WO2019171911A1 - Railroad car vibration damping device - Google Patents

Railroad car vibration damping device Download PDF

Info

Publication number
WO2019171911A1
WO2019171911A1 PCT/JP2019/005627 JP2019005627W WO2019171911A1 WO 2019171911 A1 WO2019171911 A1 WO 2019171911A1 JP 2019005627 W JP2019005627 W JP 2019005627W WO 2019171911 A1 WO2019171911 A1 WO 2019171911A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
side chamber
threshold value
index
valve
Prior art date
Application number
PCT/JP2019/005627
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 小川
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2019171911A1 publication Critical patent/WO2019171911A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/02Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
    • B61F5/22Guiding of the vehicle underframes with respect to the bogies
    • B61F5/24Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/024Systems essentially incorporating special features for controlling the speed or actuating force of an output member by means of differential connection of the servomotor lines, e.g. regenerative circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/028Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force
    • F15B11/036Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the actuating force by means of servomotors having a plurality of working chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall

Definitions

  • the present invention relates to an improvement in a railcar vibration damping device.
  • a railway vehicle is used by being interposed between a vehicle body and a carriage so as to suppress left-right vibration with respect to the traveling direction of the vehicle body. Things are known.
  • a railcar vibration damping device is slidably inserted into a cylinder and divides the cylinder into a rod side chamber and a piston side chamber.
  • a first on-off valve provided on the second side
  • a second on-off valve provided in the middle of the second passage communicating the piston side chamber and the tank
  • a pump for supplying hydraulic oil to the rod side chamber
  • a motor for driving the pump
  • a rod A discharge passage for connecting a side chamber to the tank; and a variable relief valve provided in the middle of the discharge passage and capable of changing a valve opening pressure.
  • drives the second shut-off valve and the variable relief valve, to stretch both can exert a thrust, so as to suppress the vibration of the vehicle body in this thrust.
  • Conventional railcar vibration control devices use a motor to drive a pump at a constant rotational speed (number of rotations per unit time), and according to the vibration status of the vehicle body, a first on-off valve, a second on-off valve, and a variable relief valve Is appropriately driven, and the vehicle body is damped by obtaining a thrust force that suppresses the vibration of the vehicle body using hydraulic pressure.
  • the expansion / contraction speed of the actuator is increased in a situation where the vehicle body vibrates at a high speed, such as when the railway vehicle passes through a point.
  • overtorque a torque exceeding the rated torque
  • the motor will seize, or so-called burnout.To protect the motor from overload, even if such overtorque is output, it will not burn out.
  • the output time is limited.
  • the motor driver that drives the motor uses the value obtained by integrating and counting the degree to which the motor has exceeded the rated torque as an index, and when the index reaches a threshold, the motor emergency stop process is performed. Run.
  • the vibration control when the point is passed, the vibration control may be interrupted due to an emergency stop of the motor to protect the motor. If the motor stops urgently, the only way to restart the motor is to reset it, and the vibration control cannot be restored during operation of the railway vehicle. .
  • an object of the present invention is to provide a railcar vibration damping device that can protect the motor from overload and improve the riding comfort of the railcar.
  • the vibration damping device for a railway vehicle includes a cylinder body that expands and contracts by supplying a working fluid, a pump that supplies the working fluid to the cylinder body, and a motor that drives the pump. And a control unit that controls the motor, and has a protection function that forcibly stops when the index indicating the overheating state of the motor exceeds the first threshold, and when the index exceeds a second threshold lower than the first threshold, The energization to the motor is controlled so that the index decreases until the index becomes equal to or lower than the third threshold value which is lower than the second threshold value.
  • the railcar vibration damping device can prevent the motor from being burned out and can protect the motor from overload, and can resume normal energization of the motor after the temperature of the motor is lowered.
  • FIG. 1 is a cross-sectional view of a railway vehicle equipped with a railway vehicle damping device according to an embodiment.
  • FIG. 2 is a circuit diagram of an actuator in the railcar vibration damping device of the embodiment.
  • FIG. 3 is a control block diagram of a control unit in the railcar vibration damping device of one embodiment.
  • FIG. 4 is a flowchart showing an example of a procedure for determining the current value of the motor.
  • the railcar damping device 1 is used as a damping device for the vehicle body B of the railcar, and is installed between the carriage T and the vehicle body B as shown in FIG.
  • An actuator A and a control unit C are provided.
  • the railcar damping device 1 of the present example is adapted to suppress vibration in the horizontal and lateral directions with respect to the vehicle traveling direction of the vehicle body B by the thrust exerted by the actuator A.
  • the actuator A includes a cylinder 2 connected to one of the bogie T and the vehicle body B of the railway vehicle, a piston 3 slidably inserted into the cylinder 2, A rod 4 having one end connected to the piston 3 and the other end connected to the other of the carriage T and the vehicle body B, and a rod side chamber 5 and a piston side chamber 6 partitioned by the piston 3 in the cylinder 2.
  • a tank 7 that stores hydraulic oil
  • a pump 12 that sucks the hydraulic oil from the tank 7 and supplies the hydraulic oil to the rod side chamber 5
  • a motor 15 that drives the pump 12, and expansion and contraction of the cylinder main body Cy.
  • a fluid pressure circuit HC for controlling thrust, and are configured as a single rod type actuator.
  • the rod side chamber 5 and the piston side chamber 6 are filled with working oil as a working fluid
  • the tank 7 is filled with gas in addition to the working oil.
  • the working fluid may use other liquids besides the working oil.
  • the fluid pressure circuit HC is provided in the middle of the first opening / closing valve 9 provided in the middle of the first passage 8 communicating the rod side chamber 5 and the piston side chamber 6 and the second passage 10 communicating the piston side chamber 6 and the tank 7. And a second on-off valve 11 provided.
  • the cylinder 2 has a cylindrical shape, the right end in FIG. 2 is closed by a lid 13, and an annular rod guide 14 is attached to the left end in FIG.
  • a rod 4 that is movably inserted into the cylinder 2 is slidably inserted into the rod guide 14.
  • One end of the rod 4 protrudes outside the cylinder 2, and the other end in the cylinder 2 is connected to a piston 3 that is slidably inserted into the cylinder 2.
  • the space between the outer periphery of the rod guide 14 and the cylinder 2 is sealed by a seal member (not shown), whereby the inside of the cylinder 2 is maintained in a sealed state.
  • the rod-side chamber 5 and the piston-side chamber 6 partitioned by the piston 3 in the cylinder 2 are filled with hydraulic oil as described above.
  • the cross-sectional area of the rod 4 is made half of the cross-sectional area of the piston 3, and the pressure receiving area on the rod side chamber 5 side of the piston 3 is half of the pressure receiving area on the piston side chamber 6 side. It is supposed to be. Therefore, if the pressure in the rod side chamber 5 is the same during the expansion operation and during the contraction operation, the thrust generated in both expansion and contraction becomes equal, and the amount of hydraulic oil relative to the displacement amount of the cylinder body Cy is the same on both expansion and contraction sides.
  • the actuator A when the cylinder body Cy is extended, the rod side chamber 5 and the piston side chamber 6 are in communication with each other. Then, the pressures in the rod side chamber 5 and the piston side chamber 6 become equal, and the actuator A generates a thrust obtained by multiplying the pressure receiving area difference between the rod side chamber 5 side and the piston side chamber 6 side in the piston 3 by the pressure.
  • the actuator A when the cylinder body Cy is contracted, the rod side chamber 5 and the piston side chamber 6 are disconnected from each other, and the piston side chamber 6 is connected to the tank 7. Then, the actuator A generates a thrust obtained by multiplying the pressure in the rod side chamber 5 by the pressure receiving area of the piston 3 on the rod side chamber 5 side.
  • the thrust generated by the actuator A is a value obtained by multiplying a half of the cross-sectional area of the piston 3 by the pressure in the rod side chamber 5 in both expansion and contraction. Therefore, when the thrust of the actuator A is controlled, the pressure in the rod side chamber 5 may be controlled for both the extension operation and the contraction operation. Further, in the actuator A of the present example, the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to one half of the pressure receiving area on the piston side chamber 6 side. Since the pressure in the rod side chamber 5 is the same on the contraction side, the control is simplified. In addition, since the amount of hydraulic oil with respect to the amount of displacement is the same, there is an advantage that the responsiveness is the same on both sides of expansion and contraction.
  • the lid 4 that closes the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown), and this actuator A is interposed between the carriage T and the vehicle body B in the railway vehicle. Can be disguised.
  • the rod side chamber 5 and the piston side chamber 6 communicate with each other through a first passage 8, and a first opening / closing valve 9 is provided in the middle of the first passage 8.
  • the first passage 8 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
  • the first on-off valve 9 is an electromagnetic on-off valve.
  • the first on-off valve 9 is opened to connect the rod-side chamber 5 and the piston-side chamber 6, and the first on-off passage 8 is shut off to connect to the rod-side chamber 5. And a blocking position for disconnecting communication with the piston side chamber 6. And this 1st on-off valve 9 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
  • the second on-off valve 11 is an electromagnetic on-off valve, which opens the second passage 10 to communicate the piston side chamber 6 and the tank 7, and shuts off the second passage 10 to connect the piston side chamber 6 and the tank. 7 and a shut-off position that cuts off communication with 7. And this 2nd on-off valve 11 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
  • the pump 12 is driven by a motor 15 and discharges hydraulic oil only in one direction.
  • the discharge port of the pump 12 communicates with the rod side chamber 5 through the supply passage 16 and the suction port communicates with the tank 7.
  • the pump 12 sucks hydraulic oil from the tank 7 and Hydraulic oil is supplied to the side chamber 5.
  • the pump 12 only discharges the hydraulic oil in one direction and does not switch the rotation direction, so there is no problem that the discharge amount changes at the time of rotation switching, and an inexpensive gear pump or the like can be used. . Further, since the rotation direction of the pump 12 is always the same direction, even the motor 15 that is a drive source for driving the pump 12 does not require high responsiveness to rotation switching, and the motor 15 is also inexpensive. Can be used. A check valve 17 that prevents the backflow of hydraulic oil from the rod side chamber 5 to the pump 12 is provided in the supply passage 16.
  • the fluid pressure circuit HC of the present example includes a discharge passage 21 that connects the rod side chamber 5 and the tank 7, and a variable relief that can change the valve opening pressure provided in the middle of the discharge passage 21.
  • a valve 22 is provided.
  • variable relief valve 22 is a proportional electromagnetic relief valve, and the valve opening pressure can be adjusted according to the amount of current to be supplied. When the amount of current is maximized, the valve opening pressure is minimized and no current is supplied. The valve opening pressure is maximized.
  • the pressure in the rod side chamber 5 can be adjusted to the valve opening pressure of the variable relief valve 22 when the cylinder body Cy is expanded and contracted, and the thrust of the actuator A Can be controlled by the amount of current supplied to the variable relief valve 22.
  • sensors necessary for adjusting the thrust force of the actuator A are not necessary, and it is not necessary to highly control the motor 15 for adjusting the discharge flow rate of the pump 12. . Therefore, the railcar vibration damping device 1 is inexpensive, and a robust system can be constructed in terms of hardware and software.
  • the actuator A can exhibit a damping force only for either expansion or contraction. Therefore, for example, when the direction in which the damping force is exerted is the direction in which the vehicle body B is vibrated by the vibration of the bogie T of the railway vehicle, the actuator A is provided with a one-effect damper so that no damping force is generated in such a direction. It can be. Therefore, since this actuator A can easily realize semi-active control based on the Carnop theory, it can also function as a semi-active damper.
  • variable relief valve 22 can adjust the valve opening pressure.
  • the variable relief valve is not limited to a proportional electromagnetic relief valve.
  • the variable relief valve 22 has an excessive input in the expansion / contraction direction to the cylinder body Cy regardless of the open / closed state of the first open / close valve 9 and the second open / close valve 11, and the pressure in the rod side chamber 5 increases the open valve pressure. When it exceeds, the discharge passage 21 is opened. As described above, the variable relief valve 22 discharges the pressure in the rod side chamber 5 to the tank 7 when the pressure in the rod side chamber 5 becomes equal to or higher than the valve opening pressure, so that the pressure in the cylinder 2 is prevented from becoming excessive. To protect the entire system of the actuator A. Therefore, if the discharge passage 21 and the variable relief valve 22 are provided, the system can be protected.
  • the fluid pressure circuit HC in the actuator A of the present example only allows the flow of the hydraulic fluid from the piston side chamber 6 to the rod side chamber 5 and the flow of the hydraulic fluid from the tank 7 to the piston side chamber 6.
  • a permissible suction passage 19 is provided. Therefore, in the actuator A of this example, when the cylinder main body Cy expands and contracts while the first on-off valve 9 and the second on-off valve 11 are closed, the hydraulic oil is pushed out from the cylinder 2. Since the variable relief valve 22 provides resistance to the flow of hydraulic oil discharged from the cylinder 2, the actuator A of this example is a uniflow type in a state where the first on-off valve 9 and the second on-off valve 11 are closed. Functions as a damper.
  • the rectifying passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18 a is provided in the middle, allowing only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5. It is set as a one-way passage. Further, the suction passage 19 communicates between the tank 7 and the piston side chamber 6, and a check valve 19 a is provided in the middle to allow only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6. Is set to The rectifying passage 18 can be integrated into the first passage 8 when the shut-off position of the first on-off valve 9 is a check valve, and the suction passage 19 is also the first when the shut-off position of the second on-off valve 11 is a check valve. It can be concentrated in the two passages 10.
  • the actuator A configured as described above, even if the first on-off valve 9 and the second on-off valve 11 are both in the shut-off position, the rod side chamber 5, the piston side chamber 6 in the rectifying passage 18, the suction passage 19, and the discharge passage 21. And the tank 7 is made to communicate with a rosary chain.
  • the rectifying passage 18, the suction passage 19, and the discharge passage 21 are set as one-way passages. Therefore, when the cylinder body Cy expands and contracts due to an external force, the hydraulic oil is surely discharged from the cylinder 2 and returned to the tank 7 through the discharge passage 21, and the hydraulic oil that is insufficient in the cylinder 2 passes from the tank 7 through the suction passage 19. Supplied into the cylinder 2. Since the variable relief valve 22 acts as a resistance against the flow of hydraulic oil and adjusts the pressure in the cylinder 2 to the valve opening pressure, the actuator A functions as a passive uniflow type damper.
  • each of the first on-off valve 9 and the second on-off valve 11 takes the shut-off position, and the variable relief valve 22 has the maximum valve opening pressure. Functions as a fixed pressure control valve. Therefore, during such a failure, the actuator A automatically functions as a passive damper.
  • the control unit C basically rotates the motor 15 to supply hydraulic oil from the pump 12 into the cylinder 2 while performing the first opening and closing.
  • the valve 9 is set to the communication position, and the second on-off valve 11 is set to the cutoff position.
  • the rod side chamber 5 and the piston side chamber 6 are in communication with each other, and hydraulic oil is supplied to both of them from the pump 12, the piston 3 is pushed to the left in FIG. 2, and the actuator A generates thrust in the extension direction. Demonstrate.
  • variable relief valve 22 When the pressure in the rod side chamber 5 and the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 is opened and the hydraulic oil is discharged to the tank 7 through the discharge passage 21. Therefore, the pressure in the rod side chamber 5 and the piston side chamber 6 is controlled by the valve opening pressure of the variable relief valve 22 determined by the amount of current applied to the variable relief valve 22.
  • the actuator A then extends in the direction of extension of the value obtained by multiplying the pressure receiving area difference between the piston side chamber 6 side and the rod side chamber 5 side of the piston 3 by the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22. Demonstrate thrust.
  • the control unit C rotates the motor 15 to supply hydraulic oil from the pump 12 into the rod side chamber 5, while the first on-off valve 9. Is the shut-off position, and the second on-off valve 11 is the communication position.
  • the piston side chamber 6 and the tank 7 are brought into communication with each other and the hydraulic oil is supplied to the rod side chamber 5 from the pump 12, so that the piston 3 is pushed rightward in FIG. Demonstrate thrust.
  • the actuator A multiplies the pressure receiving area of the piston 3 on the rod side chamber 5 side and the pressure in the rod side chamber 5 controlled by the variable relief valve 22. Demonstrate thrust in the contraction direction.
  • the actuator A not only functions as an actuator, but can function as a damper only by opening and closing the first on-off valve 9 and the second on-off valve 11 regardless of the driving state of the motor 15. Further, when switching the actuator A from the actuator to the damper, there is no troublesome and steep switching operation of the first on-off valve 9 and the second on-off valve 11, so that a system with high responsiveness and reliability can be provided.
  • the actuator A of this example is set to a single rod type, it is easy to secure a stroke length as compared with a double rod type actuator, and the total length of the actuator is shortened. Mountability is improved.
  • the flow of hydraulic oil by the hydraulic oil supply from the pump 12 and the expansion / contraction operation in the actuator A of this example passes through the rod side chamber 5 and the piston side chamber 6 in order and finally returns to the tank 7. .
  • the cylinder body Cy is automatically discharged to the tank 7 by the expansion / contraction operation. Therefore, when manufacturing the actuator A, it is not necessary to assemble in troublesome oil or in a vacuum environment, and advanced degassing of hydraulic oil is not required, improving productivity and reducing manufacturing cost. it can.
  • the control unit C includes an acceleration sensor 40 that detects a lateral acceleration a in the horizontal direction with respect to the vehicle traveling direction of the vehicle body B, and a steady acceleration during curve traveling included in the lateral acceleration a.
  • the band-pass filter 41 for removing drift components and noise, and the lateral acceleration a filtered by the band-pass filter 41 are processed to provide the motor 15, the first on-off valve 9, the second on-off valve 11, and the variable relief of the actuator A.
  • a control processing unit 42 that outputs a control command to the valve 22, and controls the thrust of the actuator A.
  • working included in the horizontal direction acceleration a is removed by the band pass filter 41, only the vibration which deteriorates riding comfort can be suppressed.
  • control processing unit 42 includes a control force calculation unit 421 that obtains a control force F that is a thrust to be generated by the actuator A based on the lateral acceleration a detected by the acceleration sensor 40, and the motor 15.
  • a motor current value calculation unit 422 that obtains a current value I to be supplied to the motor 15 to monitor the rotation speed and drive the motor 15 to rotate at a predetermined rotation speed, and finally receives the input of the current value I.
  • Motor current value determining unit 423 for determining a current command Ie to be applied to the relief valve current value calculating unit 424 for obtaining a relief valve current value IR to be applied to the variable relief valve 22 based on the control force F, and input of the control force F
  • the on-off valve driving unit 425 that receives and receives the relief valve current value IR and supplies the variable relief valve 22 with the on-off valve drive unit 425 that switches the first on-off valve 9 and the second on-off valve 11 in response to the input.
  • a relief valve control unit 426 for controlling and a motor driver 427 as a drive unit that receives the input of the current command Ie and supplies the current to the motor 15 in accordance with the current command Ie to drive the motor 15 are configured. .
  • the control force calculation unit 421 is an H ⁇ controller in this example, and obtains a control force F that instructs the thrust to be output by the actuator A in order to suppress the vibration of the vehicle body B from the lateral acceleration a.
  • the control force F is given a positive or negative sign depending on the direction, and the sign indicates the direction of thrust to be output to the actuator A.
  • the on-off valve driving unit 425 stops the current supply or the current supply to the first on-off valve 9 and the second on-off valve 11 according to the sign of the control force F and drives the on-off valve.
  • the on-off valve drive unit 425 operates the first on-off valve 9 and the second on-off valve 11 as follows.
  • the on-off valve drive unit 425 sets the first on-off valve 9 to the communication position and the second on-off valve 11 to the shut-off position. To do. Then, hydraulic oil is supplied from the pump 12 to both the rod side chamber 5 and the piston side chamber 6, and the actuator A exhibits thrust in the extending direction.
  • the on-off valve drive unit 425 communicates with the second on-off valve 11 while setting the first on-off valve 9 to the shut-off position. Position. Then, hydraulic oil is supplied only from the pump 12 to the rod side chamber 5 so that the piston side chamber 6 and the tank 7 communicate with each other, so that the actuator A exerts a thrust in the contraction direction.
  • control force calculation unit 421 obtains the control force F from only the lateral acceleration a, but the control force that suppresses the sway of the vehicle body B based on the sway acceleration and the yaw acceleration of the vehicle body B. And the control force that suppresses yaw may be obtained separately, and these may be added to obtain the control force F. Further, the control force calculation unit 421 may be a controller that performs skyhook control for obtaining the control force F by obtaining the speed of the vehicle body B from the lateral acceleration a and multiplying by the skyhook gain.
  • the motor current value calculation unit 422 receives the rotation speed and the current amount from the sensor 43 that detects the rotation speed of the motor 15 and the sensor 44 that detects the amount of current flowing in the motor 15. Monitor the amount of current flowing.
  • the motor current value calculation unit 422 is provided with a speed loop and a current loop, and should be given to the motor 15 in order to feed back the rotational speed and current amount of the motor 15 and drive the motor 15 at a predetermined rotational speed.
  • the current value I is obtained.
  • the resolver or Hall element for detecting the electrical angle provided in the motor 15 may be used as the sensor 43 for the rotational speed of the motor 15.
  • the current amount of the motor 15 may be obtained by using a current sensor normally provided in the motor 15 as the sensor 44.
  • the predetermined rotational speed may be determined in advance to an optimum value for damping the railway vehicle to which the railway vehicle damping device 1 is applied. That is, the motor current value calculation unit 422 obtains a target current value based on the deviation between the rotational speed of the motor 15 and the target rotational speed, with the predetermined rotational speed as the target rotational speed, and actually flows to the target current value and the motor 15.
  • a current value I to be given to the motor 15 is obtained based on the deviation from the current amount.
  • the motor current value determination unit 423 obtains the index Hi based on the current flowing through the motor 15 detected by the sensor 44.
  • the index Hi is a value indicating the overheated state of the motor 15.
  • the motor 15 can be continuously driven because there is no fear of burning even if continuously driven.
  • the motor 15 is driven in a state where the output torque of the motor 15 exceeds the rated torque, there is a possibility that the motor 15 will burn out due to heat generation.
  • the amount of heat generated by the motor 15 is determined by how many seconds the torque exceeding the rated torque is output.
  • the torque of the motor 15 can be obtained from the known rotational speed and current amount.
  • the index Hi is obtained using a difference obtained by subtracting the rated torque from the obtained torque of the motor 15. Specifically, since the motor current value determination unit 423 performs the calculation for obtaining the index Hi at a predetermined control cycle, the value obtained during the previous calculation is added to the value of the index Hi obtained during the previous calculation.
  • the index Hi is sequentially updated by adding.
  • the motor current value determining unit 423 inputs the difference using the mathematical formula used for the temperature rise and obtains the added value.
  • the motor current value determination unit 423 obtains an added value by inputting the difference using a mathematical formula used for temperature reduction.
  • the added value obtained by the temperature increase formula has a positive sign because the difference is positive, and the added value obtained by the temperature drop formula has a negative sign because the difference sign is negative. Has a value. Then, the motor current value determination unit 423 adds the addition value obtained in this way to the index Hi obtained in the previous control cycle, and updates the value of the index Hi.
  • the motor current value determination unit 423 compares the updated index Hi with the first threshold value ⁇ , and if the index Hi exceeds the first threshold value ⁇ , the motor 15 may be burned out. In order to stop, the emergency stop process which makes the electric current command Ie finally given to the motor 15 0 is performed.
  • This current command Ie is the final current command given to the motor driver 427 that drives the motor 15.
  • the index Hi is a value indicating the overheating state of the motor 15, and takes a larger value as the temperature of the motor 15 becomes higher.
  • the first threshold value ⁇ is set to a value that suggests that the index Hi reaches a temperature at which the motor 15 burns out, or a value slightly lower than this value.
  • the motor current value determination unit 423 protects the motor 15 by setting the final current command Ie to be given to the motor driver 427 to 0 as soon as the index Hi exceeds the first threshold value ⁇ , and stopping energization of the motor 15. That is, the motor current value determination unit 423 has a protection function for protecting the motor 15.
  • the calculation of the index Hi may be performed by an arithmetic processing device mounted on the motor driver 427, and the motor driver 427 may be provided with a protection function for executing an emergency stop process.
  • the motor current value determination unit 423 compares the updated index Hi with the second threshold value ⁇ set to a value lower than the first threshold value ⁇ , and if the index Hi is equal to or less than the second threshold value ⁇ , The current value I obtained by the current value calculation unit 422 is output as it is to the motor driver 427 as the final current command Ie. On the other hand, the motor current value determination unit 423 compares the updated index Hi with the second threshold value ⁇ , and when the index Hi exceeds the second threshold value ⁇ , the motor current that limits the current applied to the motor 15 to a low level. Perform restriction processing.
  • the motor current value determination unit 423 when the updated index Hi exceeds the second threshold value ⁇ , the motor current value determination unit 423 immediately sets the final current command Ie to be given to the motor driver 427 to 0 and energizes the motor 15. Control is performed to stop and decrease the index Hi. Even after the energization of the motor 15 is stopped, the motor current value determination unit 423 obtains the added value and updates the value of the index Hi. Since the temperature of the motor 15 decreases after the energization of the motor 15 is stopped, the value of the index Hi gradually decreases due to the heat radiation of the motor 15.
  • the motor current value determination unit 423 uses the second threshold value ⁇ set to a value lower than the first threshold value ⁇ , and executes the motor current limiting process when the index Hi exceeds the second threshold value ⁇ .
  • the temperature of the motor 15 is lowered before the emergency stop process of the motor 15 is performed.
  • the second threshold value ⁇ is set so that the index Hi obtained in the next control cycle does not exceed the first threshold value ⁇ even though the index Hi is equal to or less than the second threshold value ⁇ . It only has to be done.
  • the motor current value determination unit 423 compares the updated index Hi with the third threshold ⁇ set to a value lower than the second threshold ⁇ , and when the index Hi becomes equal to or less than the third threshold ⁇ , the motor 15
  • the current value I obtained by the motor current value calculation unit 422 is output as it is to the motor driver 427 as the final current command Ie in order to resume normal energization of the motor 15.
  • the third threshold ⁇ may be set to a value of the index Hi that can recognize that the temperature of the motor 15 is sufficiently lowered.
  • the ON / OFF of the motor current limit control may be oscillated repeatedly, so the values of the second threshold value ⁇ and the third threshold value ⁇ are such What is necessary is just to set so that control on / off may not vibrate.
  • the controller C detects the rotational speed of the motor 15 and the amount of current flowing through the motor 15 (step F1). Subsequently, a current value I to be given to the motor 15 is obtained based on the detected rotational speed and current amount (step F2). Furthermore, the control part C calculates
  • the control unit C compares the index Hi with the first threshold value ⁇ (step F5), and when the index Hi exceeds the first threshold value ⁇ , the emergency stop process is executed to execute the current command. Ie is set to 0 (step F6), and the process is terminated.
  • the control unit C cannot perform the control unless the motor 15 is reset, the control of the first on-off valve 9, the second on-off valve 11 and the variable relief valve 22 is continued and the actuator A is semi-active. It functions as a damper.
  • the control unit C may shift to the fail mode so that the first on-off valve 9, the second on-off valve 11, and the variable relief valve 22 are not energized, and the actuator A may function as a passive damper.
  • the control unit C compares the index Hi with the second threshold value ⁇ (step F7), and when the index Hi is less than or equal to the second threshold value ⁇ , the motor Since there is no problem even if energization to 15 is continued, the current value I is set as the current command Ie (step F8).
  • the control unit C sets the control flag to 1 (step F9), and if the energization of the motor 15 is continued, the emergency stop process may be executed.
  • the motor current limiting process is executed to set the current command Ie to 0 (step F10).
  • control unit C Since the control unit C is only limited to drive the motor 15, the control unit C continues to control only the first on-off valve 9, the second on-off valve 11 and the variable relief valve 22 so that the actuator A becomes a semi-active damper. Make it work.
  • the control unit C may cause the actuator A to function as a passive damper. Further, in this case, the control unit C executes the motor current limiting process, but when the temperature of the motor 15 decreases, the control unit C resumes the driving of the motor 15 and thus proceeds to the process of step F1 to repeat the calculation of the index Hi.
  • the control flag is a flag for determining whether or not the index Hi exceeds the second threshold value ⁇ . When the value is 1, the control flag Hi indicates that the index Hi exceeds the second threshold value ⁇ . When the value is 0, the index Hi does not exceed the second threshold value ⁇ .
  • step F11 the control unit C determines whether the index Hi is equal to or less than the third threshold value ⁇ (step F11).
  • the control unit C sets the current value I as the current command Ie to restart the energization of the motor 15 (step F11), sets the value of the control flag to 0 (step F12), The process returns to step F1.
  • the control unit C sets the current value I to 0 (step F12) and returns to the process of step F1.
  • the relief valve current value calculation unit 424 obtains the relief valve current value IR to be supplied to the variable relief valve 22 based on the control force F obtained as described above.
  • the variable relief valve 22 has a characteristic of having a pressure override in which the valve opening pressure changes in proportion to the amount of current supplied, but the pressure loss increases in accordance with the passing flow rate. Since the rotational speed of the motor 15 is rotating at a predetermined rotational speed and the amount of hydraulic oil passing through the variable relief valve 22 can be assumed to some extent, the relief valve current value calculation unit 424 takes into account the pressure override and The relief valve current value IR is obtained.
  • the relief valve control unit 426 is a driver that drives a solenoid (not shown) of the variable relief valve 22, and receives the relief valve current value IR to the variable relief valve 22 according to the relief valve current value IR. Supply the amount of current.
  • the motor driver 427 supplies current to the motor 15.
  • the motor 15 is driven and the pump 12 rotates.
  • the motor driver 427 receives an input of the current command Ie, performs PWM control of the motor 15, and drives the motor 15 so that the amount of current flowing through the motor 15 becomes the amount of current indicated by the current command Ie. .
  • control unit C specifically includes, for example, an acceleration sensor 40, an A / D converter for capturing signals output from the sensors 43 and 44, and a bandpass filter 41 as hardware resources.
  • a storage device such as a ROM (Read Only Memory) in which a program used for processing necessary to control the actuator A by taking in the lateral acceleration a filtered in the above is executed, and processing based on the program is executed.
  • Each unit in the control processing unit 42 of the control unit C may be configured to include a calculation device such as a CPU (Central Processing Unit) and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU. Can be realized by executing the program of the CPU.
  • the bandpass filter 41 may be realized by executing a program of the CPU.
  • the railcar vibration damping device 1 drives the cylinder body Cy that expands and contracts by supplying the hydraulic oil (working fluid), the pump 12 that supplies the hydraulic oil (working fluid) to the cylinder body Cy, and the pump 12.
  • An actuator A having a motor 15 and installed in a railway vehicle; and a control unit C that controls the motor 15, and the control unit C has an index Hi indicating an overheated state of the motor 15 exceeding a first threshold value ⁇ . Then, it has a protective function to forcibly stop, and when the index Hi exceeds a second threshold value ⁇ lower than the first threshold value ⁇ , the index Hi decreases until the index Hi becomes equal to or lower than the third threshold value ⁇ lower than the second threshold value ⁇ . Thus, the power supply to the motor 15 is controlled.
  • the railcar damping device 1 of the present invention uses the second threshold value ⁇ set to a value lower than the first threshold value ⁇ , and when the index Hi exceeds the second threshold value ⁇ , the motor current limiting process is performed. As a result, the burnout of the motor 15 can be prevented, the motor 15 can be protected from overload, and the temperature of the motor 15 can be lowered before the emergency stop process is performed. Further, the railcar vibration damping device 1 of the present invention compares the index Hi with the third threshold value ⁇ set to a value lower than the second threshold value ⁇ , and resumes normal energization to the motor 15. The normal energization of the motor 15 can be resumed after the temperature of the motor 15 is sufficiently lowered.
  • the current flowing through the motor 15 can be limited before the motor 15 is stopped urgently, and the driving of the motor 15 is resumed when the temperature of the motor 15 decreases.
  • the motor 15 can be protected from overload, and the normal energization of the motor 15 is resumed when the temperature of the motor 15 decreases. Can be improved.
  • the control unit C stops energization of the motor 15 until ⁇ or less.
  • the temperature rise of the motor 15 can be quickly stopped, and therefore from the stop of the motor 15 to the resumption of normal energization. It takes less time to complete. Therefore, according to the railcar damping device 1 configured as described above, the time during which the actuator cannot function as an actuator is shortened, and the time during which riding comfort in the railcar is deteriorated can be minimized.
  • the actuator A when the motor 15 is stopped, the actuator A functions as a semi-active damper or a passive damper.
  • the actuator A is a semi-active damper or the like while the actuator A cannot function as an actuator until the motor 15 is stopped and then returns to normal energization. Since it functions as a passive damper, it is possible to suppress the deterioration of riding comfort in the railway vehicle during that time.
  • the railcar vibration damping device 1 supplies a current command to the motor driver (drive unit) 427 that drives the motor 15 until the index Hi becomes equal to or less than the third threshold value ⁇ .
  • the gain of Ie may be reduced. That is, the motor current value determination unit 423 multiplies the current value I obtained by the motor current value calculation unit 422 by the gain K to obtain the final current command Ie, and when the index Hi is equal to or less than the second threshold value ⁇ , the gain K When the index Hi exceeds the second threshold value ⁇ , the value of the gain K may be set to a value between 0 and 1 and the current command Ie may be obtained.
  • the actuator 15 continues to function as an actuator although the thrust is reduced without stopping the motor 15. Deterioration of ride comfort in the vehicle can be minimized.
  • the railcar damping device 1 may limit the output torque of the motor 15 to less than the rated torque until the index Hi becomes equal to or less than the third threshold ⁇ when the index Hi exceeds the second threshold ⁇ . .
  • the motor current value determination unit 423 causes the motor 15 to output a torque at which the current value I obtained by the motor current value calculation unit 422 exceeds the rated torque
  • the motor 15 outputs the current value I to the output torque. What is necessary is just to function as a limiter clamped to the value used as a rated torque. By doing so, even if the current value I is instructed to output torque that exceeds the rated torque to the motor 15, the output torque of the motor 15 does not exceed the rated torque, so that the index Hi decreases.
  • the heat generation of the motor 15 can be suppressed and the temperature can be lowered.
  • the actuator 15 continues to function as an actuator although the thrust is reduced without stopping the motor 15. Deterioration of ride comfort in the vehicle can be minimized.
  • the railcar damping device 1 of the present example includes a cylinder body Cy including a cylinder 2, a piston 3, and a rod 4, a tank 7, a first passage 8 that communicates the rod side chamber 5 and the piston side chamber 6.
  • a variable relief valve 22 that can change the valve opening pressure provided in the middle of the discharge passage 21, a rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5, and the tank 7 to the piston side chamber And a suction passage 19 that allows only the flow of hydraulic oil toward 6, and the pump 12 supplies hydraulic oil to the rod side chamber 5.
  • the actuator A functions as a semi-active damper, so that the damping effect is not lost even when the motor 15 is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

