WO2019171740A1 - Dynamic compressor and refrigeration cycle device - Google Patents

Dynamic compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019171740A1
WO2019171740A1 PCT/JP2019/000136 JP2019000136W WO2019171740A1 WO 2019171740 A1 WO2019171740 A1 WO 2019171740A1 JP 2019000136 W JP2019000136 W JP 2019000136W WO 2019171740 A1 WO2019171740 A1 WO 2019171740A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
refrigerant
phase refrigerant
impeller
rotating body
Prior art date
Application number
PCT/JP2019/000136
Other languages
French (fr)
Japanese (ja)
Inventor
洪志 孫
直芳 庄山
文紀 河野
朋一郎 田村
良美 林
松井 大
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018237802A external-priority patent/JP7187292B2/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201980006459.3A priority Critical patent/CN111480009B/en
Priority to EP19763984.2A priority patent/EP3763948B1/en
Publication of WO2019171740A1 publication Critical patent/WO2019171740A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type

Definitions

  • This disclosure relates to a speed type compressor and a refrigeration cycle apparatus.
  • a refrigeration cycle having a two-stage compressor is configured such that refrigerant vapor discharged from the first-stage compressor is cooled before being sucked into the second-stage compressor.
  • the device is known.
  • the air conditioning apparatus 500 described in Patent Document 1 includes an evaporator 510, a centrifugal compressor 531, a steam cooler 533, a roots compressor 532, and a condenser 520.
  • a centrifugal compressor 531 is provided at the front stage, and a Roots compressor 532 is provided at the rear stage.
  • the evaporator 510 generates saturated refrigerant vapor.
  • the refrigerant vapor is sucked into the centrifugal compressor 531 and compressed.
  • the refrigerant vapor compressed by the centrifugal compressor 531 is further compressed by the roots compressor 532.
  • the steam cooler 533 disposed between the centrifugal compressor 531 and the roots compressor 532, the refrigerant vapor is cooled.
  • the steam cooler 533 is provided between the centrifugal compressor 531 and the roots compressor 532.
  • water is sprayed directly on the refrigerant vapor.
  • heat exchange is indirectly performed between a cooling medium such as air and the refrigerant vapor.
  • the degree of superheat of the refrigerant to be sucked into the roots compressor 532 can be reduced.
  • the degree of superheat generated in the compression process of the centrifugal compressor 531 and the degree of superheat generated in the compression process of the roots compressor 532 cannot be removed in the compression process.
  • a rotating body including a rotating shaft and at least one impeller; A refrigerant passage located around the rotating body and through which a gas-phase refrigerant flows; A main flow path that extends in the axial direction of the rotating body inside the rotating body and through which a liquid-phase refrigerant flows; An injection flow path that is located inside the rotating body, extends from the main flow path to the refrigerant flow path, branches from the main flow path, and guides the liquid-phase refrigerant from the main flow path to the refrigerant flow path; A speed type compressor is provided.
  • the degree of superheat generated in the compression process can be removed in the compression process. Thereby, the efficiency of the refrigeration cycle apparatus can be improved.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a cross-sectional view of the speed compressor according to the first embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view of the rotating body taken along line III-III.
  • FIG. 4A is a cross-sectional view of a rotating body according to a modification.
  • FIG. 4B is a partial side view of a rotating shaft according to a modification.
  • FIG. 5 is a cross-sectional view of a compressor according to a modification.
  • FIG. 6 is a cross-sectional view of a compressor according to another modification.
  • FIG. 7 is an enlarged plan view of the impeller showing the vicinity of the injection flow path in an enlarged manner.
  • FIG. 8 is an enlarged plan view of the impeller showing the vicinity of the injection flow path (static coordinate system).
  • FIG. 9 is a graph showing the outflow angle necessary to avoid the collision of the refrigerant droplets.
  • FIG. 10 is a cross-sectional view of a multistage speed compressor according to still another modification.
  • FIG. 11 is a cross-sectional view of the first impeller and the second impeller.
  • FIG. 12 is a cross-sectional view of the impeller at a position including the injection flow path.
  • FIG. 13 is a cross-sectional view of a multistage speed compressor according to still another modification.
  • FIG. 14 is a cross-sectional view of a speed type compressor according to still another modification.
  • FIG. 15 is a cross-sectional view of a speed type compressor according to still another modification.
  • FIG. 16 is a cross-sectional view of a speed compressor according to still another modification.
  • FIG. 17 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present disclosure.
  • FIG. 18 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present disclosure.
  • FIG. 19 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present disclosure.
  • FIG. 20 is a flowchart illustrating the compression method of the present disclosure.
  • FIG. 21 is a configuration diagram of a conventional air conditioner.
  • the ideal compression process in a compressor is along a completely adiabatic isentropic line.
  • the slope of the isentropic line becomes gentler, and a larger compression power is required.
  • greater compression power is required to raise the pressure of the unit mass refrigerant to a predetermined pressure. In other words, the load on the compressor increases and the power consumption of the compressor increases.
  • This disclosure provides a technique for removing superheat generated in the compression process in the compression process.
  • the present disclosure provides a technique for improving the efficiency of the refrigeration cycle apparatus.
  • the speed type compressor according to the first aspect of the present disclosure is: A rotating body including a rotating shaft and at least one impeller; A refrigerant passage located around the rotating body and through which a gas-phase refrigerant flows; A main flow path that extends in the axial direction of the rotating body inside the rotating body and through which a liquid-phase refrigerant flows; An injection flow path that is located inside the rotating body, extends from the main flow path to the refrigerant flow path, branches from the main flow path, and guides the liquid-phase refrigerant from the main flow path to the refrigerant flow path; It has.
  • the liquid-phase refrigerant is pressurized by centrifugal force, and is injected toward the refrigerant flow path inside the compressor through the main flow path and the injection flow path.
  • the liquid-phase refrigerant contacts the gas-phase refrigerant in the refrigerant flow path, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated gas-phase refrigerant is continuously generated by the sensible heat or latent heat of vaporization of the liquid-phase refrigerant.
  • the increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed.
  • the compression power required by the compressor can be reduced below that required for fully adiabatic isentropic compression.
  • the work to be done by the compressor to raise the refrigerant pressure to a predetermined pressure can be greatly reduced. That is, the power consumption of the compressor can be greatly saved.
  • the impeller may include a hub and a blade fixed to the hub, and the injection flow path includes the refrigerant You may have the outflow port which faces the flow path, and the said outflow port may be located in an upstream rather than the upstream end of the said blade in the flow direction of the said gaseous-phase refrigerant
  • the impeller may include a hub and a blade fixed to the hub, and the injection flow path is The outlet may be located on the surface of the hub, and may pass through the hub in the radial direction of the rotating shaft.
  • the gas phase refrigerant and the liquid phase refrigerant can be mixed before the gas phase refrigerant enters the inter-blade flow path between the blades. Thereby, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
  • the injection flow path has a radius of the rotation shaft from the main flow path inside the rotation shaft.
  • coolant flow path may be included. According to such a configuration, it is possible to sufficiently ensure the length of the ejection flow path. The longer the injection channel, the greater the centrifugal acceleration applied to the liquid phase refrigerant, and the easier it is to inject the liquid phase refrigerant into the refrigerant channel.
  • the number of the injection flow paths including the first portion and the second portion may be two or more. According to such a configuration, the gas-phase refrigerant can be uniformly cooled in the circumferential direction of the rotating shaft.
  • the first portion includes a groove provided on a side surface of the rotating shaft along a circumferential direction of the rotating shaft.
  • the second portion may be connected to the groove.
  • the main flow path has an inflow port located on an end surface of the rotation shaft. May be. According to such a configuration, the liquid phase refrigerant can be smoothly fed into the main flow path.
  • the speed type compressor according to any one of the first to seventh aspects is in contact with a supply tank in which the liquid refrigerant is stored and an inlet to the main flow path.
  • the apparatus may further include a buffer chamber and a pressure pump that pumps the liquid-phase refrigerant from the supply tank to the buffer chamber through a refrigerant supply path connected to the buffer chamber.
  • the liquid phase refrigerant is pressurized by the pressurizing pump, and the pressure of the liquid phase refrigerant rises to raise the boiling point. It becomes possible to suppress.
  • the speed compressor according to the eighth aspect may further include a heat exchanger that exchanges heat with an external heat source, and the refrigerant supply path includes the buffer chamber and the heating chamber.
  • the flow path may be connected to a pressure pump, and the heat exchanger may be provided in the refrigerant supply path between the buffer chamber and the pressure pump.
  • the impeller may include a hub and a plurality of blades fixed to the hub.
  • the injection channel may have an outlet that faces the refrigerant channel, and is closest to the outlet in the direction of rotation opposite to the direction of rotation of the rotating body.
  • the outermost peripheral portion of the blade root line is defined as a first rear end.
  • the edge When defining the edge, defining a line extending radially from the central axis of the rotating body through the outlet as the r-axis, and defining the rotational direction of the rotating body as the positive direction, the first trailing edge
  • the angle measured from the r-axis along the rotation direction of the rotating body may be -40 degrees or more, and the central axis of the rotating body with respect to the distance from the central axis of the rotating body to the outlet
  • the ratio of the distance from the first trailing edge to the first trailing edge may be 3 or more, and is obtained by projecting the outflow direction of the liquid-phase refrigerant injected from the outflow port onto the plane perpendicular to the rotation axis.
  • the angle when the angle formed between the outflow direction of the liquid refrigerant and the r-axis is measured from the r-axis along the rotation direction of the rotating body may be ⁇ 25 degrees or more.
  • the amount of angular movement of the refrigerant droplet in the circumferential direction due to the Coriolis force is equal to or less than the angle formed by the line connecting the trailing edge of the blade and the rotation axis and the r axis, and the large refrigerant droplet Can collide with the trailing edge of the blade. Therefore, erosion of the impeller can be prevented.
  • the at least one impeller may include a first impeller and a second impeller
  • the injection flow path may be provided in each of the first impeller and the second impeller, and an opening area of an outlet of the injection flow path provided in the first impeller is defined as S 1
  • the opening area of the outlet of the injection passage provided on the second impeller is defined as S 2
  • the distance from the center axis of the rotary body to said outlet of said injection passage provided on the first impeller is defined as R 1
  • the distance from the rotary body center axis to the outlet of the injection passage provided on the second impeller is defined as R 2
  • R 2 / R 1 ⁇ S 1 / S 2 relationship may be filled According to such a configuration, the injection amount from the injection flow path of the second impeller is equal to or less than the injection amount from the injection flow path of the first impeller.
  • the at least one impeller may include a first impeller and a second impeller
  • the speed type compressor may further include a first diffuser facing the first impeller, and the first impeller is located inside the first impeller and is branched from the main flow path to branch into the main flow
  • the central axis of the downstream injection flow path may intersect the inlet of the first diffuser.
  • the amount of refrigerant droplets existing in each of the refrigerant flow path around the first impeller and the refrigerant flow path around the second impeller is reduced.
  • the collision probability of the refrigerant droplets on the first impeller and the second impeller is reduced, and the erosion risk of the first impeller and the second impeller is reduced.
  • the speed compressor according to the twelfth aspect may further include a second diffuser facing the second impeller, and the second impeller includes the second impeller.
  • a second injection channel that is branched from the main channel and extends from the main channel to the refrigerant channel, and the central axis of the second injection channel is It may cross the entrance of the second diffuser. According to such a configuration, heat can also be taken from the gas-phase refrigerant when pressure recovery is performed in the second diffuser.
  • a refrigeration cycle apparatus includes: An evaporator, Any one speed type compressor according to the first to thirteenth aspects; A condenser, It has.
  • the efficiency of the refrigeration cycle apparatus is improved by greatly saving the power consumption of the speed type compressor.
  • the evaporator may store a liquid phase refrigerant therein, and the condenser stores the liquid phase refrigerant therein.
  • the refrigeration cycle apparatus may further include a refrigerant supply path that guides the liquid phase refrigerant stored in the evaporator or the liquid phase refrigerant stored in the condenser to the speed compressor. Also good. According to such a configuration, the liquid phase refrigerant can be reliably supplied to the main flow path of the speed compressor.
  • a compression method includes: A compression method using a speed type compressor,
  • the speed compressor includes a rotating body including a rotating shaft and an impeller, and a refrigerant flow path that is positioned around the rotating body and that flows the gas-phase refrigerant from a gas-phase refrigerant inlet to a gas-phase refrigerant outlet.
  • the compression method is: Inhaling the gas phase refrigerant into the speed compressor; Accelerating and compressing the sucked gas phase refrigerant in the speed type compressor; A flow path communicating with an outlet disposed on the surface of the rotating body, passing through the flow path located inside the rotating body, toward the gas-phase refrigerant existing in the refrigerant flow path. Injecting liquid phase refrigerant from the outlet; including.
  • the flow path located inside the rotating body may extend in the axial direction of the rotating body inside the rotating body,
  • a main flow path through which the liquid-phase refrigerant flows, and is located inside the rotating body branches from the main flow path and extends from the main flow path to the refrigerant flow path, and the liquid flows from the main flow path to the refrigerant flow path.
  • the liquid phase refrigerant that flows through the main channel may flow in a direction opposite to the direction in which the gas-phase refrigerant is sucked and flows.
  • the liquid-phase refrigerant may be injected from the outlet through the centrifugal force generated by the rotation of the rotating body.
  • the liquid refrigerant thus made may be sucked into the inter-blade channel of the speed type compressor. Liquid phase refrigerant can be efficiently injected by the centrifugal force of the rotating body.
  • the impeller may include a hub and a blade fixed to the hub, and the flow The outlet may be located upstream of the upstream end of the blade in the flow direction of the gas-phase refrigerant. According to such a configuration, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
  • FIG. 1 shows a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present disclosure.
  • the refrigeration cycle apparatus 100 includes an evaporator 2, a compressor 3, a condenser 4, and a refrigerant supply path 11.
  • the compressor 3 is connected to the evaporator 2 by a suction pipe 6 and is connected to the condenser 4 by a discharge pipe 8.
  • a suction pipe 6 is connected to the outlet of the evaporator 2 and the suction port of the compressor 3.
  • a discharge pipe 8 is connected to the discharge port of the compressor 3 and the inlet of the condenser 4.
  • the condenser 4 is connected to the evaporator 2 by a return path 9.
  • the evaporator 2, the compressor 3 and the condenser 4 are connected in an annular shape in this order to form a refrigerant circuit 10.
  • the refrigerant evaporates, and a gas phase refrigerant (refrigerant vapor) is generated.
  • the gas-phase refrigerant generated in the evaporator 2 is sucked into the compressor 3 through the suction pipe 6 and compressed.
  • the compressed gas phase refrigerant is supplied to the condenser 4 through the discharge pipe 8.
  • the gas phase refrigerant is cooled to generate a liquid phase refrigerant (refrigerant liquid).
  • the liquid phase refrigerant is sent from the condenser 4 to the evaporator 2 through the return path 9.
  • a fluorocarbon refrigerant As the refrigerant of the refrigeration cycle apparatus 100, a fluorocarbon refrigerant, a low GWP (Global Warming Potential) refrigerant, and a natural refrigerant can be used.
  • the fluorocarbon refrigerant include HCFC (hydrochlorofluorocarbon), HFC (hydrofluorocarbon), and the like.
  • the low GWP refrigerant include HFO-1234yf.
  • natural refrigerants include CO 2 and water.
  • the refrigeration cycle apparatus 100 includes, for example, a substance whose saturation vapor pressure at normal temperature (Japanese Industrial Standard: 20 ° C. ⁇ 15 ° C./JIS Z8703) is negative (absolute pressure lower than atmospheric pressure) as a main component.
  • Refrigerant is filled. Examples of such a refrigerant include a refrigerant containing water as a main component.
  • the “main component” means a component that is contained most in mass ratio.
  • the pressure ratio in the refrigeration cycle increases, and the degree of superheat of the refrigerant tends to become excessive.
  • the liquid-phase refrigerant is injected toward the refrigerant flow path inside the compressor 3, and an increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed.
  • coolant to a predetermined pressure can be reduced significantly. That is, the power consumption of the compressor 3 can be greatly saved.
  • the refrigeration cycle apparatus 100 further includes a heat absorption circuit 12 and a heat dissipation circuit 14.
  • the heat absorption circuit 12 is a circuit for using the liquid phase refrigerant cooled by the evaporator 2 and has necessary devices such as a pump and an indoor heat exchanger. A part of the heat absorption circuit 12 is located inside the evaporator 2. In the evaporator 2, a part of the endothermic circuit 12 may be located above the liquid level of the liquid phase refrigerant or may be located below the liquid level of the liquid phase refrigerant.
  • the heat absorption circuit 12 is filled with a heat medium such as water or brine.
  • the liquid-phase refrigerant stored in the evaporator 2 comes into contact with members (piping) constituting the heat absorption circuit 12. Thereby, heat exchange is performed between the liquid phase refrigerant and the heat medium inside the heat absorption circuit 12, and the liquid phase refrigerant evaporates.
  • the heat medium in the endothermic circuit 12 is cooled by the latent heat of vaporization of the liquid refrigerant.
  • the refrigeration cycle apparatus 100 is an air conditioner that cools a room
  • the room air is cooled by the heat medium of the heat absorption circuit 12.
  • the indoor heat exchanger is, for example, a fin tube heat exchanger.
  • the heat dissipation circuit 14 is a circuit used to take heat from the refrigerant inside the condenser 4 and has necessary devices such as a pump and a cooling tower. A part of the heat dissipation circuit 14 is located inside the condenser 4. Specifically, a part of the heat dissipation circuit 14 is located above the liquid level of the liquid-phase refrigerant in the condenser 4. The heat dissipation circuit 14 is filled with a heat medium such as water or brine.
  • the refrigeration cycle apparatus 100 is an air conditioner that cools a room, the condenser 4 is disposed outside the room, and the refrigerant in the condenser 4 is cooled by the heat medium of the heat dissipation circuit 14.
  • the high-temperature gas-phase refrigerant discharged from the compressor 3 contacts a member (pipe) constituting the heat dissipation circuit 14 inside the condenser 4. Thereby, heat exchange is performed between the gas-phase refrigerant and the heat medium inside the heat dissipation circuit 14, and the gas-phase refrigerant is condensed.
  • the heat medium inside the heat dissipation circuit 14 is heated by the condensation latent heat of the gas-phase refrigerant.
  • the heat medium heated by the gas-phase refrigerant is cooled by outside air or cooling water in a cooling tower (not shown) of the heat dissipation circuit 14, for example.
  • the evaporator 2 is constituted by a container having heat insulation and pressure resistance, for example.
  • the evaporator 2 stores the liquid phase refrigerant and evaporates the liquid phase refrigerant inside.
  • the liquid refrigerant inside the evaporator 2 absorbs heat generated from the outside of the evaporator 2 and evaporates. That is, the liquid-phase refrigerant heated by absorbing heat from the heat absorption circuit 12 evaporates in the evaporator 2.
  • the liquid-phase refrigerant stored in the evaporator 2 indirectly contacts the heat medium circulating in the heat absorption circuit 12.
  • a part of the liquid phase refrigerant stored in the evaporator 2 is heated by the heat medium of the heat absorption circuit 12 and used to heat the liquid phase refrigerant in the saturated state.
  • the temperature of the liquid-phase refrigerant stored in the evaporator 2 and the temperature of the gas-phase refrigerant generated in the evaporator 2 are 5 ° C., for example.
  • the evaporator 2 is an indirect contact heat exchanger (for example, a shell tube heat exchanger).
  • the evaporator 2 may be a direct contact type heat exchanger such as a spray type or filler type heat exchanger. That is, the liquid phase refrigerant may be heated by circulating the liquid phase refrigerant in the heat absorption circuit 12. Further, the endothermic circuit 12 may be omitted.
  • the compressor 3 sucks and compresses the gas-phase refrigerant generated by the evaporator 2.
  • the compressor 3 is a speed type compressor (dynamic compressor).
  • the speed type compressor is a compressor that increases the pressure of the gas-phase refrigerant by giving momentum to the gas-phase refrigerant and then decelerating it.
  • Examples of the speed type compressor include a centrifugal compressor, a mixed flow compressor, and an axial flow compressor.
  • the speed type compressor is also called a turbo compressor.
  • the compressor 3 may include a variable speed mechanism for changing the rotation speed.
  • An example of the variable speed mechanism is an inverter that drives the motor of the compressor 3.
  • the temperature of the refrigerant at the discharge port of the compressor 3 is in the range of 100 to 150 ° C., for example.
  • the condenser 4 is constituted by a container having heat insulation and pressure resistance, for example.
  • the condenser 4 condenses the gas-phase refrigerant compressed by the compressor 3 and stores the liquid-phase refrigerant generated by condensing the gas-phase refrigerant.
  • the gas-phase refrigerant indirectly condenses and condenses on the heat medium cooled by releasing heat to the external environment. That is, the gas phase refrigerant is cooled and condensed by the heat medium of the heat dissipation circuit 14.
  • the temperature of the gas-phase refrigerant introduced into the condenser 4 is in the range of 100 to 150 ° C., for example.
  • the temperature of the liquid phase refrigerant stored in the condenser 4 is, for example, 35 ° C.
  • the condenser 4 is an indirect contact heat exchanger (for example, a shell tube heat exchanger).
  • the condenser 4 may be a direct contact type heat exchanger such as a spray type or filler type heat exchanger. That is, the liquid phase refrigerant may be cooled by circulating the liquid phase refrigerant in the heat dissipation circuit 14. Further, the heat dissipation circuit 14 may be omitted.
  • the suction pipe 6 is a flow path for guiding the gas-phase refrigerant from the evaporator 2 to the compressor 3.
  • the outlet of the evaporator 2 is connected to the suction port of the compressor 3 through the suction pipe 6.
  • the discharge pipe 8 is a flow path for guiding the gas-phase refrigerant compressed from the compressor 3 to the condenser 4.
  • the discharge port of the compressor 3 is connected to the inlet of the condenser 4 via the discharge pipe 8.
  • the return path 9 is a flow path for guiding the liquid refrigerant from the condenser 4 to the evaporator 2.
  • the evaporator 2 and the condenser 4 are connected by the return path 9.
  • a pump, a flow rate adjusting valve, or the like may be disposed in the return path 9.
  • the return path 9 can be constituted by at least one pipe.
  • the refrigerant supply path 11 connects the evaporator 2 and the compressor 3.
  • the liquid phase refrigerant stored in the evaporator 2 is supplied to the compressor 3 through the refrigerant supply path 11.
  • the liquid-phase refrigerant is injected toward the refrigerant flow path inside the compressor 3.
  • the refrigerant supply path 11 can be configured by at least one pipe.
  • the inlet of the refrigerant supply path 11 is positioned below the liquid level of the liquid-phase refrigerant stored in the evaporator 2.
  • a pump, a valve, or the like may be disposed in the refrigerant supply path 11.
  • the refrigeration cycle apparatus 100 may include a reserve tank that stores liquid phase refrigerant.
  • the spare tank is connected to the evaporator 2, for example.
  • the liquid phase refrigerant is transferred from the evaporator 2 to the spare tank.
  • the refrigerant supply path 11 connects the auxiliary tank and the compressor 3 so that liquid refrigerant is supplied from the auxiliary tank to the compressor 3.
  • the spare tank may be connected to the suction pipe 6.
  • the reserve tank may store the liquid phase refrigerant supplied from within the refrigeration cycle, or store the liquid phase refrigerant generated by being cooled by an external heat source via the inner peripheral surface of the suction pipe 6 or the like. May be.
  • the compressor 3 is a centrifugal compressor.
  • the compressor 3 includes a rotating body 27, a housing 35, and a shroud 37.
  • the rotating body 27 is disposed in a space surrounded by the housing 35 and the shroud 37.
  • a motor (not shown) for rotating the rotating body 27 may be disposed inside the housing 35.
  • the rotating body 27 includes a rotating shaft 25 and an impeller 26.
  • the impeller 26 is attached to the rotating shaft 25 and rotates at a high speed together with the rotating shaft 25.
  • the impeller 26 may be formed integrally with the rotary shaft 25.
  • the rotational speeds of the rotary shaft 25 and the impeller 26 are, for example, in the range of 5000 to 100,000 rpm.
  • the rotating shaft 25 is made of a high-strength iron-based material such as S45CH.
  • the impeller 26 is made of a material such as aluminum, duralumin, iron, or ceramic.
  • the impeller 26 has a hub 30 and a plurality of blades 31.
  • the hub 30 is a portion fitted to the rotary shaft 25. In the cross section including the central axis O of the rotation shaft 25, the hub 30 has a diverging outline.
  • the plurality of blades 31 are arranged on the surface 30 p of the hub 30 along the circumferential direction of the rotation shaft 25.
  • the space around the impeller 26 includes a refrigerant flow path 40, a diffuser 41, and a spiral chamber 42.
  • the refrigerant flow path 40 is a flow path that is located around the rotating body 27 and through which the gas phase refrigerant to be compressed flows.
  • the refrigerant flow path 40 includes a suction flow path 36 and a plurality of inter-blade flow paths 38.
  • the suction flow path 36 is located upstream of the upstream end 31t of the blade 31 in the flow direction of the gas-phase refrigerant.
  • the inter-blade channel 38 is located between the blades 31 adjacent to each other in the circumferential direction of the rotating shaft 25.
  • the diffuser 41 is a flow path for guiding the gas-phase refrigerant accelerated in the rotation direction by the impeller 26 to the spiral chamber 42.
  • the channel cross-sectional area of the diffuser 41 increases from the refrigerant channel 40 toward the spiral chamber 42. This structure decelerates the flow rate of the gas-phase refrigerant accelerated by the impeller 26 and increases the pressure of the gas-phase refrigerant.
  • the diffuser 41 is, for example, a vaneless diffuser configured by a flow path extending in the radial direction. In order to effectively increase the pressure of the refrigerant, the diffuser 41 may be a vane diffuser having a plurality of vanes and a plurality of flow paths partitioned by them.
  • the spiral chamber 42 is a spiral space in which the gas-phase refrigerant that has passed through the diffuser 41 is collected.
  • the compressed gas-phase refrigerant is guided to the outside of the compressor 3 (discharge pipe 8) via the spiral chamber 42.
  • the cross-sectional area of the spiral chamber 42 is enlarged along the circumferential direction, whereby the flow rate and angular momentum of the gas-phase refrigerant in the spiral chamber 42 are kept constant.
  • the shroud 37 covers the impeller 26 and defines the refrigerant flow path 40, the diffuser 41, and the spiral chamber 42.
  • the shroud 37 is made of an iron-based material or an aluminum-based material. Examples of the iron-based material include FC250, FCD400, and SS400. ACD12 etc. are mentioned as an aluminum-type material.
  • the housing 35 serves as a casing that accommodates various components of the compressor 3.
  • a spiral chamber 42 is formed by combining the housing 35 and the shroud 37.
  • the housing 35 can be made of the iron-based material or the aluminum-based material described above.
  • the diffuser is a vaned diffuser
  • the plurality of vanes can also be made of the iron-based material or aluminum-based material described above.
  • the bearing 18 and the seal 29 are disposed inside the housing 35.
  • the bearing 18 supports the rotating shaft 25 in a rotatable manner.
  • the bearing 18 may be a sliding bearing or a rolling bearing.
  • the refrigerant of the refrigeration cycle apparatus 100 can be used as a lubricant.
  • the bearing 18 is connected to the housing 35 directly or via a bearing box (not shown).
  • the seal 29 prevents the lubricant of the bearing 18 from flowing toward the impeller 26.
  • the seal 29 is, for example, a labyrinth seal.
  • the main flow path 21 and the injection flow path 24 are provided inside the rotating body 27.
  • the main flow path 21 extends in the axial direction of the rotating body 27 inside the rotating body 27.
  • the main flow path 21 is provided inside the rotation shaft 25 and extends in the axial direction of the rotation shaft 25.
  • the injection flow path 24 branches from the main flow path 21 inside the rotating body 27 and extends from the main flow path 21 to the refrigerant flow path 40.
  • the main channel 21 is connected to the evaporator 2 through the refrigerant supply channel 11.
  • the liquid refrigerant introduced from the refrigerant supply path 11 located outside the rotating body 27 flows through the main flow path 21.
  • the injection flow path 24 is a flow path that guides the liquid phase refrigerant from the main flow path 21 to the refrigerant flow path 40.
  • the liquid phase refrigerant is supplied from the evaporator 2 to the main flow path 21 through the refrigerant supply path 11.
  • the liquid-phase refrigerant is pressurized by centrifugal force and is injected toward the refrigerant flow path 40 inside the compressor 3 through the main flow path 21 and the injection flow path 24.
  • heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated gas-phase refrigerant continues due to sensible heat or latent heat of vaporization of the liquid-phase refrigerant. Cooled.
  • the compression power required by the compressor 3 can be reduced below the compression power required for fully adiabatic isentropic compression.
  • the work to be performed by the compressor 3 in order to increase the pressure of the refrigerant to a predetermined pressure can be greatly reduced. That is, the power consumption of the compressor 3 can be greatly saved. As a result, the efficiency of the refrigeration cycle apparatus 100 is improved.
  • the main flow path 21 has an inflow port 21 a located on the end face 25 c of the rotating shaft 25.
  • the end face 25c is an end face located on the side opposite to the side where the impeller 26 is located.
  • Liquid phase refrigerant is introduced into the main channel 21 from the inlet 21a. According to such a configuration, the liquid phase refrigerant can be smoothly fed into the main flow path 21.
  • the main flow path 21 includes the central axis O of the rotation shaft 25.
  • the main flow path 21 has, for example, a circular cross section.
  • the center of the main channel 21 coincides with the central axis O. However, the center of the main channel 21 may be offset from the center axis O of the rotation shaft 25.
  • the main flow path 21 extends to the vicinity of the upper surface 26 t of the impeller 26.
  • the refrigerant supply path 11 can be connected to the connection port 28 of the housing 35.
  • a buffer chamber 35 h communicating with the connection port 28 is provided inside the housing 35, and the liquid phase refrigerant is supplied from the refrigerant supply path 11 to the buffer chamber 35 h.
  • the end surface 25c of the rotating shaft 25 faces the buffer chamber 35h. That is, the main flow path 21 opens toward the buffer chamber 35h. According to such a configuration, it is possible to smoothly feed the liquid-phase refrigerant from the refrigerant supply path 11 to the main flow path 21 via the buffer chamber 35h.
  • the position of the inlet 21 a of the main channel 21 is not limited to the end face 25 c of the rotating shaft 25.
  • an inflow port 21 a may be provided on the side surface of the rotation shaft 25.
  • the buffer chamber 35 h may surround the side surface of the rotation shaft 25 inside the housing 35.
  • the injection flow path 24 branches from the main flow path 21 and extends in the radial direction of the rotary shaft 25. Centrifugal force acts on the liquid phase refrigerant in the injection flow path 24.
  • the liquid phase refrigerant is injected into the refrigerant flow path 40 by centrifugal force and mixed with the gas phase refrigerant sucked into the compressor 3.
  • the ejection flow path 24 extends in a direction perpendicular to the axial direction of the rotation shaft 25.
  • the injection flow path 24 has an outlet 24 b that faces the refrigerant flow path 40.
  • the outflow port 24b is located upstream of the upstream end 31t of the blade 31 in the flow direction of the gas-phase refrigerant.
  • the injection flow path 24 may have an orifice shape so that a mist-like liquid phase refrigerant is supplied to the refrigerant flow path 40.
  • the outlet 24b is located on the surface 30p of the hub 30 of the impeller 26.
  • the injection flow path 24 penetrates the hub 30 in the radial direction of the rotation shaft 25.
  • the position of the outlet 24b is not limited to the position shown in FIG.
  • the outflow port 24b may be located downstream of the upstream end 31t of the blade 31 in the flow direction of the gas-phase refrigerant. Further, the outlet 24b may be located upstream of the upper surface 26t of the impeller 26 in the flow direction of the gas-phase refrigerant. In this case, the outlet 24 b can be located on the side surface of the rotating shaft 25. These configurations can also remove heat from the gas phase refrigerant in the compression process.
  • the injection flow path 24 includes a first portion 241 and a second portion 242.
  • the first portion 241 is a portion that extends in the radial direction of the rotary shaft 25 from the main flow path 21 inside the rotary shaft 25.
  • the second part 242 is a part located between the first part 241 and the refrigerant flow path 40.
  • the first portion 241 is located inside the rotation shaft 25.
  • the second portion 242 is located inside the impeller 26. According to such a configuration, a sufficient length of the injection flow path 24 can be ensured.
  • the longer the injection flow path 24, the higher the centrifugal acceleration applied to the liquid phase refrigerant, and the easier it is to inject the liquid phase refrigerant into the refrigerant flow path 40.
  • a component different from the impeller 26 may be attached to the tip of the rotating shaft 25, and the second portion is inside the component. 242 may be located.
  • the second portion 242 can be omitted, and the injection flow path 24 can be configured by only the first portion 241.
  • the flow passage cross-sectional area of the injection flow passage 24 is smaller than the flow passage cross-sectional area of the main flow passage 21. According to such a configuration, it is easy to supply the mist-like liquid phase refrigerant to the refrigerant flow path 40.
  • a plurality (two or more) of injection channels 24 are provided.
  • the plurality of ejection channels 24 extend radially from the main channel 21.
  • a liquid phase refrigerant is injected from each of the injection flow paths 24 into the refrigerant flow path 40.
  • the gas-phase refrigerant can be uniformly cooled in the circumferential direction of the rotating shaft 25.
  • the injection flow path 24 may extend parallel to the radial direction of the impeller 26 as in the present embodiment, or may extend in a direction inclined with respect to the radial direction.
  • outlets 24b of the injection flow path 24 are arranged at equal angular intervals.
  • the outlet 24b of the ejection flow path 24 is located between the blades 31 adjacent to each other in the circumferential direction.
  • a liquid phase refrigerant is injected into each inter-blade channel 38 at a uniform flow rate from each outlet 24b.
  • the gas-phase refrigerant can be cooled more uniformly in the circumferential direction of the rotating shaft 25.
  • the number of outlets 24b may be different from the number of inter-blade channels 38, or may be equal to the number of inter-blade channels 38.
  • the outlet 24b of the injection flow path 24 may correspond to the inter-blade flow path 38 on a one-to-one basis.
  • the outlet 24b is located between the full blades adjacent to each other in the circumferential direction in the circumferential direction of the rotating shaft 25. Good. Or the outflow port 24b may be located between the full blade and splitter blade which adjoin in the circumferential direction.
  • a splitter blade is a blade that is shorter than a full blade. The plurality of full blades and the plurality of splitter blades can be alternately arranged on the surface 30 p of the hub 30 along the circumferential direction of the rotation shaft 25.
  • the rotating shaft 25 is fitted to the impeller 26 without a gap by a method such as shrink fitting or cold fitting. Thereby, it can prevent that a liquid phase refrigerant leaks from the connection part of the 1st part 241 and the 2nd part 242 of the injection flow path 24.
  • a seal structure such as a seal ring may be provided.
  • the structure of the compressor 3 of the present disclosure can be applied to each of the multistage compressors. In each stage of the compressor, a desired effect can be obtained.
  • the compressor 3 is a multistage compressor including a plurality of impellers
  • the injection flow path 24 is provided in each of the plurality of impellers, and the liquid phase refrigerant can be injected into the refrigerant flow paths of the respective stages.
  • the temperature inside the refrigeration cycle apparatus 100 (refrigerant circuit 10) is generally balanced with the ambient temperature.
  • the pressure inside the refrigeration cycle apparatus 100 is balanced to a specific pressure.
  • the compressor 3 When the compressor 3 is started, the pressure inside the evaporator 2 gradually decreases, and the liquid-phase refrigerant is evaporated by absorbing heat from the heat medium of the heat-absorbing circuit 12 that exchanges heat with the inside air, thereby generating a gas-phase refrigerant. .
  • the gas phase refrigerant is sucked into the compressor 3 and compressed, and is discharged from the compressor 3.
  • the high-pressure gas-phase refrigerant is introduced into the condenser 4, and the gas-phase refrigerant is condensed by radiating heat to the outside air or the like via the heat dissipation circuit 14, thereby generating a liquid-phase refrigerant.
  • the liquid phase refrigerant is sent from the condenser 4 to the evaporator 2 through the return path 9.
  • liquid phase refrigerant is injected into the refrigerant flow path 40 through the main flow path 21 and the injection flow path 24.
  • Heat exchange occurs between the vapor-phase refrigerant whose pressure is increased by the compressor 3 and the temperature rises, and the atomized liquid-phase refrigerant, and the superheated gas-phase refrigerant is continuously cooled by evaporation of the atomized liquid-phase refrigerant. Is done.
  • the compression power required by the compressor 3 can be reduced below the compression power required for fully adiabatic isentropic compression.
  • the work to be performed by the compressor 3 in order to increase the pressure of the refrigerant to a predetermined pressure can be greatly reduced. That is, the power consumption of the compressor 3 can be greatly saved. As a result, the efficiency of the refrigeration cycle apparatus 100 is improved.
  • the liquid phase refrigerant stored in the evaporator 2 is supplied to the main flow path 21 of the compressor 3 through the refrigerant supply path 11.
  • a mist-like liquid phase refrigerant having substantially the same temperature as the temperature (saturation temperature) of the gas-phase refrigerant sucked into the compressor 3 is injected into the refrigerant flow path 40.
  • the above mechanism Since the increase in the compression power accompanying the increase in the amount of steam is suppressed, even if the compressor input is excessive, such as during overload operation, the above mechanism is used to reduce the compression without significantly reducing the refrigeration capacity. The effect of reducing power is obtained. Further, it is possible to prevent the compressor 3 from choking due to an increase in the amount of steam.
