WO2019171829A1 - Wind turbine generator control method - Google Patents

Wind turbine generator control method Download PDF

Info

Publication number
WO2019171829A1
WO2019171829A1 PCT/JP2019/002850 JP2019002850W WO2019171829A1 WO 2019171829 A1 WO2019171829 A1 WO 2019171829A1 JP 2019002850 W JP2019002850 W JP 2019002850W WO 2019171829 A1 WO2019171829 A1 WO 2019171829A1
Authority
WO
WIPO (PCT)
Prior art keywords
yaw error
wind
turbine generator
operation mode
wind turbine
Prior art date
Application number
PCT/JP2019/002850
Other languages
French (fr)
Japanese (ja)
Inventor
悠介 大竹
順弘 楠野
正利 吉村
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019171829A1 publication Critical patent/WO2019171829A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a method for controlling a wind turbine generator, and more particularly, to a method for controlling a wind turbine generator that is suitable when the wind direction flowing into the wind turbine generator changes abruptly.
  • the rotation speed of the yaw of the wind power generator is limited, when a sudden change in the wind direction occurs, the yaw control may not be able to follow the sudden change in the wind direction.
  • the wind flows obliquely to the wind power generator, there is a problem that an excessive load is generated on the mechanical structure of the wind power generator such as a blade or a yaw bearing of the wind power generator. .
  • Patent Document 1 discloses a method for controlling the pitch angle in accordance with the difference in the nacelle direction of the wind turbine generator relative to the wind direction of the wind turbine generator.
  • Patent Document 1 discloses a rotor including blades of a wind power generator, a nacelle for rotatably supporting the rotor, a yaw drive unit that rotates the nacelle, and a pitch angle of the blades of the wind power generator.
  • a pitch control step of controlling the pitch drive unit by giving a pitch angle command value to the pitch drive unit, and at least the rotational speed of the rotor between the required value calculating step of calculating the pitch angle demand value, when the angle between the at least wind direction and the nacelle orientation is the threshold value a 1 or more, a full fine pitch angle and the feather pitch angle based on A limit value setting step for setting the pitch angle as a limit value, and when the pitch angle command value is closer to the full fine pitch angle than the limit value, The limit value is set to the pitch angle command value, and when the required pitch angle value is the limit value or on the full feather pitch angle side, the required pitch angle value is set to the pitch angle command value. And a command value calculating step for controlling the wind power generation facility.
  • the present invention has been made in view of the above points, and the object of the present invention is to increase the load on the root portion of the blade of the wind power generator even if the wind direction flowing into the wind power generator changes suddenly.
  • An object of the present invention is to provide a method for controlling a wind turbine generator that can be prevented.
  • a method for controlling a wind turbine generator comprises a hub and blades, and at least supports a rotor that rotates by receiving wind and a main shaft connected to the hub.
  • the wind turbine generator flows into the wind turbine generator.
  • the operation mode of the wind power generator is changed based on wind direction data and information on the orientation of the rotating surface of the rotor of the wind power generator.
  • FIG. 1 shows the outline of the whole structure of the wind power generator to which the control method of the wind power generator of this invention is applied. It is a schematic diagram which shows the relationship between the wind power generator to which the control method of the wind power generator of this invention is applied, and a wind direction. It is a schematic diagram which shows an example of the sudden change of the wind direction in the wind power generator to which the control method of the wind power generator of this invention is applied. It is a control block diagram which shows Example 1 of the control method of the wind power generator of this invention. It is a control flowchart which shows Example 1 of the control method of the wind power generator of this invention. It is the schematic which shows the various parameter change in Example 1 of the control method of the wind power generator of this invention.
  • Example 2 It is a control block diagram which shows Example 2 of the control method of the wind power generator of this invention. It is a control flowchart which shows Example 2 of the control method of the wind power generator of this invention. It is a control block diagram which shows Example 3 of the control method of the wind power generator of this invention. It is a control flowchart which shows Example 3 of the control method of the wind power generator of this invention. It is a control block diagram which shows Example 4 of the control method of the wind power generator of this invention. It is a control flowchart which shows Example 4 of the control method of the wind power generator of this invention.
  • a downwind type wind power generator is described as an example of the wind power generator according to the embodiment of the present invention, but the present invention can be similarly applied to an upwind type wind power generator.
  • the rotor is configured with three blades and a hub is shown, the present invention is not limited to this, and the rotor may be configured with a hub and at least one blade.
  • FIG. 1 is an overall configuration diagram of a wind turbine generator to which a method for controlling a wind turbine generator according to the present invention is applied.
  • the wind turbine generator 1 includes a blade 5 that rotates by receiving wind, a hub 4 that supports the blade 5, and a nacelle 3 and a tower 2 that rotatably supports the nacelle 3. Yes.
  • a main shaft 7 that is connected to the hub 4 and rotates together with the hub 4
  • a speed increasing device 8 that is connected to the main shaft 7 and increases the rotational speed, and a rotational speed increased by the speed increasing device 8.
  • a generator 9 for generating electricity by rotating the rotor.
  • the blade 5 and the hub 4 constitute a rotor 6.
  • the part that transmits the rotational energy of the blade 5 to the generator 9 is called a power transmission unit, and in the present embodiment, the main shaft 7 and the speed increaser 8 are included in the power transmission unit.
  • the speed increaser 8 and the generator 9 are held on the main frame 10.
  • the tower 2 includes a power converter 11 that converts a frequency of power, a switching switch and a transformer (not shown) for switching current, and a control device 12. Is arranged.
  • the power converter 11 and the control device 12 are installed at the bottom of the tower 2, but the installation location of these devices is not limited to the bottom of the tower 2 and is inside the wind power generator 1. It may be installed in other places.
  • anemometer 13 for measuring wind direction data and wind speed data is installed on the upper surface of the nacelle 3.
  • the control device 12 for example, a control panel or SCADA (Supervision Control And Data Acquisition) is used.
  • a controller 15 is installed in the nacelle 3, and this controller 15 includes a yaw error calculation unit 21, a mode determination unit 24, a control determination unit 25, and an actuator controller 27 (described later).
  • the yaw error storage unit 22, the change amount calculation unit 23 of the second and fourth embodiments, and the threshold value calculation unit 26 of the third and fourth embodiments are also provided.
  • the direction of the nacelle 3 is referred to as a yaw angle
  • the wind turbine generator 1 includes a yaw angle control device 14 that controls the direction of the nacelle 3, that is, the direction of the rotating surface of the rotor 6.
  • the yaw angle control device 14 is disposed between the bottom surface of the nacelle 3 and the tip of the tower 2 and includes, for example, at least an actuator (not shown) and a motor that drives the actuator. Based on the yaw angle control command output from the control device 12 via the signal line, the motor constituting the yaw angle control device 14 rotates and the actuator is displaced by a desired amount so that the desired yaw angle is obtained.
  • the nacelle 3 rotates.
  • FIG. 2 is a schematic diagram showing the relationship between the wind power generation apparatus 1 to which the method for controlling the wind power generation apparatus 1 of the present invention is applied and the wind direction.
  • the deviation between the nacelle direction 16 and the wind direction 17 corresponding to the direction of the wind turbine generator 1 is referred to as a yaw error 18.
  • the nacelle direction 16 is controlled by the yaw angle control device 14 so that the yaw error 18 is reduced.
  • the turning speed of the nacelle direction 16 is limited, when the wind direction 17 changes rapidly, the turning of the nacelle 3 changes the wind direction. There is a problem that the yaw error 18 increases without keeping up with the change of 17.
  • FIG. 3 shows an example of a change in wind direction associated with the gust.
  • the wind turbine generator 1 When such a gust flows into the wind turbine generator 1, the wind turbine generator 1 first starts a yaw turn due to the sudden change 19 in the wind direction. However, if the wind direction changes suddenly, the yaw turn cannot catch up with the sudden change 19 in the wind direction. As a result, the yaw error 18 increases and the load generated in the wind power generator 1 increases. At this time, in order to protect the wind power generator 1, it is also conceivable to stop the wind power generator 1 when the yaw error 18 exceeds a predetermined value.
  • the wind power generator 1 is temporarily shifted to the degenerate operation mode by using a control mechanism having a quicker control response than the yaw control mechanism of the wind power generator 1, and the load increase when passing through the gust is increased. By avoiding this, the wind power generator 1 is protected while avoiding a decrease in the amount of power generated due to the stop of the wind power generator 1.
  • FIG. 4 shows a block diagram of control in this embodiment.
  • the wind direction of the wind flowing into the wind power generator 1 is measured by the wind direction anemometer 13 installed on the nacelle 3.
  • the yaw error calculation unit 21 provided in the controller 15 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16.
  • the mode determination part 24 the operation mode (normal operation mode, degeneration operation mode, stop mode) of the wind power generator 1 is determined.
  • the operation mode determined by the mode determination unit 24 is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator.
  • the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determination unit 25 to each actuator controller 27.
  • FIG. 5 shows a control flow diagram of the wind turbine generator 1 in this embodiment.
  • the wind direction data is acquired by the wind direction anemometer 13 in S101, and the yaw error 18 with respect to the wind turbine generator 1 is calculated by the yaw error calculator 21 in S102.
  • the mode determination unit 24 determines whether the yaw error 18 is equal to or greater than the threshold value. If the yaw error 18 is equal to or less than the threshold value (No), the operation is continued as usual. Moreover, when it is discriminate
  • the mode determination unit 24 determines again whether the yaw error 18 is equal to or greater than the threshold. If the yaw error 18 is equal to or less than the threshold (No), the process returns to the normal operation mode in S125.
  • the mode determination unit 24 determines the duration of the degenerate operation mode in S106.
  • the process returns to S111 again and the same flow as above is continued.
  • the process shifts to the stop mode in S115.
  • FIG. 6 shows a schematic diagram of changes in various parameters when the control method of the present invention is applied.
  • the amount of energy itself obtained by the wind power generator 1 is reduced by changing the operation mode of the wind power generator 1 based on the wind direction 17 flowing into the wind power generator 1 (utilization of the degenerate operation mode). Therefore, it is possible to avoid an increase in the maximum load and to prevent an increase in the load on the root portion of the blade 5 of the wind turbine generator 1.
  • the yaw error 18 when the yaw error 18 is continuously large, it is possible to avoid an increase in fatigue load by shifting to the stop mode. In addition, by not immediately shifting to the stop mode when the yaw error 18 is enlarged, it is possible to reduce the number of times that the wind turbine generator 1 is started and stopped, and it is possible to reduce a decrease in the amount of power generation due to a loss of power generation opportunity.
  • FIGS. 1 to 3, 7, and 8. A control method for the wind turbine generator 1 in the second embodiment will be described with reference to FIGS. 1 to 3, 7, and 8. Detailed description of the same points as those in the first embodiment will be omitted.
  • the feature of this embodiment is that the amount of change in the yaw error 18 per predetermined time is used for the judgment of transition to the degenerate operation mode.
  • the present embodiment is characterized in that when the change amount of the wind direction 17 in the predetermined time of the yaw error 18 exceeds the threshold value, the mode is shifted to the degenerate operation mode.
  • FIG. 7 shows a block diagram of control in the present embodiment.
  • the wind direction 17 of the wind flowing into the wind power generator 1 is measured by the wind direction anemometer 13 installed on the nacelle 3.
  • the yaw error calculation unit 21 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16.
  • the yaw error 18 obtained here is stored in the yaw error storage unit 22 provided in the controller 15.
  • the yaw error 18 stored in the yaw error storage unit 22 is sent to a change amount calculation unit 23 provided in the controller 15, where the change amount of the yaw error 18 in a predetermined time is calculated.
  • the mode determination unit 24 determines the operation mode (normal operation mode, degenerate operation mode, stop mode) of the wind turbine generator 1 based on the change amount of the yaw error 18.
  • the operation mode determined by the mode determination unit 24 is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator.
  • the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determination unit 25 to each actuator controller 27.
  • FIG. 8 shows a control flow diagram of the wind turbine generator 2 in the present embodiment.
  • the wind direction data is acquired by the wind direction anemometer 13 in S101, and the yaw error 18 with respect to the wind turbine generator 1 is calculated by the yaw error calculator 21 in S102.
  • the change amount calculation unit 23 calculates the change amount of the yaw error 18.
  • the mode determining unit 24 determines whether or not the amount of change in the yaw error 18 is equal to or greater than the threshold value. If it is equal to or less than the threshold value (No), the operation is continued as usual. Moreover, when it determines with more than a threshold value (Yes) in S134, the wind power generator 1 transfers to S105, and will be in a degeneration operation mode.
  • step S111 the wind direction data is re-acquired by the anemometer 13 in S111 again, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112.
  • the change amount calculation unit 23 recalculates the change amount of the yaw error 18 in S113.
  • the mode determination unit 24 determines whether the amount of change in the yaw error 18 is equal to or greater than the threshold.
  • a threshold value different from that in S134 may be used in order to determine whether the yaw error 18 tends to decrease.
  • the advantages of the wind power generator 1 in the present embodiment are as follows.
  • the change amount of the yaw error 18 is used for determining the shift to the degenerate operation mode, so that the arrival of the gust can be determined earlier. Can do. Therefore, it is possible to avoid an increase in the maximum load earlier. Further, when the yaw error 18 is continuously large, an increase in fatigue load can be avoided by shifting to the stop mode. In addition, by not immediately shifting to the stop mode when the yaw error 18 is enlarged, it is possible to reduce the number of times the wind power generator 1 is started and stopped, and it is possible to reduce a decrease in energization amount due to loss of power generation opportunity.
  • a control method for the wind turbine generator 1 according to the third embodiment will be described with reference to FIGS. 1 to 3, 9, and 10. Detailed description of the same points as those in the first and second embodiments will be omitted.
  • the feature of this embodiment is that the judgment threshold value of the yaw error 18 is changed according to the wind speed in the judgment of transition to the degenerate operation mode.
  • the determination threshold value of the yaw error 18 is changed depending on the wind speed.
  • FIG. 9 shows a block diagram of control in the present embodiment.
  • the wind direction anemometer 13 installed on the nacelle 3 measures not only the wind direction data of the wind flowing into the wind power generator 1 but also the wind speed data.
  • the yaw error calculation unit 21 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16.
  • the threshold value calculation unit 26 calculates the threshold value of the yaw error 18 corresponding to the measured wind speed.
  • the mode determination unit 24 determines the operation mode (normal operation mode, degenerate operation mode, stop mode) of the wind turbine generator 1 based on the yaw error 18 and its threshold value.
  • the operation mode determined by the mode determination unit 24 is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator.
  • the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determination unit 25 to each actuator controller 27.
  • FIG. 10 shows a control flow diagram of the wind turbine generator 1 in this embodiment.
  • the wind direction data and the wind speed data are acquired by the wind direction anemometer 13 in S101, and the yaw error 18 for the wind turbine generator 1 is calculated by the yaw error calculation unit 21 in S102.
  • the threshold value calculation unit 26 calculates the threshold value of the yaw error 18 in S122.
  • the mode determination unit 24 determines whether the yaw error 18 is equal to or greater than the threshold value. If the yaw error 18 is equal to or less than the threshold value (No), the operation is continued as usual. If the mode determination unit 24 determines that the threshold value is equal to or greater than the threshold value in S104 (Yes), the wind turbine generator 1 proceeds to S105 and enters the degenerate operation mode.
  • the wind direction data and the wind speed data are again acquired by the wind direction anemometer 13 in S111, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112.
  • the threshold value calculation unit 26 also recalculates the threshold value of the yaw error 18 in S132.
  • the mode determination unit 24 determines again whether the yaw error 18 is equal to or greater than the threshold value.
  • the mode determination unit 24 determines the duration of the degenerate operation mode in S106.
  • the process returns to S111 again and the same flow as above is continued.
  • the process shifts to the stop mode in S115.
  • the advantages of the wind power generator 1 in the present embodiment are as follows.
  • the same effect as in the first embodiment can be obtained, and the determination threshold is determined based on the wind speed with respect to the transition to the degenerate operation mode, so the arrival of the gust is predicted with higher accuracy. be able to.
  • the determination threshold is determined based on the wind speed with respect to the transition to the degenerate operation mode, so the arrival of the gust is predicted with higher accuracy. be able to.
  • a control method for the wind turbine generator 1 according to the fourth embodiment will be described with reference to FIGS. 1 to 3, 11, and 12. Detailed description of points that overlap with the first to third embodiments will be omitted.
  • the feature of this embodiment is that the threshold value of the change amount of the yaw error 18 used for determining the transition to the degenerate operation mode and the predetermined time for calculating the change amount are changed according to the wind speed.
  • the threshold value of the change amount of the yaw error 18 used for determining the transition to the degenerate operation mode and the predetermined time for calculating the change amount are changed according to the wind speed.
  • FIG. 11 shows a block diagram of control in this embodiment.
  • the yaw error calculation unit 21 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16.
  • the yaw error 18 obtained here is stored in the yaw error storage unit 22.
  • the yaw error 18 stored in the yaw error storage unit 22 is sent to the change amount calculation unit 23, where the change amount of the yaw error 18 in a predetermined time is calculated.
  • the threshold value calculation unit 26 calculates the change amount threshold value of the yaw error 18 and the change amount calculation time from the wind speed obtained by the anemometer 13.
  • the mode determination unit 24 determines the operation mode of the wind turbine generator 1 based on the change amount of the yaw error 18 and the threshold value.
  • the determined operation mode is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator.
  • the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determining unit 25 to each actuator controller 27.
  • FIG. 12 shows a control flow diagram of the wind turbine generator 1 in this embodiment.
  • the wind direction data and the wind speed data are acquired by the wind direction anemometer 13 in S101, and the yaw error 18 for the wind turbine generator 1 is calculated by the yaw error calculation unit 21 in S102.
  • the threshold value calculation unit 26 calculates the evaluation time of the amount of change and the threshold value from the obtained wind speed data.
  • the change amount calculation unit 23 calculates the change amount of the yaw error 18.
  • the mode determining unit 24 determines whether or not the amount of change in the yaw error 18 is equal to or greater than the threshold value. If it is equal to or less than the threshold value (No), the operation is continued as usual. If the mode determination unit 24 determines that the threshold value is equal to or greater than the threshold value in S134 (Yes), the wind turbine generator 1 proceeds to S105 and enters the degenerate operation mode.
  • the wind direction data and the wind speed data are again acquired by the wind direction anemometer 13 in S111, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112.
  • the threshold value calculation unit 26 recalculates the evaluation time of the amount of change and the threshold value from the obtained wind speed data.
  • the change amount calculation unit 23 recalculates the change amount of the yaw error 18.
  • the mode determination unit 24 determines whether the amount of change in the yaw error 18 is equal to or greater than a threshold value.
  • a threshold value different from that in S134 may be used in order to determine whether the yaw error 18 tends to decrease.
  • the mode determination unit 24 determines the duration of the degenerate operation mode in S106.
  • the process returns to S111 again and the same flow as above is continued.
  • the process shifts to the stop mode in S115.
  • step S122 may be continuously used as these numerical values.
  • the advantages of the wind power generator 1 in the present embodiment are as follows.
  • the same effect as in the first embodiment can be obtained, and the determination threshold is determined based on the wind speed with respect to the transition to the degenerate operation mode, so the arrival of the gust is predicted with higher accuracy. be able to.
  • the determination threshold is determined based on the wind speed with respect to the transition to the degenerate operation mode, so the arrival of the gust is predicted with higher accuracy. be able to.
  • a control method for the wind turbine generator 1 in the fifth embodiment will be described with reference to FIGS. Detailed description of points that overlap with the first to fourth embodiments will be omitted.
  • a feature of the fifth embodiment is that pitch control is used as means for shifting to the degenerate operation mode.
  • the blade 5 is installed so as to be rotatable (pitch angle change) with respect to the hub 4.
  • the pitch angle represents an attachment angle of the blade 5 to the hub 4.
  • the pitch angle command value may be a fixed value or may be changed according to wind conditions such as wind speed.
  • the advantage of the control method of the wind power generator 1 in the present embodiment is as follows.
  • the pitch angle control is used for the transition to the degenerate operation mode, the energy amount that the wind power generator 1 recovers from the wind can be directly controlled, so the transition to the degenerate operation mode is easily performed. can do.
  • a control method for the wind turbine generator 1 in the sixth embodiment will be described with reference to FIGS. Detailed description of points that overlap with the first to fifth embodiments will be omitted.
  • a feature of the sixth embodiment resides in that torque control of the generator 9 installed in the nacelle 3 of the wind power generator 1 is utilized as means for shifting to the degenerate operation mode.
  • the energy recovered by the wind turbine generator 1 is expressed as the product of the rotational speed of the rotor 6 and the torque in the generator 9.
  • the rotational speed of the rotor 6 is the highest in the blade 5 of the wind power generator 1.
  • the torque is controlled so that the number of rotations can obtain energy efficiently.
  • the torque command value is set to a value different from that during normal operation. To do. At this time, the torque command value can be both a larger value and a smaller value than the reference control value during normal operation.
  • a method of reducing the amount of energy to be recovered by making the torque command value smaller than the reference control value during normal operation can be considered.
  • the torque control value is made larger than the reference control value during normal operation, the rotational speed of the rotor 6 is reduced, and the operation efficiency of the wind turbine generator 1 is reduced, so that the operation mode can be shifted to the degenerate operation mode.
  • the command value for torque control may be a fixed value or may be changed according to wind conditions such as wind speed.
  • the advantage of the control method of the wind power generator 1 in the present embodiment is as follows.
  • this embodiment has a feature that the control response is very fast because the torque control of the generator 9 is used for the transition to the degenerate operation mode. Thereby, it becomes possible to shift to the degenerate operation mode earlier, and it is possible to avoid an increase in the maximum load accompanying an increase in yaw error earlier.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The present invention addresses the problem of preventing an increase in the load applied to a blade root portion or the like of a wind turbine generator even if the direction of wind flowing into the wind turbine generator changes quickly. In order to solve the problem, the present invention provides a wind turbine generator control method for changing the operation mode of a wind turbine generator provided with: a rotor which comprises a hub and blades and rotates at least in the wind; a nacelle which journals the rotor via a main shaft connected to the hub and in which at least a power generator connected to the main shaft is housed; and a tower supporting the nacelle. The wind turbine generator control method is characterized in that the operation mode of the wind turbine generator is changed on the basis of data on the direction of wind that flows into the wind turbine generator and information pertaining to the orientation of the rotating plane of the rotor of the wind turbine generator.

