikako YOMOTA et.al., Bull. Natl. Health Sci., Vol. 117, pp 135-139 (1999), Chikako YOMOTA et.al., Bull. Natl. Inst. Health Sci., Vol. 121, pp 30-33 (2003)). As for the molecular weight measurement of alginate, there is a method of calculating from intrinsic viscosity (Intrinsic viscosity), SEC-MALLS (Size Exclusion Chromatography with Multiple Laser Light Scattering, which is calculated by the Ft. (2006), issued by ASTM International). In this document, when measuring the molecular weight by size exclusion chromatography (= gel filtration chromatography), in addition to a calibration curve using pullulan as a standard substance, a multi-angle light scattering detector (MULTIS) (= Measurement by SEC-MALS) is recommended. In addition, there is an example in which the molecular weight by SEC-MALS is used as a standard value on a catalog of alginate (FMC Biopolymer, PRONOVA sodium alloys catalog).
 ここでアルギン酸またはその誘導体の1価金属塩の分子量を特定する場合は、特段のことわりがない限り、ゲルろ過クロマトグラフィーにより算出される重量平均分子量である。 Here, when the molecular weight of the monovalent metal salt of alginic acid or its derivative is specified, it is a weight average molecular weight calculated by gel filtration chromatography unless otherwise specified.
 ゲルろ過クロマトグラフィーの代表的な条件としては、プルランを標準物質とした較正曲線を用いることが挙げられる。標準物質として用いるプルランの分子量としては、少なくとも160万、78.8万、40.4万、21.2万および11.2万のものを標準物質として用いることが好ましい。その他、溶離液(200mM硝酸ナトリウム溶液)、カラム条件などを特定できる。カラム条件としては、ポリメタクリレート樹脂系充填剤を用い、排除限界分子量1000万以上のカラムを少なくとも1本ないし3本用いることが好ましい。代表的なカラムは、TSKgel GMPWx1(直径7.8mm×300mm)およびG2500PWXL(直径7.8mm×300mm)(東ソー株式会社製)である。 Typical conditions for gel filtration chromatography include using a calibration curve with pullulan as a standard substance. The molecular weight of pullulan used as the standard substance is preferably at least 1.6 million, 788,000, 404,000, 212,000 and 112,000 as the standard substance. In addition, eluent (200 mM sodium nitrate solution), column conditions, etc. can be specified. As column conditions, it is preferable to use a polymethacrylate resin filler and use at least one to three columns having an exclusion limit molecular weight of 10 million or more. Typical columns are TSKgel GMPW x1 (diameter 7.8 mm × 300 mm) and G2500PW XL (diameter 7.8 mm × 300 mm) (manufactured by Tosoh Corporation).
 アルギン酸は、褐藻類から抽出された当初は、分子量が大きく、粘度が高めだが、熱による乾燥、凍結乾燥、精製などの過程で、分子量が小さくなり、粘度は低めとなる。したがって、製造の各工程において適切な温度管理をすることにより、分子量の異なるアルギン酸またはその誘導体の1価金属塩を製造することができる。製造の各工程における温度が低めとなるよう管理することで分子量の大きいアルギン酸またはその誘導体の1価金属塩が得られ、温度が高くなるほど分子量の小さいアルギン酸またはその誘導体の1価金属塩が得られる。また、原料とする褐藻類を適宜選択する、あるいは、製造工程において、分子量による分画を行う、などの手法によっても、分子量の異なるアルギン酸またはその誘導体の1価金属塩を製造することができる。さらに、各手法で製造したアルギン酸またはその誘導体の1価金属塩について、分子量あるいは粘度を測定した後、異なる分子量あるいは粘度を持つ別ロットのアルギン酸またはその誘導体の1価金属塩と混合することにより、目的とする分子量を有するアルギン酸またはその誘導体の1価金属塩とすることも可能である。 Alginic acid is initially extracted from brown algae and has a high molecular weight and a high viscosity. However, in the process of drying by heat, freeze-drying, and purification, the molecular weight decreases and the viscosity becomes low. Therefore, it is possible to produce a monovalent metal salt of alginic acid or a derivative thereof having a different molecular weight by appropriately controlling the temperature in each step of the production. A monovalent metal salt of alginic acid or a derivative thereof having a high molecular weight can be obtained by controlling the temperature in each step of the production to be lower, and a monovalent metal salt of alginic acid or a derivative thereof having a low molecular weight can be obtained as the temperature increases. . Moreover, the monovalent metal salt of alginic acid or its derivative from which molecular weight differs can also be manufactured by the method of selecting the brown algae used as a raw material suitably, or performing the fractionation by molecular weight in a manufacturing process. Furthermore, about the monovalent metal salt of alginic acid or its derivative produced by each method, after measuring the molecular weight or viscosity, by mixing with the monovalent metal salt of alginic acid or its derivative of another lot having a different molecular weight or viscosity, It is also possible to obtain a monovalent metal salt of alginic acid having a target molecular weight or a derivative thereof.
 ここで用いるアルギン酸は、天然由来でも合成物であってもよいが、天然由来であるのが好ましい。天然由来のアルギン酸としては、例えば、褐藻類から抽出されるものを挙げることができる。アルギン酸を含有する褐藻類は世界中の沿岸域に繁茂しているが、実際にアルギン酸原料として使用できる海藻は限られており、南米のレッソニア、北米のマクロシスティス、欧州のラミナリアやアスコフィラム、豪のダービリアなどが代表的なものである。アルギン酸の原料となる褐藻類としては、例えば、レッソニア(Lessonia)属、マクロシスティス(Macrocystis)属、ラミナリア(Laminaria)属(コンブ属)、アスコフィラム(Ascophyllum)属、ダービリア(Durvillea)属、アラメ(Eisenia)属、カジメ(Ecklonia)属などがあげられる。 The alginic acid used here may be naturally derived or synthetic, but is preferably naturally derived. Examples of naturally occurring alginic acid include those extracted from brown algae. Although brown alga containing alginic acid is prosperous in coastal areas around the world, seaweed that can actually be used as a raw material for alginic acid is limited, such as Lessonia in South America, Macrocystis in North America, Laminaria and Ascofilum in Europe, Australia Typical examples are Daviglia. Examples of the brown algae used as a raw material for alginic acid include, for example, the genus Lesonia, the genus Macrocystis, the genus Laminaria (comb), the genus Ascophyllum, the genus Durvillea, Examples include the genus Eisenia and the genus Ecklonia.
5.硬化剤(架橋剤)
 硬化剤は、イオン架橋な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の溶液を架橋することにより、硬化するものである。アルギン酸またはその誘導体の1価金属塩の場合、硬化剤は、例えば、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+、Fe3+などの2価以上の金属イオン化合物、分子内に2~4個のアミノ基を有する架橋性試薬などが挙げられる。より具体的には、2価以上の金属イオン化合物として、CaCl、MgCl、CaSO、ZnCl、FeCl、BaCl、SrCl等(好ましくは、CaCl、CaSO、ZnCl、SrCl、FeCl、BaCl等)を、分子内に2~4個のアミノ基を有する架橋性試薬として、窒素原子上にリジル(lysyl)基(-COCH(NH)-(CH-NH)を有することもあるジアミノアルカン、すなわちジアミノアルカンおよびそのアミノ基がリジル基で置換されてリジルアミノ基を形成している誘導体が包含され、具体的にはジアミノエタン、ジアミノプロパン、N-(リジル)-ジアミノエタン等を挙げることができる。
5. Curing agent (crosslinking agent)
The curing agent cures by crosslinking a solution of an ion-crosslinked polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof). In the case of a monovalent metal salt of alginic acid or a derivative thereof, the curing agent is, for example, a divalent or higher metal ion compound such as Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ , Fe 3+ , Examples thereof include a crosslinkable reagent having 4 amino groups. More specifically, as a metal ion compound having a valence of 2 or more, CaCl 2 , MgCl 2 , CaSO 4 , ZnCl 2 , FeCl 3 , BaCl 2 , SrCl 2, etc. (preferably, CaCl 2 , CaSO 4 , ZnCl 2 , SrCl 2 , FeCl 3 , BaCl 2, etc.) as a crosslinkable reagent having 2 to 4 amino groups in the molecule, a lysyl group (—COCH (NH 2 ) — (CH 2 ) 4 on the nitrogen atom Diaminoalkanes that may have —NH 2 ), ie, diaminoalkanes and derivatives in which the amino group is substituted with a lysyl group to form a lysylamino group, specifically include diaminoethane, diaminopropane, N— (Lysyl) -diaminoethane and the like can be mentioned.
 硬化剤の使用量は、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の使用量や分子量、アルギン酸またはその誘導体の1価金属塩のG/M比などに応じて適宜調節するのが望ましい。硬化剤の使用量は、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の溶液における終濃度のモル濃度で、例えば、3mM~200mMである。 組成物が粉末状である場合の硬化剤の使用量は、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の重量に対して、例えば、5重量%~30重量%、好ましくは、15重量%~25重量%である。 The amount of the curing agent used depends on the amount and molecular weight of the ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or its derivative), the G / M ratio of the monovalent metal salt of alginic acid or its derivative, etc. It is desirable to adjust appropriately. The amount of the curing agent used is, for example, 3 mM to 200 mM at a final molar concentration in a solution of an ion-crosslinkable polysaccharide (for example, a monovalent metal salt of alginic acid or a derivative thereof). When the composition is in powder form, the amount of the curing agent used is, for example, 5% to 30% by weight relative to the weight of the ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or a derivative thereof). Preferably, it is 15 to 25% by weight.
6.タンパク質またはアミノ基を持つ多糖類
 タンパク質またはアミノ基を持つ多糖類は、トランスグルタミナーゼを用いて分子同士を架橋可能なタンパクまたはアミノ基を持つ多糖類である。そのようなタンパク質には、例えば、ゼラチン、ガゼイン、ラクトフェリン、コラーゲン、ケラチン、トランスフェリン、アルブミン、およびエラスチンが含まれる。またそのようなアミノ基を持つ多糖類としてキトサンも用いることもできる。いくつかの態様では、タンパク質またはアミノ基を持つ多糖類は、タンパク質であり、特には、ゼラチンである。
6). Proteins or polysaccharides having amino groups Proteins or polysaccharides having amino groups are proteins or polysaccharides having amino groups capable of cross-linking molecules using transglutaminase. Such proteins include, for example, gelatin, casein, lactoferrin, collagen, keratin, transferrin, albumin, and elastin. Moreover, chitosan can also be used as such a polysaccharide having an amino group. In some embodiments, the protein or polysaccharide with an amino group is a protein, in particular gelatin.
 ゼラチンはコラーゲンを変性させたものであり、加熱時にゾル状態、冷却すると部分的に三重らせん構造になりゲル化する。その生体親和性、細胞親和性が高く、生分解性を有することから組織工学用の足場材料やDDS用のキャリアーとしての利用が期待されている。冷却により作製したゼラチン溶液は生体内温度である37℃環境下では容易にゾル状態へと相転移するが、トランスグルタミナーゼを用いてゼラチン分子同士を共有結合的に架橋することで、その強度を向上させることができる。 Gelatin is a denatured collagen that is in a sol state when heated and partially gels when cooled and partially forms a triple helical structure. Because of its high biocompatibility and cell affinity and biodegradability, it is expected to be used as a scaffold material for tissue engineering and a carrier for DDS. Gelatin solution prepared by cooling easily transitions to the sol state at 37 ° C, which is the in-vivo temperature, but its strength is improved by covalently cross-linking gelatin molecules with transglutaminase. Can be made.
 ここで用いるゼラチンは、例えば、魚、ブタ、ウシ、クラゲまたはトリ由来のものであり、好ましくは、魚またはブタ由来のものである。ゼラチンは、重量平均分子量で、例えば3万~20万であるものを用いる。ゼラチンの重量平均分子量の測定方法は、前記アルギン酸またはその誘導体の1価金属塩の重量平均分子量と同様の測定方法を利用することができる。このようなゼラチンは、各種公知の方法を用いて製造することができ、あるいは市販のものを購入して(例えば新田ゼラチン社から)入手することも可能である。 The gelatin used here is derived from, for example, fish, pig, cow, jellyfish or bird, and preferably derived from fish or pig. Gelatin having a weight average molecular weight of, for example, 30,000 to 200,000 is used. The measurement method of the weight average molecular weight of gelatin can use the same measurement method as the weight average molecular weight of the monovalent metal salt of alginic acid or its derivative. Such gelatin can be produced by using various known methods, or commercially available products can be purchased (for example, from Nitta Gelatin).
 タンパク質またはアミノ基を持つ多糖類の使用量は、タンパク質またはアミノ基を持つ多糖類(例えば、ゼラチンおよびガゼイン)の種類、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の使用量や分子量などに応じて適宜調節するのが望ましい。タンパク質またはアミノ基を持つ多糖類の種類がゼラチンである場合のゼラチンの使用量は、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の溶液に対して、例えば、5wt%~40wt%、好ましくは、15wt%~25wt%である。タンパク質またはアミノ基を持つ多糖類の種類がカゼインのとき、ガゼインの使用量は、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の溶液に対して、例えば、5~20wt%とする。
 いくつかの態様では、組成物から形成される被覆材料中でのイオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)とタンパク質またはアミノ基を持つ多糖類(例えば、ゼラチン)の比率(イオン架橋可能な多糖類:タンパク質またはアミノ基を持つ多糖類(重量比))は、好ましくは、1:0.1~1:100であり、より好ましくは、1:5~1:30である。
The amount of the protein or polysaccharide having amino group used is the kind of polysaccharide having protein or amino group (for example, gelatin or casein), or ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or its derivative). It is desirable to adjust appropriately according to the usage amount, molecular weight, etc. The amount of gelatin used when the type of protein or polysaccharide having an amino group is gelatin is, for example, 5 wt% with respect to a solution of an ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof). % To 40 wt%, preferably 15 wt% to 25 wt%. When the type of polysaccharide having protein or amino group is casein, the amount of casein used is, for example, 5 to 5 with respect to a solution of an ionically crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof). 20 wt%.
In some embodiments, an ionically crosslinkable polysaccharide (eg, a monovalent metal salt of alginic acid or a derivative thereof) and a polysaccharide having a protein or amino group (eg, gelatin) in a coating material formed from the composition The ratio of (ionically crosslinkable polysaccharide: protein or polysaccharide having amino groups (weight ratio)) is preferably 1: 0.1 to 1: 100, more preferably 1: 5 to 1: 30.
7.トランスグルタミナーゼ
 トランスグルタミナーゼ(TG)はタンパク質またはペプチドに含まれるグルタミン残基とリジン残基を結合させる酵素である。タンパク質は、固有のグルタミン残基およびリジン残基を有するため、タンパク質同士でこれらの残基を結合させて、タンパク質同士を架橋させることによってハイドロゲルを生成することが可能である。TGとしては、種々のものを用いることができ、例えば、動物、植物、もしくは微生物由来のもの、またはその変異体を用いることができ、好ましくは、微生物由来のもの、またはその変異体である。TGは、より具体的には、味の素株式会社から入手可能なアクティバ(商品名)、ノボ ノルディスク ファーマ株式会社から入手可能なノボサーティーン(商品名)、CSLベーリング株式会社から入手可能なフィブロガミン(商品名)などが挙げられる。
7). Transglutaminase Transglutaminase (TG) is an enzyme that binds glutamine and lysine residues contained in proteins or peptides. Since proteins have unique glutamine and lysine residues, hydrogels can be generated by binding these residues between proteins and crosslinking the proteins together. Various types of TG can be used, for example, those derived from animals, plants, or microorganisms, or variants thereof, preferably those derived from microorganisms, or variants thereof. More specifically, TG is Activa (trade name) available from Ajinomoto Co., Ltd., Novosirteen (trade name) available from Novo Nordisk Pharma Co., Ltd. Name).
 TGの使用量は、タンパク質またはアミノ基を持つ多糖類の種類、使用量、分子量、リシン及びグルタミン残基量またはアミノ基量などに応じて適宜調節するのが望ましい。TGの使用量は、タンパク質の溶液の重量に対して、例えば、0.5重量%~40重量%、好ましくは、1重量%~5重量%である。
 組成物が粉末状である場合のTGの使用量は、ゼラチンの重量に対して、例えば、1重量%~50重量%、好ましくは、10重量%~25重量%である。
The amount of TG used is preferably adjusted as appropriate according to the type of protein or polysaccharide having an amino group, the amount used, the molecular weight, the amount of lysine and glutamine residues or the amount of amino groups. The amount of TG used is, for example, 0.5% to 40% by weight, preferably 1% to 5% by weight, based on the weight of the protein solution.
The amount of TG used when the composition is in powder form is, for example, 1% to 50% by weight, preferably 10% to 25% by weight, based on the weight of gelatin.
8.低エンドトキシン処理
 いくつかの態様では、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)は、低エンドトキシンイオン架橋可能な多糖類(例えば、低エンドトキシンアルギン酸またはその誘導体の1価金属塩)ではない。別のいくつかの態様では、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)は、低エンドトキシンイオン架橋可能な多糖類(例えば、低エンドトキシンアルギン酸またはその誘導体の1価金属塩)である。これらのイオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)とともに用いるタンパク質またはアミノ基を持つ多糖類は、低エンドトキシンタンパク質またはアミノ基を持つ低エンドトキシン多糖類であってもよいし、あるいは低エンドトキシンタンパク質またはアミノ基を持つ低エンドトキシン多糖類でなくてもよい。低エンドトキシンとは、実質的に炎症、または発熱を惹起しない程度にまでエンドトキシンレベルを低下させたものである。すなわち、低エンドトキシン処理に供されたものである。
8). Low Endotoxin Treatment In some embodiments, an ion crosslinkable polysaccharide (eg, a monovalent metal salt of alginic acid or a derivative thereof) is a low endotoxin ion crosslinkable polysaccharide (eg, a monovalent of a low endotoxin alginic acid or a derivative thereof). Not a metal salt). In some other embodiments, the ion crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or a derivative thereof) is a low endotoxin ion crosslinkable polysaccharide (eg, monovalent metal of a low endotoxin alginic acid or derivative thereof). Salt). Proteins or amino group-containing polysaccharides used with these ion-crosslinkable polysaccharides (eg, monovalent metal salts of alginic acid or derivatives thereof) may be low endotoxin proteins or low endotoxin polysaccharides having amino groups. Alternatively, it may not be a low endotoxin protein or a low endotoxin polysaccharide having an amino group. Low endotoxins are those in which endotoxin levels have been reduced to such an extent that they do not substantially cause inflammation or fever. That is, it has been subjected to low endotoxin treatment.
 低エンドトキシン処理は、公知の方法またはそれに準じる方法によって行うことができる。例えば、ヒアルロン酸ナトリウムを精製する、菅らの方法(例えば、特開平9-324001号公報など参照)、β1,3-グルカンを精製する、吉田らの方法(例えば、特開平8-269102号公報など参照)、アルギネート、ゲランガム等の生体高分子塩を精製する、ウィリアムらの方法(例えば、特表2002-530440号公報など参照)、ポリサッカライドを精製する、ジェームスらの方法(例えば、国際公開第93/13136号パンフレットなど参照)、ルイスらの方法(例えば、米国特許第5589591号明細書など参照)、アルギネートを精製する、ハーマンフランクらの方法(例えば、Appl Microbiol Biotechnol (1994)40:638-643など参照)等またはこれらに準じる方法によって実施することができる。本発明の低エンドトキシン処理は、それらに限らず、洗浄、フィルター(エンドトキシン除去フィルターや帯電したフィルターなど)によるろ過、限外ろ過、カラム(エンドトキシン吸着アフィニティーカラム、ゲルろ過カラム、イオン交換樹脂によるカラムなど)を用いた精製、疎水性物質、樹脂または活性炭などへの吸着、有機溶媒処理(有機溶媒による抽出、有機溶剤添加による析出・沈降など)、界面活性剤処理(例えば、特開2005-036036号公報など参照)など公知の方法によって、あるいはこれらを適宜組合せて実施することができる。これらの処理の工程に、遠心分離など公知の方法を適宜組み合わせてもよい。アルギン酸またはその誘導体の種類、タンパク質またはアミノ基を持つ多糖類の種類などに合わせて適宜選択するのが望ましい。 The low endotoxin treatment can be performed by a known method or a method analogous thereto. For example, the method of Takada et al. (See, for example, JP-A-9-32001) for purifying sodium hyaluronate, and the method of Yoshida et al. (Eg, JP-A-8-269102) for purifying β1,3-glucan. Etc.), a method of William et al. (For example, see JP-T-2002-530440, etc.) for purifying biopolymer salts such as alginate, gellan gum, etc., a method of James et al. (For example, international publication) for purifying polysaccharides, etc. 93/13136 pamphlet), the method of Lewis et al. (For example, see US Pat. No. 5,585,591 etc.), the method of Herman Frank et al. (For example, Appl Microbiol Biotechnol (1994) 40: 638) for purifying alginate. -Refer to -643 etc.) or similar It can be carried out by methods. The low endotoxin treatment of the present invention is not limited thereto, but is washed, filtered with a filter (such as an endotoxin removal filter or a charged filter), ultrafiltration, a column (an endotoxin adsorption affinity column, a gel filtration column, a column with an ion exchange resin, etc.) ), Adsorption to hydrophobic substances, resin or activated carbon, organic solvent treatment (extraction with organic solvent, precipitation / precipitation by addition of organic solvent, etc.), surfactant treatment (for example, JP-A-2005-036036) It can be carried out by a known method such as a gazette) or a combination thereof. These processing steps may be appropriately combined with known methods such as centrifugation. It is desirable to select appropriately according to the type of alginic acid or its derivative, the type of protein or polysaccharide having an amino group, and the like.
 エンドトキシンレベルは、公知の方法で確認することができ、例えば、リムルス試薬(LAL)による方法、エントスペシー(登録商標)ES-24Sセット(生化学工業株式会社)を用いる方法などによって測定することができる。 The endotoxin level can be confirmed by a known method, and can be measured, for example, by a method using Limulus reagent (LAL), a method using Enspercy (registered trademark) ES-24S set (Seikagaku Corporation), or the like. .
 イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)のエンドトキシンの処理方法は特に限定されないが、低エンドトキシン処理の結果として、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)のエンドトキシン含有量が、リムルス試薬(LAL)によるエンドトキシン測定を行った場合に、500エンドトキシン単位(EU)/g以下であることが好ましく、より好ましくは100EU/g以下、さらに好ましくは50EU/g以下、特に好ましくは30EU/g以下である。低エンドトキシン処理されたアルギン酸ナトリウムは、例えば、Sea Matrix(滅菌)((株)キミカ-(株)持田インターナショナル)、PRONOVATMUP LVG(FMC)など市販品により入手可能である。 The method for treating endotoxin of an ion-crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid or a derivative thereof) is not particularly limited. The endotoxin content of the monovalent metal salt is preferably 500 endotoxin units (EU) / g or less, more preferably 100 EU / g or less, and more preferably 100 EU / g or less, when endotoxin measurement is performed using a Limulus reagent (LAL). Preferably it is 50 EU / g or less, Most preferably, it is 30 EU / g or less. Low endotoxin-treated sodium alginate is commercially available, for example, Sea Matrix (sterilized) (Kimika Co., Ltd. Mochida International), PRONOVA UP LVG (FMC), and the like.
