WO2019171540A1 - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2019171540A1
WO2019171540A1 PCT/JP2018/009014 JP2018009014W WO2019171540A1 WO 2019171540 A1 WO2019171540 A1 WO 2019171540A1 JP 2018009014 W JP2018009014 W JP 2018009014W WO 2019171540 A1 WO2019171540 A1 WO 2019171540A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
partition plate
crank
intermediate partition
rotary compressor
Prior art date
Application number
PCT/JP2018/009014
Other languages
French (fr)
Japanese (ja)
Inventor
晋聡 山本
益永 孝幸
浩祐 安達
平山 卓也
Original Assignee
株式会社 東芝
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝キヤリア株式会社 filed Critical 株式会社 東芝
Priority to CN201880090918.6A priority Critical patent/CN111836965B/en
Priority to PCT/JP2018/009014 priority patent/WO2019171540A1/en
Priority to JP2020504593A priority patent/JP6805388B2/en
Publication of WO2019171540A1 publication Critical patent/WO2019171540A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids

Definitions

  • Embodiments of the present invention relate to a multi-cylinder rotary compressor and a refrigeration cycle apparatus including the rotary compressor.
  • a multi-cylinder rotary compressor used in an air conditioner is provided with a compression mechanism that compresses a refrigerant inside an airtight container.
  • the compression mechanism includes a plurality of cylinder chambers partitioned by an intermediate partition plate, and a rotating shaft having a plurality of crank portions that can be accommodated in the cylinder chamber, and a roller attached to the outer peripheral surface of the crank portion is eccentric in the cylinder chamber. Rotate. As a result, the volumes of the suction region and the compression region of the cylinder chamber change, and the gas-phase refrigerant sucked into the suction region is compressed.
  • lubricating oil is supplied to the sliding portion between the intermediate shaft portion and the intermediate partition plate in order to reduce friction loss between the intermediate shaft portion and the intermediate partition plate. It has become so. Furthermore, in order to secure a space for temporarily storing lubricating oil between the intermediate shaft portion and the crank portion located on the upper side, the intermediate shaft portion is positioned just in the middle between two adjacent crank portions.
  • the intermediate shaft portion has a flat disk shape, and it is difficult to ensure a sufficient thickness dimension of the intermediate shaft portion along the axial direction of the rotation shaft. For this reason, the lubricating oil easily flows out between the intermediate shaft portion and the intermediate partition plate, and the lubricating oil film separating the intermediate shaft portion and the intermediate partition plate may be interrupted.
  • An object of the present invention is to obtain a rotary compressor that can improve the lubricity of an intermediate shaft portion of a rotating shaft and contribute to a reduction in friction loss of a compression mechanism portion.
  • the rotary compressor includes a cylindrical airtight container, a compression mechanism that compresses the refrigerant inside the airtight container and is lubricated with the lubricating oil stored in the airtight container, and the airtight container. And an electric motor that drives the compression mechanism.
  • the compression mechanism portion is disposed between the first bearing and the second bearing that are spaced apart in the axial direction of the sealed container, and between the first bearing and the second bearing,
  • the airtight containers are arranged at intervals in the axial direction, and each cylinder body defines a cylinder chamber, and the intermediate partition plate interposed between the adjacent cylinder bodies and having a bearing portion,
  • the first journal part supported by the first bearing, the second journal part supported by the second bearing, and positioned between the first journal part and the second journal part A plurality of crank portions rotating eccentrically in the cylinder chamber, and a rotating shaft having an intermediate shaft portion slidably supported by the bearing portion of the intermediate partition plate between the adjacent crank portions.
  • the intermediate shaft portion of the rotating shaft is provided at a position offset toward one of the crank portions between the adjacent crank portions, and the intermediate partition between the other crank portion and the intermediate shaft portion.
  • a gap larger than the thickness of the bearing portion of the plate is provided.
  • FIG. 1 is a circuit diagram schematically showing the configuration of the refrigeration cycle apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the twin rotary compressor according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the compression mechanism portion of the twin rotary compressor in the first embodiment.
  • FIG. 4 is a cross-sectional view schematically showing the positional relationship between a roller and a vane that rotate eccentrically in the first cylinder chamber in the first embodiment.
  • FIG. 5 is a cross-sectional view showing a state in which the second journal portion of the rotating shaft is inserted into the bearing hole of the intermediate partition plate in the first embodiment.
  • FIG. 6 is a cross-sectional view illustrating a state in which the intermediate partition plate is moved between the second crank portion and the intermediate shaft portion of the rotation shaft in the first embodiment.
  • FIG. 7 is a cross-sectional view showing a state in which the intermediate partition plate is shifted in the radial direction of the rotation shaft between the second crank portion and the intermediate shaft portion of the rotation shaft in the first embodiment.
  • FIG. 8 is a cross-sectional view showing a state in which the intermediate shaft portion of the rotating shaft is fitted in the bearing hole of the intermediate partition plate in the first embodiment.
  • FIG. 9 is a cross-sectional view of the compression mechanism portion of the twin rotary compressor according to the second embodiment.
  • FIG. 10 is a cross-sectional view of a triple rotary compressor according to the third embodiment.
  • FIG. 11 is a cross-sectional view of a compression mechanism portion of a triple rotary compressor according to the third embodiment.
  • FIG. 12 is a bottom view of the second intermediate partition plate used in the third embodiment.
  • 13 is a cross-sectional view taken along line F13-F13 in FIG.
  • FIG. 14 is an exploded cross-sectional view showing an outline of the compression mechanism used in the third embodiment.
  • FIG. 15 is a cross-sectional view showing a state in which the second journal portion of the rotating shaft is inserted into the bearing hole of the second intermediate partition plate connected to the second cylinder body in the third embodiment.
  • FIG. 16 is a cross-sectional view showing a state in which the third crank portion of the rotating shaft enters the escape recess of the second intermediate partition plate in the third embodiment.
  • FIG. 17 is a cross-sectional view showing a state in which the bearing hole of the second intermediate partition plate and the intermediate shaft portion of the rotary shaft are coaxially aligned in the third embodiment.
  • FIG. 18 is a cross-sectional view illustrating a state in which the roller is inserted on the first journal portion of the rotation shaft in the third embodiment.
  • FIG. 19 is a cross-sectional view showing a state in which the first intermediate partition plate is overlaid on the second cylinder body mounted on the rotating shaft in the third embodiment.
  • FIG. 20 shows a third embodiment in which the first cylinder body to which the first bearing is connected is overlaid on the first intermediate partition plate, and the spacer is placed on the second journal portion of the rotating shaft. It is sectional drawing which shows the state inserted.
  • FIG. 18 is a cross-sectional view illustrating a state in which the roller is inserted on the first journal portion of the rotation shaft in the third embodiment.
  • FIG. 19 is a cross-sectional view showing a state in which the first
  • FIG. 21 is a cross-sectional view illustrating a state in which a roller is fitted to the outer peripheral surface of the third crank portion of the rotation shaft in the third embodiment.
  • FIG. 22 is a cross-sectional view showing a state where the compression mechanism is assembled in the third embodiment.
  • FIG. 23 is a cross-sectional view of a compression mechanism portion of a triple rotary compressor according to the fourth embodiment.
  • FIG. 1 is a refrigeration cycle circuit diagram of an air conditioner 1 which is an example of a refrigeration cycle apparatus, for example.
  • the air conditioner 1 includes a rotary compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion device 5, and an indoor heat exchanger 6 as main elements.
  • the plurality of elements constituting the air conditioner 1 are connected via a circulation circuit 7 in which the refrigerant circulates.
  • the discharge side of the rotary compressor 2 is connected to the first port 3 a of the four-way valve 3.
  • the second port 3 b of the four-way valve 3 is connected to the outdoor heat exchanger 4.
  • the outdoor heat exchanger 4 is connected to the indoor heat exchanger 6 via an expansion device 5.
  • the indoor heat exchanger 6 is connected to the third port 3 c of the four-way valve 3.
  • the fourth port 3 d of the four-way valve 3 is connected to the suction side of the rotary compressor 2 via the accumulator 8.
  • the four-way valve 3 is switched so that the first port 3a communicates with the second port 3b and the third port 3c communicates with the fourth port 3d.
  • the outdoor heat exchanger in which the high-temperature and high-pressure gas-phase refrigerant compressed by the rotary compressor 2 functions as a radiator (condenser) via the four-way valve 3 Led to 4.
  • the gas-phase refrigerant led to the outdoor heat exchanger 4 is condensed by heat exchange with the air and changed into a high-pressure liquid-phase refrigerant.
  • the high-pressure liquid-phase refrigerant is reduced in pressure in the process of passing through the expansion device 5 and changed to a low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant is guided to the indoor heat exchanger 6 that functions as a heat absorber (evaporator) and exchanges heat with air in the process of passing through the indoor heat exchanger 6.
  • the gas-liquid two-phase refrigerant takes heat from the air, evaporates, and changes to a low-temperature / low-pressure gas-phase refrigerant.
  • the air passing through the indoor heat exchanger 6 is cooled by the latent heat of vaporization of the liquid phase refrigerant, and is sent to a place to be air-conditioned (cooled) as cold air.
  • the low-temperature and low-pressure gas-phase refrigerant that has passed through the indoor heat exchanger 6 is guided to the accumulator 8 via the four-way valve 3. If liquid refrigerant that could not evaporate is mixed in the refrigerant, the accumulator 8 separates it into liquid phase refrigerant and gas phase refrigerant.
  • the low-temperature and low-pressure gas-phase refrigerant from which the liquid-phase refrigerant has been separated is sucked into the rotary compressor 2 and is compressed again into a high-temperature and high-pressure gas-phase refrigerant by the rotary compressor 2 and discharged to the circulation circuit 7.
  • the four-way valve 3 switches so that the first port 3a communicates with the third port 3c and the second port 3b communicates with the fourth port 3d. Therefore, the high-temperature and high-pressure gas-phase refrigerant discharged from the rotary compressor 2 is guided to the indoor heat exchanger 6 through the four-way valve 3 and exchanges heat with air passing through the indoor heat exchanger 6. That is, the indoor heat exchanger 6 functions as a condenser.
  • the gas-phase refrigerant passing through the indoor heat exchanger 6 is condensed by heat exchange with the air and changed into a high-pressure liquid-phase refrigerant.
  • the air passing through the indoor heat exchanger 6 is superheated by heat exchange with the gas-phase refrigerant, and is sent to a place to be air-conditioned (heated) as warm air.
  • the high-temperature liquid-phase refrigerant that has passed through the indoor heat exchanger 6 is guided to the expansion device 5 and is reduced in pressure in the process of passing through the expansion device 5 to be changed into a low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant is led to the outdoor heat exchanger 4 functioning as an evaporator, and evaporates by exchanging heat with air here, and changes to a low-temperature / low-pressure gas-phase refrigerant.
  • the low-temperature and low-pressure gas-phase refrigerant that has passed through the outdoor heat exchanger 4 is sucked into the rotary compressor 2 via the four-way valve 3 and the accumulator 8.
  • FIG. 2 discloses a vertical twin rotary compressor 2.
  • the twin rotary compressor 2 includes a sealed container 10, an electric motor 11, and a compression mechanism unit 12 as main elements.
  • the sealed container 10 has a cylindrical peripheral wall 10a and is erected along the vertical direction.
  • a discharge pipe 10 b is provided at the upper end of the sealed container 10.
  • the discharge pipe 10 b is connected to the first port 3 a of the four-way valve 3 through the circulation circuit 7. Furthermore, a lubricating oil I that lubricates the compression mechanism 12 is stored in the lower portion of the sealed container 10.
  • the electric motor 11 is accommodated in an intermediate portion along the axial direction of the sealed container 10 so as to be positioned above the oil level S of the lubricating oil I.
  • the electric motor 11 is a so-called inner rotor type motor, and includes a stator 13 and a rotor 14.
  • the stator 13 is fixed to the inner surface of the peripheral wall 10 a of the sealed container 10.
  • the rotor 14 is coaxially positioned on the central axis O ⁇ b> 1 of the sealed container 10 and is surrounded by the stator 13.
  • the compression mechanism 12 is accommodated in the lower part of the sealed container 10 so as to be immersed in the lubricating oil I.
  • the compression mechanism unit 12 includes a first cylinder body 16, a second cylinder body 17, an intermediate partition plate 18, a spacer 19, a first bearing 20, a second bearing 21, and
  • the rotating shaft 22 is provided as a main element.
  • the first cylinder body 16 and the second cylinder body 17 are separated from each other in the axial direction of the sealed container 10.
  • the intermediate partition plate 18 is interposed between the first cylinder body 16 and the second cylinder body 17.
  • the upper surface of the intermediate partition plate 18 is overlaid on the lower surface of the first cylinder body 16 so as to cover the inner diameter portion of the first cylinder body 16 from below.
  • the lower surface of the intermediate partition plate 18 faces the upper surface of the second cylinder body 17.
  • the spacer 19 is a flat disk-shaped element, and is interposed between the lower surface of the intermediate partition plate 18 and the upper surface of the second cylinder body 17.
  • the lower surface of the spacer 19 is overlaid on the upper surface of the second cylinder body 17 so as to cover the inner diameter portion of the second cylinder body 17 from above.
  • the first bearing 20 is positioned on the first cylinder body 16.
  • the first bearing 20 has a flange portion 23 that projects toward the inner surface of the peripheral wall 10 a of the sealed container 10.
  • the flange portion 23 is superimposed on the upper surface of the first cylinder body 16 so as to cover the inner diameter portion of the first cylinder body 16 from above.
  • a region surrounded by the inner diameter portion of the first cylinder body 16, the intermediate partition plate 18 and the flange portion 23 of the first bearing 20 defines a first cylinder chamber 24.
  • the flange portion 23 of the first bearing 20 is surrounded by the ring-shaped support frame 25.
  • the support frame 25 is fixed to a predetermined position on the inner surface of the peripheral wall 10a of the sealed container 10 by means such as welding.
  • the lower surface of the support frame 25 is overlaid on the upper surface of the outer peripheral portion of the first cylinder body 16.
  • the outer peripheral portion of the first cylinder body 16 is coupled to the support frame 25 via a plurality of first fastening bolts 26 (only one is shown).
  • the flange portion 23 of the first bearing 20, the first cylinder body 16, and the intermediate partition plate 18 are stacked on each other in the axial direction of the sealed container 10, and a plurality of second fastening bolts 27 (one Only connected to each other).
  • the first fastening bolts 26 and the second fastening bolts 27 are arranged at intervals in the circumferential direction of the first cylinder chamber 24.
  • the second bearing 21 is located below the second cylinder body 17.
  • the second bearing 21 has a flange portion 29 that protrudes toward the inner surface of the peripheral wall 10 a of the sealed container 10.
  • the flange portion 29 is superimposed on the lower surface of the second cylinder body 17 so as to cover the inner diameter portion of the second cylinder body 17 from below.
  • a region surrounded by the inner diameter portion of the second cylinder body 17, the spacer 19, and the flange portion 29 of the second bearing 21 defines a second cylinder chamber 30.
  • the flange portion 29, the second cylinder body 17, the spacer 19, and the intermediate partition plate 18 of the second bearing 21 are stacked on each other in the axial direction of the sealed container 10, and a plurality of third fastening bolts 31 (one (Only one is shown).
  • the third fastening bolts 31 are arranged at intervals in the circumferential direction of the second cylinder chamber 30.
  • first bearing 20 and the second bearing 21 are arranged with a space in the axial direction of the sealed container 10, and the first bearing 20 and the second bearing 21 are arranged between the first bearing 20 and the second bearing 21.
  • Cylinder body 16, second cylinder body 17, intermediate partition plate 18 and spacer 19 are arranged.
  • the first cylinder chamber 24 and the second cylinder chamber 30 are connected to the accumulator 8 via suction pipes 32a and 32b constituting the circulation circuit 7, respectively.
  • the gas-phase refrigerant from which the liquid-phase refrigerant has been separated by the accumulator 8 is guided to the first cylinder chamber 24 and the second cylinder chamber 30 through the suction pipes 32a and 32b.
  • a first discharge muffler 34 is attached to the first bearing 20.
  • a first silencing chamber 35 is formed between the first discharge muffler 34 and the first bearing 20.
  • the first silencing chamber 35 is opened inside the hermetic container 10 through a plurality of exhaust holes (not shown) provided in the first discharge muffler 34.
  • the second discharge muffler 36 is attached to the second bearing 21.
  • a second silencing chamber 37 is formed between the second discharge muffler 36 and the second bearing 21.
  • the second silencing chamber 37 communicates with the first silencing chamber 35 via a discharge passage (not shown).
  • the rotating shaft 22 is coaxially positioned on the central axis O1 of the sealed container 10.
  • the rotating shaft 22 includes a first journal part 40a, a second journal part 40b, a first crank part 41a, a second crank part 41b, and an intermediate shaft part 42.
  • the first journal portion 40a is positioned at an intermediate portion along the axial direction of the rotary shaft 22, and is rotatably supported by the first bearing 20. As shown in FIG. One end of the rotating shaft 22 protruding from the first bearing 20 is connected to the rotor 14 of the electric motor 11.
  • the second journal portion 40 b is positioned at the other end portion along the axial direction of the rotary shaft 22 and is rotatably supported by the second bearing 21.
  • the first crank part 41a and the second crank part 41b are formed integrally with the rotary shaft 22 so as to be positioned between the first journal part 40a and the second journal part 40b.
  • the first and second crank portions 41a and 41b are disk-shaped elements each having a thickness dimension along the axial direction of the rotating shaft 22, and are separated from each other in the axial direction of the rotating shaft 22, and the rotating shaft Eccentric with respect to 22 center line O2.
  • the first crank portion 41 a adjacent to the first journal portion 40 a is located in the first cylinder chamber 24.
  • the second crank portion 41 b adjacent to the second journal portion 40 b is located in the second cylinder chamber 30.
  • the intermediate shaft portion 42 of the rotary shaft 22 is integrally formed with the rotary shaft 22 so as to be positioned between the adjacent first crank portion 41a and second crank portion 41b.
  • the intermediate shaft portion 42 is a disk-shaped element provided coaxially with the rotary shaft 22, and has a thickness dimension along the axial direction of the rotary shaft 22.
  • the diameter d1 of the intermediate bearing portion 42 is set to be equal to or larger than the diameter d2 of the second crank portion 41b.
  • a ring-shaped roller 43 is fitted to the outer peripheral surface of the first crank portion 41a.
  • the roller 43 follows the rotation shaft 22 and rotates eccentrically in the first cylinder chamber 24, and a part of the outer peripheral surface of the roller 43 is slidably contacted with the inner peripheral surface of the first cylinder chamber 24. It is supposed to be.
  • the one end surface of the roller 43 is slidably in contact with the lower surface of the flange portion 23 of the first bearing 20.
  • the other end surface of the roller 43 is slidably in contact with the upper surface of the intermediate partition plate 18. Thereby, the airtightness of the first cylinder chamber 24 is ensured.
  • a ring-shaped roller 44 is fitted to the outer peripheral surface of the second crank portion 41b.
  • the roller 44 follows the rotation shaft 22 and rotates eccentrically in the second cylinder chamber 30, and a part of the outer peripheral surface of the roller 44 is slidably in line contact with the inner peripheral surface of the second cylinder chamber 30. It is supposed to be.
  • the one end surface of the roller 44 is slidably in contact with the lower end surface of the spacer 19.
  • the other end surface of the roller 43 is slidably in contact with the upper surface of the flange portion 29 of the second bearing 21. Thereby, the airtightness of the second cylinder chamber 30 is ensured.
  • a vane 47 is accommodated in the vane slot 46 of the first cylinder body 16.
  • the vane 47 is movable in the radial direction of the first cylinder chamber 24 and is biased toward the first cylinder chamber 24 via a spring 48.
  • the tip of the vane 47 is slidably pressed against the outer peripheral surface of the roller 43.
  • the vane 47 cooperates with the roller 43 to partition the first cylinder chamber 24 into a suction region R1 and a compression region R2. Further, the vane 47 advances into the first cylinder chamber 24 following the eccentric rotation of the roller 43 or reciprocates in the direction away from the first cylinder chamber 24.
  • the second cylinder chamber 30 is also divided into a suction region and a compression region by a similar vane. Therefore, when the roller 44 rotates eccentrically, the volume of the suction region and the compression region of the second cylinder chamber 30 changes, and the gas-phase refrigerant sucked into the suction region of the second cylinder chamber 30 from the suction pipe 32b is compressed.
  • the flange portion 23 of the first bearing 20 is provided with a first discharge valve 50 that is opened and closed by a roller 43 that rotates eccentrically.
  • first discharge valve 50 When the first discharge valve 50 is opened, the gas-phase refrigerant compressed in the first cylinder chamber 24 is discharged into the first silencing chamber 35.
  • the flange portion 29 of the second bearing 21 is provided with a second discharge valve 51 that is opened and closed by a roller 44 that rotates eccentrically.
  • the second discharge valve 51 When the second discharge valve 51 is opened, the gas-phase refrigerant compressed in the second cylinder chamber 30 is guided from the second silencer chamber 37 to the first silencer chamber 35 through the discharge passage.
  • the gas-phase refrigerant compressed in the second cylinder chamber 30 is discharged from the exhaust hole of the first discharge muffler 34 into the sealed container 10.
  • the intermediate shaft portion 42 of the rotating shaft 22 is largely displaced toward the first crank portion 41 a side between the adjacent first crank portion 41 a and the second crank portion 41 b. In the position.
  • a first gap C1 along the axial direction of the rotating shaft 22 is formed between the intermediate shaft portion 42 and the first crank portion 41a, and the intermediate shaft portion 42 and the second crank portion 41b are separated from each other.
  • a second gap C2 along the axial direction of the rotary shaft 22 is formed between them.
  • the first gap C1 is much smaller than the second gap C2.
  • the second gap C2 defines a space SP equivalent to the thickness of the intermediate shaft portion 42 between the intermediate shaft portion 42 and the second crank portion 41b.
  • the intermediate shaft portion 42 of the rotating shaft 22 is supported by the intermediate partition plate 18.
  • the intermediate partition plate 18 of the present embodiment has a thickness that exceeds the intermediate shaft portion 42. For this reason, the lower end portion of the intermediate partition plate 18 protrudes toward the second crank portion 41 b from the intermediate shaft portion 42.
  • a bearing portion 52 a having a bearing hole 52 and a relief recess 55 are formed at the center of the intermediate partition plate 18.
  • the bearing hole 52 has an inner diameter d3 into which the second crank portion 41b can be inserted, and the intermediate shaft portion 42 of the rotary shaft 22 is slidably fitted in the bearing hole 52. Yes.
  • the intermediate partition plate 18 also functions as a bearing that supports the intermediate shaft portion 42.
  • the sliding part between the intermediate shaft part 42 and the bearing hole 52 is lubricated with the lubricating oil I stored in the sealed container 10. That is, the outer peripheral surface of the intermediate shaft portion 42 and the inner peripheral surface of the bearing hole 52 are separated by an oil film of lubricating oil, and much of the load acting on the intermediate shaft portion 42 when the rotary shaft 22 rotates is oil film reaction. Taken by force.
  • the escape recess 55 is a circular element continuous to the bearing portion 52a, and is opened on the lower surface of the intermediate partition plate 18.
  • the escape recess 55 has an inner diameter d4 larger than the bearing hole 52 and is eccentric with respect to the bearing hole 52.
  • the thickness t1 of the bearing portion 52a of the intermediate partition plate 18 extending from the bottom of the escape recess 55 to the upper surface of the intermediate partition plate 18 is the second clearance C2 between the intermediate shaft portion 42 and the second crank portion 41b. Is set to be slightly smaller. In other words, the second gap C2 is larger than the thickness t1 of the bearing portion 52a of the intermediate partition plate 18.
  • a circular communication hole 56 is formed at the center of the spacer 19.
  • the communication hole 56 is continuous with the escape recess 55 and has a size that allows the second crank portion 41b of the rotary shaft 22 to be inserted therethrough.