Description

風力発電装置の制御方法Control method for wind turbine generator
 本発明は風力発電装置の制御方法に係り、特に、風力発電装置に流入する風向が急激に変化した際に好適な風力発電装置の制御方法に関する。 The present invention relates to a method for controlling a wind turbine generator, and more particularly, to a method for controlling a wind turbine generator that is suitable when the wind direction flowing into the wind turbine generator changes abruptly.
 風を受けて発電する風力発電装置における制御方法では、風力発電装置に流入する風向が急激に変化した場合、ヨー制御によって風力発電装置のロータ回転面が風向に対して正対するよう制御する方法が知られている。 In a control method in a wind turbine generator that generates power by receiving wind, when the wind direction flowing into the wind turbine generator changes abruptly, there is a method for controlling the rotor rotation surface of the wind turbine generator to face the wind direction by yaw control. Are known.
 しかしながら、風力発電装置のヨーの回転速度には制限があるため、風向の急変が発生した際、ヨー制御が風向の急変に追従できない場合がある。この場合、風力発電装置に対して斜めに風が流入するため、風力発電装置のブレードやヨーベアリングと言った風力発電装置の機械構造物に対し、過大な荷重が発生してしまうといった課題がある。 However, since the rotation speed of the yaw of the wind power generator is limited, when a sudden change in the wind direction occurs, the yaw control may not be able to follow the sudden change in the wind direction. In this case, since the wind flows obliquely to the wind power generator, there is a problem that an excessive load is generated on the mechanical structure of the wind power generator such as a blade or a yaw bearing of the wind power generator. .
 このような課題に対応すべく、風向に応じて、風力発電装置のピッチ角を制御する方法等が提案されている。 In order to cope with such a problem, a method for controlling the pitch angle of the wind turbine generator according to the wind direction has been proposed.
 例えば、特許文献1には、風力発電装置の風向に対する風力発電装置のナセル方向の違いに応じてピッチ角を制御する方法が開示されている。 For example, Patent Document 1 discloses a method for controlling the pitch angle in accordance with the difference in the nacelle direction of the wind turbine generator relative to the wind direction of the wind turbine generator.
 即ち、特許文献1には、風力発電装置の翼を含むロータと、前記ロータを回転可能に支持するためのナセルと、前記ナセルを旋回させるヨー駆動部と、前記風力発電装置の翼のピッチ角を変化させるピッチ駆動部と、を含む風力発電設備の制御方法であって、前記ピッチ駆動部にピッチ角指令値を与えて前記ピッチ駆動部を制御するピッチ制御ステップと、少なくとも前記ロータの回転数に基づいてピッチ角要求値を算出する要求値算出ステップと、少なくとも風向と前記ナセルの向きとの間の角度が閾値A以上であるときに、フルファインピッチ角とフルフェザーピッチ角との間のピッチ角をリミット値として設定するリミット値設定ステップと、前記ピッチ角指令値が前記リミット値よりも前記フルファインピッチ角側にある場合、前記リミット値を前記ピッチ角指令値に設定すると共に、前記ピッチ角要求値が前記リミット値である、又は前記フルフェザーピッチ角側にある場合、前記ピッチ角要求値を前記ピッチ角指令値に設定する指令値算出ステップと、を備える風力発電設備の制御方法が記載されている。 That is, Patent Document 1 discloses a rotor including blades of a wind power generator, a nacelle for rotatably supporting the rotor, a yaw drive unit that rotates the nacelle, and a pitch angle of the blades of the wind power generator. And a pitch control step of controlling the pitch drive unit by giving a pitch angle command value to the pitch drive unit, and at least the rotational speed of the rotor between the required value calculating step of calculating the pitch angle demand value, when the angle between the at least wind direction and the nacelle orientation is the threshold value a 1 or more, a full fine pitch angle and the feather pitch angle based on A limit value setting step for setting the pitch angle as a limit value, and when the pitch angle command value is closer to the full fine pitch angle than the limit value, The limit value is set to the pitch angle command value, and when the required pitch angle value is the limit value or on the full feather pitch angle side, the required pitch angle value is set to the pitch angle command value. And a command value calculating step for controlling the wind power generation facility.
特開2016-106878号公報JP 2016-106878 A
 しかしながら、上述した特許文献1に記載の風力発電設備の制御方法では、風向の急変が特に大きい場合においては、例えば風力発電装置に対して横方向から風が流入する可能性があり、風力発電装置のブレードの根元部等に大きな荷重が発生するといった課題が存在する。 However, in the method for controlling a wind power generation facility described in Patent Document 1 described above, when a sudden change in the wind direction is particularly large, for example, wind may flow into the wind power generation apparatus from the lateral direction. There is a problem that a large load is generated at the root of the blade.
 本発明は上述の点に鑑みなされたもので、その目的とするところは、風力発電装置に流入する風向が急激に変化しても、風力発電装置のブレードの根元部等への荷重の増大を防ぐことが可能な風力発電装置の制御方法を提供することにある。 The present invention has been made in view of the above points, and the object of the present invention is to increase the load on the root portion of the blade of the wind power generator even if the wind direction flowing into the wind power generator changes suddenly. An object of the present invention is to provide a method for controlling a wind turbine generator that can be prevented.
 本発明の風力発電装置の制御方法は、上記目的を達成するために、ハブとブレードから成り、少なくとも風を受けて回転するロータと、前記ハブに接続された主軸を介して前記ロータを軸支すると共に、その内部に前記主軸に接続された発電機を少なくとも収納するナセルと、該ナセルを支持するタワーとを備えた風力発電装置の運転モードを変更する際に、前記風力発電装置に流入する風向データ及び前記風力発電装置の前記ロータの回転面の向きの情報に基づき前記風力発電装置の運転モードを変更することを特徴とする。 In order to achieve the above object, a method for controlling a wind turbine generator according to the present invention comprises a hub and blades, and at least supports a rotor that rotates by receiving wind and a main shaft connected to the hub. In addition, when the operation mode of the wind turbine generator having at least the generator connected to the main shaft inside the nacelle and the tower supporting the nacelle is changed, the wind turbine generator flows into the wind turbine generator. The operation mode of the wind power generator is changed based on wind direction data and information on the orientation of the rotating surface of the rotor of the wind power generator.
 本発明によれば、風力発電装置に流入する風向が急激に変化しても、風力発電装置のブレードの根元部等への荷重の増大を防ぐことができる。 According to the present invention, even if the wind direction flowing into the wind turbine generator changes suddenly, it is possible to prevent an increase in load on the root portion of the blade of the wind turbine generator.
本発明の風力発電装置の制御方法が適用される風力発電装置の全体構成の概略を示す図である。It is a figure which shows the outline of the whole structure of the wind power generator to which the control method of the wind power generator of this invention is applied. 本発明の風力発電装置の制御方法が適用される風力発電装置と風向の関係を示す模式図である。It is a schematic diagram which shows the relationship between the wind power generator to which the control method of the wind power generator of this invention is applied, and a wind direction. 本発明の風力発電装置の制御方法が適用される風力発電装置における風向の急変の一例を示す模式図である。It is a schematic diagram which shows an example of the sudden change of the wind direction in the wind power generator to which the control method of the wind power generator of this invention is applied. 本発明の風力発電装置の制御方法の実施例1を示す制御ブロック図である。It is a control block diagram which shows Example 1 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例1を示す制御フロー図である。It is a control flowchart which shows Example 1 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例1における各種パラメータ変化を示す概略図である。It is the schematic which shows the various parameter change in Example 1 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例2を示す制御ブロック図である。It is a control block diagram which shows Example 2 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例2を示す制御フロー図である。It is a control flowchart which shows Example 2 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例3を示す制御ブロック図である。It is a control block diagram which shows Example 3 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例3を示す制御フロー図である。It is a control flowchart which shows Example 3 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例4を示す制御ブロック図である。It is a control block diagram which shows Example 4 of the control method of the wind power generator of this invention. 本発明の風力発電装置の制御方法の実施例4を示す制御フロー図である。It is a control flowchart which shows Example 4 of the control method of the wind power generator of this invention.
 以下、図示した実施例に基づいて本発明の風力発電装置の制御方法を説明する。なお、各実施例において、同一構成部品には同符号を使用する。 Hereinafter, the control method of the wind power generator of the present invention will be described based on the illustrated embodiment. In addition, in each Example, the same code | symbol is used for the same component.
 また、本明細書では、本発明の実施例に係る風力発電装置として、ダウンウィンド型の風力発電装置を例に説明するが、アップウィンド型の風力発電装置においても同様に適用できる。また、3枚のブレードとハブにてロータを構成する例を示すが、これに限られず、ロータはハブと少なくとも1枚のブレードにて構成しても良い。 In this specification, a downwind type wind power generator is described as an example of the wind power generator according to the embodiment of the present invention, but the present invention can be similarly applied to an upwind type wind power generator. Although an example in which the rotor is configured with three blades and a hub is shown, the present invention is not limited to this, and the rotor may be configured with a hub and at least one blade.
 図1から図6を用いて実施例1における風力発電装置の制御方法を説明する。 A method for controlling the wind turbine generator according to the first embodiment will be described with reference to FIGS.
 図1は、本発明の風力発電装置の制御方法が適用される風力発電装置の全体構成図である。 FIG. 1 is an overall configuration diagram of a wind turbine generator to which a method for controlling a wind turbine generator according to the present invention is applied.
 図1に示すように、風力発電装置1は、風を受けて回転するブレード5と、ブレード5を支持するハブ4と、ナセル3及びナセル3を回動可能に支持するタワー2とを備えている。ナセル3内には、ハブ4に接続されハブ4と共に回転する主軸7と、この主軸7に接続され回転速度を増速する増速機8と、増速機8により増速された回転速度で回転子を回転させて発電運転する発電機9とを備えている。ブレード5とハブ4により、ロータ6が構成されている。 As shown in FIG. 1, the wind turbine generator 1 includes a blade 5 that rotates by receiving wind, a hub 4 that supports the blade 5, and a nacelle 3 and a tower 2 that rotatably supports the nacelle 3. Yes. In the nacelle 3, a main shaft 7 that is connected to the hub 4 and rotates together with the hub 4, a speed increasing device 8 that is connected to the main shaft 7 and increases the rotational speed, and a rotational speed increased by the speed increasing device 8. And a generator 9 for generating electricity by rotating the rotor. The blade 5 and the hub 4 constitute a rotor 6.
 ブレード5の回転エネルギーを発電機9に伝達する部位は、動力伝達部と呼ばれ、本実施例では、主軸7及び増速機8が動力伝達部に含まれる。そして、増速機8及び発電機9は、メインフレーム10上に保持されている。 The part that transmits the rotational energy of the blade 5 to the generator 9 is called a power transmission unit, and in the present embodiment, the main shaft 7 and the speed increaser 8 are included in the power transmission unit. The speed increaser 8 and the generator 9 are held on the main frame 10.
 図1に示すように、タワー2の内部には、電力の周波数を変換する電力変換器11と、電流の開閉を行うスイッチング用の開閉器及び変圧器など(図示せず)及び制御装置12とが配置されている。 As shown in FIG. 1, the tower 2 includes a power converter 11 that converts a frequency of power, a switching switch and a transformer (not shown) for switching current, and a control device 12. Is arranged.
 図1において、電力変換器11及び制御装置12は、タワー2の底部に設置されているが、これら機器の設置場所は、タワー2の底部に限定されず風力発電装置1の内部であれば、他の場所に設置される場合も考えられる。 In FIG. 1, the power converter 11 and the control device 12 are installed at the bottom of the tower 2, but the installation location of these devices is not limited to the bottom of the tower 2 and is inside the wind power generator 1. It may be installed in other places.
 また、ナセル3の上面に、風向データ及び風速データを計測するための風向風速計13が設置されている。また、制御装置12としては、例えば、制御盤又はSCADA(Supervisory Control And Data Acquisition)が用いられる。 Moreover, an anemometer 13 for measuring wind direction data and wind speed data is installed on the upper surface of the nacelle 3. Further, as the control device 12, for example, a control panel or SCADA (Supervision Control And Data Acquisition) is used.
 また、ナセル3内には制御器15が設置されており、この制御器15は、後述するヨー誤差演算部21、モード決定部24、制御決定部25及びアクチュエータ制御器27を備えている(後述する実施例2及び4のヨー誤差記憶部22、変化量計算部23、実施例3及び4の閾値演算部26も備えている)。 In addition, a controller 15 is installed in the nacelle 3, and this controller 15 includes a yaw error calculation unit 21, a mode determination unit 24, a control determination unit 25, and an actuator controller 27 (described later). The yaw error storage unit 22, the change amount calculation unit 23 of the second and fourth embodiments, and the threshold value calculation unit 26 of the third and fourth embodiments are also provided.
 また、ナセル3の向きはヨー角と称され、風力発電装置1は、このナセル3の向き、即ち、ロータ6の回転面の向きを制御するヨー角制御装置14を備えている。 Further, the direction of the nacelle 3 is referred to as a yaw angle, and the wind turbine generator 1 includes a yaw angle control device 14 that controls the direction of the nacelle 3, that is, the direction of the rotating surface of the rotor 6.
 図1に示すように、ヨー角制御装置14は、ナセル3の底面とタワー2の先端部との間に配置され、例えば、図示しない、少なくともアクチュエータ及び当該アクチュエータを駆動するモータより構成される。そして、制御装置12より信号線を介して出力されるヨー角制御指令に基づき、ヨー角制御装置14を構成するモータが回転し、アクチュエータが所望量変位することで、所望のヨー角となるようナセル3が回動する。 As shown in FIG. 1, the yaw angle control device 14 is disposed between the bottom surface of the nacelle 3 and the tip of the tower 2 and includes, for example, at least an actuator (not shown) and a motor that drives the actuator. Based on the yaw angle control command output from the control device 12 via the signal line, the motor constituting the yaw angle control device 14 rotates and the actuator is displaced by a desired amount so that the desired yaw angle is obtained. The nacelle 3 rotates.