This railroad car vibration damping device (1) comprises: an actuator (A) which is installed in a railroad car and which has a cylinder body (Cy) that extends and contracts in accordance with the supply of working fluid thereto, a pump (12) that supplies the working fluid to the cylinder body (Cy), and a motor (15) that drives the pump (12); and a control unit (C) that controls the motor (15). The control unit (C) has a protection function for initiating a forced stop when the index (Hi) indicating the overheated state of the motor (15) exceeds a first threshold (α). When the index (Hi) exceeds a second threshold (β) lower than the first threshold (α), the control unit (C) controls the energization of the motor (15) so that the index (Hi) drops to or below a third threshold (γ) that is lower than the second threshold (β).

Description

鉄道車両用制振装置Vibration control device for railway vehicles
 本発明は、鉄道車両用制振装置の改良に関する。 The present invention relates to an improvement in a railcar vibration damping device.
 従来、この種の鉄道車両用制振装置にあっては、たとえば、鉄道車両に車体の進行方向に対して左右方向の振動を抑制すべく、車体と台車との間に介装されて使用されるものが知られている。 Conventionally, in this type of railway vehicle vibration damping device, for example, a railway vehicle is used by being interposed between a vehicle body and a carriage so as to suppress left-right vibration with respect to the traveling direction of the vehicle body. Things are known.
 より詳しくは、鉄道車両用制振装置は、たとえば、JP2010-65797Aに開示されているように、シリンダと、シリンダ内に摺動自在に挿入されてシリンダ内をロッド側室とピストン側室とに区画するピストンと、シリンダ内に挿入されてピストンに連結されるロッドとを備えて車体と台車との間に介装されるアクチュエータと、タンクと、ロッド側室とピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、ピストン側室とタンクとを連通する第二通路の途中に設けた第二開閉弁と、ロッド側室へ作動油を供給するポンプと、ポンプを駆動するモータと、ロッド側室を前記タンクへ接続する排出通路と、当該排出通路の途中に設けられ開弁圧を変更可能な可変リリーフ弁とを備えており、前記したポンプ、第一開閉弁、第二開閉弁および可変リリーフ弁を駆動して、伸縮双方へ推力を発揮でき、この推力で車体の振動を抑制するようになっている。 More specifically, as disclosed in JP2010-65797A, for example, a railcar vibration damping device is slidably inserted into a cylinder and divides the cylinder into a rod side chamber and a piston side chamber. In the middle of the first passage that communicates between the piston, the rod inserted into the cylinder and connected to the piston and interposed between the vehicle body and the carriage, the tank, the rod side chamber, and the piston side chamber A first on-off valve provided on the second side, a second on-off valve provided in the middle of the second passage communicating the piston side chamber and the tank, a pump for supplying hydraulic oil to the rod side chamber, a motor for driving the pump, and a rod A discharge passage for connecting a side chamber to the tank; and a variable relief valve provided in the middle of the discharge passage and capable of changing a valve opening pressure. And drives the second shut-off valve and the variable relief valve, to stretch both can exert a thrust, so as to suppress the vibration of the vehicle body in this thrust.
 従来の鉄道車両用制振装置は、モータでポンプを一定の回転速度(単位時間当たりの回転数)で駆動し、車体の振動状況に応じて第一開閉弁、第二開閉弁および可変リリーフ弁を適宜駆動し、油圧を利用して車体の振動を抑制する推力を得て車体を制振する。 Conventional railcar vibration control devices use a motor to drive a pump at a constant rotational speed (number of rotations per unit time), and according to the vibration status of the vehicle body, a first on-off valve, a second on-off valve, and a variable relief valve Is appropriately driven, and the vehicle body is damped by obtaining a thrust force that suppresses the vibration of the vehicle body using hydraulic pressure.
 このような従来の鉄道車両用制振装置では、鉄道車両がポイントを通過する際等、車体が高速で振動する状況では、アクチュエータの伸縮速度も速くなる。 In such a conventional vibration damping device for a railway vehicle, the expansion / contraction speed of the actuator is increased in a situation where the vehicle body vibrates at a high speed, such as when the railway vehicle passes through a point.
 アクチュエータが高速で伸縮するとアクチュエータ内の圧力が一時的に過大となる場合がある。このような場合にもポンプを等速回転させるためにはモータに定格トルク以上のトルクを発生させる必要がある。 ¡When the actuator expands and contracts at high speed, the pressure in the actuator may temporarily become excessive. Even in such a case, in order to rotate the pump at a constant speed, it is necessary to generate a torque higher than the rated torque in the motor.
 モータは、一般的には、起動時等では定格トルクを超えるトルク(以下、「過トルク」という)を出力する必要があるので、過トルクの出力が可能となっている。しかしながら、モータが過トルクを出力し続けるとモータが焼付く、所謂、焼損するので、モータを過負荷から保護するために、このような過トルクを出力しても焼損に至らないよう過トルクの出力時間を制限している。具体的には、モータを駆動するモータドライバは、モータが定格トルクを超えた度合と時間を積算してカウントして得た値を指標として、指標が閾値に達すると、モータの緊急停止処理を実行する。 Since the motor generally needs to output a torque exceeding the rated torque (hereinafter referred to as “overtorque”) at the time of starting or the like, it is possible to output overtorque. However, if the motor continues to output overtorque, the motor will seize, or so-called burnout.To protect the motor from overload, even if such overtorque is output, it will not burn out. The output time is limited. Specifically, the motor driver that drives the motor uses the value obtained by integrating and counting the degree to which the motor has exceeded the rated torque as an index, and when the index reaches a threshold, the motor emergency stop process is performed. Run.
 よって、従来の鉄道車両用制振装置は、ポイント通過時等では、モータの保護のためにモータが緊急停止してしまって制振制御が中断してしまう場合がある。モータが緊急停止してしまうと、モータを再起動させるにはリセットするより他なく、鉄道車両の運行中に制振制御の復帰ができないので鉄道車両における乗心地を悪くする一因となっている。 Therefore, in the conventional railway vehicle vibration damping device, when the point is passed, the vibration control may be interrupted due to an emergency stop of the motor to protect the motor. If the motor stops urgently, the only way to restart the motor is to reset it, and the vibration control cannot be restored during operation of the railway vehicle. .
 そこで、本発明の目的は、モータを過負荷から保護できるとともに鉄道車両における乗心地を向上できる鉄道車両用制振装置の提供である。 Therefore, an object of the present invention is to provide a railcar vibration damping device that can protect the motor from overload and improve the riding comfort of the railcar.
 本発明の鉄道車両用制振装置は、作動流体の供給により伸縮するシリンダ本体と、シリンダ本体へ作動流体を供給するポンプと、ポンプを駆動するモータとを有して鉄道車両に設置されるアクチュエータと、モータを制御する制御部とを備え、モータの過熱状態を示す指標が第一閾値を超過すると強制停止する保護機能を有し、指標が第一閾値よりも低い第二閾値を超過すると、指標が第二閾値よりも低い第三閾値以下になるまで指標が低下するようにモータへの通電を制御するようになっている。このように鉄道車両用制振装置は、モータの焼損を防止できモータを過負荷から保護でき、モータの温度を低下させてからモータの通常通電を再開し得る。 The vibration damping device for a railway vehicle according to the present invention includes a cylinder body that expands and contracts by supplying a working fluid, a pump that supplies the working fluid to the cylinder body, and a motor that drives the pump. And a control unit that controls the motor, and has a protection function that forcibly stops when the index indicating the overheating state of the motor exceeds the first threshold, and when the index exceeds a second threshold lower than the first threshold, The energization to the motor is controlled so that the index decreases until the index becomes equal to or lower than the third threshold value which is lower than the second threshold value. Thus, the railcar vibration damping device can prevent the motor from being burned out and can protect the motor from overload, and can resume normal energization of the motor after the temperature of the motor is lowered.
図1は、一実施の形態における鉄道車両用制振装置を搭載した鉄道車両の断面図である。FIG. 1 is a cross-sectional view of a railway vehicle equipped with a railway vehicle damping device according to an embodiment. 図2は、一実施の形態の鉄道車両用制振装置におけるアクチュエータの回路図である。FIG. 2 is a circuit diagram of an actuator in the railcar vibration damping device of the embodiment. 図3は、一実施の形態の鉄道車両用制振装置における制御部の制御ブロック図である。FIG. 3 is a control block diagram of a control unit in the railcar vibration damping device of one embodiment. 図4は、モータの電流値を決定する手順の一例を示したフローチャートである。FIG. 4 is a flowchart showing an example of a procedure for determining the current value of the motor.
 以下、図に示した実施の形態に基づき、本発明を説明する。一実施の形態における鉄道車両用制振装置1は、本例では、鉄道車両の車体Bの制振装置として使用され、図1に示すように、台車Tと車体Bとの間に設置されたアクチュエータAと、制御部Cとを備えて構成されている。そして、本例の鉄道車両用制振装置1は、アクチュエータAが発揮する推力で車体Bの車両進行方向に対して水平横方向の振動を抑制するようになっている。 Hereinafter, the present invention will be described based on the embodiments shown in the drawings. In this embodiment, the railcar damping device 1 according to the embodiment is used as a damping device for the vehicle body B of the railcar, and is installed between the carriage T and the vehicle body B as shown in FIG. An actuator A and a control unit C are provided. The railcar damping device 1 of the present example is adapted to suppress vibration in the horizontal and lateral directions with respect to the vehicle traveling direction of the vehicle body B by the thrust exerted by the actuator A.
 アクチュエータAは、本例では図2に示すように、鉄道車両の台車Tと車体Bの一方に連結されるシリンダ2と、シリンダ2内に摺動自在に挿入されるピストン3と、シリンダ2内に挿入されて一端がピストン3に連結されるとともに他端が台車Tと車体Bの他方に連結されるロッド4と、シリンダ2内にピストン3で区画したロッド側室5とピストン側室6とを備えるシリンダ本体Cyに加え、作動油を貯留するタンク7と、タンク7から作動油を吸い上げてロッド側室5へ作動油を供給するポンプ12と、ポンプ12を駆動するモータ15と、シリンダ本体Cyの伸縮の切換と推力を制御するための流体圧回路HCとを備えており、片ロッド型のアクチュエータとして構成されている。 In this example, as shown in FIG. 2, the actuator A includes a cylinder 2 connected to one of the bogie T and the vehicle body B of the railway vehicle, a piston 3 slidably inserted into the cylinder 2, A rod 4 having one end connected to the piston 3 and the other end connected to the other of the carriage T and the vehicle body B, and a rod side chamber 5 and a piston side chamber 6 partitioned by the piston 3 in the cylinder 2. In addition to the cylinder main body Cy, a tank 7 that stores hydraulic oil, a pump 12 that sucks the hydraulic oil from the tank 7 and supplies the hydraulic oil to the rod side chamber 5, a motor 15 that drives the pump 12, and expansion and contraction of the cylinder main body Cy. And a fluid pressure circuit HC for controlling thrust, and are configured as a single rod type actuator.
 また、前記ロッド側室5とピストン側室6には、本例では、作動流体として作動油が充填されるとともに、タンク7には、作動油の他に気体が充填されている。なお、タンク7内は、特に、気体を圧縮して充填して加圧状態とする必要は無い。また、作動流体は、作動油以外にも他の液体を利用してもよい。 In the present example, the rod side chamber 5 and the piston side chamber 6 are filled with working oil as a working fluid, and the tank 7 is filled with gas in addition to the working oil. In addition, it is not necessary to compress and fill the inside of the tank 7 with a gas in particular. The working fluid may use other liquids besides the working oil.
 流体圧回路HCは、ロッド側室5とピストン側室6とを連通する第一通路8の途中に設けた第一開閉弁9と、ピストン側室6とタンク7とを連通する第二通路10の途中に設けた第二開閉弁11とを備えている。 The fluid pressure circuit HC is provided in the middle of the first opening / closing valve 9 provided in the middle of the first passage 8 communicating the rod side chamber 5 and the piston side chamber 6 and the second passage 10 communicating the piston side chamber 6 and the tank 7. And a second on-off valve 11 provided.
 そして、基本的には、第一開閉弁9で第一通路8を連通状態とし、第二開閉弁11を閉じてポンプ12を駆動すると、シリンダ本体Cyが伸長し、第二開閉弁11で第二通路10を連通状態とし、第一開閉弁9を閉じてポンプ12を駆動すると、シリンダ本体Cyが収縮する。 Basically, when the first opening / closing valve 9 is in communication with the first passage 8, the second opening / closing valve 11 is closed and the pump 12 is driven, the cylinder body Cy is extended, and the second opening / closing valve 11 When the two passages 10 are brought into communication, the first opening / closing valve 9 is closed and the pump 12 is driven, the cylinder body Cy contracts.
 以下、アクチュエータAの各部について詳細に説明する。シリンダ2は筒状であって、その図2中右端は蓋13によって閉塞され、図2中左端には環状のロッドガイド14が取り付けられている。また、前記ロッドガイド14内には、シリンダ2内に移動自在に挿入されるロッド4が摺動自在に挿入されている。このロッド4は、一端をシリンダ2外へ突出させており、シリンダ2内の他端をシリンダ2内に摺動自在に挿入されるピストン3に連結している。 Hereinafter, each part of the actuator A will be described in detail. The cylinder 2 has a cylindrical shape, the right end in FIG. 2 is closed by a lid 13, and an annular rod guide 14 is attached to the left end in FIG. A rod 4 that is movably inserted into the cylinder 2 is slidably inserted into the rod guide 14. One end of the rod 4 protrudes outside the cylinder 2, and the other end in the cylinder 2 is connected to a piston 3 that is slidably inserted into the cylinder 2.
 なお、ロッドガイド14の外周とシリンダ2との間は図示を省略したシール部材によってシールされており、これによりシリンダ2内は密閉状態に維持されている。そして、シリンダ2内にピストン3によって区画されるロッド側室5とピストン側室6には、前述のように作動油が充填されている。 The space between the outer periphery of the rod guide 14 and the cylinder 2 is sealed by a seal member (not shown), whereby the inside of the cylinder 2 is maintained in a sealed state. The rod-side chamber 5 and the piston-side chamber 6 partitioned by the piston 3 in the cylinder 2 are filled with hydraulic oil as described above.
 また、このシリンダ本体Cyの場合、ロッド4の断面積をピストン3の断面積の二分の一にして、ピストン3のロッド側室5側の受圧面積がピストン側室6側の受圧面積の二分の一となるようになっている。よって、伸長作動時と収縮作動時とでロッド側室5の圧力を同じくすると、伸縮の双方で発生される推力が等しくなり、シリンダ本体Cyの変位量に対する作動油量も伸縮両側で同じとなる。 Further, in the case of this cylinder body Cy, the cross-sectional area of the rod 4 is made half of the cross-sectional area of the piston 3, and the pressure receiving area on the rod side chamber 5 side of the piston 3 is half of the pressure receiving area on the piston side chamber 6 side. It is supposed to be. Therefore, if the pressure in the rod side chamber 5 is the same during the expansion operation and during the contraction operation, the thrust generated in both expansion and contraction becomes equal, and the amount of hydraulic oil relative to the displacement amount of the cylinder body Cy is the same on both expansion and contraction sides.
 詳しくは、シリンダ本体Cyを伸長作動させる場合、ロッド側室5とピストン側室6を連通させた状態とする。すると、ロッド側室5内とピストン側室6内の圧力が等しくなり、アクチュエータAは、ピストン3におけるロッド側室5側とピストン側室6側の受圧面積差に前記圧力を乗じた推力を発生する。反対に、シリンダ本体Cyを収縮作動させる場合、ロッド側室5とピストン側室6との連通を断ちピストン側室6をタンク7に連通させた状態とする。すると、アクチュエータAは、ロッド側室5内の圧力とピストン3におけるロッド側室5側の受圧面積を乗じた推力を発生する。 Specifically, when the cylinder body Cy is extended, the rod side chamber 5 and the piston side chamber 6 are in communication with each other. Then, the pressures in the rod side chamber 5 and the piston side chamber 6 become equal, and the actuator A generates a thrust obtained by multiplying the pressure receiving area difference between the rod side chamber 5 side and the piston side chamber 6 side in the piston 3 by the pressure. On the contrary, when the cylinder body Cy is contracted, the rod side chamber 5 and the piston side chamber 6 are disconnected from each other, and the piston side chamber 6 is connected to the tank 7. Then, the actuator A generates a thrust obtained by multiplying the pressure in the rod side chamber 5 by the pressure receiving area of the piston 3 on the rod side chamber 5 side.