  • a portion located between the intermediate shaft portion 42 of the rotating shaft 22 and the other crank portion 41 b passes through the escape recess 55 of the intermediate partition plate 18 and the communication hole 56 of the spacer 19.
  • the second journal portion 40 b of the rotary shaft 22 is inserted into the bearing hole 52 and the relief recess 55 of the bearing portion 52 a of the intermediate partition plate 18.
  • the intermediate partition plate 18 is moved in the axial direction of the rotary shaft 22 so that the second crank portion 41 b passes through the bearing hole 52. Accordingly, a portion located between the intermediate shaft portion 42 of the rotating shaft 22 and the second crank portion 41 b is positioned inside the bearing hole 52, and a part of the second crank portion 41 b is escaped from the recess 55. Get in. Since the escape recess 55 is eccentric with respect to the bearing hole 52, a gap g along the radial direction of the second crank portion 41b is formed between a part of the inner peripheral portion of the escape recess 55 and the second crank portion 41b. Is secured.
  • the intermediate partition plate 18 is moved in the radial direction of the rotary shaft 22 so that the second crank portion 41 b enters the gap g, and the bearing hole 52 and the rotary shaft 22 of the intermediate partition plate 18 are moved.
  • the intermediate shaft portion 42 is coaxially positioned.
  • the intermediate partition plate 18 is moved in the axial direction of the rotary shaft 22, and the intermediate shaft portion 42 of the rotary shaft 22 is slidably fitted into the bearing hole 52 of the intermediate partition plate 18. .
  • the intermediate shaft portion 42 of the rotating shaft 22 is supported by the bearing portion 52a of the intermediate partition plate 18, and the intermediate partition plate 18 functions as a bearing.
  • the roller 43 is subsequently guided from the direction of one end of the rotary shaft 22 through the outside of the rotary shaft 22 onto the intermediate partition plate 42, and the roller 43 protrudes from the intermediate partition plate 42. Is fitted to the outer peripheral surface of the crank portion 41a. Further, the first cylinder body 16 is superposed on the intermediate partition plate 18, and the roller 43 is accommodated in the inner diameter portion of the first cylinder body 16.
  • the first bearing 20 is fitted into the first journal portion 40 a of the rotating shaft 22, and the flange portion 23 of the first bearing 20 is overlaid on the upper surface of the first cylinder body 16.
  • the flange portion 23 of the first bearing 20, the first cylinder body 16 and the intermediate partition plate 18 are integrally coupled together with the first discharge muffler 34 by the second fastening bolts 27.
  • the second journal portion 40 b of the rotary shaft 22 is inserted into the communication hole 56 of the spacer 19, and the spacer 19 is moved in the axial direction of the rotary shaft 22 so that the second crank portion 41 b passes through the communication hole 56.
  • the spacer 19 overlaps the lower surface of the intermediate partition plate 18 so that the communication hole 56 of the spacer 19 matches the escape recess 55 of the intermediate partition plate 18.
  • the roller 44 is fitted to the outer peripheral surface of the second crank portion 41b of the rotating shaft 22 protruding from the intermediate partition plate 42 through the outside of the second journal portion 40b. Further, the second cylinder body 17 is overlaid on the spacer 19, and the roller 44 is accommodated in the inner diameter portion of the second cylinder body 17.
  • the second bearing 21 is fitted into the second journal portion 40 b of the rotating shaft 22, and the flange portion 29 of the second bearing 21 is overlapped with the lower surface of the second cylinder body 17.
  • the flange portion 29 of the second bearing 21, the second cylinder body 17, the spacer 19, and the intermediate partition plate 18 are integrally coupled together with the second discharge muffler 36 by the third fastening bolt 31.
  • the rotating shaft 22 that rotates the rollers 43 and 44 eccentrically has the intermediate shaft portion 42 that is located between the adjacent first crank portion 41a and the second crank portion 41b.
  • the intermediate shaft portion 42 is slidably fitted in the bearing hole 52 of the intermediate partition plate 18.
  • the rotary shaft 22 can be supported even at an intermediate position between the first bearing 20 and the second bearing 21.
  • the rotary shaft 22 and the first bearing 20 and the first bearing 20 are caused by the pressure of the gas-phase refrigerant compressed in the first cylinder chamber 24 and the second cylinder chamber 30 and the inertial force of the rotary shaft 22 rotating at high speed. Even if the second bearing 21 is bent from the starting point, the bending of the rotating shaft 22 can be suppressed by the intermediate partition plate 18.
  • the intermediate shaft portion 42 of the rotating shaft 22 is largely offset toward the first crank portion 41a with respect to the second crank portion 41b, and therefore the first cylinder body 16 and the roller 43 There is no need to increase the height dimension.
  • the first gap C1 is provided between the intermediate shaft portion 42 and the first crank portion 41a, the workability of the rotating shaft 22 is not deteriorated.
  • the assembly of the compression mechanism portion 12 is performed.
  • the thickness of the intermediate shaft portion 42 along the axial direction of the rotary shaft 22 and the length of the bearing hole 52 of the intermediate partition plate 18 can be sufficiently ensured without impairing the performance.
  • FIG. 9 discloses a second embodiment.
  • the second embodiment is different from the first embodiment in the configuration of a part of the compression mechanism unit 12.
  • Other basic configurations of the twin rotary compressor 2 are the same as those in the first embodiment.
  • the intermediate partition plate 60 that rotatably supports the intermediate shaft portion 42 of the rotating shaft 22 includes the intermediate shaft portion 42 and the second crank portion. It has a thickness t2 equivalent to that of the intermediate shaft portion 42 so as not to overhang the space SP between the intermediate shaft portion 41b. Therefore, the intermediate partition plate 60 of the second embodiment is thinner than the intermediate partition plate 18 of the first embodiment.
  • the thickness of the spacer 61 interposed between the intermediate partition plate 60 and the second cylinder body 17 increases conversely. That is, the spacer 61 has a thickness t3 that approaches the space SP between the intermediate shaft portion 42 and the second crank portion 41b. Therefore, the length of the communication hole 56 of the spacer 61 along the axial direction of the rotating shaft 22 is increased, and the communication hole 56 is in close communication with the bearing hole 52 of the intermediate partition plate 60.
  • the second journal portion 40 b of the rotating shaft 22 is inserted into the bearing hole 52 of the intermediate partition plate 60, and the second crank portion 41 b is inserted into the bearing hole 52.
  • the intermediate partition plate 60 is moved in the axial direction of the rotary shaft 22 so as to pass through. By this movement, the intermediate partition plate 60 is positioned between the intermediate shaft portion 42 and the second crank portion 41b.
  • the position of the intermediate partition plate 60 with respect to the rotary shaft 22 is adjusted so that the bearing hole 52 of the intermediate partition plate 60 is positioned coaxially with the intermediate shaft portion 42 of the rotary shaft 22.
  • the intermediate partition plate 60 is moved in the axial direction of the rotary shaft 22, so that the intermediate shaft portion 42 of the rotary shaft 22 is slidably fitted in the bearing hole 52 of the intermediate partition plate 60.
  • the intermediate shaft portion 42 of the rotating shaft 22 is supported by the intermediate partition plate 60, and the intermediate partition plate 60 functions as a bearing.
  • the thickness of the intermediate shaft portion 42 along the axial direction of the rotating shaft 22, the thickness of the bearing portion 52 a of the intermediate partition plate 60, and the length of the bearing hole 52 are sufficiently ensured. be able to. Therefore, similarly to the first embodiment, it is possible to prevent the oil film of the lubricating oil separating the outer peripheral surface of the intermediate shaft portion 42 and the inner peripheral surface of the bearing hole 52 from being interrupted, and the intermediate shaft portion 42 of the rotary shaft 22. The lubricity can be improved.
  • the intermediate partition plate 60 is easily moved from the second journal portion 40b side of the rotary shaft 22 toward the intermediate shaft portion 42 by the amount of the thin intermediate partition plate 60. Can be moved.
  • [Third embodiment] 10 to 22 disclose a third embodiment.
  • the third embodiment discloses a triple rotary compressor 70 having three cylinder bodies.
  • the triple rotary compressor 70 is different from the first embodiment in the configuration of the compression mechanism unit 71 accommodated in the sealed container 10.
  • the other configuration of the triple rotary compressor 70 is basically the same as that of the twin rotary compressor 2 of the first embodiment. Therefore, in the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the compression mechanism 71 includes a first cylinder body 72, a second cylinder body 73, a third cylinder body 74, a first intermediate partition plate 75, a second intermediate partition plate 76, The spacer 77 and the rotating shaft 78 are provided as main elements.
  • the first to third cylinder bodies 72, 73, 74 are arranged at intervals in the axial direction of the sealed container 10.
  • the first intermediate partition plate 75 is interposed between the first cylinder body 72 and the second cylinder body 73.
  • the upper surface of the first intermediate partition plate 75 is overlaid on the lower surface of the first cylinder body 72 so as to cover the inner diameter portion of the first cylinder body 72 from below.
  • the lower surface of the first intermediate partition plate 75 is overlaid on the upper surface of the second cylinder body 73 so as to cover the inner diameter portion of the second cylinder body 73 from above.
  • a through hole 75 a is formed in the center of the first intermediate partition plate 75.
  • the through hole 75 a is located between the inner diameter portion of the first cylinder body 72 and the inner diameter portion of the second cylinder body 73.
  • the second intermediate partition plate 76 is interposed between the second cylinder body 73 and the third cylinder body 74.
  • the upper surface of the second intermediate partition plate 76 is overlaid on the lower surface of the second cylinder body 73 so as to cover the inner diameter portion of the second cylinder body 73 from below.
  • the lower surface of the second intermediate partition plate 76 faces the upper surface of the third cylinder body 74.
  • the spacer 77 is a flat disk-shaped element, and is interposed between the lower surface of the second intermediate partition plate 76 and the upper surface of the third cylinder body 74.
  • the upper surface of the spacer 77 is overlapped with the lower surface of the second intermediate partition plate 76.
  • the lower surface of the spacer 77 is overlaid on the upper surface of the third cylinder body 74 so as to cover the inner diameter portion of the third cylinder body 74 from above.
  • the first bearing 20 similar to that of the first embodiment is positioned on the first cylinder body 72.
  • the flange portion 23 of the first bearing 20 is overlaid on the upper surface of the first cylinder body 72 so as to cover the inner diameter portion of the first cylinder body 72 from above.
  • a region surrounded by the inner diameter portion of the first cylinder body 72, the first intermediate partition plate 75, and the flange portion 23 of the first bearing 20 defines a first cylinder chamber 80.
  • the area surrounded by the inner diameter portion of the second cylinder body 73, the first intermediate partition plate 75 and the second intermediate partition plate 76 defines a second cylinder chamber 81.
  • the flange portion 23 of the first bearing 20, the first cylinder body 72, the first intermediate partition plate 75, the second cylinder body 73, and the second intermediate partition plate 76 are arranged in the axial direction of the sealed container 10. They are stacked on one another and are integrally coupled via a plurality of second fastening bolts 27 (only one is shown).
  • the second bearing 21 similar to that of the first embodiment is located under the third cylinder body 74.
  • the flange portion 29 of the second bearing 21 is overlaid on the lower surface of the third cylinder body 74 so as to cover the inner diameter portion of the third cylinder body 74 from below.
  • a region surrounded by the inner diameter portion of the third cylinder body 74, the spacer 77 and the flange portion 29 of the second bearing 21 defines a third cylinder chamber 82.
  • the flange portion 29, the third cylinder body 74, the spacer 77, and the second intermediate partition plate 76 of the second bearing 21 are stacked on each other in the axial direction of the sealed container 10, and include a plurality of third fastening bolts. 31 (only one is shown).
  • the first to third cylinder bodies 72, 73, 74, the first intermediate partition plate 75, and the second intermediate partition are provided between the first bearing 20 and the second bearing 21. Plates 76 and spacers 77 are alternately arranged.
  • the first cylinder chamber 80 is connected to the accumulator 8 via the suction pipe 32a.
  • the second cylinder chamber 81 and the third cylinder chamber 82 are connected to the accumulator 8 via the second intermediate partition plate 76 and the suction pipe 32b.
  • FIG. 12 is a bottom view of the second intermediate partition plate 76 as viewed from the third cylinder body 74 side
  • FIG. 13 is a cross-sectional view taken along line F13-F13 of FIG.
  • a joint portion 83 is formed on a part of the outer peripheral portion of the second intermediate partition plate 76.
  • the joint portion 83 projects from the outer peripheral portion of the second intermediate partition plate 76 toward the peripheral wall 10 a of the sealed container 10.
  • a suction port 84 to which a suction pipe 32b extending from the accumulator 8 is connected, and two branch passages 85a and 85b branched in a bifurcated manner from the downstream end of the suction port 84.
  • the suction port 84 is opened at the protruding end of the joint portion 83 and extends from the protruding end toward the center of the second intermediate partition plate 76.
  • One branch passage 85 a is opened on the upper surface of the second intermediate partition plate 76 so as to communicate with the second cylinder chamber 81.
  • the other branch passage 85 b is opened on the lower surface of the second intermediate partition plate 76 so as to face the third cylinder chamber 82.
  • the second intermediate partition plate 76 incorporating the suction port 84 and the two branch passages 85a and 85b has an increased thickness along the axial direction of the sealed container 10, and the first to third cylinder bodies 72 and 73 are provided. , 74 thicker.
  • the second intermediate partition plate 76 has through holes 86 a and 86 b that are part of a pair of discharge passages connecting the first silencing chamber 35 and the second silencing chamber 37. have.
  • the through holes 86 a and 86 b are separated from each other in the circumferential direction of the second intermediate partition plate 76.
  • the rotation shaft 78 is coaxially positioned on the central axis O ⁇ b> 1 of the sealed container 10.
  • the rotating shaft 78 has a first journal portion 87 a, a second journal portion 87 b, first to third crank portions 88 a, 88 b, 88 c and an intermediate shaft portion 89.
  • the first journal portion 87a is positioned at an intermediate portion along the axial direction of the rotating shaft 78, and is rotatably supported by the first bearing 20.
  • One end of the rotating shaft 78 protruding from the first bearing 20 is connected to the rotor 14 of the electric motor 11.
  • the second journal portion 87 b is positioned at the other end portion along the axial direction of the rotation shaft 78 and is rotatably supported by the second bearing 21.
  • the first to third crank portions 88a, 88b, 88c are formed integrally with the rotary shaft 78 so as to be positioned between the first journal portion 87a and the second journal portion 87b.
  • the first to third crank portions 88a, 88b, 88c are disk-shaped elements each having a thickness dimension along the axial direction of the rotating shaft 78, and are separated from each other in the axial direction of the rotating shaft 78. It is eccentric with respect to the center line O2 of the rotating shaft 22.
  • the first crank portion 88a is located in the first cylinder chamber 80.
  • the second crank portion 88 b is located in the second cylinder chamber 81.
  • the third crank portion 88 c is located in the third cylinder chamber 82. Further, the portion of the rotating shaft 78 located between the first crank portion 88 a and the second crank portion 88 b passes through the through hole 75 a of the first intermediate partition plate 75.
  • the intermediate shaft portion 89 of the rotating shaft 78 is formed integrally with the rotating shaft 78 so as to be positioned between the adjacent second crank portion 88b and the third crank portion 88c.
  • the intermediate shaft portion 89 is a disk-shaped element provided coaxially with the rotation shaft 78 and has a thickness dimension along the axial direction of the rotation shaft 78.
  • the diameter d5 of the intermediate shaft portion 89 is equal to or greater than the diameter d6 of the third crank portion 88c.
  • the diameter d5 of the intermediate shaft portion 89 is set smaller than the diameter d7 of the first crank portion 88a and the diameter d8 of the second crank portion 88b. Yes. Furthermore, the diameter d9 of the second journal portion 87b is also set smaller than the diameter d10 of the first journal portion 87a.
  • a ring-shaped roller 91 is fitted to the outer peripheral surface of the first crank portion 88a.
  • the roller 91 follows the rotation shaft 78 and rotates eccentrically in the first cylinder chamber 80, and part of the outer peripheral surface of the roller 91 is slidably in line contact with the inner peripheral surface of the first cylinder chamber 80. It is supposed to be.
  • One end surface of the roller 91 is slidably in contact with the lower surface of the flange portion 23 of the first bearing 20.
  • the other end surface of the roller 91 is slidably in contact with the upper surface of the first intermediate partition plate 75. Thereby, the airtightness of the first cylinder chamber 80 is ensured.
  • a ring-shaped roller 92 is fitted to the outer peripheral surface of the second crank portion 88b.
  • the roller 92 follows the rotating shaft 78 and rotates eccentrically in the second cylinder chamber 81, and a part of the outer peripheral surface of the roller 92 is slidably in line contact with the inner peripheral surface of the second cylinder chamber 81. It is supposed to be.
  • One end surface of the roller 92 is slidably in contact with the lower surface of the first intermediate partition plate 75.
  • the other end surface of the roller 92 is slidably in contact with the upper surface of the second intermediate partition plate 76. Thereby, the airtightness of the second cylinder chamber 81 is ensured.
  • a ring-shaped roller 93 is fitted to the outer peripheral surface of the third crank portion 88c.
  • the roller 93 follows the rotation shaft 78 and rotates eccentrically in the third cylinder chamber 82, and a part of the outer peripheral surface of the roller 93 is slidably contacted with the inner peripheral surface of the third cylinder chamber 82. It is supposed to be.
  • the one end surface of the roller 93 is slidably in contact with the lower surface of the spacer 77.
  • the other end surface of the roller 93 is slidably in contact with the upper surface of the flange portion 29 of the second bearing 21. Thereby, the airtightness of the third cylinder chamber 82 is ensured.
  • the first to third cylinder chambers 80, 81, 82 are divided into a suction area and a compression area by vanes (not shown). Therefore, when the rollers 91, 92, 93 rotate eccentrically in the first to third cylinder chambers 80, 81, 82, the volumes of the suction areas and the compression areas of the cylinder chambers 80, 81, 82 change, and the suction pipes The gas-phase refrigerant sucked into the suction areas of the cylinder chambers 80, 81, 82 from 32a, 32b is compressed.
  • a first discharge valve 95 that is opened and closed by a roller 91 that rotates eccentrically is provided on the flange portion 23 of the first bearing 20.
  • the first discharge valve 95 is opened, the gas-phase refrigerant compressed in the first cylinder chamber 80 is guided to the first silencing chamber 35.
  • the second intermediate valve 75 is provided with a second discharge valve 96 that is opened and closed by a roller 92 that rotates eccentrically.
  • the second discharge valve 96 is opened, the gas-phase refrigerant compressed in the second cylinder chamber 81 enters the first silencing chamber 35 via a discharge passage (not shown) provided in the first cylinder body 72. Led.
  • a third discharge valve 97 that is opened and closed by a roller 93 that rotates eccentrically is provided on the flange portion 29 of the second bearing 21.
  • the third discharge valve 97 is opened, the gas-phase refrigerant compressed in the second cylinder chamber 82 is guided from the second silencer chamber 37 to the first silencer chamber 35 through the discharge passage.
  • the gas-phase refrigerant compressed in the first to third cylinder chambers 80, 81, 82 merges in the first silencing chamber 35 and is discharged into the sealed container 10 from the exhaust hole of the first discharge muffler 34. Is done.
  • the intermediate shaft portion 89 of the rotating shaft 78 is largely offset toward the second crank portion 88 b between the adjacent second crank portion 88 b and the third crank portion 88 c. It is provided at the position. For this reason, a first gap C1 is formed between the intermediate shaft portion 89 and the second crank portion 88b, along the axial direction of the rotary shaft 78, and between the intermediate shaft portion 89 and the third crank portion 88c.
  • a second gap C ⁇ b> 2 is formed along the axial direction of the rotation shaft 78.
  • the first gap C1 is much smaller than the second gap C2.
  • the second gap C2 defines a space SP equivalent to the thickness of the intermediate shaft portion 89 along the axial direction of the rotating shaft 78 between the intermediate shaft portion 89 and the third crank portion 88c.
  • the intermediate shaft portion 89 of the rotary shaft 78 is supported by the second intermediate partition plate 76.
  • the second intermediate partition plate 76 includes the suction port 84 and the branch passages 85a and 85b, and thus has a thickness that exceeds the intermediate shaft portion 89. For this reason, the lower end portion of the second intermediate partition plate 76 projects from the intermediate shaft portion 89 toward the third crank portion 88c.
  • a bearing portion 98a having a bearing hole 98 and a relief recess 100 are formed in the central portion of the second intermediate partition plate 76.
  • the bearing hole 98 has an inner diameter d3 into which the third crank portion 88c can be inserted, and an intermediate shaft portion 89 of the rotary shaft 78 is slidably fitted into the bearing hole 98.
  • the second intermediate partition plate 76 also functions as a bearing that supports the intermediate shaft portion 89.
  • the sliding part between the intermediate shaft part 89 and the bearing hole 98 is lubricated with the lubricating oil I stored in the sealed container 10.
  • the outer peripheral surface of the intermediate shaft portion 89 and the inner peripheral surface of the bearing hole 98 are separated by an oil film of lubricating oil, and much of the load acting on the intermediate shaft portion 89 when the rotary shaft 78 rotates. Is received by the oil film reaction force.
  • the relief recess 100 is a circular element continuous to the bearing portion 98 a and is opened on the lower surface of the second intermediate partition plate 76.
  • the escape recess 100 has an inner diameter d4 larger than the bearing hole 98 and is eccentric with respect to the bearing hole 98.
  • the thickness t1 of the bearing portion 98a from the bottom of the escape recess 100 to the upper surface of the second intermediate partition plate 76 is larger than the second gap C2 between the intermediate shaft portion 89 and the third crank portion 88c. It is set slightly smaller. In other words, the second gap C2 is larger than the thickness t1 of the bearing portion 98a of the second intermediate partition plate 76.
  • the opening end of the relief recess 100 and the opening end of the other branch passage 85b are positioned side by side on the lower surface of the second intermediate partition plate 76.
  • the escape recess 100 is eccentric with respect to the center line O2 of the rotation shaft 78 in a direction away from the opening end of the other branch passage 85b.
  • a circular communication hole 101 is formed at the center of the spacer 77.
  • the communication hole 101 is continuous with the relief recess 100 and has a size that allows the third crank portion 88c of the rotating shaft 78 to be inserted therethrough.
  • a portion of the rotating shaft 78 positioned between the intermediate shaft portion 89 and the third crank portion 88 c passes through the relief recess 100 of the second intermediate partition plate 76 and the communication hole 101 of the spacer 77.
  • the spacer 77 has a refrigerant inlet 102 at a position adjacent to the communication hole 101.
  • the refrigerant introduction port 102 is interposed between the other branch passage 85 b of the second intermediate partition plate 76 and the third cylinder chamber 82.
  • the escape recess 100 is eccentric in the direction away from the opening end of the other branch passage 85b with respect to the center line O2 of the rotation shaft 78, so that the spacer 77 is superimposed on the lower surface of the second intermediate partition plate 76. In this case, a space between the refrigerant inlet 102 and the communication hole 101 can be secured.
  • roller 93 rotates eccentrically in the third cylinder chamber 82, one end surface of the roller 93 is always slidably in contact with the lower surface of the spacer 77 between the refrigerant introduction port 102 and the communication hole 101. Maintain state.
  • the communication hole 101 and the refrigerant introduction port 102 are opened adjacent to each other on the lower surface of the spacer 77, the airtightness of the third cylinder chamber 82 can be maintained satisfactorily. The leakage of the phase refrigerant can be prevented.
  • FIGS. 15 to 22 schematically show the assembly process of the compression mechanism 71.
  • the first cylinder body 72 is connected in advance to the flange portion 23 of the first bearing 20 via two coupling bolts 105a (only one is shown). Yes.
  • the first cylinder body 72 and the first bearing 20 are aligned so that the center of the inner diameter portion of the first cylinder body 72 and the center of the first bearing 20 coincide.
  • the second cylinder body 73 is connected in advance to the second intermediate partition plate 76 via two coupling bolts 105b (only one is shown).