 また、タンパク質またはアミノ基を持つ多糖類のエンドトキシン含有量も限定されないが、その結果として、タンパク質またはアミノ基を持つ多糖類のエンドトキシン含有量が、リムルス試薬(LAL)によるエンドトキシン測定を行った場合に、500エンドトキシン単位(EU)/g以下であることが好ましく、より好ましくは、100EU/g以下、さらに好ましくは50EU/g以下、特に好ましくは30EU/g以下である。このようなタンパク質またはアミノ基を持つ多糖類は、上記エンドトキシン処理に供することにより入手することができる。 In addition, the endotoxin content of a polysaccharide having a protein or amino group is not limited, but as a result, the endotoxin content of a polysaccharide having a protein or amino group is measured when endotoxin is measured with a Limulus reagent (LAL). 500 endotoxin units (EU) / g or less, more preferably 100 EU / g or less, still more preferably 50 EU / g or less, particularly preferably 30 EU / g or less. Such a polysaccharide having a protein or amino group can be obtained by subjecting it to the above endotoxin treatment.
9.食道損傷部被覆用組成物の粘度
 いくつかの態様の食道損傷部被覆用組成物は、流動性のある液体状、すなわち、溶液状である。この態様の組成物の粘度は、特に限定されないが、例えば、5mPa・s~100000mPa・s、好ましくは、10mPa・s~20000mPa・sである。いくつかの態様の組成物は、シリンジ等で対象に適用することもできる粘度である。
9. Viscosity of Esophageal Damage Covering Composition The esophageal damage covering composition of some embodiments is a fluid liquid, ie, a solution. The viscosity of the composition of this embodiment is not particularly limited, but is, for example, 5 mPa · s to 100,000 mPa · s, preferably 10 mPa · s to 20000 mPa · s. Some embodiments of the composition are viscosities that can be applied to the subject, such as with a syringe.
 組成物の粘度は、付着性の観点から10mPa・s程度以上、組成物の取り扱いやすさの観点から、20000mPa・s程度以下であることが好ましく、より好ましくは、2000mPa・s~10000mPa・s、1000mPa・s~5000mPa・s、または10mPa・s~10000mPa・sである。 The viscosity of the composition is preferably about 10 mPa · s or more from the viewpoint of adhesion, and preferably about 20000 mPa · s or less from the viewpoint of ease of handling of the composition, more preferably 2000 mPa · s to 10000 mPa · s, 1000 mPa · s to 5000 mPa · s, or 10 mPa · s to 10000 mPa · s.
 組成物の粘度は、例えば、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体)の濃度、イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体)の分子量、アルギン酸またはその誘導体のM/G比、タンパク質またはアミノ基を持つ多糖類の濃度、タンパク質またはアミノ基を持つ多糖類の分子量、温度、pH、カウンターイオン等を制御することにより調整することができる。 The viscosity of the composition may be, for example, the concentration of an ionic crosslinkable polysaccharide (eg, alginic acid or derivative thereof), the molecular weight of the ionic crosslinkable polysaccharide (eg, alginic acid or derivative thereof), the M / G of alginic acid or derivative thereof. It can be adjusted by controlling the ratio, the concentration of the polysaccharide having protein or amino group, the molecular weight, temperature, pH, counter ion, etc. of the polysaccharide having protein or amino group.
 イオン架橋可能な多糖類(例えば、アルギン酸またはその誘導体の1価金属塩)の溶液の粘度は、溶液中のイオン架橋可能な多糖類濃度(例えば、アルギン酸濃度)が高い場合に高く、溶液中のイオン架橋可能な多糖類濃度(例えば、アルギン酸濃度)が低い場合に低くなる。またイオン架橋可能な多糖類(例えば、アルギン酸)の分子量が大きい場合に高く、小さい場合に低くなる。例として、分子量約20~50万Daのアルギン酸を用いて、10mPa・s~20000mPa・sの粘度を得るには、約1%w/v~3%w/vのアルギン酸水溶液とすればよい。より分子量が小さいアルギン酸を用いる場合は、これよりアルギン酸の濃度を高める必要がある。アルギン酸水溶液の粘度は、例えば、回転粘度測定器(コーンプレートタイプ)(TVE-20LT,TOKI SANGYO CO.,LTD.JAPAN)などを用いて、公知の方法で測定することができる。公知の方法は、例えば、第16改正日本薬局方 一般試験法粘度測定法(円すい-平板形回転粘度計)である。 The viscosity of a solution of an ion-crosslinkable polysaccharide (eg, monovalent metal salt of alginic acid or a derivative thereof) is high when the concentration of the ion-crosslinkable polysaccharide (eg, alginate concentration) in the solution is high. It becomes low when the polysaccharide concentration (for example, alginic acid concentration) which can be ion-crosslinked is low. Moreover, when the molecular weight of polysaccharide (for example, alginic acid) which can be ion-crosslinked is large, it becomes high, and when small, it becomes low. For example, in order to obtain a viscosity of 10 mPa · s to 20000 mPa · s using alginic acid having a molecular weight of about 200 to 500,000 Da, an aqueous alginate solution of about 1% w / v to 3% w / v may be used. When alginic acid having a smaller molecular weight is used, it is necessary to increase the concentration of alginic acid. The viscosity of the aqueous alginate solution can be measured by a known method using, for example, a rotational viscometer (cone plate type) (TVE-20LT, TOKI SANGYO CO., LTD. JAPAN). A known method is, for example, the 16th revision Japanese Pharmacopoeia, General Test Method Viscosity Measurement Method (cone-plate rotational viscometer).
 アルギン酸またはその誘導体の1価金属塩の溶液の粘度は、M/G比によって影響を受けるため、例えば、溶液の粘度等により好ましいM/G比を有するアルギン酸を適宜選択することができる。本発明に用いるアルギン酸のM/G比は、約0.4~4.0であり、好ましくは約0.8~3.0、より好ましくは約1.0~1.6である。 Since the viscosity of a monovalent metal salt solution of alginic acid or a derivative thereof is affected by the M / G ratio, for example, an alginic acid having a preferable M / G ratio can be selected depending on the viscosity of the solution. The M / G ratio of alginic acid used in the present invention is about 0.4 to 4.0, preferably about 0.8 to 3.0, more preferably about 1.0 to 1.6.
 前述のように、M/G比が主に海藻の種類によって決まることなどから、原料として用いられる褐藻類の種類はアルギン酸またはその誘導体の1価金属塩の溶液の粘度に影響を及ぼす。本発明で用いられるアルギン酸としては、好ましくは、レッソニア属、マクロシスティス属、ラミナリア属、アスコフィラム属、ダービリア属の褐藻由来であり、より好ましくはレッソニア属の褐藻由来であり、特に好ましくはレッソニア・ニグレッセンズ(Lessonia nigrescens)由来である。 As described above, since the M / G ratio is mainly determined by the type of seaweed, the type of brown algae used as a raw material affects the viscosity of a solution of a monovalent metal salt of alginic acid or a derivative thereof. The alginic acid used in the present invention is preferably derived from a brown algae of the genus Lessonia, Macrocystis, Laminaria, Ascofilum, Davilia, more preferably a brown alga of the genus Lessonia, particularly preferably Lessonia It is derived from Niscens (Lessonia nigrescens).
 タンパク質またはアミノ基を持つ多糖類の溶液の粘度は、溶液中のタンパク質濃度またはアミノ基を持つ多糖類濃度が高い場合に高く、溶液中のタンパク質濃度またはアミノ基を持つ多糖類濃度が低い場合に低くなる。またタンパク質またはアミノ基を持つ多糖類の分子量が大きい場合に高く、小さい場合に低くなる。例として、タンパク質である分子量約10万のゼラチンを用いて、400mPa・s~20000mPa・sの粘度を得るには、約0.5%w/v~40%w/vのゼラチン水溶液とすればよい。より分子量が小さいゼラチンを用いる場合は、これよりゼラチンの濃度を高める必要がある。タンパク質水溶液の粘度は、例えば、回転粘度測定器(コーンプレートタイプ)(TVE-20LT,TOKI SANGYO CO.,LTD.JAPAN)などを用いて、公知の方法で測定することができる。公知の方法は、例えば、第16改正日本薬局方 一般試験法粘度測定法(円すい-平板形回転粘度計)である。 The viscosity of a protein or polysaccharide solution with amino groups is high when the concentration of the protein or polysaccharide with amino groups is high and the concentration of the protein or polysaccharide with amino groups in the solution is low. Lower. Moreover, it is high when the molecular weight of the polysaccharide having protein or amino group is large, and low when it is small. For example, in order to obtain a viscosity of 400 mPa · s to 20000 mPa · s using gelatin having a molecular weight of about 100,000, a gelatin aqueous solution of about 0.5% w / v to 40% w / v can be used. Good. When gelatin having a smaller molecular weight is used, it is necessary to increase the gelatin concentration. The viscosity of the protein aqueous solution can be measured by a known method using, for example, a rotational viscometer (cone plate type) (TVE-20LT, TOKI SANGYO CO., LTD. JAPAN). A known method is, for example, the 16th revision Japanese Pharmacopoeia, General Test Method Viscosity Measurement Method (cone-plate rotational viscometer).
 イオン架橋可能な多糖類(例えば、アルギン酸の1価金属塩)とタンパク質またはアミノ基を持つ多糖類とを混合して得られる組成物の粘度は、混合前の各溶液の粘度が同じであれば、混合前とほぼ同じになる。混合前の一方の溶液の粘度が高い場合には、これに、低い粘度の他方の溶液を混合することで、得られる組成物の粘度を下げることができる。混合前の一方の粘度の溶液が低い場合には、これに、高い粘度の他方の溶液を混合することで、得られる組成物の粘度を上げることができる。このようにして、5mPa・s~100000mPa・sの粘度を得ることができる。 If the viscosity of the composition obtained by mixing an ionically crosslinkable polysaccharide (for example, monovalent metal salt of alginic acid) and a polysaccharide having a protein or amino group is the same as that of each solution before mixing, It becomes almost the same as before mixing. When the viscosity of one solution before mixing is high, the viscosity of the composition obtained can be lowered | hung by mixing the other solution of low viscosity with this. When the solution of one viscosity before mixing is low, the viscosity of the composition obtained can be raised by mixing the other solution of high viscosity with this. In this way, a viscosity of 5 mPa · s to 100,000 mPa · s can be obtained.
10.混合方法
 食道損傷用組成物において、(a)成分と(b)成分の混合方法は、(a)成分と(b)成分が均一に混合可能である限り特に限定されない。混合方法としては、例えば、スタティックミキサーを使用する方法、ダブルシリンジを使用する方法、2液を同時または連続的にスプレーする方法、粉末状の2つの成分を同時または連続的に散布する方法、粉末を混合するミキサーを使用する方法などが、挙げられる。
10. Mixing method In the composition for esophageal injury, the mixing method of the component (a) and the component (b) is not particularly limited as long as the component (a) and the component (b) can be mixed uniformly. As a mixing method, for example, a method using a static mixer, a method using a double syringe, a method of spraying two liquids simultaneously or continuously, a method of spraying two powdery components simultaneously or continuously, a powder And a method of using a mixer for mixing.
 スタティックミキサーは、駆動部のない静的混合装置のことを言う。より具体的には、スタティックミキサーは、通常、管と管内に固定された駆動部の無いミキシング・エレメントからなり、これにより、流れを分割し、かつ流れ方向を転換または反転させ、流れを縦方向、横方向に分割、転換および反転を繰り返すことにより流体を混合する混合装置のことである。スタティックミキサーの種類によっては、管外周部に熱交換の為のジャケットが備えられているものもあり、またミキシング・エレメント自体に熱媒体を通す熱交換の為のチューブが備えられているものもある。スタティックミキサーについての詳細は、例えば、Thakur et al.,(2003)Trans IChemE, 81, Part A:787-826に記載されており、これを参照することができる。 “Static mixer” refers to a static mixing device without a drive unit. More specifically, a static mixer usually consists of a tube and a mixing element without a drive fixed in the tube, thereby splitting the flow and diverting or reversing the flow direction, so that the flow is longitudinal. It is a mixing device that mixes fluids by repeating division, conversion and inversion in the horizontal direction. Some types of static mixers are equipped with a jacket for heat exchange on the outer periphery of the tube, and others are equipped with a tube for heat exchange through which the heat medium passes through the mixing element itself. . For details on the static mixer, see, for example, Thakur et al. (2003) Trans IchemE, 81, Part A: 787-826, which can be referred to.
 スタティックミキサーとしては、公知のものを使用することができる、公知のスタティックミキサーとしては、例えば、ケニックス型(例えば、ノードソン社製、およびノリタケ社製);Kenics(Chemineer Inc.);low pressure drop(Ross Engineering Inc.);SMV(Koch-Glitsch Inc.);SMX(Koch-Glitsch Inc.);SMXL(Koch-Glitsch Inc.);Interfacial Surface Generator-ISG(Ross Engineering Inc.);HEV(Chemineer Inc.);Inliner series 50(Lightnin Inc.);Inliner series 45(Lightnin Inc.);Custody transfer mixer(Komax systems Inc.);およびSMR(Koch-Glitsch,Inc.)が挙げられる。 As the static mixer, a known one can be used. Examples of the known static mixer include, for example, Kenix type (for example, manufactured by Nordson and Noritake); Kenics (Chemineer Inc.); low pressure drop ( Ross Engineering Inc.); SMV (Koch-Glitsch Inc.); SMXL (Koch-Glitsch Inc.); Interfacial Surface Generator. ); Inliner series 50 (Lightnin Inc.); Inli er series 45 (Lightnin Inc.); Custody transfer mixer (Komax systems Inc.); and SMR (. Koch-Glitsch, Inc) and the like.
 ダブルシリンジは、混合する成分を別々に充填するための容器を有し、成分がダブルシリンジから放出されるとき、均一に混ぜ合わされて放出される装置である。 The double syringe is a device that has a container for separately filling the components to be mixed and is uniformly mixed and discharged when the components are discharged from the double syringe.
 ダブルシリンジとしては、公知のものを使用することができる。公知のダブルシリンジとしては、例えば、バクスター社製のものが挙げられる。 As the double syringe, a known one can be used. Examples of known double syringes include those manufactured by Baxter.
 あるいは、スタティックミキサーおよびダブルシリンンジは、組成物を混合するために作製された特注品であってもよい。 Alternatively, the static mixer and the double syringe can be a custom product made to mix the composition.
11.食道狭窄防止方法、および止血方法
 いくつかの態様の食道損傷部被覆用組成物は、食道狭窄を防止するのに用いることができ、例えば、食道狭窄を防止する必要のある対象の食道損傷部に適用するように用いられる。「適用する」とは、組成物から形成される食道損傷部被覆材料が、食道表面の食道損傷部を覆うように用いられること、好ましくは、食道損傷部およびその周辺の正常な食道表面を覆うのに十分な量で用いられることを意味する。「食道損傷部」、「食道損傷部被覆用組成物」、「対象」などの具体的な説明は、前述の通りである。
 「食道狭窄を防止する」とは、食道狭窄を完全に防止すること、あるいは、食道損傷部被覆用組成物を適用しなかった場合と比較して食道狭窄の形成が抑制されること、または食道狭窄の形成が遅延することを意味する。
11. Esophageal stricture prevention method and hemostasis method The composition for covering an esophageal injury site in some embodiments can be used to prevent esophageal stenosis, for example, in an esophageal injury site of a subject in need of preventing esophageal stenosis. Used to apply. “Applying” means that an esophageal lesion covering material formed from the composition is used so as to cover the esophageal lesion on the surface of the esophagus, and preferably covers the normal esophageal surface in and around the esophageal lesion. Means that it is used in a sufficient amount. Specific descriptions such as “esophageal injury part”, “esophageal injury part coating composition”, and “target” are as described above.
“Preventing esophageal stricture” means that esophageal stricture is completely prevented, or that the formation of esophageal stricture is suppressed as compared to the case where the composition for covering an esophageal lesion is not applied, or It means that the formation of stenosis is delayed.
 別のいくつかの態様の食道損傷部被覆用組成物は、食道損傷部の止血のために用いられる。例えば、食道損傷部の止血をする必要のある対象の食道損傷部に適用するように用いられる。「適用する」とは、組成物から形成される食道損傷部被覆材料が、食道表面の食道損傷部を覆うように用いられること、好ましくは、食道損傷部およびその周辺の正常な食道表面を覆うのに十分な量で用いられることを意味する。「食道損傷部」、「食道損傷部被覆用組成物」、「対象」などの具体的な説明は、前述の通りである。
 「止血する」とは、出血を完全に止めること、あるいは、食道損傷部被覆用組成物を適用しなかった場合と比較して出血が抑制されること、または止血が早まることを意味する。
Another embodiment of the composition for covering an esophageal lesion is used for hemostasis of the esophageal lesion. For example, it is used so as to be applied to an esophageal damaged part of a subject that needs to stop hemostasis of the esophageal damaged part. “Applying” means that an esophageal lesion covering material formed from the composition is used so as to cover the esophageal lesion on the surface of the esophagus, and preferably covers the normal esophageal surface in and around the esophageal lesion. Means that it is used in a sufficient amount. Specific descriptions such as “esophageal injury part”, “esophageal injury part coating composition”, and “target” are as described above.
“Stop hemostasis” means that bleeding is completely stopped, or that bleeding is suppressed or hemostasis is accelerated compared to the case where the composition for covering an esophageal injury is not applied.
12.併用薬
 食道損傷部被覆用組成物を、他の薬剤と組み合わせて用いてよい。具体的には、食道損傷部被覆用組成物を食道損傷部に適用する前に、あるいは同時に、あるいは後で、ストレプトマイシン、ペニシリン、トブラマイシン、アミカシン、ゲンタマイシン、ネオマイシン、およびアンホテリシンB等の抗生物質、アスピリン、非ステロイド性解熱鎮痛剤(NSAIDs)、アセトアミノフェン等の抗炎症薬、ステロイド系抗炎症剤トリアムシノロンアセトニド(ケナコルト-A)などのステロイド系薬物、抗腫瘍薬マトマイシンC、5-フルオロウラシル等の併用薬を投与するようにしてもよい。これらの薬剤は食道損傷部被覆用組成物に混入して用いてもよい。
12 Concomitant drugs The composition for covering an esophageal injury site may be used in combination with other drugs. Specifically, before applying the composition for covering an esophageal lesion to the esophageal lesion, simultaneously with or after, an antibiotic such as streptomycin, penicillin, tobramycin, amikacin, gentamicin, neomycin and amphotericin B, aspirin Non-steroidal antipyretic analgesics (NSAIDs), anti-inflammatory drugs such as acetaminophen, steroidal anti-inflammatory drugs such as triamcinolone acetonide (Kenacort-A), antitumor drugs matomycin C, 5-fluorouracil, etc. A concomitant drug may be administered. These agents may be used by being mixed in the composition for covering an esophageal lesion.
 なお、本明細書において引用した全ての刊行物、例えば、先行技術文献および公開公報、特許公報その他の特許文献は、その全体が本明細書において参照として組み込まれる。 It should be noted that all publications cited in the present specification, for example, prior art documents and publications, patent gazettes and other patent documents, are incorporated herein by reference in their entirety.
 以下の実施例により本発明を更に詳述するが、本発明はこれら実施例に限定して理解されるべきものではない。 The present invention will be described in further detail with reference to the following examples, but the present invention should not be construed as being limited to these examples.
実施例1:マレイミド修飾アルギン酸の1価金属塩の調製
 マレイミド修飾アルギン酸を以下の通り調製した。200mlナス型フラスコにアルギン酸ナトリウム(I-3G)(株式会社キミカ;キミカアルギン High・G シリーズ;粘度(20℃):300~400mPa・s(1%水溶液))を500.0mg、0.3M NaCl(和光純薬 品番191-01665)含有0.1M MESバッファー(和光純薬 品番349-01623)100mlを加え一晩撹拌し溶解させた。撹拌した状態で、10ml MESバッファーに溶かした2.3963g WSCD/HCl(ペプチド研究所 品番1030)を10minにかけて滴下した。撹拌した状態で、10ml MESバッファーに溶かした1.4888g NHS(和光純薬 品番089-04032)を10minにかけて滴下した後、30min撹拌した。撹拌した状態で、MESバッファー10mlに溶かしたN-(2-アミノエチル)マレイミド塩酸塩(東京化成工業 品番A2436)を220.8mg(0.5eq)を滴下した。溶液のpHを測定し、0.1MのNaOH(和光純薬 品番192-07935)でpH=6に調整後、10,30,60minにpHを確認し、20h以上撹拌した。NaHCO固体(和光純薬 品番199-05985)を加えてpHを7.50にし、反応を停止させた。溶液を透析膜(6~8kDa)に移し、3日間NaCl水で透析した。水に移し替え、5日間透析した。凍結乾燥を5日間行い、白色の化合物としてマレイミド修飾アルギン酸(Alg-Mal)を得た(収率50%)。マレイミド修飾の修飾率は、20%であった。
Example 1: Preparation of monovalent metal salt of maleimide-modified alginic acid Maleimide-modified alginic acid was prepared as follows. Sodium alginate (I-3G) (Kimika; Kimika Argin High · G series; viscosity (20 ° C.): 300 to 400 mPa · s (1% aqueous solution)) 500.0 mg, 0.3 M NaCl (200% eggplant type flask) 100 ml of 0.1M MES buffer (Wako Pure Chemicals No. 349-01623) containing Wako Pure Chemicals No. 191-01665) was added and stirred overnight to dissolve. While stirring, 2.3963 g WSCD / HCl (Peptide Laboratories No. 1030) dissolved in 10 ml MES buffer was added dropwise over 10 min. While stirring, 1.4888 g NHS (Wako Pure Chemicals No. 089-04032) dissolved in 10 ml MES buffer was added dropwise over 10 min, and then stirred for 30 min. While stirring, 220.8 mg (0.5 eq) of N- (2-aminoethyl) maleimide hydrochloride (Tokyo Kasei Kogyo No. A2436) dissolved in 10 ml of MES buffer was added dropwise. The pH of the solution was measured, adjusted to pH = 6 with 0.1 M NaOH (Wako Pure Chemicals No. 192-07935), checked for pH at 10, 30, 60 min, and stirred for 20 hours or longer. NaHCO 3 solid (Wako Pure Chemicals No. 199-05985) was added to bring the pH to 7.50 and the reaction was stopped. The solution was transferred to a dialysis membrane (6-8 kDa) and dialyzed against NaCl for 3 days. Transfered to water and dialyzed for 5 days. Lyophilization was carried out for 5 days to obtain maleimide-modified alginic acid (Alg-Mal) as a white compound (yield 50%). The modification rate of maleimide modification was 20%.
実施例2:アルギン酸の1価金属塩とゼラチンを含む材料の組織接着性評価(液体噴霧による試験)
 高粘度のアルギン酸の1価金属塩(Alg)の組織接着性を評価した。また、マレイミド修飾Alg(Alg-Mal)の組織接着性も、2wt%Alg(I-3G)の代わりに2wt%Alg-Malを用いたことを除いて同様に評価した。
Example 2: Evaluation of tissue adhesion of a material containing a monovalent metal salt of alginic acid and gelatin (test by liquid spray)
The tissue adhesiveness of monovalent metal salt (Alg) of high viscosity alginic acid was evaluated. The tissue adhesion of maleimide-modified Alg (Alg-Mal) was also evaluated in the same manner except that 2 wt% Alg-Mal was used instead of 2 wt% Alg (I-3G).
[材料]
A:2wt%Alg(I-3G)/5wt%TG(有効濃度0.5wt%)(+Blue food dye) 0.5mL
B:20wt%Gela/0.1MCa2+ 0.5mL
洗浄水:0.1%安息香酸メチル/0.9%NaCl
[material]
A: 2 wt% Alg (I-3G) / 5 wt% TG (effective concentration 0.5 wt%) (+ Blue food dye) 0.5 mL
B: 20 wt% Gela / 0.1 MCa 2+ 0.5 mL