 要するに、アクチュエータAの発生推力は伸縮の双方でピストン3の断面積の二分の一にロッド側室5の圧力を乗じた値となるのである。したがって、このアクチュエータAの推力を制御する場合、伸長作動、収縮作動共に、ロッド側室5の圧力を制御すればよい。また、本例のアクチュエータAでは、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しているので、伸縮両側で同じ推力を発生する場合に伸長側と収縮側でロッド側室5の圧力が同じとなるので制御が簡素となる。加えて、変位量に対する作動油量も同じとなるので伸縮両側で応答性が同じとなる利点がある。なお、ピストン3のロッド側室5側の受圧面積をピストン側室6側の受圧面積の二分の一に設定しない場合にあっても、ロッド側室5の圧力でアクチュエータAの伸縮両側の推力を制御できる点は変わらない。 In short, the thrust generated by the actuator A is a value obtained by multiplying a half of the cross-sectional area of the piston 3 by the pressure in the rod side chamber 5 in both expansion and contraction. Therefore, when the thrust of the actuator A is controlled, the pressure in the rod side chamber 5 may be controlled for both the extension operation and the contraction operation. Further, in the actuator A of the present example, the pressure receiving area on the rod side chamber 5 side of the piston 3 is set to one half of the pressure receiving area on the piston side chamber 6 side. Since the pressure in the rod side chamber 5 is the same on the contraction side, the control is simplified. In addition, since the amount of hydraulic oil with respect to the amount of displacement is the same, there is an advantage that the responsiveness is the same on both sides of expansion and contraction. In addition, even when the pressure receiving area on the rod side chamber 5 side of the piston 3 is not set to ½ of the pressure receiving area on the piston side chamber 6 side, the thrust on both sides of the actuator A can be controlled by the pressure of the rod side chamber 5. Will not change.
 戻って、ロッド4の図2中左端とシリンダ2の右端を閉塞する蓋13とには、図示しない取付部を備えており、このアクチュエータAを鉄道車両における台車Tと車体Bとの間に介装できるようになっている。 Returning, the lid 4 that closes the left end of the rod 4 in FIG. 2 and the right end of the cylinder 2 is provided with a mounting portion (not shown), and this actuator A is interposed between the carriage T and the vehicle body B in the railway vehicle. Can be disguised.
 そして、ロッド側室5とピストン側室6とは、第一通路8によって連通されており、この第一通路8の途中には、第一開閉弁9が設けられている。この第一通路8は、シリンダ2外でロッド側室5とピストン側室6とを連通しているが、ピストン3に設けられてもよい。 The rod side chamber 5 and the piston side chamber 6 communicate with each other through a first passage 8, and a first opening / closing valve 9 is provided in the middle of the first passage 8. The first passage 8 communicates the rod side chamber 5 and the piston side chamber 6 outside the cylinder 2, but may be provided in the piston 3.
 第一開閉弁9は、電磁開閉弁とされており、第一通路8を開放してロッド側室5とピストン側室6とを連通する連通ポジションと、第一通路8を遮断してロッド側室5とピストン側室6との連通を断つ遮断ポジションとを備えている。そして、この第一開閉弁9は、通電時に連通ポジションを採り、非通電時に遮断ポジションを採るようになっている。 The first on-off valve 9 is an electromagnetic on-off valve. The first on-off valve 9 is opened to connect the rod-side chamber 5 and the piston-side chamber 6, and the first on-off passage 8 is shut off to connect to the rod-side chamber 5. And a blocking position for disconnecting communication with the piston side chamber 6. And this 1st on-off valve 9 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
 つづいて、ピストン側室6とタンク7とは、第二通路10によって連通されており、この第二通路10の途中には、第二開閉弁11が設けられている。第二開閉弁11は、電磁開閉弁とされており、第二通路10を開放してピストン側室6とタンク7とを連通する連通ポジションと、第二通路10を遮断してピストン側室6とタンク7との連通を断つ遮断ポジションとを備えている。そして、この第二開閉弁11は、通電時に連通ポジションを採り、非通電時に遮断ポジションを採るようになっている。 Subsequently, the piston side chamber 6 and the tank 7 are communicated with each other by a second passage 10, and a second opening / closing valve 11 is provided in the middle of the second passage 10. The second on-off valve 11 is an electromagnetic on-off valve, which opens the second passage 10 to communicate the piston side chamber 6 and the tank 7, and shuts off the second passage 10 to connect the piston side chamber 6 and the tank. 7 and a shut-off position that cuts off communication with 7. And this 2nd on-off valve 11 takes a communicating position at the time of electricity supply, and takes a cutoff position at the time of non-energization.
 ポンプ12は、モータ15によって駆動され、一方向のみに作動油を吐出するポンプとされている。そして、ポンプ12の吐出口は供給通路16によってロッド側室5へ連通されるとともに吸込口はタンク7に通じていて、ポンプ12は、モータ15によって駆動されるとタンク7から作動油を吸込んでロッド側室5へ作動油を供給する。 The pump 12 is driven by a motor 15 and discharges hydraulic oil only in one direction. The discharge port of the pump 12 communicates with the rod side chamber 5 through the supply passage 16 and the suction port communicates with the tank 7. When driven by the motor 15, the pump 12 sucks hydraulic oil from the tank 7 and Hydraulic oil is supplied to the side chamber 5.
 前述のようにポンプ12は、一方向のみに作動油を吐出するのみで回転方向の切換動作がないので、回転切換時に吐出量が変化するといった問題は皆無であり、安価なギアポンプ等を使用できる。さらに、ポンプ12の回転方向が常に同一方向であるので、ポンプ12を駆動する駆動源であるモータ15にあっても回転切換に対する高い応答性が要求されず、その分、モータ15も安価なものを使用できる。なお、供給通路16の途中には、ロッド側室5からポンプ12への作動油の逆流を阻止する逆止弁17が設けられている。 As described above, the pump 12 only discharges the hydraulic oil in one direction and does not switch the rotation direction, so there is no problem that the discharge amount changes at the time of rotation switching, and an inexpensive gear pump or the like can be used. . Further, since the rotation direction of the pump 12 is always the same direction, even the motor 15 that is a drive source for driving the pump 12 does not require high responsiveness to rotation switching, and the motor 15 is also inexpensive. Can be used. A check valve 17 that prevents the backflow of hydraulic oil from the rod side chamber 5 to the pump 12 is provided in the supply passage 16.
 さらに、本例の流体圧回路HCは、前述の構成に加えて、ロッド側室5とタンク7とを接続する排出通路21と、排出通路21の途中に設けた開弁圧を変更可能な可変リリーフ弁22を備えている。 Further, in addition to the above-described configuration, the fluid pressure circuit HC of the present example includes a discharge passage 21 that connects the rod side chamber 5 and the tank 7, and a variable relief that can change the valve opening pressure provided in the middle of the discharge passage 21. A valve 22 is provided.
 可変リリーフ弁22は、本例では、比例電磁リリーフ弁とされており、供給する電流量に応じて開弁圧を調節でき、電流量を最大とすると開弁圧を最小とし、電流を供給しないと開弁圧を最大とするようになっている。 In this example, the variable relief valve 22 is a proportional electromagnetic relief valve, and the valve opening pressure can be adjusted according to the amount of current to be supplied. When the amount of current is maximized, the valve opening pressure is minimized and no current is supplied. The valve opening pressure is maximized.
 このように、排出通路21と可変リリーフ弁22とを設けると、シリンダ本体Cyを伸縮作動させる際に、ロッド側室5内の圧力を可変リリーフ弁22の開弁圧に調節でき、アクチュエータAの推力を可変リリーフ弁22へ供給する電流量で制御できる。排出通路21と可変リリーフ弁22とを設けると、アクチュエータAの推力を調節するために必要なセンサ類が不要となり、ポンプ12の吐出流量の調節のためにモータ15を高度に制御する必要もなくなる。よって、鉄道車両用制振装置1が安価となり、ハードウェア的にもソフトウェア的にも堅牢なシステムを構築できる。 Thus, when the discharge passage 21 and the variable relief valve 22 are provided, the pressure in the rod side chamber 5 can be adjusted to the valve opening pressure of the variable relief valve 22 when the cylinder body Cy is expanded and contracted, and the thrust of the actuator A Can be controlled by the amount of current supplied to the variable relief valve 22. When the discharge passage 21 and the variable relief valve 22 are provided, sensors necessary for adjusting the thrust force of the actuator A are not necessary, and it is not necessary to highly control the motor 15 for adjusting the discharge flow rate of the pump 12. . Therefore, the railcar vibration damping device 1 is inexpensive, and a robust system can be constructed in terms of hardware and software.
 なお、第一開閉弁9を連通ポジションとし第二開閉弁11を遮断ポジションとする場合或いは第一開閉弁9を遮断ポジションとし第二開閉弁11を連通ポジションとする場合、ポンプ12の駆動状況に関わらず、伸長或いは収縮のいずれか一方に対してのみアクチュエータAが減衰力を発揮できる。よって、たとえば、減衰力を発揮する方向が鉄道車両の台車Tの振動により車体Bを加振する方向である場合、そのような方向には減衰力を出さないようにアクチュエータAを片効きのダンパとすることができる。よって、このアクチュエータAは、カルノップ理論に基づくセミアクティブ制御を容易に実現できるため、セミアクティブダンパとしても機能できる。 When the first on-off valve 9 is in the communication position and the second on-off valve 11 is in the shut-off position, or when the first on-off valve 9 is in the shut-off position and the second on-off valve 11 is in the communication position, the drive status of the pump 12 is changed. Regardless, the actuator A can exhibit a damping force only for either expansion or contraction. Therefore, for example, when the direction in which the damping force is exerted is the direction in which the vehicle body B is vibrated by the vibration of the bogie T of the railway vehicle, the actuator A is provided with a one-effect damper so that no damping force is generated in such a direction. It can be. Therefore, since this actuator A can easily realize semi-active control based on the Carnop theory, it can also function as a semi-active damper.
 なお、可変リリーフ弁22に与える電流量で開弁圧を比例的に変化させる比例電磁リリーフ弁を用いると開弁圧の制御が簡単となるが、可変リリーフ弁22は、開弁圧を調節できる可変リリーフ弁であれば比例電磁リリーフ弁に限定されない。 In addition, when a proportional electromagnetic relief valve that proportionally changes the valve opening pressure with the amount of current applied to the variable relief valve 22 is used, the valve opening pressure can be easily controlled. However, the variable relief valve 22 can adjust the valve opening pressure. The variable relief valve is not limited to a proportional electromagnetic relief valve.
 そして、可変リリーフ弁22は、第一開閉弁9および第二開閉弁11の開閉状態に関わらず、シリンダ本体Cyに伸縮方向の過大な入力があって、ロッド側室5の圧力が開弁圧を超える状態となると、排出通路21を開放する。このように、可変リリーフ弁22は、ロッド側室5の圧力が開弁圧以上となると、ロッド側室5内の圧力をタンク7へ排出するので、シリンダ2内の圧力が過大となるのを防止してアクチュエータAのシステム全体を保護する。よって、排出通路21と可変リリーフ弁22とを設けると、システムの保護も可能となる。 The variable relief valve 22 has an excessive input in the expansion / contraction direction to the cylinder body Cy regardless of the open / closed state of the first open / close valve 9 and the second open / close valve 11, and the pressure in the rod side chamber 5 increases the open valve pressure. When it exceeds, the discharge passage 21 is opened. As described above, the variable relief valve 22 discharges the pressure in the rod side chamber 5 to the tank 7 when the pressure in the rod side chamber 5 becomes equal to or higher than the valve opening pressure, so that the pressure in the cylinder 2 is prevented from becoming excessive. To protect the entire system of the actuator A. Therefore, if the discharge passage 21 and the variable relief valve 22 are provided, the system can be protected.
 さらに、本例のアクチュエータAにおける流体圧回路HCは、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する整流通路18と、タンク7からピストン側室6へ向かう作動油の流れのみを許容する吸込通路19を備えている。よって、本例のアクチュエータAでは、第一開閉弁9および第二開閉弁11が閉弁する状態でシリンダ本体Cyが伸縮すると、シリンダ2内から作動油が押し出される。シリンダ2内から排出された作動油の流れに対して可変リリーフ弁22が抵抗を与えるので、第一開閉弁9および第二開閉弁11が閉弁する状態では、本例のアクチュエータAはユニフロー型のダンパとして機能する。 Further, the fluid pressure circuit HC in the actuator A of the present example only allows the flow of the hydraulic fluid from the piston side chamber 6 to the rod side chamber 5 and the flow of the hydraulic fluid from the tank 7 to the piston side chamber 6. A permissible suction passage 19 is provided. Therefore, in the actuator A of this example, when the cylinder main body Cy expands and contracts while the first on-off valve 9 and the second on-off valve 11 are closed, the hydraulic oil is pushed out from the cylinder 2. Since the variable relief valve 22 provides resistance to the flow of hydraulic oil discharged from the cylinder 2, the actuator A of this example is a uniflow type in a state where the first on-off valve 9 and the second on-off valve 11 are closed. Functions as a damper.
 より詳細には、整流通路18は、ピストン側室6とロッド側室5とを連通しており、途中に逆止弁18aが設けられ、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。さらに、吸込通路19は、タンク7とピストン側室6とを連通しており、途中に逆止弁19aが設けられ、タンク7からピストン側室6へ向かう作動油の流れのみを許容する一方通行の通路に設定されている。なお、整流通路18は、第一開閉弁9の遮断ポジションを逆止弁とすると第一通路8に集約でき、吸込通路19についても、第二開閉弁11の遮断ポジションを逆止弁とすると第二通路10に集約できる。 More specifically, the rectifying passage 18 communicates the piston side chamber 6 and the rod side chamber 5, and a check valve 18 a is provided in the middle, allowing only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5. It is set as a one-way passage. Further, the suction passage 19 communicates between the tank 7 and the piston side chamber 6, and a check valve 19 a is provided in the middle to allow only the flow of hydraulic oil from the tank 7 toward the piston side chamber 6. Is set to The rectifying passage 18 can be integrated into the first passage 8 when the shut-off position of the first on-off valve 9 is a check valve, and the suction passage 19 is also the first when the shut-off position of the second on-off valve 11 is a check valve. It can be concentrated in the two passages 10.
 このように構成されたアクチュエータAでは、第一開閉弁9と第二開閉弁11がともに遮断ポジションを採っても、整流通路18、吸込通路19および排出通路21で、ロッド側室5、ピストン側室6およびタンク7を数珠繋ぎに連通させる。また、整流通路18、吸込通路19および排出通路21は、一方通行の通路に設定されている。よって、シリンダ本体Cyが外力によって伸縮すると、シリンダ2から必ず作動油が排出されて排出通路21を介してタンク7へ戻され、シリンダ2で足りなくなる作動油は吸込通路19を介してタンク7からシリンダ2内へ供給される。この作動油の流れに対して前記可変リリーフ弁22が抵抗となってシリンダ2内の圧力を開弁圧に調節するので、アクチュエータAは、パッシブなユニフロー型のダンパとして機能する。 In the actuator A configured as described above, even if the first on-off valve 9 and the second on-off valve 11 are both in the shut-off position, the rod side chamber 5, the piston side chamber 6 in the rectifying passage 18, the suction passage 19, and the discharge passage 21. And the tank 7 is made to communicate with a rosary chain. The rectifying passage 18, the suction passage 19, and the discharge passage 21 are set as one-way passages. Therefore, when the cylinder body Cy expands and contracts due to an external force, the hydraulic oil is surely discharged from the cylinder 2 and returned to the tank 7 through the discharge passage 21, and the hydraulic oil that is insufficient in the cylinder 2 passes from the tank 7 through the suction passage 19. Supplied into the cylinder 2. Since the variable relief valve 22 acts as a resistance against the flow of hydraulic oil and adjusts the pressure in the cylinder 2 to the valve opening pressure, the actuator A functions as a passive uniflow type damper.
 また、アクチュエータAの各機器への通電が不能となるようなフェール時には、第一開閉弁9と第二開閉弁11のそれぞれが遮断ポジションを採り、可変リリーフ弁22は、開弁圧が最大に固定された圧力制御弁として機能する。よって、このようなフェール時には、アクチュエータAは、自動的に、パッシブダンパとして機能する。 In addition, at the time of failure that prevents the actuator A from being energized, each of the first on-off valve 9 and the second on-off valve 11 takes the shut-off position, and the variable relief valve 22 has the maximum valve opening pressure. Functions as a fixed pressure control valve. Therefore, during such a failure, the actuator A automatically functions as a passive damper.