  • the second cylinder body 73 and the second intermediate partition plate 76 are arranged so that the center of the inner diameter portion of the second cylinder body 73 and the center of the bearing hole 98 of the second intermediate partition plate 76 coincide with each other. Is centered.
  • the third cylinder body 74 is connected in advance to the flange portion 29 of the second bearing 21 via two coupling bolts 105c (only one is shown). By this connection, the third cylinder body 74 and the second bearing 21 are aligned so that the center of the inner diameter portion of the third cylinder body 74 coincides with the center of the second bearing 21.
  • the second journal portion 87b of the rotating shaft 78 is inserted into the inner diameter portion of the second cylinder body 73, the bearing hole 98 and the relief recess 100 of the second intermediate partition plate 76, and rotated.
  • the third crank portion 88 c of the shaft 78 is guided to the inner diameter portion of the second cylinder body 73 through the relief recess 100 and the bearing hole 98 of the second intermediate partition plate 76.
  • the second intermediate partition plate 76 to which the second cylinder body 73 is connected is arranged so that the third crank portion 88 c enters the escape recess 100 of the second intermediate partition plate 76. It is moved in the axial direction of the rotary shaft 78.
  • the intermediate shaft portion 89 and the second crank portion 88b enter the inner diameter portion of the second cylinder body 73. Furthermore, since the relief recess 100 is eccentric with respect to the bearing hole 98, it extends along the radial direction of the third crank portion 88c between a part of the inner peripheral portion of the relief recess 100 and the third crank portion 88c. A gap g is secured.
  • the second intermediate partition plate 76 to which the second cylinder body 73 is connected is moved in the radial direction of the rotary shaft 78 so that the third crank portion 88c enters the gap g.
  • the bearing hole 98 of the second intermediate partition plate 76 and the intermediate shaft portion 89 of the rotating shaft 78 are positioned coaxially.
  • the second intermediate partition plate 76 connected to the second cylinder body 73 is moved in the axial direction of the rotating shaft 78, and the second intermediate partition plate 76 is inserted into the bearing hole 98.
  • the intermediate shaft part 89 of the rotating shaft 78 is slidably fitted. By this fitting, the intermediate shaft portion 89 of the rotating shaft 78 is supported by the second intermediate partition plate 76, and the second intermediate partition plate 76 functions as a bearing.
  • the roller 92 is guided from the direction of one end of the rotating shaft 78 to the inner diameter portion of the second cylinder body 73 through the outside of the first crank portion 88a, and the roller 92 is guided to the second cylinder. It fits to the outer peripheral surface of the second crank portion 88b located at the inner diameter portion of the body 73.
  • the first intermediate partition plate 75 is superposed on the upper surface of the second cylinder body 73 from the direction of one end portion of the rotating shaft 78 through the outside of the first crank portion 88a. Further, the roller 91 is guided from the direction of one end of the rotating shaft 78 through the outer side of the first journal portion 87a onto the first intermediate partition plate 75, and the roller 91 is fitted to the outer peripheral surface of the first crank portion 88a. Combine.
  • the first cylinder body 72 to which the first bearing 20 is connected is inserted from the direction of one end of the rotation shaft 78 to the outside of the rotation shaft 78, and the first cylinder body 72 is inserted. Is overlapped with the upper surface of the first intermediate partition plate 75. As a result, the roller 91 is positioned on the inner diameter portion of the first cylinder body 72 and the first journal portion 87 a of the rotating shaft 78 is fitted to the first bearing 20.
  • the second intermediate partition plate 76, the second cylinder body 73, the first intermediate partition plate 75, the first cylinder body 72, and the flange portion 23 of the first bearing 20 are connected to the first discharge muffler 34.
  • the bolts 27 are integrally coupled together.
  • the second journal portion 87 b of the rotating shaft 78 is inserted into the communication hole 101 of the spacer 77, and the spacer 77 is rotated so that the third crank portion 88 c passes through the communication hole 101. It is moved in the axial direction of the shaft 78. As a result, the spacer 77 overlaps the lower surface of the second intermediate partition plate 76 so that the communication hole 101 of the spacer 77 matches the relief recess 100 of the second intermediate partition plate 76.
  • the coolant introduction port 102 of the spacer 77 is the other branch of the second intermediate partition plate 76 as shown in FIG. 11. It matches the passage 85b.
  • the roller 93 is fitted to the outer peripheral surface of the third crank portion 88 c protruding from the spacer 77 through the outside of the second journal portion 87 b of the rotating shaft 78.
  • the third cylinder body 74 to which the second bearing 21 is connected is inserted into the second journal portion 87b of the rotating shaft 78, and the upper surface of the third cylinder body 74 is placed on the spacer. Overlay the bottom of 77. As a result, the roller 93 is positioned on the inner diameter portion of the third cylinder body 74 and the second journal portion 87 b of the rotating shaft 78 is fitted to the second bearing 21.
  • the rotating shaft 78 that rotates the rollers 91, 92, and 93 eccentrically has the intermediate shaft portion 89 positioned between the adjacent second crank portion 88b and the third crank portion 88c.
  • the intermediate shaft portion 89 is slidably fitted into the bearing hole 98 of the second intermediate partition plate 76.
  • the rotary shaft 78 can be supported even at an intermediate position between the first bearing 20 and the second bearing 21.
  • the rotary shaft 78 and the first bearing 20 and the first bearing 20 due to the pressure of the gas-phase refrigerant compressed in the first to third cylinder chambers 80, 81, 82 and the inertial force of the rotary shaft 78 rotating at high speed.
  • the second intermediate partition plate 76 can suppress the bending of the rotating shaft 78.
  • the intermediate shaft portion 89 of the rotating shaft 78 is largely offset toward the second crank portion 88b with respect to the third crank portion 88c, and the intermediate shaft portion 89 and the second crank portion are The first gap C1 between the intermediate shaft portion 89 and the third crank portion 88c is much smaller than the first gap C1 between the intermediate shaft portion 89 and the third crank portion 88c.
  • the second gap C2 is formed to be larger than the thickness of the bearing portion 98a of the second intermediate partition plate 76, the second gap C2 is formed in the axial direction of the rotating shaft 78 without impairing the assembling property of the compression mechanism portion 71. It is possible to sufficiently ensure the thickness of the intermediate shaft portion 89 along and the length of the bearing hole 98 of the second intermediate partition plate 76.
  • the second intermediate partition plate 76 of the present embodiment incorporates the suction port 84 and the branch passages 85a and 85b, the thickness is larger than that of the intermediate shaft portion 98 of the rotating shaft 78, and its lower end. The portion protrudes into a space SP between the intermediate shaft portion 98 and the third crank portion 88c.
  • a relief recess 100 is formed on the lower surface of the second intermediate partition plate 76, and the relief recess 100 has an inner diameter d 4 larger than the bearing hole 98 and is eccentric with respect to the bearing hole 98.
  • the second intermediate partition plate 76 is moved in the radial direction of the rotary shaft 78 so that the third crank portion 88c enters the gap g, whereby the bearing hole 98 and the rotary shaft of the second intermediate partition plate 76 are moved.
  • the 78 intermediate shaft portions 89 can be coaxially positioned.
  • an intermediate shaft portion 89 is provided between the second crank portion 88b and the third crank portion 88c integrated with the rotary shaft 78, and the intermediate shaft portion 89 is used as a bearing for the second intermediate partition plate 76.
  • the hole 98 can be rotatably supported.
  • the rotating shaft 78 having the first to third crank portions 88a, 88b, 88c and the intermediate shaft portion 89 can be formed as an integral structure, and the number of parts can be reduced in comparison with the assembly-type rotating shaft. At the same time, the number of assembling steps for the compression mechanism 71 can be reduced.
  • FIG. 23 discloses a fourth embodiment.
  • the fourth embodiment is different from the third embodiment in the configuration of a part of the compression mechanism unit 71.
  • the other basic configuration of the triple rotary compressor 70 is the same as that of the third embodiment.
  • the flow path for distributing the gas-phase refrigerant from the second intermediate partition plate 76 to the second cylinder chamber 81 and the third cylinder chamber 82 is eliminated.
  • the second intermediate partition plate 76 is thin and compact.
  • the second intermediate partition plate 76 has a thickness t4 equivalent to that of the intermediate shaft portion 89 so as not to protrude into the space SP between the intermediate shaft portion 89 and the third crank portion 88c. Is formed.
  • the thickness t5 of the spacer 77 interposed between the second intermediate partition plate 76 and the third cylinder body 74 increases conversely. Therefore, the length of the communication hole 101 of the spacer 77 along the axial direction of the rotating shaft 78 is increased, and the communication hole 101 is directly communicated with the bearing hole 98 of the second intermediate partition plate 76. .
  • the accumulator 8 is removed in accordance with the elimination of the flow path for distributing the gas-phase refrigerant from the second intermediate partition plate 76 to the second cylinder chamber 81 and the third cylinder chamber 82.
  • the suction pipe 32b extending from the pipe has branch pipes 106a and 106b that are bifurcated.
  • the downstream end of one branch pipe 106 a is directly connected to the second cylinder chamber 81 of the second cylinder body 73.
  • the downstream end of the other branch conduit 106 b is directly connected to the third cylinder chamber 82 of the third cylinder body 74.
  • the thickness of the intermediate shaft portion 89 along the axial direction of the rotating shaft 78 and the length of the bearing hole 98 of the second intermediate partition plate 76 can be sufficiently secured. Therefore, as in the third embodiment, it is possible to prevent the oil film of the lubricating oil separating between the outer peripheral surface of the intermediate shaft portion 89 and the inner peripheral surface of the bearing hole 98 from being interrupted, and the intermediate shaft portion 89 of the rotating shaft 78. The lubricity can be improved.
  • the second intermediate partition plate 76 is moved from the second journal portion 87b side of the rotary shaft 78 to the intermediate shaft portion by the amount that the second intermediate partition plate 76 is thinned. It can be easily moved toward 89. Therefore, workability at the time of assembling the compression mechanism portion 71 is improved.
  • twin rotary compressor having two rollers and a triple rotary compressor having three rollers have been described, but the present invention can be similarly applied to, for example, a rotary compressor having four or more cylinder bodies.
  • the rotary compressor is not limited to a vertical rotary compressor in which the rotary shaft is placed vertically, but may be a horizontal rotary compressor in which the rotary shaft is placed horizontally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This rotary compressor is provided with a compression mechanism section which is lubricated by lubricating oil. The compression mechanism section includes: a first bearing and a second bearing, which are arranged at a distance from each other in the axial direction of a hermetic container; a plurality of cylinder bodies disposed between the first bearing and the second bearing and defining a plurality of cylinder chambers; an intermediate partition plate disposed between adjacent cylinder bodies and having a bearing section; and a rotating shaft. The rotating shaft has: a plurality of crank sections positioned between the first bearing and the second bearing and eccentrically rotating within the cylinder chambers; and an intermediate shaft section supported between adjacent crank sections by the bearing section of the intermediate partition plate. The intermediate shaft section is provided between the adjacent crank sections at a position offset toward one crank section, and a gap greater than the thickness of the bearing section of the intermediate partition plate is provided between the other crank section and the intermediate shaft section.

Description

ロータリコンプレッサおよび冷凍サイクル装置Rotary compressor and refrigeration cycle apparatus
 本発明の実施形態は、多気筒形のロータリコンプレッサおよび当該ロータリコンプレッサを備えた冷凍サイクル装置に関する。 Embodiments of the present invention relate to a multi-cylinder rotary compressor and a refrigeration cycle apparatus including the rotary compressor.
 例えば空気調和機に用いられる多気筒形のロータリコンプレッサは、密閉容器の内部で冷媒を圧縮する圧縮機構部を備えている。 For example, a multi-cylinder rotary compressor used in an air conditioner is provided with a compression mechanism that compresses a refrigerant inside an airtight container.
 圧縮機構部は、中間仕切り板で仕切られた複数のシリンダ室と、シリンダ室に収まる複数のクランク部を有する回転軸と、を備え、クランク部の外周面に取り付けられたローラがシリンダ室内で偏心回転する。これにより、シリンダ室の吸入領域および圧縮領域の容積が変化し、吸入領域に吸い込まれた気相冷媒が圧縮される。 The compression mechanism includes a plurality of cylinder chambers partitioned by an intermediate partition plate, and a rotating shaft having a plurality of crank portions that can be accommodated in the cylinder chamber, and a roller attached to the outer peripheral surface of the crank portion is eccentric in the cylinder chamber. Rotate. As a result, the volumes of the suction region and the compression region of the cylinder chamber change, and the gas-phase refrigerant sucked into the suction region is compressed.
 ところで、従来、回転軸の隣り合う二つのクランク部の間に中間軸部を設け、当該中間軸部を中間仕切り板で回転自在に支持するようにしたロータリコンプレッサが知られている。この従来のロータリコンプレッサによれば、回転軸が高速で回転する高速運転時においても、回転軸の軸振れを抑制することができる。 By the way, there is conventionally known a rotary compressor in which an intermediate shaft portion is provided between two adjacent crank portions of a rotation shaft and the intermediate shaft portion is rotatably supported by an intermediate partition plate. According to this conventional rotary compressor, the shaft runout of the rotating shaft can be suppressed even during high speed operation in which the rotating shaft rotates at high speed.
特開平5-312172号公報JP-A-5-312172
 回転軸が中間軸部を有するロータリコンプレッサでは、中間軸部と中間仕切り板との間の摩擦損失を低減するため、中間軸部と中間仕切り板との間の摺動部に潤滑油が供給されるようになっている。さらに、中間軸部と上側に位置するクランク部との間に潤滑油を一時的に蓄える空間を確保すべく、中間軸部が隣り合う二つのクランク部の間の丁度中間に位置されている。 In a rotary compressor whose rotating shaft has an intermediate shaft portion, lubricating oil is supplied to the sliding portion between the intermediate shaft portion and the intermediate partition plate in order to reduce friction loss between the intermediate shaft portion and the intermediate partition plate. It has become so. Furthermore, in order to secure a space for temporarily storing lubricating oil between the intermediate shaft portion and the crank portion located on the upper side, the intermediate shaft portion is positioned just in the middle between two adjacent crank portions.
 しかしながら、この構成によると、中間軸部が偏平な円盤状となり、回転軸の軸方向に沿う中間軸部の厚み寸法を十分に確保することが困難となる。このため、中間軸部と中間仕切り板との間から潤滑油が流出し易くなり、中間軸部と中間仕切り板との間を隔てる潤滑油膜が途切れてしまうことがあり得る。 However, according to this configuration, the intermediate shaft portion has a flat disk shape, and it is difficult to ensure a sufficient thickness dimension of the intermediate shaft portion along the axial direction of the rotation shaft. For this reason, the lubricating oil easily flows out between the intermediate shaft portion and the intermediate partition plate, and the lubricating oil film separating the intermediate shaft portion and the intermediate partition plate may be interrupted.
 したがって、中間軸部と中間仕切り板との間に潤滑不良の要因となる固体接触摩擦が発生し、ロータリコンプレッサの性能あるいは信頼性が低下するのを否めない。 Therefore, solid contact friction that causes poor lubrication occurs between the intermediate shaft portion and the intermediate partition plate, and the performance or reliability of the rotary compressor cannot be denied.
 本発明の目的は、回転軸の中間軸部の潤滑性を改善することができ、圧縮機構部の摩擦損失の低減に寄与するロータリコンプレッサを得ることにある。 An object of the present invention is to obtain a rotary compressor that can improve the lubricity of an intermediate shaft portion of a rotating shaft and contribute to a reduction in friction loss of a compression mechanism portion.
 本実施形態によると、ロータリコンプレッサは、筒状の密閉容器と、前記密閉容器の内部で冷媒を圧縮するとともに、前記密閉容器に蓄えられた潤滑油で潤滑される圧縮機構部と、前記密閉容器に収容され、前記圧縮機構部を駆動する電動機と、を備えている。 
 前記圧縮機構部は、前記密閉容器の軸方向に間隔を存して配置された第1の軸受および第2の軸受と、前記第1の軸受と前記第2の軸受との間に配置され、前記密閉容器の軸方向に間隔を存して並ぶとともに、夫々がシリンダ室を規定する複数のシリンダボディと、隣り合う前記シリンダボディの間に介在されるとともに、軸受部を有する中間仕切り板と、前記第1の軸受に支持された第1のジャーナル部、前記第2の軸受に支持された第2のジャーナル部、前記第1のジャーナル部と前記第2のジャーナル部との間に位置するとともに前記シリンダ室内で偏心回転する複数のクランク部および隣り合う前記クランク部の間で前記中間仕切り板の前記軸受部に摺動可能に支持された中間軸部を有する回転軸と、を含む。 
 前記回転軸の前記中間軸部は、隣り合う前記クランク部の間で一方の前記クランク部の側に片寄った位置に設けられ、他方の前記クランク部と前記中間軸部との間に前記中間仕切り板の前記軸受部の厚さより大きい隙間が設けられている。
According to this embodiment, the rotary compressor includes a cylindrical airtight container, a compression mechanism that compresses the refrigerant inside the airtight container and is lubricated with the lubricating oil stored in the airtight container, and the airtight container. And an electric motor that drives the compression mechanism.
The compression mechanism portion is disposed between the first bearing and the second bearing that are spaced apart in the axial direction of the sealed container, and between the first bearing and the second bearing, The airtight containers are arranged at intervals in the axial direction, and each cylinder body defines a cylinder chamber, and the intermediate partition plate interposed between the adjacent cylinder bodies and having a bearing portion, The first journal part supported by the first bearing, the second journal part supported by the second bearing, and positioned between the first journal part and the second journal part A plurality of crank portions rotating eccentrically in the cylinder chamber, and a rotating shaft having an intermediate shaft portion slidably supported by the bearing portion of the intermediate partition plate between the adjacent crank portions.
The intermediate shaft portion of the rotating shaft is provided at a position offset toward one of the crank portions between the adjacent crank portions, and the intermediate partition between the other crank portion and the intermediate shaft portion. A gap larger than the thickness of the bearing portion of the plate is provided.
図1は、第1の実施形態に係る冷凍サイクル装置の構成を概略的に示す回路図である。FIG. 1 is a circuit diagram schematically showing the configuration of the refrigeration cycle apparatus according to the first embodiment. 図2は、第1の実施形態に係るツインロータリコンプレッサの断面図である。FIG. 2 is a cross-sectional view of the twin rotary compressor according to the first embodiment. 図3は、第1の実施形態において、ツインロータリコンプレッサの圧縮機構部の断面図である。FIG. 3 is a cross-sectional view of the compression mechanism portion of the twin rotary compressor in the first embodiment. 図4は、第1の実施形態において、第1のシリンダ室内で偏心回転するローラとベーンとの位置関係を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing the positional relationship between a roller and a vane that rotate eccentrically in the first cylinder chamber in the first embodiment. 図5は、第1の実施形態において、回転軸の第2のジャーナル部を中間仕切り板の軸受孔に挿入した状態を示す断面図である。FIG. 5 is a cross-sectional view showing a state in which the second journal portion of the rotating shaft is inserted into the bearing hole of the intermediate partition plate in the first embodiment. 図6は、第1の実施形態において、中間仕切り板を回転軸の第2のクランク部と中間軸部との間に移動させた状態を示す断面図である。FIG. 6 is a cross-sectional view illustrating a state in which the intermediate partition plate is moved between the second crank portion and the intermediate shaft portion of the rotation shaft in the first embodiment. 図7は、第1の実施形態において、中間仕切り板を回転軸の第2のクランク部と中間軸部との間で回転軸の径方向にずらした状態を示す断面図である。FIG. 7 is a cross-sectional view showing a state in which the intermediate partition plate is shifted in the radial direction of the rotation shaft between the second crank portion and the intermediate shaft portion of the rotation shaft in the first embodiment. 図8は、第1の実施形態において、回転軸の中間軸部を中間仕切り板の軸受孔に嵌合させた状態を示す断面図である。FIG. 8 is a cross-sectional view showing a state in which the intermediate shaft portion of the rotating shaft is fitted in the bearing hole of the intermediate partition plate in the first embodiment. 図9は、第2の実施形態に係るツインロータリコンプレッサの圧縮機構部の断面図である。FIG. 9 is a cross-sectional view of the compression mechanism portion of the twin rotary compressor according to the second embodiment. 図10は、第3の実施形態に係るトリプルロータリコンプレッサの断面図である。FIG. 10 is a cross-sectional view of a triple rotary compressor according to the third embodiment. 図11は、第3の実施形態に係るトリプルロータリコンプレッサの圧縮機構部の断面図である。FIG. 11 is a cross-sectional view of a compression mechanism portion of a triple rotary compressor according to the third embodiment. 図12は、第3の実施形態で用いる第2の中間仕切り板の下面図である。FIG. 12 is a bottom view of the second intermediate partition plate used in the third embodiment. 図13は、図12のF13-F13線に沿う断面図である。13 is a cross-sectional view taken along line F13-F13 in FIG. 図14は、第3の実施形態で用いる圧縮機構部の概略を分解して示す断面図である。FIG. 14 is an exploded cross-sectional view showing an outline of the compression mechanism used in the third embodiment. 図15は、第3の実施形態において、回転軸の第2のジャーナル部を第2のシリンダボディが連結された第2の中間仕切り板の軸受孔に挿入した状態を示す断面図である。FIG. 15 is a cross-sectional view showing a state in which the second journal portion of the rotating shaft is inserted into the bearing hole of the second intermediate partition plate connected to the second cylinder body in the third embodiment. 図16は、第3の実施形態において、第2の中間仕切り板の逃げ凹部に回転軸の第3のクランク部が入り込んだ状態を示す断面図である。FIG. 16 is a cross-sectional view showing a state in which the third crank portion of the rotating shaft enters the escape recess of the second intermediate partition plate in the third embodiment. 図17は、第3の実施形態において、第2の中間仕切り板の軸受孔と回転軸の中間軸部とを同軸状に位置合わせした状態を示す断面図である。FIG. 17 is a cross-sectional view showing a state in which the bearing hole of the second intermediate partition plate and the intermediate shaft portion of the rotary shaft are coaxially aligned in the third embodiment. 図18は、第3の実施形態において、ローラを回転軸の第1のジャーナル部の上に挿入した状態を示す断面図である。FIG. 18 is a cross-sectional view illustrating a state in which the roller is inserted on the first journal portion of the rotation shaft in the third embodiment. 図19は、第3の実施形態において、回転軸の上に装着された第2のシリンダボディの上に第1の中間仕切り板を重ねた状態を示す断面図である。FIG. 19 is a cross-sectional view showing a state in which the first intermediate partition plate is overlaid on the second cylinder body mounted on the rotating shaft in the third embodiment. 図20は、第3の実施形態において、第1の軸受が連結された第1のシリンダボディを第1の中間仕切り板の上に重ねるとともに、スペーサを回転軸の第2のジャーナル部の上に挿入した状態を示す断面図である。FIG. 20 shows a third embodiment in which the first cylinder body to which the first bearing is connected is overlaid on the first intermediate partition plate, and the spacer is placed on the second journal portion of the rotating shaft. It is sectional drawing which shows the state inserted. 図21は、第3の実施形態において、回転軸の第3のクランク部の外周面にローラを嵌合させた状態を示す断面図である。FIG. 21 is a cross-sectional view illustrating a state in which a roller is fitted to the outer peripheral surface of the third crank portion of the rotation shaft in the third embodiment. 図22は、第3の実施形態において、圧縮機構部が組み立てられた状態を示す断面図である。FIG. 22 is a cross-sectional view showing a state where the compression mechanism is assembled in the third embodiment. 図23は、第4の実施形態に係るトリプルロータリコンプレッサの圧縮機構部の断面図である。FIG. 23 is a cross-sectional view of a compression mechanism portion of a triple rotary compressor according to the fourth embodiment.
[第1の実施形態]
 以下、第1の実施形態について、図1ないし図8を参照して説明する。
[First embodiment]
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 8.
