WO2019171805A1 - Control device for vehicle installation equipment - Google Patents

Control device for vehicle installation equipment Download PDF

Info

Publication number
WO2019171805A1
WO2019171805A1 PCT/JP2019/002185 JP2019002185W WO2019171805A1 WO 2019171805 A1 WO2019171805 A1 WO 2019171805A1 JP 2019002185 W JP2019002185 W JP 2019002185W WO 2019171805 A1 WO2019171805 A1 WO 2019171805A1
Authority
WO
WIPO (PCT)
Prior art keywords
command signal
θin
vehicle
command
interpolation
Prior art date
Application number
PCT/JP2019/002185
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 藤井
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019171805A1 publication Critical patent/WO2019171805A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a control device for on-vehicle equipment used for steering angle control in an automatic steering device, for example.
  • a signal (steering angle command signal) related to the steered amount of the steered wheels is input to the control device of the steering device from outside via CAN (Controller Area Network).
  • CAN Controller Area Network
  • the input period of the steering angle command signal becomes longer due to restrictions on the transmission / reception period. For this reason, if the electric motor that assists the steering force is controlled based on the steering angle command signal, smooth control becomes difficult. Therefore, for example, in Patent Document 1, linear interpolation is performed if the change in the steering angular velocity commanded by the steering angle command signal is a certain value or less, and curve interpolation is performed if the change is more than that.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device for a vehicle-mounted device that can drive an actuator smoothly and improve controllability.
  • An interpolation signal generation unit that derives ⁇ in that is an interpolation value of a signal and an actuator command signal generation unit that generates a second command signal that is a command signal to the actuator based on ⁇ in (tn, tn + 1)
  • FIG. 2 is a block diagram for extracting a main part related to steering angle control in the EPS controller of FIG. 1 for describing a control device for on-vehicle equipment according to an embodiment of the present invention.
  • 3 is a flowchart of a first steering angle control operation in the EPS controller shown in FIG. 2. It is a characteristic view which compares and shows the steering angle command value in the past and this invention. It is a characteristic view which compares and shows the steering angle command speed in the past and this invention. It is a flowchart of the 2nd steering angle control operation
  • FIG. 8 is a characteristic diagram showing angular acceleration before correction in the steering angle control operation shown in FIGS. 6 and 7.
  • FIG. 8 is a characteristic diagram showing the corrected angular acceleration in the steering angle control operation shown in FIGS. 6 and 7.
  • FIG. 1 shows a schematic configuration of an electric power steering (EPS) system as an example of a vehicle-mounted device to which the present invention is applied.
  • the EPS system 100 includes a steering wheel 10, a steering angle sensor 11, a steering torque sensor 12, an electric motor 13, an EPS controller 14, a host vehicle position detection sensor 15, an automatic operation controller 16, a power source (battery) 17, and the like.
  • the A steering angle sensor 11, a steering torque sensor 12, an electric motor 13, and a speed reducer 20 are provided in a steering column 19 that includes the steering shaft 18.
  • the steering torque generated in the steering shaft 18 is detected by the steering torque sensor 12, and the electric motor is operated by the EPS controller 14 based on the detected torque value and the vehicle speed signal.
  • the steering force according to the running state of the vehicle is generated to assist.
  • the rack shaft 22 moves horizontally to the left and right in the advancing direction, whereby the steering operation is transmitted to the wheels (steered wheels) 23, 23. Change direction.
  • the vehicle position detection sensor 15 such as a camera
  • an automatic driving request and a steering angle command are supplied from the automatic driving controller 16 to the EPS controller 14 based on the position information.
  • the EPS controller 14 calculates a turning amount based on the steering angle detection value detected by the steering angle sensor 11 and the torque detection value of the steering shaft 18 detected by the steering torque sensor 12, and the EPS controller 14 uses the electric motor.
  • the steering wheel 13 By driving the steering wheel 13, the steering wheel 10 is operated so as to approach the steering angle commanded by the automatic driving controller 16.
  • FIG. 2 is a view for explaining a control device for a vehicle-mounted device according to the embodiment of the present invention, and shows a main part related to the steering angle control in the EPS controller 14 of FIG.
  • the EPS controller 14 includes a first command signal acquisition unit 31, an interpolation signal generation unit 32, a filter circuit 33, and an actuator command signal generation unit 34.
  • the first command signal acquisition unit 31 acquires a plurality of first command signals CS1 that are periodic signals related to the turning amount of the steered wheels 23 and 23 of the vehicle from the automatic operation controller 16 by CAN communication.
  • the filter circuit 33 is an LPF (Low Pass Filter), and smoothes the output signal (interpolation value ⁇ in) of the interpolation signal generation unit 32 and supplies it to the actuator command signal generation unit 34.
  • the actuator command signal generation unit 34 generates a second command signal CS2, which is a drive signal for the actuator (electric motor) 13, based on the interpolation value ⁇ in (tn, tn + 1) generated by the interpolation signal generation unit 32.
  • the actuator command signal generation unit 34 is based on the interpolated value ⁇ in that has passed through the filter circuit 33, and the second command signal CS2 in a cycle shorter than the cycle in which the first command signal acquisition unit 31 acquires the plurality of first command signals CS1. Is configured to generate
  • the filter circuit 33 is not necessarily applied. It may be applied only when the delay of the second command signal CS2 can be tolerated and further smoothing is necessary.
  • FIG. 3 shows a first steering angle control operation in the EPS controller 14 shown in FIG.
  • the first rudder angle control operation not only the rudder angle is matched with the command, but also the commanded rudder angle is interpolated so that the rudder angular velocity is also matched with the command gradient.
  • a smooth rudder angle command and convergence to the command rudder angle are made compatible.
  • the first rudder angle control operation is started, information on the command rudder angle is periodically updated. Therefore, it is determined whether it is the timing of the information update. In this example, determination is made based on whether or not the first command signal CS1 has been updated (step S1). For simplicity, the determination may be made based on whether or not the time t has reached the period T of the first command signal.
  • step S1 If it is determined in step S1 that the first command signal CS1 has been updated, the steering angle information and the information on the slope of the interpolation value are updated. Specifically, the first command signal ⁇ 1 that was the latest latest is set in the previous first command signal ⁇ 0. The latest first command signal CS1 is set to the first command signal ⁇ 1 that was the latest last time. Further, the latest target rudder angular velocity ⁇ 1 is set to the previous target rudder angular velocity ⁇ 0. The target rudder angular velocity ⁇ 1 that was the latest latest is set by subtracting the previous first command signal CS1 from the first command signal CS1 and dividing it by the period T of the first command signal CS1 (step S2).
  • the period T of the first command signal CS1 is defined by tn + 1 ⁇ tn.
  • the first command signal ⁇ 1 set to the previous first command signal ⁇ 0 may be an angle measured by the steering angle sensor 11 (however, in this case, due to sensing noise or the like when the command is differentiated) You need to be careful not to make any sudden spikes).
  • the interpolation signal generator 32 updates the four coefficients ⁇ 0 to ⁇ 3 in the cubic interpolation formula for deriving the interpolation value ⁇ in.
  • This interpolation formula is expressed by the following formula (1).
  • the differentiation of the interpolation formula (1) is as the following formula (2).
  • the constraint conditions for determining the coefficients ⁇ 0 to ⁇ 3 in the interpolation formula (1) are: the current steering angle command value is ⁇ 0, the steering angle command value after T time is ⁇ 1, the current steering angle command value speed is ⁇ 0, and T time If the subsequent steering angle command value speed is ⁇ 1, it can be obtained by solving the simultaneous equations of the following equation (3).
  • the coefficient calculation formula derived from the above formula (3) is expressed by the following formula (4).
  • step S4 the time t used in the above-described interpolation formula (1) is initialized.
  • step S1 if it is determined in step S1 that the first command signal CS1 is not updated rather than the information update timing, the process moves to step S5, and the time t used in the interpolation formula (1) is incremented by one (t + 1). To do.
  • steps S6 and S7 calculation is performed based on the interpolation equation (1) using the time t and the coefficient ⁇ i of the interpolation equation (set coefficients ⁇ 0 to ⁇ 3), and the steering angle is calculated for each step. Then, the interpolated command steering angle (interpolated value ⁇ in) is derived. In this way, the second command signal CS2, which is a drive signal for the electric motor 13, is generated.
  • FIG. 4 shows the steering angle command value in the conventional and the present invention
  • FIG. 5 shows the steering angle command speed in the conventional and the present invention in comparison.
  • the steering angle command value is obtained by deriving the interpolation value based on the gradient of the first command signal. Since the hunting can be suppressed by converging and the electric motor 13 can be driven smoothly, the controllability can be improved. Further, as shown in FIG. 5, since the steering angle command value continuously changes, torque fluctuation is small, the electric motor 13 can be driven smoothly, controllability can be improved, and sound vibration performance can be improved.
  • FIG. 6 shows a second steering angle control operation in the EPS controller 14 shown in FIG.
  • the interpolation processing in consideration of the realizable torque is performed by suppressing the acceleration of the interpolated steering angle command within a predetermined value. Further, by suppressing the twisting torque of the steering column generated by the steering angle control, the driver's steering operation can be easily detected, and the driver's steering operation can be prioritized over the automatic driving.
  • step S11 determination is made based on whether or not the first command signal CS1 has been updated (step S11). For simplicity, the determination may be made based on whether or not the time t has reached the period T of the first command signal. If it is determined in step S11 that the first command signal CS1 has been updated, the steering angle information and the information on the slope of the interpolation value are updated. Specifically, the first command signal ⁇ 1 that was the latest latest is set in the previous first command signal ⁇ 0. The latest first command signal CS1 is set to the first command signal ⁇ 1 that was the latest last time.
  • the latest target rudder angular velocity ⁇ 1 is set to the previous target rudder angular velocity ⁇ 0.
  • the target steering angular velocity ⁇ 1 that was the latest latest is set by subtracting the previous first command signal CS1 from the first command signal CS1 and dividing it by the period T of the first command signal CS1 (step S12).
  • the period T of the first command signal CS1 is defined by tn + 1 ⁇ tn.
  • the first command signal ⁇ 1 set to the previous first command signal ⁇ 0 may be an angle measured by the steering angle sensor 11 (however, in this case, due to sensing noise or the like when the command is differentiated) You need to be careful not to make a sudden spike.)
  • the interpolation signal generator 32 updates the four coefficients ⁇ 0 to ⁇ 3 in the cubic interpolation equation for deriving the interpolation value ⁇ in.
  • This interpolation formula is expressed by the above formula (1).
  • the equation for calculating the coefficient is the above equation (4).
  • an acceleration change section (acceleration change start time ts and acceleration change end time te) is calculated.
  • the interpolation coefficients ⁇ s0 to ⁇ s2 before the acceleration change start time ts, the interpolation coefficients ⁇ 0 to ⁇ 3 between the acceleration change start time ts and the acceleration change end time te, and the interpolation coefficients ⁇ e0 to ⁇ e2 after the acceleration change end time te are respectively obtained.
  • step S15 the time t used in the above-described interpolation formula (1) is initialized (step S16).
  • step S11 determines whether the first command signal CS1 is not updated rather than the information update timing.
  • step S17 the time t used in the interpolation formula (1) is incremented by one (t + 1). To do.
  • step S16 and step S17 is synthesize
  • step S19 the time t used in the interpolation formula (1) is compared with the acceleration change start time ts.
  • the comparison result is “t ⁇ ts”
  • the time t used in the interpolation formula (1) is compared with the acceleration change end time te (step S20).
  • step S21 is executed.
  • step S22 is executed.
  • step S19 determines the process of step S23 is executed.
  • steps S21, S22, and S23 calculation is performed based on each interpolation equation using the time t and the coefficient corrected by the interpolation equation calculated in step S15, and the steering angle is calculated for each step.
  • the second command signal CS2 that is the drive signal is generated.
  • the interpolation formula in the acceleration change section derived in step S21 is a cubic formula and uses a coefficient ⁇ i.
  • the interpolation equation after the acceleration change section derived in step S22 is a quadratic equation and uses the coefficient ⁇ ei.
  • the interpolation equation before the acceleration change section derived in step S23 is a quadratic equation and uses the coefficient ⁇ si.
  • the interpolation signals are synthesized (step S24) and smoothed by the filter circuit 33 (step S25).
  • FIG. 8 is a characteristic diagram showing the angular acceleration before correction in the second steering angle control operation
  • FIG. 9 is a characteristic diagram showing the angular acceleration after correction.
  • the linear characteristic is before the angular acceleration correction.
  • the maximum value of the second order differential value (acceleration component of the steering amount) and the minimum value of the second order differential value are limited, and the coefficient is further calculated. Restricted to After the angular acceleration correction, as shown in FIG. 9, it is divided into an initial saturated section, an acceleration changing section, and a last saturated section. Then, by setting the sum of the areas of the areas AA1 and AA2 and the sum of the areas of the areas AB1 and AB2 to be the same, the area where the torque is limited is covered by the area that is not limited.
  • the command steering angle after the angular acceleration correction can be uniquely obtained.
  • the angular velocity correction will be described in more detail. Since the saturated interval is constant, it can be expressed by a quadratic expression. Therefore, the interpolation command after the angular acceleration correction can be expressed by the following equation (5). Furthermore, angular velocity and angular acceleration are It becomes. Here, what is unknown is ⁇ s0 to ⁇ s2, ⁇ 0 to ⁇ 3, ⁇ e0 to ⁇ e3, ts, te, a total of 12 terms.
  • the constraint condition is that the current steering angle command value is ⁇ 0, and the steering angle after T time
  • the command value is ⁇ 1
  • the current steering angle command value speed is ⁇ 0
  • the steering angle command value speed after T time is ⁇ 1
  • the command rudder angle is interpolated so that the rudder angular speed also matches the command gradient. This is the same as the angle control operation.
  • both smooth rudder angle command and convergence to the commanded rudder angle can be achieved.
  • the interpolation process takes into account the realizable torque, and the steering input of the steering column 19 is taken into account, making it easier for the driver to determine the steering input. become.
  • the steering angular speed continuously changes, so that torque fluctuation is small, sound vibration is improved, and controllability is improved. Moreover, since it is going to match
  • the electric power steering system has been described as an example of the vehicle-mounted device to which the present invention is applied. However, it is needless to say that the embodiment can be similarly applied to other vehicle-mounted devices.
  • the interpolated signal generating unit 32 An actuator command signal generation unit 34 that generates a second command signal CS2 that is a command signal to the actuator based on the ⁇ in (tn, tn + 1); It is characterized by having.
  • ⁇ in (tn, tn + 1) corresponding to the change characteristic of the command signal CS1 can be obtained, and for example, hunting of ⁇ in (tn, tn + 1) can be suppressed.
  • the on-vehicle equipment is a steering device
  • the actuator is an electric motor 13 that assists the steering device with steering force
  • the first command signal CS1 is a signal related to the turning amount of the steered wheels 23, 23 of the vehicle.
  • the interpolation value of the first command signal CS1 is derived, and the command signal (second command signal CS2) of the electric motor 13 is generated in consideration of the interpolation value of the first command signal CS1.
  • the electric motor 13 can be controlled.
  • the actuator command signal generation unit 34 generates the second command signal CS2 at a cycle shorter than the cycle at which the first command signal acquisition unit 31 acquires the plurality of first command signals CS1. It is characterized by doing. According to the above configuration, it is possible to control the electric motor 13 smoothly by generating the second command signal CS2 with a shorter cycle than the first command signal CS1. Although the acquisition cycle of the first command signal CS1 received by CAN communication or the like is relatively long, the length of the acquisition cycle can be supplemented by the interpolation value ⁇ in of the first command signal CS1.
  • the ⁇ in is derived as described above. According to the above configuration, since the value of the first command signal CS1 is a highly accurate value at a certain timing, by periodically matching the interpolation value ⁇ in of the first command signal CS1 with the first command signal CS1, It is possible to improve the consistency between the interpolation value ⁇ in of the first command signal CS1 and the original signal (transmission source signal) of the first command signal CS1.
  • the filter circuit 33 is provided.
  • the actuator command signal generation unit 34 generates the second command signal CS2 based on the interpolation value ⁇ in that has passed through the filter circuit 33. According to the above configuration, when the second command signal CS2 is generated, the smooth second command signal CS2 in which the vibration component is suppressed can be obtained by using the filtered interpolation value ⁇ in.
  • this invention is not limited to above-described embodiment, Various modifications are included.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A control device (14) for vehicle installation equipment has: a first command signal acquisition unit (31) that acquires a plurality of cyclic first command signals CS1; an interpolation signal generation unit (32) that, when the first command signals acquired by the first command signal acquisition unit at timings t=tn−1, t=tn, t=tn+1 are respectively denoted as θn−1, θn, θn+1, derives interpolated values θin of the first command signals between timings, and that, on the basis of the slope of the first command signals between the timings t=tn and t=tn+1, derives an interpolated value θin(tn,tn+1) of the first command signals between the timings t=tn and t=tn+1; and a command signal generation unit (34) that generates a second command signal CS2, which is a command signal sent to an actuator, on the basis of θin(tn,tn+1).