Washing water: 0.1% methyl benzoate / 0.9% NaCl
 上記A液とB液は、具体的には、次の通り調製した。
 A:2wt%Alg(I-3G)を純水にいれ、溶解するまで撹拌させた。A液総量に対して5wt%になるTG粉末(90%マルトデキストリン含有、有効TG濃度0.5wt%、味の素株式会社)をAlg溶液に溶かし、均一に分布させるため、30分以上撹拌した。材料を目視で確認しやすくさせるため、食物染色用のBlue food dye(共立食品株式会社;食用色素 青)を0.1wt%入れた。
 B:20wt%のゼラチン(新田ゼラチン株式会社;日本薬局方 ゼラチン(製造専用)GLS250)を純水に入れ、50℃で加熱しながら完全に溶解するまで撹拌した。B液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)をゼラチン溶液に溶かし、均一に分布させるため、30分以上撹拌した。
Specifically, the A liquid and the B liquid were prepared as follows.
A: 2 wt% Alg (I-3G) was put into pure water and stirred until dissolved. TG powder (90% maltodextrin content, effective TG concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% with respect to the total amount of A solution, was dissolved in the Alg solution and stirred for 30 minutes or more in order to distribute it uniformly. In order to make it easy to visually confirm the material, 0.1 wt% of blue food dye (Kyoritsu Foods Co., Ltd .; food color blue) for food dyeing was added.
B: 20 wt% gelatin (Nitta Gelatin Co., Ltd .; Japanese Pharmacopoeia Gelatin (manufactured exclusively) GLS250) was placed in pure water and stirred at 50 ° C. until completely dissolved. CaCl 2 (Wako Pure Chemicals No. 036-00485) that was 0.1 M with respect to the total amount of B solution was dissolved in the gelatin solution and stirred for 30 minutes or more in order to distribute it uniformly.
 また、洗浄水は、次の通り調製した。0.9%NaClを純水に溶解させ、0.1%安息香酸メチルをいれ、完全に溶解するまで撹拌した。得られた溶液をオートクレーブで滅菌した。 The washing water was prepared as follows. 0.9% NaCl was dissolved in pure water, 0.1% methyl benzoate was added, and the mixture was stirred until completely dissolved. The resulting solution was sterilized by autoclaving.
[手順]
 ブタ食道を2cm切り出し、縦切りで開いた。開いた食道から粘膜をはさみで切り離し、粘膜組織と粘膜下層を露出させた組織をそれぞれパラフィルムの上に乗せ、パラフィルムごと重さを測定した(W)。マルチルーメンカテーテルを通して、窒素ガス(4L/min)を用いてサンプル上にA液とB液各0.5mLを同時にスプレーした。37℃のインキュベーター内に材料投与した組織サンプルをいれ、ゲル化を10分間待った。食道のサンプルを持ち上げ、パラフィルム上に付いているゲルを水道水洗い流した。水分を拭き取った後、食道サンプルを貼り直し、重さを測定した(W)。粘膜や粘膜表面に付着しているゲルを30mLの水で洗い流した。水分を拭き取った後重さを0時間の重さとして測定した(W)。さらに、水道水での洗浄を3~4回繰り返し、材料が剥離しないことを確認したうえで、サンプルのゲル面を下向き、60mL洗浄水に浸した。シェーカーの上にのせて、37℃インキュベーター内で振とうした。一定の時間後にサンプルを取り出し、水分を拭き取った後重さを各時間の重さとして測定した(W)。
[procedure]
The porcine esophagus was cut out 2 cm and opened vertically. The mucous membrane was separated from the open esophagus with scissors, the mucosal tissue and the tissue exposing the submucosa were placed on the parafilm, and the weight of each parafilm was measured (W 0 ). Through a multi-lumen catheter, 0.5 mL each of A liquid and B liquid was sprayed simultaneously on the sample using nitrogen gas (4 L / min). The tissue sample to which the material was administered was placed in a 37 ° C. incubator, and gelation was waited for 10 minutes. The esophageal sample was lifted and the gel on the parafilm was washed away with tap water. After wiping off the moisture, the esophageal sample was reapplied and the weight was measured (W 1 ). The gel adhering to the mucous membrane and mucosal surface was washed away with 30 mL of water. After wiping off the moisture, the weight was measured as 0 hour weight (W 2 ). Further, washing with tap water was repeated 3 to 4 times, and after confirming that the material did not peel off, the gel surface of the sample was directed downward and immersed in 60 mL of washing water. It was placed on a shaker and shaken in a 37 ° C. incubator. A sample was taken out after a certain time, and after wiping off moisture, the weight was measured as the weight of each time (W 2 ).
接着率の算出:
-W=スプレー後食道サンプル上のゲル量
-W=洗浄後粘膜/粘膜下層に接着したゲル量
[(W-W)/(W-W)]×100%=材料への接着率(Adhesion rate)(%)
Calculation of adhesion rate:
W 1 −W 0 = Amount of gel on esophageal sample after spray W 2 −W 0 = Amount of gel adhered to mucosa / submucosa after washing [(W 2 −W 0 ) / (W 1 −W 0 )] × 100 % = Adhesion rate to material (%)
[結果]
 その結果を図2に示す。
 I-3Gアルギン酸の場合、正常粘膜2日、粘膜下層3日で剥離した。それに比べると、I-3Gから合成したAlg-Malは正常粘膜も粘膜下層も接着時間が長く10日目まで測定可能でしたが、実際目視で評価すると粘膜下層には13日目まで材料が接着していたことが観察できた。マレイミド修飾の優位性が見られたと考えられる。この結果から、各材料の食道狭窄防止効果を次の通り説明できる。I-3Gアルギン酸は十分に組織への接着性があり、狭窄が起こしやすい術後部位に留まり、狭窄を予防することが考えられる。一方、マレイミド修飾によって、組織への接着性がさらに改善された。このことから、AlgAlg-Malの接着時間が1~2週間になり、狭窄が起こしやすい術後部位により長く留まり、より効果的に狭窄を予防することが考えられる。
[result]
The result is shown in FIG.
In the case of I-3G alginate, peeling occurred on the normal mucosa 2 days and the submucosa 3 days. In comparison, Alg-Mal synthesized from I-3G has a long adhesion time for both the normal mucosa and the submucosa and can be measured up to the 10th day. I was able to observe what I was doing. It seems that the superiority of maleimide modification was observed. From this result, the esophageal stricture prevention effect of each material can be explained as follows. It is considered that I-3G alginate has sufficient adhesion to tissues and stays at the postoperative site where stenosis is likely to occur, thereby preventing stenosis. On the other hand, the adhesion to tissue was further improved by maleimide modification. From this, it can be considered that the adhesion time of AlgAlg-Mal becomes 1 to 2 weeks, stays longer in the postoperative site where stenosis is likely to occur, and prevents stenosis more effectively.
実施例3:アルギン酸の1価金属塩とゼラチンを含む材料にCaSO を添加したときの組織接着性評価
 Ca2+が時間とともに抜けていくと、架橋されたアルギン酸の分解が早くなる可能性は検証されたため、材料中にCaSOを添加し、組織接着性を評価した。
Example 3: tissue adhesive Evaluation Ca 2+ upon addition of CaSO 4 in the material containing a monovalent metal salt and gelatin alginate escapes with time, the possibility of decomposition is accelerated in the cross-linked alginate verified Therefore, CaSO 4 was added to the material and the tissue adhesion was evaluated.
[材料]
A:2wt%Alg(I-3G)/5wt%TG(有効濃度0.5wt%)(+Blue food dye) 0.5mL
B-2:20wt%Gela/0.1MCa2+/0.1MCaSO 0.5mL
洗浄水:0.1%安息香酸メチル/0.9%NaCl
[material]
A: 2 wt% Alg (I-3G) / 5 wt% TG (effective concentration 0.5 wt%) (+ Blue food dye) 0.5 mL
B-2: 20 wt% Gela / 0.1MCa 2+ /0.1MCaSO 4 0.5 mL
Washing water: 0.1% methyl benzoate / 0.9% NaCl
 上記A液と洗浄水は、実施例2に記載の通り調製した。B-2液は、具体的には、次の通り調製した。20wt%のゼラチンを純水に入れ、50℃で加熱しながら完全に溶解するまで撹拌した。B-2液の総量に対して0.1MになるCaCl(和光純薬 品番036-00485)とB-2液の総量に対して0.1MになるCaSO(和光純薬 品番031-00935)をゼラチン溶液に溶かし、均一に分布させるため、30分以上撹拌した。 The above solution A and washing water were prepared as described in Example 2. Specifically, the solution B-2 was prepared as follows. 20 wt% gelatin was put into pure water and stirred at 50 ° C. until completely dissolved. CaCl 2 (Wako Pure Chemicals product number 036-00485) which becomes 0.1M with respect to the total amount of the B-2 solution and CaSO 4 (Wako Pure Chemicals product number 031-00935) which becomes 0.1M with respect to the total amount of the B-2 solution. ) Was dissolved in the gelatin solution and stirred for 30 minutes or more in order to distribute it uniformly.
[手順]
 B液の代わりにB-2液を用いたことを除いて、実施例2と同様の手順で組織接着性評価を行った。
[procedure]
Tissue adhesion evaluation was performed in the same procedure as in Example 2, except that the B-2 solution was used instead of the B solution.
[結果]
 その結果を図3に示す。
 CaSO添加することによってゲルの膨潤が抑えられ、正常粘膜への接着時間が長くなり、5日目に剥がれた時も膨潤が見られなかった。粘膜下層への接着時間は重さで評価するときにCaSOの添加にかかわらずほぼ変化しなかったが、目視評価によると5日目まで存在していた。Ca2+が時間とともに抜けていくと、架橋されたアルギン酸の分解が早くなる可能性がある。実際に、溶解度の低いCaSOを添加することによってCa2+が徐々に放出され、アルギン酸ゲルの分解が抑えられた。
[result]
The result is shown in FIG.
By adding CaSO 4, the swelling of the gel was suppressed, the adhesion time to the normal mucosa was prolonged, and no swelling was seen even when it was peeled off on the fifth day. Adhesion time to the submucosa was almost unchanged regardless of the addition of CaSO 4 when evaluated by weight, but was present until the fifth day according to visual evaluation. If Ca 2+ escapes with time, the decomposition of the crosslinked alginic acid may be accelerated. Actually, by adding CaSO 4 having low solubility, Ca 2+ was gradually released, and decomposition of the alginate gel was suppressed.
実施例4:アルギン酸の1価金属塩とガゼインを含む材料の組織接着性評価
[材料]
A-3:2wt%Alg(I-3G)/1wt%TG(有効濃度0.1wt%)(+Blue food dye)0.5mL
B-3:10wt%カゼイン/0.1MCa2+0.5mL
洗浄水:0.1%安息香酸メチル/0.9%NaCl
Example 4: Evaluation of tissue adhesion of a material containing a monovalent metal salt of alginic acid and casein [Material]
A-3: 2 wt% Alg (I-3G) / 1 wt% TG (effective concentration 0.1 wt%) (+ Blue food dye) 0.5 mL
B-3: 10 wt% casein / 0.1 MCa 2+ 0.5 mL
Washing water: 0.1% methyl benzoate / 0.9% NaCl
[手順]
 洗浄水は、実施例2に記載の通り上記A-3液とB-3液は、具体的には、次の通り調製した。
 先ず、A-3液は次の通り調製した。2wt%Alg(I-3G)を純水にいれ、溶解するまで撹拌させた。A液総量に対して1wt%になるTG粉末(90%マルトデキストリン含有、有効TG濃度0.1wt%)  をAlg溶液に溶かし、均一に分布させるため、30分以上撹拌した。材料を目視で確認しやすくさせるため、食物染色用のBlue food dyeを0.1wt%入れた。
 次に、B-3液は次の通り調製した。10wt%のカゼイン(和光純薬 品番033-23271)を純水入れ、撹拌しながら0.1M NaOH(和光純薬 品番192-07935)でpH7.0まで調整し、さらに一晩撹拌し続け、カゼインミセルを十分吸水膨潤させ、カゼイン溶液が得られた。B液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)をカゼイン溶液に溶かし、均一に分布させるため、30分以上撹拌した。
[procedure]
The washing water was prepared as described in Example 2, specifically, the A-3 and B-3 liquids as follows.
First, the A-3 solution was prepared as follows. 2 wt% Alg (I-3G) was put into pure water and stirred until dissolved. TG powder (containing 90% maltodextrin, effective TG concentration 0.1 wt%) that is 1 wt% with respect to the total amount of liquid A was dissolved in the Alg solution and stirred for 30 minutes or more in order to distribute it uniformly. In order to make it easy to confirm the material visually, 0.1 wt% of blue food dye for food staining was added.
Next, the B-3 solution was prepared as follows. Add 10wt% casein (Wako Pure Chemicals product number 03-323271) in pure water, adjust to pH 7.0 with 0.1M NaOH (Wako Pure Chemicals product number 192-07935) while stirring, and continue stirring overnight. The micelle was sufficiently swollen with water to obtain a casein solution. CaCl 2 (Wako Pure Chemicals No. 036-00485), which is 0.1 M based on the total amount of B solution, was dissolved in the casein solution and stirred for 30 minutes or more in order to distribute it uniformly.
[手順]
 A液およびB液の代わりにA-3液およびB-3液を用いたことを除いて、実施例2と同様の手順で組織接着性評価を行った。
[procedure]
Tissue adhesion evaluation was performed in the same procedure as in Example 2 except that the A-3 and B-3 solutions were used instead of the A and B solutions.
[結果]
 材料投与後AlgはCa2+よって架橋され、カゼインはTGによって架橋され、2液混合ゲルになった。一方で、洗浄水を用いて洗浄した結果、材料は他の材料と比較して早い段階で剥離した。このように、低濃度のカゼインは、ゼラチンの場合と比較して接着性がやや劣ることが分かった。しかしながら、ガゼインを用いた材料は組織への接着性があるので、狭窄が起こしやすい術後部位に留まり、狭窄を予防することが考えられる。
[result]
After the material administration, Alg was cross-linked by Ca 2+ and casein was cross-linked by TG to form a two-component mixed gel. On the other hand, as a result of washing with washing water, the material peeled off at an early stage as compared with other materials. Thus, it was found that the low concentration of casein is slightly inferior in adhesiveness compared to gelatin. However, since the material using gazein has adhesiveness to the tissue, it can be considered that the material stays at a postoperative site where stenosis is likely to occur and prevents stenosis.
実施例5:アルギン酸の1価金属塩とゼラチンを含む材料の組織接着性評価(粉体散布による試験)
 高粘度のアルギン酸の1価金属塩(Alg)の組織接着性を評価した。
Example 5: Evaluation of tissue adhesion of a material containing a monovalent metal salt of alginic acid and gelatin (test by powder spraying)
The tissue adhesiveness of monovalent metal salt (Alg) of high viscosity alginic acid was evaluated.
[材料]
A-5:Alg(I-3G)/Gela粉末(Alg:Gela=1:10(重量比)) 2g
B-5:5wt%TG(有効濃度0.5wt%)/0.1MCa2+ 2.5mL
洗浄水:0.1%安息香酸メチル/0.9%NaCl
[material]
A-5: Alg (I-3G) / Gela powder (Alg: Gela = 1: 10 (weight ratio)) 2 g
B-5: 5 wt% TG (effective concentration 0.5 wt%) / 0.1 MCa 2+ 2.5 mL
Washing water: 0.1% methyl benzoate / 0.9% NaCl
 上記A-5粉末とB-5液は、具体的には、次の通り調製した。
 A-5粉末:Alg(I-3G)とゼラチン(Sigma G1890)を重量比1:10でミキサーを用いて撹拌させた。ここで、粉体のサイズは次のように調整した。散布用ゼラチンは目のサイズ500μm、355μm、180μm、90μm、45μmの篩(東京スクリーン社製、JIS Z 8801)をかけ、粒子のサイズ制御を行った。粒子サイズは、粒度分布計(Parica mini、HORIBA)を用いて測定したものである。
 B-5液:溶液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)を純水に入れ、完全に溶解するまで撹拌した。溶液総量に対して5wt%になるTG粉末(90%マルトデキストリン含有、有効TG濃度0.5wt%))を溶液に入れ、完全に溶解するまで撹拌した。
Specifically, the above A-5 powder and B-5 liquid were prepared as follows.
A-5 powder: Alg (I-3G) and gelatin (Sigma G1890) were stirred at a weight ratio of 1:10 using a mixer. Here, the size of the powder was adjusted as follows. The gelatin for spraying was passed through a sieve having a mesh size of 500 μm, 355 μm, 180 μm, 90 μm and 45 μm (manufactured by Tokyo Screen Co., Ltd., JIS Z 8801) to control the size of the particles. The particle size is measured using a particle size distribution meter (Parica mini, HORIBA).
Solution B-5: CaCl 2 (Wako Pure Chemicals No. 036-00485) that was 0.1 M based on the total amount of the solution was placed in pure water and stirred until it was completely dissolved. TG powder (containing 90% maltodextrin, effective TG concentration 0.5 wt%) that is 5 wt% with respect to the total amount of the solution was put into the solution and stirred until it was completely dissolved.
 また、洗浄水は、次の通り調製した。0.9%NaClを純水に溶解させ、0.1%安息香酸メチルをいれ、完全に溶解するまで撹拌した。得られた溶液をオートクレーブで滅菌した。 The washing water was prepared as follows. 0.9% NaCl was dissolved in pure water, 0.1% methyl benzoate was added, and the mixture was stirred until completely dissolved. The resulting solution was sterilized by autoclaving.
[手順]
 ブタ食道を2cm切り出し、縦切りで開いた。開いた食道から粘膜をはさみで切り離し、粘膜組織と粘膜下層を露出させた食道サンプルをそれぞれパラフィルムの上に乗せ、パラフィルムごと重さを測定した。この測定値を、「組織本来の重さ」とみなした。食道サンプルの縦、横の長さを測定し、面積を算出した。この算出値を、「組織面積」とみなした。薬剤瓶にA-5粉末を入れたアルトシューター(カイゲンファーマ)を散布用チューブ(ファイン・ジェット(長さ1.6m、実測外径約2mm、実測内径約1mm)(株式会社トップ))につなぎ、これを用いて食道サンプル上にA-5粉末を散布した。1分間の吸水時間を待ち、その間にA-5粉末が接着した食道サンプルの重さを測定した。この測定値を、「粉体散布後の組織の重さ」とみなした。また、接着しなかった粉末を回収し、その重さも測定した。ファイン・ジェット(株式会社トップ)液体散布用チューブを通して、サンプル上にB-5液0.5mLをスプレーした。37℃のインキュベーター内に材料投与した組織サンプルをいれ、ゲル化を10分間待った。食道のサンプルを持ち上げ、パラフィルム上に付いているゲルを水道水洗い流した。水分を拭き取った後、食道サンプルを貼り直し、重さを測定した。この測定値を、「粉体および液体架橋剤散布後組織の重さ」とみなした。粘膜や粘膜表面に付着しているゲルを30mLの水で洗い流した。水分を拭き取った後重さを0時間の重さとして測定した。さらに、水道水での洗浄を3~4回繰り返し、材料が剥離しないことを確認したうえで、サンプルのゲル面を下向き、60mL洗浄水に浸した。シェーカーの上にのせて、37℃インキュベーター内で振とうした。一定の時間後にサンプルを取り出し、水分を拭き取った後重さを各時間の重さとして測定した。
[procedure]
The porcine esophagus was cut out 2 cm and opened vertically. The mucous membrane was separated from the opened esophagus with scissors, and each esophageal sample exposing the mucosal tissue and submucosa was placed on the parafilm, and the weight of each parafilm was measured. This measured value was regarded as “tissue inherent weight”. The vertical and horizontal lengths of the esophageal sample were measured, and the area was calculated. This calculated value was regarded as “tissue area”. Connect Altoshooter (Kagen Pharma) with A-5 powder in a medicine bottle to a spray tube (Fine Jet (length 1.6 m, measured outer diameter approximately 2 mm, measured inner diameter approximately 1 mm) (top)) This was used to spray A-5 powder on the esophageal sample. After waiting for a water absorption time of 1 minute, the weight of the esophageal sample to which the A-5 powder adhered was measured. This measured value was regarded as “the weight of the tissue after powder application”. Moreover, the powder which did not adhere | attach was collect | recovered and the weight was also measured. Through a fine jet (Top Co., Ltd.) liquid spray tube, 0.5 mL of the B-5 solution was sprayed onto the sample. The tissue sample to which the material was administered was placed in a 37 ° C. incubator, and gelation was waited for 10 minutes. The esophageal sample was lifted and the gel on the parafilm was washed away with tap water. After wiping off moisture, the esophageal sample was reapplied and the weight was measured. This measured value was regarded as “weight of tissue after spraying powder and liquid crosslinking agent”. The gel adhering to the mucous membrane and mucosal surface was washed away with 30 mL of water. After wiping off the moisture, the weight was measured as the weight of 0 hours. Further, washing with tap water was repeated 3 to 4 times, and after confirming that the material did not peel off, the gel surface of the sample was directed downward and immersed in 60 mL of washing water. It was placed on a shaker and shaken in a 37 ° C. incubator. A sample was taken out after a certain time, and after wiping off moisture, the weight was measured as the weight of each time.
 粉体接着量、架橋剤投与後ゲル量および材料重量の算出:
 粉体接着量(mg/cm)=(粉体散布後組織の重さ(mg)-組織本来の重さ(mg))/組織面積(cm
 架橋剤投与後ゲル量(mg/cm)=(粉体および液体架橋剤散布後組織の重さ(mg)-組織本来の重さ(mg))/組織面積(cm
 Material Weight(g)=各時点の組織の重さ(g)-組織本来の重さ(g)
Calculation of powder adhesion amount, gel amount after administration of cross-linking agent and material weight:
Powder adhesion amount (mg / cm 2 ) = (weight of tissue after powder dispersion (mg) −original weight of tissue (mg)) / tissue area (cm 2 )
Gel amount after administration of cross-linking agent (mg / cm 2 ) = (weight of tissue after spraying powder and liquid cross-linking agent (mg) −original weight of tissue (mg)) / tissue area (cm 2 )
Material Weight (g) = tissue weight at each time point (g) −tissue original weight (g)
[結果]
 その結果を表1、図4および図5に示す。
[result]
The results are shown in Table 1, FIG. 4 and FIG.
 表1:Gela粒子サイズによる接着量変化
Figure JPOXMLDOC01-appb-T000002
Table 1: Adhesion amount change by Gela particle size
Figure JPOXMLDOC01-appb-T000002
 Gela粒子サイズ45~90μmの場合、洗浄水に浸漬して48時間後、材料がゲルの形を保ったまま粘膜から剥がれた(図4)。粘膜下層に接着していた材料は96時間後に形が崩れてはがれてきた(図4)。
 Gela粒子サイズ90~180μmの場合、Gela粒子サイズ45~90μmの時と比べて、粉体接着量が多くなり(表1)、また材料の接着時間も長くなることが分かった(図5)。
 Gela粒子サイズ45~90μmは、Alg(I-3G)粒子サイズ(50μm)に近い。Alg(I-3G)の投与量はゼラチンの1/10である一方、Alg(I-3G)の吸水膨潤が早いため、吸水後かなり膨潤し、Gela粒子より大きくなった可能性が考えられる。またCa2+によってAlg(I-3G)が速やかに架橋され、Gela粒子の外側がAlg(I-3G)に覆われ、組織や溶液またはGela同士との接触面積が小さくなり、TGによるGelaとムチンの架橋反応がやや減少する可能性がある。Gela粒子が大きくなると接着性が改善されたこともこの仮説と一致している。
 これらのことから、Algが狭窄を起こしやすい術後部位に長く留まり、効果的に狭窄を予防すること、また、Gelaの粒子サイズを制御することでAlgが狭窄を起こしやすい術後部位により長く留まることが考えられる。
In the case of Gela particle size of 45 to 90 μm, 48 hours after immersion in washing water, the material peeled off the mucous membrane while maintaining the gel shape (FIG. 4). The material adhering to the submucosal layer was deformed and peeled off after 96 hours (FIG. 4).
It was found that when the gela particle size was 90 to 180 μm, the amount of powder adhesion was larger (Table 1) and the material adhesion time was longer than when the gela particle size was 45 to 90 μm (FIG. 5).
The Gela particle size of 45 to 90 μm is close to the Alg (I-3G) particle size (50 μm). The dose of Alg (I-3G) is 1/10 that of gelatin. On the other hand, Alg (I-3G) absorbs and swells quickly, so it may swell considerably after absorption and become larger than Gela particles. Moreover, Alg (I-3G) is rapidly cross-linked by Ca 2+ , and the outside of the Gela particles is covered with Alg (I-3G), and the contact area between the tissue, solution, or Gela is reduced, and Gela and mucin by TG are reduced. The cross-linking reaction may be slightly reduced. Consistent with this hypothesis is that the adhesion is improved when the Gela particles are larger.
Therefore, Alg stays longer in the postoperative site where stenosis is likely to occur, effectively preventing stenosis, and Alg stays longer in the postoperative site where stenosis is likely to occur by controlling the particle size of Gela. It is possible.
実施例6:In vivoラット食道粉体材料投与の狭窄評価
 In vivoラット食道粉体材料投与の狭窄評価を行った。
 