 図1は、例えば冷凍サイクル装置の一例である空気調和機1の冷凍サイクル回路図である。空気調和機1は、ロータリコンプレッサ2、四方弁3、室外熱交換器4、膨張装置5および室内熱交換器6を主要な要素として備えている。空気調和機1を構成する前記複数の要素は、冷媒が循環する循環回路7を介して接続されている。 FIG. 1 is a refrigeration cycle circuit diagram of an air conditioner 1 which is an example of a refrigeration cycle apparatus, for example. The air conditioner 1 includes a rotary compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an expansion device 5, and an indoor heat exchanger 6 as main elements. The plurality of elements constituting the air conditioner 1 are connected via a circulation circuit 7 in which the refrigerant circulates.
 具体的に述べると、図1に示すように、ロータリコンプレッサ2の吐出側は、四方弁3の第1ポート3aに接続されている。四方弁3の第2ポート3bは、室外熱交換器4に接続されている。室外熱交換器4は、膨張装置5を介して室内熱交換器6に接続されている。室内熱交換器6は、四方弁3の第3ポート3cに接続されている。四方弁3の第4ポート3dは、アキュームレータ8を介してロータリコンプレッサ2の吸入側に接続されている。 Specifically, as shown in FIG. 1, the discharge side of the rotary compressor 2 is connected to the first port 3 a of the four-way valve 3. The second port 3 b of the four-way valve 3 is connected to the outdoor heat exchanger 4. The outdoor heat exchanger 4 is connected to the indoor heat exchanger 6 via an expansion device 5. The indoor heat exchanger 6 is connected to the third port 3 c of the four-way valve 3. The fourth port 3 d of the four-way valve 3 is connected to the suction side of the rotary compressor 2 via the accumulator 8.
 空気調和機1が冷房モードで運転を行う場合、四方弁3は、第1ポート3aが第2ポート3bに連通し、第3ポート3cが第4ポート3dに連通するように切り替わる。冷房モードで空気調和機1の運転が開始されると、ロータリコンプレッサ2で圧縮された高温・高圧の気相冷媒が四方弁3を経由して放熱器(凝縮器)として機能する室外熱交換器4に導かれる。 When the air conditioner 1 operates in the cooling mode, the four-way valve 3 is switched so that the first port 3a communicates with the second port 3b and the third port 3c communicates with the fourth port 3d. When the operation of the air conditioner 1 is started in the cooling mode, the outdoor heat exchanger in which the high-temperature and high-pressure gas-phase refrigerant compressed by the rotary compressor 2 functions as a radiator (condenser) via the four-way valve 3 Led to 4.
 室外熱交換器4に導かれた気相冷媒は、空気との熱交換により凝縮し、高圧の液相冷媒に変化する。高圧の液相冷媒は、膨張装置5を通過する過程で減圧されて低圧の気液二相冷媒に変化する。気液二相冷媒は、吸熱器(蒸発器)として機能する室内熱交換器6に導かれるとともに、当該室内熱交換器6を通過する過程で空気と熱交換する。 The gas-phase refrigerant led to the outdoor heat exchanger 4 is condensed by heat exchange with the air and changed into a high-pressure liquid-phase refrigerant. The high-pressure liquid-phase refrigerant is reduced in pressure in the process of passing through the expansion device 5 and changed to a low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant is guided to the indoor heat exchanger 6 that functions as a heat absorber (evaporator) and exchanges heat with air in the process of passing through the indoor heat exchanger 6.
 この結果、気液二相冷媒は、空気から熱を奪って蒸発し、低温・低圧の気相冷媒に変化する。室内熱交換器6を通過する空気は、液相冷媒の蒸発潜熱により冷やされ、冷風となって空調(冷房)すべき場所に送られる。 As a result, the gas-liquid two-phase refrigerant takes heat from the air, evaporates, and changes to a low-temperature / low-pressure gas-phase refrigerant. The air passing through the indoor heat exchanger 6 is cooled by the latent heat of vaporization of the liquid phase refrigerant, and is sent to a place to be air-conditioned (cooled) as cold air.
 室内熱交換器6を通過した低温・低圧の気相冷媒は、四方弁3を経由してアキュームレータ8に導かれる。冷媒中に蒸発しきれなかった液相冷媒が混入している場合は、アキュームレータ8で液相冷媒と気相冷媒とに分離される。液相冷媒が分離された低温・低圧の気相冷媒は、ロータリコンプレッサ2に吸い込まれるとともに、当該ロータリコンプレッサ2で再び高温・高圧の気相冷媒に圧縮されて循環回路7に吐出される。 The low-temperature and low-pressure gas-phase refrigerant that has passed through the indoor heat exchanger 6 is guided to the accumulator 8 via the four-way valve 3. If liquid refrigerant that could not evaporate is mixed in the refrigerant, the accumulator 8 separates it into liquid phase refrigerant and gas phase refrigerant. The low-temperature and low-pressure gas-phase refrigerant from which the liquid-phase refrigerant has been separated is sucked into the rotary compressor 2 and is compressed again into a high-temperature and high-pressure gas-phase refrigerant by the rotary compressor 2 and discharged to the circulation circuit 7.
 一方、空気調和機1が暖房モードで運転を行う場合、四方弁3は、第1ポート3aが第3ポート3cに連通し、第2ポート3bが第4ポート3dに連通するように切り替わる。そのため、ロータリコンプレッサ2から吐出された高温・高圧の気相冷媒は、四方弁3を経由して室内熱交換器6に導かれ、当該室内熱交換器6を通過する空気と熱交換される。すなわち、室内熱交換器6が凝縮器として機能する。 On the other hand, when the air conditioner 1 operates in the heating mode, the four-way valve 3 switches so that the first port 3a communicates with the third port 3c and the second port 3b communicates with the fourth port 3d. Therefore, the high-temperature and high-pressure gas-phase refrigerant discharged from the rotary compressor 2 is guided to the indoor heat exchanger 6 through the four-way valve 3 and exchanges heat with air passing through the indoor heat exchanger 6. That is, the indoor heat exchanger 6 functions as a condenser.
 この結果、室内熱交換器6を通過する気相冷媒は、空気との熱交換により凝縮し、高圧の液相冷媒に変化する。室内熱交換器6を通過する空気は、気相冷媒との熱交換により過熱され、温風となって空調(暖房)すべき場所に送られる。 As a result, the gas-phase refrigerant passing through the indoor heat exchanger 6 is condensed by heat exchange with the air and changed into a high-pressure liquid-phase refrigerant. The air passing through the indoor heat exchanger 6 is superheated by heat exchange with the gas-phase refrigerant, and is sent to a place to be air-conditioned (heated) as warm air.
 室内熱交換器6を通過した高温の液相冷媒は、膨張装置5に導かれるとともに、当該膨張装置5を通過する過程で減圧されて低圧の気液二相冷媒に変化する。気液二相冷媒は、蒸発器として機能する室外熱交換器4に導かれるとともに、ここで空気と熱交換することにより蒸発し、低温・低圧の気相冷媒に変化する。室外熱交換器4を通過した低温・低圧の気相冷媒は、四方弁3およびアキュームレータ8を経由してロータリコンプレッサ2に吸い込まれる。 The high-temperature liquid-phase refrigerant that has passed through the indoor heat exchanger 6 is guided to the expansion device 5 and is reduced in pressure in the process of passing through the expansion device 5 to be changed into a low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant is led to the outdoor heat exchanger 4 functioning as an evaporator, and evaporates by exchanging heat with air here, and changes to a low-temperature / low-pressure gas-phase refrigerant. The low-temperature and low-pressure gas-phase refrigerant that has passed through the outdoor heat exchanger 4 is sucked into the rotary compressor 2 via the four-way valve 3 and the accumulator 8.
 次に、空気調和機1に用いられるロータリコンプレッサ2の具体的な構成について、図2ないし図8を参照して説明する。図2は、縦形のツインロータリコンプレッサ2を開示している。図2に示すように、ツインロータリコンプレッサ2は、密閉容器10、電動機11および圧縮機構部12を主要な要素として備えている。 Next, a specific configuration of the rotary compressor 2 used in the air conditioner 1 will be described with reference to FIGS. FIG. 2 discloses a vertical twin rotary compressor 2. As shown in FIG. 2, the twin rotary compressor 2 includes a sealed container 10, an electric motor 11, and a compression mechanism unit 12 as main elements.
 密閉容器10は、円筒状の周壁10aを有するとともに、鉛直方向に沿うように起立されている。吐出管10bが密閉容器10の上端部に設けられている。吐出管10bは、循環回路7を介して四方弁3の第1ポート3aに接続されている。さらに、密閉容器10の下部には、圧縮機構部12を潤滑する潤滑油Iが蓄えられている。 The sealed container 10 has a cylindrical peripheral wall 10a and is erected along the vertical direction. A discharge pipe 10 b is provided at the upper end of the sealed container 10. The discharge pipe 10 b is connected to the first port 3 a of the four-way valve 3 through the circulation circuit 7. Furthermore, a lubricating oil I that lubricates the compression mechanism 12 is stored in the lower portion of the sealed container 10.
 電動機11は、潤滑油Iの油面Sよりも上方に位置するように密閉容器10の軸方向に沿う中間部に収容されている。電動機11は、いわゆるインナーロータ形のモータであって、固定子13および回転子14を備えている。固定子13は、密閉容器10の周壁10aの内面に固定されている。回転子14は、密閉容器10の中心軸線O1の上に同軸状に位置されているとともに、固定子13で取り囲まれている。 The electric motor 11 is accommodated in an intermediate portion along the axial direction of the sealed container 10 so as to be positioned above the oil level S of the lubricating oil I. The electric motor 11 is a so-called inner rotor type motor, and includes a stator 13 and a rotor 14. The stator 13 is fixed to the inner surface of the peripheral wall 10 a of the sealed container 10. The rotor 14 is coaxially positioned on the central axis O <b> 1 of the sealed container 10 and is surrounded by the stator 13.
 圧縮機構部12は、潤滑油Iに浸かるように密閉容器10の下部に収容されている。図2および図3に示すように、圧縮機構部12は、第1のシリンダボディ16、第2のシリンダボディ17、中間仕切り板18、スペーサ19、第1の軸受20、第2の軸受21および回転軸22を主要な要素として備えている。 The compression mechanism 12 is accommodated in the lower part of the sealed container 10 so as to be immersed in the lubricating oil I. As shown in FIGS. 2 and 3, the compression mechanism unit 12 includes a first cylinder body 16, a second cylinder body 17, an intermediate partition plate 18, a spacer 19, a first bearing 20, a second bearing 21, and The rotating shaft 22 is provided as a main element.
 第1のシリンダボディ16および第2のシリンダボディ17は、密閉容器10の軸方向に互いに離れている。中間仕切り板18は、第1のシリンダボディ16と第2のシリンダボディ17との間に介在されている。中間仕切り板18の上面は、第1のシリンダボディ16の内径部を下方から覆うように第1のシリンダボディ16の下面に重ねられている。中間仕切り板18の下面は、第2のシリンダボディ17の上面と向かい合っている。 The first cylinder body 16 and the second cylinder body 17 are separated from each other in the axial direction of the sealed container 10. The intermediate partition plate 18 is interposed between the first cylinder body 16 and the second cylinder body 17. The upper surface of the intermediate partition plate 18 is overlaid on the lower surface of the first cylinder body 16 so as to cover the inner diameter portion of the first cylinder body 16 from below. The lower surface of the intermediate partition plate 18 faces the upper surface of the second cylinder body 17.
 スペーサ19は、偏平な円盤状の要素であって、中間仕切り板18の下面と第2のシリンダボディ17の上面との間に介在されている。スペーサ19の下面は、第2のシリンダボディ17の内径部を上方から覆うように第2のシリンダボディ17の上面に重ねられている。 The spacer 19 is a flat disk-shaped element, and is interposed between the lower surface of the intermediate partition plate 18 and the upper surface of the second cylinder body 17. The lower surface of the spacer 19 is overlaid on the upper surface of the second cylinder body 17 so as to cover the inner diameter portion of the second cylinder body 17 from above.
 第1の軸受20は、第1のシリンダボディ16の上に位置されている。第1の軸受20は、密閉容器10の周壁10aの内面に向けて張り出すフランジ部23を有している。フランジ部23は、第1のシリンダボディ16の内径部を上方から覆うように第1のシリンダボディ16の上面に重ねられている。第1のシリンダボディ16の内径部、中間仕切り板18および第1の軸受20のフランジ部23で囲まれた領域は、第1のシリンダ室24を規定している。 The first bearing 20 is positioned on the first cylinder body 16. The first bearing 20 has a flange portion 23 that projects toward the inner surface of the peripheral wall 10 a of the sealed container 10. The flange portion 23 is superimposed on the upper surface of the first cylinder body 16 so as to cover the inner diameter portion of the first cylinder body 16 from above. A region surrounded by the inner diameter portion of the first cylinder body 16, the intermediate partition plate 18 and the flange portion 23 of the first bearing 20 defines a first cylinder chamber 24.
 本実施形態によると、第1の軸受20のフランジ部23は、リング状のサポートフレーム25で取り囲まれている。サポートフレーム25は、密閉容器10の周壁10aの内面の所定の位置に例えば溶接等の手段で固定されている。 According to the present embodiment, the flange portion 23 of the first bearing 20 is surrounded by the ring-shaped support frame 25. The support frame 25 is fixed to a predetermined position on the inner surface of the peripheral wall 10a of the sealed container 10 by means such as welding.
 サポートフレーム25の下面は、第1のシリンダボディ16の外周部の上面に重ねられている。第1のシリンダボディ16の外周部は、複数の第1の締結ボルト26(一つのみを図示)を介してサポートフレーム25に結合されている。 The lower surface of the support frame 25 is overlaid on the upper surface of the outer peripheral portion of the first cylinder body 16. The outer peripheral portion of the first cylinder body 16 is coupled to the support frame 25 via a plurality of first fastening bolts 26 (only one is shown).
 さらに、第1の軸受20のフランジ部23、第1のシリンダボディ16および中間仕切り板18は、密閉容器10の軸方向に互いに積層されているとともに、複数の第2の締結ボルト27(一つのみを図示)を介して一体的に連結されている。第1の締結ボルト26および第2の締結ボルト27は、第1のシリンダ室24の周方向に間隔を存して配置されている。 Further, the flange portion 23 of the first bearing 20, the first cylinder body 16, and the intermediate partition plate 18 are stacked on each other in the axial direction of the sealed container 10, and a plurality of second fastening bolts 27 (one Only connected to each other). The first fastening bolts 26 and the second fastening bolts 27 are arranged at intervals in the circumferential direction of the first cylinder chamber 24.
 第2の軸受21は、第2のシリンダボディ17の下に位置されている。第2の軸受21は、密閉容器10の周壁10aの内面に向けて張り出すフランジ部29を有している。フランジ部29は、第2のシリンダボディ17の内径部を下方から覆うように第2のシリンダボディ17の下面に重ねられている。第2のシリンダボディ17の内径部、スペーサ19および第2の軸受21のフランジ部29で囲まれた領域は、第2のシリンダ室30を規定している。 The second bearing 21 is located below the second cylinder body 17. The second bearing 21 has a flange portion 29 that protrudes toward the inner surface of the peripheral wall 10 a of the sealed container 10. The flange portion 29 is superimposed on the lower surface of the second cylinder body 17 so as to cover the inner diameter portion of the second cylinder body 17 from below. A region surrounded by the inner diameter portion of the second cylinder body 17, the spacer 19, and the flange portion 29 of the second bearing 21 defines a second cylinder chamber 30.
 第2の軸受21のフランジ部29、第2のシリンダボディ17、スペーサ19および中間仕切り板18は、密閉容器10の軸方向に互いに積層されているとともに、複数の第3の締結ボルト31(一つのみを図示)を介して一体的に連結されている。第3の締結ボルト31は、第2のシリンダ室30の周方向に間隔を存して配置されている。 The flange portion 29, the second cylinder body 17, the spacer 19, and the intermediate partition plate 18 of the second bearing 21 are stacked on each other in the axial direction of the sealed container 10, and a plurality of third fastening bolts 31 (one (Only one is shown). The third fastening bolts 31 are arranged at intervals in the circumferential direction of the second cylinder chamber 30.
 したがって、第1の軸受20および第2の軸受21は、密閉容器10の軸方向に間隔を存して配置されているとともに、第1の軸受20と第2の軸受21との間に第1のシリンダボディ16、第2のシリンダボディ17、中間仕切り板18およびスペーサ19が配置されている。 Therefore, the first bearing 20 and the second bearing 21 are arranged with a space in the axial direction of the sealed container 10, and the first bearing 20 and the second bearing 21 are arranged between the first bearing 20 and the second bearing 21. Cylinder body 16, second cylinder body 17, intermediate partition plate 18 and spacer 19 are arranged.
 図2および図3に示すように、第1のシリンダ室24および第2のシリンダ室30は、夫々循環回路7を構成する吸込管32a,32bを介してアキュームレータ8に接続されている。アキュームレータ8で液相冷媒が分離された気相冷媒は、吸込管32a,32bを通じて第1のシリンダ室24および第2のシリンダ室30に導かれる。 2 and 3, the first cylinder chamber 24 and the second cylinder chamber 30 are connected to the accumulator 8 via suction pipes 32a and 32b constituting the circulation circuit 7, respectively. The gas-phase refrigerant from which the liquid-phase refrigerant has been separated by the accumulator 8 is guided to the first cylinder chamber 24 and the second cylinder chamber 30 through the suction pipes 32a and 32b.
 さらに、第1の吐出マフラ34が第1の軸受20に取り付けられている。第1の吐出マフラ34と第1の軸受20との間には、第1の消音室35が形成されている。第1の消音室35は、第1の吐出マフラ34が有する複数の排気孔(図示せず)を通じて密閉容器10の内部に開口されている。 Furthermore, a first discharge muffler 34 is attached to the first bearing 20. A first silencing chamber 35 is formed between the first discharge muffler 34 and the first bearing 20. The first silencing chamber 35 is opened inside the hermetic container 10 through a plurality of exhaust holes (not shown) provided in the first discharge muffler 34.
 第2の吐出マフラ36が第2の軸受21に取り付けられている。第2の吐出マフラ36と第2の軸受21との間には、第2の消音室37が形成されている。第2の消音室37は、図示しない吐出通路を介して第1の消音室35に連通されている。 The second discharge muffler 36 is attached to the second bearing 21. A second silencing chamber 37 is formed between the second discharge muffler 36 and the second bearing 21. The second silencing chamber 37 communicates with the first silencing chamber 35 via a discharge passage (not shown).
 図2に示すように、回転軸22は、密閉容器10の中心軸線O1の上に同軸状に位置されている。回転軸22は、第1のジャーナル部40a、第2のジャーナル部40b、第1のクランク部41a、第2のクランク部41bおよび中間軸部42を有している。 As shown in FIG. 2, the rotating shaft 22 is coaxially positioned on the central axis O1 of the sealed container 10. The rotating shaft 22 includes a first journal part 40a, a second journal part 40b, a first crank part 41a, a second crank part 41b, and an intermediate shaft part 42.
 図2および図5に示すように、第1のジャーナル部40aは、回転軸22の軸方向に沿う中間部に位置されるとともに、第1の軸受20で回転自在に支持されている。第1の軸受20から突出された回転軸22の一端部は、電動機11の回転子14に連結されている。第2のジャーナル部40bは、回転軸22の軸方向に沿う他端部に位置されるとともに、第2の軸受21で回転自在に支持されている。 2 and 5, the first journal portion 40a is positioned at an intermediate portion along the axial direction of the rotary shaft 22, and is rotatably supported by the first bearing 20. As shown in FIG. One end of the rotating shaft 22 protruding from the first bearing 20 is connected to the rotor 14 of the electric motor 11. The second journal portion 40 b is positioned at the other end portion along the axial direction of the rotary shaft 22 and is rotatably supported by the second bearing 21.
 第1のクランク部41aおよび第2のクランク部41bは、第1のジャーナル部40aと第2のジャーナル部40bとの間に位置するように回転軸22に一体に形成されている。第1および第2のクランク部41a,41bは、夫々回転軸22の軸方向に沿う厚さ寸法を有する円盤状の要素であって、回転軸22の軸方向に互いに離れているとともに、回転軸22の中心線O2に対し偏心している。第1のジャーナル部40aと隣り合う第1のクランク部41aは、第1のシリンダ室24に位置されている。第2のジャーナル部40bと隣り合う第2のクランク部41bは、第2のシリンダ室30に位置されている。 The first crank part 41a and the second crank part 41b are formed integrally with the rotary shaft 22 so as to be positioned between the first journal part 40a and the second journal part 40b. The first and second crank portions 41a and 41b are disk-shaped elements each having a thickness dimension along the axial direction of the rotating shaft 22, and are separated from each other in the axial direction of the rotating shaft 22, and the rotating shaft Eccentric with respect to 22 center line O2. The first crank portion 41 a adjacent to the first journal portion 40 a is located in the first cylinder chamber 24. The second crank portion 41 b adjacent to the second journal portion 40 b is located in the second cylinder chamber 30.
 回転軸22の中間軸部42は、隣り合う第1のクランク部41aと第2のクランク部41bの間に位置するように回転軸22に一体に形成されている。中間軸部42は、回転軸22と同軸状に設けられた円盤状の要素であって、回転軸22の軸方向に沿う厚さ寸法を有している。中間軸受部42の直径d1は、第2のクランク部41bの直径d2と同一もしくはそれ以上に設定されている。 The intermediate shaft portion 42 of the rotary shaft 22 is integrally formed with the rotary shaft 22 so as to be positioned between the adjacent first crank portion 41a and second crank portion 41b. The intermediate shaft portion 42 is a disk-shaped element provided coaxially with the rotary shaft 22, and has a thickness dimension along the axial direction of the rotary shaft 22. The diameter d1 of the intermediate bearing portion 42 is set to be equal to or larger than the diameter d2 of the second crank portion 41b.
 図3および図4に示すように、リング状のローラ43が第1のクランク部41aの外周面に嵌合されている。ローラ43は、回転軸22に追従して第1のシリンダ室24内で偏心回転するとともに、ローラ43の外周面の一部が第1のシリンダ室24の内周面に摺動可能に線接触するようになっている。 3 and 4, a ring-shaped roller 43 is fitted to the outer peripheral surface of the first crank portion 41a. The roller 43 follows the rotation shaft 22 and rotates eccentrically in the first cylinder chamber 24, and a part of the outer peripheral surface of the roller 43 is slidably contacted with the inner peripheral surface of the first cylinder chamber 24. It is supposed to be.
 ローラ43の一端面は、第1の軸受20のフランジ部23の下面に摺動可能に接している。ローラ43の他端面は、中間仕切り板18の上面に摺動可能に接している。これにより、第1のシリンダ室24の気密性が確保されている。 The one end surface of the roller 43 is slidably in contact with the lower surface of the flange portion 23 of the first bearing 20. The other end surface of the roller 43 is slidably in contact with the upper surface of the intermediate partition plate 18. Thereby, the airtightness of the first cylinder chamber 24 is ensured.
 リング状のローラ44が第2のクランク部41bの外周面に嵌合されている。ローラ44は、回転軸22に追従して第2のシリンダ室30内で偏心回転するとともに、ローラ44の外周面の一部が第2のシリンダ室30の内周面に摺動可能に線接触するようになっている。 A ring-shaped roller 44 is fitted to the outer peripheral surface of the second crank portion 41b. The roller 44 follows the rotation shaft 22 and rotates eccentrically in the second cylinder chamber 30, and a part of the outer peripheral surface of the roller 44 is slidably in line contact with the inner peripheral surface of the second cylinder chamber 30. It is supposed to be.
 ローラ44の一端面は、スペーサ19の下端面に摺動可能に接している。ローラ43の他端面は、第2の軸受21のフランジ部29の上面に摺動可能に接している。これにより、第2のシリンダ室30の気密性が確保されている。 The one end surface of the roller 44 is slidably in contact with the lower end surface of the spacer 19. The other end surface of the roller 43 is slidably in contact with the upper surface of the flange portion 29 of the second bearing 21. Thereby, the airtightness of the second cylinder chamber 30 is ensured.