 つづいて、アクチュエータAに所望の伸長方向の推力を発揮させる場合、制御部Cは、基本的には、モータ15を回転させてポンプ12からシリンダ2内へ作動油を供給しつつ、第一開閉弁9を連通ポジションとし、第二開閉弁11を遮断ポジションとする。このようにすると、ロッド側室5とピストン側室6とが連通状態におかれて両者にポンプ12から作動油が供給され、ピストン3が図2中左方へ押されアクチュエータAは伸長方向の推力を発揮する。ロッド側室5内およびピストン側室6内の圧力が可変リリーフ弁22の開弁圧を上回ると、可変リリーフ弁22が開弁して作動油が排出通路21を介してタンク7へ排出される。よって、ロッド側室5内およびピストン側室6内の圧力は、可変リリーフ弁22に与える電流量で決まる可変リリーフ弁22の開弁圧にコントロールされる。そして、アクチュエータAは、ピストン3におけるピストン側室6側とロッド側室5側の受圧面積差に可変リリーフ弁22によってコントロールされるロッド側室5内およびピストン側室6内の圧力を乗じた値の伸長方向の推力を発揮する。 Subsequently, when causing the actuator A to exert a desired thrust in the extension direction, the control unit C basically rotates the motor 15 to supply hydraulic oil from the pump 12 into the cylinder 2 while performing the first opening and closing. The valve 9 is set to the communication position, and the second on-off valve 11 is set to the cutoff position. In this way, the rod side chamber 5 and the piston side chamber 6 are in communication with each other, and hydraulic oil is supplied to both of them from the pump 12, the piston 3 is pushed to the left in FIG. 2, and the actuator A generates thrust in the extension direction. Demonstrate. When the pressure in the rod side chamber 5 and the piston side chamber 6 exceeds the valve opening pressure of the variable relief valve 22, the variable relief valve 22 is opened and the hydraulic oil is discharged to the tank 7 through the discharge passage 21. Therefore, the pressure in the rod side chamber 5 and the piston side chamber 6 is controlled by the valve opening pressure of the variable relief valve 22 determined by the amount of current applied to the variable relief valve 22. The actuator A then extends in the direction of extension of the value obtained by multiplying the pressure receiving area difference between the piston side chamber 6 side and the rod side chamber 5 side of the piston 3 by the pressure in the rod side chamber 5 and the piston side chamber 6 controlled by the variable relief valve 22. Demonstrate thrust.
 これに対して、アクチュエータAに所望の収縮方向の推力を発揮させる場合、制御部Cは、モータ15を回転させてポンプ12からロッド側室5内へ作動油を供給しつつ、第一開閉弁9を遮断ポジションとし、第二開閉弁11を連通ポジションとする。このようにすると、ピストン側室6とタンク7が連通状態におかれるとともにロッド側室5にポンプ12から作動油が供給されるので、ピストン3が図2中右方へ押されアクチュエータAは収縮方向の推力を発揮する。そして、前述と同様に、可変リリーフ弁22の電流量を調節すると、アクチュエータAは、ピストン3におけるロッド側室5側の受圧面積と可変リリーフ弁22にコントロールされるロッド側室5内の圧力を乗じた収縮方向の推力を発揮する。 On the other hand, when causing the actuator A to exert a thrust in a desired contraction direction, the control unit C rotates the motor 15 to supply hydraulic oil from the pump 12 into the rod side chamber 5, while the first on-off valve 9. Is the shut-off position, and the second on-off valve 11 is the communication position. As a result, the piston side chamber 6 and the tank 7 are brought into communication with each other and the hydraulic oil is supplied to the rod side chamber 5 from the pump 12, so that the piston 3 is pushed rightward in FIG. Demonstrate thrust. As described above, when the amount of current of the variable relief valve 22 is adjusted, the actuator A multiplies the pressure receiving area of the piston 3 on the rod side chamber 5 side and the pressure in the rod side chamber 5 controlled by the variable relief valve 22. Demonstrate thrust in the contraction direction.
 また、アクチュエータAにあっては、アクチュエータとして機能するのみならず、モータ15の駆動状況に関わらず、第一開閉弁9と第二開閉弁11の開閉のみでダンパとしても機能できる。また、アクチュエータAをアクチュエータからダンパへ切換る際に、面倒かつ急峻な第一開閉弁9と第二開閉弁11の切換動作を伴わないので、応答性および信頼性が高いシステムを提供できる。 In addition, the actuator A not only functions as an actuator, but can function as a damper only by opening and closing the first on-off valve 9 and the second on-off valve 11 regardless of the driving state of the motor 15. Further, when switching the actuator A from the actuator to the damper, there is no troublesome and steep switching operation of the first on-off valve 9 and the second on-off valve 11, so that a system with high responsiveness and reliability can be provided.
 なお、本例のアクチュエータAにあっては、片ロッド型に設定されているので、両ロッド型のアクチュエータと比較してストローク長を確保しやすく、アクチュエータの全長が短くなって、鉄道車両への搭載性が向上する。 In addition, since the actuator A of this example is set to a single rod type, it is easy to secure a stroke length as compared with a double rod type actuator, and the total length of the actuator is shortened. Mountability is improved.
 また、本例のアクチュエータAにおけるポンプ12からの作動油供給および伸縮作動による作動油の流れは、ロッド側室5、ピストン側室6を順に通過して最終的にタンク7へ還流するようになっている。そのため、ロッド側室5あるいはピストン側室6内に気体が混入しても、シリンダ本体Cyの伸縮作動によって自立的にタンク7へ排出されるので、推力発生の応答性の悪化を阻止できる。したがって、アクチュエータAの製造にあたって、面倒な油中での組立や真空環境下での組立を強いられず、作動油の高度な脱気も不要となるので、生産性が向上するとともに製造コストを低減できる。さらに、ロッド側室5あるいはピストン側室6内に気体が混入しても、気体は、シリンダ本体Cyの伸縮作動によって自立的にタンク7へ排出されるので、性能回復のためのメンテナンスを頻繁に行う必要もなくなり、保守面における労力とコスト負担を軽減できる。 In addition, the flow of hydraulic oil by the hydraulic oil supply from the pump 12 and the expansion / contraction operation in the actuator A of this example passes through the rod side chamber 5 and the piston side chamber 6 in order and finally returns to the tank 7. . For this reason, even if gas is mixed into the rod side chamber 5 or the piston side chamber 6, the cylinder body Cy is automatically discharged to the tank 7 by the expansion / contraction operation. Therefore, when manufacturing the actuator A, it is not necessary to assemble in troublesome oil or in a vacuum environment, and advanced degassing of hydraulic oil is not required, improving productivity and reducing manufacturing cost. it can. Furthermore, even if gas is mixed in the rod side chamber 5 or the piston side chamber 6, the gas is automatically discharged to the tank 7 by the expansion / contraction operation of the cylinder body Cy, so that maintenance for performance recovery must be frequently performed. The maintenance labor and cost burden can be reduced.
 つづいて、制御部Cについて説明する。制御部Cは、図3に示すように、車体Bの車両進行方向に対して水平横方向の横方向加速度aを検出する加速度センサ40と、横方向加速度aに含まれる曲線走行時の定常加速度、ドリフト成分やノイズを除去するバンドパスフィルタ41と、バンドパスフィルタ41で濾波した横方向加速度aを処理して、アクチュエータAのモータ15、第一開閉弁9、第二開閉弁11、可変リリーフ弁22へ制御指令を出力する制御処理部42とを備えて構成され、アクチュエータAの推力を制御する。なお、バンドパスフィルタ41で横方向加速度aに含まれる曲線走行時の定常加速度が除去されるので、乗心地を悪化させる振動のみを抑制できる。 Next, the control unit C will be described. As shown in FIG. 3, the control unit C includes an acceleration sensor 40 that detects a lateral acceleration a in the horizontal direction with respect to the vehicle traveling direction of the vehicle body B, and a steady acceleration during curve traveling included in the lateral acceleration a. The band-pass filter 41 for removing drift components and noise, and the lateral acceleration a filtered by the band-pass filter 41 are processed to provide the motor 15, the first on-off valve 9, the second on-off valve 11, and the variable relief of the actuator A. And a control processing unit 42 that outputs a control command to the valve 22, and controls the thrust of the actuator A. In addition, since the steady-state acceleration at the time of the curve driving | running | working included in the horizontal direction acceleration a is removed by the band pass filter 41, only the vibration which deteriorates riding comfort can be suppressed.
 制御処理部42は、図3に示すように、加速度センサ40で検知した横方向加速度aに基づいてアクチュエータAで発生すべき推力である制御力Fを求める制御力演算部421と、モータ15の回転速度を監視してモータ15を所定の回転速度で回転駆動するためにモータ15に与えるべき電流値Iを求めるモータ電流値演算部422と、電流値Iの入力を受けて最終的にモータ15へ与える電流指令Ieを決定するモータ電流値決定部423と、制御力Fに基づいて可変リリーフ弁22へ与えるリリーフ弁電流値IRを求めるリリーフ弁電流値演算部424と、制御力Fの入力を受けて第一開閉弁9および第二開閉弁11を切換駆動する開閉弁駆動部425と、リリーフ弁電流値IRの入力を受けて可変リリーフ弁22へ供給する電流量を制御するリリーフ弁制御部426と、電流指令Ieの入力を受けてモータ15へ電流指令Ie通りに電流を供給してモータ15を駆動する駆動部としてのモータドライバ427とを備えて構成されている。 As shown in FIG. 3, the control processing unit 42 includes a control force calculation unit 421 that obtains a control force F that is a thrust to be generated by the actuator A based on the lateral acceleration a detected by the acceleration sensor 40, and the motor 15. A motor current value calculation unit 422 that obtains a current value I to be supplied to the motor 15 to monitor the rotation speed and drive the motor 15 to rotate at a predetermined rotation speed, and finally receives the input of the current value I. Motor current value determining unit 423 for determining a current command Ie to be applied to the relief valve current value calculating unit 424 for obtaining a relief valve current value IR to be applied to the variable relief valve 22 based on the control force F, and input of the control force F The on-off valve driving unit 425 that receives and receives the relief valve current value IR and supplies the variable relief valve 22 with the on-off valve drive unit 425 that switches the first on-off valve 9 and the second on-off valve 11 in response to the input. A relief valve control unit 426 for controlling and a motor driver 427 as a drive unit that receives the input of the current command Ie and supplies the current to the motor 15 in accordance with the current command Ie to drive the motor 15 are configured. .
 制御力演算部421は、本例では、H∞制御器とされており、横方向加速度aから車体Bの振動を抑制するためにアクチュエータAが出力すべき推力を指示する制御力Fを求める。なお、制御力Fは、方向により正負の符号が付されており、符号はアクチュエータAに出力させるべき推力の方向を示す。開閉弁駆動部425は、制御力Fの入力を受けると、制御力Fの符号に応じて第一開閉弁9と第二開閉弁11に電流供給或いは電流供給を停止して開閉駆動させる。より詳細には、アクチュエータAの伸長方向を正とし、収縮方向を負とする場合、開閉弁駆動部425は、第一開閉弁9と第二開閉弁11を以下のように動作させる。制御力Fの符号が正である場合、アクチュエータAの推力発揮方向が伸長方向であるので、開閉弁駆動部425は、第一開閉弁9を連通ポジションとしつつ第二開閉弁11を遮断ポジションとする。すると、ポンプ12からロッド側室5とピストン側室6の双方に作動油が供給されてアクチュエータAは伸長方向の推力を発揮する。他方、制御力Fの符号が負である場合、アクチュエータAの推力発揮方向が収縮方向であるので、開閉弁駆動部425は、第一開閉弁9を遮断ポジションとしつつ第二開閉弁11を連通ポジションとする。すると、ポンプ12からロッド側室5のみに作動油が供給されてピストン側室6とタンク7とが連通されるので、アクチュエータAは収縮方向の推力を発揮する。 The control force calculation unit 421 is an H∞ controller in this example, and obtains a control force F that instructs the thrust to be output by the actuator A in order to suppress the vibration of the vehicle body B from the lateral acceleration a. The control force F is given a positive or negative sign depending on the direction, and the sign indicates the direction of thrust to be output to the actuator A. When receiving the control force F, the on-off valve driving unit 425 stops the current supply or the current supply to the first on-off valve 9 and the second on-off valve 11 according to the sign of the control force F and drives the on-off valve. More specifically, when the extension direction of the actuator A is positive and the contraction direction is negative, the on-off valve drive unit 425 operates the first on-off valve 9 and the second on-off valve 11 as follows. When the sign of the control force F is positive, the thrust exerting direction of the actuator A is the extension direction. Therefore, the on-off valve drive unit 425 sets the first on-off valve 9 to the communication position and the second on-off valve 11 to the shut-off position. To do. Then, hydraulic oil is supplied from the pump 12 to both the rod side chamber 5 and the piston side chamber 6, and the actuator A exhibits thrust in the extending direction. On the other hand, when the sign of the control force F is negative, since the thrust exerting direction of the actuator A is the contraction direction, the on-off valve drive unit 425 communicates with the second on-off valve 11 while setting the first on-off valve 9 to the shut-off position. Position. Then, hydraulic oil is supplied only from the pump 12 to the rod side chamber 5 so that the piston side chamber 6 and the tank 7 communicate with each other, so that the actuator A exerts a thrust in the contraction direction.
 なお、制御力演算部421は、本例では、横方向加速度aのみから制御力Fを求めているが、車体Bのスエー加速度とヨー加速度とに基づいて、車体Bのスエーを抑制する制御力とヨーを抑制する制御力を別々に求め、これらを加算して制御力Fを求めてもよい。また、制御力演算部421は、横方向加速度aから車体Bの速度を求めてスカイフックゲインを乗じて制御力Fを求めるスカイフック制御を行う制御器であってもよい。 In this example, the control force calculation unit 421 obtains the control force F from only the lateral acceleration a, but the control force that suppresses the sway of the vehicle body B based on the sway acceleration and the yaw acceleration of the vehicle body B. And the control force that suppresses yaw may be obtained separately, and these may be added to obtain the control force F. Further, the control force calculation unit 421 may be a controller that performs skyhook control for obtaining the control force F by obtaining the speed of the vehicle body B from the lateral acceleration a and multiplying by the skyhook gain.
 モータ電流値演算部422は、モータ15の回転速度を検知するセンサ43とモータ15に流れる電流量を検知するセンサ44から回転速度と電流量の入力を受け、モータ15の回転速度とモータ15に流れる電流量を監視する。そして、モータ電流値演算部422は、速度ループと電流ループを備えており、モータ15の回転速度と電流量をフィードバックして、モータ15を所定の回転速度で駆動させるためにモータ15に与えるべき電流値Iを求める。モータ15の回転速度は、モータ15がブラシレスモータである場合、通常、モータ15に備えられる電気角を検知するためのレゾルバやホール素子等をセンサ43として利用すればよい。また、モータ15の電流量は、モータ15が通常備えている電流センサをセンサ44として用いればよい。所定の回転速度については、鉄道車両用制振装置1を適用する鉄道車両の制振に最適な値に予め決めればよい。つまり、モータ電流値演算部422は、所定の回転速度を目標回転速度として、モータ15の回転速度と目標回転速度の偏差に基づいて目標電流値を求め、目標電流値とモータ15に実際に流れている電流量との偏差に基づいてモータ15へ与えるべき電流値Iを求める。 The motor current value calculation unit 422 receives the rotation speed and the current amount from the sensor 43 that detects the rotation speed of the motor 15 and the sensor 44 that detects the amount of current flowing in the motor 15. Monitor the amount of current flowing. The motor current value calculation unit 422 is provided with a speed loop and a current loop, and should be given to the motor 15 in order to feed back the rotational speed and current amount of the motor 15 and drive the motor 15 at a predetermined rotational speed. The current value I is obtained. When the motor 15 is a brushless motor, the resolver or Hall element for detecting the electrical angle provided in the motor 15 may be used as the sensor 43 for the rotational speed of the motor 15. Further, the current amount of the motor 15 may be obtained by using a current sensor normally provided in the motor 15 as the sensor 44. The predetermined rotational speed may be determined in advance to an optimum value for damping the railway vehicle to which the railway vehicle damping device 1 is applied. That is, the motor current value calculation unit 422 obtains a target current value based on the deviation between the rotational speed of the motor 15 and the target rotational speed, with the predetermined rotational speed as the target rotational speed, and actually flows to the target current value and the motor 15. A current value I to be given to the motor 15 is obtained based on the deviation from the current amount.