[器具]
 縫合糸:非吸収糸3-0、6-0、吸収糸4-0
 16Gサーフロー
 丸型ダイヤモンドやすり
Example 6: Evaluation of stenosis after administration of In vivo rat esophageal powder material Evaluation of stenosis after administration of In vivo rat esophageal powder material was performed.

[Equipment]
Suture: Non-absorbing thread 3-0, 6-0, Absorbing thread 4-0
16G Surfflow Round Diamond File
[材料]
 Alg群(Alg単独投与群):
  粉体材料(A-6-1):Alg(I-3G) 10mg/匹
  液体架橋剤(B-6-1):0.1MCa2+ 0.2mL/匹
[material]
Alg group (Alg single administration group):
Powder material (A-6-1): Alg (I-3G) 10 mg / animal Liquid cross-linking agent (B-6-1): 0.1 MCa 2+ 0.2 mL / animal
 Gela群(Gela単独投与群):
  粉体材料(A-6-2):Gelatin 10mg/匹
  液体架橋剤(B-6-2):5wt%TG(有効濃度0.5wt%) 0.2mL/匹
Gela group (Gela alone administration group):
Powder material (A-6-2): Gelatin 10 mg / animal Liquid cross-linking agent (B-6-2): 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
 Alg/Gela群:
  粉体材料(A-6-3):Alg(I-3G)/Gela粉末(Alg:Gela=1:10(重量比)) 10mg/匹
  液体架橋剤(B-6-3):5wt%TG(有効濃度0.5wt%)/0.1MCaCl 0.2mL/匹
Alg / Gela group:
Powder material (A-6-3): Alg (I-3G) / Gela powder (Alg: Gela = 1: 10 (weight ratio)) 10 mg / animal Liquid cross-linking agent (B-6-3): 5 wt% TG (Effective concentration 0.5wt%) / 0.1MCaCl 2 0.2mL / animal
 粉体材料(A-6-1)~(A-6-3)は、具体的には、それぞれ次のように調製した。
  粉体材料(A-6-1):Alg(I-3G)を10mg/匹量り取った。
  粉体材料(A-6-2):Gelatinを10mg/匹量り取った。
  粉体材料(A-6-3):Alg(I-3G)とGelatinを重量比1:10でミキサーを用いて撹拌させた。
Specifically, the powder materials (A-6-1) to (A-6-3) were respectively prepared as follows.
Powder material (A-6-1): Alg (I-3G) was weighed at 10 mg / animal.
Powder material (A-6-2): Gelatin was weighed at 10 mg / animal.
Powder material (A-6-3): Alg (I-3G) and Gelatin were stirred at a weight ratio of 1:10 using a mixer.
 また、液体架橋剤(B-6-1)~(B-6-3)は、具体的には、それぞれ次のように調製した。
  液体架橋剤(B-6-1):溶液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)を純水に入れ、完全に溶解するまで撹拌した。
  液体架橋剤(B-6-2):溶液総量に対して5wt%になるTG粉末(90%マルトデキストリン含有、有効TG濃度0.5%)(味の素株式会社)を溶液に入れ、完全に溶解するまで撹拌した。
  液体架橋剤(B-6-3):溶液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)を純水に入れ、完全に溶解するまで撹拌した。溶液総量に対して5wt%になるTG粉末(90%マルトデキストリン含有、有効TG濃度0.5wt%))を溶液に入れ、完全に溶解するまで撹拌した。
Further, the liquid crosslinking agents (B-6-1) to (B-6-3) were specifically prepared as follows.
Liquid cross-linking agent (B-6-1): CaCl 2 (Wako Pure Chemicals No. 036-00485) of 0.1 M with respect to the total amount of the solution was placed in pure water and stirred until it was completely dissolved.
Liquid cross-linking agent (B-6-2): TG powder (90% maltodextrin contained, effective TG concentration 0.5%) (Ajinomoto Co., Inc.) (Ajinomoto Co., Inc.), which is 5 wt% based on the total amount of the solution, is completely dissolved. Stir until
Liquid cross-linking agent (B-6-3): CaCl 2 (Wako Pure Chemicals No. 036-00485) of 0.1 M with respect to the total amount of the solution was placed in pure water and stirred until it was completely dissolved. TG powder (containing 90% maltodextrin, effective TG concentration 0.5 wt%) that is 5 wt% with respect to the total amount of the solution was put into the solution and stirred until it was completely dissolved.
[試薬]
 0.05w/v% トリプシン-0.53mmol/L EDTA・4Na溶液(和光純薬)
 生理食塩水 (株式会社大塚製薬)
[reagent]
0.05 w / v% trypsin-0.53 mmol / L EDTA · 4Na solution (Wako Pure Chemical Industries, Ltd.)
Saline (Otsuka Pharmaceutical Co., Ltd.)
麻酔
Figure JPOXMLDOC01-appb-T000003
anesthesia
Figure JPOXMLDOC01-appb-T000003
[動物]
 SDラット オス 9週齢 16匹
 1週間評価 N=4/group  2週間評価 N=4/group
[animal]
SD rat Male 9 weeks old 16 rats 1 week evaluation N = 4 / group 2 weeks evaluation N = 4 / group
[手順]
 3種類混合麻酔薬として、塩酸メデトミジン1.875mL、ミダゾラム2mL、ブトルファノー酒石酸塩2.5mLを生理食塩水18.625mLと混合し、ラットの体重100gに対して0.5mL投与した。
[procedure]
As three kinds of mixed anesthetics, 1.875 mL of medetomidine hydrochloride, 2 mL of midazolam, and 2.5 mL of butorphano tartrate were mixed with 18.625 mL of physiological saline, and 0.5 mL was administered to 100 g of rat body weight.
 その後、ラット腹部を長さ3cm切開した。腹部の切開部分から胃を引き出してガーゼの上にせた。胃の上部にはさみで約3mmの切口を開けた。やすりを胃の上部の切口から入れて上下左右各方向を約6~7回スクラブした。やすりを抜き出し、胃から約15mmのところを3-0の糸で結紮し、結び目をペアンで挟んで、サーフローを固定した。0.05w/v%トリプシンEDTAを注入し、1分間維持した。結紮を解除し、サーフローを抜いた。やすりを入れて約上下左右各方向約6~7回スクラブし、やすりを抜き出した。その後、Control群と材料群のそれぞれで、以下の処置を行った。 Thereafter, the rat abdomen was incised 3 cm in length. The stomach was pulled out from the abdominal incision and placed on the gauze. A cut of about 3 mm was made in the upper part of the stomach with scissors. A file was inserted from the upper cut of the stomach and scrubbed in about 6-7 times in the top, bottom, left and right directions. The file was extracted, and about 15 mm from the stomach was ligated with a 3-0 thread, and the knot was pinched with a pair of pears to fix the surflow. 0.05 w / v% trypsin EDTA was injected and maintained for 1 minute. I released the ligature and pulled out the surf. The file was scrubbed about 6-7 times in each of the vertical and horizontal directions to extract the file. Then, the following treatment was performed in each of the Control group and the material group.
  Control群:胃の切口を6-0非吸収糸で縫合し、4-0吸収糸と3-0非吸収糸で閉腹した。
  材料群:粉体材料を散布ディバイスで投与後、液体架橋剤を注入し、胃の切口を閉創し、閉腹した。
Control group: The incision of the stomach was sutured with 6-0 non-absorbing thread and closed with 4-0 absorbing thread and 3-0 non-absorbing thread.
Material group: After administration of powder material with a spraying device, liquid cross-linking agent was injected, the stomach cut was closed, and the abdomen was closed.
 閉腹後、塩酸アチパメゾール0.75mLを生理食塩水9.25mLと混合し、3種類混合麻酔の結抗剤としてラットの体重100gに対して0.5mL投与し、麻酔から覚醒させた。 After laparotomy, 0.75 mL of atipamezole hydrochloride was mixed with 9.25 mL of physiological saline, and 0.5 mL was administered to 100 g of rat body weight as a binding agent for three types of mixed anesthesia, and awakened from anesthesia.
 その後、体重変化と摂餌量変化を次のように測定した。ラットの体重を毎日決まった時間帯に測定した。体重変化率は以下の式で算出した:
  体重変化率(%)=[各時点の体重(g)/術前の体重(g)]×100
Thereafter, changes in body weight and changes in food intake were measured as follows. Rats were weighed daily at a fixed time. The weight change rate was calculated by the following formula:
Weight change rate (%) = [weight at each time point (g) / preoperative weight (g)] × 100
 また、毎日決まった時間帯で100g/匹の餌を与え、翌日に餌の残量を測定した。摂餌量は以下の式で算出した:
  摂取量(g)=[100g-餌の残量(g)]
In addition, 100 g / animal was fed at a fixed time every day, and the remaining amount of food was measured the next day. Food intake was calculated using the following formula:
Intake amount (g) = [100 g−remaining amount of food (g)]
 また、食道開通率を次のように測定した。炭酸ガスにより安楽死されたラットから食道標本を摘出し、長軸方向に切開して外観を評価した。潰瘍底の幅が一番狭いところを狭窄食道の幅とし、長さを測定した。そこから2cm離れた正常食道の幅も、同様に測定した。食道開通率は以下の式で算出した:
  食道開通率(%)=[狭窄食道幅/正常食道幅]×100
In addition, the esophageal opening rate was measured as follows. Esophageal specimens were removed from rats euthanized by carbon dioxide, and the appearance was evaluated by incision in the longitudinal direction. The width of the narrowed ulcer was taken as the width of the narrowed esophagus and the length was measured. The width of the normal esophagus 2 cm away from it was also measured in the same manner. The esophageal opening rate was calculated with the following formula:
Esophageal opening rate (%) = [stenotic esophageal width / normal esophageal width] × 100
[結果]
 体重変化率と摂餌量変化を測定した結果を、それぞれ図6、および図7に示す。Alg群およびAlg/Gela群は、コントロール群およびGela群と比較して、体重の減少および給餌量の減少がゆるやかであった。
[result]
The results of measuring the weight change rate and the change in food intake are shown in FIGS. 6 and 7, respectively. The Alg group and the Alg / Gela group had a gradual decrease in body weight and decreased food consumption compared to the control group and the Gela group.
 5日まで体重が減り、その後摂餌の量が増えていたが、体重はほとんど変わらなかった。Gela群は、食餌を戻した翌日には体重が増加したが、その後回収する日まで減り続けていた。 The body weight decreased until the 5th, and the amount of food consumption increased after that, but the body weight remained almost unchanged. The Gela group gained weight the day after returning to food, but continued to decrease until the day of recovery.
 食道開通率を図8に示す。すべての群において術後14日目での食道開通率は7日目よりやや下がった。7日目と14日目の食道開通率に関して、Gela群とControl群の間に有意差がなかったが、Alg群とAlg/Gela群はControl群の食道開通率より有意に高かった。Alg群とAlg/Gela群では、食道の重症度が軽減されたと考えられる。 Figure 8 shows the esophageal opening rate. In all groups, the esophageal opening rate on the 14th day after surgery was slightly lower than that on the 7th day. There was no significant difference between the Gela group and the Control group regarding the esophageal opening rate on the 7th and 14th days, but the Alg group and the Alg / Gela group were significantly higher than the esophageal opening rate of the Control group. It is considered that the severity of the esophagus was reduced in the Alg group and the Alg / Gela group.
 ここで、有意差検定は、次のように行った。全ての結果は平均値および標準偏差にて評価した。各群のデータ中における各2群間の平均値の差についてTukeyのHSD検定(Tukey honestly significant difference test)を行った。 Here, the significant difference test was performed as follows. All results were evaluated as mean values and standard deviations. Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
実施例7:In vivoラット食道粉体材料投与の狭窄の組織学的評価
 In vivoラット食道粉体材料投与の狭窄の組織学的評価を行った。
 