 図4に概略的に示すように、第1のシリンダボディ16のベーンスロット46にベーン47が収容されている。ベーン47は、第1のシリンダ室24の径方向に移動可能であるとともに、スプリング48を介して第1のシリンダ室24に向けて付勢されている。ベーン47の先端部は、ローラ43の外周面に摺動可能に押し付けられている。 As shown schematically in FIG. 4, a vane 47 is accommodated in the vane slot 46 of the first cylinder body 16. The vane 47 is movable in the radial direction of the first cylinder chamber 24 and is biased toward the first cylinder chamber 24 via a spring 48. The tip of the vane 47 is slidably pressed against the outer peripheral surface of the roller 43.
 ベーン47は、ローラ43と協働して第1のシリンダ室24を吸入領域R1と圧縮領域R2とに区画している。さらに、ベーン47は、ローラ43の偏心回転に追従して第1のシリンダ室24に進出したり、第1のシリンダ室24から退く方向に往復移動するようになっている。 The vane 47 cooperates with the roller 43 to partition the first cylinder chamber 24 into a suction region R1 and a compression region R2. Further, the vane 47 advances into the first cylinder chamber 24 following the eccentric rotation of the roller 43 or reciprocates in the direction away from the first cylinder chamber 24.
 この結果、ローラ43が偏心回転すると、第1のシリンダ室24の吸入領域R1および圧縮領域R2の容積が変化し、吸込管32aから第1のシリンダ室24の吸入領域R1に吸い込まれた気相冷媒が圧縮される。 As a result, when the roller 43 rotates eccentrically, the volumes of the suction region R1 and the compression region R2 of the first cylinder chamber 24 change, and the gas phase sucked into the suction region R1 of the first cylinder chamber 24 from the suction pipe 32a. The refrigerant is compressed.
 図示を省略するが、第2のシリンダ室30も同様のベーンで吸入領域と圧縮領域とに区画されている。そのため、ローラ44が偏心回転すると、第2のシリンダ室30の吸入領域および圧縮領域の容積が変化し、吸込管32bから第2のシリンダ室30の吸入領域に吸い込まれた気相冷媒が圧縮される。 Although not shown, the second cylinder chamber 30 is also divided into a suction region and a compression region by a similar vane. Therefore, when the roller 44 rotates eccentrically, the volume of the suction region and the compression region of the second cylinder chamber 30 changes, and the gas-phase refrigerant sucked into the suction region of the second cylinder chamber 30 from the suction pipe 32b is compressed. The
 図2および図3に示すように、第1の軸受20のフランジ部23には、偏心回転するローラ43によって開閉される第1の吐出弁50が設けられている。第1の吐出弁50が開放されることで、第1のシリンダ室24で圧縮された気相冷媒が第1の消音室35に吐出される。 2 and 3, the flange portion 23 of the first bearing 20 is provided with a first discharge valve 50 that is opened and closed by a roller 43 that rotates eccentrically. When the first discharge valve 50 is opened, the gas-phase refrigerant compressed in the first cylinder chamber 24 is discharged into the first silencing chamber 35.
 第2の軸受21のフランジ部29には、偏心回転するローラ44によって開閉される第2の吐出弁51が設けられている。第2の吐出弁51が開放されることで、第2のシリンダ室30で圧縮された気相冷媒が第2の消音室37から吐出通路を経て第1の消音室35に導かれる。第2のシリンダ室30で圧縮された気相冷媒は、第1の吐出マフラ34の排気孔から密閉容器10の内部に吐出される。 The flange portion 29 of the second bearing 21 is provided with a second discharge valve 51 that is opened and closed by a roller 44 that rotates eccentrically. When the second discharge valve 51 is opened, the gas-phase refrigerant compressed in the second cylinder chamber 30 is guided from the second silencer chamber 37 to the first silencer chamber 35 through the discharge passage. The gas-phase refrigerant compressed in the second cylinder chamber 30 is discharged from the exhaust hole of the first discharge muffler 34 into the sealed container 10.
 図3および図5に示すように、回転軸22の中間軸部42は、隣り合う第1のクランク部41aと第2のクランク部41bの間で第1のクランク部41aの側に大きく片寄った位置に設けられている。 As shown in FIGS. 3 and 5, the intermediate shaft portion 42 of the rotating shaft 22 is largely displaced toward the first crank portion 41 a side between the adjacent first crank portion 41 a and the second crank portion 41 b. In the position.
 このため、中間軸部42と第1のクランク部41aとの間には、回転軸22の軸方向に沿う第1の隙間C1が形成され、中間軸部42と第2のクランク部41bとの間には、回転軸22の軸方向に沿う第2の隙間C2が形成されている。 Therefore, a first gap C1 along the axial direction of the rotating shaft 22 is formed between the intermediate shaft portion 42 and the first crank portion 41a, and the intermediate shaft portion 42 and the second crank portion 41b are separated from each other. A second gap C2 along the axial direction of the rotary shaft 22 is formed between them.
 第1の隙間C1は、第2の隙間C2よりも格段に小さい。第2の隙間C2は、中間軸部42と第2のクランク部41bとの間に、中間軸部42の厚さと同等のスペースSPを規定している。 The first gap C1 is much smaller than the second gap C2. The second gap C2 defines a space SP equivalent to the thickness of the intermediate shaft portion 42 between the intermediate shaft portion 42 and the second crank portion 41b.
 図3に示すように、回転軸22の中間軸部42は、中間仕切り板18によって支持されている。本実施形態の中間仕切り板18は、中間軸部42を上回る厚さを有している。このため、中間仕切り板18の下端部は、中間軸部42よりも第2のクランク部41bに向けて張り出している。 3, the intermediate shaft portion 42 of the rotating shaft 22 is supported by the intermediate partition plate 18. The intermediate partition plate 18 of the present embodiment has a thickness that exceeds the intermediate shaft portion 42. For this reason, the lower end portion of the intermediate partition plate 18 protrudes toward the second crank portion 41 b from the intermediate shaft portion 42.
 中間仕切り板18の中央部に軸受孔52を有する軸受部52aおよび逃げ凹部55が形成されている。図5に示すように、軸受孔52は、第2のクランク部41bが挿通可能な内径d3を有し、当該軸受孔52に回転軸22の中間軸部42が摺動可能に嵌合されている。この嵌合により、中間仕切り板18が中間軸部42を支える軸受としての機能を兼ねている。 A bearing portion 52 a having a bearing hole 52 and a relief recess 55 are formed at the center of the intermediate partition plate 18. As shown in FIG. 5, the bearing hole 52 has an inner diameter d3 into which the second crank portion 41b can be inserted, and the intermediate shaft portion 42 of the rotary shaft 22 is slidably fitted in the bearing hole 52. Yes. By this fitting, the intermediate partition plate 18 also functions as a bearing that supports the intermediate shaft portion 42.
 中間軸部42と軸受孔52との間の摺動部は、密閉容器10に蓄えられた潤滑油Iで潤滑されるようになっている。すなわち、中間軸部42の外周面と軸受孔52の内周面との間が潤滑油の油膜によって隔てられており、回転軸22の回転時に中間軸部42に作用する荷重の多くが油膜反力によって受け止められる。 The sliding part between the intermediate shaft part 42 and the bearing hole 52 is lubricated with the lubricating oil I stored in the sealed container 10. That is, the outer peripheral surface of the intermediate shaft portion 42 and the inner peripheral surface of the bearing hole 52 are separated by an oil film of lubricating oil, and much of the load acting on the intermediate shaft portion 42 when the rotary shaft 22 rotates is oil film reaction. Taken by force.
 逃げ凹部55は、軸受部52aに連続する円形の要素であって、中間仕切り板18の下面に開口されている。逃げ凹部55は、軸受孔52よりも大きな内径d4を有するとともに、軸受孔52に対し偏心している。 The escape recess 55 is a circular element continuous to the bearing portion 52a, and is opened on the lower surface of the intermediate partition plate 18. The escape recess 55 has an inner diameter d4 larger than the bearing hole 52 and is eccentric with respect to the bearing hole 52.
 さらに、逃げ凹部55の底から中間仕切り板18の上面に至る中間仕切り板18の軸受部52aの厚さt1は、中間軸部42と第2のクランク部41bとの間の第2の隙間C2よりも僅かに小さく設定されている。言い換えると、第2の隙間C2は、中間仕切り板18の軸受部52aの厚さt1よりも大きい。 Further, the thickness t1 of the bearing portion 52a of the intermediate partition plate 18 extending from the bottom of the escape recess 55 to the upper surface of the intermediate partition plate 18 is the second clearance C2 between the intermediate shaft portion 42 and the second crank portion 41b. Is set to be slightly smaller. In other words, the second gap C2 is larger than the thickness t1 of the bearing portion 52a of the intermediate partition plate 18.
 円形の連通孔56がスペーサ19の中央部に形成されている。連通孔56は、逃げ凹部55に連続するとともに、回転軸22の第2のクランク部41bが挿通可能な大きさを有している。回転軸22の中間軸部42と他方のクランク部41bとの間に位置する部分は、中間仕切り板18の逃げ凹部55およびスペーサ19の連通孔56を貫通している。 A circular communication hole 56 is formed at the center of the spacer 19. The communication hole 56 is continuous with the escape recess 55 and has a size that allows the second crank portion 41b of the rotary shaft 22 to be inserted therethrough. A portion located between the intermediate shaft portion 42 of the rotating shaft 22 and the other crank portion 41 b passes through the escape recess 55 of the intermediate partition plate 18 and the communication hole 56 of the spacer 19.
 次に、圧縮機構部12を組み立てる手順について、図5ないし図8を加えて説明する。 Next, the procedure for assembling the compression mechanism 12 will be described with reference to FIGS.
 まず、図5に示すように、中間仕切り板18の軸受部52aの軸受孔52および逃げ凹部55に回転軸22の第2のジャーナル部40bを挿入する。 First, as shown in FIG. 5, the second journal portion 40 b of the rotary shaft 22 is inserted into the bearing hole 52 and the relief recess 55 of the bearing portion 52 a of the intermediate partition plate 18.
 この状態で、図6に示すように、第2のクランク部41bが軸受孔52を通過するように中間仕切り板18を回転軸22の軸方向に移動させる。これにより、回転軸22の中間軸部42と第2のクランク部41bとの間に位置する部分が軸受孔52の内側に位置されるとともに、第2のクランク部41bの一部が逃げ凹部55に入り込む。逃げ凹部55は、軸受孔52に対し偏心しているので、逃げ凹部55の内周部の一部と第2のクランク部41bとの間に、第2のクランク部41bの径方向に沿う空隙gが確保される。 In this state, as shown in FIG. 6, the intermediate partition plate 18 is moved in the axial direction of the rotary shaft 22 so that the second crank portion 41 b passes through the bearing hole 52. Accordingly, a portion located between the intermediate shaft portion 42 of the rotating shaft 22 and the second crank portion 41 b is positioned inside the bearing hole 52, and a part of the second crank portion 41 b is escaped from the recess 55. Get in. Since the escape recess 55 is eccentric with respect to the bearing hole 52, a gap g along the radial direction of the second crank portion 41b is formed between a part of the inner peripheral portion of the escape recess 55 and the second crank portion 41b. Is secured.
 次に、図7に示すように、第2のクランク部41bが空隙gに入り込むように中間仕切り板18を回転軸22の径方向に移動させ、中間仕切り板18の軸受孔52と回転軸22の中間軸部42とを同軸状に位置させる。 Next, as shown in FIG. 7, the intermediate partition plate 18 is moved in the radial direction of the rotary shaft 22 so that the second crank portion 41 b enters the gap g, and the bearing hole 52 and the rotary shaft 22 of the intermediate partition plate 18 are moved. The intermediate shaft portion 42 is coaxially positioned.
 この後、図8に示すように、中間仕切り板18を回転軸22の軸方向に移動させ、中間仕切り板18の軸受孔52に回転軸22の中間軸部42を摺動可能に嵌合させる。この嵌合により、回転軸22の中間軸部42が中間仕切り板18の軸受部52aに支持され、中間仕切り板18が軸受として機能する。 Thereafter, as shown in FIG. 8, the intermediate partition plate 18 is moved in the axial direction of the rotary shaft 22, and the intermediate shaft portion 42 of the rotary shaft 22 is slidably fitted into the bearing hole 52 of the intermediate partition plate 18. . By this fitting, the intermediate shaft portion 42 of the rotating shaft 22 is supported by the bearing portion 52a of the intermediate partition plate 18, and the intermediate partition plate 18 functions as a bearing.
 図示しないが、引き続いてローラ43を回転軸22の一端部の方向から回転軸22の外側を通して中間仕切り板42の上に導き、当該ローラ43を中間仕切り板42から突出した回転軸22の第1のクランク部41aの外周面に嵌合する。さらに、中間仕切り板18の上に第1のシリンダボディ16を重ね合わせ、第1のシリンダボディ16の内径部にローラ43を収容する。 Although not shown, the roller 43 is subsequently guided from the direction of one end of the rotary shaft 22 through the outside of the rotary shaft 22 onto the intermediate partition plate 42, and the roller 43 protrudes from the intermediate partition plate 42. Is fitted to the outer peripheral surface of the crank portion 41a. Further, the first cylinder body 16 is superposed on the intermediate partition plate 18, and the roller 43 is accommodated in the inner diameter portion of the first cylinder body 16.
 次に、第1の軸受20を回転軸22の第1のジャーナル部40aに嵌合し、第1の軸受20のフランジ部23を第1のシリンダボディ16の上面に重ね合わせる。この状態で、第1の軸受20のフランジ部23、第1のシリンダボディ16および中間仕切り板18を第1の吐出マフラ34と共に第2の締結ボルト27で一体的に結合する。 Next, the first bearing 20 is fitted into the first journal portion 40 a of the rotating shaft 22, and the flange portion 23 of the first bearing 20 is overlaid on the upper surface of the first cylinder body 16. In this state, the flange portion 23 of the first bearing 20, the first cylinder body 16 and the intermediate partition plate 18 are integrally coupled together with the first discharge muffler 34 by the second fastening bolts 27.
 次に、回転軸22の第2のジャーナル部40bをスペーサ19の連通孔56に挿入し、第2のクランク部41bが連通孔56を通過するようにスペーサ19を回転軸22の軸方向に移動させる。これにより、スペーサ19の連通孔56が中間仕切り板18の逃げ凹部55と合致するようにスペーサ19が中間仕切り板18の下面に重なり合う。 Next, the second journal portion 40 b of the rotary shaft 22 is inserted into the communication hole 56 of the spacer 19, and the spacer 19 is moved in the axial direction of the rotary shaft 22 so that the second crank portion 41 b passes through the communication hole 56. Let Accordingly, the spacer 19 overlaps the lower surface of the intermediate partition plate 18 so that the communication hole 56 of the spacer 19 matches the escape recess 55 of the intermediate partition plate 18.
 引き続き、ローラ44を第2のジャーナル部40bの外側を通して中間仕切り板42から突出した回転軸22の第2のクランク部41bの外周面に嵌合する。さらに、スペーサ19に第2のシリンダボディ17を重ね合わせ、第2のシリンダボディ17の内径部にローラ44を収容する。 Subsequently, the roller 44 is fitted to the outer peripheral surface of the second crank portion 41b of the rotating shaft 22 protruding from the intermediate partition plate 42 through the outside of the second journal portion 40b. Further, the second cylinder body 17 is overlaid on the spacer 19, and the roller 44 is accommodated in the inner diameter portion of the second cylinder body 17.
 次に、第2の軸受21を回転軸22の第2のジャーナル部40bに嵌合し、第2の軸受21のフランジ部29を第2のシリンダボディ17の下面に重ね合わせる。この状態で、第2の軸受21のフランジ部29、第2のシリンダボディ17、スペーサ19および中間仕切り板18を第2の吐出マフラ36と共に第3の締結ボルト31で一体的に結合する。これにより、一連の圧縮機構部12の組み立て作業が完了する。 Next, the second bearing 21 is fitted into the second journal portion 40 b of the rotating shaft 22, and the flange portion 29 of the second bearing 21 is overlapped with the lower surface of the second cylinder body 17. In this state, the flange portion 29 of the second bearing 21, the second cylinder body 17, the spacer 19, and the intermediate partition plate 18 are integrally coupled together with the second discharge muffler 36 by the third fastening bolt 31. Thereby, a series of assembly work of the compression mechanism part 12 is completed.
 第1の実施形態によると、ローラ43,44を偏心回転させる回転軸22は、隣り合う第1のクランク部41aと第2のクランク部41bとの間に位置する中間軸部42を有し、当該中間軸部42が中間仕切り板18の軸受孔52に摺動可能に嵌合されている。 According to the first embodiment, the rotating shaft 22 that rotates the rollers 43 and 44 eccentrically has the intermediate shaft portion 42 that is located between the adjacent first crank portion 41a and the second crank portion 41b. The intermediate shaft portion 42 is slidably fitted in the bearing hole 52 of the intermediate partition plate 18.
 そのため、回転軸22を第1の軸受20と第2の軸受21との間の中間の位置でも支えることができる。この結果、例えば第1のシリンダ室24および第2のシリンダ室30で圧縮された気相冷媒の圧力、および高速で回転する回転軸22の慣性力により回転軸22が第1の軸受20と第2の軸受21を起点に撓もうとしても、当該回転軸22の撓みを中間仕切り板18で抑制することができる。 Therefore, the rotary shaft 22 can be supported even at an intermediate position between the first bearing 20 and the second bearing 21. As a result, for example, the rotary shaft 22 and the first bearing 20 and the first bearing 20 are caused by the pressure of the gas-phase refrigerant compressed in the first cylinder chamber 24 and the second cylinder chamber 30 and the inertial force of the rotary shaft 22 rotating at high speed. Even if the second bearing 21 is bent from the starting point, the bending of the rotating shaft 22 can be suppressed by the intermediate partition plate 18.
 したがって、回転軸22の軸振れ、および軸振れに伴うローラ43,44の局部的な磨耗を防止でき、高性能で信頼性の高いツインロータリコンプレッサ2を得ることができる。 Therefore, the shaft runout of the rotating shaft 22 and local wear of the rollers 43 and 44 due to the shaft runout can be prevented, and the high-performance and highly reliable twin rotary compressor 2 can be obtained.
 さらに、本実施形態によると、回転軸22の中間軸部42は、第2のクランク部41bに対し第1のクランク部41aの側に大きく片寄っているため、第1のシリンダボディ16やローラ43の高さ寸法を大きくする必要はない。加えて、中間軸部42と第1のクランク部41aとの間に第1の隙間C1を設けているため、回転軸22の加工性が悪化することもない。 Furthermore, according to the present embodiment, the intermediate shaft portion 42 of the rotating shaft 22 is largely offset toward the first crank portion 41a with respect to the second crank portion 41b, and therefore the first cylinder body 16 and the roller 43 There is no need to increase the height dimension. In addition, since the first gap C1 is provided between the intermediate shaft portion 42 and the first crank portion 41a, the workability of the rotating shaft 22 is not deteriorated.
 しかも、中間軸部42と第2のクランク部41bとの間の第2の隙間C2を、中間仕切り板18の軸受部52aの厚さt1よりも大きくしているので、圧縮機構部12の組み立て性を損なうことなく、回転軸22の軸方向に沿う中間軸部42の厚さおよび中間仕切り板18の軸受孔52の長さを十分に確保することができる。 Moreover, since the second gap C2 between the intermediate shaft portion 42 and the second crank portion 41b is larger than the thickness t1 of the bearing portion 52a of the intermediate partition plate 18, the assembly of the compression mechanism portion 12 is performed. The thickness of the intermediate shaft portion 42 along the axial direction of the rotary shaft 22 and the length of the bearing hole 52 of the intermediate partition plate 18 can be sufficiently ensured without impairing the performance.
 この結果、従来との比較において、中間軸部42と軸受孔52との間から潤滑油が流出し難くなり、中間軸部42の外周面と軸受孔52の内周面との間を隔てる潤滑油の油膜が途切れるのを防止できる。よって、回転軸22の中間軸部42の潤滑性を改善することができ、圧縮機構部12の摩擦損失を極力少なく抑えて、ツインロータリコンプレッサ2の性能および信頼性を高めることができる。 As a result, in comparison with the prior art, it is difficult for the lubricating oil to flow out between the intermediate shaft portion 42 and the bearing hole 52, and the lubrication separating the outer peripheral surface of the intermediate shaft portion 42 and the inner peripheral surface of the bearing hole 52 is performed. It is possible to prevent the oil film of oil from being interrupted. Therefore, the lubricity of the intermediate shaft portion 42 of the rotating shaft 22 can be improved, the friction loss of the compression mechanism portion 12 can be suppressed as much as possible, and the performance and reliability of the twin rotary compressor 2 can be enhanced.
[第2の実施形態]
 図9は、第2の実施形態を開示している。第2の実施形態は、圧縮機構部12の一部の構成が第1の実施形態と相違している。それ以外のツインロータリコンプレッサ2の基本的な構成は、第1の実施形態と同様である。
[Second Embodiment]
FIG. 9 discloses a second embodiment. The second embodiment is different from the first embodiment in the configuration of a part of the compression mechanism unit 12. Other basic configurations of the twin rotary compressor 2 are the same as those in the first embodiment.
 図9に示すように、第2の実施形態の圧縮機構部12によると、回転軸22の中間軸部42を回転自在に支持する中間仕切り板60は、中間軸部42と第2のクランク部41bとの間のスペースSPに張り出すことがないように、中間軸部42と同等の厚さt2を有している。そのため、第2の実施形態の中間仕切り板60は、第1の実施形態の中間仕切り板18よりも薄い。 As shown in FIG. 9, according to the compression mechanism portion 12 of the second embodiment, the intermediate partition plate 60 that rotatably supports the intermediate shaft portion 42 of the rotating shaft 22 includes the intermediate shaft portion 42 and the second crank portion. It has a thickness t2 equivalent to that of the intermediate shaft portion 42 so as not to overhang the space SP between the intermediate shaft portion 41b. Therefore, the intermediate partition plate 60 of the second embodiment is thinner than the intermediate partition plate 18 of the first embodiment.
 中間仕切り板60が薄くなったことに伴い、中間仕切り板60と第2のシリンダボディ17との間に介在されるスペーサ61の厚さが逆に増大している。すなわち、スペーサ61は、中間軸部42と第2のクランク部41bとの間のスペースSPに近づく厚さt3を有している。このため、スペーサ61の連通孔56にしても回転軸22の軸方向に沿う長さが増大するとともに、当該連通孔56が中間仕切り板60の軸受孔52に近接して連通されている。 As the intermediate partition plate 60 becomes thinner, the thickness of the spacer 61 interposed between the intermediate partition plate 60 and the second cylinder body 17 increases conversely. That is, the spacer 61 has a thickness t3 that approaches the space SP between the intermediate shaft portion 42 and the second crank portion 41b. Therefore, the length of the communication hole 56 of the spacer 61 along the axial direction of the rotating shaft 22 is increased, and the communication hole 56 is in close communication with the bearing hole 52 of the intermediate partition plate 60.
 第2の実施形態において、圧縮機構部12を組み立てる際には、中間仕切り板60の軸受孔52に回転軸22の第2のジャーナル部40bを挿入し、第2のクランク部41bが軸受孔52を通過するように中間仕切り板60を回転軸22の軸方向に移動させる。この移動により、中間仕切り板60が中間軸部42と第2のクランク部41bとの間に位置される。 In the second embodiment, when the compression mechanism portion 12 is assembled, the second journal portion 40 b of the rotating shaft 22 is inserted into the bearing hole 52 of the intermediate partition plate 60, and the second crank portion 41 b is inserted into the bearing hole 52. The intermediate partition plate 60 is moved in the axial direction of the rotary shaft 22 so as to pass through. By this movement, the intermediate partition plate 60 is positioned between the intermediate shaft portion 42 and the second crank portion 41b.