 モータ電流値決定部423は、センサ44が検知したモータ15に流れる電流に基づいて指標Hiを求める。指標Hiは、モータ15の過熱状態を示す値である。モータ15は、出力するトルクが定格トルク以内となるように駆動される場合、継続的に駆動されても焼損の恐れがないので、継続駆動が可能である。他方、モータ15の出力トルクが定格トルクを超過する状態を継続してモータ15を駆動すると発熱によって焼損する可能性がある。モータ15の発熱量は、定格トルクをどの程度上回るトルクが何秒出力されているかで決まる。センサ43でモータ15の回転速度を検知し、センサ44でモータ15に流れる電流量を検知しているので、既知の回転速度と電流量からモータ15のトルクは求められる。指標Hiは、求めたモータ15のトルクから定格トルクを差し引いた差分を用いて求められる。具体的には、モータ電流値決定部423は、所定の制御周期で指標Hiを求める演算を実行しているので、前回演算時に得られた指標Hiの値に、今回演算時に得られる加算値を加算して指標Hiを順次更新する。 The motor current value determination unit 423 obtains the index Hi based on the current flowing through the motor 15 detected by the sensor 44. The index Hi is a value indicating the overheated state of the motor 15. When the motor 15 is driven so that the output torque is within the rated torque, the motor 15 can be continuously driven because there is no fear of burning even if continuously driven. On the other hand, if the motor 15 is driven in a state where the output torque of the motor 15 exceeds the rated torque, there is a possibility that the motor 15 will burn out due to heat generation. The amount of heat generated by the motor 15 is determined by how many seconds the torque exceeding the rated torque is output. Since the sensor 43 detects the rotational speed of the motor 15 and the sensor 44 detects the amount of current flowing through the motor 15, the torque of the motor 15 can be obtained from the known rotational speed and current amount. The index Hi is obtained using a difference obtained by subtracting the rated torque from the obtained torque of the motor 15. Specifically, since the motor current value determination unit 423 performs the calculation for obtaining the index Hi at a predetermined control cycle, the value obtained during the previous calculation is added to the value of the index Hi obtained during the previous calculation. The index Hi is sequentially updated by adding.
 加算値の演算に当たっては、モータ15が制御周期の時間の間に定格トルクを超えるトルクを出力する場合に前記差分に応じてどの程度モータ15の温度が上昇するか、および、モータ15が制御周期の時間の間に定格トルク以下のトルクを出力すると差分に応じてどの程度モータ15の温度が低下するかを把握しておき、前記差分をパラメータとして数式化しておく。つまり、モータ15が制御周期の時間の間に定格トルクを超えるトルクを出力する場合の温度上昇についての数式と、モータ15が制御周期の時間の間に定格トルク未満のトルクを出力する場合の温度低下についての数式とが予め用意される。なお、これらの数式は、モータ15の仕様によって理論的あるいは試験的に求めればよい。 In calculating the addition value, when the motor 15 outputs a torque exceeding the rated torque during the time of the control cycle, how much the temperature of the motor 15 rises according to the difference, and the motor 15 When a torque equal to or lower than the rated torque is output during this time, it is grasped how much the temperature of the motor 15 decreases according to the difference, and the difference is mathematically expressed as a parameter. That is, a formula for a temperature rise when the motor 15 outputs torque exceeding the rated torque during the control cycle time, and a temperature when the motor 15 outputs torque less than the rated torque during the control cycle time. A formula for the decrease is prepared in advance. These mathematical formulas may be obtained theoretically or experimentally depending on the specifications of the motor 15.
 よって、モータ電流値決定部423は、モータ15の出力トルクが定格トルクを超過する場合、温度上昇に使用される数式を利用して差分をインプットして加算値を求める。他方、モータ電流値決定部423は、モータ15の出力トルクが定格トルク未満である場合、温度低下に使用される数式を利用して差分をインプットして加算値を求める。温度上昇の数式で求められた加算値は、差分の符号が正であるので、正の値を持ち、温度低下の数式で求められた加算値は、差分の符号が負であるので、負の値を持つ。そして、モータ電流値決定部423は、こうして求めた加算値を前回の制御周期で求めた指標Hiに加算して指標Hiの値を更新する。 Therefore, when the output torque of the motor 15 exceeds the rated torque, the motor current value determining unit 423 inputs the difference using the mathematical formula used for the temperature rise and obtains the added value. On the other hand, when the output torque of the motor 15 is less than the rated torque, the motor current value determination unit 423 obtains an added value by inputting the difference using a mathematical formula used for temperature reduction. The added value obtained by the temperature increase formula has a positive sign because the difference is positive, and the added value obtained by the temperature drop formula has a negative sign because the difference sign is negative. Has a value. Then, the motor current value determination unit 423 adds the addition value obtained in this way to the index Hi obtained in the previous control cycle, and updates the value of the index Hi.
 そして、モータ電流値決定部423は、更新後の指標Hiと第一閾値αとを比較して指標Hiが第一閾値αを超過すると、モータ15が焼損する恐れがあるので、モータ15を強制停止すべく、最終的にモータ15へ与える電流指令Ieを0とする緊急停止処理を行う。この電流指令Ieは、モータ15を駆動するモータドライバ427に与えられる最終的な電流指令となる。指標Hiは、前述したとおり、モータ15の過熱状態を示す値であってモータ15の温度が高温となればなるほど大きな値を採る。第一閾値αは、指標Hiがモータ15が焼損する温度に達することを示唆する値或いはこの値よりも若干低い値に設定されている。よって、モータ電流値決定部423は、指標Hiが第一閾値αを超過すると直ちにモータドライバ427へ与える最終的な電流指令Ieを0としてモータ15への通電を停止させてモータ15を保護する。つまり、モータ電流値決定部423は、モータ15を保護する保護機能を備えている。なお、指標Hiの算出については、モータドライバ427に搭載される演算処理装置によって行ってもよく、緊急停止処理を実行する保護機能についてもモータドライバ427が備えていてもよい。 Then, the motor current value determination unit 423 compares the updated index Hi with the first threshold value α, and if the index Hi exceeds the first threshold value α, the motor 15 may be burned out. In order to stop, the emergency stop process which makes the electric current command Ie finally given to the motor 15 0 is performed. This current command Ie is the final current command given to the motor driver 427 that drives the motor 15. As described above, the index Hi is a value indicating the overheating state of the motor 15, and takes a larger value as the temperature of the motor 15 becomes higher. The first threshold value α is set to a value that suggests that the index Hi reaches a temperature at which the motor 15 burns out, or a value slightly lower than this value. Therefore, the motor current value determination unit 423 protects the motor 15 by setting the final current command Ie to be given to the motor driver 427 to 0 as soon as the index Hi exceeds the first threshold value α, and stopping energization of the motor 15. That is, the motor current value determination unit 423 has a protection function for protecting the motor 15. The calculation of the index Hi may be performed by an arithmetic processing device mounted on the motor driver 427, and the motor driver 427 may be provided with a protection function for executing an emergency stop process.
 また、モータ電流値決定部423は、更新後の指標Hiと第一閾値αよりも低い値に設定される第二閾値βとを比較して指標Hiが第二閾値β以下であると、モータ電流値演算部422が求めた電流値Iをそのまま最終的な電流指令Ieとしてモータドライバ427へ出力する。これに対して、モータ電流値決定部423は、更新後の指標Hiと第二閾値βとを比較して指標Hiが第二閾値βを超過すると、モータ15へ与える電流を低く制限するモータ電流制限処理を実行する。本実施の形態では、モータ電流値決定部423は、更新後の指標Hiが第二閾値βを超過すると、直ちにモータドライバ427へ与える最終的な電流指令Ieを0として、モータ15への通電を停止して指標Hiが低下するように制御する。
モータ15への通電を停止させた後も、モータ電流値決定部423は、加算値を求めて指標Hiの値を更新する。モータ15の通電停止後は、モータ15の温度は低下するので、指標Hiの値は、モータ15の放熱によって徐々に低下する。つまり、モータ電流値決定部423は、第一閾値αよりも低い値に設定される第二閾値βを使用して、指標Hiが第二閾値βを超過するとモータ電流制限処理を実行するので、モータ15の緊急停止処理を行う前にモータ15の温度を低下させるのである。なお、第二閾値βは、指標Hiが第二閾値β以下であったにも関わらず、次回の制御周期で求められた指標Hiが第一閾値αを超過してしまうことがないように設定されればよい。
Further, the motor current value determination unit 423 compares the updated index Hi with the second threshold value β set to a value lower than the first threshold value α, and if the index Hi is equal to or less than the second threshold value β, The current value I obtained by the current value calculation unit 422 is output as it is to the motor driver 427 as the final current command Ie. On the other hand, the motor current value determination unit 423 compares the updated index Hi with the second threshold value β, and when the index Hi exceeds the second threshold value β, the motor current that limits the current applied to the motor 15 to a low level. Perform restriction processing. In the present embodiment, when the updated index Hi exceeds the second threshold value β, the motor current value determination unit 423 immediately sets the final current command Ie to be given to the motor driver 427 to 0 and energizes the motor 15. Control is performed to stop and decrease the index Hi.
Even after the energization of the motor 15 is stopped, the motor current value determination unit 423 obtains the added value and updates the value of the index Hi. Since the temperature of the motor 15 decreases after the energization of the motor 15 is stopped, the value of the index Hi gradually decreases due to the heat radiation of the motor 15. That is, the motor current value determination unit 423 uses the second threshold value β set to a value lower than the first threshold value α, and executes the motor current limiting process when the index Hi exceeds the second threshold value β. The temperature of the motor 15 is lowered before the emergency stop process of the motor 15 is performed. Note that the second threshold value β is set so that the index Hi obtained in the next control cycle does not exceed the first threshold value α even though the index Hi is equal to or less than the second threshold value β. It only has to be done.
 そして、モータ電流値決定部423は、更新後の指標Hiと第二閾値βよりも低い値に設定される第三閾値γとを比較して指標Hiが第三閾値γ以下となると、モータ15の温度が充分低下しているのでモータ15への通常通りの通電を再開すべく、モータ電流値演算部422が求めた電流値Iをそのまま最終的な電流指令Ieとしてモータドライバ427へ出力する。第三閾値γは、モータ15の温度が充分低下しているのを認識できる指標Hiの値に設定されればよい。第二閾値βと第三閾値γとの差が小さいと、モータ電流制限制御のオンオフが振動的に繰り返される可能性があるので、第二閾値βと第三閾値γとの値はこのような制御のオンオフが振動的にならないように配慮して設定されればよい。 Then, the motor current value determination unit 423 compares the updated index Hi with the third threshold γ set to a value lower than the second threshold β, and when the index Hi becomes equal to or less than the third threshold γ, the motor 15 The current value I obtained by the motor current value calculation unit 422 is output as it is to the motor driver 427 as the final current command Ie in order to resume normal energization of the motor 15. The third threshold γ may be set to a value of the index Hi that can recognize that the temperature of the motor 15 is sufficiently lowered. If the difference between the second threshold value β and the third threshold value γ is small, the ON / OFF of the motor current limit control may be oscillated repeatedly, so the values of the second threshold value β and the third threshold value γ are such What is necessary is just to set so that control on / off may not vibrate.
 モータ電流値演算部422とモータ電流値決定部423の処理を図4に示したフローチャートを用いて説明する。まず、制御部Cは、モータ15の回転速度とモータ15に流れている電流量を検知する(ステップF1)。つづいて、検知した回転速度と電流量に基づいてモータ15へ与えるべき電流値Iを求める(ステップF2)。さらに、制御部Cは、指標Hiを求める(ステップF3)。つづいて、制御部Cは、0または1の値をとる制御フラグが1であるか否かを判断する(ステップF4)。制御フラグが1でない場合、制御部Cは、指標Hiと第一閾値αとを比較し(ステップF5)、指標Hiが第一閾値αを超過している場合、緊急停止処理を実行し電流指令Ieを0として(ステップF6)、処理を終了する。この場合、制御部Cは、モータ15のリセットを行わないと制御を行えないため、第一開閉弁9、第二開閉弁11および可変リリーフ弁22のみの制御を継続してアクチュエータAをセミアクティブダンパとして機能させる。なお、制御部Cは、フェールモードへ移行して第一開閉弁9、第二開閉弁11および可変リリーフ弁22に一切通電せず、アクチュエータAをパッシブダンパとして機能させてもよい。 The processing of the motor current value calculation unit 422 and the motor current value determination unit 423 will be described using the flowchart shown in FIG. First, the controller C detects the rotational speed of the motor 15 and the amount of current flowing through the motor 15 (step F1). Subsequently, a current value I to be given to the motor 15 is obtained based on the detected rotational speed and current amount (step F2). Furthermore, the control part C calculates | requires the parameter | index Hi (step F3). Subsequently, the control unit C determines whether or not the control flag having a value of 0 or 1 is 1 (step F4). When the control flag is not 1, the control unit C compares the index Hi with the first threshold value α (step F5), and when the index Hi exceeds the first threshold value α, the emergency stop process is executed to execute the current command. Ie is set to 0 (step F6), and the process is terminated. In this case, since the control unit C cannot perform the control unless the motor 15 is reset, the control of the first on-off valve 9, the second on-off valve 11 and the variable relief valve 22 is continued and the actuator A is semi-active. It functions as a damper. Note that the control unit C may shift to the fail mode so that the first on-off valve 9, the second on-off valve 11, and the variable relief valve 22 are not energized, and the actuator A may function as a passive damper.
 他方、指標Hiが第一閾値α以下である場合、制御部Cは、指標Hiと第二閾値βとを比較し(ステップF7)、指標Hiが第二閾値β以下である場合には、モータ15への通電を継続しても問題ないので電流値Iを電流指令Ieとする(ステップF8)。制御部Cは、指標Hiが第二閾値βを超過している場合、制御フラグを1に設定し(ステップF9)、モータ15への通電を継続すると緊急停止処理が実行される恐れがあるのでモータ電流制限処理を実行して電流指令Ieを0とする(ステップF10)。なお、制御部Cは、モータ15の駆動が制限されるだけであるから、第一開閉弁9、第二開閉弁11および可変リリーフ弁22のみの制御を継続してアクチュエータAをセミアクティブダンパとして機能させる。なお、制御部Cは、アクチュエータAをパッシブダンパとして機能させてもよい。また、この場合、制御部Cは、モータ電流制限処理を実行するがモータ15の温度が低下すればモータ15の駆動を再開するため、指標Hiの演算を繰り返すべくステップF1の処理へ移行する。つまり、制御フラグは、指標Hiが第二閾値βを超過した状態であるか否かを判定するためのフラグであり、値が1であると指標Hiが第二閾値βを超過した状態を示し、値が0であると指標Hiが第二閾値βを超過していない状態を示している。 On the other hand, when the index Hi is less than or equal to the first threshold value α, the control unit C compares the index Hi with the second threshold value β (step F7), and when the index Hi is less than or equal to the second threshold value β, the motor Since there is no problem even if energization to 15 is continued, the current value I is set as the current command Ie (step F8). When the index Hi exceeds the second threshold value β, the control unit C sets the control flag to 1 (step F9), and if the energization of the motor 15 is continued, the emergency stop process may be executed. The motor current limiting process is executed to set the current command Ie to 0 (step F10). Since the control unit C is only limited to drive the motor 15, the control unit C continues to control only the first on-off valve 9, the second on-off valve 11 and the variable relief valve 22 so that the actuator A becomes a semi-active damper. Make it work. The control unit C may cause the actuator A to function as a passive damper. Further, in this case, the control unit C executes the motor current limiting process, but when the temperature of the motor 15 decreases, the control unit C resumes the driving of the motor 15 and thus proceeds to the process of step F1 to repeat the calculation of the index Hi. In other words, the control flag is a flag for determining whether or not the index Hi exceeds the second threshold value β. When the value is 1, the control flag Hi indicates that the index Hi exceeds the second threshold value β. When the value is 0, the index Hi does not exceed the second threshold value β.