(1)凍結切片
[試薬]
 10v/v%ホルマリン緩衝液
 生理食塩水
 30w/v%スクロース溶液
 O.C.Tコンパウド
 液体窒素
Example 7: Histological evaluation of stenosis after administration of In vivo rat esophageal powder material A histological evaluation of stenosis after administration of In vivo rat esophageal powder material was performed.

(1) Cryosection [reagent]
10 v / v% formalin buffer saline 30 w / v% sucrose solution C. T compound liquid nitrogen
[手順]
 食道サンプルを10v/v%ホルマリン緩衝液に4時間以上浸漬し、固定した。生理食塩水で洗浄した。30w/v%スクロース溶液に一晩浸漬した。組織をO.C.Tコンパウドに封入した。液体窒素内に静置し、凍結させた。凍結した組織サンプルを-80度(℃)のDeep freezerで3時間以上凍結させた。凍結ミクロトームを用いて薄切りした。スライドグラスに貼り付けた。
[procedure]
The esophageal sample was immersed and fixed in a 10 v / v% formalin buffer for 4 hours or more. Washed with saline. It was immersed overnight in a 30 w / v% sucrose solution. O. C. Encapsulated in a T compound. It was allowed to stand in liquid nitrogen and frozen. The frozen tissue sample was frozen in a deep freezer at −80 degrees (° C.) for 3 hours or more. Thin slices were made using a frozen microtome. Affixed to a slide glass.
 ここで、食道サンプルは次のように作製した。炭酸ガスによる安楽死されたラットから食道標本を摘出し、長軸方向に切開し食道上皮側を上にした。 Here, the esophageal sample was prepared as follows. Esophageal specimens were excised from rats euthanized by carbon dioxide and cut in the longitudinal direction with the esophageal epithelium side up.
(2)HE染色
[試薬]
 カラッチヘマトキシリン
 0.5w/v%エオシンアルコール
 エタノール
 レモゾール
(2) HE staining [reagent]
Caratach hematoxylin 0.5 w / v% eosin alcohol ethanol Remosol
[手順]
 O.C.Tコンパウンドを水道水で軽く洗い流した。カラッチヘマトキシリン液に10分間浸漬した。流水中で10分間色出し水洗を行った。エオシン液に3分間浸漬した。3秒程度軽く水洗した。70v/v%エタノール溶液に1分間浸漬した。容器を変え100v/v%エタノール溶液に3分間浸漬した(×2回)。レモゾールに3分間浸漬した(×2回)。ドラフトで乾燥した後、マウントクイックを組織サンプル上にのせ、カバーグラスをかけた。マウントクイックが固化した後、顕微鏡を用いて観察した。
[procedure]
O. C. The T compound was lightly rinsed with tap water. It was immersed in a caratach hematoxylin solution for 10 minutes. Colored and washed in running water for 10 minutes. It was immersed in eosin solution for 3 minutes. Lightly washed with water for about 3 seconds. It was immersed in a 70 v / v% ethanol solution for 1 minute. The container was changed and immersed in a 100 v / v% ethanol solution for 3 minutes (× 2 times). It was immersed in Remosol for 3 minutes (× 2 times). After drying in a draft, the mount quick was placed on the tissue sample and covered with a cover glass. After the mount quick solidified, it was observed using a microscope.
[結果]
 HE染色の写真に基づいて再生した上皮の長さをImageJ(NIH: ImageJ ver. 1.51)で測定し、再上皮化率を算出した。具体的には、再上皮化率の算出方法は次の通りである。粘膜筋板が取り除かれた部分の長さを粘膜下層剥離創の長さとした。上皮に覆われていない部分の長さを再上皮化されていない長さとした。再上皮化率は以下の式で算出した:
  上皮の再生距離=[剥離創の長さ-再上皮化されていない長さ]
  再上皮化率(%)=[上皮の再生距離/剥離創の長さ]
[result]
The length of the regenerated epithelium was measured with ImageJ (NIH: ImageJ ver. 1.51) based on the photograph of HE staining, and the reepithelialization rate was calculated. Specifically, the method for calculating the re-epithelialization rate is as follows. The length of the part from which the mucosal muscle was removed was defined as the length of the submucosal exfoliation wound. The length of the portion not covered by the epithelium was defined as the length that was not re-epithelialized. The reepithelialization rate was calculated with the following formula:
Epithelial regeneration distance = [length of exfoliated wound-length not re-epithelialized]
Re-epithelialization rate (%) = [epithelial regeneration distance / exfoliated wound length]
 その結果を図9に示す。HE染色結果からみると、Alg群、Gela群、Alg/Gela群のすべてで、7日目(POD7)よりも14日目(POD14)に上皮の進展が見られた。また、上皮化速度は、Gela群よりも、Alg群およびAlg/Gela群の方が早く、Alg/Gela群が一番早かった。 The result is shown in FIG. From the results of HE staining, in all of the Alg group, Gela group, and Alg / Gela group, epithelial development was observed on the 14th day (POD14) rather than the 7th day (POD7). In addition, the epithelialization rate was faster in the Alg group and the Alg / Gela group than in the Gela group, and the Alg / Gela group was the fastest.
(3)シリウスレッド染色
[試薬]
 1%シリウスレッド液
 0.5%酢酸
 エタノール
 レモゾール
(3) Sirius red staining [reagent]
1% Sirius red solution 0.5% Acetic acid Ethanol Remosol
[手順]
 O.C.Tコンパウンドを水道水で軽く洗い流した。1wt%シリウスレッド液に10分間浸漬した。0.5v/v%酢酸溶液で2回洗浄した。容器を変え100v/v%エタノール溶液に3分間浸漬した(×2回)。レモゾールに3分間浸漬し、透徹させた。ドラフトで乾燥した後、マウントクイックを組織サンプル上にのせ、カバーグラスをかけた。マウントクイックが固化した後、顕微鏡を用いて観察した。
[procedure]
O. C. The T compound was lightly rinsed with tap water. It was immersed in 1 wt% sirius red liquid for 10 minutes. Washed twice with 0.5 v / v% acetic acid solution. The container was changed and immersed in a 100 v / v% ethanol solution for 3 minutes (× 2 times). It was immersed in Remosol for 3 minutes to make it clear. After drying in a draft, the mount quick was placed on the tissue sample and covered with a cover glass. After the mount quick solidified, it was observed using a microscope.
[結果]
 Sirius red染色の結果からみると、14日目において、Alg群、Gela群、Alg/Gela群のすべてで粘膜下層だけでなく筋層までコラーゲンが観察された。Sirius red染色の写真に基づいて産生したコラーゲンの量をImageJで測定し、コラーゲンの蓄積量を算出した。具体的には、コラーゲンの蓄積量の算出方法は次の通りである。コラーゲンはシリウスレッド染色で赤色に染まるため、ImageJ を用いた画像解析で赤色に染色された面積を測定し、組織中で選択される部分をコラーゲンの面積と定義した。コラーゲンの蓄積量は以下の式で算出した:
  コラーゲン蓄積量(%)=[コラーゲン線維面積/組織全体の面積]×100%
[result]
From the results of Sirius red staining, on the 14th day, collagen was observed not only in the submucosa but also in the muscle layer in all of the Alg group, Gela group, and Alg / Gela group. The amount of collagen produced based on the photograph of Sirius red staining was measured with ImageJ, and the amount of accumulated collagen was calculated. Specifically, the method for calculating the amount of accumulated collagen is as follows. Since collagen is stained red by Sirius red staining, the area stained red by image analysis using ImageJ was measured, and the portion selected in the tissue was defined as the area of collagen. Collagen accumulation was calculated using the following formula:
Collagen accumulation (%) = [collagen fiber area / total tissue area] × 100%
 その結果を図10に示す。Sirius red染色の結果からみると、Alg群、Gela群、Alg/Gela群のすべてで、7日目(POD7)よりも14日目(POD14)にコラーゲンの蓄積量が増えていた。 The result is shown in FIG. From the results of Sirius red staining, the amount of accumulated collagen increased on the 14th day (POD14) rather than the 7th day (POD7) in all of the Alg group, Gela group and Alg / Gela group.
 ここで、有意差検定は、次のように行った。全ての結果は平均値および標準偏差にて評価した。各群のデータ中における各2群間の平均値の差についてTukeyのHSD検定(Tukey honestly significant difference test)を行った。 Here, the significant difference test was performed as follows. All results were evaluated as mean values and standard deviations. Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
(4)α-SMA染色
[試薬]
・1次抗体:Monoclonol Anti-Actin,α-smooth muscle antibody produced in mouse(Sigma Aldrich A2547)
・2次抗体:Alexa Fluor 488 goat anti-mouse IG(H+L)(Molecular probe)(abcam ab150113)
・Triton X-100(Sigma Aldrich X100-100ML)
・PBS(-)(Wako 166-23555)
・Bovine serum albumin(Sigma Aldrich A-7906)
・Vectashieldマウンティング剤(Mounting Medium with DAPI)(Vec H-1200)
(4) α-SMA staining [reagent]
Primary antibody: Monoclonal Anti-Actin, α-smooth muscle antibody produced in mouse (Sigma Aldrich A2547)
Secondary antibody: Alexa Fluor 488 goat anti-mouse IG (H + L) (Molecular probe) (abcam ab150113)
・ Triton X-100 (Sigma Aldrich X100-100ML)
・ PBS (-) (Wako 166-23555)
・ Bovine serum albumin (Sigma Aldrich A-7906)
-Vectashield mounting agent (Mounting Medium with DAPI) (Vec H-1200)
[手順]
 O.C.Tコンパウンドを洗い流した。Liquid blocker super pop penでサンプルの周囲に撥水性サークルを描き、溶液の流出を防止した。スライドをPBST(0.1v/v% Triton X含PBS)で5min×3回洗浄した。Blocker solution(3wt%BSA+1v/v%sheep serum in PBST)をサンプルの上に載せ、室温で1hブロッキングした。PBSTで2min×2回洗浄した。1次抗体をPBSTで500倍に希釈し、サンプルの上に載せ4℃で一晩反応させた。PBSTで5min×3回洗浄した。500倍に希釈した2次抗体をサンプルの上に載せ、1h反応させた。PBSTで10min×3回洗浄した。100v/v%エタノールで脱水させた。レモゾールで透徹させた。スライドにVectashield マウンティング剤のドロップを一滴追加し、静かにカバーガラスを押して、周囲に余分な水分を取り除いた。透明なネイルポリスでカバースリップし、乾燥させた。
[procedure]
O. C. The T compound was washed away. A liquid blocker super pop pen drawn a water-repellent circle around the sample to prevent the solution from flowing out. The slide was washed with PBST (0.1 v / v% Triton X-containing PBS) for 5 min × 3 times. Blocker solution (3 wt% BSA + 1 v / v% sheep serum in PBST) was placed on the sample and blocked for 1 h at room temperature. Washed twice with PBST for 2 min × 2. The primary antibody was diluted 500 times with PBST, placed on the sample and allowed to react overnight at 4 ° C. Washed with PBST for 5 min × 3 times. The secondary antibody diluted 500 times was placed on the sample and reacted for 1 h. Washed with PBST for 10 min × 3 times. It dehydrated with 100 v / v% ethanol. Cleared with remozole. A drop of Vectashield mounting agent was added to the slide, and the cover glass was gently pushed to remove excess moisture around it. Coverslip with clear nail police and dry.
[結果]
 免疫染色の写真に基づいてα-SMAの発現量を算出した。具体的には、α-SMAの発現量の算出方法は次の通りである。Vectashield マウンティング剤(with DAPI)によって、細胞核を青色に蛍光標識した。ImageJを用いた画像解析により青色に標識された細胞の数を算出し、これを組織全体の細胞数とした。さらに、α-SMAは緑色に蛍光標識されるため、同様に緑色に標識された細胞数を算出し、これをα-SMA発現細胞数とした。α-SMAの発現量は以下の式で算出した:
  α-SMA発現量(%)=[α-SMA発現細胞数/組織全体の細胞数]
[result]
The expression level of α-SMA was calculated based on the photograph of immunostaining. Specifically, the method for calculating the expression level of α-SMA is as follows. Cell nuclei were fluorescently labeled blue with a Vectashield mounting agent (with DAPI). The number of cells labeled in blue was calculated by image analysis using ImageJ, and this was used as the number of cells in the entire tissue. Furthermore, since α-SMA is fluorescently labeled in green, the number of cells labeled in green was calculated in the same manner, and this was used as the number of cells expressing α-SMA. The expression level of α-SMA was calculated by the following formula:
α-SMA expression level (%) = [number of α-SMA expressing cells / number of cells in whole tissue]
 その結果を図11に示す。免疫染色の結果からみると、Alg群、Gela群、Alg/Gela群のすべてで、7日目と比べると14日目のα-SMA発現量が増加した。特にGela群の染色写真から、血管壁細胞(ペリサイト或は血管平滑筋細胞)のα-SMA発現が見られ、血管が多く存在していることが確認できた。ゼラチンが血管の新生を促進したではないかと考えられる。血管新生は炎症や創傷時に形成される肉芽の形成において認められる現象の一つとなり、血流が増加し細胞の活動が活発になった結果、多くのコラーゲンが産生された。免疫染色の結果から、Alg群と、Alg/Gela群においては筋線維芽細胞のマーカーであるα-SMA発現量は他の群より有意に低かった。このため、細胞並びに組織の収縮が抑えられたと考えられ、食道狭窄が防止されうることが分かった。 The result is shown in FIG. From the results of immunostaining, the α-SMA expression level on the 14th day increased in all of the Alg group, Gela group, and Alg / Gela group compared to the 7th day. In particular, from the stained photographs of the Gela group, α-SMA expression of vascular wall cells (pericytes or vascular smooth muscle cells) was observed, and it was confirmed that there were many blood vessels. It is thought that gelatin promoted angiogenesis. Angiogenesis has become one of the phenomena observed in the formation of granulation formed during inflammation and wounding. As a result of increased blood flow and cellular activity, many collagens were produced. From the results of immunostaining, the expression level of α-SMA, which is a myofibroblast marker, was significantly lower in the Alg group and the Alg / Gela group than in the other groups. For this reason, it was considered that the contraction of cells and tissues was suppressed, and it was found that esophageal stricture could be prevented.
実施例8:In vivoラット食道ゲル材料投与の狭窄評価
 In vivoラット食道ゲル材料投与の狭窄評価を行った。
 