 次に、中間仕切り板60の軸受孔52が回転軸22の中間軸部42と同軸状に位置するように回転軸22に対する中間仕切り板60の位置を調整する。この後、中間仕切り板60を回転軸22の軸方向に移動させることで、中間仕切り板60の軸受孔52に回転軸22の中間軸部42を摺動可能に嵌合させる。この嵌合により、回転軸22の中間軸部42が中間仕切り板60によって支持され、中間仕切り板60が軸受として機能する。 Next, the position of the intermediate partition plate 60 with respect to the rotary shaft 22 is adjusted so that the bearing hole 52 of the intermediate partition plate 60 is positioned coaxially with the intermediate shaft portion 42 of the rotary shaft 22. Thereafter, the intermediate partition plate 60 is moved in the axial direction of the rotary shaft 22, so that the intermediate shaft portion 42 of the rotary shaft 22 is slidably fitted in the bearing hole 52 of the intermediate partition plate 60. By this fitting, the intermediate shaft portion 42 of the rotating shaft 22 is supported by the intermediate partition plate 60, and the intermediate partition plate 60 functions as a bearing.
 このような第2の実施形態においても、回転軸22の軸方向に沿う中間軸部42の厚さ、中間仕切り板60の軸受部52aの厚さおよび軸受孔52の長さを十分に確保することができる。そのため、第1の実施形態と同様に、中間軸部42の外周面と軸受孔52の内周面との間を隔てる潤滑油の油膜が途切れるのを防止でき、回転軸22の中間軸部42の潤滑性を改善することができる。 Also in the second embodiment, the thickness of the intermediate shaft portion 42 along the axial direction of the rotating shaft 22, the thickness of the bearing portion 52 a of the intermediate partition plate 60, and the length of the bearing hole 52 are sufficiently ensured. be able to. Therefore, similarly to the first embodiment, it is possible to prevent the oil film of the lubricating oil separating the outer peripheral surface of the intermediate shaft portion 42 and the inner peripheral surface of the bearing hole 52 from being interrupted, and the intermediate shaft portion 42 of the rotary shaft 22. The lubricity can be improved.
 さらに、圧縮機構部12の組み立て時においても、中間仕切り板60が薄くなった分、当該中間仕切り板60を回転軸22の第2のジャーナル部40bの側から中間軸部42に向けて容易に移動させることができる。 Further, when the compression mechanism portion 12 is assembled, the intermediate partition plate 60 is easily moved from the second journal portion 40b side of the rotary shaft 22 toward the intermediate shaft portion 42 by the amount of the thin intermediate partition plate 60. Can be moved.
 [第3の実施形態]
 図10ないし図22は、第3の実施形態を開示している。第3の実施形態は、3個のシリンダボディを備えたトリプルロータリコンプレッサ70を開示している。トリプルロータリコンプレッサ70は、密閉容器10に収容された圧縮機構部71の構成が第1の実施形態と相違している。それ以外のトリプルロータリコンプレッサ70の構成は、基本的に第1の実施形態のツインロータリコンプレッサ2と同様である。そのため、第3の実施形態において、第1の実施形態と同一の構成部分には同一の参照符号を付して、その説明を省略する。
[Third embodiment]
10 to 22 disclose a third embodiment. The third embodiment discloses a triple rotary compressor 70 having three cylinder bodies. The triple rotary compressor 70 is different from the first embodiment in the configuration of the compression mechanism unit 71 accommodated in the sealed container 10. The other configuration of the triple rotary compressor 70 is basically the same as that of the twin rotary compressor 2 of the first embodiment. Therefore, in the third embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
 図10に示すように、圧縮機構部71は、第1のシリンダボディ72、第2のシリンダボディ73、第3のシリンダボディ74、第1の中間仕切り板75、第2の中間仕切り板76、スペーサ77および回転軸78を主要な要素として備えている。 As shown in FIG. 10, the compression mechanism 71 includes a first cylinder body 72, a second cylinder body 73, a third cylinder body 74, a first intermediate partition plate 75, a second intermediate partition plate 76, The spacer 77 and the rotating shaft 78 are provided as main elements.
 第1ないし第3のシリンダボディ72,73,74は、密閉容器10の軸方向に互いに間隔を存して配置されている。第1の中間仕切り板75は、第1のシリンダボディ72と第2のシリンダボディ73との間に介在されている。第1の中間仕切り板75の上面は、第1のシリンダボディ72の内径部を下方から覆うように第1のシリンダボディ72の下面に重ねられている。第1の中間仕切り板75の下面は、第2のシリンダボディ73の内径部を上方から覆うように第2のシリンダボディ73の上面に重ねられている。 The first to third cylinder bodies 72, 73, 74 are arranged at intervals in the axial direction of the sealed container 10. The first intermediate partition plate 75 is interposed between the first cylinder body 72 and the second cylinder body 73. The upper surface of the first intermediate partition plate 75 is overlaid on the lower surface of the first cylinder body 72 so as to cover the inner diameter portion of the first cylinder body 72 from below. The lower surface of the first intermediate partition plate 75 is overlaid on the upper surface of the second cylinder body 73 so as to cover the inner diameter portion of the second cylinder body 73 from above.
 さらに、第1の中間仕切り板75の中央部に貫通孔75aが形成されている。貫通孔75aは、第1のシリンダボディ72の内径部と第2のシリンダボディ73の内径部との間に位置されている。 Furthermore, a through hole 75 a is formed in the center of the first intermediate partition plate 75. The through hole 75 a is located between the inner diameter portion of the first cylinder body 72 and the inner diameter portion of the second cylinder body 73.
 第2の中間仕切り板76は、第2のシリンダボディ73と第3のシリンダボディ74との間に介在されている。第2の中間仕切り板76の上面は、第2のシリンダボディ73の内径部を下方から覆うように第2のシリンダボディ73の下面に重ねられている。第2の中間仕切り板76の下面は、第3のシリンダボディ74の上面と向かい合っている。 The second intermediate partition plate 76 is interposed between the second cylinder body 73 and the third cylinder body 74. The upper surface of the second intermediate partition plate 76 is overlaid on the lower surface of the second cylinder body 73 so as to cover the inner diameter portion of the second cylinder body 73 from below. The lower surface of the second intermediate partition plate 76 faces the upper surface of the third cylinder body 74.
 スペーサ77は、偏平な円盤状の要素であって、第2の中間仕切り板76の下面と第3のシリンダボディ74の上面との間に介在されている。スペーサ77の上面は、第2の中間仕切り板76の下面に重ねられている。スペーサ77の下面は、第3のシリンダボディ74の内径部を上方から覆うように第3のシリンダボディ74の上面に重ねられている。 The spacer 77 is a flat disk-shaped element, and is interposed between the lower surface of the second intermediate partition plate 76 and the upper surface of the third cylinder body 74. The upper surface of the spacer 77 is overlapped with the lower surface of the second intermediate partition plate 76. The lower surface of the spacer 77 is overlaid on the upper surface of the third cylinder body 74 so as to cover the inner diameter portion of the third cylinder body 74 from above.
 第1のシリンダボディ72の上に第1の実施形態と同様の第1の軸受20が位置されている。第1の軸受20のフランジ部23は、第1のシリンダボディ72の内径部を上方から覆うように第1のシリンダボディ72の上面に重ねられている。第1のシリンダボディ72の内径部、第1の中間仕切り板75および第1の軸受20のフランジ部23で囲まれた領域は、第1のシリンダ室80を規定している。 The first bearing 20 similar to that of the first embodiment is positioned on the first cylinder body 72. The flange portion 23 of the first bearing 20 is overlaid on the upper surface of the first cylinder body 72 so as to cover the inner diameter portion of the first cylinder body 72 from above. A region surrounded by the inner diameter portion of the first cylinder body 72, the first intermediate partition plate 75, and the flange portion 23 of the first bearing 20 defines a first cylinder chamber 80.
 第2のシリンダボディ73の内径部、第1の中間仕切り板75および第2の中間仕切り板76で囲まれた領域は、第2のシリンダ室81を規定している。 The area surrounded by the inner diameter portion of the second cylinder body 73, the first intermediate partition plate 75 and the second intermediate partition plate 76 defines a second cylinder chamber 81.
 さらに、第1の軸受20のフランジ部23、第1のシリンダボディ72、第1の中間仕切り板75、第2のシリンダボディ73および第2の中間仕切り板76は、密閉容器10の軸方向に互いに積層されているとともに、複数の第2の締結ボルト27(一つのみを図示)を介して一体的に結合されている。 Further, the flange portion 23 of the first bearing 20, the first cylinder body 72, the first intermediate partition plate 75, the second cylinder body 73, and the second intermediate partition plate 76 are arranged in the axial direction of the sealed container 10. They are stacked on one another and are integrally coupled via a plurality of second fastening bolts 27 (only one is shown).
 第3のシリンダボディ74の下に第1の実施形態と同様の第2の軸受21が位置されている。第2の軸受21のフランジ部29は、第3のシリンダボディ74の内径部を下方から覆うように第3のシリンダボディ74の下面に重ねられている。第3のシリンダボディ74の内径部、スペーサ77および第2の軸受21のフランジ部29で囲まれた領域は、第3のシリンダ室82を規定している。 The second bearing 21 similar to that of the first embodiment is located under the third cylinder body 74. The flange portion 29 of the second bearing 21 is overlaid on the lower surface of the third cylinder body 74 so as to cover the inner diameter portion of the third cylinder body 74 from below. A region surrounded by the inner diameter portion of the third cylinder body 74, the spacer 77 and the flange portion 29 of the second bearing 21 defines a third cylinder chamber 82.
 第2の軸受21のフランジ部29、第3のシリンダボディ74、スペーサ77および第2の中間仕切り板76は、密閉容器10の軸方向に互いに積層されているとともに、複数の第3の締結ボルト31(一つのみを図示)を介して一体的に結合されている。 The flange portion 29, the third cylinder body 74, the spacer 77, and the second intermediate partition plate 76 of the second bearing 21 are stacked on each other in the axial direction of the sealed container 10, and include a plurality of third fastening bolts. 31 (only one is shown).
 このため、本実施形態では、第1の軸受20と第2の軸受21との間に第1ないし第3のシリンダボディ72,73,74、第1の中間仕切り板75、第2の中間仕切り板76およびスペーサ77が交互に配置されている。 Therefore, in the present embodiment, the first to third cylinder bodies 72, 73, 74, the first intermediate partition plate 75, and the second intermediate partition are provided between the first bearing 20 and the second bearing 21. Plates 76 and spacers 77 are alternately arranged.
 図10および図11に示すように、第1のシリンダ室80は、吸込管32aを介してアキュームレータ8に接続されている。第2のシリンダ室81および第3のシリンダ室82は、第2の中間仕切り板76および吸込管32bを介してアキュームレータ8に接続されている。 As shown in FIGS. 10 and 11, the first cylinder chamber 80 is connected to the accumulator 8 via the suction pipe 32a. The second cylinder chamber 81 and the third cylinder chamber 82 are connected to the accumulator 8 via the second intermediate partition plate 76 and the suction pipe 32b.
 第2の中間仕切り板76の具体的な構成について、図11ないし図13を参照して説明する。図12は、第2の中間仕切り板76を第3のシリンダボディ74の側から見た下面図、図13は、図12のF13-F13線に沿う断面図である。 A specific configuration of the second intermediate partition plate 76 will be described with reference to FIGS. 11 to 13. 12 is a bottom view of the second intermediate partition plate 76 as viewed from the third cylinder body 74 side, and FIG. 13 is a cross-sectional view taken along line F13-F13 of FIG.
 図11ないし図13に示すように、第2の中間仕切り板76の外周部の一部に継手部83が形成されている。継手部83は、第2の中間仕切り板76の外周部から密閉容器10の周壁10aに向けて張り出している。継手部83の内部に、アキュームレータ8から延びる吸込管32bが接続された吸込口84と、吸込口84の下流端から二又状に分岐された二つの分岐通路85a,85bと、が形成されている。 As shown in FIGS. 11 to 13, a joint portion 83 is formed on a part of the outer peripheral portion of the second intermediate partition plate 76. The joint portion 83 projects from the outer peripheral portion of the second intermediate partition plate 76 toward the peripheral wall 10 a of the sealed container 10. Inside the joint portion 83, there are formed a suction port 84 to which a suction pipe 32b extending from the accumulator 8 is connected, and two branch passages 85a and 85b branched in a bifurcated manner from the downstream end of the suction port 84. Yes.
 吸込口84は、継手部83の突出端に開口されているとともに、当該突出端から第2の中間仕切り板76の中心部に向けて延びている。一方の分岐通路85aは、第2のシリンダ室81に連通するように第2の中間仕切り板76の上面に開口されている。他方の分岐通路85bは、第3のシリンダ室82を指向するように第2の中間仕切り板76の下面に開口されている。 The suction port 84 is opened at the protruding end of the joint portion 83 and extends from the protruding end toward the center of the second intermediate partition plate 76. One branch passage 85 a is opened on the upper surface of the second intermediate partition plate 76 so as to communicate with the second cylinder chamber 81. The other branch passage 85 b is opened on the lower surface of the second intermediate partition plate 76 so as to face the third cylinder chamber 82.
 吸込口84および二つの分岐通路85a,85bを内蔵した第2の中間仕切り板76は、密閉容器10の軸方向に沿う厚さが増大しており、第1ないし第3のシリンダボディ72,73,74よりも厚い。 The second intermediate partition plate 76 incorporating the suction port 84 and the two branch passages 85a and 85b has an increased thickness along the axial direction of the sealed container 10, and the first to third cylinder bodies 72 and 73 are provided. , 74 thicker.
 さらに、図12に示すように、第2の中間仕切り板76は、第1の消音室35と第2の消音室37との間を結ぶ一対の吐出通路の一部となる通孔86a,86bを有している。通孔86a,86bは、第2の中間仕切り板76の周方向に互いに離れている。 Further, as shown in FIG. 12, the second intermediate partition plate 76 has through holes 86 a and 86 b that are part of a pair of discharge passages connecting the first silencing chamber 35 and the second silencing chamber 37. have. The through holes 86 a and 86 b are separated from each other in the circumferential direction of the second intermediate partition plate 76.
 図10に示すように、回転軸78は、密閉容器10の中心軸線O1の上に同軸状に位置されている。回転軸78は、第1のジャーナル部87a、第2のジャーナル部87b、第1ないし第3のクランク部88a,88b,88cおよび中間軸部89を有している。 As shown in FIG. 10, the rotation shaft 78 is coaxially positioned on the central axis O <b> 1 of the sealed container 10. The rotating shaft 78 has a first journal portion 87 a, a second journal portion 87 b, first to third crank portions 88 a, 88 b, 88 c and an intermediate shaft portion 89.
 図10および図14に示すように、第1のジャーナル部87aは、回転軸78の軸方向に沿う中間部に位置されるとともに、第1の軸受20で回転自在に支持されている。第1の軸受20から突出された回転軸78の一端部は、電動機11の回転子14に連結されている。第2のジャーナル部87bは、回転軸78の軸方向に沿う他端部に位置されるとともに、第2の軸受21で回転自在に支持されている。 As shown in FIGS. 10 and 14, the first journal portion 87a is positioned at an intermediate portion along the axial direction of the rotating shaft 78, and is rotatably supported by the first bearing 20. One end of the rotating shaft 78 protruding from the first bearing 20 is connected to the rotor 14 of the electric motor 11. The second journal portion 87 b is positioned at the other end portion along the axial direction of the rotation shaft 78 and is rotatably supported by the second bearing 21.
 第1ないし第3のクランク部88a,88b,88cは、第1のジャーナル部87aと第2のジャーナル部87bとの間に位置するように回転軸78に一体に形成されている。第1ないし第3のクランク部88a,88b,88cは、夫々回転軸78の軸方向に沿う厚さ寸法を有する円盤状の要素であって、回転軸78の軸方向に互いに離れているとともに、回転軸22の中心線O2に対し偏心している。 The first to third crank portions 88a, 88b, 88c are formed integrally with the rotary shaft 78 so as to be positioned between the first journal portion 87a and the second journal portion 87b. The first to third crank portions 88a, 88b, 88c are disk-shaped elements each having a thickness dimension along the axial direction of the rotating shaft 78, and are separated from each other in the axial direction of the rotating shaft 78. It is eccentric with respect to the center line O2 of the rotating shaft 22.
 第1のクランク部88aは、第1のシリンダ室80に位置されている。第2のクランク部88bは、第2のシリンダ室81に位置されている。第3のクランク部88cは、第3のシリンダ室82に位置されている。さらに、回転軸78の第1のクランク部88aと第2のクランク部88bとの間に位置する箇所は、第1の中間仕切り板75の貫通孔75aを貫通している。 The first crank portion 88a is located in the first cylinder chamber 80. The second crank portion 88 b is located in the second cylinder chamber 81. The third crank portion 88 c is located in the third cylinder chamber 82. Further, the portion of the rotating shaft 78 located between the first crank portion 88 a and the second crank portion 88 b passes through the through hole 75 a of the first intermediate partition plate 75.
 図11および図14に示すように、回転軸78の中間軸部89は、隣り合う第2のクランク部88bと第3のクランク部88cとの間に位置するように回転軸78に一体に形成されている。中間軸部89は、回転軸78と同軸状に設けられた円盤状の要素であって、回転軸78の軸方向に沿う厚さ寸法を有している。中間軸部89の直径d5は、第3のクランク部88cの直径d6と同一もしくはそれ以上である。 As shown in FIGS. 11 and 14, the intermediate shaft portion 89 of the rotating shaft 78 is formed integrally with the rotating shaft 78 so as to be positioned between the adjacent second crank portion 88b and the third crank portion 88c. Has been. The intermediate shaft portion 89 is a disk-shaped element provided coaxially with the rotation shaft 78 and has a thickness dimension along the axial direction of the rotation shaft 78. The diameter d5 of the intermediate shaft portion 89 is equal to or greater than the diameter d6 of the third crank portion 88c.
 本実施形態では、圧縮機構部71の摩擦損失を低減するため、中間軸部89の直径d5が第1のクランク部88aの直径d7および第2のクランク部88bの直径d8よりも小さく設定されている。さらに、第2のジャーナル部87bの直径d9も第1のジャーナル部87aの直径d10よりも小さく設定されている。 In the present embodiment, in order to reduce the friction loss of the compression mechanism portion 71, the diameter d5 of the intermediate shaft portion 89 is set smaller than the diameter d7 of the first crank portion 88a and the diameter d8 of the second crank portion 88b. Yes. Furthermore, the diameter d9 of the second journal portion 87b is also set smaller than the diameter d10 of the first journal portion 87a.
 リング状のローラ91が第1のクランク部88aの外周面に嵌合されている。ローラ91は、回転軸78に追従して第1のシリンダ室80内で偏心回転するとともに、ローラ91の外周面の一部が第1のシリンダ室80の内周面に摺動可能に線接触するようになっている。 A ring-shaped roller 91 is fitted to the outer peripheral surface of the first crank portion 88a. The roller 91 follows the rotation shaft 78 and rotates eccentrically in the first cylinder chamber 80, and part of the outer peripheral surface of the roller 91 is slidably in line contact with the inner peripheral surface of the first cylinder chamber 80. It is supposed to be.
 ローラ91の一端面は、第1の軸受20のフランジ部23の下面に摺動可能に接している。ローラ91の他端面は、第1の中間仕切り板75の上面に摺動可能に接している。これにより、第1のシリンダ室80の気密性が確保されている。 One end surface of the roller 91 is slidably in contact with the lower surface of the flange portion 23 of the first bearing 20. The other end surface of the roller 91 is slidably in contact with the upper surface of the first intermediate partition plate 75. Thereby, the airtightness of the first cylinder chamber 80 is ensured.
 リング状のローラ92が第2のクランク部88bの外周面に嵌合されている。ローラ92は、回転軸78に追従して第2のシリンダ室81内で偏心回転するとともに、ローラ92の外周面の一部が第2のシリンダ室81の内周面に摺動可能に線接触するようになっている。 A ring-shaped roller 92 is fitted to the outer peripheral surface of the second crank portion 88b. The roller 92 follows the rotating shaft 78 and rotates eccentrically in the second cylinder chamber 81, and a part of the outer peripheral surface of the roller 92 is slidably in line contact with the inner peripheral surface of the second cylinder chamber 81. It is supposed to be.
 ローラ92の一端面は、第1の中間仕切り板75の下面に摺動可能に接している。ローラ92の他端面は、第2の中間仕切り板76の上面に摺動可能に接している。これにより、第2のシリンダ室81の気密性が確保されている。 One end surface of the roller 92 is slidably in contact with the lower surface of the first intermediate partition plate 75. The other end surface of the roller 92 is slidably in contact with the upper surface of the second intermediate partition plate 76. Thereby, the airtightness of the second cylinder chamber 81 is ensured.
 リング状のローラ93が第3のクランク部88cの外周面に嵌合されている。ローラ93は、回転軸78に追従して第3のシリンダ室82内で偏心回転するとともに、ローラ93の外周面の一部が第3のシリンダ室82の内周面に摺動可能に線接触するようになっている。 A ring-shaped roller 93 is fitted to the outer peripheral surface of the third crank portion 88c. The roller 93 follows the rotation shaft 78 and rotates eccentrically in the third cylinder chamber 82, and a part of the outer peripheral surface of the roller 93 is slidably contacted with the inner peripheral surface of the third cylinder chamber 82. It is supposed to be.
 ローラ93の一端面は、スペーサ77の下面に摺動可能に接している。ローラ93の他端面は、第2の軸受21のフランジ部29の上面に摺動可能に接している。これにより、第3のシリンダ室82の気密性が確保されている。 The one end surface of the roller 93 is slidably in contact with the lower surface of the spacer 77. The other end surface of the roller 93 is slidably in contact with the upper surface of the flange portion 29 of the second bearing 21. Thereby, the airtightness of the third cylinder chamber 82 is ensured.
 第1ないし第3のシリンダ室80,81,82は、夫々図示しないベーンにより吸入領域と圧縮領域とに区画されている。そのため、ローラ91,92,93が第1ないし第3のシリンダ室80,81,82内で偏心回転すると、各シリンダ室80,81,82の吸入領域および圧縮領域の容積が変化し、吸込管32a,32bから各シリンダ室80,81,82の吸入領域に吸い込まれた気相冷媒が圧縮される。 The first to third cylinder chambers 80, 81, 82 are divided into a suction area and a compression area by vanes (not shown). Therefore, when the rollers 91, 92, 93 rotate eccentrically in the first to third cylinder chambers 80, 81, 82, the volumes of the suction areas and the compression areas of the cylinder chambers 80, 81, 82 change, and the suction pipes The gas-phase refrigerant sucked into the suction areas of the cylinder chambers 80, 81, 82 from 32a, 32b is compressed.
 第1の軸受20のフランジ部23に、偏心回転するローラ91によって開閉される第1の吐出弁95が設けられている。第1の吐出弁95が開放されることで、第1のシリンダ室80で圧縮された気相冷媒が第1の消音室35に導かれる。 A first discharge valve 95 that is opened and closed by a roller 91 that rotates eccentrically is provided on the flange portion 23 of the first bearing 20. When the first discharge valve 95 is opened, the gas-phase refrigerant compressed in the first cylinder chamber 80 is guided to the first silencing chamber 35.
 第1の中間仕切り板75に、偏心回転するローラ92によって開閉される第2の吐出弁96が設けられている。第2の吐出弁96が開放されると、第2のシリンダ室81で圧縮された気相冷媒が第1のシリンダボディ72に設けられた図示しない吐出通路を介して第1の消音室35に導かれる。 The second intermediate valve 75 is provided with a second discharge valve 96 that is opened and closed by a roller 92 that rotates eccentrically. When the second discharge valve 96 is opened, the gas-phase refrigerant compressed in the second cylinder chamber 81 enters the first silencing chamber 35 via a discharge passage (not shown) provided in the first cylinder body 72. Led.
 第2の軸受21のフランジ部29に、偏心回転するローラ93によって開閉される第3の吐出弁97が設けられている。第3の吐出弁97が開放されることで、第2のシリンダ室82で圧縮された気相冷媒が第2の消音室37から吐出通路を経て第1の消音室35に導かれる。 A third discharge valve 97 that is opened and closed by a roller 93 that rotates eccentrically is provided on the flange portion 29 of the second bearing 21. When the third discharge valve 97 is opened, the gas-phase refrigerant compressed in the second cylinder chamber 82 is guided from the second silencer chamber 37 to the first silencer chamber 35 through the discharge passage.