  • FIG. 20 is a flowchart showing a method for compressing a gas-phase refrigerant using the compressor 3.
  • step S1 gas phase refrigerant is sucked into the compressor 3.
  • the gas-phase refrigerant is sucked by the impeller 26 and flows through the suction passage 36 of the refrigerant passage 40 in a direction parallel to the central axis O. Therefore, the flow direction of the liquid-phase refrigerant in the main channel 21 is opposite to the direction in which the gas-phase refrigerant is sucked into the compressor 3 and flows.
  • step S ⁇ b> 2 the sucked gas-phase refrigerant is accelerated in the compressor 3. Specifically, the gas phase refrigerant is accelerated by the impeller 26.
  • step S ⁇ b> 4 the liquid phase refrigerant is injected from the outlet 24 b of the injection flow path 24 toward the gas phase refrigerant existing in the refrigerant flow path 40.
  • the injected liquid phase refrigerant is sucked into the inter-blade channel 38 of the compressor 3. Thereby, the superheat degree of a gaseous-phase refrigerant
  • coolant falls.
  • the accelerated gas phase refrigerant flows from the refrigerant flow path 40 toward the diffuser 41.
  • step S ⁇ b> 4 the static pressure of the gas phase refrigerant is recovered in the diffuser 41.
  • compressor 3 is a speed type compressor, each process described in the flowchart is not completely separated. Each process is performed continuously.
  • FIG. 4A is a cross-sectional view of a rotating body according to a modification.
  • FIG. 4B is a partial side view of a rotating shaft according to a modification. 4A corresponds to the cross-sectional view of FIG.
  • the rotating body 47 of this modification includes a rotating shaft 45 and an impeller 26.
  • the impeller 26 is attached to the rotation shaft 45 and rotates together with the rotation shaft 45.
  • the first portion 241 of the ejection flow path 24 is connected to the second portion 242 on the side surface of the rotation shaft 45.
  • the angular range in which the first portion 241 exists along the circumferential direction of the rotation shaft 45 is the second portion 242 along the circumferential direction of the rotation shaft 45.
  • the connection between the first portion 241 and the second portion 242 can be easily realized. Positioning of the first portion 241 and the second portion 242 in the circumferential direction of the rotating shaft 45 is easy, and the impeller 26 is easily attached to the rotating shaft 45.
  • the first portion 241 of the injection flow path 24 includes a radial portion 241a and a groove 241b.
  • the radial direction portion 241 a is a portion located inside the rotation shaft 45.
  • the groove 241 b is a portion provided on the side surface of the rotation shaft 45 along the circumferential direction of the rotation shaft 45.
  • the second portion 242 is connected to the groove 241b. According to such a configuration, the liquid phase refrigerant can be supplied to each of the second portions 242 of the ejection flow path 24 at a uniform flow rate. Since the groove 241b serves as a distributor, the number of the first portions 241 (radial portions 241a) and the number of the second portions 242 may be different.
  • the number of first portions 241 is smaller than the number of second portions 242. Further, since the alignment of the first portion 241 and the second portion 242 in the circumferential direction of the rotating shaft 45 is extremely easy or unnecessary, the operation of attaching the impeller 26 to the rotating shaft 45 is easy. In addition, it is not essential that the groove 241b is a complete ring shape, and the groove 241b may be arcuate.
  • the liquid to be ejected from the ejection flow path 24 may be a liquid other than the refrigerant.
  • a liquid may be another liquid that can evaporate at the temperature of the gas phase refrigerant and cool the gas phase refrigerant.
  • the injection flow path 24 extends in a direction inclined with respect to both the radial direction and the axial direction of the rotary shaft 25.
  • the outlet 24 b of the injection flow path 24 is located between the blade 31 and the blade 31 of the impeller 26.
  • the main flow path 21 has an inlet 21 a located on the side surface of the rotating shaft 25.
  • the connection port 28 of the housing 35 is provided at a position facing the side surface of the rotation shaft 25.
  • the inflow port 21 a of the main channel 21 may be located on the side surface of the rotation shaft 25.
  • the speed type compressor of the present disclosure may have the following configuration.
  • the liquid-phase refrigerant exiting from the outlet of the injection flow path does not have a fixed particle size but varies with a certain particle size distribution.
  • the small-diameter particles follow the flow of the gas-phase refrigerant and flow out of the refrigerant flow path or evaporate before flowing out.
  • the Coriolis force acts in the circumferential direction in the coordinate system that rotates with the impeller, and the Coriolis force surpasses the drag that the Coriolis force receives from the gas-phase refrigerant in a large refrigerant droplet.
  • the refrigerant droplets do not follow the flow of the gas-phase refrigerant, but may collide with the rear edge of the blade adjacent to the outlet and erosion may occur in the impeller.
  • FIG. 7 is a plan view obtained by projecting the impeller 26 onto a plane perpendicular to the central axis O.
  • FIG. Curves A 1 B 1 and A 2 B 2 represent the blade root line of the first blade 311 and the blade root line of the second blade 312 on the projection view.
  • Outlet 24b includes a first blade 311 is located on the surface of the hub 30 between the second blade 312, and is provided at a position of radius R 1 from the central axis O as the rotational axis.
  • the first blade 311 is a blade that is closest to the outflow port 24 b in the rotation direction opposite to the rotation direction of the rotating body 27.
  • the second blade 312 is a blade closest to the outflow port 24 b in the rotation direction of the rotating body 27.
  • the “blade root line” means a boundary line between the hub 30 and each blade. Specifically, since the blade has a thickness, the hub 30 and the blade are separated by a long and narrow interface.
  • the blade root line means a line drawn along the length direction of the boundary surface so that the boundary surface is equally divided into two in the thickness direction of the blade.
  • the outlet 24b is represented by a curved surface.
  • the radius R 1 is represented by the distance between the central axis O and a point that bisects the curved surface.
  • the central axis O As the center, the axis passing through the outlet 24b is defined as the r axis, the rotation direction angle of the rotating body 27 is defined as ⁇ (degrees), and the rotating polar coordinate system fixed to the impeller 26 is defined. .
  • the rotation direction (counterclockwise direction) of the rotating body 27 is a positive direction
  • the reverse rotation direction (clockwise direction) is a negative direction.
  • the angle formed between the outflow direction of the liquid refrigerant and the r-axis is represented by an angle ⁇ . In the example of FIG. 7, ⁇ ⁇ 0.
  • the outflow direction of the liquid phase refrigerant means the central direction of the injection of the liquid phase refrigerant from the injection flow path 24.
  • the rear edge B 1 of the first blade 311 is located at a radius R 2 from the central axis O.
  • the angle when the angle between the line OB 1 connecting the central axis O and the rear edge B 1 and the r axis is measured from the r axis along the rotation direction of the rotating body 27 is represented by an angle ⁇ B1 .
  • the angle ⁇ B1 is a negative value.
  • the rear edge B 2 of the second blade 312 is located at a radius R 2 from the central axis O.
  • the angle when the angle between the line OB 2 connecting the center axis O and the rear edge B 2 and the r axis is measured from the r axis along the rotation direction of the rotating body 27 is represented by an angle ⁇ B2 .
  • the angle ⁇ B2 is a positive value.
  • the angle when the angle between the direction OP of the position P at this time and the r axis is measured from the r axis along the rotation direction is defined as an angle ⁇ P.
  • the direction OP means a line OP connecting the central axis O and the position P.
  • the first blade 311 When observed in the rotating polar coordinate system, the first blade 311 is stationary, but since the centrifugal force and Coriolis force act on the droplet, the droplet follows a flight path that turns to the right while accelerating in the r-axis direction. .
  • ⁇ B1 ⁇ P ⁇ B2 the refrigerant droplet is ejected from the impeller 26 without colliding with the trailing edge.
  • FIG. 8 represents FIG. 7 in a stationary coordinate system.
  • the first blade 311 tracks a refrigerant droplet that moves linearly at a constant velocity in the direction of an angle ⁇ from the r axis at a velocity U ′.
  • the refrigerant droplet arrives at time t P at the intersection P ′ between the straight line extension represented by the velocity U ′ and the outer edge of the impeller 26 having the radius R 2 .
  • a speed U is given by the centrifugal effect caused by the rotation of the rotating body 27.
  • the speed U is further accelerated by attaching a nozzle having a small cross-sectional area to the outlet 24b.
  • the time t P for reaching the trailing edge of the radius R 2 increases, and the angle ⁇ ′ B at which the trailing edge moves by that time increases, so if the minimum speed U is considered.
  • the total pressure, which is sufficient and increases due to the centrifugal effect when passing through the injection flow path 24, is given by 0.5 ⁇ 2 (R 2 1 ⁇ R 2 0 ).
  • the radius R 0 of the main flow path 21 is sufficiently smaller than the radius R 1 and can be ignored.
  • the velocity vector at the angle ⁇ and the velocity U becomes the velocity vector of the angle ⁇ and the velocity U ′ as shown in the upper right of FIG. 8 in the stationary coordinate system.
  • the speed U ′ is given by the following equation (4).
  • equation (8) holds.
  • the ratio (R 2 / R 1 ) takes a value of 3-6.
  • the angle ⁇ B2 representing the position of the rear edge B 2 of the second blade 312 is usually +20 degrees or less. In this range, the condition of ⁇ ′ B2 on the right side is satisfied even when ⁇ > 90 ° that is the physical upper limit value, and thus the droplet does not collide with the second blade 312.
  • the lower limit value of the angle ⁇ is determined by the collision condition regarding the first blade 311 on the left side.
  • FIG. 9 shows an outflow angle ⁇ that satisfies the collision condition on the left side with respect to the angle ⁇ B1 that represents the position of the trailing edge B 1 of the first blade 311.
  • the angle ⁇ B1 is -40 degrees or more as a general design of the impeller 26, and at this time, ⁇ ⁇ ⁇ 25 ° is a necessary condition for preventing the first blade 311 from colliding with the rear edge portion B 1 .
  • the upper limit value of the angle ⁇ is determined within a range in which drilling is possible, and is, for example, 60 degrees.
  • the collision between the refrigerant droplet and the trailing edge can be avoided by setting the outflow direction ⁇ ⁇ ⁇ 25 ° of the ejection flow path 24. As a result, erosion of the impeller 26 due to the collision of the liquid can be prevented.
  • the multistage compressor is designed within the range of the optimum specific speed NS that can realize highly efficient operation. Since the gas-phase refrigerant is compressed and gradually decreases in volume as it passes through the stages, in general, the pressure ratio in the subsequent stage can be set to be equal to or lower than the pressure ratio in the preceding stage. In other words, in order to reduce the degree of superheat below the fully-insulated isentropic compression, the degree of superheat to be removed in the subsequent stage may be less than or equal to the degree of superheat to be removed in the previous stage. Therefore, the injection amount of the subsequent-stage liquid phase refrigerant can be set to be equal to or less than the injection amount of the preceding-stage liquid phase refrigerant.
  • the present inventors diligently studied the above problem, and in a multistage compressor, a large-phase liquid-phase refrigerant that does not follow the gas-phase refrigerant collides with the impeller wall surface due to excessive injection of the liquid-phase refrigerant. I found a technique to prevent this.
  • FIG. 10 shows a cross section of a multistage speed compressor 70 according to another modification.
  • the compressor 70 is a two-stage compressor.
  • the compressor 70 may have three or more stages.
  • the compressor 70 is a multistage centrifugal compressor.
  • the compressor 70 includes a rotating body 77, a housing 35, and a shroud 37.
  • the rotating body 77 is disposed in a space surrounded by the housing 35 and the shroud 37.
  • a motor and a bearing (not shown) for rotating the rotating body 77 may be disposed inside the housing 35.
  • the rotating body 77 includes a rotating shaft 25, a first impeller 26, and a second impeller 71.
  • the first impeller 26 and the second impeller 71 are attached to the rotary shaft 25 and rotate at a high speed together with the rotary shaft 25.
  • the first impeller 26 and the second impeller 71 may be formed integrally with the rotary shaft 25.
  • the rotational speeds of the rotary shaft 25, the first impeller 26, and the second impeller 71 are in the range of 5000 to 100,000 rpm, for example.
  • the rotating shaft 25 is made of a high-strength iron-based material such as S45CH.
  • the first impeller 26 and the second impeller 71 are made of a material such as aluminum, duralumin, iron, or ceramic.
  • the direction of the first impeller 26 matches the direction of the second impeller 71.
  • both the upper surface of the first impeller 26 and the upper surface of the second impeller 71 are located on the same side with respect to the direction parallel to the rotation shaft 25.
  • the first impeller 26 may be attached to one end of the rotating shaft 25, and the second impeller 71 may be attached to the other end of the rotating shaft 25.
  • the upper surface of the first impeller 26 is located on the opposite side of the upper surface of the second impeller 71 with respect to the direction parallel to the rotation shaft 25.
  • the back surface of the first impeller 26 and the back surface of the second impeller 71 face each other.
  • the space around the first impeller 26 and the second impeller 71 includes a refrigerant flow path 40, a refrigerant flow path 80, a first diffuser 41, a second diffuser 51, a spiral chamber 42, and a return channel 79.
  • the refrigerant channel 40 and the refrigerant channel 80 are located around the rotating body 27 and are channels through which a gas phase refrigerant to be compressed flows.
  • the refrigerant flow path 40 includes a suction flow path 36 and a plurality of inter-blade flow paths 38.
  • the refrigerant flow path 80 includes a suction flow path 76 and a plurality of inter-blade flow paths 78.
  • the first diffuser 41 is provided so as to surround the first impeller 26.
  • the second diffuser 51 is provided so as to surround the second impeller 71.
  • the first diffuser 41 is a flow path for guiding the gas-phase refrigerant accelerated in the rotation direction by the first impeller 26 to the return channel 79.
  • the second diffuser 51 is a flow path for guiding the gas-phase refrigerant accelerated in the rotation direction by the second impeller 71 to the spiral chamber 42.
  • the cross-sectional area of the flow path of the first diffuser 41 increases from the refrigerant flow path 40 toward the return channel 79.
  • the cross-sectional area of the flow path of the second diffuser 51 increases from the refrigerant flow path 80 toward the spiral chamber 42.
  • the 1st diffuser 41 and the 2nd diffuser 51 are vaneless diffusers comprised by the flow path extended in a radial direction, for example.
  • the first diffuser 41 and the second diffuser 51 may be a vane diffuser having a plurality of vanes and a plurality of flow paths partitioned by them.
  • the return channel 79 is a flow path that guides the gas-phase refrigerant compressed by passing through the first impeller 26 to the second impeller 71.
  • the return channel 79 extends inward from the first diffuser 41 toward the suction flow path 76.
  • the spiral chamber 42 is a spiral space in which the gas-phase refrigerant that has passed through the second diffuser 51 is collected.
  • the compressed gas-phase refrigerant is guided to the outside of the compressor 70 (discharge pipe 8) via the spiral chamber 42.
  • the cross-sectional area of the spiral chamber 42 is enlarged along the circumferential direction, whereby the flow rate and angular momentum of the gas-phase refrigerant in the spiral chamber 42 are kept constant.
  • the shroud 37 covers the first impeller 26 and the second impeller 71, and defines the refrigerant flow path 40, the first diffuser 41, the second diffuser 51, the spiral chamber 42, and the return channel 79.
  • the shroud 37 is made of an iron-based material or an aluminum-based material. Examples of the iron-based material include FC250, FCD400, and SS400. ACD12 etc. are mentioned as an aluminum-type material.
  • the housing 35 serves as a casing that accommodates various components of the compressor 70.
  • a spiral chamber 42 is formed by combining the housing 35 and the shroud 37.
  • the housing 35 can be made of the iron-based material or the aluminum-based material described above.
  • the diffuser is a vaned diffuser
  • the plurality of vanes can also be made of the iron-based material or aluminum-based material described above.
  • the main flow path 21, the first injection flow path 24, and the second injection flow path 74 are provided inside the rotating body 77.
  • the main flow path 21 extends in the axial direction of the rotating body 27 inside the rotating body 27.
  • the main flow path 21 is provided inside the rotation shaft 25 and extends in the axial direction of the rotation shaft 25.
  • the first injection flow path 24 branches from the main flow path 21 inside the first impeller 26 and extends from the main flow path 21 to the refrigerant flow path 40.
  • the second injection channel 74 branches from the main channel 21 inside the second impeller 71 and extends from the main channel 21 to the refrigerant channel 80.
  • the main channel 21 is connected to the evaporator 2 through the refrigerant supply channel 11.
  • the first injection flow path 24 is a flow path that guides the liquid phase refrigerant from the main flow path 21 to the refrigerant flow path 40.
  • the second injection channel 74 is a channel that guides the liquid phase refrigerant from the main channel 21 to the refrigerant channel 80.
  • the liquid phase refrigerant is supplied from the evaporator 2 to the main flow path 21 through the refrigerant supply path 11.
  • the liquid-phase refrigerant is pressurized by centrifugal force and injected toward the refrigerant flow path 40 and the refrigerant flow path 80 inside the compressor 70 through the main flow path 21, the first injection flow path 24 and the second injection flow path 74. Is done.
  • the liquid-phase refrigerant contacts the gas-phase refrigerant in the refrigerant channel 40 and the refrigerant channel 80, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated state is caused by sensible heat or latent heat of vaporization of the liquid-phase refrigerant.
  • the gas phase refrigerant is continuously cooled.
  • FIG. 11 shows a cross section of the first impeller 26 at a position including the outflow port 24b and a cross section of the second impeller 71 at a position including the outflow port 74b.
  • the opening area of the outlet 24b of the first injection channel 24 is S 1
  • the opening area of the outlet 74b of the second injection channel 74 is S 2
  • the radial distance from the central axis O of the rotating body 77 to the outlet 24b is set.
  • R 1 and the radial distance from the central axis O of the rotating body 77 to the outlet 74b are defined as R 2 .
  • the compressor 70 satisfies the relationship of (R 2 / R 1 ⁇ S 1 / S 2 ).
  • the opening area S 1 may be a channel cross-sectional area of the first injection channel 24.
  • the opening area S 2 may be a channel cross-sectional area of the second injection channel 74.
  • the radial distance R 1 means the distance from the central axis O to the center or the center of gravity of the outlet 24b.
  • the radial distance R 2 means a distance from the central axis O to the center or the center of gravity of the outlet 74b.
  • a centrifugal force acts on the liquid refrigerant inside the main flow path 21, and a pressure gradient dp / dr is generated in the radial direction so as to balance the centrifugal force. It is represented by the following formula (10).
  • the outflow velocity is v and the cross-sectional area of the outlet is A.
  • Equation (15) can be defined as Equation (16) considering the flow coefficient C.
  • the injection flow rate Q is proportional to the product of the opening area S of the outlet, the rotational angular velocity ⁇ , and the radial distance R from the central axis to the outlet.
  • the gas-phase refrigerant is compressed as it passes through the stages, and the volume gradually decreases. Therefore, the pressure ratio in the subsequent stage can be set to be equal to or lower than the pressure ratio in the preceding stage. In other words, in order to reduce the degree of superheat below the fully-insulated isentropic compression, the degree of superheat to be removed in the subsequent stage may be less than or equal to the degree of superheat to be removed in the previous stage. Therefore, the injection amount of the subsequent-stage liquid phase refrigerant can be set to be equal to or less than the injection amount of the preceding-stage liquid phase refrigerant.
  • the multistage compressor 70 it is possible to prevent the liquid phase refrigerant having a large particle diameter that does not follow the gas phase refrigerant from colliding with the impeller wall surface due to excessive injection of the liquid phase refrigerant.
  • the injection flow path 24 and the injection flow path 74 are provided in each of the first impeller 26 and the second impeller 71. Although this configuration is effective in preventing impeller erosion, there remains room for improvement.
  • FIG. 13 shows a cross section of a multistage speed compressor 90 according to another modification.
  • the difference between the compressor 70 described with reference to FIG. 10 and the compressor 90 of this modification is in the number and position of the injection flow paths.
  • the main flow path 21, the first injection flow path 24, the downstream injection flow path 32, and the second injection flow path 74 are provided inside the rotating body 77.
  • the main flow path 21 extends in the axial direction of the rotating body 77 inside the rotating body 77.
  • the main flow path 21 is provided inside the rotation shaft 25 and extends in the axial direction of the rotation shaft 25.
  • the first injection flow path 24 is located inside the first impeller 26, branches from the main flow path 21, and extends from the main flow path 21 to the refrigerant flow path 40.
  • the first injection flow path 24 is located upstream of the inter-blade flow path 38 in the flow direction of the gas-phase refrigerant.
  • the first injection flow path 24 is provided on the upstream side of the upstream end 31 t of the blade of the first impeller 26.
  • the downstream injection flow path 32 is located inside the first impeller 26, branches from the main flow path 21, and extends from the main flow path 21 to the refrigerant flow path 40.
  • the downstream injection flow path 32 is located downstream of the first injection flow path 24 in the flow direction of the gas-phase refrigerant.
  • the central axis of the downstream injection flow path 32 intersects the inlet of the first diffuser 41.
  • the outlet 32 b of the downstream injection flow path 32 is located on the surface of the hub 30 of the first impeller 26.
  • the downstream injection flow path 32 penetrates the hub 30 in the radial direction of the rotation shaft 25.
  • the outlet 32 b faces the inlet of the first diffuser 41.
  • the amount of liquid-phase refrigerant necessary to remove the degree of superheat generated by the second impeller 71 is injected through the downstream injection flow path 32.
  • the liquid refrigerant injected from the downstream injection flow path 32 partially evaporates in the first diffuser 41.
  • the second impeller 71 sucks only the amount of liquid-phase refrigerant necessary to remove the degree of superheat generated by the second impeller 71.
  • the amount of refrigerant droplets existing in each of the refrigerant flow path 40 around the first impeller 26 and the refrigerant flow path 80 around the second impeller 71 decreases. As a result, the collision probability of the refrigerant droplets on the first impeller 26 and the second impeller 71 is reduced, and the erosion risk of the first impeller 26 and the second impeller 71 is reduced.
  • the second injection flow path 74 is located inside the second impeller 71 and branches from the main flow path 21 and extends from the main flow path 21 to the refrigerant flow path 80.
  • the central axis of the second injection flow path 74 intersects the inlet of the second diffuser 51.
  • the outlet 74 b of the second injection flow path 74 is located on the surface of the hub 33 of the second impeller 71.
  • the second injection flow path 74 passes through the hub 33 in the radial direction of the rotation shaft 25.
  • the outlet 74 b faces the inlet of the second diffuser 51.
  • heat can also be taken from the gas-phase refrigerant when pressure recovery is performed in the second diffuser 51.
  • This configuration is also effective for a multistage speed type compressor having three or more stages.
  • the central axis of the injection flow path means an axis that passes through the center or the center of gravity of the cross section of the injection flow path and extends parallel to the injection flow path.
  • diffuseuser entrance means the entrance to the space acting as a diffuser.
  • the liquid phase refrigerant is supplied from the evaporator 2 or the condenser 4 to the main flow path 21 through the refrigerant supply path 11.
  • the first injection flow path 24, the downstream injection flow path 32, and the second injection flow path 74 are flow paths that lead the liquid phase refrigerant from the main flow path 21 to the refrigerant flow path 40 and the refrigerant flow path 80.
  • the liquid phase refrigerant is pressurized by centrifugal force, and the refrigerant flow path 40 and the refrigerant inside the compressor 90 are passed through the main flow path 21, the first injection flow path 24, the downstream injection flow path 32, and the second injection flow path 74. Injected toward the flow path 80.
  • FIG. 14 shows a compressor 3a obtained by adding a motor 16 to the compressor 3 described with reference to FIG.
  • the compressor 3 a further includes a motor 16 attached to the rotary shaft 25.
  • the motor 16 is disposed inside the housing 35.
  • the motor 16 has a rotor 16a and a stator 16b.
  • a rotor 16 a is fixed to the rotation shaft 25.
  • Bearings 18 a and 18 b that support the rotating shaft 25 are disposed on both sides of the motor 16.
  • the liquid phase refrigerant in the main flow path 21 provided inside the rotary shaft 25 is heated by the exhaust heat of the motor 16. Since the liquid refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 rotating at a high speed of the compressor 3a, the power of the motor 16 is further increased and the temperature increase range is increased.
  • the amount of heat generated by the rotor 16a of the motor 16 is, for example, about 0.8 kW when the refrigerating capacity is 880 kW as a rated condition.
  • the rotational speed of the compressor 3a increases, and the amount of exhaust heat of the motor 16 increases according to the rotational speed.
  • the liquid-phase refrigerant may evaporate inside the main channel 21 and the gas-phase refrigerant may stay.
  • the main flow path 21 is blocked by the gas phase refrigerant, and the motor 16 cannot be continuously cooled without the liquid phase refrigerant flowing therethrough, and the efficiency of the motor 16 is reduced.
  • the present modification solves the above-mentioned problem, and reduces the compressor power due to the increase in enthalpy during compression, while preventing the blockage of the flow path due to the evaporation of the liquid-phase refrigerant inside the main flow path.
  • I will provide a.
  • the motor is continuously cooled to improve the efficiency of the motor.
  • FIG. 15 shows a cross section of the compressor 3b that can solve the problem by the heat generated by the motor 16.
  • the compressor 3b includes a motor 16 having a rotor 16a and a stator 16b.
  • the rotor 16 a is fixed to the rotary shaft 25 between the impeller 26 and the bearing 18 b in the axial direction of the rotary shaft 25.
  • the rotor 16a is made of a steel material such as a silicon nitride steel plate.
  • the stator 16b is disposed so as to surround the rotor 16a in the circumferential direction of the rotation shaft 25.
  • a rotating torque is generated in the rotor 16a by the rotating magnetic field induced by the stator 16b. Thereby, the rotating shaft 25 and the impeller 26 are driven to rotate at high speed.
  • the buffer chamber 35 h is provided in contact with the inflow port 21 a and communicates with the main flow path 21.
  • the compressor 3 b further includes a supply tank 20 and a pressurizing pump 19.
  • the buffer chamber 35 h is connected to the refrigerant supply path 22 provided outside the housing 35.
  • the refrigerant supply path 22 communicates the buffer chamber 35 h and the supply tank 20.
  • the refrigerant supply path 22 is provided with a pressure pump 19 for pressure-feeding the liquid-phase refrigerant stored in the supply tank 20 to the buffer chamber 35h.
  • the temperature of the liquid phase refrigerant in the supply tank 20 is, for example, 35 ° C.
  • the supply tank 20 includes a condenser, an evaporator, and other buffer tanks.
  • the pressurizing pump 19 is a pump for increasing the pressure of the liquid refrigerant in the supply tank 20 and supplying it to the buffer chamber 35h.
  • the supply pressure of the liquid phase refrigerant is, for example, about 25 to 100 kPa.
  • the pressurizing pump 19 may be a positive displacement pump or a speed pump.
  • the positive displacement pump is a pump that sucks and discharges a liquid phase refrigerant according to a change in volume and raises the pressure of the refrigerant. Examples of the positive displacement pump include a rotary pump, a screw pump, a scroll pump, a vane pump, and a gear pump.
  • a speed type pump is a pump that gives momentum to a liquid phase refrigerant and raises the pressure of the refrigerant by decelerating the speed of the liquid phase refrigerant.
  • the speed pump include a centrifugal pump, a mixed flow pump, and an axial flow pump.
  • a cascade pump, a hydrocera pump, etc. may be used.
  • the pressurizing pump 19 includes a motor driven by a pump controller such as an inverter, and may be a mechanism capable of changing the rotation speed.
  • the supply pressure of the pressure pump 19 is adjusted in consideration of the pressure loss of the main flow path 21 and the refrigerant supply path 22.
  • the liquid-phase refrigerant is pumped so that the flow rate of the liquid-phase refrigerant necessary for cooling according to the operating conditions is increased to a pressure higher than the pressure evaporating inside the main flow path 21.
  • the liquid-phase refrigerant that cools the gas-phase refrigerant is liquid-phase refrigerant stored in the supply tank 20, supplied from the inlet 21 a via the buffer chamber 35 h, and branched to the injection flow path 24 through the main flow path 21 of the rotating shaft 25. To do.
  • the liquid-phase refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 that rotates at high speed, injected into the refrigerant flow path 40 from the outlet 24b, and sucked together with the gas-phase refrigerant sucked into the compressor 3b.
  • the injection amount of the liquid-phase refrigerant necessary for removing the heat generated in the compression process is, for example, 0.034 kg / s.
  • the diameter of the injection flow path 24 is 0.13 mm and the number of ports is 16, the liquid phase refrigerant is injected from the outlet 24 b into the refrigerant flow path 40 with a pressure of about 1.4 MPa through the injection flow path 24.
  • the liquid phase refrigerant continues to be supplied from the supply tank 20 and is pumped to the buffer chamber 35h by the pressurizing pump 19 in addition to suction by centrifugal pressurization.
  • the liquid-phase refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 rotating at high speed and injected into the refrigerant flow path 40, so that the superheated gas-phase refrigerant is continuously cooled. Is done.
  • the liquid refrigerant is pressurized by the pressurizing pump 19 when passing through the refrigerant supply path 22, and since the pressure of the liquid refrigerant increases and the boiling point rises, it is difficult to evaporate inside the main flow path 21, It becomes possible to suppress road blockage.
  • the motor 16 can be reliably cooled, the efficiency of the motor 16 is also improved.
  • the heat generation amount of the motor 16 is about 0.8 kW
  • the injection amount of the liquid phase refrigerant necessary for removing the heat generated in the compression process is, for example, 0.034 kg. / S. If the temperature of the liquid phase refrigerant in the supply tank 20 is 35 ° C. (4.25 kPa), the temperature after passing through the main flow path 21 is 40.46 ° C. (7.57 kPa).
  • the compressor 3b is provided at a height of, for example, 1.5 m with reference to the outlet of the supply tank 20.
  • the liquid phase refrigerant supplied from the supply tank 20 is, for example, 22.
  • Boosting of 3 kPa or more is required. Therefore, when the supply pressure of the pressurizing pump 19 is 22.3 kPa or more, the liquid-phase refrigerant whose pressure has been increased to be equal to or higher than the pressure for evaporation is supplied. For this reason, the liquid refrigerant is unlikely to evaporate in the main flow path 21, and the flow path blockage due to the vapor can be suppressed.
  • FIG. 16 shows a cross section of a compressor 3c according to another modification.
  • the buffer chamber 35 h is connected to the refrigerant supply path 22.
  • the refrigerant supply path 22 communicates the buffer chamber 35 h and the supply tank 20.
  • the refrigerant supply path 22 is provided with a pressure pump 19 for pressure-feeding the liquid-phase refrigerant stored in the supply tank 20 to the buffer chamber 35h, and a heat exchanger 23 for exchanging heat with an external heat source.
  • the compressor 3c is different from the compressor 3b shown in FIG. 15 in that it further includes a heat exchanger 23.
  • the refrigerant supply path 22 is a flow path connected to the buffer chamber 35 h and the pressurizing pump 19.
  • the heat exchanger 23 is provided in the refrigerant supply path 22 between the buffer chamber 35 h and the pressurizing pump 19.
  • the temperature of the liquid phase refrigerant in the supply tank 20 is, for example, 35 ° C.
  • the inflow temperature of the heat exchanger 23 is, for example, 35 ° C.
  • the outflow temperature is, for example, 30 ° C.
  • the liquid phase refrigerant is cooled by the heat exchanger 23 provided in the refrigerant supply path 22, the liquid refrigerant in the supercooled state is supplied to the main flow path 21, and the liquid phase refrigerant is It is difficult to evaporate inside the main channel 21. Thereby, especially when the rotational speed of the compressor 3c increases under a high load operation condition and the amount of exhaust heat of the motor 16 is large, it is possible to suppress the blockage of the flow path due to steam.
  • the structure of the heat exchanger 23 is not particularly limited.
  • a fin tube heat exchanger, a plate heat exchanger, a double tube heat exchanger, or the like can be used.
  • An external heat source that heat-exchanges the liquid-phase refrigerant and cools the liquid-phase refrigerant in the heat exchanger 23 is not particularly limited. Air, cooling water, or the like can be used as an external heat source.
  • FIG. 17 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present disclosure. Elements that are common between the first embodiment and other embodiments are denoted by the same reference numerals, and description thereof may be omitted. The description regarding each embodiment may be applied mutually as long as there is no technical contradiction. As long as there is no technical contradiction, the embodiments may be combined with each other.
  • the refrigerant supply path 11 connects the condenser 4 and the compressor 3.
  • the liquid phase refrigerant injected into the refrigerant flow path 40 through the main flow path 21 and the injection flow path 24 is a liquid phase refrigerant stored in the condenser 4.
  • the effect which reduces compression power is acquired by the mechanism demonstrated in Embodiment 1.
  • FIG. That is, the liquid phase refrigerant to be supplied to the main flow path 21 inside the compressor 3 is not limited to the liquid phase refrigerant stored in the evaporator 2. As long as it exists in the refrigerant circuit 10, the liquid phase refrigerant can be supplied to the main flow path 21.
  • the refrigerant supply path 11 is configured so that the liquid phase refrigerant is supplied from the buffer tank to the main flow path 21.
  • the buffer tank and the compressor 3 may be connected.
  • the refrigerant supply path 11 may be branched from the return path 9.
  • the return path 9 may also serve as a part of the refrigerant supply path 11.
  • the refrigerant supply path 11 guides the liquid phase refrigerant from the condenser 4 to the main flow path 21.
  • the compressor 3 sucks the liquid phase refrigerant having a temperature higher than the temperature (saturation temperature) of the gas-phase refrigerant sucked into the compressor 3.
  • an effect of reducing the compression power can be obtained by the mechanism described in the first embodiment while preventing the gas-phase refrigerant from being excessively cooled and condensing inside the compressor 3.
  • the refrigeration cycle apparatus 102 may include a reserve tank that stores liquid phase refrigerant.
  • the spare tank is connected to the condenser 4, for example. Liquid phase refrigerant is transferred from the condenser 4 to the spare tank.
  • the refrigerant supply path 11 connects the auxiliary tank and the compressor 3 so that liquid refrigerant is supplied from the auxiliary tank to the compressor 3.
  • compressor 3 instead of the compressor 3, the other compressors 3a, 3b, 3c, 50, 60, 70 and 90 described above can be used.
  • FIG. 18 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present disclosure.
  • the refrigeration cycle apparatus 104 includes an ejector 53, a buffer tank 52, and a heat exchanger 23 as an alternative to the condenser 4.
  • the gas phase refrigerant compressed and discharged by the compressor 3 is sucked into the ejector 53.
  • liquid phase refrigerant is stored in the buffer tank 52, and the liquid phase refrigerant in the buffer tank 52 radiates heat in the heat exchanger 23 and is supplied to the ejector 53.
  • the gas-phase refrigerant received from the compressor 3 and the liquid-phase refrigerant received from the heat exchanger 23 are mixed.
  • the refrigerant is compressed in a two-phase state and supplied to the buffer tank 52 as a high-temperature liquid-phase refrigerant or a gas-liquid two-phase refrigerant.
  • the gas-phase refrigerant is condensed by being pressurized in a two-phase state.
  • the liquid refrigerant radiates heat with the heat exchanger 23.
  • the ejector 53, the buffer tank 52, and the heat exchanger 23 function as an alternative to the condenser 4.
  • the temperature of the liquid phase refrigerant in the buffer tank 52 is, for example, 38.5 ° C.
  • the inflow temperature of the heat exchanger 23 is 38.5 ° C., for example, and the outflow temperature is 33.5 ° C., for example.
  • the liquid refrigerant in the buffer tank 52 is pumped to the heat exchanger 23 by the pressurizing pump 19.
  • the flow path of the liquid-phase refrigerant on the discharge side of the pressurizing pump 19 is bifurcated. One communicates with the heat exchanger 23 and the other communicates with the buffer chamber 35 h of the compressor 3. That is, the flow path that connects the branch point of the flow path of the liquid-phase refrigerant on the discharge side of the pressurizing pump 19 and the buffer chamber 35 h is the refrigerant supply path 22.
  • the supply pressure of the pressure pump 19 is, for example, about 250 kPa.
  • the liquid-phase refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 rotating at high speed and injected into the refrigerant flow path 40, so that the superheated gas-phase refrigerant is continuously cooled. Is done.
  • the liquid refrigerant is pressurized by the pressurizing pump 19 when passing through the refrigerant supply path 22, and the pressure of the liquid refrigerant rises to raise the boiling point. It becomes possible to suppress road blockage.
  • FIG. 19 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present disclosure.
  • the refrigeration cycle apparatus 106 includes an ejector 53, a buffer tank 52, and a heat exchanger 23 as an alternative to the condenser 4.
  • the liquid phase refrigerant in the buffer tank 52 is pumped to the heat exchanger 23 by the pressurizing pump 19, dissipates heat by the heat exchanger 23, and is supplied to the ejector 53.
  • the flow path of the liquid phase refrigerant on the outflow side of the heat exchanger 23 is bifurcated. One communicates with the ejector 53 and the other communicates with the buffer chamber 35 h of the compressor 3. That is, the flow path that connects the branch point of the flow path of the liquid-phase refrigerant on the outflow side of the heat exchanger 23 and the buffer chamber 35 h is the refrigerant supply path 22.
  • the temperature of the liquid phase refrigerant in the buffer tank 52 is, for example, 38.5 ° C.
  • the inflow temperature of the heat exchanger 23 is 38.5 ° C., for example, and the outflow temperature is 33.5 ° C., for example.
  • the liquid phase refrigerant is cooled by the heat exchanger 23 provided in the refrigerant supply path 22, the liquid refrigerant in the supercooled state is supplied to the main flow path 21, and the liquid phase refrigerant is It is difficult to evaporate inside the main channel 21. Thereby, especially when the rotation speed of the compressor 3 increases under a high load operation condition and the amount of exhaust heat of the motor 16 is large, blockage of the flow path due to steam can be suppressed.
  • the refrigeration cycle apparatus disclosed in this specification is useful for an air conditioner, a chiller, a heat storage device, and the like.
  • An air conditioner is used for central air conditioning of a building, for example.
  • Chillers are used, for example, in process cooling applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A dynamic compressor of the present disclosure is provided with: a rotating body which includes a rotating shaft and at least one impeller; a refrigerant flow passageway which is positioned around the rotating body and through which a gas-phase refrigerant flows; a main-flow passageway which is disposed in the rotating body and extends in an axial direction of the rotating body, and through which a liquid-phase refrigerant flows; and an injection flow passageway which is positioned in the rotating body, diverges from the main-flow passageway, and extends from the main-flow passageway to the refrigerant flow passageway, the injection flow passageway guiding the liquid-phase refrigerant from the main-flow passageway to the refrigerant flow passageway.