[器具]
 縫合糸:非吸収糸3-0、6-0、吸収糸4-0
 16Gサーフロー
 丸型ダイヤモンドやすり
Example 8: Evaluation of stenosis after administration of an in vivo rat esophageal gel material An evaluation of stenosis after administration of an in vivo rat esophageal gel material was performed.

[Equipment]
Suture: Non-absorbing thread 3-0, 6-0, Absorbing thread 4-0
16G Surfflow Round Diamond File
[材料]
 Alg群(Alg単独投与群):
  液体材料(A-8-1):2wt%Alg(I-3G) 0.2mL/匹
  液体架橋剤(B-8-1):12wt%カルボキシメチルセルロース(CMC)+0.1MCa2+ 0.2mL/匹
[material]
Alg group (Alg single administration group):
Liquid material (A-8-1): 2 wt% Alg (I-3G) 0.2 mL / animal Liquid cross-linking agent (B-8-1): 12 wt% carboxymethylcellulose (CMC) +0.1 MCa 2+ 0.2 mL / animal
 Gela群(Gela単独投与群):
  液体材料(A-8-2):20wt%Gelatin 0.2mL/匹
  液体架橋剤(B-8-2):12wt%CMC+5wt%TG(有効濃度0.5wt%) 0.2mL/匹
Gela group (Gela alone administration group):
Liquid material (A-8-2): 20 wt% Gelatin 0.2 mL / animal Liquid cross-linking agent (B-8-2): 12 wt% CMC + 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal
 Alg/Gela群:
  液体材料(A-8-3):2wt%Alg(I-3G)/5wt%TG(有効濃度0.5wt%) 0.2mL/匹
  液体架橋剤(B-8-3):20wt%Gela/0.1MCaCl 0.2mL/匹
Alg / Gela group:
Liquid material (A-8-3): 2 wt% Alg (I-3G) / 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal Liquid cross-linking agent (B-8-3): 20 wt% Gela / 0.1 M CaCl 2 0.2 mL / animal
 Alg-Mal/Gela群:
  液体材料(A-8-4):2wt%Alg-Mal/5wt%TG(有効濃度0.5wt%) 0.2mL/匹
  液体架橋剤(B-8-4):20wt%Gela/0.1MCaCl 0.2mL/匹
Alg-Mal / Gela group:
Liquid material (A-8-4): 2 wt% Alg-Mal / 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal Liquid cross-linking agent (B-8-4): 20 wt% Gela / 0.1 MCaCl 2 0.2mL / animal
 Alg-Mal/Gela_TA(トリアムシノロンアセトニド)群:
  液体材料(A-8-5):2wt%Alg-Mal/5wt%TG(有効濃度0.5wt%) 0.2mL/匹
  液体架橋剤(B-8-5):20wt%Gela/0.1MCaCl/TA400μg 0.2mL/匹
Alg-Mal / Gela_TA (triamcinolone acetonide) group:
Liquid material (A-8-5): 2 wt% Alg-Mal / 5 wt% TG (effective concentration 0.5 wt%) 0.2 mL / animal Liquid cross-linking agent (B-8-5): 20 wt% Gela / 0.1 MCaCl 2 / TA400μg 0.2mL / animal
 液体材料(A-8-1)~(A-8-5)は、具体的には、それぞれ次のように調製した。
  液体材料(A-8-1):2wt%Alg(I-3G)を純水に加え、溶解するまで撹拌させた。
  液体材料(A-8-2):20wt%のゼラチンを純水に加え、50℃で加熱しながら完全に溶解するまで撹拌した。
  液体材料(A-8-3):2wt%Alg(I-3G)を純水に加え、溶解するまで撹拌させた。A-8-3液総量に対して5wt%になるTG(有効濃度0.5wt%、味の素株式会社)をAlg溶液に溶解し、30分以上撹拌した。
  液体材料(A-8-4):2wt%Alg-Malを純水に加え、溶解するまで撹拌させた。A-8-4液総量に対して5wt%になるTG(有効濃度0.5wt%、味の素株式会社)をAlg-Mal溶液に溶解し、均一に分布させるため、30分以上撹拌した。
  液体材料(A-8-5):2wt%Alg-Malを純水に加え、溶解するまで撹拌させた。A-8-5液総量に対して5wt%になるTG(有効濃度0.5wt%、味の素株式会社)をAlg-Mal溶液に溶解し、30分以上撹拌した。
The liquid materials (A-8-1) to (A-8-5) were specifically prepared as follows.
Liquid material (A-8-1): 2 wt% Alg (I-3G) was added to pure water and stirred until dissolved.
Liquid material (A-8-2): 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved.
Liquid material (A-8-3): 2 wt% Alg (I-3G) was added to pure water and stirred until dissolved. TG (effective concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% based on the total amount of A-8-3 solution, was dissolved in the Alg solution and stirred for 30 minutes or more.
Liquid material (A-8-4): 2 wt% Alg-Mal was added to pure water and stirred until dissolved. TG (effective concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% based on the total amount of the A-8-4 solution, was dissolved in the Alg-Mal solution and stirred for 30 minutes or more in order to distribute it uniformly.
Liquid material (A-8-5): 2 wt% Alg-Mal was added to pure water and stirred until dissolved. TG (effective concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% based on the total amount of A-8-5 solution, was dissolved in the Alg-Mal solution and stirred for 30 minutes or more.
 また、液体架橋剤(B-8-1)~(B-8-5)は、具体的には、それぞれ次のように調製した。
  液体架橋剤(B-8-1):12wt%CMCを純水に加え、溶解するまで撹拌させた。B-8-1液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)を溶解し、30分以上撹拌した。
  液体架橋剤(B-8-2):12wt%CMCを純水に加え、溶解するまで撹拌させた。B-8-2液総量に対して5wt%になるTG(有効濃度0.5wt%)を溶解し、30分以上撹拌した。
  液体架橋剤(B-8-3):20wt%のゼラチンを純水に加え、50℃で加熱しながら完全に溶解するまで撹拌した。B-8-3液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)をゼラチン溶液に溶解し、30分以上撹拌した。
  液体架橋剤(B-8-4):20wt%のゼラチンを純水に加え、50℃で加熱しながら完全に溶解するまで撹拌した。B-8-4液総量に対して0.1MになるCaCl2(和光純薬 品番036-00485)をゼラチン溶液に溶解し、30分以上撹拌した。
  液体架橋剤(B-8-5):20wt%のゼラチンを純水に加え、50℃で加熱しながら完全に溶解するまで撹拌した。B-8-5液総量に対して0.1MになるCaCl2(和光純薬 品番036-00485)をゼラチン溶液に溶解し、30分以上撹拌した。B-8-5液0.2mLに対して400μgのTA(Wako 205-10963)をゼラチン溶液に混合し、30分以上撹拌した。
In addition, the liquid crosslinking agents (B-8-1) to (B-8-5) were specifically prepared as follows.
Liquid cross-linking agent (B-8-1): 12 wt% CMC was added to pure water and stirred until dissolved. CaCl 2 (Wako Pure Chemicals No. 036-00485) that was 0.1 M with respect to the total amount of B-8-1 solution was dissolved and stirred for 30 minutes or more.
Liquid crosslinking agent (B-8-2): 12 wt% CMC was added to pure water and stirred until dissolved. TG (effective concentration 0.5 wt%) that was 5 wt% based on the total amount of the B-8-2 solution was dissolved and stirred for 30 minutes or more.
Liquid cross-linking agent (B-8-3): 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved. CaCl 2 (Wako Pure Chemicals No. 036-00485), which is 0.1 M based on the total amount of the B-8-3 solution, was dissolved in the gelatin solution and stirred for 30 minutes or more.
Liquid cross-linking agent (B-8-4): 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved. CaCl2 (Wako Pure Chemicals product number 036-00485), which becomes 0.1 M with respect to the total amount of the B-8-4 solution, was dissolved in the gelatin solution and stirred for 30 minutes or more.
Liquid cross-linking agent (B-8-5): 20 wt% gelatin was added to pure water and stirred at 50 ° C. until completely dissolved. CaCl2 (Wako Pure Chemicals product number 036-00485), which is 0.1 M based on the total amount of the B-8-5 solution, was dissolved in the gelatin solution and stirred for 30 minutes or more. 400 μg of TA (Wako 205-10963) was mixed with gelatin solution for 0.2 mL of B-8-5 solution, and stirred for 30 minutes or more.
[試薬]
 0.05w/v% トリプシン-0.53mmol/L EDTA・4Na溶液(和光純薬)
 生理食塩水 (株式会社大塚製薬)
[reagent]
0.05 w / v% trypsin-0.53 mmol / L EDTA · 4Na solution (Wako Pure Chemical Industries, Ltd.)
Saline (Otsuka Pharmaceutical Co., Ltd.)
麻酔
Figure JPOXMLDOC01-appb-T000004
anesthesia
Figure JPOXMLDOC01-appb-T000004
[動物]
 SDラット オス 9週齢 16匹
 1週間評価 N=4/group  2週間評価 N=4/group
[animal]
SD rat Male 9 weeks old 16 rats 1 week evaluation N = 4 / group 2 weeks evaluation N = 4 / group
[手順]
 3種類混合麻酔薬として、塩酸メデトミジン1.875mL、ミダゾラム2mL、ブトルファノー酒石酸塩2.5mLを生理食塩水18.625mLと混合し、ラットの体重100gに対して0.5mL投与した。
[procedure]
As three kinds of mixed anesthetics, 1.875 mL of medetomidine hydrochloride, 2 mL of midazolam, and 2.5 mL of butorphano tartrate were mixed with 18.625 mL of physiological saline, and 0.5 mL was administered to 100 g of rat body weight.
 ラット腹部を長さ3cm切開した。腹部の切開部分から胃を引き出してガーゼの上にせた。胃の上部にはさみで約3mmの切口を開けた。やすりを胃の上部の切口から入れて上下左右各方向を約6~7回スクラブした。やすりを抜き出し、胃から約15mmのところを3-0の糸で結紮し、結び目をペアンで挟んで、サーフローを固定した。0.05w/v%トリプシンEDTAを注入し、1分間維持した。結紮を解除し、サーフローを抜いた。やすりを入れて約上下左右各方向約6~7回スクラブし、やすりを抜き出した。その後、Control群と材料群のそれぞれで、以下の処置を行った。 The rat abdomen was incised 3 cm in length. The stomach was pulled out from the abdominal incision and placed on the gauze. A cut of about 3 mm was made in the upper part of the stomach with scissors. A file was inserted from the upper cut of the stomach and scrubbed in about 6-7 times in the top, bottom, left and right directions. The file was extracted, and about 15 mm from the stomach was ligated with a 3-0 thread, and the knot was pinched with a pair of pears to fix the surflow. 0.05 w / v% trypsin EDTA was injected and maintained for 1 minute. I released the ligature and pulled out the surf. The file was scrubbed about 6-7 times in each of the vertical and horizontal directions to extract the file. Then, the following treatment was performed in each of the Control group and the material group.
  Control群:胃の切口を6-0非吸収糸で縫合し、4-0吸収糸と3-0非吸収糸で閉腹した。
  材料群:液体材料および液体架橋剤を1mLのシリンジにいれ、サーフローにより注入し、胃の切口を閉創し、閉腹した。
Control group: The incision of the stomach was sutured with 6-0 non-absorbing thread and closed with 4-0 absorbing thread and 3-0 non-absorbing thread.
Material group: Liquid material and liquid cross-linking agent were placed in a 1 mL syringe, injected by surflow, the stomach incision was closed, and the abdomen was closed.
 閉腹後、塩酸アチパメゾール0.75mLを生理食塩水9.25mLと混合し、3種類混合麻酔の結抗剤としてラットの体重100gに対して0.5mL投与し、麻酔から覚醒させた。 After laparotomy, 0.75 mL of atipamezole hydrochloride was mixed with 9.25 mL of physiological saline, and 0.5 mL was administered to 100 g of rat body weight as a binding agent for three types of mixed anesthesia, and awakened from anesthesia.
 その後、体重変化率と摂餌量変化を次のように測定した。ラットの体重を毎日決まった時間帯に測定した。体重変化率は以下の式で算出した:
  体重変化率(%)=[各時点の体重(g)/術前の体重(g)]×100
Thereafter, the rate of change in body weight and change in food intake were measured as follows. Rats were weighed daily at a fixed time. The weight change rate was calculated by the following formula:
Weight change rate (%) = [weight at each time point (g) / preoperative weight (g)] × 100
 毎日決まった時間帯で100g/匹の餌を与え、翌日に餌の残量を測定した。摂餌量は以下の式で算出した:
  摂餌量(g)=[100g-餌の残量(g)]
100 g / animal was fed at a fixed time every day, and the remaining amount of food was measured the next day. Food intake was calculated using the following formula:
Food intake (g) = [100 g-remaining food (g)]
 また、食道開通率を次のように測定した。炭酸ガスによる安楽死されたラットから食道標本を摘出し、長軸方向に切開して外観を評価した。潰瘍底の幅が一番狭いところを狭窄食道の幅とし、長さを測定した。そこから2cm離れた正常食道の幅も同様に測定した。食道開通率は以下の式で算出した、
  食道開通率(%)=[狭窄食道幅/正常食道幅]×100
In addition, the esophageal opening rate was measured as follows. Esophageal specimens were removed from rats euthanized with carbon dioxide, and the appearance was evaluated by incision in the longitudinal direction. The width of the narrowed ulcer was taken as the width of the narrowed esophagus and the length was measured. The width of a normal esophagus 2 cm away from the same was also measured. The esophageal opening rate was calculated by the following formula:
Esophageal opening rate (%) = [stenotic esophageal width / normal esophageal width] × 100
[結果]
 体重変化率と摂餌量変化を測定した結果を、それぞれ図12、および図13に示す。Alg群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群は、コントロール群およびGela群と比較して、体重の減少および給餌量の減少がゆるやかであった。
[result]
The results of measuring the weight change rate and the change in food intake are shown in FIGS. 12 and 13, respectively. The Alg group, the Alg / Gela group, the Alg-Mal / Gela group and the Alg-Mal / Gela_TA group had a gradual decrease in body weight and decrease in food consumption compared to the control group and the Gela group.
 食道開通率を図14に示す。すべての群において術後14日目での食道開通率は7日目よりやや下がった。7日目と14日目の食道開通率に関して、Gela群とControl群の間に有意差がなかったが、Alg群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群はControl群の食道開通率より有意に高かった。Alg群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群では、食道狭窄の重症度が軽減されたと考えられる。 Figure 14 shows the esophageal opening rate. In all groups, the esophageal opening rate on the 14th day after surgery was slightly lower than that on the 7th day. There was no significant difference between the Gela group and the Control group regarding the esophageal opening rate on the 7th and 14th days, but the Alg group, the Alg / Gela group, the Alg-Mal / Gela group and the Alg-Mal / Gela_TA group It was significantly higher than the esophageal opening rate of the Control group. In the Alg group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group, it is considered that the severity of esophageal stricture was reduced.
 ここで、有意差検定は、次のように行った。全ての結果は平均値および標準偏差にて評価した。各群のデータ中における各2群間の平均値の差についてTukeyのHSD検定(Tukey honestly significant difference test)を行った。 Here, the significant difference test was performed as follows. All results were evaluated as mean values and standard deviations. Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
実施例9:In vivoラット食道へのゲル材料投与における狭窄の組織学的評価
 In vivoラット食道へのゲル材料投与における狭窄の組織学的評価を行った。
 