 図2は、本発明の風力発電装置1の制御方法が適用される風力発電装置1と風向の関係を示す模式図である。 FIG. 2 is a schematic diagram showing the relationship between the wind power generation apparatus 1 to which the method for controlling the wind power generation apparatus 1 of the present invention is applied and the wind direction.
 図2において、風力発電装置1の向きに相当するナセル方向16と風向17の間の偏差を、ヨー誤差18と呼ぶ。ナセル方向16は、ヨー角制御装置14によりヨー誤差18が小さくなるよう制御されるが、ナセル方向16の旋回速度は制限があるため、風向17が急速に変化した場合、ナセル3の旋回が風向17の変化に追いつけず、ヨー誤差18が増加してしまうという課題がある。 2, the deviation between the nacelle direction 16 and the wind direction 17 corresponding to the direction of the wind turbine generator 1 is referred to as a yaw error 18. The nacelle direction 16 is controlled by the yaw angle control device 14 so that the yaw error 18 is reduced. However, since the turning speed of the nacelle direction 16 is limited, when the wind direction 17 changes rapidly, the turning of the nacelle 3 changes the wind direction. There is a problem that the yaw error 18 increases without keeping up with the change of 17.
 上記のような、風況の急変としてガストと呼ばれる現象が挙げられる。図3に、そのガストに伴う風向変化の一例を示す。 As mentioned above, there is a phenomenon called gust as a sudden change in wind conditions. FIG. 3 shows an example of a change in wind direction associated with the gust.
 図3に示すようなガストの場合、風向の急変19で示すように風向が急激に変化するものの、一定時間後、風向の回復20で示す通り、変化前の風向に戻るという特徴をもつ。 In the case of a gust as shown in FIG. 3, although the wind direction changes rapidly as shown by the sudden change 19 in the wind direction, it returns to the wind direction before the change as shown by the wind direction recovery 20 after a certain time.
 このようなガストが風力発電装置1に流入した場合、先ず風向の急変19により風力発電装置1はヨー旋回を開始するが、風向の変化が急激な場合、ヨー旋回が風向の急変19に追いつかず、ヨー誤差18が拡大し、風力発電装置1に発生する荷重が増大する。このとき、風力発電装置1を保護するため、ヨー誤差18が所定値を超えた場合には、風力発電装置1を停止するようにすることも考えられる。 When such a gust flows into the wind turbine generator 1, the wind turbine generator 1 first starts a yaw turn due to the sudden change 19 in the wind direction. However, if the wind direction changes suddenly, the yaw turn cannot catch up with the sudden change 19 in the wind direction. As a result, the yaw error 18 increases and the load generated in the wind power generator 1 increases. At this time, in order to protect the wind power generator 1, it is also conceivable to stop the wind power generator 1 when the yaw error 18 exceeds a predetermined value.
 しかしながら、風向の急変後、元の風向に戻るような風向の回復20が発生する。その際、風向は風向の急変19の発生前に戻るため、このガストの発生期間のみ風力発電装置1を保護することができれば、風力発電装置1は、通常通り運転を継続することができると考えられる。 However, after the wind direction suddenly changes, a wind direction recovery 20 that returns to the original wind direction occurs. At that time, since the wind direction returns before the sudden change 19 in the wind direction, if the wind power generator 1 can be protected only during the gust generation period, it is considered that the wind power generator 1 can continue the operation as usual. It is done.
 そこで、本実施例では、風力発電装置1のヨー制御機構に比べて制御応答の速い制御機構を用いて、風力発電装置1を一時的に縮退運転モードに移行し、ガスト通過時の荷重増加を回避することで、風力発電装置1の停止による発電量の低下を回避しつつ、風力発電装置1を保護するものである。 Therefore, in this embodiment, the wind power generator 1 is temporarily shifted to the degenerate operation mode by using a control mechanism having a quicker control response than the yaw control mechanism of the wind power generator 1, and the load increase when passing through the gust is increased. By avoiding this, the wind power generator 1 is protected while avoiding a decrease in the amount of power generated due to the stop of the wind power generator 1.
 図4に、本実施例における制御のブロック図を示す。 FIG. 4 shows a block diagram of control in this embodiment.
 該図に示す本実施例においては、先ずナセル3上に設置された風向風速計13により、風力発電装置1に流入する風の風向を計測する。次に、制御器15に備えられているヨー誤差演算部21を用いて、風力発電装置1に流入する風向17とナセル方向16の偏差であるヨー誤差18を算出する。次にモード決定部24において、風力発電装置1の運転モード(通常運転モード、縮退運転モード、停止モード)を決定する。モード決定部24で決定した運転モードは、ピッチ角や発電機トルク等、各種機器の制御決定部25に送られ、制御決定部25において、各アクチュエータの制御法が決定される。最後に制御決定部25で決定された風力発電装置1の制御法が、各アクチュエータ制御器27に送られることで、風力発電装置1が制御される。 In the present embodiment shown in the figure, first, the wind direction of the wind flowing into the wind power generator 1 is measured by the wind direction anemometer 13 installed on the nacelle 3. Next, the yaw error calculation unit 21 provided in the controller 15 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16. Next, in the mode determination part 24, the operation mode (normal operation mode, degeneration operation mode, stop mode) of the wind power generator 1 is determined. The operation mode determined by the mode determination unit 24 is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator. Finally, the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determination unit 25 to each actuator controller 27.
 図5に、本実施例における風力発電装置1の制御フロー図を示す。 FIG. 5 shows a control flow diagram of the wind turbine generator 1 in this embodiment.
 先ずS101にて風向データを風向風速計13で取得し、S102にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で計算する。次にS104にてヨー誤差18が閾値以上であるかをモード決定部24で判別し、閾値以下である(No)場合は、通常通り運転を継続する。また、S104にて閾値以上とモード決定部24で判別された(Yes)場合、風力発電装置1はS105に移行し、縮退運転モードとなる。 First, the wind direction data is acquired by the wind direction anemometer 13 in S101, and the yaw error 18 with respect to the wind turbine generator 1 is calculated by the yaw error calculator 21 in S102. Next, in S104, the mode determination unit 24 determines whether the yaw error 18 is equal to or greater than the threshold value. If the yaw error 18 is equal to or less than the threshold value (No), the operation is continued as usual. Moreover, when it is discriminate | determined by the mode determination part 24 that it is more than a threshold value in S104 (Yes), the wind power generator 1 transfers to S105, and will be in a degeneration operation mode.
 この後、再度S111にて風向データを風向風速計13で再取得し、S112にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で再計算する。そして、S114にて、再度、ヨー誤差18が閾値以上かモード決定部24で判別し、閾値以下(No)の場合はS125にて通常運転モードに復帰する。 Thereafter, the wind direction data is re-acquired by the anemometer 13 in S111 again, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112. In S114, the mode determination unit 24 determines again whether the yaw error 18 is equal to or greater than the threshold. If the yaw error 18 is equal to or less than the threshold (No), the process returns to the normal operation mode in S125.
 また、S114においてもヨー誤差18が閾値以上(Yes)であった場合、次にS106にて縮退運転モードの継続時間をモード決定部24で判別する。縮退運転モードの継続時間が閾値以下であった(No)場合、再度S111に戻り、上記と同様のフローを継続する。一方で、縮退運転モードの継続時間が閾値を上回った(Yes)場合、S115にて停止モードに移行する。 In S114, if the yaw error 18 is equal to or greater than the threshold (Yes), the mode determination unit 24 determines the duration of the degenerate operation mode in S106. When the duration of the degenerate operation mode is equal to or less than the threshold (No), the process returns to S111 again and the same flow as above is continued. On the other hand, when the duration of the degenerate operation mode exceeds the threshold (Yes), the process shifts to the stop mode in S115.
 図6に、本発明の制御方法の適用有無における各種パラメータの変化概略図を示す。 FIG. 6 shows a schematic diagram of changes in various parameters when the control method of the present invention is applied.
 該図において、風向変化28に示す通りのガストが、風力発電装置1に流入した際に本発明を適用した場合、出力変化29に示す通り、縮退運転モードに移行して風力発電装置1の出力は従来に比べ低下する。その後、風向が縮退運転モード移行前と同方向に回復することで、通常運転モードに復帰し出力も回復する。このとき、荷重変化30は、本発明の適用により、通常運転モードを継続した場合と比較して、最大荷重が低下することになる(図6から縮退運転モード時の荷重変化30のピーク(最大荷重)は、従来に比べ本発明が低下しているのが分かる)。 In the figure, when the present invention is applied when the gust as shown in the wind direction change 28 flows into the wind power generator 1, as shown in the output change 29, the operation shifts to the degenerate operation mode and the output of the wind power generator 1. Will be lower than before. Thereafter, when the wind direction recovers in the same direction as before the transition to the degenerate operation mode, the normal operation mode is restored and the output is also recovered. At this time, the load change 30 is reduced by the application of the present invention as compared with the case where the normal operation mode is continued (from FIG. 6, the peak of the load change 30 in the degenerate operation mode (maximum It can be seen that the load is lower in the present invention than in the prior art).
 本実施例における風力発電装置1の制御方法の利点は、以下のような点にある。 The advantages of the method for controlling the wind turbine generator 1 in the present embodiment are as follows.
 即ち、本実施例では、風力発電装置1に流入する風向17に基づいて風力発電装置1の運転モードを変更すること(縮退運転モードの活用)によって、風力発電装置1が得るエネルギー量そのものを低減させることができ、最大荷重の増加を回避することが可能となり、風力発電装置1のブレード5の根元部等への荷重の増大を防ぐことができる。 That is, in this embodiment, the amount of energy itself obtained by the wind power generator 1 is reduced by changing the operation mode of the wind power generator 1 based on the wind direction 17 flowing into the wind power generator 1 (utilization of the degenerate operation mode). Therefore, it is possible to avoid an increase in the maximum load and to prevent an increase in the load on the root portion of the blade 5 of the wind turbine generator 1.
 また、ヨー誤差18が継続して大きい場合においては、停止モードに移行することで、疲労荷重の増加を回避することが可能となる。加えて、ヨー誤差18の拡大時に直ぐに停止モードに移行しないことにより、風力発電装置1の起動停止の回数を低減することが可能となり、発電機会損失による発電量低下を低減することができる。 Further, when the yaw error 18 is continuously large, it is possible to avoid an increase in fatigue load by shifting to the stop mode. In addition, by not immediately shifting to the stop mode when the yaw error 18 is enlarged, it is possible to reduce the number of times that the wind turbine generator 1 is started and stopped, and it is possible to reduce a decrease in the amount of power generation due to a loss of power generation opportunity.
 図1から図3及び図7、図8を用いて、実施例2における風力発電装置1の制御方法について説明する。なお、実施例1と重複する点については詳細な説明を省略する。 A control method for the wind turbine generator 1 in the second embodiment will be described with reference to FIGS. 1 to 3, 7, and 8. Detailed description of the same points as those in the first embodiment will be omitted.
 本実施例における特徴は、縮退運転モードの移行判断に所定時間当たりのヨー誤差18の変化量を用いる点にある。 The feature of this embodiment is that the amount of change in the yaw error 18 per predetermined time is used for the judgment of transition to the degenerate operation mode.
 図3に示す通り、ガストが風力発電装置1に流入する際には、風向17の変化は急峻である場合が多い。そのため、より早くガストが風力発電装置1に流入することを予測することが望まれる。そこで、本実施例では、ヨー誤差18の所定時間における風向17の変化量が閾値を超えた場合に、縮退運転モードに移行することを特徴とする。 As shown in FIG. 3, when the gust flows into the wind power generator 1, the change in the wind direction 17 is often steep. Therefore, it is desired to predict that gust flows into the wind power generator 1 earlier. Therefore, the present embodiment is characterized in that when the change amount of the wind direction 17 in the predetermined time of the yaw error 18 exceeds the threshold value, the mode is shifted to the degenerate operation mode.
 図7に、本実施例における制御のブロック図を示す。 FIG. 7 shows a block diagram of control in the present embodiment.
 該図に示す本実施例においては、先ずナセル3上に設置された風向風速計13により、風力発電装置1に流入する風の風向17を計測する。次にヨー誤差演算部21を用いて、風力発電装置1に流入する風向17とナセル方向16の偏差であるヨー誤差18を算出する。ここで得られたヨー誤差18は、制御器15に備えられているヨー誤差記憶部22に保管される。このヨー誤差記憶部22に保管されたヨー誤差18は、制御器15に備えられている変化量計算部23に送られ、ここで所定時間におけるヨー誤差18の変化量が計算される。 In the present embodiment shown in the figure, first, the wind direction 17 of the wind flowing into the wind power generator 1 is measured by the wind direction anemometer 13 installed on the nacelle 3. Next, the yaw error calculation unit 21 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16. The yaw error 18 obtained here is stored in the yaw error storage unit 22 provided in the controller 15. The yaw error 18 stored in the yaw error storage unit 22 is sent to a change amount calculation unit 23 provided in the controller 15, where the change amount of the yaw error 18 in a predetermined time is calculated.
 次にモード決定部24において、ヨー誤差18の変化量に基づいて、風力発電装置1の運転モード(通常運転モード、縮退運転モード、停止モード)を決定する。モード決定部24で決定した運転モードは、ピッチ角や発電機トルク等、各種機器の制御決定部25に送られ、制御決定部25において各アクチュエータの制御法が決定される。最後に制御決定部25で決定された風力発電装置1の制御法が各アクチュエータ制御器27に送られることで、風力発電装置1が制御される。 Next, the mode determination unit 24 determines the operation mode (normal operation mode, degenerate operation mode, stop mode) of the wind turbine generator 1 based on the change amount of the yaw error 18. The operation mode determined by the mode determination unit 24 is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator. Finally, the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determination unit 25 to each actuator controller 27.
 図8に、本実施例における風力発電装置2の制御フロー図を示す。 FIG. 8 shows a control flow diagram of the wind turbine generator 2 in the present embodiment.