Description

車両搭載機器の制御装置Control device for on-vehicle equipment
 本発明は、例えば自動操舵装置における舵角制御に用いられる車両搭載機器の制御装置に関する。 The present invention relates to a control device for on-vehicle equipment used for steering angle control in an automatic steering device, for example.
 車両の自動操舵を行う際に、操舵輪の転舵量に関する信号(舵角指令信号)は、ステアリング装置の制御装置に外部からCAN(Controller Area Network)経由で入力される。一般に、CAN通信は、送受信周期の制約上、舵角指令信号の入力周期が長くなる。このため、舵角指令信号に基づき操舵力を補助する電動モータを制御すると、滑らかな制御が困難となる。そこで、例えば、特許文献1では、舵角指令信号で指令された舵角速度の変化が一定値以下であれば直線補間、それ以上であれば曲線補間を行うようにしている。 When performing automatic steering of a vehicle, a signal (steering angle command signal) related to the steered amount of the steered wheels is input to the control device of the steering device from outside via CAN (Controller Area Network). In general, in CAN communication, the input period of the steering angle command signal becomes longer due to restrictions on the transmission / reception period. For this reason, if the electric motor that assists the steering force is controlled based on the steering angle command signal, smooth control becomes difficult. Therefore, for example, in Patent Document 1, linear interpolation is performed if the change in the steering angular velocity commanded by the steering angle command signal is a certain value or less, and curve interpolation is performed if the change is more than that.
特開2016-193690号公報Japanese Unexamined Patent Publication No. 2016-193690
 しかしながら、直線補間すると速度が周期的にステップ状に変化するため、スパイク的なトルク指令となり、電動モータのトルク変動が大きくなって制御性が良くない。また、音振性能も良くない。一方、曲線補間において、二次曲線の条件を「補間始点の速度を現在の速度」、「補間終点は現在指令値」とすると、ハンチングして収束しない可能性がある。この場合には、指令勾配と実速度の差が大きいので直線補間にも切り替えられない。 However, when linear interpolation is performed, the speed periodically changes stepwise, resulting in a spike-like torque command, resulting in a large torque fluctuation of the electric motor and poor controllability. Also, the sound vibration performance is not good. On the other hand, in curve interpolation, if the conditions of the quadratic curve are “interpolation start point speed is current speed” and “interpolation end point is current command value”, there is a possibility that hunting does not converge. In this case, since the difference between the command gradient and the actual speed is large, switching to linear interpolation cannot be performed.
 本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、アクチュエータを滑らかに駆動でき、制御性を向上できる車両搭載機器の制御装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device for a vehicle-mounted device that can drive an actuator smoothly and improve controllability.
 本発明の車両搭載機器の制御装置は、その一つの実施態様において、アクチュエータを備え、周期的な信号である複数の第1指令信号を取得する第1指令信号取得部と、t=tn-1、t=tn、t=tn+1の夫々のタイミングにおいて第1指令信号取得部が取得する複数の第1指令信号の夫々をθn-1、θn、θn+1としたとき、各タイミングの間における第1指令信号の補間値であるθinを導出する補間信号生成部と、θin(tn,tn+1)に基づきアクチュエータへの指令信号である第2指令信号を生成するアクチュエータ指令信号生成部とを備え、補間信号生成部は、θn-1、θn、およびタイミングt=tnとt=tn+1の間における第1指令信号の勾配に基づき、タイミングt=tnとt=tn+1の間の第1指令信号の補間値であるθin(tn,tn+1)を導出することを特徴とする。 In one embodiment, the control apparatus for on-vehicle equipment of the present invention includes an actuator, a first command signal acquisition unit that acquires a plurality of first command signals that are periodic signals, and t = tn−1. , T = tn, t = tn + 1, when the plurality of first command signals acquired by the first command signal acquisition unit is θn−1, θn, θn + 1, the first command during each timing An interpolation signal generation unit that derives θin that is an interpolation value of a signal and an actuator command signal generation unit that generates a second command signal that is a command signal to the actuator based on θin (tn, tn + 1) Based on θn−1, θn and the gradient of the first command signal between timings t = tn and t = tn + 1, the first finger between timings t = tn and t = tn + 1 Characterized by deriving an interpolated value of the signal θin (tn, tn + 1).
 本発明の一実施形態によれば、第1指令信号のθn-1とθnだけでなく、タイミングt=tnとt=tn+1の間における勾配も考慮して、第1指令信号の変化特性に応じた補間値θin(tn,tn+1)を求めて補間することにより、ハンチングを抑制してアクチュエータを滑らかに駆動でき、制御性を向上できる。 According to one embodiment of the present invention, not only θn−1 and θn of the first command signal, but also a gradient between timings t = tn and t = tn + 1 is taken into account according to the change characteristics of the first command signal. By obtaining and interpolating the interpolated value θin (tn, tn + 1), hunting can be suppressed and the actuator can be driven smoothly, and controllability can be improved.
本発明が適用される車両搭載機器の一例として、電動パワーステアリングシステムを示す概略図である。It is the schematic which shows an electric power steering system as an example of the vehicle mounting apparatus to which this invention is applied. 本発明の実施形態に係る車両搭載機器の制御装置について説明するためのもので、図1のEPSコントローラにおける舵角制御に関係する要部を抽出して示すブロック図である。FIG. 2 is a block diagram for extracting a main part related to steering angle control in the EPS controller of FIG. 1 for describing a control device for on-vehicle equipment according to an embodiment of the present invention. 図2に示したEPSコントローラにおける第1の舵角制御動作のフローチャートである。3 is a flowchart of a first steering angle control operation in the EPS controller shown in FIG. 2. 従来と本発明における舵角指令値を対比して示す特性図である。It is a characteristic view which compares and shows the steering angle command value in the past and this invention. 従来と本発明における舵角指令速度を対比して示す特性図である。It is a characteristic view which compares and shows the steering angle command speed in the past and this invention. 図2に示したEPSコントローラにおける第2の舵角制御動作のフローチャートである。It is a flowchart of the 2nd steering angle control operation | movement in the EPS controller shown in FIG. 図6に続く第2の舵角制御動作のフローチャートである。It is a flowchart of the 2nd steering angle control operation following FIG. 図6および図7に示した舵角制御動作における補正前の角加速度を示す特性図である。FIG. 8 is a characteristic diagram showing angular acceleration before correction in the steering angle control operation shown in FIGS. 6 and 7. 図6および図7に示した舵角制御動作における補正後の角加速度を示す特性図である。FIG. 8 is a characteristic diagram showing the corrected angular acceleration in the steering angle control operation shown in FIGS. 6 and 7.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明が適用される車両搭載機器の一例として、電動パワーステアリング(EPS:Electric Power Steering)システムの概略構成を示している。EPSシステム100は、ステアリングホイール10、操舵角センサ11、操舵トルクセンサ12、電動モータ13、EPSコントローラ14、自車位置検出センサ15、自動運転コントローラ16および電源(バッテリー)17などを含んで構成される。ステアリングシャフト18を内包するステアリングコラム19内には、操舵角センサ11、操舵トルクセンサ12、電動モータ13および減速機20が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration of an electric power steering (EPS) system as an example of a vehicle-mounted device to which the present invention is applied. The EPS system 100 includes a steering wheel 10, a steering angle sensor 11, a steering torque sensor 12, an electric motor 13, an EPS controller 14, a host vehicle position detection sensor 15, an automatic operation controller 16, a power source (battery) 17, and the like. The A steering angle sensor 11, a steering torque sensor 12, an electric motor 13, and a speed reducer 20 are provided in a steering column 19 that includes the steering shaft 18.
 車両の運転者がステアリング10の操作を行う際には、ステアリングシャフト18に発生する操舵トルクを操舵トルクセンサ12によって検出し、このトルク検出値と車速信号などに基づいて、EPSコントローラ14で電動モータ13を駆動することにより、車両の走行状態に応じた操舵力を発生させて補助する。これによって、ステアリングシャフト18の先端に設けられたピニオンギア21が回転すると、ラック軸22が進行方向左右に水平移動することで、ステアリング操作が車輪(転舵輪)23,23に伝達されて車両の向きを変える。 When the driver of the vehicle operates the steering 10, the steering torque generated in the steering shaft 18 is detected by the steering torque sensor 12, and the electric motor is operated by the EPS controller 14 based on the detected torque value and the vehicle speed signal. By driving 13, the steering force according to the running state of the vehicle is generated to assist. As a result, when the pinion gear 21 provided at the tip of the steering shaft 18 rotates, the rack shaft 22 moves horizontally to the left and right in the advancing direction, whereby the steering operation is transmitted to the wheels (steered wheels) 23, 23. Change direction.