Description

速度型圧縮機及び冷凍サイクル装置Speed type compressor and refrigeration cycle apparatus
 本開示は、速度型圧縮機及び冷凍サイクル装置に関する。 This disclosure relates to a speed type compressor and a refrigeration cycle apparatus.
 従来の冷凍サイクル装置として、2段の圧縮機を備え、1段目の圧縮機から吐出された冷媒蒸気が2段目の圧縮機に吸入される前に冷却されるように構成された冷凍サイクル装置が知られている。 As a conventional refrigeration cycle apparatus, a refrigeration cycle having a two-stage compressor is configured such that refrigerant vapor discharged from the first-stage compressor is cooled before being sucked into the second-stage compressor. The device is known.
 図21に示すように、特許文献1に記載された空気調和装置500は、蒸発器510、遠心圧縮機531、蒸気冷却器533、ルーツ式圧縮機532及び凝縮器520を備えている。遠心圧縮機531が前段に設けられ、ルーツ式圧縮機532が後段に設けられている。蒸発器510は、飽和状態の冷媒蒸気を生成する。冷媒蒸気は、遠心圧縮機531に吸入され、圧縮される。遠心圧縮機531で圧縮された冷媒蒸気がルーツ式圧縮機532でさらに圧縮される。遠心圧縮機531とルーツ式圧縮機532との間に配置された蒸気冷却器533において、冷媒蒸気が冷却される。 As shown in FIG. 21, the air conditioning apparatus 500 described in Patent Document 1 includes an evaporator 510, a centrifugal compressor 531, a steam cooler 533, a roots compressor 532, and a condenser 520. A centrifugal compressor 531 is provided at the front stage, and a Roots compressor 532 is provided at the rear stage. The evaporator 510 generates saturated refrigerant vapor. The refrigerant vapor is sucked into the centrifugal compressor 531 and compressed. The refrigerant vapor compressed by the centrifugal compressor 531 is further compressed by the roots compressor 532. In the steam cooler 533 disposed between the centrifugal compressor 531 and the roots compressor 532, the refrigerant vapor is cooled.
 蒸気冷却器533は、遠心圧縮機531とルーツ式圧縮機532との間に設けられている。蒸気冷却器533において、冷媒蒸気に対して水が直接噴霧される。あるいは、蒸気冷却器533において、空気などの冷却媒体と冷媒蒸気との間で間接的に熱交換が行われる。 The steam cooler 533 is provided between the centrifugal compressor 531 and the roots compressor 532. In the steam cooler 533, water is sprayed directly on the refrigerant vapor. Alternatively, in the steam cooler 533, heat exchange is indirectly performed between a cooling medium such as air and the refrigerant vapor.
特開2008-122012号公報JP 2008-122012 A
 特許文献1に記載された技術によれば、蒸気冷却器533において、ルーツ式圧縮機532に吸入されるべき冷媒の過熱度が低減されうる。しかし、遠心圧縮機531の圧縮過程で発生する過熱度、及び、ルーツ式圧縮機532の圧縮過程で発生する過熱度を圧縮過程において取り除くことができない。 According to the technique described in Patent Document 1, in the steam cooler 533, the degree of superheat of the refrigerant to be sucked into the roots compressor 532 can be reduced. However, the degree of superheat generated in the compression process of the centrifugal compressor 531 and the degree of superheat generated in the compression process of the roots compressor 532 cannot be removed in the compression process.
 本開示は、
 回転軸及び少なくとも1つのインペラを含む回転体と、
 前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、
 前記回転体の内部において前記回転体の軸方向に延びており、液相冷媒が流れる主流路と、
 前記回転体の内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びており、前記主流路から前記冷媒流路に前記液相冷媒を導く噴射流路と、
 を備えた、速度型圧縮機を提供する。
This disclosure
A rotating body including a rotating shaft and at least one impeller;
A refrigerant passage located around the rotating body and through which a gas-phase refrigerant flows;
A main flow path that extends in the axial direction of the rotating body inside the rotating body and through which a liquid-phase refrigerant flows;
An injection flow path that is located inside the rotating body, extends from the main flow path to the refrigerant flow path, branches from the main flow path, and guides the liquid-phase refrigerant from the main flow path to the refrigerant flow path;
A speed type compressor is provided.
 本開示によれば、圧縮過程で発生する過熱度を圧縮過程において取り除くことができる。これにより、冷凍サイクル装置の効率を向上させることができる。 According to the present disclosure, the degree of superheat generated in the compression process can be removed in the compression process. Thereby, the efficiency of the refrigeration cycle apparatus can be improved.
図1は、本開示の実施形態1に係る冷凍サイクル装置の構成図である。FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1 of the present disclosure. 図2は、本開示の実施形態1に係る速度型圧縮機の断面図である。FIG. 2 is a cross-sectional view of the speed compressor according to the first embodiment of the present disclosure. 図3は、III-III線に沿った回転体の断面図である。FIG. 3 is a cross-sectional view of the rotating body taken along line III-III. 図4Aは、変形例に係る回転体の断面図である。FIG. 4A is a cross-sectional view of a rotating body according to a modification. 図4Bは、変形例に係る回転軸の部分側面図である。FIG. 4B is a partial side view of a rotating shaft according to a modification. 図5は、変形例に係る圧縮機の断面図である。FIG. 5 is a cross-sectional view of a compressor according to a modification. 図6は、別の変形例に係る圧縮機の断面図である。FIG. 6 is a cross-sectional view of a compressor according to another modification. 図7は、噴射流路の近傍を拡大して示すインペラの平面投影図である。FIG. 7 is an enlarged plan view of the impeller showing the vicinity of the injection flow path in an enlarged manner. 図8は、噴射流路の近傍を拡大して示すインペラの平面投影図である(静止座標系)。FIG. 8 is an enlarged plan view of the impeller showing the vicinity of the injection flow path (static coordinate system). 図9は、冷媒液滴の衝突を回避するために必要な流出角度を示すグラフである。FIG. 9 is a graph showing the outflow angle necessary to avoid the collision of the refrigerant droplets. 図10は、さらに別の変形例に係る多段速度型圧縮機の断面図である。FIG. 10 is a cross-sectional view of a multistage speed compressor according to still another modification. 図11は、第1インペラ及び第2インペラの断面図である。FIG. 11 is a cross-sectional view of the first impeller and the second impeller. 図12は、噴射流路を含む位置におけるインペラの断面図である。FIG. 12 is a cross-sectional view of the impeller at a position including the injection flow path. 図13は、さらに別の変形例に係る多段速度型圧縮機の断面図である。FIG. 13 is a cross-sectional view of a multistage speed compressor according to still another modification. 図14は、さらに別の変形例に係る速度型圧縮機の断面図である。FIG. 14 is a cross-sectional view of a speed type compressor according to still another modification. 図15は、さらに別の変形例に係る速度型圧縮機の断面図である。FIG. 15 is a cross-sectional view of a speed type compressor according to still another modification. 図16は、さらに別の変形例に係る速度型圧縮機の断面図である。FIG. 16 is a cross-sectional view of a speed compressor according to still another modification. 図17は、本開示の実施形態2に係る冷凍サイクル装置の構成図である。FIG. 17 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present disclosure. 図18は、本開示の実施形態3に係る冷凍サイクル装置の構成図である。FIG. 18 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present disclosure. 図19は、本開示の実施形態4に係る冷凍サイクル装置の構成図である。FIG. 19 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present disclosure. 図20は、本開示の圧縮方法を示すフローチャートである。FIG. 20 is a flowchart illustrating the compression method of the present disclosure. 図21は、従来の空気調和装置の構成図である。FIG. 21 is a configuration diagram of a conventional air conditioner.
 (本開示の基礎となった知見)
 特許文献1に記載された空気調和装置によれば、蒸気冷却器533において、ルーツ式圧縮機532に吸入される冷媒の過熱度が低減されうる。しかし、遠心圧縮機531の圧縮過程で発生する過熱度、及び、ルーツ式圧縮機532の圧縮過程で発生する過熱度を圧縮過程において取り除くことができない。冷媒の過熱度が増加すると冷媒のエンタルピーも上昇する。
(Knowledge that became the basis of this disclosure)
According to the air conditioner described in Patent Document 1, in the steam cooler 533, the degree of superheat of the refrigerant sucked into the roots compressor 532 can be reduced. However, the degree of superheat generated in the compression process of the centrifugal compressor 531 and the degree of superheat generated in the compression process of the roots compressor 532 cannot be removed in the compression process. As the degree of superheat of the refrigerant increases, the enthalpy of the refrigerant also increases.
 圧縮機における理想的な圧縮過程は、完全に断熱された等エントロピー線に沿っている。冷媒のp-h線図において、冷媒のエンタルピーが増えるにつれて、等エントロピー線の傾きが緩やかになり、より大きい圧縮動力が要求される。冷媒の過熱度が増加するにつれて、単位質量の冷媒の圧力を所定圧力まで上げるために、より大きい圧縮動力が必要とされる。言い換えれば、圧縮機の負荷が増加し、圧縮機の消費電力が増加する。 The ideal compression process in a compressor is along a completely adiabatic isentropic line. In the refrigerant ph diagram, as the enthalpy of the refrigerant increases, the slope of the isentropic line becomes gentler, and a larger compression power is required. As the degree of superheat of the refrigerant increases, greater compression power is required to raise the pressure of the unit mass refrigerant to a predetermined pressure. In other words, the load on the compressor increases and the power consumption of the compressor increases.
 本開示は、圧縮過程で発生する過熱度を圧縮過程において取り除くための技術を提供する。併せて、本開示は、冷凍サイクル装置の効率を向上させる技術を提供する。 This disclosure provides a technique for removing superheat generated in the compression process in the compression process. In addition, the present disclosure provides a technique for improving the efficiency of the refrigeration cycle apparatus.
 (本開示に係る一態様の概要)
 本開示の第1態様に係る速度型圧縮機は、
 回転軸及び少なくとも1つのインペラを含む回転体と、
 前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、
 前記回転体の内部において前記回転体の軸方向に延びており、液相冷媒が流れる主流路と、
 前記回転体の内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びており、前記主流路から前記冷媒流路に前記液相冷媒を導く噴射流路と、
 を備えている。
(Outline of one aspect according to the present disclosure)
The speed type compressor according to the first aspect of the present disclosure is:
A rotating body including a rotating shaft and at least one impeller;
A refrigerant passage located around the rotating body and through which a gas-phase refrigerant flows;
A main flow path that extends in the axial direction of the rotating body inside the rotating body and through which a liquid-phase refrigerant flows;
An injection flow path that is located inside the rotating body, extends from the main flow path to the refrigerant flow path, branches from the main flow path, and guides the liquid-phase refrigerant from the main flow path to the refrigerant flow path;
It has.
 第1態様によれば、液相冷媒は、遠心力によって加圧され、主流路及び噴射流路を通じて、圧縮機の内部の冷媒流路に向かって噴射される。冷媒流路において液相冷媒が気相冷媒に接触すると、液相冷媒と気相冷媒との間で熱交換が起こり、液相冷媒の顕熱又は蒸発潜熱によって過熱状態の気相冷媒が連続的に冷却される。これにより、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。圧縮機が必要とする圧縮動力は、完全に断熱された等エントロピー圧縮に必要とされる圧縮動力未満まで低減されうる。冷媒の圧力を所定圧力まで上昇させるために圧縮機がなすべき仕事を大幅に低減できる。つまり、圧縮機の消費電力を大幅に節約できる。 According to the first aspect, the liquid-phase refrigerant is pressurized by centrifugal force, and is injected toward the refrigerant flow path inside the compressor through the main flow path and the injection flow path. When the liquid-phase refrigerant contacts the gas-phase refrigerant in the refrigerant flow path, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated gas-phase refrigerant is continuously generated by the sensible heat or latent heat of vaporization of the liquid-phase refrigerant. To be cooled. Thereby, the increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed. The compression power required by the compressor can be reduced below that required for fully adiabatic isentropic compression. The work to be done by the compressor to raise the refrigerant pressure to a predetermined pressure can be greatly reduced. That is, the power consumption of the compressor can be greatly saved.
 本開示の第2態様において、例えば、第1態様に係る速度型圧縮機では、前記インペラは、ハブ及び前記ハブに固定されたブレードを有していてもよく、前記噴射流路は、前記冷媒流路に面している流出口を有していてもよく、前記流出口は、前記気相冷媒の流れ方向において、前記ブレードの上流端よりも上流側に位置していてもよい。このような構成によれば、圧縮過程の気相冷媒から効率的に熱を奪うことが可能である。 In the second aspect of the present disclosure, for example, in the speed type compressor according to the first aspect, the impeller may include a hub and a blade fixed to the hub, and the injection flow path includes the refrigerant You may have the outflow port which faces the flow path, and the said outflow port may be located in an upstream rather than the upstream end of the said blade in the flow direction of the said gaseous-phase refrigerant | coolant. According to such a configuration, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
 本開示の第3態様において、例えば、第1又は第2態様に係る速度型圧縮機では、前記インペラは、ハブ及び前記ハブに固定されたブレードを有していてもよく、前記噴射流路は、前記ハブの表面に位置している流出口を有するとともに、前記回転軸の半径方向に前記ハブを貫通していてもよい。このような構成によれば、気相冷媒がブレード間の翼間流路に侵入する前に気相冷媒と液相冷媒とを混合することができる。これにより、圧縮過程の気相冷媒から効率的に熱を奪うことが可能である。 In the third aspect of the present disclosure, for example, in the speed type compressor according to the first or second aspect, the impeller may include a hub and a blade fixed to the hub, and the injection flow path is The outlet may be located on the surface of the hub, and may pass through the hub in the radial direction of the rotating shaft. According to such a configuration, the gas phase refrigerant and the liquid phase refrigerant can be mixed before the gas phase refrigerant enters the inter-blade flow path between the blades. Thereby, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
 本開示の第4態様において、例えば、第1から第3態様のいずれか1つに係る速度型圧縮機では、前記噴射流路は、前記回転軸の内部において前記主流路から前記回転軸の半径方向に延びている第1部分と、前記第1部分と前記冷媒流路との間に位置している第2部分と、を含んでいてもよい。このような構成によれば、噴射流路の長さを十分に確保することができる。噴射流路が長ければ長いほど液相冷媒に加わる遠心加速度が増し、液相冷媒を冷媒流路に噴射しやすい。 In the fourth aspect of the present disclosure, for example, in the speed type compressor according to any one of the first to third aspects, the injection flow path has a radius of the rotation shaft from the main flow path inside the rotation shaft. The 1st part extended in the direction and the 2nd part located between the said 1st part and the said refrigerant | coolant flow path may be included. According to such a configuration, it is possible to sufficiently ensure the length of the ejection flow path. The longer the injection channel, the greater the centrifugal acceleration applied to the liquid phase refrigerant, and the easier it is to inject the liquid phase refrigerant into the refrigerant channel.
 本開示の第5態様において、例えば、第4態様に係る速度型圧縮機では、前記第1部分と前記第2部分とを有する前記噴射流路の数は2以上であってもよい。このような構成によれば、回転軸の周方向において、気相冷媒を均一に冷却することができる。 In the fifth aspect of the present disclosure, for example, in the speed type compressor according to the fourth aspect, the number of the injection flow paths including the first portion and the second portion may be two or more. According to such a configuration, the gas-phase refrigerant can be uniformly cooled in the circumferential direction of the rotating shaft.
 本開示の第6態様において、例えば、第4又は第5態様に係る速度型圧縮機では、前記第1部分は、前記回転軸の周方向に沿って前記回転軸の側面に設けられた溝を含んでいてもよく、前記溝に前記第2部分が接続されていてもよい。このような構成によれば、回転軸の周方向において第1部分と第2部分との位置合わせが極めて容易又は不要なので、インペラを回転軸に取り付ける作業が容易である。 In the sixth aspect of the present disclosure, for example, in the speed type compressor according to the fourth or fifth aspect, the first portion includes a groove provided on a side surface of the rotating shaft along a circumferential direction of the rotating shaft. The second portion may be connected to the groove. According to such a configuration, since the alignment of the first portion and the second portion in the circumferential direction of the rotation shaft is extremely easy or unnecessary, the operation of attaching the impeller to the rotation shaft is easy.
 本開示の第7態様において、例えば、第1から第6態様のいずれか1つに係る速度型圧縮機では、前記主流路は、前記回転軸の端面に位置している流入口を有していてもよい。このような構成によれば、液相冷媒を主流路にスムーズに送り込むことが可能である。 In the seventh aspect of the present disclosure, for example, in the speed type compressor according to any one of the first to sixth aspects, the main flow path has an inflow port located on an end surface of the rotation shaft. May be. According to such a configuration, the liquid phase refrigerant can be smoothly fed into the main flow path.
 本開示の第8態様において、例えば、第1から第7態様のいずれか1つに係る速度型圧縮機は、前記液相冷媒が貯留された供給タンクと、前記主流路への流入口に接するバッファ室と、前記バッファ室に接続された冷媒供給路を介して、前記供給タンクから前記バッファ室へと前記液相冷媒を圧送する加圧ポンプと、をさらに備えていてもよい。このような構成によれば、液相冷媒は、加圧ポンプで加圧され、液相冷媒の圧力が上昇して沸点が上がることから主流路の内部で蒸発しにくく、蒸気による流路閉塞を抑制することが可能となる。 In the eighth aspect of the present disclosure, for example, the speed type compressor according to any one of the first to seventh aspects is in contact with a supply tank in which the liquid refrigerant is stored and an inlet to the main flow path. The apparatus may further include a buffer chamber and a pressure pump that pumps the liquid-phase refrigerant from the supply tank to the buffer chamber through a refrigerant supply path connected to the buffer chamber. According to such a configuration, the liquid phase refrigerant is pressurized by the pressurizing pump, and the pressure of the liquid phase refrigerant rises to raise the boiling point. It becomes possible to suppress.
 本開示の第9態様において、例えば、第8態様に係る速度型圧縮機は、外部熱源と熱交換する熱交換器をさらに備えていてもよく、前記冷媒供給路は、前記バッファ室と前記加圧ポンプとに接続された流路であってもよく、前記熱交換器は、前記バッファ室と前記加圧ポンプとの間において前記冷媒供給路に設けられていてもよい。このような構成によれば、液相冷媒が熱交換器23により冷却されるため、主流路21には過冷却状態となった液相冷媒が供給されて液相冷媒は主流路21の内部で蒸発しにくい。 In the ninth aspect of the present disclosure, for example, the speed compressor according to the eighth aspect may further include a heat exchanger that exchanges heat with an external heat source, and the refrigerant supply path includes the buffer chamber and the heating chamber. The flow path may be connected to a pressure pump, and the heat exchanger may be provided in the refrigerant supply path between the buffer chamber and the pressure pump. According to such a configuration, since the liquid phase refrigerant is cooled by the heat exchanger 23, the liquid phase refrigerant in the supercooled state is supplied to the main flow path 21, and the liquid phase refrigerant is contained in the main flow path 21. Difficult to evaporate.
 本開示の第10態様において、例えば、第1から第9態様のいずれか1つに係る速度型圧縮機では、前記インペラは、ハブ及び前記ハブに固定された複数のブレードを有していてもよく、前記噴射流路は、前記冷媒流路に面している流出口を有していてもよく、前記回転体の回転方向とは逆の回転方向において、前記流出口から最も近い位置にある前記ブレードを第1ブレードと定義し、前記回転軸に垂直な平面に前記第1ブレードの翼根線を投影することによって得られた投影図において、前記翼根線の最外周部を第1後縁部と定義し、前記回転体の中心軸から前記流出口を通って半径方向に延びる線をr軸と定義し、前記回転体の回転方向を正方向と定義したとき、前記第1後縁部と前記中心軸とを結ぶ線と前記r軸とのなす角度を前記回転体の回転方向に沿って前記r軸から測ったときの角度が-40度以上であってもよく、前記回転体の前記中心軸から前記流出口までの距離に対する前記回転体の前記中心軸から前記第1後縁部までの距離の比率が3以上であってもよく、前記流出口から噴射される前記液相冷媒の流出方向を前記回転軸に垂直な前記平面に投影することによって得られた投影図において、前記液相冷媒の流出方向と前記r軸とのなす角度を前記回転体の回転方向に沿って前記r軸から測ったときの角度が-25度以上であってもよい。このような構成によれば、コリオリ力による冷媒液滴の周方向の角度移動量が、ブレードの後縁部と回転軸とを結ぶ線とr軸とのなす角度以下となり、大粒の冷媒液滴がブレードの後縁部に衝突することを回避できる。そのため、インペラのエロージョンを防止することができる。 In the tenth aspect of the present disclosure, for example, in the speed type compressor according to any one of the first to ninth aspects, the impeller may include a hub and a plurality of blades fixed to the hub. The injection channel may have an outlet that faces the refrigerant channel, and is closest to the outlet in the direction of rotation opposite to the direction of rotation of the rotating body. In the projection obtained by defining the blade as a first blade and projecting the blade root line of the first blade onto a plane perpendicular to the rotation axis, the outermost peripheral portion of the blade root line is defined as a first rear end. When defining the edge, defining a line extending radially from the central axis of the rotating body through the outlet as the r-axis, and defining the rotational direction of the rotating body as the positive direction, the first trailing edge The angle formed by the line connecting the center axis and the central axis and the r axis The angle measured from the r-axis along the rotation direction of the rotating body may be -40 degrees or more, and the central axis of the rotating body with respect to the distance from the central axis of the rotating body to the outlet The ratio of the distance from the first trailing edge to the first trailing edge may be 3 or more, and is obtained by projecting the outflow direction of the liquid-phase refrigerant injected from the outflow port onto the plane perpendicular to the rotation axis. In the projected view, the angle when the angle formed between the outflow direction of the liquid refrigerant and the r-axis is measured from the r-axis along the rotation direction of the rotating body may be −25 degrees or more. . According to such a configuration, the amount of angular movement of the refrigerant droplet in the circumferential direction due to the Coriolis force is equal to or less than the angle formed by the line connecting the trailing edge of the blade and the rotation axis and the r axis, and the large refrigerant droplet Can collide with the trailing edge of the blade. Therefore, erosion of the impeller can be prevented.
 本開示の第11態様において、例えば、第1から第10態様のいずれか1つに係る速度型圧縮機では、前記少なくとも1つのインペラが第1インペラ及び第2インペラを含んでいてもよく、前記第1インペラ及び前記第2インペラのそれぞれに前記噴射流路が設けられていてもよく、前記第1インペラに設けられた前記噴射流路の流出口の開口面積をSと定義し、前記第2インペラに設けられた前記噴射流路の流出口の開口面積をSと定義し、前記回転体の中心軸から前記第1インペラに設けられた前記噴射流路の前記流出口までの距離をRと定義し、前記回転体の中心軸から前記第2インペラに設けられた前記噴射流路の前記流出口までの距離をRと定義したとき、(R/R≦S/S)の関係が満たされてもよい。このような構成によれば、第2インペラの噴射流路からの噴射量が第1インペラの噴射流路から噴射量以下になる。その結果、気相冷媒に追従しない大粒子径の液相冷媒がインペラの壁面に衝突して滞留することを防止することができる。 In an eleventh aspect of the present disclosure, for example, in the speed type compressor according to any one of the first to tenth aspects, the at least one impeller may include a first impeller and a second impeller, The injection flow path may be provided in each of the first impeller and the second impeller, and an opening area of an outlet of the injection flow path provided in the first impeller is defined as S 1 , the opening area of the outlet of the injection passage provided on the second impeller is defined as S 2, the distance from the center axis of the rotary body to said outlet of said injection passage provided on the first impeller is defined as R 1, and the distance from the rotary body center axis to the outlet of the injection passage provided on the second impeller is defined as R 2, (R 2 / R 1 ≦ S 1 / S 2 relationship) may be filled According to such a configuration, the injection amount from the injection flow path of the second impeller is equal to or less than the injection amount from the injection flow path of the first impeller. As a result, it is possible to prevent liquid phase refrigerant having a large particle diameter that does not follow the gas phase refrigerant from colliding with the impeller wall surface and staying there.
 本開示の第12態様において、例えば、第1から第11態様のいずれか1つに係る速度型圧縮機では、前記少なくとも1つのインペラが第1インペラ及び第2インペラを含んでいてもよく、前記速度型圧縮機は、前記第1インペラに面する第1ディフューザをさらに備えていてもよく、前記第1インペラには、前記第1インペラの内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びている下流側噴射流路が設けられていてもよく、前記下流側噴射流路は、前記気相冷媒の流れ方向において前記噴射流路よりも下流に位置していてもよく、前記下流側噴射流路の中心軸は、前記第1ディフューザの入口に交差していてもよい。このような構成によれば、第1インペラの周りの冷媒流路及び第2インペラの周りの冷媒流路のそれぞれに存在する冷媒液滴の量が減少する。その結果、第1インペラ及び第2インペラへの冷媒液滴の衝突確率が低下し、第1インペラ及び第2インペラのエロージョンリスクが低減する。 In a twelfth aspect of the present disclosure, for example, in the speed type compressor according to any one of the first to eleventh aspects, the at least one impeller may include a first impeller and a second impeller, The speed type compressor may further include a first diffuser facing the first impeller, and the first impeller is located inside the first impeller and is branched from the main flow path to branch into the main flow There may be provided a downstream injection passage extending from the passage to the refrigerant passage, and the downstream injection passage is located downstream of the injection passage in the flow direction of the gas-phase refrigerant. Alternatively, the central axis of the downstream injection flow path may intersect the inlet of the first diffuser. According to such a configuration, the amount of refrigerant droplets existing in each of the refrigerant flow path around the first impeller and the refrigerant flow path around the second impeller is reduced. As a result, the collision probability of the refrigerant droplets on the first impeller and the second impeller is reduced, and the erosion risk of the first impeller and the second impeller is reduced.
 本開示の第13態様において、例えば、第12態様に係る速度型圧縮機は、前記第2インペラに面する第2ディフューザをさらに備えていてもよく、前記第2インペラには、前記第2インペラの内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びている第2噴射流路が設けられていてもよく、前記第2噴射流路の中心軸は、前記第2ディフューザの入口に交差していてもよい。このような構成によれば、第2ディフューザおいて圧力回復を行うときの気相冷媒からも熱を奪うことができる。 In the thirteenth aspect of the present disclosure, for example, the speed compressor according to the twelfth aspect may further include a second diffuser facing the second impeller, and the second impeller includes the second impeller. There may be provided a second injection channel that is branched from the main channel and extends from the main channel to the refrigerant channel, and the central axis of the second injection channel is It may cross the entrance of the second diffuser. According to such a configuration, heat can also be taken from the gas-phase refrigerant when pressure recovery is performed in the second diffuser.
 本開示の第14態様に係る冷凍サイクル装置は、
 蒸発器と、
 第1から第13態様のいずれか1つの速度型圧縮機と、
 凝縮器と、
 を備えている。
A refrigeration cycle apparatus according to a fourteenth aspect of the present disclosure includes:
An evaporator,
Any one speed type compressor according to the first to thirteenth aspects;
A condenser,
It has.
 第14態様によれば、速度型圧縮機の消費電力を大幅に節約することによって、冷凍サイクル装置の効率が向上する。 According to the fourteenth aspect, the efficiency of the refrigeration cycle apparatus is improved by greatly saving the power consumption of the speed type compressor.
 本開示の第15態様において、例えば、第14態様に係る冷凍サイクル装置では、前記蒸発器は、内部に液相冷媒を貯留してもよく、前記凝縮器は、内部に液相冷媒を貯留してもよく、前記冷凍サイクル装置は、前記蒸発器に貯留された前記液相冷媒、又は前記凝縮器に貯留された前記液相冷媒を前記速度型圧縮機に導く冷媒供給路をさらに備えていてもよい。このような構成によれば、速度型圧縮機の主流路に液相冷媒を確実に供給できる。 In the fifteenth aspect of the present disclosure, for example, in the refrigeration cycle apparatus according to the fourteenth aspect, the evaporator may store a liquid phase refrigerant therein, and the condenser stores the liquid phase refrigerant therein. The refrigeration cycle apparatus may further include a refrigerant supply path that guides the liquid phase refrigerant stored in the evaporator or the liquid phase refrigerant stored in the condenser to the speed compressor. Also good. According to such a configuration, the liquid phase refrigerant can be reliably supplied to the main flow path of the speed compressor.
 本開示の第16態様に係る圧縮方法は、
 速度型圧縮機を用いた圧縮方法であって、
 前記速度型圧縮機は、回転軸及びインペラを含む回転体と、前記回転体の周囲に位置し、気相冷媒の吸入口から前記気相冷媒の吐出口へ前記気相冷媒を流す冷媒流路と、
 を備え、
 前記圧縮方法は、
 前記気相冷媒を前記速度型圧縮機に吸入させることと、
 前記吸入された気相冷媒を前記速度型圧縮機において加速して圧縮することと、
 前記回転体の表面に配置された流出口に連通する流路であって、前記回転体の内部に位置する流路を通って、前記冷媒流路に存在する前記気相冷媒に向けて前記流出口から液相冷媒を噴射することと、
 を含む。
A compression method according to the sixteenth aspect of the present disclosure includes:
A compression method using a speed type compressor,
The speed compressor includes a rotating body including a rotating shaft and an impeller, and a refrigerant flow path that is positioned around the rotating body and that flows the gas-phase refrigerant from a gas-phase refrigerant inlet to a gas-phase refrigerant outlet. When,
With
The compression method is:
Inhaling the gas phase refrigerant into the speed compressor;
Accelerating and compressing the sucked gas phase refrigerant in the speed type compressor;
A flow path communicating with an outlet disposed on the surface of the rotating body, passing through the flow path located inside the rotating body, toward the gas-phase refrigerant existing in the refrigerant flow path. Injecting liquid phase refrigerant from the outlet;
including.
 第16態様によれば、第1態様と同じ効果が得られる。 According to the sixteenth aspect, the same effect as in the first aspect can be obtained.
 本開示の第17態様において、例えば、第16態様に係る圧縮方法では、前記回転体の内部に位置する流路は、前記回転体の内部において前記回転体の軸方向に延びていてもよく、前記液相冷媒が流れる主流路と、前記回転体の内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びており、前記主流路から前記冷媒流路に前記液相冷媒を導く噴射流路とを含んでいてもよく、前記主流路を流れる前記液相冷媒は、前記気相冷媒が吸引されて流れる方向とは逆方向に流れてもよい。 In the seventeenth aspect of the present disclosure, for example, in the compression method according to the sixteenth aspect, the flow path located inside the rotating body may extend in the axial direction of the rotating body inside the rotating body, A main flow path through which the liquid-phase refrigerant flows, and is located inside the rotating body, branches from the main flow path and extends from the main flow path to the refrigerant flow path, and the liquid flows from the main flow path to the refrigerant flow path. The liquid phase refrigerant that flows through the main channel may flow in a direction opposite to the direction in which the gas-phase refrigerant is sucked and flows.
 本開示の第18態様において、例えば、第16又は第17態様に係る圧縮方法では、前記回転体の回転により生ずる遠心力によって、前記流出口から前記液相冷媒が噴射されてもよく、前記噴出された液相冷媒が、前記速度型圧縮機の翼間流路に吸引されてもよい。回転体の遠心力によって液相冷媒を効率的に噴射することができる。 In the eighteenth aspect of the present disclosure, for example, in the compression method according to the sixteenth or seventeenth aspect, the liquid-phase refrigerant may be injected from the outlet through the centrifugal force generated by the rotation of the rotating body. The liquid refrigerant thus made may be sucked into the inter-blade channel of the speed type compressor. Liquid phase refrigerant can be efficiently injected by the centrifugal force of the rotating body.
 本開示の第19態様において、例えば、第16から第18態様のいずれか1つに係る圧縮方法では、前記インペラは、ハブ及び前記ハブに固定されたブレードを有していてもよく、前記流出口は、前記気相冷媒の流れ方向において、前記ブレードの上流端よりも上流側に位置していてもよい。このような構成によれば、圧縮過程の気相冷媒から効率的に熱を奪うことが可能である。 In the nineteenth aspect of the present disclosure, for example, in the compression method according to any one of the sixteenth to eighteenth aspects, the impeller may include a hub and a blade fixed to the hub, and the flow The outlet may be located upstream of the upstream end of the blade in the flow direction of the gas-phase refrigerant. According to such a configuration, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
 以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the following embodiments.
 (実施形態1)
 図1は、本開示の実施形態1に係る冷凍サイクル装置の構成を示している。冷凍サイクル装置100は、蒸発器2、圧縮機3、凝縮器4及び冷媒供給路11を備えている。圧縮機3は、吸入配管6によって蒸発器2に接続され、吐出配管8によって凝縮器4に接続されている。詳細には、蒸発器2の出口と圧縮機3の吸入口とに吸入配管6が接続されている。圧縮機3の吐出口と凝縮器4の入口とに吐出配管8が接続されている。凝縮器4は、戻し経路9によって蒸発器2に接続されている。蒸発器2、圧縮機3及び凝縮器4がこの順番で環状に接続されて冷媒回路10が形成されている。
(Embodiment 1)
FIG. 1 shows a configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present disclosure. The refrigeration cycle apparatus 100 includes an evaporator 2, a compressor 3, a condenser 4, and a refrigerant supply path 11. The compressor 3 is connected to the evaporator 2 by a suction pipe 6 and is connected to the condenser 4 by a discharge pipe 8. Specifically, a suction pipe 6 is connected to the outlet of the evaporator 2 and the suction port of the compressor 3. A discharge pipe 8 is connected to the discharge port of the compressor 3 and the inlet of the condenser 4. The condenser 4 is connected to the evaporator 2 by a return path 9. The evaporator 2, the compressor 3 and the condenser 4 are connected in an annular shape in this order to form a refrigerant circuit 10.
 蒸発器2において冷媒が蒸発し、気相冷媒(冷媒蒸気)が生成される。蒸発器2で生成された気相冷媒は、吸入配管6を通じて、圧縮機3に吸入されて圧縮される。圧縮された気相冷媒は、吐出配管8を通じて、凝縮器4に供給される。凝縮器4において気相冷媒が冷却されて液相冷媒(冷媒液)が生成される。液相冷媒は、戻し経路9を通じて、凝縮器4から蒸発器2に送られる。 In the evaporator 2, the refrigerant evaporates, and a gas phase refrigerant (refrigerant vapor) is generated. The gas-phase refrigerant generated in the evaporator 2 is sucked into the compressor 3 through the suction pipe 6 and compressed. The compressed gas phase refrigerant is supplied to the condenser 4 through the discharge pipe 8. In the condenser 4, the gas phase refrigerant is cooled to generate a liquid phase refrigerant (refrigerant liquid). The liquid phase refrigerant is sent from the condenser 4 to the evaporator 2 through the return path 9.
 冷凍サイクル装置100の冷媒として、フロン系冷媒、低GWP(Global Warming Potential)冷媒及び自然冷媒を用いることができる。フロン系冷媒としては、HCFC(hydrochlorofluorocarbon)、HFC(hydrofluorocarbon)などが挙げられる。低GWP冷媒としては、HFO-1234yfなどが挙げられる。自然冷媒としては、CO2、水などが挙げられる。 As the refrigerant of the refrigeration cycle apparatus 100, a fluorocarbon refrigerant, a low GWP (Global Warming Potential) refrigerant, and a natural refrigerant can be used. Examples of the fluorocarbon refrigerant include HCFC (hydrochlorofluorocarbon), HFC (hydrofluorocarbon), and the like. Examples of the low GWP refrigerant include HFO-1234yf. Examples of natural refrigerants include CO 2 and water.
 冷凍サイクル装置100には、例えば、常温(日本工業規格:20℃±15℃/JIS Z8703)での飽和蒸気圧が負圧(絶対圧で大気圧よりも低い圧力)の物質を主成分として含む冷媒が充填されている。このような冷媒としては、水を主成分として含む冷媒が挙げられる。「主成分」とは、質量比で最も多く含まれた成分を意味する。 The refrigeration cycle apparatus 100 includes, for example, a substance whose saturation vapor pressure at normal temperature (Japanese Industrial Standard: 20 ° C. ± 15 ° C./JIS Z8703) is negative (absolute pressure lower than atmospheric pressure) as a main component. Refrigerant is filled. Examples of such a refrigerant include a refrigerant containing water as a main component. The “main component” means a component that is contained most in mass ratio.
 冷媒として水を用いた場合、冷凍サイクルにおける圧力比が拡大し、冷媒の過熱度が過大になりがちである。本実施形態では、圧縮機3の内部の冷媒流路に向かって液相冷媒が噴射され、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。これにより、冷媒の圧力を所定圧力まで上昇させるために圧縮機3がなすべき仕事を大幅に低減できる。つまり、圧縮機3の消費電力を大幅に節約できる。 When water is used as the refrigerant, the pressure ratio in the refrigeration cycle increases, and the degree of superheat of the refrigerant tends to become excessive. In the present embodiment, the liquid-phase refrigerant is injected toward the refrigerant flow path inside the compressor 3, and an increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed. Thereby, the work which the compressor 3 should do in order to raise the pressure of a refrigerant | coolant to a predetermined pressure can be reduced significantly. That is, the power consumption of the compressor 3 can be greatly saved.
 冷凍サイクル装置100は、さらに、吸熱回路12及び放熱回路14を備えている。 The refrigeration cycle apparatus 100 further includes a heat absorption circuit 12 and a heat dissipation circuit 14.
 吸熱回路12は、蒸発器2で冷却された液相冷媒を使用するための回路であり、ポンプ、室内熱交換器などの必要な機器を有している。吸熱回路12の一部は蒸発器2の内部に位置している。蒸発器2の内部において、吸熱回路12の一部は、液相冷媒の液面よりも上に位置していてもよいし、液相冷媒の液面よりも下に位置していてもよい。吸熱回路12には、水、ブラインなどの熱媒体が充填されている。 The heat absorption circuit 12 is a circuit for using the liquid phase refrigerant cooled by the evaporator 2 and has necessary devices such as a pump and an indoor heat exchanger. A part of the heat absorption circuit 12 is located inside the evaporator 2. In the evaporator 2, a part of the endothermic circuit 12 may be located above the liquid level of the liquid phase refrigerant or may be located below the liquid level of the liquid phase refrigerant. The heat absorption circuit 12 is filled with a heat medium such as water or brine.
 蒸発器2に貯留された液相冷媒は、吸熱回路12を構成する部材(配管)に接触する。これにより、液相冷媒と吸熱回路12の内部の熱媒体との間で熱交換が行われ、液相冷媒が蒸発する。吸熱回路12の内部の熱媒体は、液相冷媒の蒸発潜熱によって冷却される。例えば、冷凍サイクル装置100が室内の冷房を行う空気調和装置である場合、吸熱回路12の熱媒体によって室内の空気が冷却される。室内熱交換器は、例えば、フィンチューブ熱交換器である。 The liquid-phase refrigerant stored in the evaporator 2 comes into contact with members (piping) constituting the heat absorption circuit 12. Thereby, heat exchange is performed between the liquid phase refrigerant and the heat medium inside the heat absorption circuit 12, and the liquid phase refrigerant evaporates. The heat medium in the endothermic circuit 12 is cooled by the latent heat of vaporization of the liquid refrigerant. For example, when the refrigeration cycle apparatus 100 is an air conditioner that cools a room, the room air is cooled by the heat medium of the heat absorption circuit 12. The indoor heat exchanger is, for example, a fin tube heat exchanger.
 放熱回路14は、凝縮器4の内部の冷媒から熱を奪うために使用される回路であり、ポンプ、冷却塔などの必要な機器を有している。放熱回路14の一部は凝縮器4の内部に位置している。詳細には、凝縮器4の内部において、放熱回路14の一部は、液相冷媒の液面よりも上に位置している。放熱回路14には、水、ブラインなどの熱媒体が充填されている。冷凍サイクル装置100が室内の冷房を行う空気調和装置である場合、凝縮器4は室外に配置され、放熱回路14の熱媒体によって凝縮器4の冷媒が冷却される。 The heat dissipation circuit 14 is a circuit used to take heat from the refrigerant inside the condenser 4 and has necessary devices such as a pump and a cooling tower. A part of the heat dissipation circuit 14 is located inside the condenser 4. Specifically, a part of the heat dissipation circuit 14 is located above the liquid level of the liquid-phase refrigerant in the condenser 4. The heat dissipation circuit 14 is filled with a heat medium such as water or brine. When the refrigeration cycle apparatus 100 is an air conditioner that cools a room, the condenser 4 is disposed outside the room, and the refrigerant in the condenser 4 is cooled by the heat medium of the heat dissipation circuit 14.
 圧縮機3から吐出された高温の気相冷媒は、凝縮器4の内部において、放熱回路14を構成する部材(配管)に接触する。これにより、気相冷媒と放熱回路14の内部の熱媒体との間で熱交換が行われ、気相冷媒が凝縮する。放熱回路14の内部の熱媒体は、気相冷媒の凝縮潜熱によって加熱される。気相冷媒によって加熱された熱媒体は、例えば、放熱回路14の冷却塔(図示せず)において外気又は冷却水によって冷却される。 The high-temperature gas-phase refrigerant discharged from the compressor 3 contacts a member (pipe) constituting the heat dissipation circuit 14 inside the condenser 4. Thereby, heat exchange is performed between the gas-phase refrigerant and the heat medium inside the heat dissipation circuit 14, and the gas-phase refrigerant is condensed. The heat medium inside the heat dissipation circuit 14 is heated by the condensation latent heat of the gas-phase refrigerant. The heat medium heated by the gas-phase refrigerant is cooled by outside air or cooling water in a cooling tower (not shown) of the heat dissipation circuit 14, for example.