 先ずS101にて風向データを風向風速計13で取得し、S102にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で計算する。次にS103にて、ヨー誤差18の変化量を変化量計算部23で計算する。次にS134にてヨー誤差18の変化量が閾値以上であるかをモード決定部24で判別し、閾値以下である(No)場合は、通常通り運転を継続する。また、S134にて閾値以上(Yes)と判別された場合、風力発電装置1はS105に移行し、縮退運転モードとなる。 First, the wind direction data is acquired by the wind direction anemometer 13 in S101, and the yaw error 18 with respect to the wind turbine generator 1 is calculated by the yaw error calculator 21 in S102. Next, in S <b> 103, the change amount calculation unit 23 calculates the change amount of the yaw error 18. Next, in S134, the mode determining unit 24 determines whether or not the amount of change in the yaw error 18 is equal to or greater than the threshold value. If it is equal to or less than the threshold value (No), the operation is continued as usual. Moreover, when it determines with more than a threshold value (Yes) in S134, the wind power generator 1 transfers to S105, and will be in a degeneration operation mode.
 この後、再度S111にて風向データを風向風速計13で再取得し、S112にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で再計算する。次にS113にてヨー誤差18の変化量を変化量計算部23で再計算する。そして、S119にて、ヨー誤差18の変化量が閾値以上であるかをモード決定部24で判定する。 Thereafter, the wind direction data is re-acquired by the anemometer 13 in S111 again, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112. Next, the change amount calculation unit 23 recalculates the change amount of the yaw error 18 in S113. In step S119, the mode determination unit 24 determines whether the amount of change in the yaw error 18 is equal to or greater than the threshold.
 なお、このとき、S119では、ヨー誤差18が減少傾向となっているかを判別するため、S134とは異なる閾値を用いても良い。 At this time, in S119, a threshold value different from that in S134 may be used in order to determine whether the yaw error 18 tends to decrease.
 S119において、ヨー誤差18の変化量が閾値以下(No)の場合は、S125にて通常運転モードに復帰する。また、S119においてもヨー誤差18の変化量が閾値以上(Yes)であった場合は、次にS106にて縮退運転モードの継続時間をモード決定部24で判別する。縮退運転モードの継続時間が閾値以下(No)であった場合、再度S111に戻り、上記と同様のフローを継続する。一方で、縮退運転モードの継続時間が閾値を上回った(Yes)場合、S115にて停止モードに移行する。 In S119, when the change amount of the yaw error 18 is equal to or less than the threshold (No), the process returns to the normal operation mode in S125. In S119, if the change amount of the yaw error 18 is equal to or greater than the threshold (Yes), the mode determination unit 24 determines the duration of the degenerate operation mode in S106. When the duration time of the degenerate operation mode is equal to or less than the threshold (No), the process returns to S111 again and the same flow as above is continued. On the other hand, when the duration of the degenerate operation mode exceeds the threshold (Yes), the process shifts to the stop mode in S115.
 本実施例における風力発電装置1の利点は以下のような点にある。 The advantages of the wind power generator 1 in the present embodiment are as follows.
 即ち、本実施例では、実施例1と同様な効果が得られることは勿論、ヨー誤差18の変化量を縮退運転モードへの移行判断に用いることで、より早期にガストの到来を判断することができる。そのため、最大荷重の増加をより早期に回避することが可能となる。また、ヨー誤差18が継続して大きい場合においては、停止モードに移行することで、疲労荷重の増加を回避することが可能となる。加えて、ヨー誤差18の拡大時に直ぐに停止モードに移行しないことにより、風力発電装置1の起動停止の回数を低減することが可能となり、発電機会損失によるは通電量低下を削減することができる。 That is, in the present embodiment, the same effect as in the first embodiment can be obtained, and the change amount of the yaw error 18 is used for determining the shift to the degenerate operation mode, so that the arrival of the gust can be determined earlier. Can do. Therefore, it is possible to avoid an increase in the maximum load earlier. Further, when the yaw error 18 is continuously large, an increase in fatigue load can be avoided by shifting to the stop mode. In addition, by not immediately shifting to the stop mode when the yaw error 18 is enlarged, it is possible to reduce the number of times the wind power generator 1 is started and stopped, and it is possible to reduce a decrease in energization amount due to loss of power generation opportunity.
 図1から図3及び図9、図10を用いて、実施例3における風力発電装置1の制御方法について説明する。なお、実施例1及び実施例2と重複する点については詳細な説明を省略する。 A control method for the wind turbine generator 1 according to the third embodiment will be described with reference to FIGS. 1 to 3, 9, and 10. Detailed description of the same points as those in the first and second embodiments will be omitted.
 本実施例における特徴は、縮退運転モードの移行判断において、ヨー誤差18の判定閾値を風速によって変更するという点にある。一般的に風速が低い場合に、風向の変動はより大きくなる傾向にあることから、低風速と高風速で同じ閾値を使用した場合、低風速の場合に風向の変動をガストとして誤検知してしまうリスクが高まる。そこで、本実施例では、ヨー誤差18の判定閾値を風速によって変更させることを特徴とする。 The feature of this embodiment is that the judgment threshold value of the yaw error 18 is changed according to the wind speed in the judgment of transition to the degenerate operation mode. In general, when the wind speed is low, the fluctuation of the wind direction tends to become larger.If the same threshold is used for the low wind speed and the high wind speed, the fluctuation of the wind direction is erroneously detected as a gust when the wind speed is low. Increase the risk of Therefore, this embodiment is characterized in that the determination threshold value of the yaw error 18 is changed depending on the wind speed.
 図9に、本実施例における制御のブロック図を示す。 FIG. 9 shows a block diagram of control in the present embodiment.
 該図に示す本実施例においては、先ずナセル3上に設置された風向風速計13により、風力発電装置1に流入する風の風向データだけでなく風速データも含めて計測する。次にヨー誤差演算部21を用いて、風力発電装置1に流入する風向17とナセル方向16の偏差であるヨー誤差18を算出する。並行して、閾値演算部26にて、計測された風速に応じたヨー誤差18の閾値を演算する。次にモード決定部24において、ヨー誤差18とその閾値に基づいて風力発電装置1の運転モード(通常運転モード、縮退運転モード、停止モード)を決定する。モード決定部24で決定した運転モードは、ピッチ角や発電機トルク等、各種機器の制御決定部25に送られ、制御決定部25において各アクチュエータの制御法が決定される。最後に制御決定部25で決定された風力発電装置1の制御法が、各アクチュエータ制御器27に送られることで、風力発電装置1が制御される。 In this embodiment shown in the figure, first, the wind direction anemometer 13 installed on the nacelle 3 measures not only the wind direction data of the wind flowing into the wind power generator 1 but also the wind speed data. Next, the yaw error calculation unit 21 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16. In parallel, the threshold value calculation unit 26 calculates the threshold value of the yaw error 18 corresponding to the measured wind speed. Next, the mode determination unit 24 determines the operation mode (normal operation mode, degenerate operation mode, stop mode) of the wind turbine generator 1 based on the yaw error 18 and its threshold value. The operation mode determined by the mode determination unit 24 is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator. Finally, the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determination unit 25 to each actuator controller 27.
 図10に、本実施例における風力発電装置1の制御フロー図を示す。 FIG. 10 shows a control flow diagram of the wind turbine generator 1 in this embodiment.
 先ずS101にて風向データ及び風速データを風向風速計13で取得し、S102にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で計算する。また、並行してS122にてヨー誤差18の閾値を閾値演算部26で計算する。次にS104にてヨー誤差18が閾値以上であるかをモード決定部24で判別し、閾値以下である(No)場合は、通常通り運転を継続する。また、S104にて閾値以上とモード決定部24で判別された(Yes)場合は、風力発電装置1はS105に移行し、縮退運転モードとなる。 First, the wind direction data and the wind speed data are acquired by the wind direction anemometer 13 in S101, and the yaw error 18 for the wind turbine generator 1 is calculated by the yaw error calculation unit 21 in S102. In parallel, the threshold value calculation unit 26 calculates the threshold value of the yaw error 18 in S122. Next, in S104, the mode determination unit 24 determines whether the yaw error 18 is equal to or greater than the threshold value. If the yaw error 18 is equal to or less than the threshold value (No), the operation is continued as usual. If the mode determination unit 24 determines that the threshold value is equal to or greater than the threshold value in S104 (Yes), the wind turbine generator 1 proceeds to S105 and enters the degenerate operation mode.
 この後、再度S111にて風向データ及び風速データを風向風速計13で再取得し、S112にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で再計算する。このとき、並行してS132にてヨー誤差18の閾値も閾値演算部26で再計算する。そして、S114にて再度ヨー誤差18が閾値以上かモード決定部24で判別し、閾値以下(No)の場合は、S125にて通常運転モードに復帰する。 Thereafter, the wind direction data and the wind speed data are again acquired by the wind direction anemometer 13 in S111, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112. At this time, the threshold value calculation unit 26 also recalculates the threshold value of the yaw error 18 in S132. Then, in S114, the mode determination unit 24 determines again whether the yaw error 18 is equal to or greater than the threshold value.
 また、S114においてヨー誤差18が閾値以上(Yes)であった場合は、次にS106にて縮退運転モードの継続時間をモード決定部24で判別する。縮退運転モードの継続時間が閾値以下であった(No)場合、再度S111に戻り、上記と同様のフローを継続する。一方で、縮退運転モードの継続時間が閾値を上回った(Yes)場合、S115にて停止モードに移行する。 If the yaw error 18 is equal to or greater than the threshold value (Yes) in S114, the mode determination unit 24 determines the duration of the degenerate operation mode in S106. When the duration of the degenerate operation mode is equal to or less than the threshold (No), the process returns to S111 again and the same flow as above is continued. On the other hand, when the duration of the degenerate operation mode exceeds the threshold (Yes), the process shifts to the stop mode in S115.
 本実施例における風力発電装置1の利点は以下のような点にある。 The advantages of the wind power generator 1 in the present embodiment are as follows.
 即ち、本実施例では、実施例1と同様な効果が得られることは勿論、縮退運転モードへの移行に関して、風速に基づいてその判定閾値を決めるため、より高精度にガストの到来を予測することができる。これにより、最大荷重の増加をより高精度に回避すると共に、誤検知を抑制し、縮退運転の実施に伴う、発電量の低下を抑制することが可能となる。 That is, in the present embodiment, the same effect as in the first embodiment can be obtained, and the determination threshold is determined based on the wind speed with respect to the transition to the degenerate operation mode, so the arrival of the gust is predicted with higher accuracy. be able to. As a result, an increase in the maximum load can be avoided with higher accuracy, erroneous detection can be suppressed, and a decrease in the amount of power generation associated with the implementation of the degenerate operation can be suppressed.
 図1から図3及び図11、図12を用いて、実施例4における風力発電装置1の制御方法について説明する。なお、実施例1から実施例3と重複する点については詳細な説明を省略する。 A control method for the wind turbine generator 1 according to the fourth embodiment will be described with reference to FIGS. 1 to 3, 11, and 12. Detailed description of points that overlap with the first to third embodiments will be omitted.
 本実施例における特徴は、縮退運転モードの移行判断に使用するヨー誤差18の変化量の閾値及びその変化量を計算する所定時間を風速に応じて変更する点にある。風速が小さい場合、主風速に対して垂直な方向の変動が相対的に大きくなるため、風向の変動も大きくなる傾向にある。風速が低い場合に、ガストの誤検知を回避するため、評価時間を長くすることや判定閾値を大きくすることが考えられる。そこで、本実施例では、退運転モードの移行判断に使用するヨー誤差18の変化量の閾値及びその評価時間を風速に応じて変更することを特徴とする。 The feature of this embodiment is that the threshold value of the change amount of the yaw error 18 used for determining the transition to the degenerate operation mode and the predetermined time for calculating the change amount are changed according to the wind speed. When the wind speed is low, the fluctuation in the direction perpendicular to the main wind speed is relatively large, and thus the fluctuation in the wind direction tends to be large. In order to avoid erroneous detection of gust when the wind speed is low, it is conceivable to lengthen the evaluation time or increase the determination threshold. In view of this, the present embodiment is characterized in that the threshold value of the amount of change in the yaw error 18 used for the judgment of transition to the reverse operation mode and the evaluation time thereof are changed according to the wind speed.
 図11に本実施例における制御のブロック図を示す。 FIG. 11 shows a block diagram of control in this embodiment.
 該図に示す本実施例においては、先ずナセル3上に設置された風向風速計13により風力発電装置1に流入する風の風向だけでなく風速も計測する。次にヨー誤差演算部21を用いて、風力発電装置1に流入する風向17とナセル方向16の偏差であるヨー誤差18を算出する。ここで得られたヨー誤差18は、ヨー誤差記憶部22に保管される。このヨー誤差記憶部22に保管されたヨー誤差18は、変化量計算部23に送られ、ここで所定時間におけるヨー誤差18の変化量が計算される。このとき、並行して閾値演算部26において、風向風速計13によって得られた風速から、ヨー誤差18の変化量の閾値及び変化量算出の時間を演算する。次にモード決定部24において、ヨー誤差18の変化量とその閾値に基づいて、風力発電装置1の運転モードを決定する。決定した運転モードは、ピッチ角や発電機トルク等、各種機器の制御決定部25に送られ、制御決定部25において各アクチュエータの制御法が決定される。最後に制御決定部25で決定された風力発電装置1の制御法が、各アクチュエータ制御器27に送られることで風力発電装置1が制御される。 In the present embodiment shown in the figure, first, not only the wind direction of the wind flowing into the wind power generator 1 but also the wind speed is measured by the anemometer 13 installed on the nacelle 3. Next, the yaw error calculation unit 21 is used to calculate a yaw error 18 that is a deviation between the wind direction 17 flowing into the wind turbine generator 1 and the nacelle direction 16. The yaw error 18 obtained here is stored in the yaw error storage unit 22. The yaw error 18 stored in the yaw error storage unit 22 is sent to the change amount calculation unit 23, where the change amount of the yaw error 18 in a predetermined time is calculated. At this time, the threshold value calculation unit 26 calculates the change amount threshold value of the yaw error 18 and the change amount calculation time from the wind speed obtained by the anemometer 13. Next, the mode determination unit 24 determines the operation mode of the wind turbine generator 1 based on the change amount of the yaw error 18 and the threshold value. The determined operation mode is sent to the control determination unit 25 of various devices such as the pitch angle and the generator torque, and the control determination unit 25 determines the control method of each actuator. Finally, the wind power generator 1 is controlled by sending the control method of the wind power generator 1 determined by the control determining unit 25 to each actuator controller 27.