 一方、自動運転を行う場合には、カメラなどの自車位置検出センサ15で位置情報などを取得し、この位置情報に基づき自動運転コントローラ16から自動運転要求と操舵角指令をEPSコントローラ14に供給して操舵を行う。EPSコントローラ14は、操舵角センサ11によって検出された操舵角検出値と、操舵トルクセンサ12によって検出したステアリングシャフト18のトルク検出値などに基づいて転舵量を算出し、EPSコントローラ14で電動モータ13を駆動することにより、自動運転コントローラ16で指令された操舵角により近づくようにステアリング10を操作する。 On the other hand, when performing automatic driving, position information and the like are acquired by the vehicle position detection sensor 15 such as a camera, and an automatic driving request and a steering angle command are supplied from the automatic driving controller 16 to the EPS controller 14 based on the position information. And steer. The EPS controller 14 calculates a turning amount based on the steering angle detection value detected by the steering angle sensor 11 and the torque detection value of the steering shaft 18 detected by the steering torque sensor 12, and the EPS controller 14 uses the electric motor. By driving the steering wheel 13, the steering wheel 10 is operated so as to approach the steering angle commanded by the automatic driving controller 16.
 図2は、本発明の実施形態に係る車両搭載機器の制御装置について説明するためのもので、図1のEPSコントローラ14における舵角制御に関係する要部を抽出して示している。EPSコントローラ14は、第1指令信号取得部31、補間信号生成部32、フィルタ回路33およびアクチュエータ指令信号生成部34を備えている。 FIG. 2 is a view for explaining a control device for a vehicle-mounted device according to the embodiment of the present invention, and shows a main part related to the steering angle control in the EPS controller 14 of FIG. The EPS controller 14 includes a first command signal acquisition unit 31, an interpolation signal generation unit 32, a filter circuit 33, and an actuator command signal generation unit 34.
 第1指令信号取得部31は、自動運転コントローラ16から、CAN通信により車両の転舵輪23,23の転舵量に関する周期的な信号である複数の第1指令信号CS1を取得する。補間信号生成部32は、t=tn-1、t=tn、t=tn+1の夫々のタイミングにおいて第1指令信号取得部31が取得する複数の第1指令信号CS1の夫々をθn-1、θn、θn+1としたとき、各タイミングの間における第1指令信号CS1の補間値であるθinを導出するように構成されている。 The first command signal acquisition unit 31 acquires a plurality of first command signals CS1 that are periodic signals related to the turning amount of the steered wheels 23 and 23 of the vehicle from the automatic operation controller 16 by CAN communication. The interpolation signal generation unit 32 converts each of the plurality of first command signals CS1 acquired by the first command signal acquisition unit 31 to θn−1, θn at timings t = tn−1, t = tn, t = tn + 1. , Θn + 1, θin, which is an interpolation value of the first command signal CS1 between each timing, is derived.
 すなわち、補間信号生成部32は、θn-1、θn、およびタイミングt=tn-1とt=tnの間における第1指令信号CS1の勾配、およびタイミングt=tnとt=tn+1の間における第1指令信号CS1の勾配に基づき、タイミングt=tnとt=tn+1の間の第1指令信号CS1の補間値であるθin(tn,tn+1)を導出する。このタイミングt=tnとt=tn+1の間における第1指令信号CS1の勾配は、例えば(θn-θn-1)/(tn+1-tn)で表される。
 上記補間値θin(tn,tn+1)の導出には、複数の第1指令信号CS1のうち、タイミングt=tnよりも所定周期前の第1指令信号CS1を用いる。この際、タイミングt=tnのときのθinがθn-1と一致し、タイミングt=tn+1のときのθinがθnと一致するようにθinを導出する。また、タイミングt=tnのときのθinの傾きが、タイミングt=tn-1からt=tnの間の第1指令信号CS1の勾配と一致するようにθinを導出する。さらに、t=tnとt=tn+1の間における第1指令信号CS1の二階微分値を考慮してθinを導出しても良い。
That is, the interpolation signal generation unit 32 performs θn−1, θn, the gradient of the first command signal CS1 between timings t = tn−1 and t = tn, and the second phase between timings t = tn and t = tn + 1. Based on the gradient of the one command signal CS1, θin (tn, tn + 1), which is an interpolation value of the first command signal CS1 between timings t = tn and t = tn + 1, is derived. The gradient of the first command signal CS1 between the timings t = tn and t = tn + 1 is expressed by, for example, (θn−θn−1) / (tn + 1−tn).
In order to derive the interpolation value θin (tn, tn + 1), the first command signal CS1 that is a predetermined period before the timing t = tn is used among the plurality of first command signals CS1. At this time, θin is derived so that θin at timing t = tn matches θn−1, and θin at timing t = tn + 1 matches θn. Further, θin is derived so that the inclination of θin at the timing t = tn matches the gradient of the first command signal CS1 between the timing t = tn−1 and t = tn. Further, θin may be derived in consideration of the second order differential value of the first command signal CS1 between t = tn and t = tn + 1.
 フィルタ回路33は、LPF(Low Pass Filter)であり、補間信号生成部32の出力信号(補間値θin)を平滑化してアクチュエータ指令信号生成部34に供給する。
 アクチュエータ指令信号生成部34は、補間信号生成部32で生成された補間値θin(tn,tn+1)に基づき、アクチュエータ(電動モータ)13の駆動信号である第2指令信号CS2を生成する。このアクチュエータ指令信号生成部34は、フィルタ回路33を通過した補間値θinに基づき、第1指令信号取得部31が複数の第1指令信号CS1を取得する周期よりも短い周期で第2指令信号CS2を生成するように構成されている。
 尚、フィルタ回路33は必ず適用しなければならない訳ではない。第2指令信号CS2の遅れが許容でき、かつ更なる平滑化が必要な場合にのみ適用すればよい。
The filter circuit 33 is an LPF (Low Pass Filter), and smoothes the output signal (interpolation value θin) of the interpolation signal generation unit 32 and supplies it to the actuator command signal generation unit 34.
The actuator command signal generation unit 34 generates a second command signal CS2, which is a drive signal for the actuator (electric motor) 13, based on the interpolation value θin (tn, tn + 1) generated by the interpolation signal generation unit 32. The actuator command signal generation unit 34 is based on the interpolated value θin that has passed through the filter circuit 33, and the second command signal CS2 in a cycle shorter than the cycle in which the first command signal acquisition unit 31 acquires the plurality of first command signals CS1. Is configured to generate
The filter circuit 33 is not necessarily applied. It may be applied only when the delay of the second command signal CS2 can be tolerated and further smoothing is necessary.
 図3は、図2に示したEPSコントローラ14における第1の舵角制御動作を示している。この第1の舵角制御動作では、舵角を指令に一致させるだけでなく、舵角速度も指令勾配に一致させるように指令舵角の補間を行う。このように、舵角指令の勾配を考慮することで、滑らかな舵角指令と、指令舵角への収束性を両立させるようにしている。
 第1の舵角制御動作が開始されると、指令舵角は周期的に情報が更新されるので、その情報更新のタイミングか否かを判断する。本例では、第1指令信号CS1が更新されたか否かで判断している(ステップS1)。簡易的には、時間tが第1指令信号の周期Tに達したか否かで判断しても良い。
FIG. 3 shows a first steering angle control operation in the EPS controller 14 shown in FIG. In the first rudder angle control operation, not only the rudder angle is matched with the command, but also the commanded rudder angle is interpolated so that the rudder angular velocity is also matched with the command gradient. Thus, by considering the gradient of the rudder angle command, a smooth rudder angle command and convergence to the command rudder angle are made compatible.
When the first rudder angle control operation is started, information on the command rudder angle is periodically updated. Therefore, it is determined whether it is the timing of the information update. In this example, determination is made based on whether or not the first command signal CS1 has been updated (step S1). For simplicity, the determination may be made based on whether or not the time t has reached the period T of the first command signal.
 ステップS1で、第1指令信号CS1が更新されたと判断されると、舵角情報や補間値の傾きの情報を更新する。詳しくは、前回の第1指令信号θ0に前回最新であった第1指令信号θ1を設定する。前回最新であった第1指令信号θ1には最新の第1指令信号CS1を設定する。また、前回の目標舵角速度ν0に最新の目標舵角速度ν1を設定する。前回最新であった目標舵角速度ν1には、第1指令信号CS1から前回の第1指令信号CS1を減算し、第1指令信号CS1の周期Tで除算したものを設定する(ステップS2)。この第1指令信号CS1の周期Tは、tn+1-tnで定義される。
 尚、前回の第1指令信号θ0に設定する第1指令信号θ1は、操舵角センサ11により計測された角度でも良い(但し、この場合には、指令の微分を行う際に、センシングノイズなどによってスパイク状に急激な変化をしないように配慮する必要がある)。
If it is determined in step S1 that the first command signal CS1 has been updated, the steering angle information and the information on the slope of the interpolation value are updated. Specifically, the first command signal θ1 that was the latest latest is set in the previous first command signal θ0. The latest first command signal CS1 is set to the first command signal θ1 that was the latest last time. Further, the latest target rudder angular velocity ν1 is set to the previous target rudder angular velocity ν0. The target rudder angular velocity ν1 that was the latest latest is set by subtracting the previous first command signal CS1 from the first command signal CS1 and dividing it by the period T of the first command signal CS1 (step S2). The period T of the first command signal CS1 is defined by tn + 1−tn.
Note that the first command signal θ1 set to the previous first command signal θ0 may be an angle measured by the steering angle sensor 11 (however, in this case, due to sensing noise or the like when the command is differentiated) You need to be careful not to make any sudden spikes).
 次のステップS3では、更新された情報を使って、補間信号生成部32で補間値θinを導出するための三次の補間式における4つの係数α0~α3の更新を行う。この補間式は、下式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 また、補間式(1)の微分は、次式(2)の通りである。
Figure JPOXMLDOC01-appb-M000002