 蒸発器2は、例えば、断熱性及び耐圧性を有する容器によって構成されている。蒸発器2は、液相冷媒を貯留するとともに、液相冷媒を内部で蒸発させる。蒸発器2の内部の液相冷媒は、蒸発器2の外部からもたらされた熱を吸収し、蒸発する。すなわち、吸熱回路12から熱を吸収することによって加熱された液相冷媒が蒸発器2の中で蒸発する。本実施形態において、蒸発器2に貯留された液相冷媒は、吸熱回路12を循環する熱媒体と間接的に接触する。つまり、蒸発器2に貯留された液相冷媒の一部は、吸熱回路12の熱媒体によって加熱され、飽和状態の液相冷媒を加熱するために使用される。蒸発器2に貯留された液相冷媒の温度、及び、蒸発器2で生成された気相冷媒の温度は、例えば5℃である。 The evaporator 2 is constituted by a container having heat insulation and pressure resistance, for example. The evaporator 2 stores the liquid phase refrigerant and evaporates the liquid phase refrigerant inside. The liquid refrigerant inside the evaporator 2 absorbs heat generated from the outside of the evaporator 2 and evaporates. That is, the liquid-phase refrigerant heated by absorbing heat from the heat absorption circuit 12 evaporates in the evaporator 2. In the present embodiment, the liquid-phase refrigerant stored in the evaporator 2 indirectly contacts the heat medium circulating in the heat absorption circuit 12. That is, a part of the liquid phase refrigerant stored in the evaporator 2 is heated by the heat medium of the heat absorption circuit 12 and used to heat the liquid phase refrigerant in the saturated state. The temperature of the liquid-phase refrigerant stored in the evaporator 2 and the temperature of the gas-phase refrigerant generated in the evaporator 2 are 5 ° C., for example.
 本実施形態において、蒸発器2は、間接接触型の熱交換器(例えば、シェルチューブ熱交換器)である。ただし、蒸発器2は、噴霧式又は充填材式の熱交換器のような直接接触型の熱交換器であってもよい。つまり、吸熱回路12に液相冷媒を循環させることによって、液相冷媒を加熱してもよい。さらに、吸熱回路12が省略されていてもよい。 In the present embodiment, the evaporator 2 is an indirect contact heat exchanger (for example, a shell tube heat exchanger). However, the evaporator 2 may be a direct contact type heat exchanger such as a spray type or filler type heat exchanger. That is, the liquid phase refrigerant may be heated by circulating the liquid phase refrigerant in the heat absorption circuit 12. Further, the endothermic circuit 12 may be omitted.
 圧縮機3は、蒸発器2で生成された気相冷媒を吸入して圧縮する。圧縮機3は、速度型圧縮機(dynamic compressor)である。速度型圧縮機は、気相冷媒に運動量を与え、その後、減速させることによって気相冷媒の圧力を上昇させる圧縮機である。速度型圧縮機として、遠心圧縮機、斜流圧縮機、軸流圧縮機などが挙げられる。速度型圧縮機は、ターボ圧縮機とも呼ばれる。圧縮機3は、回転数を変化させるための可変速機構を備えていてもよい。可変速機構の例は、圧縮機3のモータを駆動するインバータである。圧縮機3の吐出口における冷媒の温度は、例えば100~150℃の範囲にある。 The compressor 3 sucks and compresses the gas-phase refrigerant generated by the evaporator 2. The compressor 3 is a speed type compressor (dynamic compressor). The speed type compressor is a compressor that increases the pressure of the gas-phase refrigerant by giving momentum to the gas-phase refrigerant and then decelerating it. Examples of the speed type compressor include a centrifugal compressor, a mixed flow compressor, and an axial flow compressor. The speed type compressor is also called a turbo compressor. The compressor 3 may include a variable speed mechanism for changing the rotation speed. An example of the variable speed mechanism is an inverter that drives the motor of the compressor 3. The temperature of the refrigerant at the discharge port of the compressor 3 is in the range of 100 to 150 ° C., for example.
 凝縮器4は、例えば、断熱性及び耐圧性を有する容器によって構成されている。凝縮器4は、圧縮機3で圧縮された気相冷媒を凝縮させるとともに、気相冷媒を凝縮させることによって生じた液相冷媒を貯留する。本実施形態では、外部環境に熱を放出することによって冷却された熱媒体に気相冷媒が間接的に接触して凝縮する。つまり、気相冷媒は、放熱回路14の熱媒体によって冷却され、凝縮する。凝縮器4に導入される気相冷媒の温度は、例えば、100~150℃の範囲にある。凝縮器4に貯留された液相冷媒の温度は、例えば35℃である。 The condenser 4 is constituted by a container having heat insulation and pressure resistance, for example. The condenser 4 condenses the gas-phase refrigerant compressed by the compressor 3 and stores the liquid-phase refrigerant generated by condensing the gas-phase refrigerant. In the present embodiment, the gas-phase refrigerant indirectly condenses and condenses on the heat medium cooled by releasing heat to the external environment. That is, the gas phase refrigerant is cooled and condensed by the heat medium of the heat dissipation circuit 14. The temperature of the gas-phase refrigerant introduced into the condenser 4 is in the range of 100 to 150 ° C., for example. The temperature of the liquid phase refrigerant stored in the condenser 4 is, for example, 35 ° C.
 本実施形態において、凝縮器4は、間接接触型の熱交換器(例えば、シェルチューブ熱交換器)である。ただし、凝縮器4は、噴霧式又は充填材式の熱交換器のような直接接触型の熱交換器であってもよい。つまり、放熱回路14に液相冷媒を循環させることによって、液相冷媒を冷却してもよい。さらに、放熱回路14が省略されていてもよい。 In the present embodiment, the condenser 4 is an indirect contact heat exchanger (for example, a shell tube heat exchanger). However, the condenser 4 may be a direct contact type heat exchanger such as a spray type or filler type heat exchanger. That is, the liquid phase refrigerant may be cooled by circulating the liquid phase refrigerant in the heat dissipation circuit 14. Further, the heat dissipation circuit 14 may be omitted.
 吸入配管6は、蒸発器2から圧縮機3に気相冷媒を導くための流路である。吸入配管6を介して、蒸発器2の出口が圧縮機3の吸入口に接続されている。 The suction pipe 6 is a flow path for guiding the gas-phase refrigerant from the evaporator 2 to the compressor 3. The outlet of the evaporator 2 is connected to the suction port of the compressor 3 through the suction pipe 6.
 吐出配管8は、圧縮機3から凝縮器4に圧縮された気相冷媒を導くための流路である。吐出配管8を介して、圧縮機3の吐出口が凝縮器4の入口に接続されている。 The discharge pipe 8 is a flow path for guiding the gas-phase refrigerant compressed from the compressor 3 to the condenser 4. The discharge port of the compressor 3 is connected to the inlet of the condenser 4 via the discharge pipe 8.
 戻し経路9は、凝縮器4から蒸発器2に液相冷媒を導くための流路である。戻し経路9によって、蒸発器2と凝縮器4とが接続されている。戻し経路9にポンプ、流量調整弁などが配置されていてもよい。戻し経路9は、少なくとも1つの配管によって構成されうる。 The return path 9 is a flow path for guiding the liquid refrigerant from the condenser 4 to the evaporator 2. The evaporator 2 and the condenser 4 are connected by the return path 9. A pump, a flow rate adjusting valve, or the like may be disposed in the return path 9. The return path 9 can be constituted by at least one pipe.
 冷媒供給路11は、蒸発器2と圧縮機3とを接続している。冷媒供給路11を通じて、蒸発器2に貯留された液相冷媒が圧縮機3に供給される。液相冷媒は、圧縮機3の内部において、冷媒流路に向かって噴射される。冷媒供給路11は、少なくとも1つの配管によって構成されうる。冷媒供給路11の入口は、蒸発器2において、蒸発器2に貯留された液相冷媒の液面よりも下に位置している。冷媒供給路11には、ポンプ、弁などが配置されていてもよい。 The refrigerant supply path 11 connects the evaporator 2 and the compressor 3. The liquid phase refrigerant stored in the evaporator 2 is supplied to the compressor 3 through the refrigerant supply path 11. The liquid-phase refrigerant is injected toward the refrigerant flow path inside the compressor 3. The refrigerant supply path 11 can be configured by at least one pipe. In the evaporator 2, the inlet of the refrigerant supply path 11 is positioned below the liquid level of the liquid-phase refrigerant stored in the evaporator 2. A pump, a valve, or the like may be disposed in the refrigerant supply path 11.
 冷凍サイクル装置100は、液相冷媒を貯留する予備タンクを備えていてもよい。予備タンクは、例えば、蒸発器2に接続されている。予備タンクには、蒸発器2から液相冷媒が移される。冷媒供給路11は、予備タンクから圧縮機3に液相冷媒が供給されるように、予備タンクと圧縮機3とを接続する。予備タンクは、吸入配管6に接続されていてもよい。この場合、予備タンクは、冷凍サイクル内から供給された液相冷媒を貯留してもよいし、吸入配管6の内周面等を介して外部熱源によって冷却されて生成した液相冷媒を貯留してもよい。 The refrigeration cycle apparatus 100 may include a reserve tank that stores liquid phase refrigerant. The spare tank is connected to the evaporator 2, for example. The liquid phase refrigerant is transferred from the evaporator 2 to the spare tank. The refrigerant supply path 11 connects the auxiliary tank and the compressor 3 so that liquid refrigerant is supplied from the auxiliary tank to the compressor 3. The spare tank may be connected to the suction pipe 6. In this case, the reserve tank may store the liquid phase refrigerant supplied from within the refrigeration cycle, or store the liquid phase refrigerant generated by being cooled by an external heat source via the inner peripheral surface of the suction pipe 6 or the like. May be.
 次に、圧縮機3の構造について詳細に説明する。 Next, the structure of the compressor 3 will be described in detail.
 図2に示すように、圧縮機3は、遠心圧縮機である。圧縮機3は、回転体27、ハウジング35及びシュラウド37を備えている。回転体27は、ハウジング35及びシュラウド37によって囲まれた空間に配置されている。ハウジング35の内部には、回転体27を回転させるためのモータ(図示省略)が配置されていてもよい。 As shown in FIG. 2, the compressor 3 is a centrifugal compressor. The compressor 3 includes a rotating body 27, a housing 35, and a shroud 37. The rotating body 27 is disposed in a space surrounded by the housing 35 and the shroud 37. A motor (not shown) for rotating the rotating body 27 may be disposed inside the housing 35.
 回転体27は、回転軸25及びインペラ26を含む。インペラ26は、回転軸25に取り付けられており、回転軸25とともに高速で回転する。インペラ26は、回転軸25と一体に形成されていてもよい。回転軸25及びインペラ26の回転数は、例えば、5000~100000rpmの範囲にある。回転軸25は、S45CHなどの強度の高い鉄系材料で作製されている。インペラ26は、例えば、アルミニウム、ジュラルミン、鉄、セラミックなどの材料で作製されている。 The rotating body 27 includes a rotating shaft 25 and an impeller 26. The impeller 26 is attached to the rotating shaft 25 and rotates at a high speed together with the rotating shaft 25. The impeller 26 may be formed integrally with the rotary shaft 25. The rotational speeds of the rotary shaft 25 and the impeller 26 are, for example, in the range of 5000 to 100,000 rpm. The rotating shaft 25 is made of a high-strength iron-based material such as S45CH. The impeller 26 is made of a material such as aluminum, duralumin, iron, or ceramic.
 インペラ26は、ハブ30及び複数のブレード31を有する。ハブ30は、回転軸25に嵌め合わされた部分である。回転軸25の中心軸Oを含む断面において、ハブ30は、末広がりの輪郭を有している。複数のブレード31は、回転軸25の周方向に沿ってハブ30の表面30pに配置されている。 The impeller 26 has a hub 30 and a plurality of blades 31. The hub 30 is a portion fitted to the rotary shaft 25. In the cross section including the central axis O of the rotation shaft 25, the hub 30 has a diverging outline. The plurality of blades 31 are arranged on the surface 30 p of the hub 30 along the circumferential direction of the rotation shaft 25.
 インペラ26の周囲の空間には、冷媒流路40、ディフューザ41及び渦巻室42が含まれる。冷媒流路40は、回転体27の周囲に位置し、圧縮されるべき気相冷媒が流れる流路である。冷媒流路40は、吸入流路36及び複数の翼間流路38を含む。吸入流路36は、気相冷媒の流れ方向において、ブレード31の上流端31tよりも上流側に位置している。翼間流路38は、回転軸25の周方向において互いに隣り合うブレード31の間に位置している。インペラ26が回転すると、複数の翼間流路38のそれぞれを流れる気相冷媒に回転方向の速度が与えられる。 The space around the impeller 26 includes a refrigerant flow path 40, a diffuser 41, and a spiral chamber 42. The refrigerant flow path 40 is a flow path that is located around the rotating body 27 and through which the gas phase refrigerant to be compressed flows. The refrigerant flow path 40 includes a suction flow path 36 and a plurality of inter-blade flow paths 38. The suction flow path 36 is located upstream of the upstream end 31t of the blade 31 in the flow direction of the gas-phase refrigerant. The inter-blade channel 38 is located between the blades 31 adjacent to each other in the circumferential direction of the rotating shaft 25. When the impeller 26 rotates, a speed in the rotation direction is given to the gas-phase refrigerant flowing through each of the plurality of blade flow paths 38.
 ディフューザ41は、インペラ26によって回転方向に加速された気相冷媒を渦巻室42に導くための流路である。ディフューザ41の流路断面積は、冷媒流路40から渦巻室42に向かって拡大している。この構造は、インペラ26によって加速された気相冷媒の流速を減速させ、気相冷媒の圧力を上昇させる。ディフューザ41は、例えば、半径方向に延びる流路によって構成されたベーンレスディフューザである。冷媒の圧力を効果的に上昇させるために、ディフューザ41は、複数のベーン及びそれらによって仕切られた複数の流路を有するベーンドディフューザであってもよい。 The diffuser 41 is a flow path for guiding the gas-phase refrigerant accelerated in the rotation direction by the impeller 26 to the spiral chamber 42. The channel cross-sectional area of the diffuser 41 increases from the refrigerant channel 40 toward the spiral chamber 42. This structure decelerates the flow rate of the gas-phase refrigerant accelerated by the impeller 26 and increases the pressure of the gas-phase refrigerant. The diffuser 41 is, for example, a vaneless diffuser configured by a flow path extending in the radial direction. In order to effectively increase the pressure of the refrigerant, the diffuser 41 may be a vane diffuser having a plurality of vanes and a plurality of flow paths partitioned by them.
 渦巻室42は、ディフューザ41を通過した気相冷媒が集められる渦巻状の空間である。圧縮された気相冷媒は、渦巻室42を経由して、圧縮機3の外部(吐出配管8)へと導かれる。渦巻室42の断面積が円周方向に沿って拡大しており、これにより、渦巻室42における気相冷媒の流速及び角運動量が一定に保たれる。 The spiral chamber 42 is a spiral space in which the gas-phase refrigerant that has passed through the diffuser 41 is collected. The compressed gas-phase refrigerant is guided to the outside of the compressor 3 (discharge pipe 8) via the spiral chamber 42. The cross-sectional area of the spiral chamber 42 is enlarged along the circumferential direction, whereby the flow rate and angular momentum of the gas-phase refrigerant in the spiral chamber 42 are kept constant.
 シュラウド37は、インペラ26を覆って、冷媒流路40、ディフューザ41及び渦巻室42を規定している。シュラウド37は、鉄系材料又はアルミニウム系材料によって作製されている。鉄系材料として、FC250、FCD400、SS400などが挙げられる。アルミニウム系材料として、ACD12などが挙げられる。 The shroud 37 covers the impeller 26 and defines the refrigerant flow path 40, the diffuser 41, and the spiral chamber 42. The shroud 37 is made of an iron-based material or an aluminum-based material. Examples of the iron-based material include FC250, FCD400, and SS400. ACD12 etc. are mentioned as an aluminum-type material.
 ハウジング35は、圧縮機3の各種部品を収容するケーシングの役割を担っている。ハウジング35とシュラウド37とが組み合わされることによって、渦巻室42が形成されている。ハウジング35は、上記した鉄系材料又はアルミニウム系材料によって作製されうる。ディフューザがベーンドディフューザであるとき、複数のベーンも上記した鉄系材料又はアルミニウム系材料によって作製されうる。 The housing 35 serves as a casing that accommodates various components of the compressor 3. A spiral chamber 42 is formed by combining the housing 35 and the shroud 37. The housing 35 can be made of the iron-based material or the aluminum-based material described above. When the diffuser is a vaned diffuser, the plurality of vanes can also be made of the iron-based material or aluminum-based material described above.
 ハウジング35の内部には、軸受18及びシール29が配置されている。軸受18は、回転軸25を回転可能に支持している。軸受18は、滑り軸受であってもよく、転がり軸受であってもよい。軸受18が滑り軸受であるとき、潤滑剤として、冷凍サイクル装置100の冷媒を使用することができる。軸受18は、直接又は軸受箱(図示省略)を介してハウジング35に接続されている。シール29は、軸受18の潤滑剤がインペラ26に向かって流れることを阻止する。シール29は、例えば、ラビリンスシールである。 The bearing 18 and the seal 29 are disposed inside the housing 35. The bearing 18 supports the rotating shaft 25 in a rotatable manner. The bearing 18 may be a sliding bearing or a rolling bearing. When the bearing 18 is a sliding bearing, the refrigerant of the refrigeration cycle apparatus 100 can be used as a lubricant. The bearing 18 is connected to the housing 35 directly or via a bearing box (not shown). The seal 29 prevents the lubricant of the bearing 18 from flowing toward the impeller 26. The seal 29 is, for example, a labyrinth seal.
 回転体27の内部には、主流路21及び噴射流路24が設けられている。主流路21は、回転体27の内部において、回転体27の軸方向に延びている。詳細には、主流路21は、回転軸25の内部に設けられており、回転軸25の軸方向に延びている。噴射流路24は、回転体27の内部において主流路21から分岐して主流路21から冷媒流路40まで延びている。主流路21は、冷媒供給路11を通じて、蒸発器2に接続されている。主流路21には、回転体27の外部に位置している冷媒供給路11から導入された液相冷媒が流れる。噴射流路24は、主流路21から冷媒流路40に液相冷媒を導く流路である。 The main flow path 21 and the injection flow path 24 are provided inside the rotating body 27. The main flow path 21 extends in the axial direction of the rotating body 27 inside the rotating body 27. Specifically, the main flow path 21 is provided inside the rotation shaft 25 and extends in the axial direction of the rotation shaft 25. The injection flow path 24 branches from the main flow path 21 inside the rotating body 27 and extends from the main flow path 21 to the refrigerant flow path 40. The main channel 21 is connected to the evaporator 2 through the refrigerant supply channel 11. The liquid refrigerant introduced from the refrigerant supply path 11 located outside the rotating body 27 flows through the main flow path 21. The injection flow path 24 is a flow path that guides the liquid phase refrigerant from the main flow path 21 to the refrigerant flow path 40.
 冷媒供給路11を通じて、蒸発器2から主流路21に液相冷媒が供給される。液相冷媒は、遠心力によって加圧され、主流路21及び噴射流路24を通じて、圧縮機3の内部の冷媒流路40に向かって噴射される。冷媒流路40において液相冷媒が気相冷媒に接触すると、液相冷媒と気相冷媒との間で熱交換が起こり、液相冷媒の顕熱又は蒸発潜熱によって過熱状態の気相冷媒が連続的に冷却される。これにより、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。圧縮機3が必要とする圧縮動力は、完全に断熱された等エントロピー圧縮に必要とされる圧縮動力未満まで低減されうる。冷媒の圧力を所定圧力まで上昇させるために圧縮機3がなすべき仕事を大幅に低減できる。つまり、圧縮機3の消費電力を大幅に節約できる。その結果、冷凍サイクル装置100の効率が向上する。 The liquid phase refrigerant is supplied from the evaporator 2 to the main flow path 21 through the refrigerant supply path 11. The liquid-phase refrigerant is pressurized by centrifugal force and is injected toward the refrigerant flow path 40 inside the compressor 3 through the main flow path 21 and the injection flow path 24. When the liquid-phase refrigerant contacts the gas-phase refrigerant in the refrigerant channel 40, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated gas-phase refrigerant continues due to sensible heat or latent heat of vaporization of the liquid-phase refrigerant. Cooled. Thereby, the increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed. The compression power required by the compressor 3 can be reduced below the compression power required for fully adiabatic isentropic compression. The work to be performed by the compressor 3 in order to increase the pressure of the refrigerant to a predetermined pressure can be greatly reduced. That is, the power consumption of the compressor 3 can be greatly saved. As a result, the efficiency of the refrigeration cycle apparatus 100 is improved.
 主流路21は、回転軸25の端面25cに位置している流入口21aを有する。端面25cは、インペラ26が位置している側とは反対側に位置している端面である。流入口21aから主流路21に液相冷媒が導入される。このような構成によれば、液相冷媒を主流路21にスムーズに送り込むことが可能である。主流路21は、回転軸25の中心軸Oを含んでいる。回転軸25の横断面において、主流路21は、例えば、円形の断面形状を有する。回転軸25の横断面において、主流路21の中心が中心軸Oに一致している。ただし、主流路21の中心が回転軸25の中心軸Oからオフセットしていてもよい。回転軸25の軸方向において、主流路21は、インペラ26の上面26t付近まで延びている。 The main flow path 21 has an inflow port 21 a located on the end face 25 c of the rotating shaft 25. The end face 25c is an end face located on the side opposite to the side where the impeller 26 is located. Liquid phase refrigerant is introduced into the main channel 21 from the inlet 21a. According to such a configuration, the liquid phase refrigerant can be smoothly fed into the main flow path 21. The main flow path 21 includes the central axis O of the rotation shaft 25. In the cross section of the rotating shaft 25, the main flow path 21 has, for example, a circular cross section. In the cross section of the rotating shaft 25, the center of the main channel 21 coincides with the central axis O. However, the center of the main channel 21 may be offset from the center axis O of the rotation shaft 25. In the axial direction of the rotary shaft 25, the main flow path 21 extends to the vicinity of the upper surface 26 t of the impeller 26.
 冷媒供給路11は、ハウジング35の接続口28に接続されうる。ハウジング35の内部には接続口28に連通しているバッファ室35hが設けられており、冷媒供給路11からバッファ室35hに液相冷媒が供給される。回転軸25の端面25cがバッファ室35hに面している。つまり、主流路21がバッファ室35hに向かって開口している。このような構成によれば、バッファ室35hを介して、液相冷媒を冷媒供給路11から主流路21にスムーズに送り込むことが可能である。 The refrigerant supply path 11 can be connected to the connection port 28 of the housing 35. A buffer chamber 35 h communicating with the connection port 28 is provided inside the housing 35, and the liquid phase refrigerant is supplied from the refrigerant supply path 11 to the buffer chamber 35 h. The end surface 25c of the rotating shaft 25 faces the buffer chamber 35h. That is, the main flow path 21 opens toward the buffer chamber 35h. According to such a configuration, it is possible to smoothly feed the liquid-phase refrigerant from the refrigerant supply path 11 to the main flow path 21 via the buffer chamber 35h.
 主流路21の流入口21aの位置は、回転軸25の端面25cに限定されない。後述するように、回転軸25の側面に流入口21aが設けられていてもよい。その場合、バッファ室35hは、ハウジング35の内部において、回転軸25の側面を取り囲んでいてもよい。詳細な構造は、図6を用いて後述する。 The position of the inlet 21 a of the main channel 21 is not limited to the end face 25 c of the rotating shaft 25. As will be described later, an inflow port 21 a may be provided on the side surface of the rotation shaft 25. In that case, the buffer chamber 35 h may surround the side surface of the rotation shaft 25 inside the housing 35. A detailed structure will be described later with reference to FIG.
 噴射流路24は、主流路21から分岐し、回転軸25の半径方向に延びている。噴射流路24の中の液相冷媒には遠心力が働く。液相冷媒は、遠心力によって冷媒流路40に噴射され、圧縮機3に吸入された気相冷媒に混合される。本実施形態では、噴射流路24は、回転軸25の軸方向に垂直な方向に延びている。噴射流路24は、冷媒流路40に面している流出口24bを有する。流出口24bは、気相冷媒の流れ方向において、ブレード31の上流端31tよりも上流側に位置している。このような構成によれば、圧縮過程の気相冷媒から効率的に熱を奪うことが可能である。噴射流路24は、霧状の液相冷媒が冷媒流路40に供給されるように、オリフィスの形状を有していてもよい。 The injection flow path 24 branches from the main flow path 21 and extends in the radial direction of the rotary shaft 25. Centrifugal force acts on the liquid phase refrigerant in the injection flow path 24. The liquid phase refrigerant is injected into the refrigerant flow path 40 by centrifugal force and mixed with the gas phase refrigerant sucked into the compressor 3. In the present embodiment, the ejection flow path 24 extends in a direction perpendicular to the axial direction of the rotation shaft 25. The injection flow path 24 has an outlet 24 b that faces the refrigerant flow path 40. The outflow port 24b is located upstream of the upstream end 31t of the blade 31 in the flow direction of the gas-phase refrigerant. According to such a configuration, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process. The injection flow path 24 may have an orifice shape so that a mist-like liquid phase refrigerant is supplied to the refrigerant flow path 40.
 本実施形態において、流出口24bは、インペラ26のハブ30の表面30pに位置している。噴射流路24は、回転軸25の半径方向にハブ30を貫通している。このような構成によれば、気相冷媒がブレード31間の翼間流路38に侵入する前に気相冷媒と液相冷媒とを混合することができる。これにより、圧縮過程の気相冷媒から効率的に熱を奪うことが可能である。 In the present embodiment, the outlet 24b is located on the surface 30p of the hub 30 of the impeller 26. The injection flow path 24 penetrates the hub 30 in the radial direction of the rotation shaft 25. According to such a configuration, the gas-phase refrigerant and the liquid-phase refrigerant can be mixed before the gas-phase refrigerant enters the inter-blade channel 38 between the blades 31. Thereby, it is possible to efficiently remove heat from the gas phase refrigerant in the compression process.
 流出口24bの位置は、図2に示す位置に限定されない。流出口24bは、気相冷媒の流れ方向において、ブレード31の上流端31tよりも下流側に位置していてもよい。さらに、流出口24bは、気相冷媒の流れ方向において、インペラ26の上面26tよりも上流側に位置していてもよい。この場合、流出口24bは、回転軸25の側面に位置しうる。これらの構成によっても、圧縮過程の気相冷媒から熱を奪うことが可能である。 The position of the outlet 24b is not limited to the position shown in FIG. The outflow port 24b may be located downstream of the upstream end 31t of the blade 31 in the flow direction of the gas-phase refrigerant. Further, the outlet 24b may be located upstream of the upper surface 26t of the impeller 26 in the flow direction of the gas-phase refrigerant. In this case, the outlet 24 b can be located on the side surface of the rotating shaft 25. These configurations can also remove heat from the gas phase refrigerant in the compression process.
 本実施形態において、噴射流路24は、第1部分241及び第2部分242を含む。第1部分241は、回転軸25の内部において主流路21から回転軸25の半径方向に延びている部分である。第2部分242は、第1部分241と冷媒流路40との間に位置している部分である。第1部分241は、回転軸25の内部に位置している。第2部分242は、インペラ26の内部に位置している。このような構成によれば、噴射流路24の長さを十分に確保することができる。噴射流路24が長ければ長いほど液相冷媒に加わる遠心加速度が増し、液相冷媒を冷媒流路40に噴射しやすい。回転軸25の先端部がインペラ26の上面26tから軸方向に突出している場合、回転軸25の先端部にインペラ26とは異なる部品が取り付けられていてもよく、その部品の内部に第2部分242が位置していてもよい。 In the present embodiment, the injection flow path 24 includes a first portion 241 and a second portion 242. The first portion 241 is a portion that extends in the radial direction of the rotary shaft 25 from the main flow path 21 inside the rotary shaft 25. The second part 242 is a part located between the first part 241 and the refrigerant flow path 40. The first portion 241 is located inside the rotation shaft 25. The second portion 242 is located inside the impeller 26. According to such a configuration, a sufficient length of the injection flow path 24 can be ensured. The longer the injection flow path 24, the higher the centrifugal acceleration applied to the liquid phase refrigerant, and the easier it is to inject the liquid phase refrigerant into the refrigerant flow path 40. When the tip of the rotating shaft 25 protrudes in the axial direction from the upper surface 26t of the impeller 26, a component different from the impeller 26 may be attached to the tip of the rotating shaft 25, and the second portion is inside the component. 242 may be located.
 流出口24bがインペラ26の上面26tよりも上流側に位置している場合、第2部分242は省略され、噴射流路24は、第1部分241のみで構成されうる。 When the outlet 24b is located on the upstream side of the upper surface 26t of the impeller 26, the second portion 242 can be omitted, and the injection flow path 24 can be configured by only the first portion 241.
 噴射流路24の流路断面積は、主流路21の流路断面積よりも小さい。このような構成によれば、冷媒流路40に霧状の液相冷媒を供給しやすい。 The flow passage cross-sectional area of the injection flow passage 24 is smaller than the flow passage cross-sectional area of the main flow passage 21. According to such a configuration, it is easy to supply the mist-like liquid phase refrigerant to the refrigerant flow path 40.
 図3に示すように、本実施形態では、複数(2以上)の噴射流路24が設けられている。複数の噴射流路24は、主流路21から放射状に延びている。噴射流路24のそれぞれから冷媒流路40に液相冷媒が噴射される。このような構成によれば、回転軸25の周方向において、気相冷媒を均一に冷却することができる。ただし、圧縮機3が少なくとも1つの噴射流路24を有している場合、本開示の効果が得られる。噴射流路24は、本実施形態のようにインペラ26の半径方向に平行に延びていてもよく、半径方向に対して傾斜した方向に延びていてもよい。 As shown in FIG. 3, in this embodiment, a plurality (two or more) of injection channels 24 are provided. The plurality of ejection channels 24 extend radially from the main channel 21. A liquid phase refrigerant is injected from each of the injection flow paths 24 into the refrigerant flow path 40. According to such a configuration, the gas-phase refrigerant can be uniformly cooled in the circumferential direction of the rotating shaft 25. However, when the compressor 3 has at least one injection flow path 24, the effect of the present disclosure is obtained. The injection flow path 24 may extend parallel to the radial direction of the impeller 26 as in the present embodiment, or may extend in a direction inclined with respect to the radial direction.
 詳細には、回転軸25の周方向において、噴射流路24の流出口24bは、等角度間隔で並んでいる。噴射流路24の流出口24bは、周方向において隣り合うブレード31とブレード31との間に位置している。各流出口24bから均一な流量にて液相冷媒が各翼間流路38に噴射される。このような構成によれば、回転軸25の周方向において、気相冷媒をより均一に冷却することができる。流出口24bの数は、翼間流路38の数と異なっていてもよく、翼間流路38の数に等しくてもよい。噴射流路24の流出口24bが翼間流路38に一対一で対応していてもよい。 Specifically, in the circumferential direction of the rotating shaft 25, the outlets 24b of the injection flow path 24 are arranged at equal angular intervals. The outlet 24b of the ejection flow path 24 is located between the blades 31 adjacent to each other in the circumferential direction. A liquid phase refrigerant is injected into each inter-blade channel 38 at a uniform flow rate from each outlet 24b. According to such a configuration, the gas-phase refrigerant can be cooled more uniformly in the circumferential direction of the rotating shaft 25. The number of outlets 24b may be different from the number of inter-blade channels 38, or may be equal to the number of inter-blade channels 38. The outlet 24b of the injection flow path 24 may correspond to the inter-blade flow path 38 on a one-to-one basis.
 複数のブレード31が複数のフルブレードと複数のスプリッタブレードとを含む場合、回転軸25の周方向において、周方向において隣り合うフルブレードとフルブレードとの間に流出口24bが位置していてもよい。あるいは、周方向において隣り合うフルブレードとスプリッタブレードとの間に流出口24bが位置していてもよい。スプリッタブレードは、フルブレードよりも短いブレードである。複数のフルブレード及び複数のスプリッタブレードは、回転軸25の周方向に沿ってハブ30の表面30pに交互に配置されうる。 When the plurality of blades 31 include a plurality of full blades and a plurality of splitter blades, the outlet 24b is located between the full blades adjacent to each other in the circumferential direction in the circumferential direction of the rotating shaft 25. Good. Or the outflow port 24b may be located between the full blade and splitter blade which adjoin in the circumferential direction. A splitter blade is a blade that is shorter than a full blade. The plurality of full blades and the plurality of splitter blades can be alternately arranged on the surface 30 p of the hub 30 along the circumferential direction of the rotation shaft 25.
 本実施形態において、回転軸25は、焼き嵌め、冷やし嵌めなどの方法によって、インペラ26に隙間なく嵌め合わされている。これにより、噴射流路24の第1部分241と第2部分242との接続部分から液相冷媒が漏れることを防止できる。漏れ防止のために、シールリングなどのシール構造が設けられていてもよい。 In this embodiment, the rotating shaft 25 is fitted to the impeller 26 without a gap by a method such as shrink fitting or cold fitting. Thereby, it can prevent that a liquid phase refrigerant leaks from the connection part of the 1st part 241 and the 2nd part 242 of the injection flow path 24. FIG. In order to prevent leakage, a seal structure such as a seal ring may be provided.
 本開示の圧縮機3の構造は、多段の圧縮機のそれぞれに適用可能である。各段の圧縮機において、所望の効果が得られる。例えば、圧縮機3が複数のインペラを含む多段圧縮機である場合、複数のインペラのそれぞれに噴射流路24が設けられ、各段の冷媒流路に液相冷媒が噴射されうる。 The structure of the compressor 3 of the present disclosure can be applied to each of the multistage compressors. In each stage of the compressor, a desired effect can be obtained. For example, when the compressor 3 is a multistage compressor including a plurality of impellers, the injection flow path 24 is provided in each of the plurality of impellers, and the liquid phase refrigerant can be injected into the refrigerant flow paths of the respective stages.
 次に、冷凍サイクル装置100の動作及び作用を説明する。 Next, the operation and action of the refrigeration cycle apparatus 100 will be described.
 冷凍サイクル装置100が一定期間(例えば夜間)放置された場合、冷凍サイクル装置100の内部(冷媒回路10)の温度は、周囲温度に概ね均衡する。冷凍サイクル装置100の内部の圧力は、特定の圧力に均衡する。圧縮機3を起動すると、蒸発器2の内部の圧力が徐々に低下し、液相冷媒が内気と熱交換する吸熱回路12の熱媒体から吸熱することによって蒸発し、気相冷媒が生成される。気相冷媒は、圧縮機3に吸入されて圧縮され、圧縮機3から吐出される。高圧の気相冷媒は、凝縮器4に導入され、放熱回路14を介して気相冷媒が外気等に放熱することによって凝縮し、液相冷媒が生成される。液相冷媒は、戻し経路9を通じて、凝縮器4から蒸発器2へと送られる。 When the refrigeration cycle apparatus 100 is left for a certain period (for example, at night), the temperature inside the refrigeration cycle apparatus 100 (refrigerant circuit 10) is generally balanced with the ambient temperature. The pressure inside the refrigeration cycle apparatus 100 is balanced to a specific pressure. When the compressor 3 is started, the pressure inside the evaporator 2 gradually decreases, and the liquid-phase refrigerant is evaporated by absorbing heat from the heat medium of the heat-absorbing circuit 12 that exchanges heat with the inside air, thereby generating a gas-phase refrigerant. . The gas phase refrigerant is sucked into the compressor 3 and compressed, and is discharged from the compressor 3. The high-pressure gas-phase refrigerant is introduced into the condenser 4, and the gas-phase refrigerant is condensed by radiating heat to the outside air or the like via the heat dissipation circuit 14, thereby generating a liquid-phase refrigerant. The liquid phase refrigerant is sent from the condenser 4 to the evaporator 2 through the return path 9.
 圧縮機3の内部において、主流路21及び噴射流路24を通じて、冷媒流路40に液相冷媒が噴射される。圧縮機3によって昇圧されて温度が上昇した気相冷媒と霧状の液相冷媒との間で熱交換が起こり、過熱状態の気相冷媒が霧状の液相冷媒の蒸発によって連続的に冷却される。これにより、圧縮過程での冷媒の過熱度の増加に起因する冷媒のエンタルピーの増加が連続的に抑制される。圧縮機3が必要とする圧縮動力は、完全に断熱された等エントロピー圧縮に必要とされる圧縮動力未満まで低減されうる。冷媒の圧力を所定圧力まで上昇させるために圧縮機3がなすべき仕事を大幅に低減できる。つまり、圧縮機3の消費電力を大幅に節約できる。その結果、冷凍サイクル装置100の効率が向上する。 Inside the compressor 3, liquid phase refrigerant is injected into the refrigerant flow path 40 through the main flow path 21 and the injection flow path 24. Heat exchange occurs between the vapor-phase refrigerant whose pressure is increased by the compressor 3 and the temperature rises, and the atomized liquid-phase refrigerant, and the superheated gas-phase refrigerant is continuously cooled by evaporation of the atomized liquid-phase refrigerant. Is done. Thereby, the increase in the enthalpy of the refrigerant due to the increase in the degree of superheat of the refrigerant in the compression process is continuously suppressed. The compression power required by the compressor 3 can be reduced below the compression power required for fully adiabatic isentropic compression. The work to be performed by the compressor 3 in order to increase the pressure of the refrigerant to a predetermined pressure can be greatly reduced. That is, the power consumption of the compressor 3 can be greatly saved. As a result, the efficiency of the refrigeration cycle apparatus 100 is improved.
 本実施形態によれば、冷媒供給路11を通じて、蒸発器2に貯留された液相冷媒が圧縮機3の主流路21に供給される。冷媒流路40には、圧縮機3に吸入される気相冷媒の温度(飽和温度)と概ね同じ温度の霧状の液相冷媒が噴射される。この場合、液相冷媒がフラッシュ蒸発して圧縮機3の内部で蒸気量が急増することを防止できる。その結果、蒸気量の増加に伴う圧縮動力の増加が抑制される。蒸気量の増加に伴う圧縮動力の増加が抑制されるので、過負荷運転時のように圧縮機入力が過大となる運転条件下でも、冷凍能力を大幅に下げることなく、上記したメカニズムによって、圧縮動力を低減する効果が得られる。また、蒸気量の増加によって圧縮機3がチョーキングを起こすことも防止できる。 According to this embodiment, the liquid phase refrigerant stored in the evaporator 2 is supplied to the main flow path 21 of the compressor 3 through the refrigerant supply path 11. A mist-like liquid phase refrigerant having substantially the same temperature as the temperature (saturation temperature) of the gas-phase refrigerant sucked into the compressor 3 is injected into the refrigerant flow path 40. In this case, it is possible to prevent the liquid phase refrigerant from being flash-evaporated and the vapor amount inside the compressor 3 to rapidly increase. As a result, an increase in compression power accompanying an increase in the amount of steam is suppressed. Since the increase in the compression power accompanying the increase in the amount of steam is suppressed, even if the compressor input is excessive, such as during overload operation, the above mechanism is used to reduce the compression without significantly reducing the refrigeration capacity. The effect of reducing power is obtained. Further, it is possible to prevent the compressor 3 from choking due to an increase in the amount of steam.
 図20は、圧縮機3を用いて気相冷媒を圧縮する方法を示すフローチャートである。ステップS1において、気相冷媒を圧縮機3に吸入させる。気相冷媒は、インペラ26によって吸引され、冷媒流路40の吸入流路36を中心軸Oに平行な方向に流れる。したがって、主流路21における液相冷媒の流れ方向は、気相冷媒が圧縮機3に吸入されて流れる方向とは逆方向である。ステップS2において、吸入された気相冷媒を圧縮機3において加速する。具体的には、インペラ26によって気相冷媒を加速する。ステップS4において、冷媒流路40に存在する気相冷媒に向けて噴射流路24の流出口24bから液相冷媒を噴射する。噴射された液相冷媒は、圧縮機3の翼間流路38に吸引される。これにより、気相冷媒の過熱度が下がる。加速された気相冷媒は、冷媒流路40からディフューザ41に向かって流れる。ステップS4において、気相冷媒の静圧がディフューザ41において回復する。 FIG. 20 is a flowchart showing a method for compressing a gas-phase refrigerant using the compressor 3. In step S1, gas phase refrigerant is sucked into the compressor 3. The gas-phase refrigerant is sucked by the impeller 26 and flows through the suction passage 36 of the refrigerant passage 40 in a direction parallel to the central axis O. Therefore, the flow direction of the liquid-phase refrigerant in the main channel 21 is opposite to the direction in which the gas-phase refrigerant is sucked into the compressor 3 and flows. In step S <b> 2, the sucked gas-phase refrigerant is accelerated in the compressor 3. Specifically, the gas phase refrigerant is accelerated by the impeller 26. In step S <b> 4, the liquid phase refrigerant is injected from the outlet 24 b of the injection flow path 24 toward the gas phase refrigerant existing in the refrigerant flow path 40. The injected liquid phase refrigerant is sucked into the inter-blade channel 38 of the compressor 3. Thereby, the superheat degree of a gaseous-phase refrigerant | coolant falls. The accelerated gas phase refrigerant flows from the refrigerant flow path 40 toward the diffuser 41. In step S <b> 4, the static pressure of the gas phase refrigerant is recovered in the diffuser 41.
 なお、圧縮機3は、速度型圧縮機であるため、フローチャートに記載された各工程が完全に分かれているわけではない。各工程は、連続的に行われる。 In addition, since the compressor 3 is a speed type compressor, each process described in the flowchart is not completely separated. Each process is performed continuously.
 (変形例)
 図4Aは、変形例に係る回転体の断面図である。図4Bは、変形例に係る回転軸の部分側面図である。図4Aは、図3の断面図に対応している。本変形例の回転体47は、回転軸45及びインペラ26を備えている。インペラ26は、回転軸45に取り付けられており、回転軸45とともに回転する。回転軸45の側面上において噴射流路24の第1部分241が第2部分242に接続している。第1部分241と第2部分242との接続位置において、回転軸45の周方向に沿って第1部分241が存在している角度範囲が回転軸45の周方向に沿って第2部分242が存在している角度範囲を上回っている。このような構成によれば、第1部分241と第2部分242との接続が容易に実現されうる。回転軸45の周方向における第1部分241と第2部分242との位置合わせが容易であり、インペラ26を回転軸45に取り付けやすい。
(Modification)
FIG. 4A is a cross-sectional view of a rotating body according to a modification. FIG. 4B is a partial side view of a rotating shaft according to a modification. 4A corresponds to the cross-sectional view of FIG. The rotating body 47 of this modification includes a rotating shaft 45 and an impeller 26. The impeller 26 is attached to the rotation shaft 45 and rotates together with the rotation shaft 45. The first portion 241 of the ejection flow path 24 is connected to the second portion 242 on the side surface of the rotation shaft 45. At the connection position of the first portion 241 and the second portion 242, the angular range in which the first portion 241 exists along the circumferential direction of the rotation shaft 45 is the second portion 242 along the circumferential direction of the rotation shaft 45. Beyond the existing angle range. According to such a configuration, the connection between the first portion 241 and the second portion 242 can be easily realized. Positioning of the first portion 241 and the second portion 242 in the circumferential direction of the rotating shaft 45 is easy, and the impeller 26 is easily attached to the rotating shaft 45.