 図12に、本実施例における風力発電装置1の制御フロー図を示す。 FIG. 12 shows a control flow diagram of the wind turbine generator 1 in this embodiment.
 先ずS101にて風向データ及び風速データを風向風速計13で取得し、S102にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で計算する。このとき、並行してS122において、得られた風速データから変化量の評価時間とその閾値を閾値演算部26で演算する。次にS103にて、ヨー誤差18の変化量を変化量計算部23で計算する。次にS134にてヨー誤差18の変化量が閾値以上であるかをモード決定部24で判別し、閾値以下である(No)場合は、通常通り運転を継続する。また、S134にて閾値以上とモード決定部24で判別された(Yes)場合、風力発電装置1はS105に移行し、縮退運転モードとなる。 First, the wind direction data and the wind speed data are acquired by the wind direction anemometer 13 in S101, and the yaw error 18 for the wind turbine generator 1 is calculated by the yaw error calculation unit 21 in S102. At the same time, in S122, the threshold value calculation unit 26 calculates the evaluation time of the amount of change and the threshold value from the obtained wind speed data. Next, in S <b> 103, the change amount calculation unit 23 calculates the change amount of the yaw error 18. Next, in S134, the mode determining unit 24 determines whether or not the amount of change in the yaw error 18 is equal to or greater than the threshold value. If it is equal to or less than the threshold value (No), the operation is continued as usual. If the mode determination unit 24 determines that the threshold value is equal to or greater than the threshold value in S134 (Yes), the wind turbine generator 1 proceeds to S105 and enters the degenerate operation mode.
 この後、再度S111にて風向データ及び風速データを風向風速計13で再取得し、S112にて風力発電装置1に対するヨー誤差18をヨー誤差演算部21で再計算する。このとき、並行してS142において、得られた風速データから変化量の評価時間とその閾値を閾値演算部26で再演算する。次にS113にて、ヨー誤差18の変化量を変化量計算部23で再計算する。そして、S119にて、ヨー誤差18の変化量が閾値以上であるかをモード決定部24で判定する。 Thereafter, the wind direction data and the wind speed data are again acquired by the wind direction anemometer 13 in S111, and the yaw error 18 for the wind turbine generator 1 is recalculated by the yaw error calculator 21 in S112. At the same time, in S142, the threshold value calculation unit 26 recalculates the evaluation time of the amount of change and the threshold value from the obtained wind speed data. Next, in S113, the change amount calculation unit 23 recalculates the change amount of the yaw error 18. In step S119, the mode determination unit 24 determines whether the amount of change in the yaw error 18 is equal to or greater than a threshold value.
 なお、このとき、S119では、ヨー誤差18が減少傾向となっているかを判別するため、S134とは異なる閾値を用いても良い。 At this time, in S119, a threshold value different from that in S134 may be used in order to determine whether the yaw error 18 tends to decrease.
 S119においてヨー誤差18の変化量が閾値以下(No)の場合は、S125にて通常運転モードに復帰する。 If the change amount of the yaw error 18 is equal to or less than the threshold value (No) in S119, the normal operation mode is restored in S125.
 また、S119においてもヨー誤差18の変化量が閾値以上(Yes)であった場合は、次にS106にて縮退運転モードの継続時間をモード決定部24で判別する。縮退運転モードの継続時間が閾値以下であった(No)場合、再度S111に戻り、上記と同様のフローを継続する。一方で、縮退運転モードの継続時間が閾値を上回った(Yes)場合、S115にて停止モードに移行する。 In S119, if the change amount of the yaw error 18 is equal to or greater than the threshold (Yes), the mode determination unit 24 determines the duration of the degenerate operation mode in S106. When the duration of the degenerate operation mode is equal to or less than the threshold (No), the process returns to S111 again and the same flow as above is continued. On the other hand, when the duration of the degenerate operation mode exceeds the threshold (Yes), the process shifts to the stop mode in S115.
 なお、本実施例においては、ヨー誤差18の計算時間や閾値を逐次再計算する例を示したが、これらの数値には、S122のステップで計算した値を継続して使用しても良い。 In the present embodiment, an example in which the calculation time and threshold value of the yaw error 18 are sequentially recalculated has been shown, but the values calculated in step S122 may be continuously used as these numerical values.
 本実施例における風力発電装置1の利点は以下のような点にある。 The advantages of the wind power generator 1 in the present embodiment are as follows.
 即ち、本実施例では、実施例1と同様な効果が得られることは勿論、縮退運転モードへの移行に関して、風速に基づいてその判定閾値を決めるため、より高精度にガストの到来を予測することができる。これにより、最大荷重の増加をより高精度に回避すると共に、誤検知を抑制し、縮退運転の実施に伴う、発電量の低下を抑制することが可能となる。 That is, in the present embodiment, the same effect as in the first embodiment can be obtained, and the determination threshold is determined based on the wind speed with respect to the transition to the degenerate operation mode, so the arrival of the gust is predicted with higher accuracy. be able to. As a result, an increase in the maximum load can be avoided with higher accuracy, erroneous detection can be suppressed, and a decrease in the amount of power generation associated with the implementation of the degenerate operation can be suppressed.
 図1から図11を用いて、実施例5における風力発電装置1の制御方法を説明する。なお、実施例1から実施例4と重複する点については詳細な説明を省略する。 A control method for the wind turbine generator 1 in the fifth embodiment will be described with reference to FIGS. Detailed description of points that overlap with the first to fourth embodiments will be omitted.
 実施例5における特徴としては、縮退運転モードへの移行手段として、ピッチ制御を用いる点にある。 A feature of the fifth embodiment is that pitch control is used as means for shifting to the degenerate operation mode.
 風力発電装置1においては、図1に示すように、ハブ4に対して回転(ピッチ角変化)可能にブレード5は設置されている。ここで、ピッチ角とは、ハブ4に対するブレード5の取り付け角を表している。 In the wind power generator 1, as shown in FIG. 1, the blade 5 is installed so as to be rotatable (pitch angle change) with respect to the hub 4. Here, the pitch angle represents an attachment angle of the blade 5 to the hub 4.
 また、ブレード5を風に対して正対させ、風のエネルギーを高効率に回収できるようピッチ角を変更することをファインにすると呼び、ブレードを風と平行な向きにすることで、風を逃がすようにピッチ角を変更することをフェザーと呼ぶ。 In addition, it is called fine to change the pitch angle so that the blade 5 faces the wind and the wind energy can be collected with high efficiency, and the wind is released by making the blade parallel to the wind. Changing the pitch angle in this way is called a feather.
 本実施例においては、図5、図8、図10、図12におけるS105のように、風力発電装置1を縮退運転モードに移行する際、ピッチ角は通常運転時の基準制御値よりもフェザー側に変更される。これにより、風力発電装置1の回収するエネルギー量が低下し、発電量が低下するため、風力発電装置1にかかる荷重も低下し、縮退運転モードとなる。このとき、ピッチ角の指令値は固定値であっても、風速等の風況に応じて変更してもよい。 In this embodiment, as shown in S105 in FIGS. 5, 8, 10, and 12, when the wind turbine generator 1 is shifted to the degenerate operation mode, the pitch angle is closer to the feather than the reference control value during normal operation. Changed to As a result, the amount of energy collected by the wind turbine generator 1 is reduced, and the amount of power generation is reduced. Therefore, the load applied to the wind turbine generator 1 is also reduced, and the operation mode is reduced. At this time, the pitch angle command value may be a fixed value or may be changed according to wind conditions such as wind speed.
 その後、図5、図8、図10、図12におけるS125に示す通り、通常運転に移行した場合に、ピッチ角指令値を通常運転時の基準制御値に戻すことにより、通常運転モードに復帰する。 Thereafter, as indicated by S125 in FIGS. 5, 8, 10, and 12, when the operation is shifted to the normal operation, the pitch angle command value is returned to the reference control value during the normal operation, thereby returning to the normal operation mode. .
 本実施例における風力発電装置1の制御方法の利点は以下のような点にある。 The advantage of the control method of the wind power generator 1 in the present embodiment is as follows.
 即ち、本実施例では、縮退運転モードへの移行に関して、ピッチ角の制御を用いるため、風力発電装置1が風から回収するエネルギー量を直接制御できるため、縮退運転モードへの移行を簡易に実施することができる。 That is, in this embodiment, since the pitch angle control is used for the transition to the degenerate operation mode, the energy amount that the wind power generator 1 recovers from the wind can be directly controlled, so the transition to the degenerate operation mode is easily performed. can do.
 図1から図11を用いて、実施例6における風力発電装置1の制御方法を説明する。なお、実施例1から実施例5と重複する点については詳細な説明を省略する。 A control method for the wind turbine generator 1 in the sixth embodiment will be described with reference to FIGS. Detailed description of points that overlap with the first to fifth embodiments will be omitted.
 実施例6における特徴としては、縮退運転モードへの移行手段として、風力発電装置1のナセル3内に設置された発電機9のトルク制御を活用する点にある。 A feature of the sixth embodiment resides in that torque control of the generator 9 installed in the nacelle 3 of the wind power generator 1 is utilized as means for shifting to the degenerate operation mode.
 風力発電装置1が回収するエネルギーは、ロータ6の回転数と発電機9におけるトルクの積として現わされ、通常運転モードにおいては、ロータ6の回転数が、風力発電装置1のブレード5が最も効率よくエネルギーを得られる回転数になるよう、トルクは制御される。 The energy recovered by the wind turbine generator 1 is expressed as the product of the rotational speed of the rotor 6 and the torque in the generator 9. In the normal operation mode, the rotational speed of the rotor 6 is the highest in the blade 5 of the wind power generator 1. The torque is controlled so that the number of rotations can obtain energy efficiently.
 本実施例においては、図5、図8、図10、図12におけるS105のように、風力発電装置1を縮退運転モードに移行する際、トルクの指令値を通常運転時とは異なる値に設定する。このとき、トルク指令値、は通常運転時の基準制御値よりも大きい値と小さい値の双方が考えられる。 In this embodiment, as shown in S105 in FIGS. 5, 8, 10, and 12, when the wind turbine generator 1 is shifted to the degenerate operation mode, the torque command value is set to a value different from that during normal operation. To do. At this time, the torque command value can be both a larger value and a smaller value than the reference control value during normal operation.
 具体的には、トルク指令値を通常運転時の基準制御値よりも小さくすることにより、回収するエネルギー量を小さくする手法が考えられる。また、トルク制御値を通常運転時の基準制御値よりも大きくすることにより、ロータ6の回転数を小さくし、風力発電装置1の運転効率を低下させることで、縮退運転モードに移行することも可能である。このとき、トルク制御の指令値は固定値であっても、風速等の風況に応じて変更してもよい。 Specifically, a method of reducing the amount of energy to be recovered by making the torque command value smaller than the reference control value during normal operation can be considered. Moreover, by making the torque control value larger than the reference control value during normal operation, the rotational speed of the rotor 6 is reduced, and the operation efficiency of the wind turbine generator 1 is reduced, so that the operation mode can be shifted to the degenerate operation mode. Is possible. At this time, the command value for torque control may be a fixed value or may be changed according to wind conditions such as wind speed.
 その後、図5、図8、図10、図12におけるS125に示す通り、通常運転に移行した場合に、トルク指令値を通常運転時の基準制御値に戻すことにより、通常運転モードに復帰する。 Thereafter, as shown in S125 in FIGS. 5, 8, 10, and 12, when the operation is shifted to the normal operation, the torque command value is returned to the reference control value during the normal operation to return to the normal operation mode.
 本実施例における風力発電装置1の制御方法の利点は以下のような点にある。 The advantage of the control method of the wind power generator 1 in the present embodiment is as follows.
 即ち、本実施例では、縮退運転モードへの移行に関して、発電機9のトルクの制御を用いるため、制御応答が非常に早いという特徴を持つ。これにより、より早期に縮退運転モードに移行することが可能となり、ヨー誤差の増大に伴う最大荷重の増加をより早期に回避することが可能となる。 That is, this embodiment has a feature that the control response is very fast because the torque control of the generator 9 is used for the transition to the degenerate operation mode. Thereby, it becomes possible to shift to the degenerate operation mode earlier, and it is possible to avoid an increase in the maximum load accompanying an increase in yaw error earlier.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…風力発電装置、2…タワー、3…ナセル、4…ハブ、5…ブレード、6…ロータ、7…主軸、8…増速機、9…発電機、10…メインフレーム、11…電力変換器、12…制御装置、13…風向風速計、14…ヨー角制御装置、15…制御器、16…ナセル方向、17…風向、18…ヨー誤差、19…風向の急変、20…風向の回復、21…ヨー誤差演算部、22…ヨー誤差記憶部、23…変化量計算部、24…モード決定部、25…制御決定部、26…閾値演算部、27…アクチュエータ制御器、28…風向変化、29…出力変化、30…荷重変化。 DESCRIPTION OF SYMBOLS 1 ... Wind power generator, 2 ... Tower, 3 ... Nacelle, 4 ... Hub, 5 ... Blade, 6 ... Rotor, 7 ... Main shaft, 8 ... Booster, 9 ... Generator, 10 ... Main frame, 11 ... Power conversion 12 ... Control device, 13 ... Wind direction anemometer, 14 ... Yaw angle control device, 15 ... Controller, 16 ... Nacelle direction, 17 ... Wind direction, 18 ... Yaw error, 19 ... Abrupt change in wind direction, 20 ... Recovery of wind direction 21 ... Yaw error calculation unit, 22 ... Yaw error storage unit, 23 ... Change amount calculation unit, 24 ... Mode determination unit, 25 ... Control determination unit, 26 ... Threshold calculation unit, 27 ... Actuator controller, 28 ... Change in wind direction 29 ... Output change, 30 ... Load change.