 そして、ステップF4の判断で制御フラグが1の場合、モータ電流制限処理が実行中であるため、制御部Cは、指標Hiが第三閾値γ以下であるかを判断する(ステップF11)。制御部Cは、指標Hiが第三閾値γ以下である場合、モータ15の通電を再開すべく電流値Iを電流指令Ieとし(ステップF11)、制御フラグの値を0として(ステップF12)、ステップF1の処理へ戻る。他方、指標Hiが第三閾値γを超過している場合には、制御部Cは、電流値Iを0として(ステップF12)、ステップF1の処理へ戻る。以上の処理を繰り返して、モータ電流値演算部422とモータ電流値決定部423は、最終的な電流指令Ieを決定する。 And when the control flag is 1 in the determination of step F4, since the motor current limiting process is being executed, the control unit C determines whether the index Hi is equal to or less than the third threshold value γ (step F11). When the index Hi is equal to or less than the third threshold value γ, the control unit C sets the current value I as the current command Ie to restart the energization of the motor 15 (step F11), sets the value of the control flag to 0 (step F12), The process returns to step F1. On the other hand, when the index Hi exceeds the third threshold γ, the control unit C sets the current value I to 0 (step F12) and returns to the process of step F1. By repeating the above processing, the motor current value calculation unit 422 and the motor current value determination unit 423 determine the final current command Ie.
 つづいて、リリーフ弁電流値演算部424は、前述のようにそれぞれ求められた制御力Fに基づいて可変リリーフ弁22へ供給するリリーフ弁電流値IRを求める。ここで、可変リリーフ弁22は、供給される電流量に比例して開弁圧が変化するが、通過流量に応じて圧力損失が増加する圧力オーバーライドを有する特性を備えている。モータ15の回転速度が所定の回転速度で等速回転しており、可変リリーフ弁22を通過する作動油量がある程度想定できるので、リリーフ弁電流値演算部424は、圧力オーバーライドを加味して前記リリーフ弁電流値IRを求める。 Subsequently, the relief valve current value calculation unit 424 obtains the relief valve current value IR to be supplied to the variable relief valve 22 based on the control force F obtained as described above. Here, the variable relief valve 22 has a characteristic of having a pressure override in which the valve opening pressure changes in proportion to the amount of current supplied, but the pressure loss increases in accordance with the passing flow rate. Since the rotational speed of the motor 15 is rotating at a predetermined rotational speed and the amount of hydraulic oil passing through the variable relief valve 22 can be assumed to some extent, the relief valve current value calculation unit 424 takes into account the pressure override and The relief valve current value IR is obtained.
 リリーフ弁制御部426は、本例では、可変リリーフ弁22の符示しないソレノイドを駆動するドライバとされていて、リリーフ弁電流値IRの入力を受けて可変リリーフ弁22へリリーフ弁電流値IR通りの電流量を供給する。 In this example, the relief valve control unit 426 is a driver that drives a solenoid (not shown) of the variable relief valve 22, and receives the relief valve current value IR to the variable relief valve 22 according to the relief valve current value IR. Supply the amount of current.
 モータドライバ427は、モータ15へ電流を供給する。モータ15が駆動してポンプ12は、回転する。モータドライバ427は、本例では、電流指令Ieの入力を受けて、モータ15をPWM制御して、モータ15に流れる電流量が電流指令Ieの指示する電流量となるようにモータ15を駆動する。 The motor driver 427 supplies current to the motor 15. The motor 15 is driven and the pump 12 rotates. In this example, the motor driver 427 receives an input of the current command Ie, performs PWM control of the motor 15, and drives the motor 15 so that the amount of current flowing through the motor 15 becomes the amount of current indicated by the current command Ie. .
 なお、制御部Cは、ハードウェア資源としては、図示はしないが具体的にはたとえば、加速度センサ40、センサ43,44が出力する信号を取り込むためのA/D変換器と、バンドパスフィルタ41で濾波した横方向加速度aを取り込んでアクチュエータAを制御するのに必要な処理に使用されるプログラムが格納されるROM(Read Only Memory)等の記憶装置と、前記プログラムに基づいた処理を実行するCPU(Central Processing Unit)等の演算装置と、前記CPUに記憶領域を提供するRAM(Random Access Memory)等の記憶装置とを備えて構成されればよく、制御部Cの制御処理部42における各部は、CPUの前記プログラムの実行により実現できる。また、バンドパスフィルタ41は、前記CPUのプログラムの実行により実現されてもよい。 Although not shown, the control unit C specifically includes, for example, an acceleration sensor 40, an A / D converter for capturing signals output from the sensors 43 and 44, and a bandpass filter 41 as hardware resources. A storage device such as a ROM (Read Only Memory) in which a program used for processing necessary to control the actuator A by taking in the lateral acceleration a filtered in the above is executed, and processing based on the program is executed. Each unit in the control processing unit 42 of the control unit C may be configured to include a calculation device such as a CPU (Central Processing Unit) and a storage device such as a RAM (Random Access Memory) that provides a storage area for the CPU. Can be realized by executing the program of the CPU. The bandpass filter 41 may be realized by executing a program of the CPU.
 このように鉄道車両用制振装置1は、作動油(作動流体)の供給により伸縮するシリンダ本体Cyと、シリンダ本体Cyへ作動油(作動流体)を供給するポンプ12と、ポンプ12を駆動するモータ15とを有して鉄道車両に設置されるアクチュエータAと、モータ15を制御する制御部Cとを備え、制御部Cは、モータ15の過熱状態を示す指標Hiが第一閾値αを超過すると強制停止する保護機能を有し、指標Hiが第一閾値αよりも低い第二閾値βを超過すると、指標Hiが第二閾値βよりも低い第三閾値γ以下になるまで指標Hiが低下するようにモータ15への通電を制御するようになっている。 As described above, the railcar vibration damping device 1 drives the cylinder body Cy that expands and contracts by supplying the hydraulic oil (working fluid), the pump 12 that supplies the hydraulic oil (working fluid) to the cylinder body Cy, and the pump 12. An actuator A having a motor 15 and installed in a railway vehicle; and a control unit C that controls the motor 15, and the control unit C has an index Hi indicating an overheated state of the motor 15 exceeding a first threshold value α. Then, it has a protective function to forcibly stop, and when the index Hi exceeds a second threshold value β lower than the first threshold value α, the index Hi decreases until the index Hi becomes equal to or lower than the third threshold value γ lower than the second threshold value β. Thus, the power supply to the motor 15 is controlled.
 このように本発明の鉄道車両用制振装置1は、第一閾値αよりも低い値に設定される第二閾値βを使用して、指標Hiが第二閾値βを超過するとモータ電流制限処理を実行するので、モータ15の焼損を防止できモータ15を過負荷から保護でき、緊急停止処理を行う前にモータ15の温度を低下させ得る。また、本発明の鉄道車両用制振装置1は、指標Hiと第二閾値βよりも低い値に設定される第三閾値γとを比較してモータ15への通常通りの通電を再開するので、モータ15の温度を充分に低下させてからモータ15への通常通電を再開できる。よって、本発明の鉄道車両用制振装置1では、モータ15が緊急停止される前にモータ15に流れる電流を制限でき、モータ15の温度が低下すればモータ15の駆動が再開される。以上より、本発明の鉄道車両用制振装置1によれば、モータ15を過負荷から保護できるとともに、モータ15の温度が低下すればモータ15の通常通電を再開するので、車両における乗心地を向上できる。 Thus, the railcar damping device 1 of the present invention uses the second threshold value β set to a value lower than the first threshold value α, and when the index Hi exceeds the second threshold value β, the motor current limiting process is performed. As a result, the burnout of the motor 15 can be prevented, the motor 15 can be protected from overload, and the temperature of the motor 15 can be lowered before the emergency stop process is performed. Further, the railcar vibration damping device 1 of the present invention compares the index Hi with the third threshold value γ set to a value lower than the second threshold value β, and resumes normal energization to the motor 15. The normal energization of the motor 15 can be resumed after the temperature of the motor 15 is sufficiently lowered. Therefore, in the railcar damping device 1 of the present invention, the current flowing through the motor 15 can be limited before the motor 15 is stopped urgently, and the driving of the motor 15 is resumed when the temperature of the motor 15 decreases. As described above, according to the railcar damping device 1 of the present invention, the motor 15 can be protected from overload, and the normal energization of the motor 15 is resumed when the temperature of the motor 15 decreases. Can be improved.
 また、本実施の形態の鉄道車両用制振装置1にあっては、指標Hiが第一閾値αよりも低い第二閾値βを超過すると、指標Hiが第二閾値βよりも低い第三閾値γ以下になるまで制御部Cがモータ15への通電を停止するようになっている。このように構成された鉄道車両用制振装置1によれば、モータ15への通電を停止するので、モータ15の温度上昇を速やかに停止させ得るので、モータ15の停止から通常通電の再開までに要する時間が短くて済む。よって、このように構成された鉄道車両用制振装置1によれば、アクチュエータがアクチュエータとして機能できない時間が短くなり、鉄道車両における乗心地が悪化する時間を最小限に留め得る。 Moreover, in the railcar damping device 1 of the present embodiment, when the index Hi exceeds the second threshold value β that is lower than the first threshold value α, the third threshold value that is lower than the second threshold value β. The control unit C stops energization of the motor 15 until γ or less. According to the railway vehicle vibration damping device 1 configured as described above, since the energization to the motor 15 is stopped, the temperature rise of the motor 15 can be quickly stopped, and therefore from the stop of the motor 15 to the resumption of normal energization. It takes less time to complete. Therefore, according to the railcar damping device 1 configured as described above, the time during which the actuator cannot function as an actuator is shortened, and the time during which riding comfort in the railcar is deteriorated can be minimized.
 さらに、本実施の形態の鉄道車両用制振装置1にあっては、モータ15が停止しているとアクチュエータAがセミアクティブダンパ或いはパッシブダンパとして機能する。このように構成された鉄道車両用制振装置1では、モータ15が停止されてから通常通電に復帰するまでのアクチュエータAがアクチュエータとしての機能を発揮できなくなる間は、アクチュエータAがセミアクティブダンパ或いはパッシブダンパとして機能するので、その間の鉄道車両における乗心地の悪化を抑制できる。 Furthermore, in the railway vehicle vibration damping device 1 of the present embodiment, when the motor 15 is stopped, the actuator A functions as a semi-active damper or a passive damper. In the railway vehicle vibration damping device 1 configured as described above, the actuator A is a semi-active damper or the like while the actuator A cannot function as an actuator until the motor 15 is stopped and then returns to normal energization. Since it functions as a passive damper, it is possible to suppress the deterioration of riding comfort in the railway vehicle during that time.
 なお、鉄道車両用制振装置1は、指標Hiが第二閾値βを超過すると、指標Hiが第三閾値γ以下になるまで、モータ15を駆動するモータドライバ(駆動部)427へ与える電流指令Ieのゲインを低下させるようになっていてもよい。つまり、モータ電流値決定部423は、モータ電流値演算部422が求めた電流値IにゲインKを乗じて最終的な電流指令Ieを求めるようにし、指標Hiが第二閾値β以下ではゲインKを1として、指標Hiが第二閾値βを超過するとゲインKの値を0以上1未満の値に設定して電流指令Ieを求めるようにしてもよい。このようにすると、電流値Iがモータ15に定格トルクを超過するトルクを出力するような指示となっていても、電流指令Ieが電流値Iに対して低減されるので、指標Hiが低下するようにモータ15への通電が制御されて、モータ15の発熱を抑えて温度を低下させ得る。このように構成された鉄道車両用制振装置1では、モータ15が停止されずに推力が低下するもののアクチュエータAがアクチュエータとして機能し続けるので、モータ15の通電を制限している最中の鉄道車両における乗心地の悪化を最小限に留め得る。 Note that when the index Hi exceeds the second threshold value β, the railcar vibration damping device 1 supplies a current command to the motor driver (drive unit) 427 that drives the motor 15 until the index Hi becomes equal to or less than the third threshold value γ. The gain of Ie may be reduced. That is, the motor current value determination unit 423 multiplies the current value I obtained by the motor current value calculation unit 422 by the gain K to obtain the final current command Ie, and when the index Hi is equal to or less than the second threshold value β, the gain K When the index Hi exceeds the second threshold value β, the value of the gain K may be set to a value between 0 and 1 and the current command Ie may be obtained. In this way, even if the current value I is instructed to output a torque that exceeds the rated torque to the motor 15, the current command Ie is reduced with respect to the current value I, so the index Hi decreases. As described above, the energization to the motor 15 is controlled, and the heat generation of the motor 15 can be suppressed to lower the temperature. In the railcar damping device 1 configured as described above, the actuator 15 continues to function as an actuator although the thrust is reduced without stopping the motor 15. Deterioration of ride comfort in the vehicle can be minimized.
 また、鉄道車両用制振装置1は、指標Hiが第二閾値βを超過すると指標Hiが第三閾値γ以下になるまで、モータ15の出力トルクを定格トルク未満に制限するようにしてもよい。この場合、モータ電流値決定部423は、モータ電流値演算部422が求めた電流値Iが定格トルクを超過するトルクをモータ15に出力させる場合には、電流値Iをモータ15が出力トルクを定格トルクとする値にクランプするリミッタとして機能すればよい。このようにすると、電流値Iがモータ15に定格トルクを超過するトルクを出力するような指示となっていても、モータ15の出力トルクが定格トルクを超過しないので、指標Hiが低下するようにモータ15への通電が制御されて、モータ15の発熱を抑えて温度を低下させ得る。このように構成された鉄道車両用制振装置1では、モータ15が停止されずに推力が低下するもののアクチュエータAがアクチュエータとして機能し続けるので、モータ15の通電を制限している最中の鉄道車両における乗心地の悪化を最小限に留め得る。 Moreover, the railcar damping device 1 may limit the output torque of the motor 15 to less than the rated torque until the index Hi becomes equal to or less than the third threshold γ when the index Hi exceeds the second threshold β. . In this case, when the motor current value determination unit 423 causes the motor 15 to output a torque at which the current value I obtained by the motor current value calculation unit 422 exceeds the rated torque, the motor 15 outputs the current value I to the output torque. What is necessary is just to function as a limiter clamped to the value used as a rated torque. By doing so, even if the current value I is instructed to output torque that exceeds the rated torque to the motor 15, the output torque of the motor 15 does not exceed the rated torque, so that the index Hi decreases. By energizing the motor 15, the heat generation of the motor 15 can be suppressed and the temperature can be lowered. In the railcar damping device 1 configured as described above, the actuator 15 continues to function as an actuator although the thrust is reduced without stopping the motor 15. Deterioration of ride comfort in the vehicle can be minimized.
 さらに、本例の鉄道車両用制振装置1は、シリンダ2とピストン3とロッド4とを備えるシリンダ本体Cyと、タンク7と、ロッド側室5とピストン側室6とを連通する第一通路8の途中に設けた第一開閉弁9と、ピストン側室6とタンク7とを連通する第二通路10の途中に設けた第二開閉弁11と、ロッド側室5とタンク7とを接続する排出通路21と、排出通路21の途中に設けた開弁圧を変更可能な可変リリーフ弁22と、ピストン側室6からロッド側室5へ向かう作動油の流れのみを許容する整流通路18と、タンク7からピストン側室6へ向かう作動油の流れのみを許容する吸込通路19とさらに備えており、ポンプ12はロッド側室5へ作動油を供給するようになっている。このように構成された鉄道車両用制振装置1では、モータ15が停止されていても、アクチュエータAがセミアクティブダンパとして機能するので、モータ15の停止中も制振効果が失われない。 Furthermore, the railcar damping device 1 of the present example includes a cylinder body Cy including a cylinder 2, a piston 3, and a rod 4, a tank 7, a first passage 8 that communicates the rod side chamber 5 and the piston side chamber 6. A first opening / closing valve 9 provided in the middle, a second opening / closing valve 11 provided in the middle of the second passage 10 communicating the piston side chamber 6 and the tank 7, and a discharge passage 21 connecting the rod side chamber 5 and the tank 7. A variable relief valve 22 that can change the valve opening pressure provided in the middle of the discharge passage 21, a rectifying passage 18 that allows only the flow of hydraulic oil from the piston side chamber 6 toward the rod side chamber 5, and the tank 7 to the piston side chamber And a suction passage 19 that allows only the flow of hydraulic oil toward 6, and the pump 12 supplies hydraulic oil to the rod side chamber 5. In the railcar damping device 1 configured as described above, even if the motor 15 is stopped, the actuator A functions as a semi-active damper, so that the damping effect is not lost even when the motor 15 is stopped.
 以上、本発明の好ましい実施の形態を詳細に説明したが、特許請求の範囲から逸脱しない限り、改造、変形、および変更が可能である。 The preferred embodiments of the present invention have been described in detail above, but modifications, changes, and changes can be made without departing from the scope of the claims.
 本願は、2018年3月7日に日本国特許庁に出願された特願2018-040416に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-040416 filed with the Japan Patent Office on March 7, 2018, the entire contents of which are incorporated herein by reference.