In the next step S3, using the updated information, the interpolation signal generator 32 updates the four coefficients α0 to α3 in the cubic interpolation formula for deriving the interpolation value θin. This interpolation formula is expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
The differentiation of the interpolation formula (1) is as the following formula (2).
Figure JPOXMLDOC01-appb-M000002
 補間式(1)における係数α0~α3を決めるための拘束条件は、現在の舵角指令値がθ0、T時間後の舵角指令値がθ1、現在の舵角指令値速度がν0、T時間後の舵角指令値速度がν1とすると、下式(3)の連立方程式を解くことで得られる。
Figure JPOXMLDOC01-appb-M000003
 上式(3)から導出される係数の算出式は、次式(4)で表される。
Figure JPOXMLDOC01-appb-M000004
The constraint conditions for determining the coefficients α0 to α3 in the interpolation formula (1) are: the current steering angle command value is θ0, the steering angle command value after T time is θ1, the current steering angle command value speed is ν0, and T time If the subsequent steering angle command value speed is ν1, it can be obtained by solving the simultaneous equations of the following equation (3).
Figure JPOXMLDOC01-appb-M000003
The coefficient calculation formula derived from the above formula (3) is expressed by the following formula (4).
Figure JPOXMLDOC01-appb-M000004
 次のステップS4では、上述した補間式(1)で用いる時間tを初期化する。
 一方、ステップS1で情報更新のタイミングではなく、第1指令信号CS1が更新されていないと判断されると、ステップS5に移動し、補間式(1)で用いる時間tを1カウントアップ(t+1)する。
 続いて、ステップS6,S7では、時間tおよび補間式の係数αi(設定した係数α0~α3)を用いて、上記補間式(1)に基づき演算を行って、1ステップ毎に舵角を算出し、補間した指令舵角(補間値θin)を導出する。このようにして、電動モータ13の駆動信号である第2指令信号CS2を生成する。
In the next step S4, the time t used in the above-described interpolation formula (1) is initialized.
On the other hand, if it is determined in step S1 that the first command signal CS1 is not updated rather than the information update timing, the process moves to step S5, and the time t used in the interpolation formula (1) is incremented by one (t + 1). To do.
Subsequently, in steps S6 and S7, calculation is performed based on the interpolation equation (1) using the time t and the coefficient αi of the interpolation equation (set coefficients α0 to α3), and the steering angle is calculated for each step. Then, the interpolated command steering angle (interpolated value θin) is derived. In this way, the second command signal CS2, which is a drive signal for the electric motor 13, is generated.
 図4は、従来と本発明における舵角指令値、図5は従来と本発明における舵角指令速度をそれぞれ対比して示している。図4に破線で示すように、従来は舵角指令値がハンチングする可能性があったが、本発明では第1指令信号の勾配に基づいて補間値を導出することで、舵角指令値を収束させてハンチングを抑制でき、電動モータ13を滑らかに駆動できるので、制御性を向上できる。
 また、図5に示すように、舵角指令値が連続的に変化するためトルク変動が小さく、電動モータ13を滑らかに駆動でき、制御性を向上できるとともに音振性能も改善できる。
FIG. 4 shows the steering angle command value in the conventional and the present invention, and FIG. 5 shows the steering angle command speed in the conventional and the present invention in comparison. As shown by a broken line in FIG. 4, there is a possibility that the steering angle command value hunts conventionally. However, in the present invention, the steering angle command value is obtained by deriving the interpolation value based on the gradient of the first command signal. Since the hunting can be suppressed by converging and the electric motor 13 can be driven smoothly, the controllability can be improved.
Further, as shown in FIG. 5, since the steering angle command value continuously changes, torque fluctuation is small, the electric motor 13 can be driven smoothly, controllability can be improved, and sound vibration performance can be improved.
 図6は、図2に示したEPSコントローラ14における第2の舵角制御動作を示している。本例では、舵角制御をするときに、補間した舵角指令の加速度を所定値以内に抑えることで、実現可能なトルクを考慮した補間処理を行う。また、舵角制御により発生するステアリングコラムの捻りトルクを抑えることで、運転者のステアリング操作を容易に検知し、自動運転よりも運転者のステアリング操作を優先する事ができる。 FIG. 6 shows a second steering angle control operation in the EPS controller 14 shown in FIG. In this example, when the steering angle control is performed, the interpolation processing in consideration of the realizable torque is performed by suppressing the acceleration of the interpolated steering angle command within a predetermined value. Further, by suppressing the twisting torque of the steering column generated by the steering angle control, the driver's steering operation can be easily detected, and the driver's steering operation can be prioritized over the automatic driving.
 すなわち、第2の舵角制御動作が開始されると、指令舵角は周期的に情報が更新されるので、その情報更新のタイミングか否かを判断する。本例では、第1指令信号CS1が更新されたか否かで判断している(ステップS11)。簡易的には、時間tが第1指令信号の周期Tに達したか否かで判断しても良い。
 ステップS11で、第1指令信号CS1が更新されたと判断されると、舵角情報や補間値の傾きの情報を更新する。詳しくは、前回の第1指令信号θ0に前回最新であった第1指令信号θ1を設定する。前回最新であった第1指令信号θ1には最新の第1指令信号CS1を設定する。また、前回の目標舵角速度ν0に最新の目標舵角速度ν1を設定する。前回最新であった目標舵角速度ν1には、第1指令信号CS1から前回の第1指令信号CS1を減算し、第1指令信号CS1の周期Tで除算したものを設定する(ステップS12)。この第1指令信号CS1の周期Tは、tn+1-tnで定義される。
 尚、前回の第1指令信号θ0に設定する第1指令信号θ1は、操舵角センサ11により計測された角度でも良い(但し、この場合には、指令の微分を行う際に、センシングノイズなどによってスパイク状に急激な変化をしないように配慮する必要がある)。
That is, when the second rudder angle control operation is started, information on the command rudder angle is periodically updated. Therefore, it is determined whether or not the information update timing is reached. In this example, determination is made based on whether or not the first command signal CS1 has been updated (step S11). For simplicity, the determination may be made based on whether or not the time t has reached the period T of the first command signal.
If it is determined in step S11 that the first command signal CS1 has been updated, the steering angle information and the information on the slope of the interpolation value are updated. Specifically, the first command signal θ1 that was the latest latest is set in the previous first command signal θ0. The latest first command signal CS1 is set to the first command signal θ1 that was the latest last time. Further, the latest target rudder angular velocity ν1 is set to the previous target rudder angular velocity ν0. The target steering angular velocity ν1 that was the latest latest is set by subtracting the previous first command signal CS1 from the first command signal CS1 and dividing it by the period T of the first command signal CS1 (step S12). The period T of the first command signal CS1 is defined by tn + 1−tn.
Note that the first command signal θ1 set to the previous first command signal θ0 may be an angle measured by the steering angle sensor 11 (however, in this case, due to sensing noise or the like when the command is differentiated) You need to be careful not to make a sudden spike.)
 次のステップS13では、更新された情報を使って、補間信号生成部32で補間値θinを導出するための三次の補間式における4つの係数α0~α3の更新を行う。この補間式は、上式(1)で表される。
 係数の算出式は、上式(4)である。
In the next step S13, using the updated information, the interpolation signal generator 32 updates the four coefficients α0 to α3 in the cubic interpolation equation for deriving the interpolation value θin. This interpolation formula is expressed by the above formula (1).
The equation for calculating the coefficient is the above equation (4).
 次のステップS14では、加速度変化区間(加速度変化開始時間tsと加速度変化終了時間te)の算出を行う。そして、加速度変化開始時間ts前の補間係数αs0~αs2、加速度変化開始時間tsと加速度変化終了時間teの間の補間係数αν0~αν3、および加速度変化終了時間te後の補間係数αe0~αe2それぞれを算出する(ステップS15)。
 続いて、上述した補間式(1)で用いる時間tを初期化する(ステップS16)。
In the next step S14, an acceleration change section (acceleration change start time ts and acceleration change end time te) is calculated. The interpolation coefficients αs0 to αs2 before the acceleration change start time ts, the interpolation coefficients αν0 to αν3 between the acceleration change start time ts and the acceleration change end time te, and the interpolation coefficients αe0 to αe2 after the acceleration change end time te are respectively obtained. Calculate (step S15).
Subsequently, the time t used in the above-described interpolation formula (1) is initialized (step S16).
 一方、ステップS11で情報更新のタイミングではなく、第1指令信号CS1が更新されていないと判断されると、ステップS17に移動し、補間式(1)で用いる時間tを1カウントアップ(t+1)する。そして、ステップS16とステップS17の出力を合成してステップS19に移動する(ステップS18)。
 ステップS19では、補間式(1)で用いる時間tと加速度変化開始時間tsを比較する。比較結果が「t≧ts」のときには、補間式(1)で用いる時間tと加速度変化終了時間teを比較する(ステップS20)。そして、「t≦te」のときには、ステップS21の処理を実行し、「t>te」のときには、ステップS22の処理を実行する。更に、ステップS19で「t<ts」と判断されたときには、ステップS23の処理を実行する。
On the other hand, if it is determined in step S11 that the first command signal CS1 is not updated rather than the information update timing, the process moves to step S17, and the time t used in the interpolation formula (1) is incremented by one (t + 1). To do. And the output of step S16 and step S17 is synthesize | combined and it moves to step S19 (step S18).