Claims (15)

  1.  ハブとブレードから成り、少なくとも風を受けて回転するロータと、前記ハブに接続された主軸を介して前記ロータを軸支すると共に、その内部に前記主軸に接続された発電機を少なくとも収納するナセルと、該ナセルを支持するタワーとを備えた風力発電装置の運転モードを変更する際に、
     前記風力発電装置に流入する風向データ及び前記風力発電装置の前記ロータの回転面の向きの情報に基づき前記風力発電装置の運転モードを変更することを特徴とする風力発電装置の制御方法。
    A rotor composed of a hub and blades, which rotates at least by receiving wind, and a nacelle that supports the rotor via a main shaft connected to the hub and stores at least a generator connected to the main shaft in the rotor. And changing the operation mode of the wind turbine generator including the tower that supports the nacelle,
    A method for controlling a wind turbine generator, comprising: changing an operation mode of the wind turbine generator based on wind direction data flowing into the wind turbine generator and information on a direction of a rotation surface of the rotor of the wind turbine generator.
  2.  請求項1に記載の風力発電装置の制御方法であって、
     前記風力発電装置の向きである前記ナセルの方向と前記ロータの回転面の向き(風向)の偏差であるヨー誤差が、予め決められた閾値を超えた場合に、前記風力発電装置の運転モードを変更することを特徴とする風力発電装置の制御方法。
    A method for controlling a wind turbine generator according to claim 1,
    When a yaw error, which is a deviation between the direction of the nacelle, which is the direction of the wind power generator, and the direction (wind direction) of the rotating surface of the rotor exceeds a predetermined threshold, the operation mode of the wind power generator is changed. A method for controlling a wind turbine generator, comprising: changing the wind power generator.
  3.  請求項2に記載の風力発電装置の制御方法であって、
     前記風力発電装置の運転モードは、通常運転モード、縮退運転モード、停止モードであることを特徴とする風力発電装置の制御方法。
    A method for controlling a wind turbine generator according to claim 2,
    The wind turbine generator control method includes a normal operation mode, a degenerate operation mode, and a stop mode.
  4.  請求項3に記載の風力発電装置の制御方法であって、
     前記風向データは、前記ナセル上に設置された風向風速計により計測されると共に、前記ヨー誤差は、前記ナセル内に設置された制御器に備えられているヨー誤差演算部を用いて算出されることを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 3,
    The wind direction data is measured by an anemometer installed on the nacelle, and the yaw error is calculated using a yaw error calculation unit provided in a controller installed in the nacelle. A control method for a wind turbine generator.
  5.  請求項4に記載の風力発電装置の制御方法であって、
     前記制御器は、前記ヨー誤差演算部の他に、前記風力発電装置の運転モードを決定するモード決定部、前記風力発電装置の制御法を決定する制御決定部及び前記風力発電装置を制御するアクチュエータ制御器を備え、
     前記ヨー誤差演算部で前記ヨー誤差を算出し、次に前記モード決定部で前記風力発電装置の運転モードを決定し、前記モード決定部で決定した運転モードが前記制御決定部に送られ、この制御決定部において前記風力発電装置の制御法を決定し、前記制御決定部で決定された前記風力発電装置の制御法が前記アクチュエータ制御器に送られることで、前記風力発電装置が制御されることを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 4,
    In addition to the yaw error calculation unit, the controller includes a mode determination unit that determines an operation mode of the wind turbine generator, a control determination unit that determines a control method of the wind turbine generator, and an actuator that controls the wind turbine generator Equipped with a controller,
    The yaw error calculation unit calculates the yaw error, then the mode determination unit determines the operation mode of the wind turbine generator, the operation mode determined by the mode determination unit is sent to the control determination unit, The control determination unit determines a control method for the wind turbine generator, and the wind turbine generator is controlled by sending the control method for the wind turbine generator determined by the control determiner to the actuator controller. A method for controlling a wind turbine generator.
  6.  請求項5に記載の風力発電装置の制御方法であって、
     前記風力発電装置の制御は、前記風向データを前記風向風速計で取得し(S101)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で計算し(S102)、次に前記ヨー誤差が閾値以上であるかを前記モード決定部で判別し(S104)、前記S104での判別が閾値以下(No)の場合は、通常通り運転(通常運転モード)を継続し、前記S104での判別が閾値以上(Yes)の場合は、前記風力発電装置が前記縮退運転モードに移行し(S105)、この後、前記風向データを前記風向風速計で再取得し(S111)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で再計算し(S112)、そして、再度、前記ヨー誤差が閾値以上か前記モード決定部で判別し(S114)、前記S114での判別が閾値以下(No)の場合は、通常運転モードに復帰し(S125)、前記S114での判別が閾値以上(Yes)の場合は、前記縮退運転モードの継続時間を前記モード決定部で判別し(S106)、前記S106での判別が前記縮退運転モードの継続時間が閾値以下(No)の場合は、再度、前記S111に戻り前記と同様のフローを継続し、前記S106での判別が前記縮退運転モードの継続時間が閾値以上(Yes)の場合は、前記停止モードに移行(S115)することを特徴とする風力発電装置の制御方法。
    A method for controlling a wind turbine generator according to claim 5,
    The wind power generator is controlled by acquiring the wind direction data with the anemometer (S101), calculating the yaw error for the wind power generator with the yaw error calculator (S102), and then calculating the yaw error. The mode determining unit determines whether or not the threshold is equal to or greater than the threshold (S104). If the determination in S104 is equal to or lower than the threshold (No), the normal operation (normal operation mode) is continued, and the determination in S104 is performed. If it is equal to or greater than the threshold (Yes), the wind turbine generator shifts to the degenerate operation mode (S105), and then the wind direction data is reacquired by the wind direction anemometer (S111), The yaw error is recalculated by the yaw error calculation unit (S112), and it is determined again by the mode determination unit whether the yaw error is equal to or greater than a threshold value (S114), and the determination at S114 is performed. If the value is less than the value (No), the normal operation mode is restored (S125). If the determination in S114 is equal to or greater than the threshold (Yes), the duration of the degenerate operation mode is determined by the mode determination unit ( S106) When the determination in S106 is the duration time of the degenerate operation mode is less than or equal to the threshold (No), the process returns to S111 again and the same flow as above is continued, and the determination in S106 is the degenerate operation. When the mode duration time is equal to or greater than the threshold (Yes), the mode is shifted to the stop mode (S115).
  7.  請求項3に記載の風力発電装置の制御方法であって、
     前記ヨー誤差の所定時間における風向の変化量が予め決められた閾値を超えた場合に、前記縮退運転モードに移行することを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 3,
    The wind turbine generator control method according to claim 1, wherein when the amount of change in the wind direction during a predetermined time of the yaw error exceeds a predetermined threshold value, the operation mode is shifted to the degenerate operation mode.
  8.  請求項7に記載の風力発電装置の制御方法であって、
     前記風向データは、前記ナセル上に設置された風向風速計により計測されると共に、前記ヨー誤差は、前記ナセル内に設置された制御器に備えられているヨー誤差演算部を用いて算出されることを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 7,
    The wind direction data is measured by an anemometer installed on the nacelle, and the yaw error is calculated using a yaw error calculation unit provided in a controller installed in the nacelle. A control method for a wind turbine generator.
  9.  請求項8に記載の風力発電装置の制御方法であって、
     前記制御器は、前記ヨー誤差演算部の他に、前記ヨー誤差が保管されるヨー誤差記憶部、該ヨー誤差記憶部から送られた前記ヨー誤差の所定時間における変化量が計算される変化量計算部、前記ヨー誤差の変化量に基づいて前記風力発電装置の運転モードを決定するモード決定部、前記風力発電装置の制御法を決定する制御決定部及び前記風力発電装置を制御するアクチュエータ制御器を備え、
     前記ヨー誤差演算部で前記ヨー誤差を算出し、ここで得られた前記ヨー誤差を前記ヨー誤差記憶部に保管され、このヨー誤差記憶部に保管された前記ヨー誤差は、前記変化量計算部に送られ、該変化量計算部で所定時間における前記ヨー誤差の変化量が計算され、
     次に前記モード決定部で前記ヨー誤差の変化量に基づいて前記風力発電装置の運転モードを決定し、前記モード決定部で決定した運転モードが前記制御決定部に送られ、この制御決定部において前記風力発電装置の制御法を決定し、前記制御決定部で決定された前記風力発電装置の制御法が前記アクチュエータ制御器に送られることで、前記風力発電装置が制御されることを特徴とする風力発電装置の制御方法。
    A method for controlling a wind turbine generator according to claim 8,
    In addition to the yaw error calculation unit, the controller includes a yaw error storage unit that stores the yaw error, and a change amount that calculates a change amount of the yaw error transmitted from the yaw error storage unit at a predetermined time. A calculation unit; a mode determination unit that determines an operation mode of the wind turbine generator based on a change amount of the yaw error; a control determination unit that determines a control method of the wind turbine generator; and an actuator controller that controls the wind turbine generator With
    The yaw error calculation unit calculates the yaw error, the yaw error obtained here is stored in the yaw error storage unit, and the yaw error stored in the yaw error storage unit is the change amount calculation unit The change amount calculation unit calculates the change amount of the yaw error at a predetermined time,
    Next, the mode determination unit determines an operation mode of the wind turbine generator based on the amount of change in the yaw error, and the operation mode determined by the mode determination unit is sent to the control determination unit. The wind power generator is controlled by determining a control method of the wind power generator and sending the control method of the wind power generator determined by the control determination unit to the actuator controller. A method for controlling a wind turbine generator.
  10.  請求項9に記載の風力発電装置の制御方法であって、
     前記風力発電装置の制御は、前記風向データを前記風向風速計で取得し(S101)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で計算する(S102)と共に、前記ヨー誤差の変化量を前記変化量計算部で計算し(S103)、次に前記変化量計算部で計算した前記ヨー誤差の変化量が閾値以上であるかを前記モード決定部で判別し(S134)、前記S134での判別が閾値以下(No)の場合は、通常通り運転(通常運転モード)を継続し、前記S134での判別が閾値以上(Yes)の場合は、前記風力発電装置が前記縮退運転モードに移行し(S105)、
     この後、前記風向データを前記風向風速計で再取得し(S111)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で再計算し(S112)、次に前記ヨー誤差の変化量を前記変化量計算部で再計算し(S113)、そして、前記ヨー誤差の変化量が閾値以下であるかを前記モード決定部で判定し(S119)、前記S119での判定が前記ヨー誤差の変化量が閾値以下(No)の場合は、通常運転モード(通常運転モード)に復帰し(S125)、前記S119での判定が前記ヨー誤差の変化量が閾値以上(Yes)の場合は、前記縮退運転モードの継続時間を前記モード決定部で判別し(S106)、前記S106での判別が前記縮退運転モードの継続時間が閾値以下(No)の場合は、再度、前記S111に戻り前記と同様のフローを継続し、前記S106の判別で前記縮退運転モードの継続時間が閾値以上(Yes)の場合は、前記停止モードに移行(S115)することを特徴とする風力発電装置の制御方法。
    A method for controlling a wind turbine generator according to claim 9,
    The wind power generator is controlled by acquiring the wind direction data with the anemometer (S101), calculating the yaw error for the wind power generator with the yaw error calculator (S102), and changing the yaw error. The amount is calculated by the change amount calculation unit (S103), and then the mode determination unit determines whether the change amount of the yaw error calculated by the change amount calculation unit is greater than or equal to a threshold value (S134). When the determination at is below the threshold (No), the operation is continued as usual (normal operation mode), and when the determination at S134 is above the threshold (Yes), the wind turbine generator is in the degenerate operation mode. (S105)
    Thereafter, the wind direction data is reacquired by the wind direction anemometer (S111), the yaw error for the wind power generator is recalculated by the yaw error calculator (S112), and the change amount of the yaw error is then calculated. The change amount calculation unit recalculates (S113), and the mode determination unit determines whether the change amount of the yaw error is equal to or less than a threshold value (S119), and the determination in S119 determines the change in the yaw error. When the amount is less than or equal to the threshold (No), the normal operation mode (normal operation mode) is restored (S125). When the determination in S119 is that the amount of change in the yaw error is greater than or equal to the threshold (Yes), the degeneration is performed. The operation mode duration is determined by the mode determination unit (S106). If the determination in S106 is less than or equal to the threshold value (No) in the degenerate operation mode, the process returns to S111 again. Control method like continue to flow, if the duration of the degenerate operation mode is judged at the S106 is equal to or higher than the threshold (Yes), a wind power generator, characterized in that the transition (S115) to the stop mode.