 詳細には、噴射流路24の第1部分241は、半径方向部分241a及び溝241bを含む。半径方向部分241aは、回転軸45の内部に位置している部分である。溝241bは、回転軸45の周方向に沿って回転軸45の側面に設けられた部分である。溝241bに第2部分242が接続されている。このような構成によれば、噴射流路24の第2部分242のそれぞれに均一な流量で液相冷媒を供給することができる。溝241bが分配器の役割を果たすので、第1部分241(半径方向部分241a)の数と第2部分242との数が異なっていてもよい。本変形例では、第1部分241の数が第2部分242の数よりも少ない。さらに、回転軸45の周方向において第1部分241と第2部分242との位置合わせが極めて容易又は不要なので、インペラ26を回転軸45に取り付ける作業が容易である。なお、溝241bが完全な環状であることは必須ではなく、溝241bは円弧状であってもよい。 Specifically, the first portion 241 of the injection flow path 24 includes a radial portion 241a and a groove 241b. The radial direction portion 241 a is a portion located inside the rotation shaft 45. The groove 241 b is a portion provided on the side surface of the rotation shaft 45 along the circumferential direction of the rotation shaft 45. The second portion 242 is connected to the groove 241b. According to such a configuration, the liquid phase refrigerant can be supplied to each of the second portions 242 of the ejection flow path 24 at a uniform flow rate. Since the groove 241b serves as a distributor, the number of the first portions 241 (radial portions 241a) and the number of the second portions 242 may be different. In the present modification, the number of first portions 241 is smaller than the number of second portions 242. Further, since the alignment of the first portion 241 and the second portion 242 in the circumferential direction of the rotating shaft 45 is extremely easy or unnecessary, the operation of attaching the impeller 26 to the rotating shaft 45 is easy. In addition, it is not essential that the groove 241b is a complete ring shape, and the groove 241b may be arcuate.
 噴射流路24から噴射されるべき液体は、冷媒以外の液体である可能性もある。そのような液体は、気相冷媒の温度において蒸発し、気相冷媒を冷却できる他の液体でありうる。 The liquid to be ejected from the ejection flow path 24 may be a liquid other than the refrigerant. Such a liquid may be another liquid that can evaporate at the temperature of the gas phase refrigerant and cool the gas phase refrigerant.
 図5に示すように、別の変形例に係る圧縮機50において、噴射流路24は、回転軸25の半径方向及び軸方向の両方向に対して傾斜した方向に向かって延びている。噴射流路24の流出口24bは、インペラ26のブレード31とブレード31との間に位置している。このような構成によれば、噴射された液相冷媒がブレード31間の気相冷媒の流れに沿って流れやすい。その結果、気相冷媒と液相冷媒との間で効率的な熱交換が起こることを期待できる。 As shown in FIG. 5, in the compressor 50 according to another modification, the injection flow path 24 extends in a direction inclined with respect to both the radial direction and the axial direction of the rotary shaft 25. The outlet 24 b of the injection flow path 24 is located between the blade 31 and the blade 31 of the impeller 26. According to such a configuration, the injected liquid-phase refrigerant can easily flow along the flow of the gas-phase refrigerant between the blades 31. As a result, it can be expected that efficient heat exchange occurs between the gas-phase refrigerant and the liquid-phase refrigerant.
 図6に示すように、別の変形例に係る圧縮機60において、主流路21は、回転軸25の側面に位置している流入口21aを有する。ハウジング35の接続口28は、回転軸25の側面に向かい合う位置に設けられている。このように、主流路21の流入口21aは、回転軸25の側面に位置していてもよい。 As shown in FIG. 6, in the compressor 60 according to another modification, the main flow path 21 has an inlet 21 a located on the side surface of the rotating shaft 25. The connection port 28 of the housing 35 is provided at a position facing the side surface of the rotation shaft 25. Thus, the inflow port 21 a of the main channel 21 may be located on the side surface of the rotation shaft 25.
 (有利な構成)
 本開示の速度型圧縮機は、次のような構成を有していてもよい。
(Advantageous configuration)
The speed type compressor of the present disclosure may have the following configuration.
 速度型圧縮機において必要な圧力比を得るためは、回転数を高くしてインペラの周速を上げる必要がある。噴射流路の流出口から出た液相冷媒は一定の粒子径を持たず、ある粒子径分布をもってばらつく。小径の粒子は気相冷媒の流れに追従して冷媒流路から流出するか、流出前に蒸発する。 In order to obtain the required pressure ratio in the speed type compressor, it is necessary to increase the rotation speed and increase the peripheral speed of the impeller. The liquid-phase refrigerant exiting from the outlet of the injection flow path does not have a fixed particle size but varies with a certain particle size distribution. The small-diameter particles follow the flow of the gas-phase refrigerant and flow out of the refrigerant flow path or evaporate before flowing out.
 しかし、インペラと共に回転する座標系において周方向にコリオリ力が働き、大粒の冷媒液滴ではコリオリ力が気相冷媒から受ける抗力を凌駕する。そのため、冷媒液滴は、気相冷媒の流れに追従せず、流出口に隣接するブレードの後縁部に衝突し、インペラにエロージョンが発生することがある。 However, the Coriolis force acts in the circumferential direction in the coordinate system that rotates with the impeller, and the Coriolis force surpasses the drag that the Coriolis force receives from the gas-phase refrigerant in a large refrigerant droplet. For this reason, the refrigerant droplets do not follow the flow of the gas-phase refrigerant, but may collide with the rear edge of the blade adjacent to the outlet and erosion may occur in the impeller.
 以下に説明する構成によれば、流出口から噴出した大粒径の冷媒液滴の衝突によるインペラのエロージョンを防止できる。 According to the configuration described below, it is possible to prevent impeller erosion due to collision of large-sized refrigerant droplets ejected from the outlet.
 図7は、インペラ26を中心軸Oに垂直な平面に投影することによって得られた平面投影図である。曲線A11と曲線A22は、投影図上における、第1ブレード311の翼根線と第2ブレード312の翼根線とを表している。流出口24bは、第1ブレード311と第2ブレード312の間においてハブ30の表面上に位置し、かつ、回転中心である中心軸Oから半径R1の位置に設けられている。第1ブレード311は、回転体27の回転方向とは逆の回転方向において、流出口24bから最も近い位置にあるブレードである。第2ブレード312は、回転体27の回転方向において、流出口24bから最も近い位置にあるブレードである。 FIG. 7 is a plan view obtained by projecting the impeller 26 onto a plane perpendicular to the central axis O. FIG. Curves A 1 B 1 and A 2 B 2 represent the blade root line of the first blade 311 and the blade root line of the second blade 312 on the projection view. Outlet 24b includes a first blade 311 is located on the surface of the hub 30 between the second blade 312, and is provided at a position of radius R 1 from the central axis O as the rotational axis. The first blade 311 is a blade that is closest to the outflow port 24 b in the rotation direction opposite to the rotation direction of the rotating body 27. The second blade 312 is a blade closest to the outflow port 24 b in the rotation direction of the rotating body 27.
 「翼根線」は、ハブ30と各ブレードとの境界線を意味する。詳細には、ブレードが厚さを有するので、ハブ30とブレードとは、長細い境界面で分けられる。翼根線は、境界面がブレードの厚さ方向に2等分されるように、この境界面の長さ方向に沿って引いた線を意味する。 The “blade root line” means a boundary line between the hub 30 and each blade. Specifically, since the blade has a thickness, the hub 30 and the blade are separated by a long and narrow interface. The blade root line means a line drawn along the length direction of the boundary surface so that the boundary surface is equally divided into two in the thickness direction of the blade.
 図7の投影図において、流出口24bは、曲面で表される。半径R1は、中心軸Oと当該曲面を2等分する点との距離で表される。 In the projection view of FIG. 7, the outlet 24b is represented by a curved surface. The radius R 1 is represented by the distance between the central axis O and a point that bisects the curved surface.
 中心軸Oを中心として、流出口24bを通る軸をr軸と定義し、回転体27の回転方向の角度をθ(度)と定義し、インペラ26に固定された回転する極座標系を定義する。本明細書では、回転体27の回転方向(反時計回り方向)が正方向であり、逆の回転方向(時計回り方向)が負方向である。液相冷媒の流出方向とr軸とのなす角度は、角度φで表される。図7の例では、φ≠0である。液相冷媒の流出方向とは、噴射流路24からの液相冷媒の噴射の中心方向を意味する。第1ブレード311の後縁部B1は、中心軸Oから半径R2の位置にある。中心軸Oと後縁部B1とを結ぶ線OB1とr軸とのなす角度を回転体27の回転方向に沿ってr軸から測ったときの角度は、角度θB1で表される。図7では、角度θB1は負の値である。第2ブレード312の後縁部B2は、中心軸Oから半径R2の位置にある。中心軸Oと後縁部B2とを結ぶ線OB2とr軸とのなす角度を回転体27の回転方向に沿ってr軸から測ったときの角度は、角度θB2で表される。図7では、角度θB2は正の値である。 With the central axis O as the center, the axis passing through the outlet 24b is defined as the r axis, the rotation direction angle of the rotating body 27 is defined as θ (degrees), and the rotating polar coordinate system fixed to the impeller 26 is defined. . In this specification, the rotation direction (counterclockwise direction) of the rotating body 27 is a positive direction, and the reverse rotation direction (clockwise direction) is a negative direction. The angle formed between the outflow direction of the liquid refrigerant and the r-axis is represented by an angle φ. In the example of FIG. 7, φ ≠ 0. The outflow direction of the liquid phase refrigerant means the central direction of the injection of the liquid phase refrigerant from the injection flow path 24. The rear edge B 1 of the first blade 311 is located at a radius R 2 from the central axis O. The angle when the angle between the line OB 1 connecting the central axis O and the rear edge B 1 and the r axis is measured from the r axis along the rotation direction of the rotating body 27 is represented by an angle θ B1 . In FIG. 7, the angle θ B1 is a negative value. The rear edge B 2 of the second blade 312 is located at a radius R 2 from the central axis O. The angle when the angle between the line OB 2 connecting the center axis O and the rear edge B 2 and the r axis is measured from the r axis along the rotation direction of the rotating body 27 is represented by an angle θ B2 . In FIG. 7, the angle θ B2 is a positive value.
 時刻ゼロに流出口24bから速度Uで流出した冷媒液滴は、回転する第1ブレード311の前を飛行し、時刻tPに半径R2の位置に達し、インペラ26から吐出される。この時の位置Pの方向OPとr軸とのなす角度を回転方向に沿ってr軸から測ったときの角度を角度θPとする。方向OPは、中心軸Oと位置Pとを結ぶ線OPを意味する。 The refrigerant droplet that has flowed out from the outlet 24b at the time 0 at the speed U flies in front of the rotating first blade 311, reaches the position of the radius R 2 at the time t P , and is discharged from the impeller 26. The angle when the angle between the direction OP of the position P at this time and the r axis is measured from the r axis along the rotation direction is defined as an angle θ P. The direction OP means a line OP connecting the central axis O and the position P.
 回転極座標系で観察すると、第1ブレード311は静止しているが、遠心力とコリオリ力が液滴に作用するため、液滴は、r軸の方向に加速しながら右側へ曲がる飛行経路をたどる。θB1<θP<θB2の場合、冷媒液滴が後縁部に衝突せずにインペラ26から吐出される。 When observed in the rotating polar coordinate system, the first blade 311 is stationary, but since the centrifugal force and Coriolis force act on the droplet, the droplet follows a flight path that turns to the right while accelerating in the r-axis direction. . When θ B1PB2 , the refrigerant droplet is ejected from the impeller 26 without colliding with the trailing edge.
 図8は、図7を静止座標系で表している。静止座標系で観察すると、r軸からαの角度の方向に速度U’で等速直線運動する冷媒液滴を、第1ブレード311が回転しながら追跡する。第1ブレード311の後縁部B1はθ’B1=θB1+ωtPまで移動する。一方、第2ブレード312の後縁部B2はθ’B2=θB2+ωtPまで移動する。速度U’で表される直線の延長線と半径R2のインペラ26の外縁との交点P’に冷媒液滴が時刻tPに到着する。r軸から測った直線OP’の角度をθ’Pとすると、θ’B1<θ’P<θ’B2の場合、冷媒液滴が後縁部に衝突せずにインペラ26から吐出される。 FIG. 8 represents FIG. 7 in a stationary coordinate system. When observed in a stationary coordinate system, the first blade 311 tracks a refrigerant droplet that moves linearly at a constant velocity in the direction of an angle α from the r axis at a velocity U ′. The rear edge B 1 of the first blade 311 moves to θ ′ B1 = θ B1 + ωt P. On the other hand, the trailing edge B 2 of the second blade 312 moves to θ ′ B2 = θ B2 + ωt P. The refrigerant droplet arrives at time t P at the intersection P ′ between the straight line extension represented by the velocity U ′ and the outer edge of the impeller 26 having the radius R 2 . Assuming that the angle of the straight line OP ′ measured from the r-axis is θ ′ P , when θ ′ B1 <θ ′ P <θ ′ B2 , the refrigerant droplet is discharged from the impeller 26 without colliding with the trailing edge.
 回転体27が回転することによる遠心効果により速度Uが与えられる。流出口24bに断面積の小さいノズルを付けることで速度Uは更に加速される。速度Uが低いほど半径R2の後縁部に到達する時刻tPが増加し、その時刻までに後縁部が移動する角度θ’Bが増すため、最小の速度Uについて考慮しておけば十分である、噴射流路24を通る際に遠心効果により増加する全圧は、0.5ρω2(R2 1-R2 0)で与えられる。主流路21の半径R0は半径R1と比べて十分小さいため無視することができ、噴射流路24を通る際に遠心効果により増加する全圧は、0.5ρω22 1で与えられる。ノズルを付けない場合が最も速度Uが遅く、その場合は全圧の増加分がちょうど動圧になるので、U=R1ωが成り立つ。 A speed U is given by the centrifugal effect caused by the rotation of the rotating body 27. The speed U is further accelerated by attaching a nozzle having a small cross-sectional area to the outlet 24b. As the speed U decreases, the time t P for reaching the trailing edge of the radius R 2 increases, and the angle θ ′ B at which the trailing edge moves by that time increases, so if the minimum speed U is considered. The total pressure, which is sufficient and increases due to the centrifugal effect when passing through the injection flow path 24, is given by 0.5ρω 2 (R 2 1 −R 2 0 ). The radius R 0 of the main flow path 21 is sufficiently smaller than the radius R 1 and can be ignored. The total pressure that increases due to the centrifugal effect when passing through the injection flow path 24 is given by 0.5ρω 2 R 2 1. . When the nozzle is not attached, the speed U is the slowest. In this case, the increase in the total pressure is just the dynamic pressure, so U = R 1 ω holds.
 流出口24bから流出し、半径rを飛行中の液滴冷媒には、r方向に遠心力rω2が働くため、運動方程式より、次の式(1)が成り立つ。 Since the centrifugal force rω 2 acts on the droplet refrigerant flowing out from the outlet 24b and flying in the radius r in the r direction, the following equation (1) is established from the equation of motion.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)の解のうち、t=0でr=R1、ur=Ucosφ=R1ωcosφ≒R1ωを満たすものは、次式(2)で表される。 Of solution of Equation (1), t = 0 at r = R 1, u r = Ucosφ = R 1 ωcosφ ≒ R 1 satisfies the ω is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 r=R2となる時刻tPは、式(3)で表される。 A time t P at which r = R 2 is expressed by Expression (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ただし、上記で用いたcosφ≒1という近似はφ=0度付近で成り立つ。また、この近似によりtPはやや増加するため、実際よりも冷媒液滴が後縁部に衝突しやすい条件となるが、ここまで考慮しておけば安全側である。 However, the approximation of cos φ≈1 used above holds in the vicinity of φ = 0 degrees. In addition, since t P slightly increases due to this approximation, the condition is such that the refrigerant droplets are more likely to collide with the trailing edge than in actuality.
 回転座標系において角度φで速度Uの速度ベクトルは、静止座標系では図8の右上に示す図のように角度α、速度U’の速度ベクトルとなる。速度U’は、次式(4)で与えられる。 In the rotating coordinate system, the velocity vector at the angle φ and the velocity U becomes the velocity vector of the angle α and the velocity U ′ as shown in the upper right of FIG. 8 in the stationary coordinate system. The speed U ′ is given by the following equation (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここでもU=R1ωとすると、次式(5)が成り立つ。 Here again, if U = R 1 ω, the following equation (5) holds.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、角度αは次式(6)により求まる。 Also, the angle α is obtained by the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 直線OPと流出口24bとにより作られる三角形について、正弦定理より、次式(7)が成り立つ。 For the triangle formed by the straight line OP and the outlet 24b, the following equation (7) holds from the sine theorem.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 よって、図8から分かるように、式(8)が成り立つ。 Therefore, as can be seen from FIG. 8, equation (8) holds.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 θ’B1<θ’P<θ’B2が成り立つこと、すなわち、噴射流路24の流出方向を表す角度φが、次式(9)の関係式を満たすことで、第1ブレード311及び第2ブレード312が冷媒液滴に衝突しない。 By satisfying θ ′ B1 <θ ′ P <θ ′ B2 , that is, the angle φ representing the outflow direction of the injection flow path 24 satisfies the relational expression (9) below, the first blade 311 and the second blade The blade 312 does not collide with the coolant droplet.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 流出口24bはインペラ26における冷媒流路の入口付近のハブ30の表面に存在するため、比率(R2/R1)は3~6の値となる。また、第2ブレード312の後縁部B2の位置を表す角度θB2は、通常、+20度以下である。この範囲では、上記右辺のθ’B2の条件は、物理的な上限値であるφ>90°でも満足されるため、液滴が第2ブレード312に衝突することはない。 Since the outlet 24b exists on the surface of the hub 30 near the inlet of the refrigerant flow path in the impeller 26, the ratio (R 2 / R 1 ) takes a value of 3-6. Further, the angle θ B2 representing the position of the rear edge B 2 of the second blade 312 is usually +20 degrees or less. In this range, the condition of θ ′ B2 on the right side is satisfied even when φ> 90 ° that is the physical upper limit value, and thus the droplet does not collide with the second blade 312.
 角度φの下限値は、上記左辺の第1ブレード311に関する衝突条件により決まる。角度φの範囲の下限値は、比率(R2/R1)に依存する。3≦(R2/R1)≦6で考える場合、R2/R1=3のときに角度φの範囲の下限値が最小となる。 The lower limit value of the angle φ is determined by the collision condition regarding the first blade 311 on the left side. The lower limit value of the range of the angle φ depends on the ratio (R 2 / R 1 ). In the case of 3 ≦ (R 2 / R 1 ) ≦ 6, when R 2 / R 1 = 3, the lower limit value of the range of the angle φ is minimum.
 図9は、第1ブレード311の後縁部B1の位置を表す角度θB1に対して、上記左辺の衝突条件を満たす流出角度φを示している。角度θB1は、インペラ26の一般的な設計として-40度以上であり、このときφ≧-25°が第1ブレード311の後縁部B1に衝突しないための必要条件となる。角度φの上限値は、穴加工が可能な範囲で定められ、例えば60度である。 FIG. 9 shows an outflow angle φ that satisfies the collision condition on the left side with respect to the angle θ B1 that represents the position of the trailing edge B 1 of the first blade 311. The angle θ B1 is -40 degrees or more as a general design of the impeller 26, and at this time, φ ≧ −25 ° is a necessary condition for preventing the first blade 311 from colliding with the rear edge portion B 1 . The upper limit value of the angle φ is determined within a range in which drilling is possible, and is, for example, 60 degrees.
 以上のように、噴射流路24の流出方向φ≧-25°とすることにより、冷媒液滴と後縁部の衝突を回避することができる。その結果、液体の衝突によるインペラ26のエロージョンを防止することができる。 As described above, the collision between the refrigerant droplet and the trailing edge can be avoided by setting the outflow direction φ ≧ −25 ° of the ejection flow path 24. As a result, erosion of the impeller 26 due to the collision of the liquid can be prevented.
 (別の変形例)
 次に、多段速度型圧縮機に本開示の技術を適用した場合について説明する。図2を参照して説明した圧縮機3と変形例に係る多段速度型圧縮機とで共通する要素には同じ参照符号を付し、それらの説明を省略することがある。各圧縮機に関する説明は、技術的に矛盾しない限り、相互に適用されうる。技術的に矛盾しない限り、各圧縮機の構成は、相互に組み合わされてもよい。
(Another modification)
Next, a case where the technique of the present disclosure is applied to a multistage speed type compressor will be described. Elements common to the compressor 3 described with reference to FIG. 2 and the multistage speed compressor according to the modification are denoted by the same reference numerals, and description thereof may be omitted. The description regarding each compressor may be applied mutually as long as there is no technical contradiction. As long as there is no technical contradiction, the configurations of the compressors may be combined with each other.
 多段圧縮機は、高効率な運転を実現できる最適な比速度NSの範囲内で設計される。気相冷媒は段を経るごとに圧縮されて体積が徐々に減るため、一般的に、後段の圧力比は、前段の圧力比以下に設定されうる。言い換えれば、過熱度を完全断熱された等エントロピー圧縮以下に低減するために、後段で取り除くべき過熱度は前段で取り除くべき過熱度以下でありうる。従って、後段の液相冷媒の噴射量は、前段の液相冷媒の噴射量以下に設定されうる。 The multistage compressor is designed within the range of the optimum specific speed NS that can realize highly efficient operation. Since the gas-phase refrigerant is compressed and gradually decreases in volume as it passes through the stages, in general, the pressure ratio in the subsequent stage can be set to be equal to or lower than the pressure ratio in the preceding stage. In other words, in order to reduce the degree of superheat below the fully-insulated isentropic compression, the degree of superheat to be removed in the subsequent stage may be less than or equal to the degree of superheat to be removed in the previous stage. Therefore, the injection amount of the subsequent-stage liquid phase refrigerant can be set to be equal to or less than the injection amount of the preceding-stage liquid phase refrigerant.
 しかし、多段圧縮機において、後段の噴射流路の半径位置距離が前段の噴射流路の半径位置距離より大きい場合は、一定の回転角速度における後段の噴射量が過大になる。気相冷媒の過熱度で蒸発しきれない液相冷媒のうち、気相冷媒に追従しない大粒子径の液相冷媒がインペラの壁面に衝突して滞留する可能性がある。滞留した液相冷媒がインペラの壁面の熱により蒸発する際の蒸発潜熱は、システムの冷凍能力に寄与せず、圧縮機の理論動力が増えてCOPが低下する。 However, in a multistage compressor, if the radial position distance of the subsequent injection flow path is larger than the radial position distance of the previous injection flow path, the subsequent injection amount at a constant rotational angular velocity becomes excessive. Of the liquid phase refrigerant that cannot be evaporated due to the superheat of the gas phase refrigerant, there is a possibility that a liquid particle refrigerant having a large particle size that does not follow the gas phase refrigerant collides with the impeller wall surface and stays there. The latent heat of vaporization when the staying liquid-phase refrigerant evaporates due to the heat of the impeller wall does not contribute to the refrigeration capacity of the system, and the theoretical power of the compressor increases and COP decreases.
 本発明者らは、上記課題について、鋭意検討し、多段圧縮機において、液相冷媒の過多噴射による、気相冷媒に追従しない大粒子径の液相冷媒がインペラの壁面に衝突して滞留することを防止するための技術を見出した。 The present inventors diligently studied the above problem, and in a multistage compressor, a large-phase liquid-phase refrigerant that does not follow the gas-phase refrigerant collides with the impeller wall surface due to excessive injection of the liquid-phase refrigerant. I found a technique to prevent this.
 以下、詳細について説明する。 Details will be described below.
 図10は、別の変形例に係る多段速度型圧縮機70の断面を示している。本変形例では、圧縮機70は、2段の圧縮機である。ただし、圧縮機70は、3段以上であってもよい。 FIG. 10 shows a cross section of a multistage speed compressor 70 according to another modification. In this modification, the compressor 70 is a two-stage compressor. However, the compressor 70 may have three or more stages.
 図10に示すように、圧縮機70は、多段遠心圧縮機である。圧縮機70は、回転体77、ハウジング35及びシュラウド37を備えている。回転体77は、ハウジング35及びシュラウド37によって囲まれた空間に配置されている。ハウジング35の内部には、回転体77を回転させるためのモータ及び軸受(図示省略)が配置されていてもよい。 As shown in FIG. 10, the compressor 70 is a multistage centrifugal compressor. The compressor 70 includes a rotating body 77, a housing 35, and a shroud 37. The rotating body 77 is disposed in a space surrounded by the housing 35 and the shroud 37. A motor and a bearing (not shown) for rotating the rotating body 77 may be disposed inside the housing 35.
 回転体77は、回転軸25、第1インペラ26及び第2インペラ71を含む。第1インペラ26及び第2インペラ71は、回転軸25に取り付けられており、回転軸25とともに高速で回転する。第1インペラ26及び第2インペラ71は、回転軸25と一体に形成されていてもよい。回転軸25及び第1インペラ26及び第2インペラ71の回転数は、例えば、5000~100000rpmの範囲にある。回転軸25は、S45CHなどの強度の高い鉄系材料で作製されている。第1インペラ26及び第2インペラ71、例えば、アルミニウム、ジュラルミン、鉄、セラミックなどの材料で作製されている。 The rotating body 77 includes a rotating shaft 25, a first impeller 26, and a second impeller 71. The first impeller 26 and the second impeller 71 are attached to the rotary shaft 25 and rotate at a high speed together with the rotary shaft 25. The first impeller 26 and the second impeller 71 may be formed integrally with the rotary shaft 25. The rotational speeds of the rotary shaft 25, the first impeller 26, and the second impeller 71 are in the range of 5000 to 100,000 rpm, for example. The rotating shaft 25 is made of a high-strength iron-based material such as S45CH. The first impeller 26 and the second impeller 71 are made of a material such as aluminum, duralumin, iron, or ceramic.
 第1インペラ26の向きは、第2インペラ71の向きに一致している。言い換えれば、回転軸25に平行な方向に関して、第1インペラ26の上面及び第2インペラ71の上面の両方が同じ側に位置している。ただし、回転軸25の一端部に第1インペラ26が取り付けられ、回転軸25の他端部に第2インペラ71が取り付けられていてもよい。この場合、回転軸25に平行な方向に関して、第1インペラ26の上面は、第2インペラ71の上面と反対側に位置する。第1インペラ26の裏面と第2インペラ71の裏面とが向かい合う。 The direction of the first impeller 26 matches the direction of the second impeller 71. In other words, both the upper surface of the first impeller 26 and the upper surface of the second impeller 71 are located on the same side with respect to the direction parallel to the rotation shaft 25. However, the first impeller 26 may be attached to one end of the rotating shaft 25, and the second impeller 71 may be attached to the other end of the rotating shaft 25. In this case, the upper surface of the first impeller 26 is located on the opposite side of the upper surface of the second impeller 71 with respect to the direction parallel to the rotation shaft 25. The back surface of the first impeller 26 and the back surface of the second impeller 71 face each other.
 第1インペラ26及び第2インペラ71の周囲の空間には、冷媒流路40、冷媒流路80、第1ディフューザ41、第2ディフューザ51、渦巻室42及びリターンチャンネル79が含まれる。冷媒流路40と冷媒流路80は、回転体27の周囲に位置し、圧縮されるべき気相冷媒が流れる流路である。冷媒流路40は、吸入流路36及び複数の翼間流路38を含む。冷媒流路80は、吸入流路76及び複数の翼間流路78を含む。第1インペラ26及び第2インペラ71が回転すると、複数の翼間流路38と翼間流路78のそれぞれを流れる気相冷媒に回転方向の速度が与えられる。 The space around the first impeller 26 and the second impeller 71 includes a refrigerant flow path 40, a refrigerant flow path 80, a first diffuser 41, a second diffuser 51, a spiral chamber 42, and a return channel 79. The refrigerant channel 40 and the refrigerant channel 80 are located around the rotating body 27 and are channels through which a gas phase refrigerant to be compressed flows. The refrigerant flow path 40 includes a suction flow path 36 and a plurality of inter-blade flow paths 38. The refrigerant flow path 80 includes a suction flow path 76 and a plurality of inter-blade flow paths 78. When the first impeller 26 and the second impeller 71 rotate, the rotational speed is given to the gas-phase refrigerant flowing through each of the plurality of inter-blade passages 38 and the inter-blade passages 78.
 第1ディフューザ41は、第1インペラ26を囲むように設けられている。第2ディフューザ51は、第2インペラ71を囲むように設けられている。第1ディフューザ41は、第1インペラ26によって回転方向に加速された気相冷媒をリターンチャンネル79に導くための流路である。第2ディフューザ51は、第2インペラ71によって回転方向に加速された気相冷媒を渦巻室42に導くための流路である。第1ディフューザ41の流路断面積は、冷媒流路40からリターンチャンネル79に向かって拡大している。第2ディフューザ51の流路断面積は、冷媒流路80から渦巻室42に向かって拡大している。この構造は、第1インペラ26及び第2インペラ71によって加速された気相冷媒の流速を減速させ、気相冷媒の圧力を上昇させる。第1ディフューザ41及び第2ディフューザ51は、例えば、半径方向に延びる流路によって構成されたベーンレスディフューザである。冷媒の圧力を効果的に上昇させるために、第1ディフューザ41及び第2ディフューザ51は、複数のベーン及びそれらによって仕切られた複数の流路を有するベーンドディフューザであってもよい。 The first diffuser 41 is provided so as to surround the first impeller 26. The second diffuser 51 is provided so as to surround the second impeller 71. The first diffuser 41 is a flow path for guiding the gas-phase refrigerant accelerated in the rotation direction by the first impeller 26 to the return channel 79. The second diffuser 51 is a flow path for guiding the gas-phase refrigerant accelerated in the rotation direction by the second impeller 71 to the spiral chamber 42. The cross-sectional area of the flow path of the first diffuser 41 increases from the refrigerant flow path 40 toward the return channel 79. The cross-sectional area of the flow path of the second diffuser 51 increases from the refrigerant flow path 80 toward the spiral chamber 42. This structure decelerates the flow velocity of the gas-phase refrigerant accelerated by the first impeller 26 and the second impeller 71 and increases the pressure of the gas-phase refrigerant. The 1st diffuser 41 and the 2nd diffuser 51 are vaneless diffusers comprised by the flow path extended in a radial direction, for example. In order to effectively increase the pressure of the refrigerant, the first diffuser 41 and the second diffuser 51 may be a vane diffuser having a plurality of vanes and a plurality of flow paths partitioned by them.
 リターンチャンネル79は、第1インペラ26を通過することによって圧縮された気相冷媒を第2インペラ71に導く流路である。リターンチャンネル79は、第1ディフューザ41から吸入流路76に向かって内向きに延びている。 The return channel 79 is a flow path that guides the gas-phase refrigerant compressed by passing through the first impeller 26 to the second impeller 71. The return channel 79 extends inward from the first diffuser 41 toward the suction flow path 76.
 渦巻室42は、第2ディフューザ51を通過した気相冷媒が集められる渦巻状の空間である。圧縮された気相冷媒は、渦巻室42を経由して、圧縮機70の外部(吐出配管8)へと導かれる。渦巻室42の断面積が円周方向に沿って拡大しており、これにより、渦巻室42における気相冷媒の流速及び角運動量が一定に保たれる。 The spiral chamber 42 is a spiral space in which the gas-phase refrigerant that has passed through the second diffuser 51 is collected. The compressed gas-phase refrigerant is guided to the outside of the compressor 70 (discharge pipe 8) via the spiral chamber 42. The cross-sectional area of the spiral chamber 42 is enlarged along the circumferential direction, whereby the flow rate and angular momentum of the gas-phase refrigerant in the spiral chamber 42 are kept constant.
 シュラウド37は、第1インペラ26及び第2インペラ71を覆って、冷媒流路40、第1ディフューザ41、第2ディフューザ51、渦巻室42及びリターンチャンネル79を規定している。シュラウド37は、鉄系材料又はアルミニウム系材料によって作製されている。鉄系材料として、FC250、FCD400、SS400などが挙げられる。アルミニウム系材料として、ACD12などが挙げられる。 The shroud 37 covers the first impeller 26 and the second impeller 71, and defines the refrigerant flow path 40, the first diffuser 41, the second diffuser 51, the spiral chamber 42, and the return channel 79. The shroud 37 is made of an iron-based material or an aluminum-based material. Examples of the iron-based material include FC250, FCD400, and SS400. ACD12 etc. are mentioned as an aluminum-type material.
 ハウジング35は、圧縮機70の各種部品を収容するケーシングの役割を担っている。ハウジング35とシュラウド37とが組み合わされることによって、渦巻室42が形成されている。ハウジング35は、上記した鉄系材料又はアルミニウム系材料によって作製されうる。ディフューザがベーンドディフューザであるとき、複数のベーンも上記した鉄系材料又はアルミニウム系材料によって作製されうる。 The housing 35 serves as a casing that accommodates various components of the compressor 70. A spiral chamber 42 is formed by combining the housing 35 and the shroud 37. The housing 35 can be made of the iron-based material or the aluminum-based material described above. When the diffuser is a vaned diffuser, the plurality of vanes can also be made of the iron-based material or aluminum-based material described above.
 回転体77の内部には、主流路21、第1噴射流路24及び第2噴射流路74が設けられている。主流路21は、回転体27の内部において、回転体27の軸方向に延びている。詳細には、主流路21は、回転軸25の内部に設けられており、回転軸25の軸方向に延びている。第1噴射流路24は、第1インペラ26の内部において主流路21から分岐して主流路21から冷媒流路40まで延びている。第2噴射流路74は、第2インペラ71内部において主流路21から分岐して主流路21から冷媒流路80まで延びている。主流路21は、冷媒供給路11を通じて、蒸発器2に接続されている。主流路21には、回転体27の外部に位置している冷媒供給路11から導入された液相冷媒が流れる。第1噴射流路24は、主流路21から冷媒流路40に液相冷媒を導く流路である。第2噴射流路74は、主流路21から冷媒流路80に液相冷媒を導く流路である。 The main flow path 21, the first injection flow path 24, and the second injection flow path 74 are provided inside the rotating body 77. The main flow path 21 extends in the axial direction of the rotating body 27 inside the rotating body 27. Specifically, the main flow path 21 is provided inside the rotation shaft 25 and extends in the axial direction of the rotation shaft 25. The first injection flow path 24 branches from the main flow path 21 inside the first impeller 26 and extends from the main flow path 21 to the refrigerant flow path 40. The second injection channel 74 branches from the main channel 21 inside the second impeller 71 and extends from the main channel 21 to the refrigerant channel 80. The main channel 21 is connected to the evaporator 2 through the refrigerant supply channel 11. The liquid refrigerant introduced from the refrigerant supply path 11 located outside the rotating body 27 flows through the main flow path 21. The first injection flow path 24 is a flow path that guides the liquid phase refrigerant from the main flow path 21 to the refrigerant flow path 40. The second injection channel 74 is a channel that guides the liquid phase refrigerant from the main channel 21 to the refrigerant channel 80.
 冷媒供給路11を通じて、蒸発器2から主流路21に液相冷媒が供給される。液相冷媒は、遠心力によって加圧され、主流路21、第1噴射流路24及び第2噴射流路74を通じて、圧縮機70の内部の冷媒流路40及び冷媒流路80に向かって噴射される。冷媒流路40及び冷媒流路80において液相冷媒が気相冷媒に接触すると、液相冷媒と気相冷媒との間で熱交換が起こり、液相冷媒の顕熱又は蒸発潜熱によって過熱状態の気相冷媒が連続的に冷却される。 The liquid phase refrigerant is supplied from the evaporator 2 to the main flow path 21 through the refrigerant supply path 11. The liquid-phase refrigerant is pressurized by centrifugal force and injected toward the refrigerant flow path 40 and the refrigerant flow path 80 inside the compressor 70 through the main flow path 21, the first injection flow path 24 and the second injection flow path 74. Is done. When the liquid-phase refrigerant contacts the gas-phase refrigerant in the refrigerant channel 40 and the refrigerant channel 80, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated state is caused by sensible heat or latent heat of vaporization of the liquid-phase refrigerant. The gas phase refrigerant is continuously cooled.
 図11は、流出口24bを含む位置における第1インペラ26の断面、及び、流出口74bを含む位置における第2インペラ71の断面を示している。第1噴射流路24の流出口24bの開口面積をS1、第2噴射流路74の流出口74bの開口面積をS2、回転体77の中心軸Oから流出口24bまでの半径距離をR1、回転体77の中心軸Oから流出口74bまでの半径距離をR2と定義する。このとき、圧縮機70は、(R/R≦S/S)の関係を満たす。 FIG. 11 shows a cross section of the first impeller 26 at a position including the outflow port 24b and a cross section of the second impeller 71 at a position including the outflow port 74b. The opening area of the outlet 24b of the first injection channel 24 is S 1 , the opening area of the outlet 74b of the second injection channel 74 is S 2 , and the radial distance from the central axis O of the rotating body 77 to the outlet 24b is set. R 1 and the radial distance from the central axis O of the rotating body 77 to the outlet 74b are defined as R 2 . At this time, the compressor 70 satisfies the relationship of (R 2 / R 1 ≦ S 1 / S 2 ).
 開口面積S1は、第1噴射流路24の流路断面積でありうる。開口面積S2は、第2噴射流路74の流路断面積でありうる。半径距離R1は、中心軸Oから流出口24bの中心又は重心までの距離を意味する。半径距離R2は、中心軸Oから流出口74bの中心又は重心までの距離を意味する。 The opening area S 1 may be a channel cross-sectional area of the first injection channel 24. The opening area S 2 may be a channel cross-sectional area of the second injection channel 74. The radial distance R 1 means the distance from the central axis O to the center or the center of gravity of the outlet 24b. The radial distance R 2 means a distance from the central axis O to the center or the center of gravity of the outlet 74b.
 図11に示すようにR1≦R2の場合、例えば、第1インペラ26のハブ30の半径、すなわち、流出口24bの半径距離R1を小さくし、気相冷媒の入口面積を増やすことで、入口マッハ数を低減して高効率運転を行うことができる。 As shown in FIG. 11, in the case of R 1 ≦ R 2 , for example, the radius of the hub 30 of the first impeller 26, that is, the radial distance R 1 of the outlet 24b is decreased to increase the inlet area of the gas phase refrigerant. Thus, high efficiency operation can be performed by reducing the Mach number at the entrance.
 図12に示すように、主流路21の内部の液相冷媒には遠心力が作用し、遠心力と釣り合うように半径方向に圧力勾配dp/drができるので、半径方向の力の釣り合いは、次式(10)で表される。 As shown in FIG. 12, a centrifugal force acts on the liquid refrigerant inside the main flow path 21, and a pressure gradient dp / dr is generated in the radial direction so as to balance the centrifugal force. It is represented by the following formula (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)を半径ゼロからrまで積分すれば、圧力はP1=(ρω22)/2で表される。液相冷媒の供給静圧Ps=0とする。また、重力による圧力ヘッドは遠心力による圧力ヘッドに較べて無視できるほど小さいため、省略する。 If the equation (10) is integrated from a radius of zero to r, the pressure is expressed as P 1 = (ρω 2 r 2 ) / 2. The supply static pressure Ps of the liquid phase refrigerant is set to zero. Further, the pressure head due to gravity is negligibly small as compared with the pressure head due to centrifugal force, and is therefore omitted.
 流出速度をv、流出口の断面積をAとする。噴射流路の内部に存在する液相冷媒に関して、噴射方向の厚さdrの微小柱状部分を考えれば、a=dv/dt及びdt=dr/vから噴射方向の加速度はa=vdv/drで表される。 Suppose the outflow velocity is v and the cross-sectional area of the outlet is A. With regard to the liquid phase refrigerant existing inside the injection flow path, considering a minute columnar portion with a thickness dr in the injection direction, the acceleration in the injection direction is a = vdv / dr from a = dv / dt and dt = dr / v. expressed.
 噴射方向に作用する力は、遠心力(ρAω2rdr)及び微小柱状部分の前後の圧力差による力-A(dp/dr)drであるから、噴射方向の運動方程式は、次式(11)で表される。 Since the force acting in the injection direction is a centrifugal force (ρAω 2 rdr) and a force −A (dp / dr) dr due to the pressure difference before and after the minute columnar portion, the equation of motion in the injection direction is expressed by the following equation (11). It is represented by
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 式(11)を積分すれば、次式(12)が得られる。 If the equation (11) is integrated, the following equation (12) is obtained.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 噴射流路の入口を添字「1」で表し、噴射流路の出口を添字「2」で表すと、次式(13)が得られる。 When the inlet of the injection flow path is represented by the subscript “1” and the outlet of the injection flow path is represented by the subscript “2”, the following expression (13) is obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、v1=0、P1=(ρω22)/2とすれば、流出速度v2は、次式(14)で表される。 Here, if v 1 = 0 and P 1 = (ρω 2 r 2 ) / 2, the outflow velocity v 2 is expressed by the following equation (14).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 流量Qは、開口面積S(S=噴射流路の数N×流出口の断面積A)と流出速度v2との積で表される。損失を無視して理論流速で液相冷媒が流出すると仮定すると、流量Qは、次式(15)で表される。 The flow rate Q is represented by the product of the opening area S (S = the number N of the injection channels × the cross-sectional area A of the outlet) and the outflow velocity v 2 . Assuming that the liquid phase refrigerant flows out at a theoretical flow rate ignoring the loss, the flow rate Q is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 実際には各種の損失が存在するから、流量係数Cを考えて、式(15)を式(16)のように定義できる。 Actually, since there are various losses, Equation (15) can be defined as Equation (16) considering the flow coefficient C.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここで、P2は冷媒流路を流れる気相冷媒の蒸気圧力である。P2は遠心力による圧力に較べて無視できるほど小さく、省略できるので、Q=CSωRが成立する。 Here, P 2 is the vapor pressure of the gas-phase refrigerant flowing through the refrigerant flow path. Since P 2 is negligibly small compared to the pressure due to centrifugal force and can be omitted, Q = CSωR is established.
 すなわち、噴射流量Qは、流出口の開口面積Sと、回転角速度ωと、中心軸から流出口までの半径距離Rとの積に比例する。 That is, the injection flow rate Q is proportional to the product of the opening area S of the outlet, the rotational angular velocity ω, and the radial distance R from the central axis to the outlet.