In step S19, the time t used in the interpolation formula (1) is compared with the acceleration change start time ts. When the comparison result is “t ≧ ts”, the time t used in the interpolation formula (1) is compared with the acceleration change end time te (step S20). When “t ≦ te”, the process of step S21 is executed. When “t> te”, the process of step S22 is executed. Furthermore, when it is determined in step S19 that “t <ts”, the process of step S23 is executed.
 ステップS21,S22,S23では、時間tおよびステップS15で算出した補間式の補正した係数を用いて、それぞれの補間式に基づき演算を行って、1ステップ毎に舵角を算出し、電動モータ13の駆動信号である第2指令信号CS2を生成する。ステップS21で導出する加速度変化区間中の補間式は、三次式であり係数ανiを用いる。ステップS22で導出する加速度変化区間後の補間式は、二次式であり係数αeiを用いる。また、ステップS23で導出する加速度変化区間前の補間式は、二次式であり係数αsiを用いる。
 その後、各補間信号を合成し(ステップS24)、フィルタ回路33により平滑化する(ステップS25)。
In steps S21, S22, and S23, calculation is performed based on each interpolation equation using the time t and the coefficient corrected by the interpolation equation calculated in step S15, and the steering angle is calculated for each step. The second command signal CS2 that is the drive signal is generated. The interpolation formula in the acceleration change section derived in step S21 is a cubic formula and uses a coefficient ανi. The interpolation equation after the acceleration change section derived in step S22 is a quadratic equation and uses the coefficient αei. Further, the interpolation equation before the acceleration change section derived in step S23 is a quadratic equation and uses the coefficient αsi.
Thereafter, the interpolation signals are synthesized (step S24) and smoothed by the filter circuit 33 (step S25).
 図8は第2の舵角制御動作における補正前の角加速度を示す特性図、図9は補正後の角加速度を示す特性図である。
 図8に示すように、角加速度補正前は線形特性である。本第2の舵角制御動作では、舵角制御を行う範囲を決めるために、二階微分値(転舵量の加速度成分)の最大値と二階微分値の最小値で制限し、更に係数を元に制限している。
 角加速度補正後は、図9に示すように、初期の飽和した区間、加速度が変化する区間、最後の飽和した区間に分かれる。そして、領域AA1と領域AA2の面積の和と、領域AB1と領域AB2の面積の和が同じになるように設定することで、トルク制限した分を制限していない領域でカバーする。
FIG. 8 is a characteristic diagram showing the angular acceleration before correction in the second steering angle control operation, and FIG. 9 is a characteristic diagram showing the angular acceleration after correction.
As shown in FIG. 8, the linear characteristic is before the angular acceleration correction. In the second steering angle control operation, in order to determine the range in which the steering angle control is performed, the maximum value of the second order differential value (acceleration component of the steering amount) and the minimum value of the second order differential value are limited, and the coefficient is further calculated. Restricted to
After the angular acceleration correction, as shown in FIG. 9, it is divided into an initial saturated section, an acceleration changing section, and a last saturated section. Then, by setting the sum of the areas of the areas AA1 and AA2 and the sum of the areas of the areas AB1 and AB2 to be the same, the area where the torque is limited is covered by the area that is not limited.
 ここで、飽和中の角加速度とt=tsとt=teで波形が連続することを考慮すると、角加速度補正後の指令舵角を一意に求める事ができる。
 次に、角速度補正について、より詳細に説明する。飽和した区間は角加速度一定なので、二次式で表現可能である。よって、角加速度補正後の補間指令は、次式(5)で表せる。
Figure JPOXMLDOC01-appb-M000005
 さらに角速度、角加速度はそれぞれ、
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
となる。
 ここで、未知のものは、αs0~αs2、αν0~αν3、αe0~αe3、ts、teの計12項であり、一方、拘束条件は現在の舵角指令値がθ0、T時間後の舵角指令値がθ1、現在の舵角指令値速度がν0、T時間後の舵角指令値速度がν1、および下記(a)~(d)の12条件あるため、この連立方程式を解くことで未知の12項を決定する事ができる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Here, considering the angular acceleration during saturation and the fact that the waveform continues at t = ts and t = te, the command steering angle after the angular acceleration correction can be uniquely obtained.
Next, the angular velocity correction will be described in more detail. Since the saturated interval is constant, it can be expressed by a quadratic expression. Therefore, the interpolation command after the angular acceleration correction can be expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Furthermore, angular velocity and angular acceleration are
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
It becomes.
Here, what is unknown is αs0 to αs2, αν0 to αν3, αe0 to αe3, ts, te, a total of 12 terms. On the other hand, the constraint condition is that the current steering angle command value is θ0, and the steering angle after T time The command value is θ1, the current steering angle command value speed is ν0, the steering angle command value speed after T time is ν1, and there are 12 conditions (a) to (d) below. 12 items can be determined.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 このように、第2の舵角制御動作では、舵角を指令に一致させるだけでなく、舵角速度も指令勾配に一致させるように指令舵角の補間を行う点は、上述した第1の舵角制御動作と同様である。舵角指令の勾配を考慮することで、滑らかな舵角指令と指令舵角への収束性を両立させる事ができる。
 加えて、補間した舵角指令の加速度を所定値以内に抑えることで、実現可能なトルクを考慮した補間処理となり、さらにステアリングコラム19の捻りトルクを考慮する事で運転者の操舵入力判断が容易になる。
As described above, in the second rudder angle control operation, not only the rudder angle is matched with the command, but also the command rudder angle is interpolated so that the rudder angular speed also matches the command gradient. This is the same as the angle control operation. By considering the gradient of the rudder angle command, both smooth rudder angle command and convergence to the commanded rudder angle can be achieved.
In addition, by suppressing the acceleration of the interpolated rudder angle command within a predetermined value, the interpolation process takes into account the realizable torque, and the steering input of the steering column 19 is taken into account, making it easier for the driver to determine the steering input. become.
 上述したように、本発明によれば、舵角速度が連続的に変化するため、トルク変動が小さく、音振が改善され、制御性も良くなる。また、舵角指令速度を第1指令信号の勾配に合わせようとするので、舵角指令のハンチングを抑制できる。
 更に、舵角を指令に一致させるだけでなく、舵角速度も指令勾配に一致させるよう指令舵角の補間を行う。そして、舵角指令の勾配を考慮する事で、滑らかな舵角指令と指令舵角への収束性を両立する事ができる。
 尚、上述した実施形態では、本発明が適用される車両搭載機器の一例として、電動パワーステアリングシステムを例に取って説明したが、他の車両搭載機器にも同様に適用可能なのは勿論である。
As described above, according to the present invention, the steering angular speed continuously changes, so that torque fluctuation is small, sound vibration is improved, and controllability is improved. Moreover, since it is going to match | combine the rudder angle command speed with the gradient of a 1st command signal, the hunting of a rudder angle command can be suppressed.
Further, not only the rudder angle is matched with the command, but also the commanded rudder angle is interpolated so that the rudder angular velocity is also matched with the command gradient. And by considering the gradient of the rudder angle command, both smooth rudder angle command and convergence to the commanded rudder angle can be achieved.
In the above-described embodiment, the electric power steering system has been described as an example of the vehicle-mounted device to which the present invention is applied. However, it is needless to say that the embodiment can be similarly applied to other vehicle-mounted devices.
 ここで、上記実施形態から把握し得る技術的思想について、以下にその効果と共に記載する。
 車両搭載機器の制御装置は、その一つの態様において、アクチュエータ13を備えるものであって、
 周期的な信号である複数の第1指令信号CS1を取得する第1指令信号取得部31と、
 補間信号生成部32であって、各タイミングであるt=tn-1、t=tn、t=tn+1の夫々において前記第1指令信号取得部31が取得する複数の前記第1指令信号CS1の夫々をθn-1、θn、θn+1としたとき、前記各タイミングの間における前記第1指令信号CS1の補間値であるθinを導出するものであって、前記θn-1、θn、および前記タイミングt=tnとt=tn+1の間における前記第1指令信号CS1の勾配に基づき、前記タイミングt=tnとt=tn+1の間の前記第1指令信号CS1の補間値であるθin(tn,tn+1)を導出する前記補間信号生成部32と、
 アクチュエータ指令信号生成部34であって、前記θin(tn,tn+1)に基づき前記アクチュエータへの指令信号である第2指令信号CS2を生成する前記アクチュエータ指令信号生成部34と、
 を有することを特徴とする。
 上記構成によると、θin(tn,tn+1)を求める際、θn-1とθnだけでなく、タイミングt=tnとt=tn+1の間における第1指令信号CS1の勾配も考慮することにより、第1指令信号CS1の変化特性に応じたθin(tn,tn+1)を求めることができ、例えばθin(tn,tn+1)のハンチングを抑制する事ができる 
Here, the technical idea that can be grasped from the above embodiment will be described together with the effects thereof.
In one aspect, the vehicle-mounted device control device includes an actuator 13,
A first command signal acquisition unit 31 that acquires a plurality of first command signals CS1 that are periodic signals;