Claims (6)

  1.  鉄道車両用制振装置であって、
     作動流体の供給により伸縮するシリンダ本体と、前記シリンダ本体へ前記作動流体を供給するポンプと、前記ポンプを駆動するモータとを有して鉄道車両に設置されるアクチュエータと、
     前記モータを制御する制御部とを備え、
     前記制御部は、
     前記モータの過熱状態を示す指標が第一閾値を超過すると強制停止する保護機能を有し、
     前記指標が前記第一閾値よりも低い第二閾値を超過すると、前記指標が前記第二閾値よりも低い第三閾値以下になるまで前記指標が低下するように前記モータへの通電を制御する
     ことを特徴とする鉄道車両用制振装置。
    A railway vehicle damping device,
    A cylinder body that expands and contracts by supplying a working fluid; a pump that supplies the working fluid to the cylinder body; and an actuator that is installed in a railway vehicle having a motor that drives the pump;
    A control unit for controlling the motor,
    The controller is
    A protective function that forcibly stops when the index indicating the overheat state of the motor exceeds a first threshold;
    Controlling energization of the motor such that when the index exceeds a second threshold lower than the first threshold, the index decreases until the index falls below a third threshold lower than the second threshold. A railway vehicle vibration damping device characterized by the above.
  2.  請求項1に記載の鉄道車両用制振装置であって、
     前記制御部は、前記指標が前記第一閾値よりも低い前記第二閾値を超過すると、前記指標が前記第二閾値よりも低い第三閾値以下になるまで前記モータへの通電を停止する
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    When the index exceeds the second threshold value that is lower than the first threshold value, the control unit stops energization of the motor until the index becomes equal to or lower than a third threshold value that is lower than the second threshold value. Vibration control device.
  3.  請求項2に記載の鉄道車両用制振装置であって、
     前記アクチュエータは、前記モータが停止していると、セミアクティブダンパ或いはパッシブダンパとして機能する
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 2,
    The actuator functions as a semi-active damper or a passive damper when the motor is stopped.
  4.  請求項1に記載の鉄道車両用制振装置であって、
     前記制御部は、前記指標が前記第一閾値よりも低い前記第二閾値を超過すると、前記指標が前記第二閾値よりも低い第三閾値以下になるまで、前記モータを駆動する駆動部へ与える電流指令のゲインを低下させる
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    When the index exceeds the second threshold value that is lower than the first threshold value, the control unit gives to the drive unit that drives the motor until the index becomes equal to or lower than a third threshold value that is lower than the second threshold value. A railcar damping device that reduces the current command gain.
  5.  請求項1に記載の鉄道車両用制振装置であって、
     前記制御部は、前記指標が前記第一閾値よりも低い前記第二閾値を超過すると、前記指標が前記第二閾値よりも低い第三閾値以下になるまで、前記モータの出力トルクを定格トルク未満に制限する
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    When the index exceeds the second threshold value that is lower than the first threshold value, the control unit reduces the output torque of the motor below the rated torque until the index becomes equal to or lower than a third threshold value that is lower than the second threshold value. Limit to railway vehicle vibration control device.
  6.  請求項1に記載の鉄道車両用制振装置であって、
     前記アクチュエータは、流体圧回路と、タンクとを備え、
     前記シリンダ本体は、
     シリンダと、
     前記シリンダ内に摺動自在に挿入されるピストンと、
     前記シリンダ内に挿入されてピストンに連結されるロッドと、
     前記シリンダ内にピストンで区画したロッド側室とピストン側室とを有し、
     前記流体圧回路は、
     前記ロッド側室と前記ピストン側室とを連通する第一通路の途中に設けた第一開閉弁と、
     前記ピストン側室と前記タンクとを連通する第二通路の途中に設けた第二開閉弁と、
     前記ロッド側室と前記タンクとを接続する排出通路と、
     前記排出通路の途中に設けた開弁圧を変更可能な可変リリーフ弁と、
     前記ピストン側室からロッド側室へ向かう作動流体の流れのみを許容する整流通路と、
     前記タンクから前記ピストン側室へ向かう作動流体の流れのみを許容する吸込通路とを有し、
     前記ポンプは、前記ロッド側室へ前記作動流体を供給する
     鉄道車両用制振装置。
    A vibration damping device for a railway vehicle according to claim 1,
    The actuator includes a fluid pressure circuit and a tank,
    The cylinder body is
    A cylinder,
    A piston slidably inserted into the cylinder;
    A rod inserted into the cylinder and connected to the piston;
    A rod side chamber and a piston side chamber partitioned by a piston in the cylinder;
    The fluid pressure circuit is:
    A first on-off valve provided in the middle of a first passage communicating the rod side chamber and the piston side chamber;
    A second on-off valve provided in the middle of a second passage communicating the piston side chamber and the tank;
    A discharge passage connecting the rod side chamber and the tank;
    A variable relief valve capable of changing the valve opening pressure provided in the middle of the discharge passage;
    A rectifying passage allowing only the flow of the working fluid from the piston side chamber toward the rod side chamber;
    A suction passage that allows only the flow of the working fluid from the tank toward the piston side chamber,
    The pump supplies the working fluid to the rod side chamber.
PCT/JP2019/005627 2018-03-07 2019-02-15 Railroad car vibration damping device WO2019171911A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-040416 2018-03-07
JP2018040416A JP2019155935A (en) 2018-03-07 2018-03-07 Vibration control device for railway vehicle