 多段圧縮機70において、気相冷媒は、段を経るごとに圧縮されて体積が徐々に減るため、後段の圧力比は、前段の圧力比以下に設定されうる。言い換えれば、過熱度を完全断熱された等エントロピー圧縮以下に低減するために、後段で取り除くべき過熱度は、前段で取り除くべき過熱度以下でありうる。従って、後段の液相冷媒の噴射量は、前段の液相冷媒の噴射量以下に設定されうる。 In the multistage compressor 70, the gas-phase refrigerant is compressed as it passes through the stages, and the volume gradually decreases. Therefore, the pressure ratio in the subsequent stage can be set to be equal to or lower than the pressure ratio in the preceding stage. In other words, in order to reduce the degree of superheat below the fully-insulated isentropic compression, the degree of superheat to be removed in the subsequent stage may be less than or equal to the degree of superheat to be removed in the previous stage. Therefore, the injection amount of the subsequent-stage liquid phase refrigerant can be set to be equal to or less than the injection amount of the preceding-stage liquid phase refrigerant.
 つまり、(前段の液相冷媒の噴射量Q1)≧(後段の液相冷媒の噴射量Q2)が成立しうる。 That is, (the injection amount Q1 of the liquid refrigerant at the front stage) ≧ (the injection amount Q2 of the liquid refrigerant at the rear stage) can be established.
 以上のように、S1×R1≧S2×R2、すなわち、R2/R1≦S1/S2の関係が満たされると、回転角速度ωは一定であるため、第2インペラ71の噴射流路74からの噴射量が第1インペラ26の噴射流路24から噴射量以下になる。 As described above, when the relationship of S 1 × R 1 ≧ S 2 × R 2 , that is, R 2 / R 1 ≦ S 1 / S 2 is satisfied, the rotational angular velocity ω is constant, so the second impeller 71 The injection amount from the injection flow path 74 is equal to or less than the injection amount from the injection flow path 24 of the first impeller 26.
 これにより、取り除くべき過熱度と見合った量で噴射される液相冷媒が冷媒流路において確実に蒸発することとなる。 This ensures that the liquid refrigerant injected in an amount commensurate with the degree of superheat to be removed evaporates in the refrigerant flow path.
 よって、多段圧縮機70において、液相冷媒の過多噴射による、気相冷媒に追従しない大粒子径の液相冷媒がインペラの壁面に衝突して滞留することを防止することができる。 Therefore, in the multistage compressor 70, it is possible to prevent the liquid phase refrigerant having a large particle diameter that does not follow the gas phase refrigerant from colliding with the impeller wall surface due to excessive injection of the liquid phase refrigerant.
 (別の変形例)
 多段圧縮機においても、冷媒液滴によるインペラのエロージョンの課題がある。
(Another modification)
Even in a multistage compressor, there is a problem of impeller erosion due to refrigerant droplets.
 多段圧縮機の各段で発生する過熱度を取り除くのに必要な量の液相冷媒を1段目のインペラの周囲の冷媒流路に噴射した場合、1段目のインペラの周囲に存在する液滴の量が過剰になる。その結果、インペラへの冷媒液滴の衝突確率が上昇し、インペラのエロージョンのリスクが高まる。 When the amount of liquid phase refrigerant necessary to remove the superheat generated in each stage of the multistage compressor is injected into the refrigerant flow path around the first stage impeller, the liquid present around the first stage impeller The amount of drops is excessive. As a result, the collision probability of the refrigerant droplets on the impeller is increased, and the risk of erosion of the impeller is increased.
 図10を参照して説明した圧縮機70において、第1インペラ26及び第2インペラ71のそれぞれに噴射流路24及び噴射流路74が設けられている。この構成は、インペラのエロージョンを防止するのに有効であるものの、改善の余地が残されている。 In the compressor 70 described with reference to FIG. 10, the injection flow path 24 and the injection flow path 74 are provided in each of the first impeller 26 and the second impeller 71. Although this configuration is effective in preventing impeller erosion, there remains room for improvement.
 本発明者らが更なる検討を行った結果、多段圧縮機において、より適切な量の液相冷媒を噴射できる構成を見出した。以下、その構成について説明する。 As a result of further studies by the present inventors, a configuration has been found in which a more appropriate amount of liquid-phase refrigerant can be injected in a multistage compressor. Hereinafter, the configuration will be described.
 図13は、別の変形例に係る多段速度型圧縮機90の断面を示している。図10を参照して説明した圧縮機70と本変形例の圧縮機90との相違点は、噴射流路の数及び位置にある。 FIG. 13 shows a cross section of a multistage speed compressor 90 according to another modification. The difference between the compressor 70 described with reference to FIG. 10 and the compressor 90 of this modification is in the number and position of the injection flow paths.
 図13に示すように、回転体77の内部には、主流路21、第1噴射流路24、下流側噴射流路32及び第2噴射流路74が設けられている。主流路21は、回転体77の内部において、回転体77の軸方向に延びている。詳細には、主流路21は、回転軸25の内部に設けられており、回転軸25の軸方向に延びている。 As shown in FIG. 13, the main flow path 21, the first injection flow path 24, the downstream injection flow path 32, and the second injection flow path 74 are provided inside the rotating body 77. The main flow path 21 extends in the axial direction of the rotating body 77 inside the rotating body 77. Specifically, the main flow path 21 is provided inside the rotation shaft 25 and extends in the axial direction of the rotation shaft 25.
 第1噴射流路24は、第1インペラ26の内部に位置し、主流路21から分岐して主流路21から冷媒流路40まで延びている。第1噴射流路24は、気相冷媒の流れ方向において、翼間流路38よりも上流側に位置している。第1噴射流路24は、第1インペラ26のブレードの上流端31tよりも上流側に設けられている。第1噴射流路24から冷媒流路40に向かって液相冷媒を噴射することによって、第1インペラ26で発生する過熱度を取り除くのに必要な量の液相冷媒のみが供給されうる。第1噴射流路24は、第1インペラ26のブレードの上流端31tよりも下流側に設けられていてもよい。 The first injection flow path 24 is located inside the first impeller 26, branches from the main flow path 21, and extends from the main flow path 21 to the refrigerant flow path 40. The first injection flow path 24 is located upstream of the inter-blade flow path 38 in the flow direction of the gas-phase refrigerant. The first injection flow path 24 is provided on the upstream side of the upstream end 31 t of the blade of the first impeller 26. By injecting the liquid phase refrigerant from the first injection channel 24 toward the refrigerant channel 40, only the amount of the liquid phase refrigerant necessary for removing the degree of superheat generated in the first impeller 26 can be supplied. The first injection flow path 24 may be provided on the downstream side of the upstream end 31t of the blade of the first impeller 26.
 下流側噴射流路32は、第1インペラ26の内部に位置し、主流路21から分岐して主流路21から冷媒流路40まで延びている。下流側噴射流路32は、気相冷媒の流れ方向において、第1噴射流路24よりも下流に位置している。下流側噴射流路32の中心軸は、第1ディフューザ41の入口に交差している。下流側噴射流路32の流出口32bが第1インペラ26のハブ30の表面に位置している。下流側噴射流路32は、回転軸25の半径方向にハブ30を貫通している。流出口32bは、第1ディフューザ41の入口に向かい合っている。 The downstream injection flow path 32 is located inside the first impeller 26, branches from the main flow path 21, and extends from the main flow path 21 to the refrigerant flow path 40. The downstream injection flow path 32 is located downstream of the first injection flow path 24 in the flow direction of the gas-phase refrigerant. The central axis of the downstream injection flow path 32 intersects the inlet of the first diffuser 41. The outlet 32 b of the downstream injection flow path 32 is located on the surface of the hub 30 of the first impeller 26. The downstream injection flow path 32 penetrates the hub 30 in the radial direction of the rotation shaft 25. The outlet 32 b faces the inlet of the first diffuser 41.
 下流側噴射流路32を通じて、第2インペラ71で発生する過熱度を取り除くのに必要な量の液相冷媒が噴射される。下流側噴射流路32から噴射された液相冷媒は、第1ディフューザ41において一部蒸発する。第2インペラ71は、第2インペラ71で発生する過熱度を取り除くのに必要な量の液相冷媒のみを吸入する。第1インペラ26の周りの冷媒流路40及び第2インペラ71の周りの冷媒流路80のそれぞれに存在する冷媒液滴の量が減少する。その結果、第1インペラ26及び第2インペラ71への冷媒液滴の衝突確率が低下し、第1インペラ26及び第2インペラ71のエロージョンリスクが低減する。 The amount of liquid-phase refrigerant necessary to remove the degree of superheat generated by the second impeller 71 is injected through the downstream injection flow path 32. The liquid refrigerant injected from the downstream injection flow path 32 partially evaporates in the first diffuser 41. The second impeller 71 sucks only the amount of liquid-phase refrigerant necessary to remove the degree of superheat generated by the second impeller 71. The amount of refrigerant droplets existing in each of the refrigerant flow path 40 around the first impeller 26 and the refrigerant flow path 80 around the second impeller 71 decreases. As a result, the collision probability of the refrigerant droplets on the first impeller 26 and the second impeller 71 is reduced, and the erosion risk of the first impeller 26 and the second impeller 71 is reduced.
 第2噴射流路74は、第2インペラ71の内部に位置し、主流路21から分岐して主流路21から冷媒流路80まで延びている。第2噴射流路74の中心軸は、第2ディフューザ51の入口に交差している。第2噴射流路74の流出口74bが第2インペラ71のハブ33の表面に位置している。第2噴射流路74は、回転軸25の半径方向にハブ33を貫通している。流出口74bは、第2ディフューザ51の入口に向かい合っている。第2噴射流路74によれば、第2ディフューザ51おいて圧力回復を行うときの気相冷媒からも熱を奪うことができる。この構成は、3段以上の多段速度型圧縮機にも有効である。 The second injection flow path 74 is located inside the second impeller 71 and branches from the main flow path 21 and extends from the main flow path 21 to the refrigerant flow path 80. The central axis of the second injection flow path 74 intersects the inlet of the second diffuser 51. The outlet 74 b of the second injection flow path 74 is located on the surface of the hub 33 of the second impeller 71. The second injection flow path 74 passes through the hub 33 in the radial direction of the rotation shaft 25. The outlet 74 b faces the inlet of the second diffuser 51. According to the second injection flow path 74, heat can also be taken from the gas-phase refrigerant when pressure recovery is performed in the second diffuser 51. This configuration is also effective for a multistage speed type compressor having three or more stages.
 「噴射流路の中心軸」は、噴射流路の断面の中心又は重心を通り、噴射流路に平行に延びる軸を意味する。「ディフューザの入口」は、ディフューザの役割を果たす空間への入口を意味する。 “The central axis of the injection flow path” means an axis that passes through the center or the center of gravity of the cross section of the injection flow path and extends parallel to the injection flow path. “Diffuser entrance” means the entrance to the space acting as a diffuser.
 冷媒供給路11を通じて、蒸発器2又は凝縮器4から主流路21に液相冷媒が供給される。第1噴射流路24、下流側噴射流路32及び第2噴射流路74は、主流路21から冷媒流路40及び冷媒流路80に液相冷媒を導く流路である。液相冷媒は、遠心力によって加圧され、主流路21、第1噴射流路24、下流側噴射流路32及び第2噴射流路74を通じて、圧縮機90の内部の冷媒流路40及び冷媒流路80に向かって噴射される。冷媒流路40及び冷媒流路80において液相冷媒が気相冷媒に接触すると、液相冷媒と気相冷媒との間で熱交換が起こり、液相冷媒の顕熱又は蒸発潜熱によって過熱状態の気相冷媒が連続的に冷却される。 The liquid phase refrigerant is supplied from the evaporator 2 or the condenser 4 to the main flow path 21 through the refrigerant supply path 11. The first injection flow path 24, the downstream injection flow path 32, and the second injection flow path 74 are flow paths that lead the liquid phase refrigerant from the main flow path 21 to the refrigerant flow path 40 and the refrigerant flow path 80. The liquid phase refrigerant is pressurized by centrifugal force, and the refrigerant flow path 40 and the refrigerant inside the compressor 90 are passed through the main flow path 21, the first injection flow path 24, the downstream injection flow path 32, and the second injection flow path 74. Injected toward the flow path 80. When the liquid-phase refrigerant contacts the gas-phase refrigerant in the refrigerant channel 40 and the refrigerant channel 80, heat exchange occurs between the liquid-phase refrigerant and the gas-phase refrigerant, and the superheated state is caused by sensible heat or latent heat of vaporization of the liquid-phase refrigerant. The gas phase refrigerant is continuously cooled.
 (別の変形例)
 図14は、図2を参照して説明した圧縮機3にモータ16を追加することによって得られる圧縮機3aを示している。圧縮機3aは、圧縮機3の構成に加え、回転軸25に取り付けられたモータ16をさらに備えている。モータ16は、ハウジング35の内部に配置されている。モータ16は、回転子16a及び固定子16bを有する。回転子16aが回転軸25に固定されている。モータ16を駆動すると、回転体27が回転する。モータ16の両側に回転軸25を支持する軸受18a及び18bが配置されている。
(Another modification)
FIG. 14 shows a compressor 3a obtained by adding a motor 16 to the compressor 3 described with reference to FIG. In addition to the configuration of the compressor 3, the compressor 3 a further includes a motor 16 attached to the rotary shaft 25. The motor 16 is disposed inside the housing 35. The motor 16 has a rotor 16a and a stator 16b. A rotor 16 a is fixed to the rotation shaft 25. When the motor 16 is driven, the rotating body 27 rotates. Bearings 18 a and 18 b that support the rotating shaft 25 are disposed on both sides of the motor 16.
 回転軸25の内部に設けられた主流路21の液相冷媒はモータ16の排熱により昇温する。液相冷媒を圧縮機3aの高速回転する回転体27の内部の噴射流路24で遠心加圧するため、更にモータ16の動力が上がり昇温幅が増える。モータ16の回転子16aの発熱量は、例えば定格条件として冷凍能力が880kWの場合、0.8kW程度である。特に、高負荷運転条件の場合は、圧縮機3aの回転数が上がり、回転数に応じてモータ16の排熱量も増加する。それにより、主流路21の内部で液相冷媒が蒸発して気相冷媒が滞留する可能性がある。この場合、気相冷媒によって主流路21が閉塞し、液相冷媒が流通せずにモータ16を連続的に冷却することができず、モータ16の効率が低下する。 The liquid phase refrigerant in the main flow path 21 provided inside the rotary shaft 25 is heated by the exhaust heat of the motor 16. Since the liquid refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 rotating at a high speed of the compressor 3a, the power of the motor 16 is further increased and the temperature increase range is increased. The amount of heat generated by the rotor 16a of the motor 16 is, for example, about 0.8 kW when the refrigerating capacity is 880 kW as a rated condition. In particular, in the case of a high load operation condition, the rotational speed of the compressor 3a increases, and the amount of exhaust heat of the motor 16 increases according to the rotational speed. As a result, the liquid-phase refrigerant may evaporate inside the main channel 21 and the gas-phase refrigerant may stay. In this case, the main flow path 21 is blocked by the gas phase refrigerant, and the motor 16 cannot be continuously cooled without the liquid phase refrigerant flowing therethrough, and the efficiency of the motor 16 is reduced.
 本変形例は、上記の課題を解決するもので、圧縮時のエンタルピー上昇による圧縮機動力を低減する一方で、主流路の内部での液相冷媒の蒸発による流路の閉塞を防ぐための技術を提供する。併せて、モータを連続的に冷却してモータの効率を向上させる。 The present modification solves the above-mentioned problem, and reduces the compressor power due to the increase in enthalpy during compression, while preventing the blockage of the flow path due to the evaporation of the liquid-phase refrigerant inside the main flow path. I will provide a. At the same time, the motor is continuously cooled to improve the efficiency of the motor.
 図15は、モータ16の発熱により課題を解決しうる圧縮機3bの断面を示している。圧縮機3bは、回転子16a及び固定子16bを有するモータ16を備えている。回転子16aは、回転軸25の軸線方向においてインペラ26と軸受18bとの間で回転軸25に固定されている。回転子16aは、例えば窒化珪素鋼板などの鉄鋼材料で構成されている。固定子16bは、回転子16aを回転軸25の周方向に取り囲んで配置されている。固定子16bによって誘起される回転磁界により回転子16aに回転トルクが生じる。これにより、回転軸25及びインペラ26が高速回転するように駆動される。 FIG. 15 shows a cross section of the compressor 3b that can solve the problem by the heat generated by the motor 16. The compressor 3b includes a motor 16 having a rotor 16a and a stator 16b. The rotor 16 a is fixed to the rotary shaft 25 between the impeller 26 and the bearing 18 b in the axial direction of the rotary shaft 25. The rotor 16a is made of a steel material such as a silicon nitride steel plate. The stator 16b is disposed so as to surround the rotor 16a in the circumferential direction of the rotation shaft 25. A rotating torque is generated in the rotor 16a by the rotating magnetic field induced by the stator 16b. Thereby, the rotating shaft 25 and the impeller 26 are driven to rotate at high speed.
 バッファ室35hは、流入口21aと接するように設けられており、主流路21に連通している。 The buffer chamber 35 h is provided in contact with the inflow port 21 a and communicates with the main flow path 21.
 次に、バッファ室35hについて詳細に説明する。 Next, the buffer chamber 35h will be described in detail.
 図15に示すように、圧縮機3bは、さらに、供給タンク20及び加圧ポンプ19を備えている。バッファ室35hは、ハウジング35の外部に設けられた冷媒供給路22に接続されている。冷媒供給路22は、バッファ室35hと供給タンク20とを連通している。冷媒供給路22には、供給タンク20に貯留された液相冷媒をバッファ室35hへ圧送するための加圧ポンプ19が設けられている。供給タンク20の液相冷媒の温度は、例えば35℃である。 As shown in FIG. 15, the compressor 3 b further includes a supply tank 20 and a pressurizing pump 19. The buffer chamber 35 h is connected to the refrigerant supply path 22 provided outside the housing 35. The refrigerant supply path 22 communicates the buffer chamber 35 h and the supply tank 20. The refrigerant supply path 22 is provided with a pressure pump 19 for pressure-feeding the liquid-phase refrigerant stored in the supply tank 20 to the buffer chamber 35h. The temperature of the liquid phase refrigerant in the supply tank 20 is, for example, 35 ° C.
 供給タンク20の具体例としては、凝縮器、蒸発器、それら以外のバッファタンクが挙げられる。 Specific examples of the supply tank 20 include a condenser, an evaporator, and other buffer tanks.
 加圧ポンプ19は、バッファ室35hに供給タンク20内の液相冷媒を昇圧して供給する為のポンプである。液相冷媒の供給圧力は、例えば25~100kPa程度である。加圧ポンプ19は、容積型ポンプであってもよいし、速度型ポンプであってもよい。容積型ポンプとは、容積変化によって液相冷媒を吸入及び吐出し、冷媒の圧力を上昇させるポンプである。容積型ポンプとして、ロータリポンプ、スクリューポンプ、スクロールポンプ、ベーンポンプ、ギアポンプなどが挙げられる。速度型ポンプとは、液相冷媒に運動量を与え、液相冷媒の速度を減速することによって冷媒の圧力を上昇させるポンプである。速度型ポンプ(ターボポンプ)として、遠心ポンプ、斜流ポンプ、軸流ポンプなどが挙げられる。また、カスケードポンプ、ハイドロセラポンプなどを使用してもよい。加圧ポンプ19は、インバータなどのポンプコントローラによって駆動されるモータを備えており、回転数を変化可能な機構であってもよい。加圧ポンプ19の供給圧力は、主流路21及び冷媒供給路22の圧力損失を考慮した上で調整される。運転条件に応じた冷却に必要な液相冷媒の流量に対して、主流路21の内部で蒸発する圧力以上に昇圧するように液相冷媒が圧送される。 The pressurizing pump 19 is a pump for increasing the pressure of the liquid refrigerant in the supply tank 20 and supplying it to the buffer chamber 35h. The supply pressure of the liquid phase refrigerant is, for example, about 25 to 100 kPa. The pressurizing pump 19 may be a positive displacement pump or a speed pump. The positive displacement pump is a pump that sucks and discharges a liquid phase refrigerant according to a change in volume and raises the pressure of the refrigerant. Examples of the positive displacement pump include a rotary pump, a screw pump, a scroll pump, a vane pump, and a gear pump. A speed type pump is a pump that gives momentum to a liquid phase refrigerant and raises the pressure of the refrigerant by decelerating the speed of the liquid phase refrigerant. Examples of the speed pump (turbo pump) include a centrifugal pump, a mixed flow pump, and an axial flow pump. Moreover, a cascade pump, a hydrocera pump, etc. may be used. The pressurizing pump 19 includes a motor driven by a pump controller such as an inverter, and may be a mechanism capable of changing the rotation speed. The supply pressure of the pressure pump 19 is adjusted in consideration of the pressure loss of the main flow path 21 and the refrigerant supply path 22. The liquid-phase refrigerant is pumped so that the flow rate of the liquid-phase refrigerant necessary for cooling according to the operating conditions is increased to a pressure higher than the pressure evaporating inside the main flow path 21.
 気相冷媒を冷却する液相冷媒は供給タンク20に貯留された液相冷媒であり、バッファ室35hを介して流入口21aから供給され、回転軸25の主流路21を通じて噴射流路24に分岐する。液相冷媒は、高速回転する回転体27の内部の噴射流路24で遠心加圧され、流出口24bから冷媒流路40に噴射されて、圧縮機3bに吸入される気相冷媒と共に吸入される。定格条件として冷凍能力が880kWの場合、圧縮過程で発生する熱を取り除くために必要な液相冷媒の噴射量は、例えば0.034kg/sである。例えば、噴射流路24の口径を0.13mm、口数を16個とすると、噴射流路24を通じて1.4MPa程度の圧力で流出口24bから冷媒流路40に液相冷媒が噴射される。液相冷媒は、供給タンク20から供給され続け、遠心加圧による吸入に加えて加圧ポンプ19によりバッファ室35hへ圧送される。 The liquid-phase refrigerant that cools the gas-phase refrigerant is liquid-phase refrigerant stored in the supply tank 20, supplied from the inlet 21 a via the buffer chamber 35 h, and branched to the injection flow path 24 through the main flow path 21 of the rotating shaft 25. To do. The liquid-phase refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 that rotates at high speed, injected into the refrigerant flow path 40 from the outlet 24b, and sucked together with the gas-phase refrigerant sucked into the compressor 3b. The When the refrigerating capacity is 880 kW as the rated condition, the injection amount of the liquid-phase refrigerant necessary for removing the heat generated in the compression process is, for example, 0.034 kg / s. For example, if the diameter of the injection flow path 24 is 0.13 mm and the number of ports is 16, the liquid phase refrigerant is injected from the outlet 24 b into the refrigerant flow path 40 with a pressure of about 1.4 MPa through the injection flow path 24. The liquid phase refrigerant continues to be supplied from the supply tank 20 and is pumped to the buffer chamber 35h by the pressurizing pump 19 in addition to suction by centrifugal pressurization.
 以上のように、液相冷媒は、高速回転する回転体27の内部の噴射流路24で遠心加圧され、冷媒流路40に噴射されるため、過熱状態の気相冷媒が連続的に冷却される。液相冷媒は、冷媒供給路22を通過する際に加圧ポンプ19で加圧され、液相冷媒の圧力が上昇して沸点が上がることから主流路21の内部で蒸発しにくく、蒸気による流路閉塞を抑制することが可能となる。併せて、モータ16を確実に冷却できるので、モータ16の効率も向上する。 As described above, the liquid-phase refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 rotating at high speed and injected into the refrigerant flow path 40, so that the superheated gas-phase refrigerant is continuously cooled. Is done. The liquid refrigerant is pressurized by the pressurizing pump 19 when passing through the refrigerant supply path 22, and since the pressure of the liquid refrigerant increases and the boiling point rises, it is difficult to evaporate inside the main flow path 21, It becomes possible to suppress road blockage. In addition, since the motor 16 can be reliably cooled, the efficiency of the motor 16 is also improved.
 具体的には、定格条件として冷凍能力が880kWの場合、モータ16の発熱量は0.8kW程度、圧縮過程で発生する熱を取り除くために必要な液相冷媒の噴射量は、例えば0.034kg/sである。供給タンク20の液相冷媒の温度を35℃(4.25kPa)とすると、主流路21を通過した後の温度は40.46℃(7.57kPa)となる。圧縮機3bは、供給タンク20の流出口を基準として、例えば1.5mの高さの位置に設けられている。圧縮機3bの主流路21及び冷媒供給路22の圧力損失を考慮すると、主流路21で液相冷媒を蒸発させないようにするためには、供給タンク20から供給する液相冷媒は、例えば22.3kPa以上の昇圧が必要となる。従って、加圧ポンプ19の供給圧力を22.3kPa以上とすると、蒸発する圧力以上に昇圧された液相冷媒が供給される。そのため、主流路21で液相冷媒が蒸発しにくく、蒸気による流路閉塞を抑制することが可能となる。 Specifically, when the refrigerating capacity is 880 kW as the rated condition, the heat generation amount of the motor 16 is about 0.8 kW, and the injection amount of the liquid phase refrigerant necessary for removing the heat generated in the compression process is, for example, 0.034 kg. / S. If the temperature of the liquid phase refrigerant in the supply tank 20 is 35 ° C. (4.25 kPa), the temperature after passing through the main flow path 21 is 40.46 ° C. (7.57 kPa). The compressor 3b is provided at a height of, for example, 1.5 m with reference to the outlet of the supply tank 20. Considering the pressure loss of the main flow path 21 and the refrigerant supply path 22 of the compressor 3b, in order to prevent the liquid phase refrigerant from evaporating in the main flow path 21, the liquid phase refrigerant supplied from the supply tank 20 is, for example, 22. Boosting of 3 kPa or more is required. Therefore, when the supply pressure of the pressurizing pump 19 is 22.3 kPa or more, the liquid-phase refrigerant whose pressure has been increased to be equal to or higher than the pressure for evaporation is supplied. For this reason, the liquid refrigerant is unlikely to evaporate in the main flow path 21, and the flow path blockage due to the vapor can be suppressed.
 図16は、別の変形例に係る圧縮機3cの断面を示している。圧縮機3cにおいて、バッファ室35hは、冷媒供給路22に接続されている。冷媒供給路22は、バッファ室35hと供給タンク20とを連通している。冷媒供給路22には、供給タンク20に貯留された液相冷媒をバッファ室35hへ圧送するための加圧ポンプ19と外部熱源と熱交換する熱交換器23とが設けられている。 FIG. 16 shows a cross section of a compressor 3c according to another modification. In the compressor 3 c, the buffer chamber 35 h is connected to the refrigerant supply path 22. The refrigerant supply path 22 communicates the buffer chamber 35 h and the supply tank 20. The refrigerant supply path 22 is provided with a pressure pump 19 for pressure-feeding the liquid-phase refrigerant stored in the supply tank 20 to the buffer chamber 35h, and a heat exchanger 23 for exchanging heat with an external heat source.
 圧縮機3cは、熱交換器23をさらに備えている点において、図15に示す圧縮機3bと異なる。 The compressor 3c is different from the compressor 3b shown in FIG. 15 in that it further includes a heat exchanger 23.
 冷媒供給路22は、バッファ室35hと加圧ポンプ19とに接続された流路である。熱交換器23は、バッファ室35hと加圧ポンプ19との間において冷媒供給路22に設けられている。 The refrigerant supply path 22 is a flow path connected to the buffer chamber 35 h and the pressurizing pump 19. The heat exchanger 23 is provided in the refrigerant supply path 22 between the buffer chamber 35 h and the pressurizing pump 19.
 供給タンク20の液相冷媒の温度は、例えば35℃である。熱交換器23の流入温度は、例えば35℃であり、流出温度は、例えば30℃である。 The temperature of the liquid phase refrigerant in the supply tank 20 is, for example, 35 ° C. The inflow temperature of the heat exchanger 23 is, for example, 35 ° C., and the outflow temperature is, for example, 30 ° C.
 以上のように、液相冷媒は、冷媒供給路22に設けられた熱交換器23により冷却されるため、主流路21には過冷却状態となった液相冷媒が供給されて液相冷媒は主流路21の内部で蒸発しにくい。これにより、特に高負荷運転条件で圧縮機3cの回転数が上がり、モータ16の排熱量が多い場合においても、蒸気による流路閉塞を抑制することが可能となる。 As described above, since the liquid phase refrigerant is cooled by the heat exchanger 23 provided in the refrigerant supply path 22, the liquid refrigerant in the supercooled state is supplied to the main flow path 21, and the liquid phase refrigerant is It is difficult to evaporate inside the main channel 21. Thereby, especially when the rotational speed of the compressor 3c increases under a high load operation condition and the amount of exhaust heat of the motor 16 is large, it is possible to suppress the blockage of the flow path due to steam.
 熱交換器23の構造は特に限定されない。熱交換器23として、フィンチューブ熱交換器、プレート式熱交換器、二重管式熱交換器などが使用されうる。熱交換器23において液相冷媒を熱交換して液相冷媒を冷却するべき外部熱源も特に限定されない。外部熱源として、空気、冷却水などが使用されうる。 The structure of the heat exchanger 23 is not particularly limited. As the heat exchanger 23, a fin tube heat exchanger, a plate heat exchanger, a double tube heat exchanger, or the like can be used. An external heat source that heat-exchanges the liquid-phase refrigerant and cools the liquid-phase refrigerant in the heat exchanger 23 is not particularly limited. Air, cooling water, or the like can be used as an external heat source.
 (実施形態2)
 図17は、本開示の実施形態2に係る冷凍サイクル装置の構成図である。実施形態1と他の実施形態との間の共通する要素には同じ参照符号を付し、それらの説明を省略することがある。各実施形態に関する説明は、技術的に矛盾しない限り、相互に適用されうる。技術的に矛盾しない限り、各実施形態は、相互に組み合わされてもよい。
(Embodiment 2)
FIG. 17 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present disclosure. Elements that are common between the first embodiment and other embodiments are denoted by the same reference numerals, and description thereof may be omitted. The description regarding each embodiment may be applied mutually as long as there is no technical contradiction. As long as there is no technical contradiction, the embodiments may be combined with each other.
 図17に示すように、実施形態2に係る冷凍サイクル装置102において、冷媒供給路11は、凝縮器4と圧縮機3とを接続している。圧縮機3において、主流路21及び噴射流路24を通じて冷媒流路40に噴射される液相冷媒は、凝縮器4に貯留された液相冷媒である。本変形例においても、実施形態1で説明したメカニズムによって、圧縮動力を低減する効果が得られる。つまり、圧縮機3の内部の主流路21に供給されるべき液相冷媒は、蒸発器2に貯留された液相冷媒に限定されない。冷媒回路10に存在する限り、液相冷媒は、主流路21に供給されうる。例えば、蒸発器2又は凝縮器4に接続されて液相冷媒を貯留するバッファタンクが存在するとき、そのバッファタンクから主流路21に液相冷媒が供給されるように、冷媒供給路11は、そのバッファタンクと圧縮機3とを接続していてもよい。さらに、冷媒供給路11は、戻し経路9から分岐していてもよい。言い換えれば、戻し経路9が冷媒供給路11の一部を兼ねていてもよい。この場合、冷媒供給路11は、凝縮器4から主流路21へと液相冷媒を導く。 As shown in FIG. 17, in the refrigeration cycle apparatus 102 according to the second embodiment, the refrigerant supply path 11 connects the condenser 4 and the compressor 3. In the compressor 3, the liquid phase refrigerant injected into the refrigerant flow path 40 through the main flow path 21 and the injection flow path 24 is a liquid phase refrigerant stored in the condenser 4. Also in this modification, the effect which reduces compression power is acquired by the mechanism demonstrated in Embodiment 1. FIG. That is, the liquid phase refrigerant to be supplied to the main flow path 21 inside the compressor 3 is not limited to the liquid phase refrigerant stored in the evaporator 2. As long as it exists in the refrigerant circuit 10, the liquid phase refrigerant can be supplied to the main flow path 21. For example, when there is a buffer tank that is connected to the evaporator 2 or the condenser 4 and stores liquid phase refrigerant, the refrigerant supply path 11 is configured so that the liquid phase refrigerant is supplied from the buffer tank to the main flow path 21. The buffer tank and the compressor 3 may be connected. Further, the refrigerant supply path 11 may be branched from the return path 9. In other words, the return path 9 may also serve as a part of the refrigerant supply path 11. In this case, the refrigerant supply path 11 guides the liquid phase refrigerant from the condenser 4 to the main flow path 21.
 本変形例によれば、圧縮機3には、圧縮機3に吸入される気相冷媒の温度(飽和温度)よりも高い温度の液相冷媒が吸入される。この場合、気相冷媒が冷却されすぎて圧縮機3の内部で凝縮することを防止しつつ、実施形態1で説明したメカニズムによって、圧縮動力を低減する効果が得られる。 According to this modification, the compressor 3 sucks the liquid phase refrigerant having a temperature higher than the temperature (saturation temperature) of the gas-phase refrigerant sucked into the compressor 3. In this case, an effect of reducing the compression power can be obtained by the mechanism described in the first embodiment while preventing the gas-phase refrigerant from being excessively cooled and condensing inside the compressor 3.
 冷凍サイクル装置102は、液相冷媒を貯留する予備タンクを備えていてもよい。予備タンクは、例えば、凝縮器4に接続されている。予備タンクには、凝縮器4から液相冷媒が移される。冷媒供給路11は、予備タンクから圧縮機3に液相冷媒が供給されるように、予備タンクと圧縮機3とを接続する。 The refrigeration cycle apparatus 102 may include a reserve tank that stores liquid phase refrigerant. The spare tank is connected to the condenser 4, for example. Liquid phase refrigerant is transferred from the condenser 4 to the spare tank. The refrigerant supply path 11 connects the auxiliary tank and the compressor 3 so that liquid refrigerant is supplied from the auxiliary tank to the compressor 3.
 圧縮機3に代えて、上記した他の圧縮機3a,3b,3c,50,60,70及び90も使用可能である。 Instead of the compressor 3, the other compressors 3a, 3b, 3c, 50, 60, 70 and 90 described above can be used.
 (実施形態3)
 図18は、本開示の実施形態3に係る冷凍サイクル装置の構成図である。図18に示すように、冷凍サイクル装置104は、凝縮器4の代替として、エジェクタ53、バッファタンク52及び熱交換器23を備えている。
(Embodiment 3)
FIG. 18 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3 of the present disclosure. As shown in FIG. 18, the refrigeration cycle apparatus 104 includes an ejector 53, a buffer tank 52, and a heat exchanger 23 as an alternative to the condenser 4.
 以上のように構成された冷凍サイクル装置104について、以下その動作、作用を説明する。 The operation and action of the refrigeration cycle apparatus 104 configured as described above will be described below.
 圧縮機3で圧縮され、吐出された気相冷媒はエジェクタ53に吸入される。また、バッファタンク52には液相冷媒が貯留されており、バッファタンク52内の液相冷媒は、熱交換器23で熱を放熱しエジェクタ53に供給される。エジェクタ53内では、圧縮機3より受け取った気相冷媒と熱交換器23より受け取った液相冷媒とが混合される。冷媒は、二相状態で圧縮され、高温の液相冷媒又は気液二相冷媒としてバッファタンク52に供給される。つまり、エジェクタ53内で、二相状態で昇圧されることにより、気相冷媒は凝縮する。液相冷媒は、熱交換器23で放熱する。これにより、エジェクタ53、バッファタンク52及び熱交換器23が凝縮器4の代替として機能することとなる。バッファタンク52の液相冷媒の温度は、例えば38.5℃である。熱交換器23の流入温度は、例えば38.5℃であり、流出温度は、例えば33.5℃である。 The gas phase refrigerant compressed and discharged by the compressor 3 is sucked into the ejector 53. In addition, liquid phase refrigerant is stored in the buffer tank 52, and the liquid phase refrigerant in the buffer tank 52 radiates heat in the heat exchanger 23 and is supplied to the ejector 53. In the ejector 53, the gas-phase refrigerant received from the compressor 3 and the liquid-phase refrigerant received from the heat exchanger 23 are mixed. The refrigerant is compressed in a two-phase state and supplied to the buffer tank 52 as a high-temperature liquid-phase refrigerant or a gas-liquid two-phase refrigerant. That is, in the ejector 53, the gas-phase refrigerant is condensed by being pressurized in a two-phase state. The liquid refrigerant radiates heat with the heat exchanger 23. As a result, the ejector 53, the buffer tank 52, and the heat exchanger 23 function as an alternative to the condenser 4. The temperature of the liquid phase refrigerant in the buffer tank 52 is, for example, 38.5 ° C. The inflow temperature of the heat exchanger 23 is 38.5 ° C., for example, and the outflow temperature is 33.5 ° C., for example.
 バッファタンク52内の液相冷媒は、加圧ポンプ19で熱交換器23に圧送される。加圧ポンプ19の吐出側の液相冷媒の流路は二手に分岐している。一方は熱交換器23へ、もう一方は圧縮機3のバッファ室35hへ連通している。つまり、加圧ポンプ19の吐出側の液相冷媒の流路の分岐点とバッファ室35hとを連通した流路は、冷媒供給路22である。加圧ポンプ19の供給圧力は、例えば250kPa程度である。 The liquid refrigerant in the buffer tank 52 is pumped to the heat exchanger 23 by the pressurizing pump 19. The flow path of the liquid-phase refrigerant on the discharge side of the pressurizing pump 19 is bifurcated. One communicates with the heat exchanger 23 and the other communicates with the buffer chamber 35 h of the compressor 3. That is, the flow path that connects the branch point of the flow path of the liquid-phase refrigerant on the discharge side of the pressurizing pump 19 and the buffer chamber 35 h is the refrigerant supply path 22. The supply pressure of the pressure pump 19 is, for example, about 250 kPa.
 以上のように、液相冷媒は、高速回転する回転体27の内部の噴射流路24で遠心加圧され、冷媒流路40に噴射されるため、過熱状態の気相冷媒が連続的に冷却される。液相冷媒は、冷媒供給路22を通過する際に加圧ポンプ19で加圧され、液相冷媒の圧力が上昇して沸点が上がることから主流路21の内部で蒸発しにくく、蒸気による流路閉塞を抑制することが可能となる。 As described above, the liquid-phase refrigerant is centrifugally pressurized in the injection flow path 24 inside the rotating body 27 rotating at high speed and injected into the refrigerant flow path 40, so that the superheated gas-phase refrigerant is continuously cooled. Is done. The liquid refrigerant is pressurized by the pressurizing pump 19 when passing through the refrigerant supply path 22, and the pressure of the liquid refrigerant rises to raise the boiling point. It becomes possible to suppress road blockage.
 (実施形態4)
 図19は、本開示の実施形態4に係る冷凍サイクル装置の構成図である。図19に示すように、冷凍サイクル装置106は、凝縮器4の代替として、エジェクタ53、バッファタンク52及び熱交換器23を備えている。
(Embodiment 4)
FIG. 19 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4 of the present disclosure. As shown in FIG. 19, the refrigeration cycle apparatus 106 includes an ejector 53, a buffer tank 52, and a heat exchanger 23 as an alternative to the condenser 4.
 以上のように構成された冷凍サイクル装置106について、以下その動作、作用を説明する。 The operation and action of the refrigeration cycle apparatus 106 configured as described above will be described below.
 バッファタンク52内の液相冷媒は、加圧ポンプ19で熱交換器23に圧送されて、熱交換器23で熱を放熱しエジェクタ53に供給される。熱交換器23の流出側の液相冷媒の流路は二手に分岐している。一方はエジェクタ53へ、もう一方は圧縮機3のバッファ室35hへ連通している。つまり、熱交換器23の流出側の液相冷媒の流路の分岐点とバッファ室35hとを連通した流路は、冷媒供給路22である。バッファタンク52の液相冷媒の温度は、例えば38.5℃である。熱交換器23の流入温度は、例えば38.5℃であり、流出温度は、例えば33.5℃である。 The liquid phase refrigerant in the buffer tank 52 is pumped to the heat exchanger 23 by the pressurizing pump 19, dissipates heat by the heat exchanger 23, and is supplied to the ejector 53. The flow path of the liquid phase refrigerant on the outflow side of the heat exchanger 23 is bifurcated. One communicates with the ejector 53 and the other communicates with the buffer chamber 35 h of the compressor 3. That is, the flow path that connects the branch point of the flow path of the liquid-phase refrigerant on the outflow side of the heat exchanger 23 and the buffer chamber 35 h is the refrigerant supply path 22. The temperature of the liquid phase refrigerant in the buffer tank 52 is, for example, 38.5 ° C. The inflow temperature of the heat exchanger 23 is 38.5 ° C., for example, and the outflow temperature is 33.5 ° C., for example.
 以上のように、液相冷媒は、冷媒供給路22に設けられた熱交換器23により冷却されるため、主流路21には過冷却状態となった液相冷媒が供給されて液相冷媒は主流路21の内部で蒸発しにくい。これにより、特に高負荷運転条件で圧縮機3の回転数が上がり、モータ16の排熱量が多い場合においても、蒸気による流路閉塞を抑制することが可能となる。 As described above, since the liquid phase refrigerant is cooled by the heat exchanger 23 provided in the refrigerant supply path 22, the liquid refrigerant in the supercooled state is supplied to the main flow path 21, and the liquid phase refrigerant is It is difficult to evaporate inside the main channel 21. Thereby, especially when the rotation speed of the compressor 3 increases under a high load operation condition and the amount of exhaust heat of the motor 16 is large, blockage of the flow path due to steam can be suppressed.
 本明細書に開示された冷凍サイクル装置は、空気調和装置、チラー、蓄熱装置などに有用である。空気調和装置は、例えば、ビルのセントラル空調に使用される。チラーは、例えば、プロセス冷却の用途で使用される。 The refrigeration cycle apparatus disclosed in this specification is useful for an air conditioner, a chiller, a heat storage device, and the like. An air conditioner is used for central air conditioning of a building, for example. Chillers are used, for example, in process cooling applications.
2 蒸発器
3,3a,3b,3c,50,60,70,90 圧縮機
4 凝縮器
6 吸入配管
8 吐出配管
9 戻し経路
10 冷媒回路
11,22 冷媒供給路
12 吸熱回路
14 放熱回路
16 モータ
18 軸受
19 加圧ポンプ
20 供給タンク
21 主流路
21a 流入口
23 熱交換器
24 噴射流路(第1噴射流路)
24b,32b,74b 流出口
25,45 回転軸
25c 端面
26 インペラ(第1インペラ)
26t 上面
27,47,77 回転体
28 接続口
29 シール
30,33 ハブ
30p ハブの表面
31 ブレード
31t ブレードの上流端
32 下流側噴射流路
35 ハウジング
35h バッファ室
36,76 吸入流路
37 シュラウド
38,78 翼間流路
40,80 冷媒流路
41 ディフューザ(第1ディフューザ)
42 渦巻室
51 第2ディフューザ
52 バッファタンク
53 エジェクタ
71 第2インペラ
74 第2噴射流路
79 リターンチャンネル
100,102,104,106 冷凍サイクル装置
241 第1部分
241a 半径方向部分
241b 溝
242 第2部分
311 第1ブレード
312 第2ブレード
2 Evaporators 3, 3a, 3b, 3c, 50, 60, 70, 90 Compressor 4 Condenser 6 Suction pipe 8 Discharge pipe 9 Return path 10 Refrigerant circuits 11, 22 Refrigerant supply path 12 Heat absorption circuit 14 Heat radiation circuit 16 Motor 18 Bearing 19 Pressure pump 20 Supply tank 21 Main flow path 21a Inlet 23 Heat exchanger 24 Injection flow path (first injection flow path)
24b, 32b, 74b Outlet 25, 45 Rotating shaft 25c End face 26 Impeller (first impeller)
26t Upper surface 27, 47, 77 Rotating body 28 Connection port 29 Seal 30, 33 Hub 30p Hub surface 31 Blade 31t Blade upstream end 32 Downstream injection flow path 35 Housing 35h Buffer chamber 36, 76 Suction flow path 37 Shroud 38, 78 Inter-blade channel 40, 80 Refrigerant channel 41 Diffuser (first diffuser)
42 Swirl chamber 51 Second diffuser 52 Buffer tank 53 Ejector 71 Second impeller 74 Second injection flow path 79 Return channel 100, 102, 104, 106 Refrigeration cycle device 241 First part 241a Radial part 241b Groove 242 Second part 311 First blade 312 Second blade