Interpolation signal generation unit 32, each of a plurality of first command signals CS1 acquired by first command signal acquisition unit 31 at each timing t = tn-1, t = tn, t = tn + 1. Is θn−1, θn, θn + 1, θin that is an interpolation value of the first command signal CS1 between the timings is derived, and the θn−1, θn, and the timing t = Based on the slope of the first command signal CS1 between tn and t = tn + 1, θin (tn, tn + 1), which is an interpolation value of the first command signal CS1 between the timing t = tn and t = tn + 1, is derived. The interpolated signal generating unit 32,
An actuator command signal generation unit 34 that generates a second command signal CS2 that is a command signal to the actuator based on the θin (tn, tn + 1);
It is characterized by having.
According to the above configuration, when obtaining θin (tn, tn + 1), the first command signal CS1 between the timings t = tn and t = tn + 1 is considered in addition to θn−1 and θn. Θin (tn, tn + 1) corresponding to the change characteristic of the command signal CS1 can be obtained, and for example, hunting of θin (tn, tn + 1) can be suppressed.
 車両搭載機器の制御装置の好ましい態様では、前記車両搭載機器はステアリング装置であって、
 前記アクチュエータは、前記ステアリング装置に操舵力を補助する電動モータ13であって、
 前記第1指令信号CS1は、車両の転舵輪23,23の転舵量に関する信号であることを特徴とする。
 上記構成によると、第1指令信号CS1の補間値を導出し、この第1指令信号CS1の補間値も考慮して電動モータ13の指令信号(第2指令信号CS2)を生成することで、滑らかな電動モータ13の制御を行う事ができる。
In a preferred aspect of the control device for on-vehicle equipment, the on-vehicle equipment is a steering device,
The actuator is an electric motor 13 that assists the steering device with steering force,
The first command signal CS1 is a signal related to the turning amount of the steered wheels 23, 23 of the vehicle.
According to the above configuration, the interpolation value of the first command signal CS1 is derived, and the command signal (second command signal CS2) of the electric motor 13 is generated in consideration of the interpolation value of the first command signal CS1. The electric motor 13 can be controlled.
 さらに別の好ましい態様では、前記アクチュエータ指令信号生成部34は、前記第1指令信号取得部31が複数の前記第1指令信号CS1を取得する周期よりも短い周期で前記第2指令信号CS2を生成することを特徴とする。
 上記構成によると、第1指令信号CS1より短い周期で第2指令信号CS2を生成することで、滑らかな電動モータ13の制御を行う事ができる。CAN通信などで受信された第1指令信号CS1の取得周期は比較的長いが、第1指令信号CS1の補間値θinにより、この取得周期の長さを補う事ができる。
In still another preferred aspect, the actuator command signal generation unit 34 generates the second command signal CS2 at a cycle shorter than the cycle at which the first command signal acquisition unit 31 acquires the plurality of first command signals CS1. It is characterized by doing.
According to the above configuration, it is possible to control the electric motor 13 smoothly by generating the second command signal CS2 with a shorter cycle than the first command signal CS1. Although the acquisition cycle of the first command signal CS1 received by CAN communication or the like is relatively long, the length of the acquisition cycle can be supplemented by the interpolation value θin of the first command signal CS1.
 さらに別の好ましい態様では、前記補間信号生成部32は、前記タイミングt=tnのときの前記θinが前記θn-1と一致し、前記タイミングt=tn+1のときの前記θinが前記θnと一致するように前記θinを導出することを特徴とする。
 上記構成によると、第1指令信号CS1の値は、あるタイミングにおいて正確性の高い値であるため、第1指令信号CS1の補間値θinを周期的に第1指令信号CS1と一致させることにより、第1指令信号CS1の補間値θinと第1指令信号CS1の元の信号(送信元の信号)との一致性を高める事ができる。
In still another preferred aspect, the interpolation signal generation unit 32 matches the θin at the timing t = tn with the θn−1, and the θin at the timing t = tn + 1 matches the θn. The θin is derived as described above.
According to the above configuration, since the value of the first command signal CS1 is a highly accurate value at a certain timing, by periodically matching the interpolation value θin of the first command signal CS1 with the first command signal CS1, It is possible to improve the consistency between the interpolation value θin of the first command signal CS1 and the original signal (transmission source signal) of the first command signal CS1.
 さらに別の好ましい態様では、前記補間信号生成部32は、前記タイミングt=tnのときの前記θinの傾きが、前記タイミングt=tn-1からt=tnの間の前記第1指令信号CS1の勾配と一致するように前記補間値θinを導出することを特徴とする。
 上記構成によると、タイミングt=tnのときの補間値θinの傾きを、タイミングt=tn-1からt=tnの間の第1指令信号CS1の勾配と一致させることにより、アクチュエータ13を滑らかに制御する事ができる。
In still another preferred aspect, the interpolation signal generation unit 32 has the inclination of the θin at the time t = tn of the first command signal CS1 between the timing t = tn−1 and t = tn. The interpolation value θin is derived so as to coincide with the gradient.
According to the above configuration, the slope of the interpolation value θin at the timing t = tn matches the gradient of the first command signal CS1 between the timing t = tn−1 and t = tn, thereby making the actuator 13 smooth. Can be controlled.
 さらに別の好ましい態様では、前記補間信号生成部32は、前記タイミングt=tnとt=tn+1の間における前記第1指令信号CS1の二階微分値に基づき前記補間値θinを導出することを特徴とする。
 上記構成によると、第1指令信号CS1の補間値を導出する際、第1指令信号CS1の二階微分値、すなわち、転舵量の加速度成分を更に考慮することにより、第1指令信号CS1に対応する滑らかな電動モータ13の制御を行う事ができる。
In still another preferred aspect, the interpolation signal generation unit 32 derives the interpolation value θin based on a second-order differential value of the first command signal CS1 between the timings t = tn and t = tn + 1. To do.
According to the above configuration, when the interpolated value of the first command signal CS1 is derived, the second-order differential value of the first command signal CS1, that is, the acceleration component of the turning amount is further taken into consideration, so that the first command signal CS1 can be handled. The smooth electric motor 13 can be controlled.
 さらに別の好ましい態様では、前記補間信号生成部32は、複数の前記第1指令信号CS1のうち、前記タイミングt=tnよりも所定周期前の前記第1指令信号CS1に基づき、前記θin(tn,tn+1)を導出することを特徴とする。
 上記構成によると、例えば、四次などの高次曲線を用いて補間値θinを導出する場合、t=tn-1よりも所定周期前の第1指令信号CS1を考慮することにより、電動モータ13をより滑らかに制御できる補間値θinを導出する事ができる。
In still another preferred aspect, the interpolation signal generating unit 32 is configured to output the θin (tn) based on the first command signal CS1 that is a predetermined period before the timing t = tn among the plurality of first command signals CS1. , Tn + 1).
According to the above configuration, for example, when the interpolated value θin is derived using a high-order curve such as a quartic, the electric motor 13 is considered by considering the first command signal CS1 that is a predetermined period before t = tn−1. It is possible to derive an interpolated value θin that can be controlled more smoothly.
 さらに別の好ましい態様では、フィルタ回路33を備え、
 前記アクチュエータ指令信号生成部34は、前記フィルタ回路33を通過した前記補間値θinに基づき、前記第2指令信号CS2を生成することを特徴とする。
 上記構成によると、第2指令信号CS2を生成する際、フィルタ処理をした補間値θinを用いることにより、振動成分が抑制された滑らかな第2指令信号CS2を得る事ができる。
In still another preferred embodiment, the filter circuit 33 is provided.
The actuator command signal generation unit 34 generates the second command signal CS2 based on the interpolation value θin that has passed through the filter circuit 33.
According to the above configuration, when the second command signal CS2 is generated, the smooth second command signal CS2 in which the vibration component is suppressed can be obtained by using the filtered interpolation value θin.
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. In addition, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 本願は、2018年3月9日付出願の日本国特許出願第2018-042899号に基づく優先権を主張する。2018年3月9日付出願の日本国特許出願第2018-042899号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-042899 filed on Mar. 9, 2018. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-042899 filed on March 9, 2018 is incorporated herein by reference in its entirety.
 10…ステアリングホイール、11…操舵角センサ、12…操舵トルクセンサ、13…電動モータ(アクチュエータ)、14…EPSコントローラ、15…自車位置検出センサ、16…自動運転コントローラ、17…電源(バッテリー)、18…ステアリングシャフト、19…ステアリングコラム、20…減速機、21…ピニオンギア、22…ラック軸、23…車輪、31…第1指令信号取得部、32…補間信号生成部、33…フィルタ回路、34…アクチュエータ指令信号生成部、100…EPSシステム、CS1…第1指令信号、CS2…第2指令信号 DESCRIPTION OF SYMBOLS 10 ... Steering wheel, 11 ... Steering angle sensor, 12 ... Steering torque sensor, 13 ... Electric motor (actuator), 14 ... EPS controller, 15 ... Self-vehicle position detection sensor, 16 ... Automatic driving controller, 17 ... Power supply (battery) , 18 ... steering shaft, 19 ... steering column, 20 ... speed reducer, 21 ... pinion gear, 22 ... rack shaft, 23 ... wheel, 31 ... first command signal acquisition unit, 32 ... interpolation signal generation unit, 33 ... filter circuit 34 ... Actuator command signal generator, 100 ... EPS system, CS1 ... First command signal, CS2 ... Second command signal