Publications (1)

Publication Number Publication Date
WO2019171911A1 true WO2019171911A1 (en) 2019-09-12

Family

ID=67846145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005627 WO2019171911A1 (en) 2018-03-07 2019-02-15 Railroad car vibration damping device

Country Status (2)

Country Link
JP (1) JP2019155935A (en)
WO (1) WO2019171911A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094209A (en) * 2013-11-14 2015-05-18 住友重機械工業株式会社 Shovel
JP6231630B1 (en) * 2016-08-12 2017-11-15 Kyb株式会社 Vibration control device for railway vehicles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094209A (en) * 2013-11-14 2015-05-18 住友重機械工業株式会社 Shovel
JP6231630B1 (en) * 2016-08-12 2017-11-15 Kyb株式会社 Vibration control device for railway vehicles

Also Published As

Publication number Publication date
JP2019155935A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
KR101555107B1 (en) Railway car vibration control device
JP6231634B1 (en) Vibration control device for railway vehicles
JP5564541B2 (en) Actuator
WO2019188954A1 (en) Railway vehicle vibration suppressing device
JP5486367B2 (en) Actuator unit
WO2012176758A1 (en) Railcar damping device
JP6231630B1 (en) Vibration control device for railway vehicles
WO2014132732A1 (en) Actuator unit
JP6018675B2 (en) Vibration control device for railway vehicles
WO2018139224A1 (en) Railway car vibration control device
WO2019171911A1 (en) Railroad car vibration damping device
JP2020026832A (en) Vibration suppression device
JP5427073B2 (en) Vibration control device for railway vehicles
JP6951372B2 (en) Vibration damping device for railway vehicles
WO2018020757A1 (en) Damping device for railway vehicle
JP2018144599A (en) Vibration damping device for railroad vehicle
JP6688892B2 (en) Vehicle control device
WO2019171912A1 (en) Railway vehicle vibration suppressing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764641

Country of ref document: EP

Kind code of ref document: A1