  11.  請求項3に記載の風力発電装置の制御方法であって、
     前記ナセル上に設置された風向風速計により前記風向データ及び前記風力発電装置に流入する風速データが計測され、前記ヨー誤差は、前記ナセル内に設置された制御器に備えられているヨー誤差演算部を用いて前記風向データに応じて算出されると共に、この算出と並行して前記制御器に備えられている閾値演算部を用いて前記風速データに応じて前記ヨー誤差の閾値が算出されることを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 3,
    The wind direction data and the wind speed data flowing into the wind power generator are measured by an anemometer installed on the nacelle, and the yaw error is calculated by a yaw error calculation provided in a controller installed in the nacelle. And calculating a threshold value of the yaw error according to the wind speed data using a threshold value calculation unit provided in the controller in parallel with the calculation. A control method for a wind turbine generator.
  12.  請求項11に記載の風力発電装置の制御方法であって、
     前記制御器は、前記ヨー誤差演算部及び前記閾値演算部の他に、前記風力発電装置の運転モードを決定するモード決定部、前記風力発電装置の制御法を決定する制御決定部及び前記風力発電装置を制御するアクチュエータ制御器を備え、
     前記ヨー誤差演算部で前記風向データに応じて前記ヨー誤差を算出すると共に、この算出と並行して前記閾値演算部を用いて前記風速データに応じて前記ヨー誤差の閾値を算出し、次に前記モード決定部で前記風力発電装置の運転モードを決定し、前記モード決定部で決定した運転モードが前記制御決定部に送られ、この制御決定部において前記風力発電装置の制御法を決定し、前記制御決定部で決定された前記風力発電装置の制御法が前記アクチュエータ制御器に送られることで、前記風力発電装置が制御されることを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 11,
    In addition to the yaw error calculation unit and the threshold value calculation unit, the controller includes a mode determination unit that determines an operation mode of the wind power generator, a control determination unit that determines a control method of the wind power generator, and the wind power generation An actuator controller for controlling the device,
    The yaw error calculation unit calculates the yaw error according to the wind direction data, and in parallel with the calculation, uses the threshold value calculation unit to calculate the threshold value of the yaw error according to the wind speed data, The mode determination unit determines the operation mode of the wind power generator, the operation mode determined by the mode determination unit is sent to the control determination unit, the control determination unit determines the control method of the wind power generation device, The wind power generator control method, wherein the wind power generator is controlled by sending the control method of the wind power generator determined by the control determination unit to the actuator controller.
  13.  請求項12に記載の風力発電装置の制御方法であって、
     前記風力発電装置の制御は、前記風向データ及び風速データを前記風向風速計で取得し(S101)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で計算する(S102)と共に、並行して前記ヨー誤差の閾値を前記閾値演算部で計算し(S122)、次に前記ヨー誤差が閾値以上であるかを前記モード決定部で判別し(S104)、前記S104での判別が閾値以下(No)の場合は、通常通り運転(通常運転モード)を継続し、前記S104での判別が閾値以上(Yes)の場合は、前記風力発電装置が前記縮退運転モード(S105)に移行し、
     この後、再度、前記風向データ及び風速データを前記風向風速計で再取得し(S111)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で再計算する(S112)と共に、並行して前記ヨー誤差の閾値も前記閾値演算部で再計算し(S132)、そして、再度、前記ヨー誤差が閾値以上であるかを前記モード決定部で判別し(S114)、前記S114での判別が閾値以下(No)の場合は、前記通常運転モードに復帰し(S125)、前記S114での判別が閾値以上(Yes)の場合は、前記縮退運転モードの継続時間を前記モード決定部で判別し(S106)、前記S106での判別が前記縮退運転モードの継続時間が閾値以下(No)の場合は、再度、前記S111に戻り前記と同様のフローを継続し、前記S106での判別が前記縮退運転モードの継続時間が閾値以上(Yes)の場合は、前記停止モードに移行(S115)することを特徴とする風力発電装置の制御方法。
    A method for controlling a wind turbine generator according to claim 12,
    The wind turbine generator is controlled by acquiring the wind direction data and wind velocity data with the wind direction anemometer (S101), calculating the yaw error for the wind turbine generator with the yaw error calculator (S102), and in parallel. Then, the threshold value of the yaw error is calculated by the threshold value calculation unit (S122), the mode determination unit determines whether the yaw error is equal to or greater than the threshold value (S104), and the determination in S104 is less than the threshold value (S104). In the case of No), the normal operation (normal operation mode) is continued, and when the determination in S104 is equal to or greater than the threshold (Yes), the wind turbine generator shifts to the degenerate operation mode (S105),
    Thereafter, the wind direction data and the wind speed data are again acquired by the wind direction anemometer (S111), and the yaw error for the wind turbine generator is recalculated by the yaw error calculator (S112). The threshold value of the yaw error is also recalculated by the threshold value calculation unit (S132), and the mode determination unit determines again whether the yaw error is equal to or greater than the threshold value (S114). In the following (No), it returns to the normal operation mode (S125), and when the determination in S114 is equal to or greater than a threshold value (Yes), the mode determination unit determines the duration of the degenerate operation mode ( S106) If the determination in S106 is that the duration time of the degenerate operation mode is less than or equal to the threshold (No), the flow returns to S111 again and the same flow as above is continued. Determination duration of the degenerate operation mode is greater than or equal to the threshold in the case of (Yes), the control method of a wind power generation apparatus, characterized in that the transition (S115) to the stop mode.
  14.  請求項3に記載の風力発電装置の制御方法であって、
     前記ナセル上に設置された風向風速計により前記風向データ及び前記風力発電装置に流入する風速データが計測され、前記ヨー誤差は、前記ナセル内に設置された制御器に備えられているヨー誤差演算部を用いて前記風向データに応じて算出されると共に、この算出と並行して前記制御器に備えられている閾値演算部を用いて前記風速データに応じて前記ヨー誤差の変化量の閾値及び変化量の算出時間が算出され、前記ヨー誤差演算部で算出された前記ヨー誤差を前記制御器に備えられているヨー誤差記憶部に保管し、このヨー誤差記憶部に保管された前記ヨー誤差は、前記制御器に備えられている変化量計算部に送られ、該変化量計算部で所定時間における前記ヨー誤差の変化量が計算され、
     次に前記制御器に備えられているモード決定部で前記ヨー誤差の変化量とその閾値に基づいて前記風力発電装置の運転モードを決定し、決定した前記運転モードが前記制御器に備えられている制御決定部に送られ、この制御決定部において前記風力発電装置の制御法を決定し、前記制御決定部で決定された前記風力発電装置の制御法が前記制御器に備えられているアクチュエータ制御器に送られることで、前記風力発電装置が制御されることを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 3,
    The wind direction data and the wind speed data flowing into the wind power generator are measured by an anemometer installed on the nacelle, and the yaw error is calculated by a yaw error calculation provided in a controller installed in the nacelle. And calculating the threshold value of the amount of change in yaw error according to the wind speed data using a threshold value calculation unit provided in the controller in parallel with the calculation. The calculation time of the change amount is calculated, the yaw error calculated by the yaw error calculation unit is stored in the yaw error storage unit provided in the controller, and the yaw error stored in the yaw error storage unit Is sent to a change amount calculation unit provided in the controller, and the change amount calculation unit calculates a change amount of the yaw error in a predetermined time,
    Next, a mode determination unit provided in the controller determines an operation mode of the wind turbine generator based on a change amount of the yaw error and a threshold value thereof, and the determined operation mode is provided in the controller. Actuator control in which the control determination unit determines a control method for the wind turbine generator, and the controller determines the control method for the wind turbine generator determined by the control determiner. The wind power generator control method, wherein the wind power generator is controlled by being sent to a generator.
  15.  請求項14に記載の風力発電装置の制御方法であって、
     前記風力発電装置の制御は、前記風向データ及び風速データを前記風向風速計で取得し(S101)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で計算する(S102)と共に、並行して、得られた前記風速データから変化量の計算時間とその閾値を前記閾値演算部で演算し(S122)、次に前記ヨー誤差の変化量を前記変化量計算部で計算し(S103)、前記ヨー誤差の変化量が閾値以上であるかを前記モード決定部で判別し(S104)、前記S104での判別が閾値以下(No)の場合は、通常通り運転(通常運転モード)を継続し、前記S104での判別が閾値以上(Yes)の場合は、前記風力発電装置は前記縮退運転モードに移行し(S105)、
     この後、前記風向データ及び風速データを前記風向風速計で再取得し(S111)、前記風力発電装置に対する前記ヨー誤差を前記ヨー誤差演算部で再計算し(S112)、このとき、並行して、得られた前記風速データから変化量の計算時間とその閾値を前記閾値演算部で再演算し(S142)、次に前記ヨー誤差の変化量を前記変化量計算部で再計算し(S113)、そして、前記ヨー誤差の変化量が閾値以上であるかを前記モード決定部で判定し(S119)、前記S119での判定が前記ヨー誤差の変化量が閾値以下(No)の場合は、前記通常運転モードに復帰し(S125)、前記S119での判定が前記ヨー誤差の変化量が閾値以上(Yes)の場合は、前記縮退運転モードの継続時間を前記モード決定部で判別し(S106)、前記S106での判別が前記縮退運転モードの継続時間が閾値以下(No)の場合は、再度、前記S111に戻り前記と同様のフローを継続し、前記S106での判別が前記縮退運転モードの継続時間が閾値以上(Yes)の場合は、前記停止モードに移行(S115)することを特徴とする風力発電装置の制御方法。
    It is a control method of the wind power generator according to claim 14,
    The wind turbine generator is controlled by acquiring the wind direction data and wind velocity data with the wind direction anemometer (S101), calculating the yaw error for the wind turbine generator with the yaw error calculator (S102), and in parallel. The change amount calculation time and the threshold value are calculated from the obtained wind speed data by the threshold value calculation unit (S122), and then the change amount of the yaw error is calculated by the change amount calculation unit (S103). Whether the change amount of the yaw error is equal to or greater than a threshold is determined by the mode determination unit (S104). If the determination in S104 is equal to or less than the threshold (No), the normal operation (normal operation mode) is continued. If the determination in S104 is equal to or greater than the threshold (Yes), the wind turbine generator shifts to the degenerate operation mode (S105),
    Thereafter, the wind direction data and the wind speed data are reacquired by the wind direction anemometer (S111), and the yaw error for the wind turbine generator is recalculated by the yaw error calculator (S112). The change amount calculation time and the threshold value are recalculated from the obtained wind speed data by the threshold value calculation unit (S142), and then the yaw error change amount is recalculated by the change amount calculation unit (S113). Then, the mode determining unit determines whether the change amount of the yaw error is greater than or equal to a threshold value (S119), and when the determination in S119 is that the change amount of the yaw error is less than or equal to the threshold value (No), When the normal operation mode is restored (S125), and the determination in S119 is that the amount of change in the yaw error is greater than or equal to a threshold (Yes), the duration of the degenerate operation mode is determined by the mode determination unit (S106). When the determination in S106 is the duration time of the degenerate operation mode is less than or equal to the threshold (No), the process returns to S111 and continues the same flow as described above, and the determination in S106 indicates that the degenerate operation mode is in the degenerate operation mode. When the duration time is equal to or greater than the threshold (Yes), the control method of the wind turbine generator is shifted to the stop mode (S115).
PCT/JP2019/002850 2018-03-06 2019-01-29 Wind turbine generator control method WO2019171829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-039453 2018-03-06
JP2018039453A JP2019152179A (en) 2018-03-06 2018-03-06 Wind power generator control method