Claims (19)

  1.  回転軸及び少なくとも1つのインペラを含む回転体と、
     前記回転体の周囲に位置し、気相冷媒が流れる冷媒流路と、
     前記回転体の内部において前記回転体の軸方向に延びており、液相冷媒が流れる主流路と、
     前記回転体の内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びており、前記主流路から前記冷媒流路に前記液相冷媒を導く噴射流路と、
     を備えた、速度型圧縮機。
    A rotating body including a rotating shaft and at least one impeller;
    A refrigerant passage located around the rotating body and through which a gas-phase refrigerant flows;
    A main flow path that extends in the axial direction of the rotating body inside the rotating body and through which a liquid-phase refrigerant flows;
    An injection flow path that is located inside the rotating body, extends from the main flow path to the refrigerant flow path, branches from the main flow path, and guides the liquid-phase refrigerant from the main flow path to the refrigerant flow path;
    Equipped with a speed compressor.
  2.  前記インペラは、ハブ及び前記ハブに固定されたブレードを有し、
     前記噴射流路は、前記冷媒流路に面している流出口を有し、
     前記流出口は、前記気相冷媒の流れ方向において、前記ブレードの上流端よりも上流側に位置している、
     請求項1に記載の速度型圧縮機。
    The impeller has a hub and a blade fixed to the hub;
    The injection flow path has an outlet facing the refrigerant flow path;
    The outlet is positioned upstream of the upstream end of the blade in the flow direction of the gas-phase refrigerant.
    The speed type compressor according to claim 1.
  3.  前記インペラは、ハブ及び前記ハブに固定されたブレードを有し、
     前記噴射流路は、前記ハブの表面に位置している流出口を有するとともに、前記回転軸の半径方向に前記ハブを貫通している、
     請求項1又は2に記載の速度型圧縮機。
    The impeller has a hub and a blade fixed to the hub;
    The injection flow path has an outlet located on the surface of the hub and penetrates the hub in the radial direction of the rotation shaft.
    The speed type compressor according to claim 1 or 2.
  4.  前記噴射流路は、前記回転軸の内部において前記主流路から前記回転軸の半径方向に延びている第1部分と、前記第1部分と前記冷媒流路との間に位置している第2部分と、を含む、
     請求項1から3のいずれか1項に記載の速度型圧縮機。
    The injection flow path is positioned between the first part and the refrigerant flow path, the first part extending in the radial direction of the rotary shaft from the main flow path inside the rotary shaft. Including, and
    The speed type compressor according to any one of claims 1 to 3.
  5.  前記第1部分と前記第2部分とを有する前記噴射流路の数は2以上である、
     請求項4に記載の速度型圧縮機。
    The number of the injection flow paths having the first part and the second part is two or more.
    The speed type compressor according to claim 4.
  6.  前記第1部分は、前記回転軸の周方向に沿って前記回転軸の側面に設けられた溝を含み、
     前記溝に前記第2部分が接続されている、
     請求項4又は5に記載の速度型圧縮機。
    The first portion includes a groove provided on a side surface of the rotary shaft along a circumferential direction of the rotary shaft,
    The second portion is connected to the groove;
    The speed type compressor according to claim 4 or 5.
  7.  前記主流路は、前記回転軸の端面に位置している流入口を有する、
     請求項1から6のいずれか1項に記載の速度型圧縮機。
    The main flow path has an inflow port located on an end face of the rotating shaft,
    The speed type compressor according to any one of claims 1 to 6.
  8.  前記液相冷媒が貯留された供給タンクと、
     前記主流路への流入口に接するバッファ室と、
     前記バッファ室に接続された冷媒供給路を介して、前記供給タンクから前記バッファ室へと前記液相冷媒を圧送する加圧ポンプと、
     をさらに備えた、請求項1から7のいずれか1項に記載の速度型圧縮機。
    A supply tank in which the liquid-phase refrigerant is stored;
    A buffer chamber in contact with the inlet to the main flow path;
    A pressure pump that pumps the liquid-phase refrigerant from the supply tank to the buffer chamber via a refrigerant supply path connected to the buffer chamber;
    The speed type compressor according to any one of claims 1 to 7, further comprising:
  9.  外部熱源と熱交換する熱交換器をさらに備え、
     前記冷媒供給路は、前記バッファ室と前記加圧ポンプとに接続された流路であり、
     前記熱交換器は、前記バッファ室と前記加圧ポンプとの間において前記冷媒供給路に設けられている、
     請求項8に記載の速度型圧縮機。
    A heat exchanger for exchanging heat with an external heat source;
    The refrigerant supply path is a flow path connected to the buffer chamber and the pressure pump,
    The heat exchanger is provided in the refrigerant supply path between the buffer chamber and the pressure pump.
    The speed type compressor according to claim 8.
  10.  前記インペラは、ハブ及び前記ハブに固定された複数のブレードを有し、
     前記噴射流路は、前記冷媒流路に面している流出口を有し、
     前記回転体の回転方向とは逆の回転方向において、前記流出口から最も近い位置にある前記ブレードを第1ブレードと定義し、
     前記回転軸に垂直な平面に前記第1ブレードの翼根線を投影することによって得られた投影図において、前記翼根線の最外周部を第1後縁部と定義し、
     前記回転体の中心軸から前記流出口を通って半径方向に延びる線をr軸と定義し、
     前記回転体の回転方向を正方向と定義したとき、
     前記第1後縁部と前記中心軸とを結ぶ線と前記r軸とのなす角度を前記回転体の回転方向に沿って前記r軸から測ったときの角度が-40度以上であり、
     前記回転体の前記中心軸から前記流出口までの距離に対する前記回転体の前記中心軸から前記第1後縁部までの距離の比率が3以上であり、
     前記流出口から噴射される前記液相冷媒の流出方向を前記回転軸に垂直な前記平面に投影することによって得られた投影図において、前記液相冷媒の流出方向と前記r軸とのなす角度を前記回転体の回転方向に沿って前記r軸から測ったときの角度が-25度以上である、
     請求項1から9のいずれか1項に記載の速度型圧縮機。
    The impeller has a hub and a plurality of blades fixed to the hub,
    The injection flow path has an outlet facing the refrigerant flow path;
    The blade that is closest to the outlet in a rotational direction opposite to the rotational direction of the rotating body is defined as a first blade;
    In the projection obtained by projecting the blade root line of the first blade on a plane perpendicular to the rotation axis, the outermost peripheral part of the blade root line is defined as a first trailing edge,
    A line extending radially from the central axis of the rotating body through the outlet is defined as an r-axis;
    When the rotation direction of the rotating body is defined as a positive direction,
    An angle when the angle formed between the r axis and the line connecting the first trailing edge portion and the central axis is measured from the r axis along the rotation direction of the rotating body is −40 degrees or more;
    The ratio of the distance from the central axis of the rotating body to the first trailing edge with respect to the distance from the central axis of the rotating body to the outlet is 3 or more,
    In the projection obtained by projecting the outflow direction of the liquid refrigerant injected from the outlet onto the plane perpendicular to the rotation axis, the angle formed between the outflow direction of the liquid refrigerant and the r axis The angle when measured from the r-axis along the rotation direction of the rotating body is −25 degrees or more,
    The speed type compressor according to any one of claims 1 to 9.
  11.  前記少なくとも1つのインペラが第1インペラ及び第2インペラを含み、
     前記第1インペラ及び前記第2インペラのそれぞれに前記噴射流路が設けられており、
     前記第1インペラに設けられた前記噴射流路の流出口の開口面積をSと定義し、
     前記第2インペラに設けられた前記噴射流路の流出口の開口面積をSと定義し、
     前記回転体の中心軸から前記第1インペラに設けられた前記噴射流路の前記流出口までの距離をRと定義し、
     前記回転体の中心軸から前記第2インペラに設けられた前記噴射流路の前記流出口までの距離をRと定義したとき、
     (R/R≦S/S)の関係が満たされる、
     請求項1から10のいずれか1項に記載の速度型圧縮機。
    The at least one impeller includes a first impeller and a second impeller;
    The injection flow path is provided in each of the first impeller and the second impeller,
    The opening area of the outlet of the injection passage provided on the first impeller is defined as S 1,
    The opening area of the outlet of the injection passage provided on the second impeller is defined as S 2,
    R 1 is defined as a distance from the central axis of the rotating body to the outlet of the injection flow path provided in the first impeller,
    When the distance from the center axis of the rotary body to said outlet of said injection passage provided on the second impeller is defined as R 2,
    The relationship of (R 2 / R 1 ≦ S 1 / S 2 ) is satisfied,
    The speed type compressor according to any one of claims 1 to 10.
  12.  前記少なくとも1つのインペラが第1インペラ及び第2インペラを含み、
     前記速度型圧縮機は、前記第1インペラに面する第1ディフューザをさらに備え、
     前記第1インペラには、前記第1インペラの内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びている下流側噴射流路が設けられており、
     前記下流側噴射流路は、前記気相冷媒の流れ方向において前記噴射流路よりも下流に位置しており、
     前記下流側噴射流路の中心軸は、前記第1ディフューザの入口に交差している、
     請求項1から11のいずれか1項に記載の速度型圧縮機。
    The at least one impeller includes a first impeller and a second impeller;
    The speed compressor further includes a first diffuser facing the first impeller,
    The first impeller is provided inside the first impeller, and is provided with a downstream injection passage that branches from the main passage and extends from the main passage to the refrigerant passage,
    The downstream injection flow path is located downstream of the injection flow path in the flow direction of the gas-phase refrigerant,
    The central axis of the downstream injection flow path intersects the inlet of the first diffuser,
    The speed type compressor according to any one of claims 1 to 11.
  13.  前記速度型圧縮機は、前記第2インペラに面する第2ディフューザをさらに備え、
     前記第2インペラには、前記第2インペラの内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びている第2噴射流路が設けられており、
     前記第2噴射流路の中心軸は、前記第2ディフューザの入口に交差している、
     請求項12に記載の速度型圧縮機。
    The speed compressor further includes a second diffuser facing the second impeller,
    The second impeller is provided with a second injection flow path that is located inside the second impeller, branches from the main flow path, and extends from the main flow path to the refrigerant flow path,
    The central axis of the second injection flow path intersects the inlet of the second diffuser,
    The speed type compressor according to claim 12.
  14.  蒸発器と、
     請求項1から13のいずれか1項に記載の速度型圧縮機と、
     凝縮器と、
     を備えた、冷凍サイクル装置。
    An evaporator,
    The speed type compressor according to any one of claims 1 to 13,
    A condenser,
    A refrigeration cycle apparatus comprising:
  15.  前記蒸発器は、内部に液相冷媒を貯留し、
     前記凝縮器は、内部に液相冷媒を貯留し、
     前記冷凍サイクル装置は、前記蒸発器に貯留された前記液相冷媒、又は前記凝縮器に貯留された前記液相冷媒を前記速度型圧縮機に導く冷媒供給路をさらに備えた、
     請求項14に記載の冷凍サイクル装置。
    The evaporator stores a liquid phase refrigerant therein,
    The condenser stores liquid phase refrigerant therein,
    The refrigeration cycle apparatus further includes a refrigerant supply path that guides the liquid phase refrigerant stored in the evaporator or the liquid phase refrigerant stored in the condenser to the speed compressor.
    The refrigeration cycle apparatus according to claim 14.
  16.  速度型圧縮機を用いた圧縮方法であって、
     前記速度型圧縮機は、回転軸及びインペラを含む回転体と、前記回転体の周囲に位置し、気相冷媒の吸入口から前記気相冷媒の吐出口へ前記気相冷媒を流す冷媒流路と、
     を備え、
     前記圧縮方法は、
     前記気相冷媒を前記速度型圧縮機に吸入させることと、
     前記吸入された気相冷媒を前記速度型圧縮機において加速して圧縮することと、
     前記回転体の表面に配置された流出口に連通する流路であって、前記回転体の内部に位置する流路を通って、前記冷媒流路に存在する前記気相冷媒に向けて前記流出口から液相冷媒を噴射することと、
     を含む、圧縮方法。
    A compression method using a speed type compressor,
    The speed compressor includes a rotating body including a rotating shaft and an impeller, and a refrigerant flow path that is positioned around the rotating body and that flows the gas-phase refrigerant from a gas-phase refrigerant inlet to a gas-phase refrigerant outlet. When,
    With
    The compression method is:
    Inhaling the gas phase refrigerant into the speed compressor;
    Accelerating and compressing the sucked gas phase refrigerant in the speed type compressor;
    A flow path communicating with an outlet disposed on the surface of the rotating body, passing through the flow path located inside the rotating body, toward the gas-phase refrigerant existing in the refrigerant flow path. Injecting liquid phase refrigerant from the outlet;
    Including a compression method.
  17.  前記回転体の内部に位置する流路は、前記回転体の内部において前記回転体の軸方向に延びており、前記液相冷媒が流れる主流路と、前記回転体の内部に位置し、前記主流路から分岐して前記主流路から前記冷媒流路まで延びており、前記主流路から前記冷媒流路に前記液相冷媒を導く噴射流路とを含み、
     前記主流路を流れる前記液相冷媒は、前記気相冷媒が吸引されて流れる方向とは逆方向に流れる、請求項16に記載の圧縮方法。
    The flow path located inside the rotating body extends in the axial direction of the rotating body inside the rotating body, and is located inside the rotating body, the main flow path through which the liquid-phase refrigerant flows, and the main stream Branching from the main path and extending from the main flow path to the refrigerant flow path, including an injection flow path for guiding the liquid refrigerant from the main flow path to the refrigerant flow path,
    The compression method according to claim 16, wherein the liquid-phase refrigerant flowing through the main channel flows in a direction opposite to a direction in which the gas-phase refrigerant is sucked and flows.
  18.  前記回転体の回転により生ずる遠心力によって、前記流出口から前記液相冷媒が噴射され、前記噴出された液相冷媒が、前記速度型圧縮機の翼間流路に吸引される、
     請求項16又は17に記載の圧縮方法。
    The liquid phase refrigerant is ejected from the outlet by the centrifugal force generated by the rotation of the rotating body, and the ejected liquid phase refrigerant is sucked into the flow passage between the blades of the speed compressor.
    The compression method according to claim 16 or 17.
  19.  前記インペラは、ハブ及び前記ハブに固定されたブレードを有し、
     前記流出口は、前記気相冷媒の流れ方向において、前記ブレードの上流端よりも上流側に位置している、
     請求項16から18のいずれか1項に記載の圧縮方法。
    The impeller has a hub and a blade fixed to the hub;
    The outlet is positioned upstream of the upstream end of the blade in the flow direction of the gas-phase refrigerant.
    The compression method according to any one of claims 16 to 18.
PCT/JP2019/000136 2018-03-05 2019-01-08 Dynamic compressor and refrigeration cycle device WO2019171740A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980006459.3A CN111480009B (en) 2018-03-05 2019-01-08 Speed type compressor and refrigeration cycle device
EP19763984.2A EP3763948B1 (en) 2018-03-05 2019-01-08 Dynamic compressor and refrigeration cycle device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2018-038714 2018-03-05
JP2018038714 2018-03-05
JP2018044068 2018-03-12
JP2018-044068 2018-03-12
JP2018078096 2018-04-16
JP2018-078096 2018-04-16
JP2018-105735 2018-06-01
JP2018105735 2018-06-01
JP2018-237802 2018-12-19
JP2018237802A JP7187292B2 (en) 2018-03-05 2018-12-19 Speed compressor and refrigeration cycle equipment