 第1ないし第3のシリンダ室80,81,82で圧縮された気相冷媒は、第1の消音室35で合流するとともに、第1の吐出マフラ34の排気孔から密閉容器10の内部に吐出される。 The gas-phase refrigerant compressed in the first to third cylinder chambers 80, 81, 82 merges in the first silencing chamber 35 and is discharged into the sealed container 10 from the exhaust hole of the first discharge muffler 34. Is done.
 図10および図14に示すように、回転軸78の中間軸部89は、隣り合う第2のクランク部88bと第3のクランク部88cとの間で第2のクランク部88bの側に大きく片寄った位置に設けられている。このため、中間軸部89と第2のクランク部88bとの間に、回転軸78の軸方向に沿う第1の隙間C1が形成され、中間軸部89と第3のクランク部88cとの間には、回転軸78の軸方向に沿う第2の隙間C2が形成されている。 As shown in FIGS. 10 and 14, the intermediate shaft portion 89 of the rotating shaft 78 is largely offset toward the second crank portion 88 b between the adjacent second crank portion 88 b and the third crank portion 88 c. It is provided at the position. For this reason, a first gap C1 is formed between the intermediate shaft portion 89 and the second crank portion 88b, along the axial direction of the rotary shaft 78, and between the intermediate shaft portion 89 and the third crank portion 88c. A second gap C <b> 2 is formed along the axial direction of the rotation shaft 78.
 第1の隙間C1は、第2の隙間C2よりも格段に小さい。第2の隙間C2は、中間軸部89と第3のクランク部88cとの間に、回転軸78の軸方向に沿う中間軸部89の厚さと同等のスペースSPを規定している。 The first gap C1 is much smaller than the second gap C2. The second gap C2 defines a space SP equivalent to the thickness of the intermediate shaft portion 89 along the axial direction of the rotating shaft 78 between the intermediate shaft portion 89 and the third crank portion 88c.
 回転軸78の中間軸部89は、第2の中間仕切り板76によって支持されている。本実施形態によると、第2の中間仕切り板76は、吸込口84および分岐通路85a,85bを内蔵しているため、中間軸部89を上回る厚さを有している。このため、第2の中間仕切り板76の下端部は、中間軸部89よりも第3のクランク部88cに向けて張り出している。 The intermediate shaft portion 89 of the rotary shaft 78 is supported by the second intermediate partition plate 76. According to the present embodiment, the second intermediate partition plate 76 includes the suction port 84 and the branch passages 85a and 85b, and thus has a thickness that exceeds the intermediate shaft portion 89. For this reason, the lower end portion of the second intermediate partition plate 76 projects from the intermediate shaft portion 89 toward the third crank portion 88c.
 第2の中間仕切り板76の中央部に軸受孔98を有する軸受部98aおよび逃げ凹部100が形成されている。軸受孔98は、第3のクランク部88cが挿通可能な内径d3を有し、当該軸受孔98に回転軸78の中間軸部89が摺動可能に嵌合されている。この嵌合により、第2の中間仕切り板76が中間軸部89を支える軸受としての機能を兼ねている。 A bearing portion 98a having a bearing hole 98 and a relief recess 100 are formed in the central portion of the second intermediate partition plate 76. The bearing hole 98 has an inner diameter d3 into which the third crank portion 88c can be inserted, and an intermediate shaft portion 89 of the rotary shaft 78 is slidably fitted into the bearing hole 98. By this fitting, the second intermediate partition plate 76 also functions as a bearing that supports the intermediate shaft portion 89.
 中間軸部89と軸受孔98との間の摺動部は、密閉容器10に蓄えられた潤滑油Iで潤滑されるようになっている。具体的には、中間軸部89の外周面と軸受孔98の内周面との間が潤滑油の油膜によって隔てられており、回転軸78の回転時に中間軸部89に作用する荷重の多くが油膜反力によって受け止められる。 The sliding part between the intermediate shaft part 89 and the bearing hole 98 is lubricated with the lubricating oil I stored in the sealed container 10. Specifically, the outer peripheral surface of the intermediate shaft portion 89 and the inner peripheral surface of the bearing hole 98 are separated by an oil film of lubricating oil, and much of the load acting on the intermediate shaft portion 89 when the rotary shaft 78 rotates. Is received by the oil film reaction force.
 図12に示すように、逃げ凹部100は、軸受部98aに連続する円形の要素であって、第2の中間仕切り板76の下面に開口されている。逃げ凹部100は、軸受孔98よりも大きな内径d4を有するとともに、軸受孔98に対し偏心している。 As shown in FIG. 12, the relief recess 100 is a circular element continuous to the bearing portion 98 a and is opened on the lower surface of the second intermediate partition plate 76. The escape recess 100 has an inner diameter d4 larger than the bearing hole 98 and is eccentric with respect to the bearing hole 98.
 さらに、逃げ凹部100の底から第2の中間仕切り板76の上面に至る軸受部98aの厚さt1は、中間軸部89と第3のクランク部88cとの間の第2の隙間C2よりも僅かに小さく設定されている。言い換えると、第2の隙間C2は、第2の中間仕切り板76の軸受部98aの厚さt1よりも大きい。 Further, the thickness t1 of the bearing portion 98a from the bottom of the escape recess 100 to the upper surface of the second intermediate partition plate 76 is larger than the second gap C2 between the intermediate shaft portion 89 and the third crank portion 88c. It is set slightly smaller. In other words, the second gap C2 is larger than the thickness t1 of the bearing portion 98a of the second intermediate partition plate 76.
 図12および図13に示すように、本実施形態では、逃げ凹部100の開口端および他方の分岐通路85bの開口端が第2の中間仕切り板76の下面に互いに並んで位置されている。逃げ凹部100は、回転軸78の中心線O2に対し、他方の分岐通路85bの開口端から遠ざかる方向に偏心している。 12 and 13, in this embodiment, the opening end of the relief recess 100 and the opening end of the other branch passage 85b are positioned side by side on the lower surface of the second intermediate partition plate 76. The escape recess 100 is eccentric with respect to the center line O2 of the rotation shaft 78 in a direction away from the opening end of the other branch passage 85b.
 このため、第2の中間仕切り板76の下面において、他方の分岐通路85bの開口端から逃げ凹部100の開口端までの距離Lを確保することができる。 Therefore, on the lower surface of the second intermediate partition plate 76, a distance L from the opening end of the other branch passage 85b to the opening end of the escape recess 100 can be secured.
 円形の連通孔101がスペーサ77の中央部に形成されている。連通孔101は、逃げ凹部100に連続するとともに、回転軸78の第3のクランク部88cが挿通可能な大きさを有している。回転軸78の中間軸部89と第3のクランク部88cとの間に位置する部分は、第2の中間仕切り板76の逃げ凹部100およびスペーサ77の連通孔101を貫通している。 A circular communication hole 101 is formed at the center of the spacer 77. The communication hole 101 is continuous with the relief recess 100 and has a size that allows the third crank portion 88c of the rotating shaft 78 to be inserted therethrough. A portion of the rotating shaft 78 positioned between the intermediate shaft portion 89 and the third crank portion 88 c passes through the relief recess 100 of the second intermediate partition plate 76 and the communication hole 101 of the spacer 77.
 さらに、スペーサ77は、連通孔101と隣り合う位置に冷媒導入口102を有している。冷媒導入口102は、第2の中間仕切り板76の他方の分岐通路85bと第3のシリンダ室82との間に介在されている。 Furthermore, the spacer 77 has a refrigerant inlet 102 at a position adjacent to the communication hole 101. The refrigerant introduction port 102 is interposed between the other branch passage 85 b of the second intermediate partition plate 76 and the third cylinder chamber 82.
 本実施形態によると、逃げ凹部100が回転軸78の中心線O2に対し他方の分岐通路85bの開口端から遠ざかる方向に偏心しているので、第2の中間仕切り板76の下面に重ねられるスペーサ77においても、冷媒導入口102と連通孔101との間の間隔を確保できる。 According to the present embodiment, the escape recess 100 is eccentric in the direction away from the opening end of the other branch passage 85b with respect to the center line O2 of the rotation shaft 78, so that the spacer 77 is superimposed on the lower surface of the second intermediate partition plate 76. In this case, a space between the refrigerant inlet 102 and the communication hole 101 can be secured.
 このため、ローラ93が第3のシリンダ室82で偏心回転する際に、ローラ93の一端面は、冷媒導入口102と連通孔101との間で必ずスペーサ77の下面に摺動可能に接した状態を維持する。 For this reason, when the roller 93 rotates eccentrically in the third cylinder chamber 82, one end surface of the roller 93 is always slidably in contact with the lower surface of the spacer 77 between the refrigerant introduction port 102 and the communication hole 101. Maintain state.
 よって、スペーサ77の下面に連通孔101および冷媒導入口102が互いに隣り合った状態で開口しているにも拘らず、第3のシリンダ室82の気密性を良好に維持することができ、気相冷媒の漏洩を防止できる。 Therefore, although the communication hole 101 and the refrigerant introduction port 102 are opened adjacent to each other on the lower surface of the spacer 77, the airtightness of the third cylinder chamber 82 can be maintained satisfactorily. The leakage of the phase refrigerant can be prevented.
 次に、圧縮機構部71を組み立てる手順について、図14ないし図22を加えて説明する。図15ないし図22は、圧縮機構部71の組み立て工程を概略的に示している。 Next, the procedure for assembling the compression mechanism 71 will be described with reference to FIGS. 15 to 22 schematically show the assembly process of the compression mechanism 71.
 本実施形態によると、図14に示すように、第1のシリンダボディ72は、予め二本の結合ボルト105a(一方のみを図示)を介して第1の軸受20のフランジ部23に連結されている。この連結により、第1のシリンダボディ72の内径部の中心と第1の軸受20の中心とが一致するように、第1のシリンダボディ72と第1の軸受20の芯合わせが行われる。 According to the present embodiment, as shown in FIG. 14, the first cylinder body 72 is connected in advance to the flange portion 23 of the first bearing 20 via two coupling bolts 105a (only one is shown). Yes. By this connection, the first cylinder body 72 and the first bearing 20 are aligned so that the center of the inner diameter portion of the first cylinder body 72 and the center of the first bearing 20 coincide.
 第2のシリンダボディ73は、予め二本の結合ボルト105b(一方のみを図示)を介して第2の中間仕切り板76に連結されている。この連結により、第2のシリンダボディ73の内径部の中心と第2の中間仕切り板76の軸受孔98の中心とが一致するように、第2のシリンダボディ73と第2の中間仕切り板76の芯合わせが行われる。 The second cylinder body 73 is connected in advance to the second intermediate partition plate 76 via two coupling bolts 105b (only one is shown). By this connection, the second cylinder body 73 and the second intermediate partition plate 76 are arranged so that the center of the inner diameter portion of the second cylinder body 73 and the center of the bearing hole 98 of the second intermediate partition plate 76 coincide with each other. Is centered.
 さらに、第3のシリンダボディ74は、予め二本の結合ボルト105c(一方のみを図示)を介して第2の軸受21のフランジ部29に連結されている。この連結により、第3のシリンダボディ74の内径部の中心と第2の軸受21の中心とが一致するように、第3のシリンダボディ74と第2の軸受21の芯合わせが行われる。 Furthermore, the third cylinder body 74 is connected in advance to the flange portion 29 of the second bearing 21 via two coupling bolts 105c (only one is shown). By this connection, the third cylinder body 74 and the second bearing 21 are aligned so that the center of the inner diameter portion of the third cylinder body 74 coincides with the center of the second bearing 21.
 まず、図15に示すように、第2のシリンダボディ73の内径部、第2の中間仕切り板76の軸受孔98および逃げ凹部100に回転軸78の第2のジャーナル部87bを挿入し、回転軸78の第3のクランク部88cを第2の中間仕切り板76の逃げ凹部100および軸受孔98を介して第2のシリンダボディ73の内径部に導く。 First, as shown in FIG. 15, the second journal portion 87b of the rotating shaft 78 is inserted into the inner diameter portion of the second cylinder body 73, the bearing hole 98 and the relief recess 100 of the second intermediate partition plate 76, and rotated. The third crank portion 88 c of the shaft 78 is guided to the inner diameter portion of the second cylinder body 73 through the relief recess 100 and the bearing hole 98 of the second intermediate partition plate 76.
 引き続き、図16に示すように、第3のクランク部88cが第2の中間仕切り板76の逃げ凹部100に入り込むように、第2のシリンダボディ73が連結された第2の中間仕切り板76を回転軸78の軸方向に移動させる。 Subsequently, as shown in FIG. 16, the second intermediate partition plate 76 to which the second cylinder body 73 is connected is arranged so that the third crank portion 88 c enters the escape recess 100 of the second intermediate partition plate 76. It is moved in the axial direction of the rotary shaft 78.
 これにより、中間軸部89および第2のクランク部88bが第2のシリンダボディ73の内径部に入り込む。さらに、逃げ凹部100は、軸受孔98に対し偏心しているので、逃げ凹部100の内周部の一部と第3のクランク部88cとの間に、第3のクランク部88cの径方向に沿う空隙gが確保される。 Thereby, the intermediate shaft portion 89 and the second crank portion 88b enter the inner diameter portion of the second cylinder body 73. Furthermore, since the relief recess 100 is eccentric with respect to the bearing hole 98, it extends along the radial direction of the third crank portion 88c between a part of the inner peripheral portion of the relief recess 100 and the third crank portion 88c. A gap g is secured.
 次に、図17に示すように、第3のクランク部88cが空隙gに入り込むように、第2のシリンダボディ73が連結された第2の中間仕切り板76を回転軸78の径方向に移動させ、第2の中間仕切り板76の軸受孔98と回転軸78の中間軸部89とを同軸状に位置させる。 Next, as shown in FIG. 17, the second intermediate partition plate 76 to which the second cylinder body 73 is connected is moved in the radial direction of the rotary shaft 78 so that the third crank portion 88c enters the gap g. Thus, the bearing hole 98 of the second intermediate partition plate 76 and the intermediate shaft portion 89 of the rotating shaft 78 are positioned coaxially.
 この後、図18に示すように、第2のシリンダボディ73が連結された第2の中間仕切り板76を回転軸78の軸方向に移動させ、第2の中間仕切り板76の軸受孔98に回転軸78の中間軸部89を摺動可能に嵌合させる。この嵌合により、回転軸78の中間軸部89が第2の中間仕切り板76によって支持され、第2の中間仕切り板76が軸受として機能する。 Thereafter, as shown in FIG. 18, the second intermediate partition plate 76 connected to the second cylinder body 73 is moved in the axial direction of the rotating shaft 78, and the second intermediate partition plate 76 is inserted into the bearing hole 98. The intermediate shaft part 89 of the rotating shaft 78 is slidably fitted. By this fitting, the intermediate shaft portion 89 of the rotating shaft 78 is supported by the second intermediate partition plate 76, and the second intermediate partition plate 76 functions as a bearing.
 引き続き、図18に示すように、ローラ92を回転軸78の一端部の方向から第1のクランク部88aの外側を通して第2のシリンダボディ73の内径部に導き、当該ローラ92を第2のシリンダボディ73の内径部に位置する第2のクランク部88bの外周面に嵌合する。 Subsequently, as shown in FIG. 18, the roller 92 is guided from the direction of one end of the rotating shaft 78 to the inner diameter portion of the second cylinder body 73 through the outside of the first crank portion 88a, and the roller 92 is guided to the second cylinder. It fits to the outer peripheral surface of the second crank portion 88b located at the inner diameter portion of the body 73.
 次に、図19に示すように、第1の中間仕切り板75を回転軸78の一端部の方向から第1のクランク部88aの外側を通して第2のシリンダボディ73の上面に重ね合わせる。さらに、ローラ91を回転軸78の一端部の方向から第1のジャーナル部87aの外側を通して第1の中間仕切り板75の上に導き、当該ローラ91を第1のクランク部88aの外周面に嵌合させる。 Next, as shown in FIG. 19, the first intermediate partition plate 75 is superposed on the upper surface of the second cylinder body 73 from the direction of one end portion of the rotating shaft 78 through the outside of the first crank portion 88a. Further, the roller 91 is guided from the direction of one end of the rotating shaft 78 through the outer side of the first journal portion 87a onto the first intermediate partition plate 75, and the roller 91 is fitted to the outer peripheral surface of the first crank portion 88a. Combine.
 次に、図20に示すように、第1の軸受20が連結された第1のシリンダボディ72を回転軸78の一端部の方向から回転軸78の外側に挿入し、第1のシリンダボディ72の下面を第1の中間仕切り板75の上面に重ね合わせる。これにより、第1のシリンダボディ72の内径部にローラ91が位置されるとともに、第1の軸受20に回転軸78の第1のジャーナル部87aが嵌合される。 Next, as shown in FIG. 20, the first cylinder body 72 to which the first bearing 20 is connected is inserted from the direction of one end of the rotation shaft 78 to the outside of the rotation shaft 78, and the first cylinder body 72 is inserted. Is overlapped with the upper surface of the first intermediate partition plate 75. As a result, the roller 91 is positioned on the inner diameter portion of the first cylinder body 72 and the first journal portion 87 a of the rotating shaft 78 is fitted to the first bearing 20.
 この状態で、第2の中間仕切り板76、第2のシリンダボディ73、第1の中間仕切り板75、第1のシリンダボディ72および第1の軸受20のフランジ部23を第1の吐出マフラ34と共に締結ボルト27で一体的に結合する。 In this state, the second intermediate partition plate 76, the second cylinder body 73, the first intermediate partition plate 75, the first cylinder body 72, and the flange portion 23 of the first bearing 20 are connected to the first discharge muffler 34. At the same time, the bolts 27 are integrally coupled together.
 次に、図20に示すように、回転軸78の第2のジャーナル部87bをスペーサ77の連通孔101に挿入し、第3のクランク部88cが連通孔101を通過するようにスペーサ77を回転軸78の軸方向に移動させる。これにより、スペーサ77の連通孔101が第2の中間仕切り板76の逃げ凹部100と合致するように、スペーサ77が第2の中間仕切り板76の下面に重なり合う。 Next, as shown in FIG. 20, the second journal portion 87 b of the rotating shaft 78 is inserted into the communication hole 101 of the spacer 77, and the spacer 77 is rotated so that the third crank portion 88 c passes through the communication hole 101. It is moved in the axial direction of the shaft 78. As a result, the spacer 77 overlaps the lower surface of the second intermediate partition plate 76 so that the communication hole 101 of the spacer 77 matches the relief recess 100 of the second intermediate partition plate 76.
 スペーサ77の連通孔101が第2の中間仕切り板76の逃げ凹部100と合致した状態では、図11に示すように、スペーサ77の冷媒導入口102が第2の中間仕切り板76の他方の分岐通路85bと合致する。 In a state where the communication hole 101 of the spacer 77 is aligned with the relief recess 100 of the second intermediate partition plate 76, the coolant introduction port 102 of the spacer 77 is the other branch of the second intermediate partition plate 76 as shown in FIG. 11. It matches the passage 85b.
 引き続き、図21に示すように、ローラ93を回転軸78の第2のジャーナル部87bの外側を通してスペーサ77から突出した第3のクランク部88cの外周面に嵌合する。 Subsequently, as shown in FIG. 21, the roller 93 is fitted to the outer peripheral surface of the third crank portion 88 c protruding from the spacer 77 through the outside of the second journal portion 87 b of the rotating shaft 78.
 次に、図22に示すように、第2の軸受21が連結された第3のシリンダボディ74を回転軸78の第2のジャーナル部87bに挿入し、第3のシリンダボディ74の上面をスペーサ77の下面に重ね合わせる。これにより、第3のシリンダボディ74の内径部にローラ93が位置されるとともに、第2の軸受21に回転軸78の第2のジャーナル部87bが嵌合される。 Next, as shown in FIG. 22, the third cylinder body 74 to which the second bearing 21 is connected is inserted into the second journal portion 87b of the rotating shaft 78, and the upper surface of the third cylinder body 74 is placed on the spacer. Overlay the bottom of 77. As a result, the roller 93 is positioned on the inner diameter portion of the third cylinder body 74 and the second journal portion 87 b of the rotating shaft 78 is fitted to the second bearing 21.
 この状態で、第2の中間仕切り板76、スペーサ77、第3のシリンダボディ74および第2の軸受21のフランジ部29を第2の吐出マフラ36と共に第3の締結ボルト31で一体的に結合する。これにより、一連の圧縮機構部71の組み立て作業が完了する。 In this state, the second intermediate partition plate 76, the spacer 77, the third cylinder body 74, and the flange portion 29 of the second bearing 21 are integrally coupled together with the second discharge muffler 36 by the third fastening bolt 31. To do. Thereby, a series of assembly work of the compression mechanism 71 is completed.
 第3の実施形態によると、ローラ91,92,93を偏心回転させる回転軸78は、隣り合う第2のクランク部88bと第3のクランク部88cとの間に位置する中間軸部89を有し、当該中間軸部89が第2の中間仕切り板76の軸受孔98に摺動可能に嵌合されている。 According to the third embodiment, the rotating shaft 78 that rotates the rollers 91, 92, and 93 eccentrically has the intermediate shaft portion 89 positioned between the adjacent second crank portion 88b and the third crank portion 88c. The intermediate shaft portion 89 is slidably fitted into the bearing hole 98 of the second intermediate partition plate 76.
 そのため、回転軸78を第1の軸受20と第2の軸受21との間の中間の位置でも支えることができる。この結果、例えば第1ないし第3のシリンダ室80,81,82で圧縮された気相冷媒の圧力、および高速で回転する回転軸78の慣性力により回転軸78が第1の軸受20と第2の軸受21を起点に撓もうとしても、当該回転軸78の撓みを第2の中間仕切り板76で抑制することができる。 Therefore, the rotary shaft 78 can be supported even at an intermediate position between the first bearing 20 and the second bearing 21. As a result, for example, the rotary shaft 78 and the first bearing 20 and the first bearing 20 due to the pressure of the gas-phase refrigerant compressed in the first to third cylinder chambers 80, 81, 82 and the inertial force of the rotary shaft 78 rotating at high speed. Even if the second bearing 21 is bent as a starting point, the second intermediate partition plate 76 can suppress the bending of the rotating shaft 78.
 したがって、回転軸78の軸振れ、および軸振れに伴うローラ91,92,93の局部的な磨耗を防止でき、高性能で信頼性の高いトリプルロータリコンプレッサ70を提供することができる。 Therefore, the shaft runout of the rotating shaft 78 and the local wear of the rollers 91, 92, 93 due to the shaft runout can be prevented, and the high performance and highly reliable triple rotary compressor 70 can be provided.
 さらに、本実施形態によると、回転軸78の中間軸部89は、第3のクランク部88cに対し第2のクランク部88bの側に大きく片寄っており、中間軸部89と第2のクランク部88bとの間の第1の隙間C1が中間軸部89と第3のクランク部88cとの間の第2の隙間C2よりも格段に小さくなっている。 Further, according to the present embodiment, the intermediate shaft portion 89 of the rotating shaft 78 is largely offset toward the second crank portion 88b with respect to the third crank portion 88c, and the intermediate shaft portion 89 and the second crank portion are The first gap C1 between the intermediate shaft portion 89 and the third crank portion 88c is much smaller than the first gap C1 between the intermediate shaft portion 89 and the third crank portion 88c.
 しかも、第2の隙間C2は、第2の中間仕切り板76の軸受部98aの厚さよりも大きく形成されているので、圧縮機構部71の組み立て性を損なうことなく、回転軸78の軸方向に沿う中間軸部89の厚さおよび第2の中間仕切り板76の軸受孔98の長さを十分に確保することができる。 Moreover, since the second gap C2 is formed to be larger than the thickness of the bearing portion 98a of the second intermediate partition plate 76, the second gap C2 is formed in the axial direction of the rotating shaft 78 without impairing the assembling property of the compression mechanism portion 71. It is possible to sufficiently ensure the thickness of the intermediate shaft portion 89 along and the length of the bearing hole 98 of the second intermediate partition plate 76.