Publications (1)

Publication Number Publication Date
WO2019171829A1 true WO2019171829A1 (en) 2019-09-12

Family

ID=67847056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002850 WO2019171829A1 (en) 2018-03-06 2019-01-29 Wind turbine generator control method

Country Status (3)

Country Link
JP (1) JP2019152179A (en)
TW (1) TW201938904A (en)
WO (1) WO2019171829A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010799A1 (en) * 2021-08-03 2023-02-09 中国华能集团清洁能源技术研究院有限公司 Land-saving and load-reducing wind power generation system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236374B2 (en) * 2019-12-05 2023-03-09 株式会社日立製作所 wind turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160878A (en) * 2015-03-04 2016-09-05 三菱重工業株式会社 Wind turbine generator system and control method of the wind turbine generator system
JP2017133441A (en) * 2016-01-29 2017-08-03 三菱重工業株式会社 Wind power generator and operation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016160878A (en) * 2015-03-04 2016-09-05 三菱重工業株式会社 Wind turbine generator system and control method of the wind turbine generator system
JP2017133441A (en) * 2016-01-29 2017-08-03 三菱重工業株式会社 Wind power generator and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023010799A1 (en) * 2021-08-03 2023-02-09 中国华能集团清洁能源技术研究院有限公司 Land-saving and load-reducing wind power generation system

Also Published As

Publication number Publication date
JP2019152179A (en) 2019-09-12
TW201938904A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US8598727B2 (en) Methods for controlling a wind turbine connected to the utility grid, wind turbine and wind park
EP2878811B1 (en) Methods of operating a wind turbine, and wind turbines
US8178986B2 (en) Wind turbine operation system and method
EP2249030B1 (en) Wind turbine
EP2737205B1 (en) A method of yawing a rotor of a wind turbine
US9476407B2 (en) Method of operating a wind turbine
EP2726734B1 (en) Disablement of wind turbines in a wind park
WO2011157271A2 (en) A method and control unit for controlling a wind turbine in dependence on loading experienced by the wind turbine
WO2012117491A1 (en) Wind power generator, and method for controlling same
WO2008131775A2 (en) A method of operating a wind turbine with pitch control, a wind turbine and a cluster of wind turbines
WO2014111522A1 (en) Methods of operating a wind turbine
US11136961B2 (en) System and method for optimizing power output of a wind turbine during an operational constraint
CA2972084A1 (en) Methods and systems for feedforward control of wind turbines
WO2019171829A1 (en) Wind turbine generator control method
EP3812578B1 (en) System and method for controlling a wind turbine based on a collective pitch-offset
EP3415752B1 (en) Variable rated speed control in partial load operation of a wind turbine
EP3619423A1 (en) System and method for reducing wind turbine rotor blade loads
JP5325348B1 (en) Windmill control device and method, and wind power generation system
WO2019114896A1 (en) Alarm response in a multi-rotor wind turbine
WO2016138647A1 (en) System and method for mitigating loads on a wind turbine
JP2019031929A (en) Wind farm control system and control method of wind farm
KR20150019461A (en) Wind-Electric Power Generation System and Driving Stop Method Thereof
JP7045294B2 (en) Wind farm
KR20240020185A (en) Determination of a state of a wind turbine blade
CN116292091A (en) Method and system for controlling wind generating set under extreme wind power condition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763694

Country of ref document: EP

Kind code of ref document: A1