Publications (1)

Publication Number Publication Date
WO2019171740A1 true WO2019171740A1 (en) 2019-09-12

Family

ID=67847217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000136 WO2019171740A1 (en) 2018-03-05 2019-01-08 Dynamic compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2019171740A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122012A (en) 2006-11-14 2008-05-29 Sasakura Engineering Co Ltd Evaporative cooling device for liquid
CN101210574A (en) * 2006-12-29 2008-07-02 财团法人工业技术研究院 Centrifugal compressor rotor mechanism
JP2017194042A (en) * 2016-04-22 2017-10-26 三菱重工サーマルシステムズ株式会社 Turbocompressor, and turbo refrigerating device comprising the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008122012A (en) 2006-11-14 2008-05-29 Sasakura Engineering Co Ltd Evaporative cooling device for liquid
CN101210574A (en) * 2006-12-29 2008-07-02 财团法人工业技术研究院 Centrifugal compressor rotor mechanism
JP2017194042A (en) * 2016-04-22 2017-10-26 三菱重工サーマルシステムズ株式会社 Turbocompressor, and turbo refrigerating device comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3763948A4

Similar Documents

Publication Publication Date Title
JP7187292B2 (en) Speed compressor and refrigeration cycle equipment
WO2014057656A1 (en) Heat exchanging device and heat pump
JP6064258B2 (en) Pump device and pump system
EP2933498B1 (en) Turbomachine and refrigeration cycle apparatus
US10989222B2 (en) Refrigerant compressor
US20170211584A1 (en) Impeller, centrifugal compressor, and refrigeration cycle apparatus
JP2005312272A (en) Turbo refrigerator and motor for the turbo refrigerator
EP3434999B1 (en) Refrigeration cycle apparatus
JP2019100695A (en) Refrigeration cycle device and method for driving refrigeration cycle device
WO2019171740A1 (en) Dynamic compressor and refrigeration cycle device
JP7461789B2 (en) Speed type compressor and refrigeration cycle device
JP2010060202A (en) Cooling structure in motor for refrigerator
JP2020193587A (en) Dynamic compressor, refrigeration cycle device, and method for operating dynamic compressor
CN108626169A (en) Turbo-compressor
JP5466654B2 (en) Centrifugal compressor
JP7504655B2 (en) Refrigeration Cycle Equipment
TW202212694A (en) System and method for directing fluid flow in a compressor
JP2004300928A (en) Multistage compressor, heat pump and heat utilization device
JP2019211170A (en) Refrigeration cycle device
Shoyama et al. Continuous Cooling Compressor for water refrigerant heat pump
WO2020241162A1 (en) Dynamic compressor and refrigeration cycle device
JP2020186705A (en) Speed type compressor, refrigeration cycle device, and operation method of speed type compressor
JP6123889B2 (en) Turbo refrigerator
JP2019066130A (en) Refrigeration cycle device
WO2019111690A1 (en) Refrigeration cycle system and method for driving refrigeration cycle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019763984

Country of ref document: EP

Effective date: 20201005