 この結果、従来との比較において、中間軸部89と軸受孔98との間から潤滑油が流出し難くなり、中間軸部89の外周面と軸受孔98の内周面との間を隔てる潤滑油の油膜が途切れるのを防止できる。よって、回転軸78の中間軸部89の潤滑性を改善することができ、圧縮機構部71の摩擦損失を極力少なく抑えて、トリプルロータリコンプレッサ70の性能および信頼性を高めることができる。 As a result, in comparison with the prior art, it is difficult for the lubricating oil to flow out between the intermediate shaft portion 89 and the bearing hole 98, and the lubrication separating the outer peripheral surface of the intermediate shaft portion 89 and the inner peripheral surface of the bearing hole 98 is performed. It is possible to prevent the oil film of oil from being interrupted. Therefore, the lubricity of the intermediate shaft part 89 of the rotating shaft 78 can be improved, the friction loss of the compression mechanism part 71 can be suppressed as much as possible, and the performance and reliability of the triple rotary compressor 70 can be enhanced.
 加えて、本実施形態の第2の中間仕切り板76は、吸込口84および分岐通路85a,85bを内蔵しているので、回転軸78の中間軸部98よりも厚さが増大し、その下端部が中間軸部98と第3のクランク部88cとの間のスペースSPに張り出している。 In addition, since the second intermediate partition plate 76 of the present embodiment incorporates the suction port 84 and the branch passages 85a and 85b, the thickness is larger than that of the intermediate shaft portion 98 of the rotating shaft 78, and its lower end. The portion protrudes into a space SP between the intermediate shaft portion 98 and the third crank portion 88c.
 この際、本実施形態では、第2の中間仕切り板76の下面に逃げ凹部100が形成され、当該逃げ凹部100は、軸受孔98よりも大きな内径d4を有するとともに、軸受孔98に対し偏心している。すなわち、図16および図17に最もよく示されるように、第3のクランク部88cが逃げ凹部100に入り込んだ状態では、逃げ凹部100の内周部の一部と第3のクランク部88cとの間に、第3のクランク部88cの径方向に沿う空隙gが確保される。 At this time, in this embodiment, a relief recess 100 is formed on the lower surface of the second intermediate partition plate 76, and the relief recess 100 has an inner diameter d 4 larger than the bearing hole 98 and is eccentric with respect to the bearing hole 98. Yes. That is, as best shown in FIGS. 16 and 17, when the third crank portion 88c enters the escape recess 100, a part of the inner peripheral portion of the escape recess 100 and the third crank portion 88c In the meantime, a gap g is secured along the radial direction of the third crank portion 88c.
 このため、空隙gに第3のクランク部88cが入り込むように第2の中間仕切り板76を回転軸78の径方向に移動させることで、第2の中間仕切り板76の軸受孔98と回転軸78の中間軸部89とを同軸状に位置させることができる。 For this reason, the second intermediate partition plate 76 is moved in the radial direction of the rotary shaft 78 so that the third crank portion 88c enters the gap g, whereby the bearing hole 98 and the rotary shaft of the second intermediate partition plate 76 are moved. The 78 intermediate shaft portions 89 can be coaxially positioned.
 したがって、回転軸78と一体化された第2のクランク部88bと第3のクランク部88cとの間に中間軸部89を設けて、当該中間軸部89を第2の中間仕切り板76の軸受孔98で回転自在に支持することができる。 Therefore, an intermediate shaft portion 89 is provided between the second crank portion 88b and the third crank portion 88c integrated with the rotary shaft 78, and the intermediate shaft portion 89 is used as a bearing for the second intermediate partition plate 76. The hole 98 can be rotatably supported.
 よって、第1ないし第3のクランク部88a,88b,88cおよび中間軸部89を有する回転軸78を一体構造物とすることができ、組み立て式の回転軸との比較において、部品点数を少なくできるとともに、圧縮機構部71の組み立て工数を減らすことができる。 Therefore, the rotating shaft 78 having the first to third crank portions 88a, 88b, 88c and the intermediate shaft portion 89 can be formed as an integral structure, and the number of parts can be reduced in comparison with the assembly-type rotating shaft. At the same time, the number of assembling steps for the compression mechanism 71 can be reduced.
 さらに、回転軸78の強度が向上するのは勿論のこと、回転軸78のバランスが良好となり、圧縮機構部71の振動の低減に寄与するといった利点がある。 Furthermore, not only the strength of the rotating shaft 78 is improved, but also the balance of the rotating shaft 78 is improved, and there is an advantage that it contributes to the reduction of vibration of the compression mechanism section 71.
[第4の実施形態]
 図23は、第4の実施形態を開示している。第4の実施形態は、圧縮機構部71の一部の構成が第3の実施形態と相違している。それ以外のトリプルロータリコンプレッサ70の基本的な構成は、第3の実施形態と同様である。
[Fourth Embodiment]
FIG. 23 discloses a fourth embodiment. The fourth embodiment is different from the third embodiment in the configuration of a part of the compression mechanism unit 71. The other basic configuration of the triple rotary compressor 70 is the same as that of the third embodiment.
 図23に示すように、第4の実施形態では、第2の中間仕切り板76から気相冷媒を第2のシリンダ室81および第3のシリンダ室82に分配する流路が排除されており、第3の実施形態に比べて第2の中間仕切り板76が薄くコンパクトに形成されている。 As shown in FIG. 23, in the fourth embodiment, the flow path for distributing the gas-phase refrigerant from the second intermediate partition plate 76 to the second cylinder chamber 81 and the third cylinder chamber 82 is eliminated. Compared with the third embodiment, the second intermediate partition plate 76 is thin and compact.
 具体的には、第2の中間仕切り板76は、中間軸部89と第3のクランク部88cとの間のスペースSPに張り出すことがないように、中間軸部89と同等の厚さt4に形成されている。 Specifically, the second intermediate partition plate 76 has a thickness t4 equivalent to that of the intermediate shaft portion 89 so as not to protrude into the space SP between the intermediate shaft portion 89 and the third crank portion 88c. Is formed.
 第2の中間仕切り板76が薄くなったことに伴い、第2の中間仕切り板76と第3のシリンダボディ74との間に介在されるスペーサ77の厚さt5が逆に増大している。このため、スペーサ77の連通孔101にしても回転軸78の軸方向に沿う長さが増大するとともに、当該連通孔101が第2の中間仕切り板76の軸受孔98に直に連通されている。 As the second intermediate partition plate 76 becomes thinner, the thickness t5 of the spacer 77 interposed between the second intermediate partition plate 76 and the third cylinder body 74 increases conversely. Therefore, the length of the communication hole 101 of the spacer 77 along the axial direction of the rotating shaft 78 is increased, and the communication hole 101 is directly communicated with the bearing hole 98 of the second intermediate partition plate 76. .
 さらに、第4の実施形態によると、第2の中間仕切り板76から気相冷媒を第2のシリンダ室81および第3のシリンダ室82に分配する流路が排除されたことに伴い、アキュームレータ8から延びる吸込管32bは、二股状に分岐された分岐管路106a,106bを有している。一方の分岐管路106aの下流端は、第2のシリンダボディ73の第2のシリンダ室81に直結されている。他方の分岐管路106bの下流端は、第3のシリンダボディ74の第3のシリンダ室82に直結されている。 Further, according to the fourth embodiment, the accumulator 8 is removed in accordance with the elimination of the flow path for distributing the gas-phase refrigerant from the second intermediate partition plate 76 to the second cylinder chamber 81 and the third cylinder chamber 82. The suction pipe 32b extending from the pipe has branch pipes 106a and 106b that are bifurcated. The downstream end of one branch pipe 106 a is directly connected to the second cylinder chamber 81 of the second cylinder body 73. The downstream end of the other branch conduit 106 b is directly connected to the third cylinder chamber 82 of the third cylinder body 74.
 このような第4の実施形態においても、回転軸78の軸方向に沿う中間軸部89の厚さおよび第2の中間仕切り板76の軸受孔98の長さを十分に確保することができる。そのため、第3の実施形態と同様に、中間軸部89の外周面と軸受孔98の内周面との間を隔てる潤滑油の油膜が途切れるのを防止でき、回転軸78の中間軸部89の潤滑性を改善することができる。 Also in the fourth embodiment, the thickness of the intermediate shaft portion 89 along the axial direction of the rotating shaft 78 and the length of the bearing hole 98 of the second intermediate partition plate 76 can be sufficiently secured. Therefore, as in the third embodiment, it is possible to prevent the oil film of the lubricating oil separating between the outer peripheral surface of the intermediate shaft portion 89 and the inner peripheral surface of the bearing hole 98 from being interrupted, and the intermediate shaft portion 89 of the rotating shaft 78. The lubricity can be improved.
 さらに、圧縮機構部71の組み立て時においても、第2の中間仕切り板76が薄くなった分、当該第2の中間仕切り板76を回転軸78の第2のジャーナル部87bの側から中間軸部89に向けて容易に移動させることができる。よって、圧縮機構部71を組み立てる際の作業性が良好となる。 Further, even when the compression mechanism portion 71 is assembled, the second intermediate partition plate 76 is moved from the second journal portion 87b side of the rotary shaft 78 to the intermediate shaft portion by the amount that the second intermediate partition plate 76 is thinned. It can be easily moved toward 89. Therefore, workability at the time of assembling the compression mechanism portion 71 is improved.
 前記実施形態では、二つのローラを有するツインロータリコンプレッサ、および三つのローラを有するトリプルロータリコンプレッサについて説明したが、例えば四つ以上のシリンダボディを有するロータリコンプレッサにおいても同様に適用が可能である。 In the above embodiment, a twin rotary compressor having two rollers and a triple rotary compressor having three rollers have been described, but the present invention can be similarly applied to, for example, a rotary compressor having four or more cylinder bodies.
 さらに、ロータリコンプレッサは、回転軸を縦置きにした縦型のロータリコンプレッサに限らず、回転軸を横置きにした横形のロータリコンプレッサであってもよい。 Furthermore, the rotary compressor is not limited to a vertical rotary compressor in which the rotary shaft is placed vertically, but may be a horizontal rotary compressor in which the rotary shaft is placed horizontally.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 2,70…ロータリコンプレッサ、4…室外熱交換器、5…膨張装置、6…室内熱交換器、7…循環回路、10…密閉容器、11…電動機、12,71…圧縮機構部、16,17,72,73,74…シリンダボディ(第1のシリンダボディ、第2のシリンダボディ、第3のシリンダボディ)、18,60,76…中間仕切り板(第2の中間仕切り板)、20…第1の軸受、21…第2の軸受、22,78…回転軸、24,30,80,81,82…シリンダ室(第1のシリンダ室、第2のシリンダ室、第3のシリンダ室)、40a,87a…第1のジャーナル部、40b,87b…第2のジャーナル部、41a,41b,88a,88b,88c…クランク部(第1のクランク部、第2のクランク部、第3のクランク部)、52,98…軸受孔、I…潤滑油。 DESCRIPTION OF SYMBOLS 2,70 ... Rotary compressor, 4 ... Outdoor heat exchanger, 5 ... Expansion apparatus, 6 ... Indoor heat exchanger, 7 ... Circulation circuit, 10 ... Sealed container, 11 ... Electric motor, 12, 71 ... Compression mechanism part, 16, 17, 72, 73, 74 ... cylinder bodies (first cylinder body, second cylinder body, third cylinder body), 18, 60, 76 ... intermediate partition plate (second intermediate partition plate), 20 ... First bearing, 21... Second bearing, 22, 78... Rotating shaft, 24, 30, 80, 81, 82... Cylinder chamber (first cylinder chamber, second cylinder chamber, third cylinder chamber) 40a, 87a ... first journal part, 40b, 87b ... second journal part, 41a, 41b, 88a, 88b, 88c ... crank part (first crank part, second crank part, third crank Part), 52, 98 ... bearing hole , I: Lubricating oil.

Claims (12)

  1.  筒状の密閉容器と、
     前記密閉容器の内部で冷媒を圧縮する圧縮機構部と、
     前記密閉容器に収容され、前記圧縮機構部を駆動する電動機と、を備え、
     前記圧縮機構部が前記密閉容器に蓄えられた潤滑油で潤滑されるロータリコンプレッサであって、
     前記圧縮機構部は、
       前記密閉容器の軸方向に間隔を存して配置された第1の軸受および第2の軸受と、
       前記第1の軸受と前記第2の軸受との間に配置され、前記密閉容器の軸方向に間隔を存して並ぶとともに、夫々がシリンダ室を規定する複数のシリンダボディと、
       隣り合う前記シリンダボディの間に介在されるとともに、軸受部を有する中間仕切り板と、
       前記第1の軸受に支持された第1のジャーナル部と、前記第2の軸受に支持された第2のジャーナル部と、前記第1のジャーナル部と前記第2のジャーナル部との間に位置するとともに前記シリンダ室内で偏心回転する複数のクランク部と、隣り合う前記クランク部の間で前記中間仕切り板の前記軸受部に摺動可能に支持された中間軸部と、を有する回転軸と、を含み、
       前記回転軸の前記中間軸部は、隣り合う前記クランク部の間で一方の前記クランク部の側に片寄った位置に設けられ、他方の前記クランク部と前記中間軸部との間に前記中間仕切り板の前記軸受部の厚さより大きい隙間が設けられたロータリコンプレッサ。
    A cylindrical sealed container;
    A compression mechanism for compressing the refrigerant inside the sealed container;
    An electric motor housed in the sealed container and driving the compression mechanism,
    A rotary compressor in which the compression mechanism is lubricated with lubricating oil stored in the sealed container;
    The compression mechanism is
    A first bearing and a second bearing arranged at intervals in the axial direction of the sealed container;
    A plurality of cylinder bodies arranged between the first bearing and the second bearing and arranged in the axial direction of the hermetic container at intervals, each defining a cylinder chamber;
    An intermediate partition plate interposed between the cylinder bodies adjacent to each other and having a bearing portion;
    Positioned between the first journal part supported by the first bearing, the second journal part supported by the second bearing, and between the first journal part and the second journal part. And a rotating shaft having a plurality of crank portions that rotate eccentrically in the cylinder chamber, and an intermediate shaft portion slidably supported by the bearing portion of the intermediate partition plate between the adjacent crank portions, Including
    The intermediate shaft portion of the rotating shaft is provided at a position offset toward one of the crank portions between the adjacent crank portions, and the intermediate partition between the other crank portion and the intermediate shaft portion. A rotary compressor provided with a gap larger than the thickness of the bearing portion of the plate.
  2.  一方の前記クランク部と前記中間軸部との間に、前記回転軸の軸方向に沿う隙間が設けられた請求項1に記載のロータリコンプレッサ。 2. The rotary compressor according to claim 1, wherein a gap along the axial direction of the rotating shaft is provided between the one crank portion and the intermediate shaft portion.
  3.  前記中間仕切り板と他方の前記クランク部に対応する前記シリンダボディとの間に介在されたスペーサをさらに備え、当該スペーサを前記回転軸が貫通する請求項1に記載のロータリコンプレッサ。 The rotary compressor according to claim 1, further comprising a spacer interposed between the intermediate partition plate and the cylinder body corresponding to the other crank portion, and the rotating shaft passes through the spacer.
  4.  前記回転軸は、前記第1のジャーナル部、前記第2のジャーナル部、複数の前記クランク部および前記中間軸部が一体に形成された一体構造物である請求項1に記載のロータリコンプレッサ。 The rotary compressor according to claim 1, wherein the rotating shaft is an integral structure in which the first journal portion, the second journal portion, the plurality of crank portions, and the intermediate shaft portion are integrally formed.
  5.  前記中間仕切り板の前記軸受部は、他方の前記クランク部が挿通可能な軸受孔を有する請求項4に記載のロータリコンプレッサ。 The rotary compressor according to claim 4, wherein the bearing portion of the intermediate partition plate has a bearing hole into which the other crank portion can be inserted.
  6.  前記中間軸部の直径が他方の前記クランク部の直径と同一またはそれ以上である請求項4に記載のロータリコンプレッサ。 The rotary compressor according to claim 4, wherein the diameter of the intermediate shaft portion is equal to or larger than the diameter of the other crank portion.
  7.  他方の前記クランク部の直径が一方の前記クランク部の直径よりも小さい請求項4に記載のロータリコンプレッサ。 The rotary compressor according to claim 4, wherein the diameter of the other crank portion is smaller than the diameter of the one crank portion.
  8.  前記中間仕切り板の内部に、アキュームレータに連なる吸込管が接続される吸込口と、当該吸込口から隣り合う前記シリンダ室に向けて分岐された二つの分岐通路と、が形成された請求項1又は請求項3に記載のロータリコンプレッサ。 The suction port to which a suction pipe connected to an accumulator is connected and two branch passages branched from the suction port toward the adjacent cylinder chamber are formed inside the intermediate partition plate. The rotary compressor according to claim 3.
  9.  前記中間仕切り板は、前記軸受部に連続する逃げ凹部を有し、前記逃げ凹部は、他方の前記クランク部の直径よりも大きな形状を有する請求項1又は請求項8に記載のロータリコンプレッサ。 The rotary compressor according to claim 1 or 8, wherein the intermediate partition plate has a relief recess continuous to the bearing portion, and the relief recess has a shape larger than the diameter of the other crank portion.
  10.  前記中間仕切り板は、他方の前記クランク部に対応する前記シリンダボディと向かい合う端面を有し、当該端面に前記分岐通路のうちの一つの分岐通路および前記逃げ凹部が互いに並んで開口されているとともに、前記逃げ凹部は、前記回転軸の中心軸線に対し前記分岐通路の開口端から遠ざかる方向に偏心した位置で前記中間仕切り板の前記端面に開口された請求項9に記載のロータリコンプレッサ。 The intermediate partition plate has an end face facing the cylinder body corresponding to the other crank part, and one end of the branch path and the escape recess are opened side by side on the end face. 10. The rotary compressor according to claim 9, wherein the escape recess is opened on the end face of the intermediate partition plate at a position deviated in a direction away from the opening end of the branch passage with respect to a central axis of the rotating shaft.
  11.  前記スペーサは、他方の前記クランク部に対応する前記クランク室に露出するとともに、他方の前記クランク部の外周面に嵌合されたローラが摺動可能に接する端面を有し、当該端面に前記中間仕切り板の前記一つの分岐通路と他方の前記シリンダ室とを連通させる連通口と、前記回転軸が貫通するとともに前記逃げ凹部に連続する貫通孔と、が開口された請求項10に記載のロータリコンプレッサ。 The spacer has an end surface that is exposed to the crank chamber corresponding to the other crank portion and in which a roller fitted to the outer peripheral surface of the other crank portion is slidably in contact with the intermediate portion. 11. The rotary according to claim 10, wherein a communication port that communicates the one branch passage of the partition plate with the other cylinder chamber, and a through hole through which the rotating shaft passes and continues to the escape recess are opened. compressor.
  12.  冷媒が循環するとともに、放熱器、膨張装置および吸熱器が接続された循環回路と、
     前記放熱器と前記吸熱器との間で前記循環回路に接続された請求項1に記載のロータリコンプレッサと、
     を備えた冷凍サイクル装置。
    As the refrigerant circulates, a circulation circuit to which a radiator, an expansion device and a heat absorber are connected;
    The rotary compressor according to claim 1, connected to the circulation circuit between the radiator and the heat absorber.
    A refrigeration cycle apparatus comprising:
PCT/JP2018/009014 2018-03-08 2018-03-08 Rotary compressor and refrigeration cycle device WO2019171540A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880090918.6A CN111836965B (en) 2018-03-08 2018-03-08 Rotary compressor and refrigeration cycle device
PCT/JP2018/009014 WO2019171540A1 (en) 2018-03-08 2018-03-08 Rotary compressor and refrigeration cycle device
JP2020504593A JP6805388B2 (en) 2018-03-08 2018-03-08 Rotary compressor and refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009014 WO2019171540A1 (en) 2018-03-08 2018-03-08 Rotary compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2019171540A1 true WO2019171540A1 (en) 2019-09-12

Family

ID=67845632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009014 WO2019171540A1 (en) 2018-03-08 2018-03-08 Rotary compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6805388B2 (en)
CN (1) CN111836965B (en)
WO (1) WO2019171540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021171340A1 (en) * 2020-02-25 2021-09-02

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113623217A (en) * 2021-09-07 2021-11-09 珠海格力节能环保制冷技术研究中心有限公司 Compressor and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220991A (en) * 1982-06-15 1983-12-22 Sanyo Electric Co Ltd Rotary compressor
JPH05312172A (en) * 1992-05-12 1993-11-22 Daikin Ind Ltd Rolling piston type compressor
US20100322796A1 (en) * 2008-03-05 2010-12-23 In-Seok Ko Hermetic compressor
WO2014155938A1 (en) * 2013-03-26 2014-10-02 東芝キヤリア株式会社 Multiple-cylinder rotary compressor and refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415488A (en) * 1988-05-20 1989-01-19 Hitachi Ltd Rotary type compressor
JPH05187374A (en) * 1992-01-13 1993-07-27 Sanyo Electric Co Ltd Closed compressor
CN203130503U (en) * 2013-03-14 2013-08-14 安徽美芝精密制造有限公司 Rotary compressor
CN206555130U (en) * 2017-03-16 2017-10-13 广东美芝精密制造有限公司 Rotary compressor
CN107120281B (en) * 2017-06-30 2019-11-05 广东美芝制冷设备有限公司 Multi-cylinder rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58220991A (en) * 1982-06-15 1983-12-22 Sanyo Electric Co Ltd Rotary compressor
JPH05312172A (en) * 1992-05-12 1993-11-22 Daikin Ind Ltd Rolling piston type compressor
US20100322796A1 (en) * 2008-03-05 2010-12-23 In-Seok Ko Hermetic compressor
WO2014155938A1 (en) * 2013-03-26 2014-10-02 東芝キヤリア株式会社 Multiple-cylinder rotary compressor and refrigeration cycle device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021171340A1 (en) * 2020-02-25 2021-09-02
WO2021171340A1 (en) * 2020-02-25 2021-09-02 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device
CN114630963A (en) * 2020-02-25 2022-06-14 东芝开利株式会社 Rotary compressor and refrigeration cycle device
EP4112939A4 (en) * 2020-02-25 2023-11-08 Toshiba Carrier Corporation Rotary compressor and refrigeration cycle device
JP7389220B2 (en) 2020-02-25 2023-11-29 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle equipment

Also Published As

Publication number Publication date
CN111836965B (en) 2022-05-13
CN111836965A (en) 2020-10-27
JP6805388B2 (en) 2020-12-23
JPWO2019171540A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
WO2019171540A1 (en) Rotary compressor and refrigeration cycle device
US11466687B2 (en) Rotary compressor and refrigeration cycle apparatus
US11821664B2 (en) Rotary compressor and refrigeration cycle apparatus
KR102182348B1 (en) Hermetic compressor and refrigeration cycle unit
JP7130833B2 (en) Rotary compressor and refrigeration cycle equipment
US20210207601A1 (en) Rotary compressor and refrigeration cycle apparatus
WO2023084722A1 (en) Compressor and refrigeration cycle device
JP2003161280A (en) Rotary compressor
WO2022004028A1 (en) Rotary compressor and refrigeration cycle device
KR102290735B1 (en) Rotary compressors and refrigeration cycle units
WO2021106198A1 (en) Compressor and refrigeration cycle device
JP2024073799A (en) Compressor and refrigeration cycle device
JP2023034612A (en) Compressor, and air conditioner
JP2024070439A (en) Compressor and refrigeration cycle device
JP2020090897A (en) Rotary compressor, manufacturing method of rotary compressor and refrigeration cycle device
JP2023034613A (en) Compressor, and air conditioner
JP2020118053A (en) Rotary compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908437

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908437

Country of ref document: EP

Kind code of ref document: A1