(1)凍結切片
[試薬]
 10v/v%ホルマリン緩衝液
 生理食塩水
 30w/v%スクロース溶液
 O.C.Tコンパウド
 液体窒素
Example 9: Histological evaluation of stenosis in administration of gel material to in vivo rat esophagus A histological evaluation of stenosis in administration of gel material to in vivo rat esophagus was performed.

(1) Cryosection [reagent]
10 v / v% formalin buffer saline 30 w / v% sucrose solution C. T compound liquid nitrogen
[手順]
 食道サンプルを10v/v%ホルマリン緩衝液に4時間以上浸漬し、固定した。生理食塩水で洗浄した。30w/v%スクロース溶液に一晩浸漬した。組織をO.C.Tコンパウドに封入した。液体窒素内に静置し、凍結させた。凍結した組織サンプルを-80度(℃)のDeep freezerで3時間以上凍結させた。凍結ミクロトームを用いて薄切りした。スライドグラスに貼り付けた。
[procedure]
The esophageal sample was immersed and fixed in a 10 v / v% formalin buffer for 4 hours or more. Washed with saline. It was immersed overnight in a 30 w / v% sucrose solution. O. C. Encapsulated in a T compound. It was allowed to stand in liquid nitrogen and frozen. The frozen tissue sample was frozen in a deep freezer at −80 degrees (° C.) for 3 hours or more. Thin slices were made using a frozen microtome. Affixed to a slide glass.
 ここで、食道サンプルは次のように作製した。炭酸ガスによる安楽死されたラットから食道標本を摘出し、長軸方向に切開し食道上皮側を上にした。 Here, the esophageal sample was prepared as follows. Esophageal specimens were excised from rats euthanized by carbon dioxide and cut in the longitudinal direction with the esophageal epithelium side up.
(2)HE染色
[試薬]
 カラッチヘマトキシリン
 0.5w/v% エオシンアルコール
 エタノール
 レモゾール
(2) HE staining [reagent]
Caratach hematoxylin 0.5 w / v% eosin alcohol ethanol Remosol
[手順]
 O.C.Tコンパウンドを水道水で軽く洗い流した。カラッチヘマトキシリン液に10分間浸漬した。流水中で10分間色出し水洗を行った。エオシン液に3分間浸漬した。3秒程度軽く水洗した。70v/v%エタノール溶液に1分間浸漬した。容器を変え100v/v%エタノール溶液に3分間浸漬した(×2回)。レモゾールに3分間浸漬した(×2回)。ドラフトで乾燥した後、マウントクイックを組織サンプル上にのせ、カバーグラスをかけた。マウントクイックが固化した後、顕微鏡を用いて観察した。
[procedure]
O. C. The T compound was lightly rinsed with tap water. It was immersed in a caratach hematoxylin solution for 10 minutes. Colored and washed in running water for 10 minutes. It was immersed in eosin solution for 3 minutes. Lightly washed with water for about 3 seconds. It was immersed in a 70 v / v% ethanol solution for 1 minute. The container was changed and immersed in a 100 v / v% ethanol solution for 3 minutes (× 2 times). It was immersed in Remosol for 3 minutes (× 2 times). After drying in a draft, the mount quick was placed on the tissue sample and covered with a cover glass. After the mount quick solidified, it was observed using a microscope.
[結果]
 HE染色の写真に基づいて再生した上皮の長さをImageJで測定し、再上皮化率を算出した。具体的には、再上皮化率の算出方法は次の通りである。粘膜筋板が取り除かれた部分の長さを粘膜下層剥離創の長さとした。上皮に覆われていない部分の長さを再上皮化されていない長さとした。再上皮化率は以下の式で算出した:
  上皮の再生距離=[剥離創の長さ-再上皮化されていない長さ]
  再上皮化率(%)=[上皮の再生距離/剥離創の長さ]×100
[result]
The length of the regenerated epithelium was measured with ImageJ based on the HE stained photograph, and the re-epithelialization rate was calculated. Specifically, the method for calculating the re-epithelialization rate is as follows. The length of the part from which the mucosal muscle was removed was defined as the length of the submucosal exfoliation wound. The length of the portion not covered by the epithelium was defined as the length that was not re-epithelialized. The reepithelialization rate was calculated with the following formula:
Epithelial regeneration distance = [length of exfoliated wound-length not re-epithelialized]
Re-epithelialization rate (%) = [epithelial regeneration distance / exfoliated wound length] × 100
 その結果を図15に示す。HE染色結果からみると、Alg群、Gela群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群のすべてで、7日目(DAY7)よりも14日目(DAY14)に上皮の進展が見られた。また、上皮化速度は、Gela群よりも、Alg群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群の方が早く、Alg-Mal/Gela群が一番早かった。 The result is shown in FIG. From the results of HE staining, the Alg group, Gela group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group were all on the 14th day (DAY14) rather than the 7th day (DAY7). Epithelial development was seen. In addition, the epithelialization rate was faster in the Alg group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group than in the Gela group, and the Alg-Mal / Gela group was the fastest.
(3)シリウスレッド染色
[試薬]
 1%シリウスレッド液
 0.5%酢酸
 エタノール
 レモゾール
(3) Sirius red staining [reagent]
1% Sirius red solution 0.5% Acetic acid Ethanol Remosol
[手順]
 O.C.Tコンパウンドを水道水で軽く洗い流した。1wt%シリウスレッド液に10分間浸漬した。0.5v/v%酢酸溶液で2回洗浄した。容器を変え100v/v%エタノール溶液に3分間浸漬した(×2回)。レモゾールに3分間浸漬し、透徹させた。ドラフトで乾燥した後、マウントクイックを組織サンプル上にのせ、カバーグラスをかけた。マウントクイックが固化した後、顕微鏡を用いて観察した。
[procedure]
O. C. The T compound was lightly rinsed with tap water. It was immersed in 1 wt% sirius red liquid for 10 minutes. Washed twice with 0.5 v / v% acetic acid solution. The container was changed and immersed in a 100 v / v% ethanol solution for 3 minutes (× 2 times). It was immersed in Remosol for 3 minutes to make it clear. After drying in a draft, the mount quick was placed on the tissue sample and covered with a cover glass. After the mount quick solidified, it was observed using a microscope.
[結果]
 Sirius red染色の結果からみると、14日目において、Alg群、Gela群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群のすべてで粘膜下層だけでなく筋層までコラーゲンが観察された。Sirius red染色の写真に基づいて産生したコラーゲンの量をImageJで測定し、コラーゲンの蓄積量を算出した。具体的には、コラーゲンの蓄積量の算出方法は次の通りである。コラーゲンはシリウスレッド染色で赤色に染まるため、ImageJを用いた画像解析で赤色に染色された面積を測定し、組織中で選択される部分をコラーゲンの面積と定義した。コラーゲンの蓄積量は以下の式で算出した、
  コラーゲン蓄積量(%)=[コラーゲン線維面積/組織全体の面積]
[result]
From the results of Sirius red staining, on the 14th day, collagen not only in the submucosa but also in the muscle layer in all of the Alg group, Gela group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group. Was observed. The amount of collagen produced based on the photograph of Sirius red staining was measured with ImageJ, and the amount of accumulated collagen was calculated. Specifically, the method for calculating the amount of accumulated collagen is as follows. Since collagen is stained red by Sirius red staining, the area stained red by image analysis using ImageJ was measured, and the portion selected in the tissue was defined as the area of collagen. The amount of accumulated collagen was calculated using the following formula:
Collagen accumulation (%) = [collagen fiber area / total tissue area]
 その結果を図16に示す。Sirius red染色の結果からみると、Alg群、Gela群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群のすべてで、7日目(DAY7)よりも14日目(DAY14)にコラーゲンの蓄積量が増えていた。 The result is shown in FIG. From the results of Sirius red staining, the Alg group, Gela group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group were all in the 14th day (DAY14) rather than the 7th day (DAY7). ) Increased the amount of collagen accumulated.
 ここで、有意差検定は、次のように行った。全ての結果は平均値および標準偏差にて評価した。各群のデータ中における各2群間の平均値の差についてTukeyのHSD検定(Tukey honestly significant difference test)を行った。 Here, the significant difference test was performed as follows. All results were evaluated as mean values and standard deviations. Tukey's HSD test (Tukey honestificant difference test) was performed on the difference in the average values between the two groups in the data of each group.
(4)α-SMA染色
[試薬]
 ・1次抗体:Monoclonol Anti-Actin,α-smooth muscle antibody produced in mouse(Sigma Aldrich A2547)
 ・2次抗体:Alexa Fluor 488 goat anti-mouse IG(H+L)(Molecular probe)(abcam ab150113)
・Triton X-100(Sigma Aldrich X100-100ML)
・PBS(-)(Wako 166-23555)
・Bovine serum albumin(Sigma Aldrich A-7906)
・Vectashieldマウンティング剤(Mounting Medium with DAPI)(Vec H-1200)
(4) α-SMA staining [reagent]
Primary antibody: Monoclonal Anti-Actin, α-smooth muscle antibody produced in mouse (Sigma Aldrich A2547)
Secondary antibody: Alexa Fluor 488 goat anti-mouse IG (H + L) (Molecular probe) (abcam ab150113)
・ Triton X-100 (Sigma Aldrich X100-100ML)
・ PBS (-) (Wako 166-23555)
・ Bovine serum albumin (Sigma Aldrich A-7906)
-Vectashield mounting agent (Mounting Medium with DAPI) (Vec H-1200)
[手順]
 O.C.Tコンパウンドを洗い流した。Liquid blocker super pop penでサンプルの周囲に撥水性サークルを描き、溶液の流出を防止した。スライドをPBST(0.1v/v% Triton X含PBS)で5min×3回洗浄した。Blocker solution(3wt%BSA+1v/v%sheep serum in PBST)をサンプルの上に載せ、室温で1hブロッキングした。PBSTで2min×2回洗浄した。1次抗体をPBSTで500倍に希釈し、サンプルの上に載せ4℃で一晩反応させた。PBSTで5min×3回洗浄した。500倍に希釈した2次抗体をサンプルの上に載せ、1h反応させた。PBSTで10min×3回洗浄した。100v/v%エタノールで脱水させた。レモゾールで透徹させた。スライドにVectashield マウンティング剤のドロップを一滴追加し、静かにカバーガラスを押して、周囲に余分な水分を取り除いた。透明なネイルポリスでカバースリップし、乾燥させた。
[procedure]
O. C. The T compound was washed away. A liquid blocker super pop pen drawn a water-repellent circle around the sample to prevent the solution from flowing out. The slide was washed with PBST (0.1 v / v% Triton X-containing PBS) for 5 min × 3 times. Blocker solution (3 wt% BSA + 1 v / v% sheep serum in PBST) was placed on the sample and blocked for 1 h at room temperature. Washed twice with PBST for 2 min × 2. The primary antibody was diluted 500 times with PBST, placed on the sample and allowed to react overnight at 4 ° C. Washed with PBST for 5 min × 3 times. The secondary antibody diluted 500 times was placed on the sample and reacted for 1 h. Washed with PBST for 10 min × 3 times. It dehydrated with 100 v / v% ethanol. Cleared with remozole. A drop of Vectashield mounting agent was added to the slide, and the cover glass was gently pushed to remove excess moisture around it. Coverslip with clear nail police and dry.
[結果]
 免疫染色の写真に基づいてα-SMAの発現量を算出した。具体的には、α-SMAの発現量の算出方法は次の通りである。Vectashield マウンティング剤(with DAPI)によって、細胞核を青色に蛍光標識した。ImageJを用いた画像解析により青色に標識された細胞の数を算出し、これを組織全体の細胞数とした。さらに、α-SMAは緑色に蛍光標識されるため、同様に緑色に標識された細胞数を算出し、これをα-SMA発現細胞数とした。α-SMAの発現量は以下の式で算出した:
  α-SMA発現量(%)=[α-SMA発現細胞数/組織全体の細胞数]×100
[result]
The expression level of α-SMA was calculated based on the photograph of immunostaining. Specifically, the method for calculating the expression level of α-SMA is as follows. Cell nuclei were fluorescently labeled blue with a Vectashield mounting agent (with DAPI). The number of cells labeled in blue was calculated by image analysis using ImageJ, and this was used as the number of cells in the entire tissue. Furthermore, since α-SMA is fluorescently labeled in green, the number of cells labeled in green was calculated in the same manner, and this was used as the number of cells expressing α-SMA. The expression level of α-SMA was calculated by the following formula:
α-SMA expression level (%) = [number of α-SMA expressing cells / number of cells in whole tissue] × 100
 その結果を図17に示す。免疫染色の結果からみると、Alg群、Gela群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群のすべてで、7日目と比べると14日目のα-SMA発現量が増加した。特にGela群の染色写真から、血管壁細胞(ペリサイト或は血管平滑筋細胞)のα-SMA発現が見られ、血管が多く存在していることが確認できた。ゼラチンが血管の新生を促進したではないかと考えられる。血管新生は炎症や創傷時に形成される肉芽の形成において認められる現象の一つとなり、血流が増加し細胞の活動が活発になった結果、多くのコラーゲンが産生された。食道狭窄の場合では悪循環になってしまったと推測できる。免疫染色の結果から、Alg群、Alg/Gela群、Alg-Mal/Gela群およびAlg-Mal/Gela_TA群においては筋線維芽細胞のマーカーであるα-SMA発現量は他の群より有意に低かった。このため、細胞並びに組織の収縮が抑えられたと考えられ、食道狭窄が防止されうることが分かった。 The result is shown in FIG. From the results of immunostaining, α-SMA expression in the Alg group, Gela group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group on day 14 compared to day 7 The amount increased. In particular, from the stained photographs of the Gela group, α-SMA expression of vascular wall cells (pericytes or vascular smooth muscle cells) was observed, and it was confirmed that there were many blood vessels. It is thought that gelatin promoted angiogenesis. Angiogenesis has become one of the phenomena observed in the formation of granulation formed during inflammation and wounding. As a result of increased blood flow and cellular activity, many collagens were produced. In the case of esophageal stricture, it can be inferred that it has become a vicious circle. From the results of immunostaining, the expression level of α-SMA, which is a marker of myofibroblasts, was significantly lower in the Alg group, Alg / Gela group, Alg-Mal / Gela group and Alg-Mal / Gela_TA group than in the other groups. It was. For this reason, it was considered that the contraction of cells and tissues was suppressed, and it was found that esophageal stricture could be prevented.
実施例10:粉体材料の止血効果の検討
 粉体材料の止血効果を検証するため、マウス出血モデルを用いて実験を行った。
 
[動物]
 ICRマウス オス 8週令、体重33~37g
[試薬]
 生理食塩水
 鉗子
 3.24wt%クエン酸ナトリウム水溶液
Example 10: Examination of the hemostatic effect of the powder material In order to verify the hemostatic effect of the powder material, an experiment was conducted using a mouse bleeding model.