Claims (13)

  1.  車両搭載機器の制御装置であって、前記車両搭載機器は、アクチュエータを備えており、
     前記制御装置は、
     周期的な信号である複数の第1指令信号を取得する第1指令信号取得部と、
     補間信号生成部とを備え、
     前記補間信号生成部は、各タイミングであるt=tn-1、t=tn、t=tn+1の夫々において前記第1指令信号取得部が取得する複数の前記第1指令信号の夫々をθn-1、θn、θn+1としたとき、前記各タイミングの間における前記第1指令信号の補間値であるθinを導出し、前記θn-1、θn、および前記タイミングt=tnとt=tn+1の間における前記第1指令信号の勾配に基づき、前記タイミングt=tnとt=tn+1の間の前記第1指令信号の補間値であるθin(tn,tn+1)を導出し、
     前記制御装置は、また、
     前記θin(tn,tn+1)に基づき前記アクチュエータへの指令信号である第2指令信号を生成するアクチュエータ指令信号生成部、
     を有することを特徴とする車両搭載機器の制御装置。
    A vehicle-mounted device control device, wherein the vehicle-mounted device includes an actuator,
    The controller is
    A first command signal acquisition unit that acquires a plurality of first command signals that are periodic signals;
    An interpolation signal generator,
    The interpolation signal generation unit outputs each of the plurality of first command signals acquired by the first command signal acquisition unit at θn−1 at each timing t = tn−1, t = tn, and t = tn + 1. , Θn, θn + 1, θin, which is an interpolated value of the first command signal during each timing, is derived, and θn−1, θn, and the timing t = tn and t = tn + 1 Based on the gradient of the first command signal, θin (tn, tn + 1) that is an interpolation value of the first command signal between the timings t = tn and t = tn + 1 is derived.
    The control device also includes
    An actuator command signal generation unit that generates a second command signal that is a command signal to the actuator based on the θin (tn, tn + 1);
    A control device for a vehicle-mounted device, comprising:
  2.  請求項1に記載の車両搭載機器の制御装置において、
     前記車両搭載機器はステアリング装置であり、
     前記アクチュエータは、前記ステアリング装置に操舵力を補助する電動モータであり、
     前記第1指令信号は、車両の転舵輪の転舵量に関する信号であることを特徴とする車両搭載機器の制御装置。
    The control apparatus for a vehicle-mounted device according to claim 1,
    The vehicle-mounted device is a steering device,
    The actuator is an electric motor that assists the steering device with a steering force,
    The first command signal is a signal relating to a turning amount of a steered wheel of a vehicle.
  3.  請求項2に記載の車両搭載機器の制御装置において、
     前記アクチュエータ指令信号生成部は、前記第1指令信号取得部が複数の前記第1指令信号を取得する周期よりも短い周期で前記第2指令信号を生成することを特徴とする車両搭載機器の制御装置。
    In the control apparatus for on-vehicle equipment according to claim 2,
    The actuator command signal generation unit generates the second command signal in a cycle shorter than a cycle in which the first command signal acquisition unit acquires a plurality of the first command signals. apparatus.
  4.  請求項3に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、前記タイミングt=tnのときの前記θinが前記θn-1と一致し、前記タイミングt=tn+1のときの前記θinが前記θnと一致するように前記θinを導出することを特徴とする車両搭載機器の制御装置。
    In the control apparatus for on-vehicle equipment according to claim 3,
    The interpolation signal generation unit derives the θin so that the θin at the timing t = tn matches the θn−1, and the θin at the timing t = tn + 1 matches the θn. A device for controlling a vehicle-mounted device.
  5.  請求項4に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、前記タイミングt=tnのときの前記θinの傾きが、前記タイミングt=tn-1からt=tnの間の前記第1指令信号の勾配と一致するように前記θinを導出することを特徴とする車両搭載機器の制御装置。
    In the control device for on-vehicle equipment according to claim 4,
    The interpolation signal generation unit sets the θin so that the slope of the θin at the timing t = tn matches the slope of the first command signal between the timing t = tn−1 and t = tn. A control apparatus for a vehicle-mounted device, characterized by being derived.
  6.  請求項3に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、前記タイミングt=tnとt=tn+1の間における前記第1指令信号の二階微分値に基づき前記θinを導出することを特徴とする車両搭載機器の制御装置。
    In the control apparatus for on-vehicle equipment according to claim 3,
    The interpolated signal generation unit derives the θin based on a second-order differential value of the first command signal between the timings t = tn and t = tn + 1.
  7.  請求項3に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、複数の前記第1指令信号のうち、前記タイミングt=tnよりも所定周期前の前記第1指令信号に基づき、前記θin(tn,tn+1)を導出することを特徴とする車両搭載機器の制御装置。
    In the control apparatus for on-vehicle equipment according to claim 3,
    The interpolation signal generation unit derives the θin (tn, tn + 1) based on the first command signal that is a predetermined period before the timing t = tn among the plurality of first command signals. Control device for on-vehicle equipment.
  8.  請求項3に記載の車両搭載機器の制御装置において、
     前記制御装置はフィルタ回路を備え、
     前記アクチュエータ指令信号生成部は、前記フィルタ回路を通過した前記θinに基づき、前記第2指令信号を生成することを特徴とする車両搭載機器の制御装置。
    In the control apparatus for on-vehicle equipment according to claim 3,
    The control device includes a filter circuit;
    The actuator command signal generation unit generates the second command signal based on the θin that has passed through the filter circuit.
  9.  請求項1に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、前記タイミングt=tnのときの前記θinが前記θn-1と一致し、前記タイミングt=tn+1のときの前記θinが前記θnと一致するように前記θinを導出することを特徴とする車両搭載機器の制御装置。
    The control apparatus for a vehicle-mounted device according to claim 1,
    The interpolation signal generation unit derives the θin so that the θin at the timing t = tn matches the θn−1, and the θin at the timing t = tn + 1 matches the θn. A device for controlling a vehicle-mounted device.
  10.  請求項9に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、前記タイミングt=tnのときの前記θinの傾きが、前記タイミングt=tn-1からt=tnの間の前記第1指令信号の勾配と一致するように前記θinを導出することを特徴とする車両搭載機器の制御装置。
    In the control apparatus for on-vehicle equipment according to claim 9,
    The interpolation signal generation unit sets the θin so that the slope of the θin at the timing t = tn matches the slope of the first command signal between the timing t = tn−1 and t = tn. A control apparatus for a vehicle-mounted device, characterized by being derived.
  11.  請求項1に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、前記タイミングt=tnとt=tn+1の間における前記第1指令信号の二階微分値に基づき前記θinを導出することを特徴とする車両搭載機器の制御装置。
    The control apparatus for a vehicle-mounted device according to claim 1,
    The interpolated signal generation unit derives the θin based on a second-order differential value of the first command signal between the timings t = tn and t = tn + 1.
  12.  請求項1に記載の車両搭載機器の制御装置において、
     前記補間信号生成部は、複数の前記第1指令信号のうち、前記タイミングt=tnよりも所定周期前の前記第1指令信号に基づき、前記θin(tn,tn+1)を導出することを特徴とする車両搭載機器の制御装置。
    The control apparatus for a vehicle-mounted device according to claim 1,
    The interpolation signal generation unit derives the θin (tn, tn + 1) based on the first command signal that is a predetermined period before the timing t = tn among the plurality of first command signals. Control device for on-vehicle equipment.
  13.  請求項1に記載の車両搭載機器の制御装置において、
     前記制御装置はフィルタ回路を備え、
     前記アクチュエータ指令信号生成部は、前記フィルタ回路を通過した前記θinに基づき、前記第2指令信号を生成することを特徴とする車両搭載機器の制御装置。
    The control apparatus for a vehicle-mounted device according to claim 1,
    The control device includes a filter circuit;
    The actuator command signal generation unit generates the second command signal based on the θin that has passed through the filter circuit.
PCT/JP2019/002185 2018-03-09 2019-01-24 Control device for vehicle installation equipment WO2019171805A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018042899A JP2019156040A (en) 2018-03-09 2018-03-09 Control device of on-vehicle apparatus
JP2018-042899 2018-03-09

Publications (1)

Publication Number Publication Date
WO2019171805A1 true WO2019171805A1 (en) 2019-09-12

Family

ID=67845944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002185 WO2019171805A1 (en) 2018-03-09 2019-01-24 Control device for vehicle installation equipment

Country Status (2)

Country Link
JP (1) JP2019156040A (en)
WO (1) WO2019171805A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7160060B2 (en) * 2020-02-28 2022-10-25 株式会社デンソー Rudder angle control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052834A (en) * 2011-09-06 2013-03-21 Nissan Motor Co Ltd Normative response calculation device, and vehicle steering device using the same
JP2013171376A (en) * 2012-02-20 2013-09-02 Fanuc Ltd Numerical controller with machining curve creating function
JP2016144974A (en) * 2015-02-06 2016-08-12 株式会社ジェイテクト Electric power steering system
JP2016193690A (en) * 2015-04-01 2016-11-17 株式会社ジェイテクト Automatic steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052834A (en) * 2011-09-06 2013-03-21 Nissan Motor Co Ltd Normative response calculation device, and vehicle steering device using the same
JP2013171376A (en) * 2012-02-20 2013-09-02 Fanuc Ltd Numerical controller with machining curve creating function
JP2016144974A (en) * 2015-02-06 2016-08-12 株式会社ジェイテクト Electric power steering system
JP2016193690A (en) * 2015-04-01 2016-11-17 株式会社ジェイテクト Automatic steering device

Also Published As

Publication number Publication date
JP2019156040A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6350731B2 (en) Electric power steering device
CN111278714B (en) Steering control device
JP5915811B2 (en) Electric power steering device
JP5896091B1 (en) Electric power steering device
JP6004145B1 (en) Electric power steering device
US10035538B2 (en) Electric power steering system with motor controller
WO2016031216A1 (en) Electric steering control device
US20070107979A1 (en) Vehicular steering control apparatus and control method thereof
JP6790452B2 (en) Steering control device
JP4999984B2 (en) Electric power steering control device
WO2006101005A1 (en) Steering control device for vehicles
US8823305B2 (en) Electric power steering system
JP5967336B2 (en) Electric power steering device
CN107408910B (en) Motor control device and electric power steering device equipped with same
JPWO2020115973A1 (en) Vehicle steering device
WO2019171805A1 (en) Control device for vehicle installation equipment
JP2020179833A (en) Steering control device
CN111038576B (en) Dither noise management in electric power steering systems
JP6955197B2 (en) Steering control device
JP2020203499A (en) Turning controller
JP2020179831A (en) Steering control device
JP7148058B2 (en) vehicle steering system
JP2004291853A (en) Vehicular steering unit
JP2008132918A (en) Control unit of vehicular electric power steering device
JP2005225403A (en) Electric power steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764500

Country of ref document: EP

Kind code of ref document: A1