[animal]
ICR mouse male 8 weeks old, weight 33-37g
[reagent]
Saline forceps 3.24 wt% sodium citrate aqueous solution
[器具]
 インスリン注射用1mLシリンジ
 濾紙(φ90mm,5C,ADVANTEC)
 50mL遠沈管(Bio Lite)
[Equipment]
1mL syringe for insulin injection Filter paper (φ90mm, 5C, ADVANTEC)
50mL centrifuge tube (Bio Lite)
[材料]
 液体架橋剤なし:N=10
 粉体材料(A-10-1):Alg(I-3G)/Gelatin=1:10(重量比) 0.1g/匹
[material]
No liquid crosslinking agent: N = 10
Powder material (A-10-1): Alg (I-3G) / Gelatin = 1: 10 (weight ratio) 0.1 g / unit
 液体架橋剤あり:N=9
 粉体材料(A-10-2):Alg(I-3G)/Gelatin=1:10(重量比) 0.1g/匹
 液体架橋剤(B-10-2):5%TG(有効濃度0.5wt%)/0.1MCa2+ 0.5mL/匹
With liquid crosslinking agent: N = 9
Powder material (A-10-2): Alg (I-3G) / Gelatin = 1: 10 (weight ratio) 0.1 g / unit Liquid cross-linking agent (B-10-2): 5% TG (effective concentration 0) 0.5 wt%) / 0.1MCa 2+ 0.5 mL / animal
 粉体材料(A-10-1)および(A-10-2)は、具体的には、それぞれ次のように調製した。
  粉体材料(A-10-1):Alg(I-3G)とGelatinを重量比1:10でミキサーを用いて撹拌させた。
  粉体材料(A-10-2):Alg(I-3G)とGelatinを重量比1:10でミキサーを用いて撹拌させた。
Specifically, the powder materials (A-10-1) and (A-10-2) were prepared as follows.
Powder material (A-10-1): Alg (I-3G) and Gelatin were stirred at a weight ratio of 1:10 using a mixer.
Powder material (A-10-2): Alg (I-3G) and Gelatin were stirred at a weight ratio of 1:10 using a mixer.
 また、液体架橋剤(B-10-2)は、具体的には次のように調製した。
  液体架橋剤(B-10-2):溶液総量に対して0.1MになるCaCl(和光純薬 品番036-00485)を純水に入れ、完全に溶解するまで撹拌した。溶液総量に対して5wt%になるTG(有効濃度0.5wt%、味の素株式会社)を溶液に入れ、完全に溶解するまで撹拌した。
Further, the liquid crosslinking agent (B-10-2) was specifically prepared as follows.
Liquid cross-linking agent (B-10-2): CaCl 2 (Wako Pure Chemicals No. 036-00485) of 0.1 M with respect to the total amount of the solution was put in pure water and stirred until it was completely dissolved. TG (effective concentration 0.5 wt%, Ajinomoto Co., Inc.), which is 5 wt% based on the total amount of the solution, was added to the solution and stirred until it was completely dissolved.
[手順]
 8倍希釈ソムノペンチル0.3mLをICRマウスにi.p.投与し、麻酔を行った。マウスをコルクボードに張り付け、U字に腹部を開腹した。水平状態のまま肝臓以外の臓器の上にパラフィルムと予め重さを測定した濾紙を置いた。水平の状態で引っ張り出した肝臓のLL葉を濾紙の上にのせた。角度を45°にして動画を撮影しながら、肝臓のLL葉の下から約1cmの場所をメスで幅5mm切開した。切開後、材料を投与し、3分間出血させた(コントロールは未処置のままにする)。ここで、Control群と材料群のそれぞれで、以下の処置を行った。
  Control群:メスで切開後、材料を投与せず、3分間出血させた。
  Powder群:メスで切開後、粉材料(A-10-1)を切開部位に投与し、3分間出血させた。
  Crosslinked群:メスで切開後、粉材料(A-10-2)を切開部位に投与した後、直ちに液体架橋剤(B-10-2)を投与し、3分間出血させた。
 3分後、濾紙を回収し50mL遠沈管に入れ50mL純水を加えて濾紙に付着した血液を溶血した。また、3.24wt%クエン酸ナトリウム水溶液0.1mLの入った1mLシリンジを用いて、試験後のマウスの心臓より0.1mL採血を行い、出血量の換算時の検量線作成に使用した。溶血液500μLをミクロセルに入れ、540nmの吸光度にてヘモグロビン量を測定し、出血量を算出した。出血量は、具体的には、以下のように算出した:マウスの心臓から採血した血液を50mLの純水中に0.01mL、0.1mL、0.5mL、1mLを混合し、波長540nmの吸光度を紫外可視分光光度計(日本分光 V-630)で測定した。測定した吸光度と出血量に基づいて検量線を引いた。各サンプルの吸光度を測定し、検量線を用いて出血量に換算した。
[procedure]
Add 0.3 mL of 8-fold diluted somnopentyl to ICR mice i. p. Administration and anesthesia were performed. The mouse was attached to the cork board, and the abdomen was opened in a U shape. Parafilm and pre-weighed filter paper were placed on an organ other than the liver in a horizontal state. The liver LL leaf pulled out in a horizontal state was placed on a filter paper. While taking a video at an angle of 45 °, a 5 mm wide incision was made with a scalpel at a location approximately 1 cm below the LL leaf of the liver. Following the incision, the material was administered and allowed to bleed for 3 minutes (control left untreated). Here, the following treatment was performed in each of the Control group and the material group.
Control group: After incision with a scalpel, no material was administered and bleeding was performed for 3 minutes.
Powder group: After incision with a scalpel, powder material (A-10-1) was administered to the incision site and allowed to bleed for 3 minutes.
Crosslinked group: After incision with a scalpel, powder material (A-10-2) was administered to the incision site, and then liquid cross-linking agent (B-10-2) was immediately administered and allowed to bleed for 3 minutes.
After 3 minutes, the filter paper was collected, placed in a 50 mL centrifuge tube, and 50 mL pure water was added to hemolyze the blood adhering to the filter paper. In addition, 0.1 mL blood was collected from the heart of the mouse after the test using a 1 mL syringe containing 0.1 mL of a 3.24 wt% sodium citrate aqueous solution, and used for preparing a calibration curve when the amount of bleeding was converted. 500 μL of hemolyzed blood was placed in a microcell, the amount of hemoglobin was measured at an absorbance of 540 nm, and the amount of bleeding was calculated. Specifically, the amount of bleeding was calculated as follows: blood collected from the heart of a mouse was mixed with 0.01 mL, 0.1 mL, 0.5 mL, and 1 mL in 50 mL of pure water, and the wavelength was 540 nm. Absorbance was measured with an ultraviolet-visible spectrophotometer (JASCO V-630). A calibration curve was drawn based on the measured absorbance and blood loss. The absorbance of each sample was measured and converted into a bleeding amount using a calibration curve.
[結果]
 マウス出血モデルを用いて、粉体材料を単独投与しても、血流に流されることがなく切開創の周りにとどまって、止血効果が見られた。一方液体架橋剤を散布すると、粉体が瞬時に透明となり、切開創から滲み出た血液の色が見られた。
[result]
Using a mouse bleeding model, even when the powder material was administered alone, it remained around the incision without flowing into the bloodstream, and a hemostatic effect was observed. On the other hand, when the liquid cross-linking agent was sprayed, the powder became transparent instantly and the color of blood exuding from the incision was seen.
 止血効果を検討するため、ヘモグロビン由来の吸光度を用いて出血量を評価した結果を図18に示す。材料投与群の出血量は、Control群に対して有意に減少することが明らかとなり、Alg/Gelatinの止血効果が示された。一方で、架橋剤投与と非投与群との間に有意差は見られなかった。
 
FIG. 18 shows the results of evaluating the amount of bleeding using the absorbance derived from hemoglobin in order to examine the hemostatic effect. It was clarified that the amount of bleeding in the material administration group was significantly reduced compared to the Control group, and the hemostatic effect of Alg / Gelatin was shown. On the other hand, there was no significant difference between the cross-linking agent administration and the non-administration group.

Claims (19)

  1.  イオン架橋可能な多糖類を含み、
     イオン架橋可能な多糖類は硬化剤で架橋され、食道損傷部を被覆するように用いられる、
     食道損傷部被覆用組成物。
    Containing ionic crosslinkable polysaccharides,
    The ion-crosslinkable polysaccharide is crosslinked with a curing agent and used to cover the esophageal lesion.
    A composition for covering an esophageal lesion.
  2.  イオン架橋可能な多糖類は硬化剤で架橋され、トランスグルタミナーゼを用いて架橋されたタンパク質またはアミノ基を持つ多糖類とともに食道損傷部を被覆するように用いられる、
     請求項1に記載の組成物。
    The ion-crosslinkable polysaccharide is cross-linked with a curing agent and used to coat the esophageal lesion with a protein or amino group cross-linked using transglutaminase.
    The composition of claim 1.
  3.  イオン架橋可能な多糖類が、アルギン酸、その誘導体、およびそれらの塩からなる群から選択される少なくとも1種である、請求項1または2に記載の組成物。 The composition according to claim 1 or 2, wherein the ion-crosslinkable polysaccharide is at least one selected from the group consisting of alginic acid, derivatives thereof, and salts thereof.
  4.  アルギン酸誘導体が、マレイミド基で修飾したアルギン酸、チオール基で修飾したアルギン酸またはアクリレート基で修飾したアルギン酸である、請求項3に記載の組成物。 The composition according to claim 3, wherein the alginic acid derivative is alginic acid modified with a maleimide group, alginic acid modified with a thiol group, or alginic acid modified with an acrylate group.
  5.  修飾がスペーサーを介して行われる、請求項4に記載の組成物。 The composition according to claim 4, wherein the modification is performed through a spacer.
  6.  アルギン酸またはその誘導体の塩が、アルギン酸ナトリウム、アルギン酸カリウム、アルギン酸誘導体のナトリウム塩、またはアルギン酸誘導体のカリウム塩である、請求項3~5のいずれか1項に記載の組成物。 The composition according to any one of claims 3 to 5, wherein the salt of alginic acid or a derivative thereof is sodium alginate, potassium alginate, a sodium salt of an alginate derivative, or a potassium salt of an alginate derivative.
  7.  硬化剤が、Ca2+、Mg2+、Ba2+、Sr2+、Zn2+およびFe3+からなる群より選ばれる少なくとも1つの金属イオン化合物である、請求項1~6のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 6, wherein the curing agent is at least one metal ion compound selected from the group consisting of Ca 2+ , Mg 2+ , Ba 2+ , Sr 2+ , Zn 2+ and Fe 3+. object.
  8.  タンパク質またはアミノ基を持つ多糖類が、ゼラチンである、請求項1~7のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 7, wherein the polysaccharide having protein or amino group is gelatin.
  9.  組成物が、流動性を有する液体状、または粉末状である、請求項1~8のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 8, wherein the composition is in a liquid form having fluidity or a powder form.
  10.  組成物が、流動性を有する液体状であり、噴霧により食道損傷部表面に適用する、請求項1~9のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 9, wherein the composition is in a liquid form having fluidity and is applied to the surface of an esophageal lesion by spraying.
  11.  組成物が、粉末状であり、散布により食道損傷部表面に適用する、請求項1~10のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 10, wherein the composition is in a powder form and is applied to the surface of an esophageal lesion by spraying.
  12.  粉末の粒子径が10μm~500μmの範囲である、請求項9または11に記載の組成物。 The composition according to claim 9 or 11, wherein the particle diameter of the powder is in the range of 10 µm to 500 µm.
  13.  他の薬剤と組み合わせて用いられる、請求項1~12のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 12, which is used in combination with another drug.
  14.  止血のための、請求項1~13のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 13, for hemostasis.
  15.  食道狭窄を防止するのに用いるための、請求項1~14のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 14, for use in preventing esophageal stricture.
  16.  イオン架橋可能な多糖類を含み、
     イオン架橋可能な多糖類は硬化剤で架橋され、架橋したイオン架橋可能な多糖類により食道損傷部を被覆するように用いられる、
     食道損傷部被覆用キット。
    Containing ionic crosslinkable polysaccharides,
    The ionic crosslinkable polysaccharide is cross-linked with a curing agent and is used to cover the esophageal lesion with the cross-linked ionic crosslinkable polysaccharide.
    Kit for covering the damaged part of the esophagus.
  17.  タンパク質またはアミノ基を持つ多糖類をさらに含み、
     イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆するように用いられる、
     請求項16に記載のキット。
    Further comprising a polysaccharide having a protein or amino group,
    The ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Used to cover esophageal lesions with sugars,
    The kit according to claim 16.
  18.  対象の食道損傷部に、イオン架橋可能な多糖類を適用し、
     イオン架橋可能な多糖類は硬化剤で架橋され、架橋したイオン架橋可能な多糖類により食道損傷部を被覆する、
     食道損傷部の被覆方法。
    Apply ion-crosslinkable polysaccharide to the target esophageal lesion,
    The ionically crosslinkable polysaccharide is crosslinked with a curing agent, and the esophageal lesion is covered with the crosslinked ionically crosslinkable polysaccharide.
    How to cover esophageal lesions.
  19.  対象の食道損傷部に、タンパク質またはアミノ基を持つ多糖類をさらに適用し、
     イオン架橋可能な多糖類は硬化剤で架橋され、かつ、タンパク質またはアミノ基を持つ多糖類はトランスグルタミナーゼを用いて架橋され、架橋したイオン架橋可能な多糖類および架橋したタンパク質またはアミノ基を持つ多糖類により食道損傷部を被覆する、
     請求項18に記載の方法。
    Apply more protein or amino acid-containing polysaccharide to the target esophageal lesion,
    The ion-crosslinkable polysaccharide is crosslinked with a curing agent, and the polysaccharide having a protein or amino group is crosslinked using transglutaminase, the crosslinked ion-crosslinkable polysaccharide and the polysaccharide having a crosslinked protein or amino group. Cover the damaged part of the esophagus with sugars,
    The method of claim 18.
PCT/JP2019/008651 2018-03-05 2019-03-05 Esophageal stricture preventing material WO2019172261A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018038288 2018-03-05
JP2018-038288 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019172261A1 true WO2019172261A1 (en) 2019-09-12

Family

ID=67846214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008651 WO2019172261A1 (en) 2018-03-05 2019-03-05 Esophageal stricture preventing material

Country Status (1)

Country Link
WO (1) WO2019172261A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521199A (en) * 2019-09-25 2022-05-20 持田制药株式会社 Novel cross-linked alginic acid structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102829A (en) * 1973-01-29 1974-09-28
JP2002511796A (en) * 1997-07-07 2002-04-16 エフエムシー バイオポリマー エイエス Improvements on capsules
JP2002544176A (en) * 1999-05-05 2002-12-24 レキット ベンキサー ヘルスケア (ユーケイ) リミテッド Compositions for the treatment of diseases of the esophagus
JP2010521994A (en) * 2006-12-15 2010-07-01 ライフボンド リミテッド Gelatin-transglutaminase hemostatic dressing and sealant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49102829A (en) * 1973-01-29 1974-09-28
JP2002511796A (en) * 1997-07-07 2002-04-16 エフエムシー バイオポリマー エイエス Improvements on capsules
JP2002544176A (en) * 1999-05-05 2002-12-24 レキット ベンキサー ヘルスケア (ユーケイ) リミテッド Compositions for the treatment of diseases of the esophagus
JP2010521994A (en) * 2006-12-15 2010-07-01 ライフボンド リミテッド Gelatin-transglutaminase hemostatic dressing and sealant

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERNKOP-SCHNURCH, A: "Thiomers: A new generation of mucoadhensive polymers", ADVANCED DRUG DELIVERY REVIEWS, vol. 57, no. 11, 2005, pages 1569 - 1582, XP055022283 *
SHTENBERG, Y ET AL.: "Alginate modified with maleimide-terminated PEG as drug carriers with enhanced mucoadhension", CARBOHYDRATE POLYMERS, vol. 175, 2017, pages 337 - 346, XP085198347, DOI: 10.1016/j.carbpol.2017.07.076 *
UETAKE, TOMOYOSHI ET AL: "Reflux esophagitis", ENDOSCOPIA DIGESTIVA, vol. 26, no. 10, 2014, pages 1726 - 1727 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521199A (en) * 2019-09-25 2022-05-20 持田制药株式会社 Novel cross-linked alginic acid structure

Similar Documents

Publication Publication Date Title
JP6552115B2 (en) Adhesive medical products and methods for treating gastrointestinal tract lesions
Park et al. Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial
KR101783448B1 (en) Bioadhesive hydrogel with surface-modified nanofiber
KR101121480B1 (en) Formation of medically useful gels comprising microporous particles and methods of use
Zheng et al. Recent progress in surgical adhesives for biomedical applications
CN110025821A (en) Use the method for biocompatible hemostatic agent and the compositions-treated active hemorrhage of tissue sealant
TW200824726A (en) Rapidly acting dry sealant and methods for use and manufacture
Hu et al. Injectable carboxymethyl chitosan-genipin hydrogels encapsulating tea tree oil for wound healing
RU2657836C1 (en) Biodegradable medical adhesive or sealant composition
JP2011078764A (en) Composition for surgical operation
CN103998068A (en) Hemostatic composition
US11033654B2 (en) Methods and compositions for achieving hemostasis and stable blood clot formation
Fenn et al. Anticancer therapeutic alginate-based tissue sealants for lung repair
US12091471B2 (en) Methods and compositions for achieving hemostasis and stable blood clot formation
KR20150086898A (en) Micro particles administered in vivo through an endoscopic catheter
WO2016114355A1 (en) Composition for preventing adhesion
KR20210131375A (en) digestive tract mucosal protective gel
Wang et al. An antibacterial and antiadhesion in situ forming hydrogel with sol–spray system for noncompressible hemostasis
Zhou et al. pH-responsive nanocomposite hydrogel for simultaneous prevention of postoperative adhesion and tumor recurrence
WO2023157150A1 (en) Use of polysaccharide derivative
JP6901657B2 (en) A liquid composition containing alginic acid or a pharmaceutically acceptable salt thereof and a colloidal polysaccharide.
US20230285577A1 (en) Polysaccharide derivative, polysaccharide derivative-drug conjugate, and method for producing same
WO2019172261A1 (en) Esophageal stricture preventing material
JP2022023110A (en) Bimodal treatment methods and compositions for gastrointestinal lesions with active bleeding
Yin et al. Multifunctional all-in-one adhesive hydrogel for the treatment of perianal infectious wounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP