WO2019171468A1 - Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program - Google Patents

Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program Download PDF

Info

Publication number
WO2019171468A1
WO2019171468A1 PCT/JP2018/008580 JP2018008580W WO2019171468A1 WO 2019171468 A1 WO2019171468 A1 WO 2019171468A1 JP 2018008580 W JP2018008580 W JP 2018008580W WO 2019171468 A1 WO2019171468 A1 WO 2019171468A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine
learned model
edge device
learned
time information
Prior art date
Application number
PCT/JP2018/008580
Other languages
French (fr)
Japanese (ja)
Inventor
将仁 谷口
Original Assignee
株式会社ウフル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ウフル filed Critical 株式会社ウフル
Priority to PCT/JP2018/008580 priority Critical patent/WO2019171468A1/en
Publication of WO2019171468A1 publication Critical patent/WO2019171468A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a technology for switching a machine-learned model used by an edge device, and is used in the field of IoT (Internet of Things).
  • IoT Internet of Things
  • Patent Document 1 a technique for updating a model of a machine learning system is provided.
  • the present invention is a machine-learned model switching system for switching machine-learned models having different purposes for an edge device, the acquisition means for acquiring time information relating to time, and the edge device corresponding to the time information
  • a machine learning model switching system comprising: control means for controlling to acquire an attached machine learned model.
  • the present invention is an edge device that switches and uses different machine-learned models for different purposes, and acquires the machine-learned model according to the control of the machine-learned model switching system according to claim 1, An edge device is provided that replaces other machine-learned models in use with the acquired machine-learned model.
  • the present invention provides a machine-learned model switching method for switching a machine-learned model having a different purpose for an edge device, the step of acquiring time information related to time, the edge device including the time information
  • a machine learning model switching method comprising: controlling to obtain an associated machine learned model.
  • the present invention is a program for causing a computer to execute a machine-learned model switching process for switching machine-learned models having different purposes with respect to an edge device, and acquiring time information relating to time; And controlling the edge device to acquire a machine-learned model associated with the time information.
  • the machine-learned model used by the edge device can be switched over time.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a server 110.
  • 2 is a diagram illustrating an example of a functional configuration of a server 110.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of an edge device 120.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of an edge device 120.
  • 5 is a diagram showing an example of posted information 320.
  • FIG. 1 is a diagram illustrating an example of a machine-learned model switching system 100 according to the present embodiment.
  • the machine-learned model switching system 100 is a system that switches a machine-learned model used by the edge device 120 according to time.
  • the machine learning model switching system 100 includes a server 110 and an edge device 120.
  • the number of each apparatus shown in FIG. 1 is an illustration, and is not limited to this.
  • the server 110 and the edge device 120 are connected via a communication network 130.
  • the communication network 130 includes, for example, the Internet.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the server 110.
  • the server 110 is an apparatus that provides a plurality of machine learned models with different purposes to the edge device 120.
  • the server 110 is a computer including a processor 111, a memory 112, a storage 113, and a communication unit 114, for example. These devices are connected via a bus 115.
  • the processor 111 executes various processes by reading the program into the memory 112 and executing it.
  • the processor 111 may be configured by, for example, a CPU (Central Processing ⁇ ⁇ ⁇ Unit).
  • the memory 112 stores a program executed by the processor 111.
  • the memory 112 may be configured by, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory).
  • the storage 113 stores various data and programs.
  • the storage 113 may be configured by, for example, a hard disk drive or a flash memory.
  • the storage 113 stores a plurality of machine learned models provided to the edge device 120 and a time table 310 indicating a schedule for switching the machine learned models used by the edge device 120.
  • the communication unit 114 is a communication interface connected to the communication network 130.
  • the communication unit 114 performs data communication via the communication network 130.
  • FIG. 3 is a diagram illustrating an example of the time table 310.
  • the edge device 120 performs a watching process and a security process.
  • the watching process is a process of observing whether the user is in a safe state. For example, in the watching process, a user abnormality is detected, and detection information is notified to a predetermined notification destination.
  • a dedicated machine-learned model hereinafter referred to as “watched machine-learned model” for accurately performing the watching process is used.
  • the crime prevention process is a process for monitoring whether or not a suspicious person has entered. For example, in the crime prevention process, intrusion of a suspicious person is detected, and detection information is notified to a predetermined notification destination.
  • a dedicated machine-learned model hereinafter referred to as a “machine-learned model for crime prevention” for accurately performing the security process is used.
  • identification information for identifying a machine-learned model for watching is stored in association with time information indicating the time from 6:00 to 22:00. This indicates that the edge device 120 performs the watching process using the machine-learned model for watching from 6:00 to 22:00. Further, the time table 310 stores identification information for identifying a machine-learned model for crime prevention in association with time information indicating the time from 22:00 to next 6:00. This indicates that the edge device 120 performs the crime prevention process using the machine-learned model for crime prevention from 22:00 to next 6 o'clock.
  • the correspondence between the time information and the machine-learned model may be determined in advance by a user or an administrator of the server 110, for example.
  • FIG. 4 is a diagram illustrating an example of a functional configuration of the server 110.
  • the server 110 includes an update unit 211, a first acquisition unit 212, a posting unit 213, a control unit 214, a second acquisition unit 215, an estimation unit 216, and a change unit 217. These functions are realized by the processor 111 performing calculations or controlling communication by the communication unit 114 in cooperation with the server program stored in the memory 112 or the storage 113 and the processor 111 executing the server program. Is done.
  • the update means 211 updates the machine learned model stored in the storage 113 by machine learning of learning data using a learning device.
  • This “update” means to modify at least a part.
  • the machine-learned model after update has higher accuracy than the machine-learned model before update.
  • the learning data is data used for machine learning.
  • the learning data may be image data indicating an image captured by the imaging unit 125 of the edge device 120, for example. In this case, the image data is transmitted from the edge device 120 to the server 110 at a predetermined time interval.
  • the first acquisition unit 212 acquires time information from the time table 310. This time information is used to determine whether or not it is time to switch the machine-learned model.
  • the posting unit 213 determines that it is time to switch the machine-learned model used by the edge device 120 based on the time information acquired by the first acquisition unit 212, the posting unit 213 indicates that the machine-learned model is switched. Post it.
  • This “posting” means presenting information. This posting may be realized, for example, by storing in the storage 113 information indicating that a machine-learned model is switched.
  • the control unit 214 controls the edge device 120 to acquire the machine learned model and replace the machine learned model used by the edge device 120. This control may be realized, for example, by acquiring a machine-learned model and transmitting a control signal for replacing the machine-learned model.
  • the second acquisition unit 215 acquires image data indicating an image captured by the imaging unit 125 of the edge device 120. This image data is used as learning data.
  • the estimation means 216 analyzes the image data acquired by the second acquisition means 215 to estimate the time that satisfies the condition for starting the process using the machine-learned model.
  • This analysis may include, for example, image recognition processing.
  • This condition is predetermined for each process. For example, when processing is performed when the user is in a certain state, the condition for starting this processing may be that the user has entered that state.
  • the changing unit 217 changes the time information included in the time table 310 to time information indicating the time estimated by the estimating unit 216.
  • FIG. 5 is a diagram illustrating an example of a hardware configuration of the edge device 120.
  • the edge device 120 is, for example, a surveillance camera, and performs predetermined processing by inputting image data indicating a captured image to a machine-learned model.
  • the edge device 120 performs different processing depending on time.
  • the edge device 120 is a computer including a processor 121, a memory 122, a storage 123, a communication unit 124, and an imaging unit 125, for example. These devices are connected via a bus 126. Since the processor 121, the memory 122, the storage 123, the communication unit 124, and the bus 126 are the same as the processor 111, the memory 112, the storage 113, the communication unit 114, and the bus 115 described above, description thereof is omitted. However, the storage 123 does not have a storage capacity for storing many machine-learned models. For example, the storage 123 stores only one machine-learned model used for processing currently performed by the edge device 120.
  • the imaging unit 125 captures an image. The imaging unit 125 shoots an image by forming an image on the imaging element using, for example, an optical system. This image may be a still image or a moving image.
  • FIG. 6 is a diagram illustrating an example of a functional configuration of the edge device 120.
  • the edge device 120 includes a confirmation unit 221, an acquisition unit 222, a replacement unit 223, and a switching unit 224. These functions are realized by the processor 121 performing calculations or controlling communication by the communication unit 124 in cooperation with the client program stored in the memory 122 or the storage 123 and the processor 121 that executes the program program. Is done.
  • the confirmation unit 221 confirms whether there is a switch of the machine-learned model based on the posted contents of the server 110. This confirmation may be performed by polling the bulletin information 320 stored in the storage 113 of the server 110, for example.
  • the acquisition unit 222 acquires a machine learned model from the server 110. More specifically, acquisition of the machine-learned model is performed by pull distribution. That is, the machine-learned model is transmitted in response to a request from the acquisition unit 222. At this time, the machine-learned model may be transmitted using an encrypted communication method.
  • This encrypted communication method refers to a communication method in which data is encrypted for communication.
  • a known encrypted communication method such as SSL (Secure Sockets Layer) or TLS (Transport Layer Security) may be used.
  • the replacement unit 223 replaces the machine-learned model stored in the storage 123 (currently used) with the machine-learned model acquired by the acquisition unit 222 according to the control of the control unit 214 of the server 110.
  • This replacement means making a new machine-learned model usable.
  • the replacement may be realized, for example, by storing a new machine learned model in the storage 123 and setting the new machine learned model to be used instead of the old machine learned model.
  • the switching unit 224 switches the process performed by the edge device 120 from the process using the old machine-learned model to the process using the new machine-learned model. These processes are performed at different times.
  • FIG. 7 is a sequence chart illustrating an example of an operation of switching the machine learned model of the edge device 120.
  • the storage 113 of the server 110 stores a machine-learned model for watching and a machine-learned model for crime prevention. These machine-learned models are updated as needed by the updating unit 211. Further, it is assumed that the machine learning completed model for watching is stored in the storage 123 of the edge device 120, and the edge device 120 performs the watching process using the machine learning completed model for watching.
  • the server 110 reads the time information from the time table 310 by the first acquisition unit 212, and determines whether or not the time that is the starting point indicated by any of the time information included in the time table 310 is reached based on the time information. (Step 401). This determination may be performed based on, for example, a built-in clock of the server 110. If it is not the start time (NO at Step 401), this determination is repeated until the start time is reached. On the other hand, for example, at 22:00, which is the starting point of the time from 22:00 indicated by the time information included in the time table 310 illustrated in FIG. 3 (the determination in step 401 is YES), the server 110 determines that the machine-learned model The posting information 320 indicating that there is switching is stored in the storage 113 by the posting means 213 (step 402).
  • FIG. 8 is a diagram illustrating an example of the posting information 320.
  • identification information of a machine-learned model for crime prevention is stored in association with time information indicating the time from 22:00 to next 6:00. For example, at 22:00, the device ID “001” for identifying the edge device 120, the information “Yes” indicating that there is a switch of the machine-learned model, and the acquisition destination of the machine-learned model for crime prevention, In the storage 113, an address “http://www.example.com/MCP” indicating the location where the machine-learned model for crime prevention is stored is stored in association with it.
  • the edge device 120 polls the posting information 320 stored in the storage 113 at predetermined time intervals by the confirmation unit 221 (step 403), and determines whether or not the machine-learned model is switched by the confirmation unit 221.
  • Step 404 For example, in the bulletin information 320, when information “None” indicating that there is no switching of the machine-learned model is stored in association with the device ID “001”, it is determined that there is no switching of the learned model. (NO at step 404). In this case, the process returns to step 403 described above, and the posting information 320 is polled again after a predetermined time interval. On the other hand, as shown in FIG.
  • the server 110 obtains the next machine learned model using the encrypted communication method, and controls the control signal for replacing the machine learned model stored in the storage 123.
  • the means 214 transmits the result to the edge device 120 whose device ID is “001” (step 405).
  • This control signal includes information specifying the encrypted communication method.
  • the edge device 120 uses the encrypted communication method in accordance with the received control signal, and the storage indicated by the address “http://www.example.com/MCP” included in the bulletin information 320 shown in FIG.
  • a machine-learned model for crime prevention is acquired from the location in 113 by the acquisition means 222 (step 406). Specifically, the acquisition unit 222 transmits a signal requesting a machine-learned model for crime prevention to the server 110, and receives the machine-learned model for crime prevention transmitted from the server 110 in response to the request for this signal. .
  • the edge device 120 replaces the machine-learned model for watching stored in the storage 123 with the machine-learned model for crime prevention by the replacement unit 223 according to the received control signal (step 407). For example, after a machine-learned model for watching stored in the storage 123 is deleted, a machine-learned model for crime prevention is stored, and a machine-learned model for crime prevention is used instead of the machine-learned model for watching To be set.
  • the edge device 120 switches the watching process to the security process by the switching unit 224 (step 408).
  • the edge device 120 performs crime prevention processing using the machine-learned model for crime prevention from 22:00 to next 6 o'clock.
  • the same processing as steps 402 to 408 described above is performed, and the machine-learned model for crime prevention stored in the storage 123 is replaced with the machine-learned model for watching, and the crime prevention process is watched over. Switch to processing.
  • the edge device 120 performs the watching process from 6 o'clock to 22:00 using the machine learning completed model for watching.
  • FIG. 9 is a sequence chart showing an example of an operation for optimizing a schedule for switching machine-learned models.
  • the imaging unit 125 is shooting a place where the user lives.
  • the edge device 120 transmits image data indicating an image captured by the imaging unit 125 to the server 110 at predetermined time intervals (step 501).
  • the server 110 stores the image data in the storage 113.
  • the server 110 analyzes the image data stored in the storage 113 to estimate a time suitable for starting the watching process and the security process by the estimation unit 216 (step 502).
  • the estimation unit 216 recognizes the user and the user's behavior by performing image recognition processing on the image data.
  • the watching process is preferably performed while the user is awake.
  • the estimation unit 216 estimates the time when the user wakes up by machine learning of the result of image recognition, and uses it as a time suitable for watching the estimated time and starting the processing.
  • the security process is preferably performed while the user is sleeping.
  • the estimating unit 216 estimates the time when the user goes to bed by machine learning the result of the image recognition, and uses the estimated time as a time suitable for starting the crime prevention process.
  • the server 110 changes the time table 310 by the changing means 217 based on the estimated time (step 503). For example, it is assumed that 21:00 is estimated as a time suitable for starting the crime prevention process, and 5 o'clock is estimated as a time suitable for starting the watching process. In this case, in the time table 310 shown in FIG. 3, the time information indicating from 22:00 to next 6:00 is changed to time information indicating from 21:00 to next 5:00. Also, the time information indicating 6 o'clock to 22:00 is changed to time information indicating 5 o'clock to 21 o'clock.
  • first acquisition unit 212 “acquisition unit 222”, “storage 113”, “storage 123”, “watched machine-learned model”, “crime-proof machine-learned model” ”,“ Watching process ”,“ crime prevention process ”are respectively“ acquisition means ”,“ second acquisition means ”,“ first storage means ”,“ second storage means ”,“ first machine learning ”according to the present invention. Used model ”,“ second machine learned model ”,“ first process ”, and“ second process ”.
  • the machine-learned model used by the edge device 120 when it is time to switch the machine-learned model, a machine-learned model whose purpose is different from the machine-learned model used by the edge device 120 is provided from the server 110 to the edge device 120. Therefore, the machine-learned model used by the edge device 120 can be switched according to time. In addition, since the edge device 120 does not have to have a storage capacity for storing a large number of machine-learned models, the hardware resources necessary for the edge device 120 can be reduced. In addition, although high processing capability is required for updating the machine-learned model, in the above-described embodiment, since the server 110 updates the new machine-learned model, the edge device 120 has high processing capability. It does not have to be.
  • the bulletin information 320 and the machine-learned model are transmitted in response to a pull distribution from the edge device 120, that is, in response to a request from the edge device 120.
  • the server 110 adopts a push-type delivery, that is, a configuration in which the server 110 transmits the data without requesting it from the edge device 120
  • the edge device 120 impersonates the server 110 as well as the server 110. It is also possible to receive information transmitted by push-side distribution from other devices. In this case, there is a risk that damage is caused by information transmitted by another malicious device.
  • such data is transmitted from the server 110 in response to a request from the edge device 120 as in the above-described embodiment, such a risk is reduced, so that information security is high. Become.
  • the edge device 120 can switch the process according to the schedule according to the user state. .
  • the edge device 120 is not limited to the monitoring camera.
  • the edge device 120 may be any device as long as it performs processing using a machine-learned model.
  • the edge device 120 may include a sensor, and sensor data output from the sensor may be used as learning data.
  • the number of machine learned models that the edge device 120 switches is not limited to two.
  • the edge device 120 may switch between three or more machine learned models.
  • the machine-learned model is not limited to the machine-learned model for watching and the machine-learned model for crime prevention.
  • the machine-learned model may include a dedicated machine-learned model for accurately performing the process of observing the weather.
  • the plurality of machine-learned models may be machine-learned models used for any process as long as they are machine-learned models having different purposes.
  • the machine learning algorithm generates a model based on the result of machine learning from given data, for example, on a computer, and inputs new input data to the model.
  • a so-called supervised learning algorithm for outputting an event predicted from the input data may be used.
  • the machine learning algorithm is not limited to a so-called supervised learning algorithm, and may be an algorithm for machine learning such as unsupervised learning, semi-supervised learning, reinforcement learning, and expression learning.
  • the algorithm for machine learning may include other learning algorithms such as data mining and deep learning. Note that these learning algorithms use various techniques or techniques such as decision tree learning, correlation rule learning, neural network, genetic programming, inductive logic programming, support vector machine, clustering, and Bayesian network. included. In short, any machine learning algorithm may be used as long as it is processed together with some data provided by the data provider and outputs information desired by the user as a result of the processing.
  • the location where the machine-learned model is stored is not limited to the storage 113 of the server 110.
  • the machine-learned model may be stored in this storage device instead of the storage 113.
  • the posting information 320 includes an address indicating a location in the storage apparatus. Then, the edge device 120 acquires a machine learned model from the storage device based on this address.
  • the posting information 320 may be updated in response to the machine-learned model acquired by the edge device 120.
  • the determination as to whether or not a machine-learned model has been acquired may be made based on whether or not information indicating that a new machine-learned model has been acquired from the edge device 120, for example.
  • a machine-learned model is acquired by the edge device 120 with the device ID “001”, whether or not the machine-learned model stored in association with the device ID “001” in the bulletin information 320 illustrated in FIG. Is changed from “Yes” to “No”.
  • the machine learning model is changed to “-” indicating that the acquisition destination of the model is not applicable. Thereby, it is possible to prevent the edge device 120 from trying to acquire the acquired machine-learned model again.
  • the edge device 120 or an external device may have a part of the function of the server 110.
  • an external device used by a provider such as an AI (Artificial Intelligent) vendor may have the updating unit 211 instead of the server 110.
  • the external device updates the machine learned model using the learning data, and transmits the updated machine learned model to the server 110.
  • the machine-learned model may be updated on the provider side and registered in the server 110.
  • the edge device 120 may include the estimation unit 216 instead of the server 110. In this case, time information indicating the time estimated by the estimating means 216 is transmitted to the server 110.
  • the server 110 or an external device may have a part of the function of the edge device 120.
  • the steps of processing performed in the machine learning completed model switching system 100 are not limited to the example described in the above embodiment. The steps of this process may be interchanged as long as there is no contradiction.
  • the present invention may be provided as a machine-learned model switching method performed in the machine-learned model switching system 100.
  • the present invention may be provided as a program executed on the server 110 or the edge device 120.
  • This program may be downloaded via a communication line such as the Internet, or a computer such as a magnetic recording medium (magnetic tape, magnetic disk, etc.), an optical recording medium (optical disk, etc.), a magneto-optical recording medium, or a semiconductor memory. May be provided in a state of being recorded on a readable recording medium.
  • the timing for switching the machine-learned model may be determined by analyzing image data indicating an image captured by the imaging unit 125.
  • the edge device 120 determines whether or not the condition for starting the process using the machine-learned model is satisfied by analyzing the image data indicating the image captured by the imaging unit 125.
  • the edge device 120 transmits information indicating that fact to the server 110. Since this information is transmitted when the condition for starting the process using the machine-learned model is satisfied, it is information about time. Therefore, in this modification, this information is used as time information.
  • the server 110 may control the edge device 120 to acquire the corresponding machine learned model. For example, when the user goes to bed, the conditions for starting the crime prevention process are satisfied.
  • the edge device 120 may be controlled so as to acquire a machine-learned model for crime prevention used for the crime prevention process. . According to this modification, since the machine-learned model is switched according to the user's state, the edge device 120 can switch processing at a timing according to the user's state.
  • Model switching system 110 Server 120: Edge device 211: Update unit 212: First acquisition unit 213: Posting unit 214: Control unit 215: Second acquisition unit 216: Estimation unit 217 : Change means, 221: confirmation means, 222: acquisition means, 223: replacement means, 224: switching means

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

According to the present invention, in the field of Internet of Things (IoT), an edge device is caused to temporally switch between uses of different machine learning-trained models. This machine learning-trained model switching system causes an edge device to switch between machine learning-trained models having different purposes. An acquisition means acquires time information relating to a time. A control means performs control to cause the edge device to acquire a machine learning-trained model associated with the time information.

Description

機械学習済みモデル切り替えシステム、エッジデバイス、機械学習済みモデル切り替え方法、及びプログラムMachine learning model switching system, edge device, machine learning model switching method, and program
 本発明は、エッジデバイスが使用する機械学習済みモデルを切り替える技術に関し、IoT(Internet of Things)の分野で利用される。 The present invention relates to a technology for switching a machine-learned model used by an edge device, and is used in the field of IoT (Internet of Things).
 近年、AI(artificial intelligence)技術の進歩によって、学習済みモデルの更新技術が注目されている。例えば、機械学習システムのモデルを更新するための技術が提供されている(特許文献1)。 In recent years, with the advancement of AI (artificial intelligence) technology, renewed technology for learned models has attracted attention. For example, a technique for updating a model of a machine learning system is provided (Patent Document 1).
特開2017-120647号公報JP 2017-120647 A
 特許文献1に記載のシステムでは機械学習システムのモデルをトレーニングしているが、機械学習システムのモデルをトレーニングしても処理の目的は変わらない。ところで、1つのエッジデバイスを時間によって異なる用途で使用したい場合がある。例えばエッジデバイスがその用途に応じた機械学習済みモデルを用いて処理を行う場合、エッジデバイスの用途の変更に応じて機械学習済みモデルも変更する必要がある。しかし、例えばエッジデバイスが十分なハードウェアリソースを有していない場合には、エッジデバイスが多数の機械学習済みモデルを記憶し、これらを切り替えて使用することができない。 
 本発明は、エッジデバイスが使用する機械学習済みモデルを時間によって切り替えることを目的とする。
In the system described in Patent Document 1, a machine learning system model is trained. However, the purpose of processing does not change even if the machine learning system model is trained. By the way, there is a case where it is desired to use one edge device for different purposes depending on time. For example, when the edge device performs processing using a machine-learned model corresponding to its application, it is necessary to change the machine-learned model according to a change in the use of the edge device. However, for example, when the edge device does not have sufficient hardware resources, the edge device stores a large number of machine-learned models, and these cannot be switched and used.
An object of the present invention is to switch a machine-learned model used by an edge device according to time.
 本発明は、エッジデバイスに対して、目的の異なる機械学習済みモデルを切り替える機械学習済みモデル切り替えシステムであって、時間に関する時間情報を取得する取得手段と、前記エッジデバイスに、前記時間情報に対応付けられた機械学習済みモデルを取得させるように制御する制御手段と、を備える機械学習済みモデル切り替えシステムを提供する。 The present invention is a machine-learned model switching system for switching machine-learned models having different purposes for an edge device, the acquisition means for acquiring time information relating to time, and the edge device corresponding to the time information There is provided a machine learning model switching system comprising: control means for controlling to acquire an attached machine learned model.
 また、本発明は、目的の異なる機械学習済みモデルを切り替えて使用するエッジデバイスであって、請求項1に記載の機械学習済みモデル切り替えシステムの制御に従って、前記機械学習済みモデルを取得し、現在使用している他の機械学習済みモデルを前記取得された機械学習済みモデルに置き換えるエッジデバイスを提供する。 Further, the present invention is an edge device that switches and uses different machine-learned models for different purposes, and acquires the machine-learned model according to the control of the machine-learned model switching system according to claim 1, An edge device is provided that replaces other machine-learned models in use with the acquired machine-learned model.
 さらに、本発明は、エッジデバイスに対して、目的の異なる機械学習済みモデルを切り替える機械学習済みモデル切り替え方法であって、時間に関する時間情報を取得するステップと、前記エッジデバイスに、前記時間情報に対応付けられた機械学習済みモデルを取得させるように制御するステップと、を備える機械学習済みモデル切り替え方法を提供する。 Further, the present invention provides a machine-learned model switching method for switching a machine-learned model having a different purpose for an edge device, the step of acquiring time information related to time, the edge device including the time information A machine learning model switching method comprising: controlling to obtain an associated machine learned model.
 さらに、本発明は、コンピュータに、エッジデバイスに対して、目的の異なる機械学習済みモデルを切り替える機械学習済みモデル切り替え処理を実行させるためのプログラムであって、時間に関する時間情報を取得するステップと、前記エッジデバイスに、前記時間情報に対応付けられた機械学習済みモデルを取得させるように制御するステップと、を実行させるためのプログラムを提供する。 Furthermore, the present invention is a program for causing a computer to execute a machine-learned model switching process for switching machine-learned models having different purposes with respect to an edge device, and acquiring time information relating to time; And controlling the edge device to acquire a machine-learned model associated with the time information.
 本発明によれば、エッジデバイスが使用する機械学習済みモデルを時間によって切り替えることができる。 According to the present invention, the machine-learned model used by the edge device can be switched over time.
実施形態に係る機械学習済みモデル切り替えシステム100の一例を示す図である。It is a figure which shows an example of the machine learning completed model switching system 100 which concerns on embodiment. サーバー110のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of a server 110. FIG. タイムテーブル310の一例を示す図である。It is a figure which shows an example of the time table. サーバー110の機能構成の一例を示す図である。2 is a diagram illustrating an example of a functional configuration of a server 110. FIG. エッジデバイス120のハードウェア構成の一例を示す図である。2 is a diagram illustrating an example of a hardware configuration of an edge device 120. FIG. エッジデバイス120の機能構成の一例を示す図である。2 is a diagram illustrating an example of a functional configuration of an edge device 120. FIG. エッジデバイス120の機械学習済みモデルを切り替える動作の一例を示すシーケンスチャートである。It is a sequence chart which shows an example of the operation | movement which switches the machine learning completed model of the edge device. 掲示情報320の一例を示す図である。5 is a diagram showing an example of posted information 320. FIG. 機械学習済みモデルを切り替えるスケジュールを最適化する動作の一例を示すシーケンスチャートである。It is a sequence chart which shows an example of the operation | movement which optimizes the schedule which switches a machine learning completed model.
1.構成
 図1は、本実施形態に係る機械学習済みモデル切り替えシステム100の一例を示す図である。機械学習済みモデル切り替えシステム100は、エッジデバイス120が使用する機械学習済みモデルを時間によって切り替えるシステムである。
1. Configuration FIG. 1 is a diagram illustrating an example of a machine-learned model switching system 100 according to the present embodiment. The machine-learned model switching system 100 is a system that switches a machine-learned model used by the edge device 120 according to time.
 機械学習済みモデル切り替えシステム100は、サーバー110と、エッジデバイス120とを備える。なお、図1に示す各装置の数は、例示であり、これに限定されない。サーバー110とエッジデバイス120とは、通信ネットワーク130を介して接続されている。通信ネットワーク130は、例えばインターネットを含んで構成される。 The machine learning model switching system 100 includes a server 110 and an edge device 120. In addition, the number of each apparatus shown in FIG. 1 is an illustration, and is not limited to this. The server 110 and the edge device 120 are connected via a communication network 130. The communication network 130 includes, for example, the Internet.
 図2は、サーバー110のハードウェア構成の一例を示す図である。サーバー110は、目的の異なる複数の機械学習済みモデルをエッジデバイス120に提供する装置である。サーバー110は、例えばプロセッサ111と、メモリ112と、ストレージ113と、通信部114とを備えるコンピュータである。これらの装置は、バス115を介して接続されている。 FIG. 2 is a diagram illustrating an example of a hardware configuration of the server 110. The server 110 is an apparatus that provides a plurality of machine learned models with different purposes to the edge device 120. The server 110 is a computer including a processor 111, a memory 112, a storage 113, and a communication unit 114, for example. These devices are connected via a bus 115.
 プロセッサ111は、プログラムをメモリ112に読み出して実行することにより、各種の処理を実行する。プロセッサ111は、例えばCPU(Central Processing Unit)により構成されてもよい。メモリ112は、プロセッサ111により実行されるプログラムを記憶する。メモリ112は、例えばROM(Read Only Memory)又はRAM(Random Access Memory)により構成されてもよい。ストレージ113は、各種のデータ及びプログラムを記憶する。ストレージ113は、例えばハードディスクドライブ又はフラッシュメモリにより構成されてもよい。ストレージ113には、エッジデバイス120に提供される複数の機械学習済みモデルと、エッジデバイス120が使用する機械学習済みモデルを切り替えるスケジュールを示すタイムテーブル310とが記憶される。通信部114は、通信ネットワーク130に接続された通信インタフェースである。通信部114は、通信ネットワーク130を介してデータ通信を行う。 The processor 111 executes various processes by reading the program into the memory 112 and executing it. The processor 111 may be configured by, for example, a CPU (Central Processing 例 え ば Unit). The memory 112 stores a program executed by the processor 111. The memory 112 may be configured by, for example, a ROM (Read Only Memory) or a RAM (Random Access Memory). The storage 113 stores various data and programs. The storage 113 may be configured by, for example, a hard disk drive or a flash memory. The storage 113 stores a plurality of machine learned models provided to the edge device 120 and a time table 310 indicating a schedule for switching the machine learned models used by the edge device 120. The communication unit 114 is a communication interface connected to the communication network 130. The communication unit 114 performs data communication via the communication network 130.
 図3は、タイムテーブル310の一例を示す図である。この例では、エッジデバイス120は、見守り処理と防犯処理とを行う。見守り処理は、ユーザが安全な状態であるかを観察する処理である。例えば見守り処理では、ユーザの異常が検知され、所定の通知先に検知情報が通知される。見守り処理では、見守り処理を精度よく行うための専用の機械学習済みモデル(以下、「見守り用の機械学習済みモデル」という。)が用いられる。一方、防犯処理は、不審者の侵入がないかを監視する処理である。例えば防犯処理では、不審者の侵入が検知され、所定の通知先に検知情報が通知される。防犯処理では、防犯処理を精度よく行うための専用の機械学習済みモデル(以下、「防犯用の機械学習済みモデル」という。)が用いられる。 FIG. 3 is a diagram illustrating an example of the time table 310. In this example, the edge device 120 performs a watching process and a security process. The watching process is a process of observing whether the user is in a safe state. For example, in the watching process, a user abnormality is detected, and detection information is notified to a predetermined notification destination. In the watching process, a dedicated machine-learned model (hereinafter referred to as “watched machine-learned model”) for accurately performing the watching process is used. On the other hand, the crime prevention process is a process for monitoring whether or not a suspicious person has entered. For example, in the crime prevention process, intrusion of a suspicious person is detected, and detection information is notified to a predetermined notification destination. In the security process, a dedicated machine-learned model (hereinafter referred to as a “machine-learned model for crime prevention”) for accurately performing the security process is used.
 この例では、タイムテーブル310には、6時から22時までの時間を示す時間情報と対応付けて、見守り用の機械学習済みモデルを識別する識別情報が記憶される。これは、エッジデバイス120は、6時から22時までの間は、見守り用の機械学習済みモデルを用いて見守り処理を行うことを示す。また、タイムテーブル310には、22時から翌6時までの時間を示す時間情報と対応付けて、防犯用の機械学習済みモデルを識別する識別情報が記憶される。これは、エッジデバイス120は、22時から翌6時までの間は、防犯用の機械学習済みモデルを用いて防犯処理を行うことを示す。この時間情報と機械学習済みモデルとの対応関係は、例えばユーザ又はサーバー110の管理者により予め定められてもよい。 In this example, in the time table 310, identification information for identifying a machine-learned model for watching is stored in association with time information indicating the time from 6:00 to 22:00. This indicates that the edge device 120 performs the watching process using the machine-learned model for watching from 6:00 to 22:00. Further, the time table 310 stores identification information for identifying a machine-learned model for crime prevention in association with time information indicating the time from 22:00 to next 6:00. This indicates that the edge device 120 performs the crime prevention process using the machine-learned model for crime prevention from 22:00 to next 6 o'clock. The correspondence between the time information and the machine-learned model may be determined in advance by a user or an administrator of the server 110, for example.
 図4は、サーバー110の機能構成の一例を示す図である。サーバー110は、更新手段211と、第1取得手段212と、掲示手段213と、制御手段214と、第2取得手段215と、推定手段216と、変更手段217とを有する。これらの機能は、メモリ112又はストレージ113に記憶されたサーバプログラムと、このサーバプログラムを実行するプロセッサ111との協働により、プロセッサ111が演算を行い又は通信部114による通信を制御することにより実現される。 FIG. 4 is a diagram illustrating an example of a functional configuration of the server 110. The server 110 includes an update unit 211, a first acquisition unit 212, a posting unit 213, a control unit 214, a second acquisition unit 215, an estimation unit 216, and a change unit 217. These functions are realized by the processor 111 performing calculations or controlling communication by the communication unit 114 in cooperation with the server program stored in the memory 112 or the storage 113 and the processor 111 executing the server program. Is done.
 更新手段211は、学習器を用いて学習データを機械学習することにより、ストレージ113に記憶された機械学習済みモデルを更新する。この「更新」とは、少なくとも一部を改めることをいう。例えば更新後の機械学習済みモデルは、更新前の機械学習済みモデルよりも精度が高くなる。学習用データは、機械学習に用いられるデータである。学習データは、例えばエッジデバイス120の撮像部125により撮影された画像を示す画像データであってもよい。この場合、この画像データは、エッジデバイス120からサーバー110に所定の時間間隔で送信される。 The update means 211 updates the machine learned model stored in the storage 113 by machine learning of learning data using a learning device. This “update” means to modify at least a part. For example, the machine-learned model after update has higher accuracy than the machine-learned model before update. The learning data is data used for machine learning. The learning data may be image data indicating an image captured by the imaging unit 125 of the edge device 120, for example. In this case, the image data is transmitted from the edge device 120 to the server 110 at a predetermined time interval.
 第1取得手段212は、タイムテーブル310から時間情報を取得する。この時間情報は、機械学習済みモデルを切り替える時間になったか否かの判定に用いられる。 The first acquisition unit 212 acquires time information from the time table 310. This time information is used to determine whether or not it is time to switch the machine-learned model.
 掲示手段213は、第1取得手段212により取得された時間情報に基づいてエッジデバイス120が使用する機械学習済みモデルを切り替える時間になったと判定されると、機械学習済みモデルの切り替えがあることを掲示する。この「掲示」とは、情報を提示することをいう。この掲示は、例えば機械学習済みモデルの切り替えがあることを示す情報をストレージ113に記憶させることにより実現されてもよい。 When the posting unit 213 determines that it is time to switch the machine-learned model used by the edge device 120 based on the time information acquired by the first acquisition unit 212, the posting unit 213 indicates that the machine-learned model is switched. Post it. This “posting” means presenting information. This posting may be realized, for example, by storing in the storage 113 information indicating that a machine-learned model is switched.
 制御手段214は、エッジデバイス120に機械学習済みモデルを取得させて、エッジデバイス120が使用する機械学習済みモデルを置き換えるように制御する。この制御は、例えば機械学習済みモデルを取得させて、機械学習済みモデルを置き換えさせるための制御信号を送信することにより実現されてもよい。 The control unit 214 controls the edge device 120 to acquire the machine learned model and replace the machine learned model used by the edge device 120. This control may be realized, for example, by acquiring a machine-learned model and transmitting a control signal for replacing the machine-learned model.
 第2取得手段215は、エッジデバイス120の撮像部125により撮影された画像を示す画像データを取得する。この画像データは、学習データとして用いられる。 The second acquisition unit 215 acquires image data indicating an image captured by the imaging unit 125 of the edge device 120. This image data is used as learning data.
 推定手段216は、第2取得手段215により取得された画像データを解析することにより、機械学習済みモデルを用いた処理を開始する条件を満たすようになる時間を推定する。この解析には、例えば画像認識処理が含まれてもよい。この条件は、処理毎に予め定められる。例えばユーザがある状態のときに処理が行われる場合、この処理を開始する条件は、ユーザがその状態になったことであってもよい。 The estimation means 216 analyzes the image data acquired by the second acquisition means 215 to estimate the time that satisfies the condition for starting the process using the machine-learned model. This analysis may include, for example, image recognition processing. This condition is predetermined for each process. For example, when processing is performed when the user is in a certain state, the condition for starting this processing may be that the user has entered that state.
 変更手段217は、タイムテーブル310に含まれる時間情報を、推定手段216により推定された時間を示す時間情報に変更する。 The changing unit 217 changes the time information included in the time table 310 to time information indicating the time estimated by the estimating unit 216.
 図5は、エッジデバイス120のハードウェア構成の一例を示す図である。エッジデバイス120は、例えば監視カメラであり、撮影された画像を示す画像データを機械学習済みモデルに入力することにより、所定の処理を行う。エッジデバイス120は、時間によって異なる処理を行う。 FIG. 5 is a diagram illustrating an example of a hardware configuration of the edge device 120. The edge device 120 is, for example, a surveillance camera, and performs predetermined processing by inputting image data indicating a captured image to a machine-learned model. The edge device 120 performs different processing depending on time.
 エッジデバイス120は、例えばプロセッサ121と、メモリ122と、ストレージ123と、通信部124と、撮像部125とを備えるコンピュータである。これらの装置は、バス126を介して接続されている。プロセッサ121、メモリ122、ストレージ123、通信部124、及びバス126は、上述したプロセッサ111、メモリ112、ストレージ113、通信部114、及びバス115と同様であるため、その説明を省略する。ただし、ストレージ123は、多数の機械学習済みモデルを記憶するだけの記憶容量を有していない。例えばストレージ123には、エッジデバイス120が現在行っている処理に用いられる1つの機械学習済みモデルだけが記憶される。撮像部125は、画像を撮影する。撮像部125は、例えば光学系を用いて撮像素子上に像を結ばせて、画像を撮影する。この画像は、静止画であってもよいし、動画であってもよい。 The edge device 120 is a computer including a processor 121, a memory 122, a storage 123, a communication unit 124, and an imaging unit 125, for example. These devices are connected via a bus 126. Since the processor 121, the memory 122, the storage 123, the communication unit 124, and the bus 126 are the same as the processor 111, the memory 112, the storage 113, the communication unit 114, and the bus 115 described above, description thereof is omitted. However, the storage 123 does not have a storage capacity for storing many machine-learned models. For example, the storage 123 stores only one machine-learned model used for processing currently performed by the edge device 120. The imaging unit 125 captures an image. The imaging unit 125 shoots an image by forming an image on the imaging element using, for example, an optical system. This image may be a still image or a moving image.
 図6は、エッジデバイス120の機能構成の一例を示す図である。エッジデバイス120は、確認手段221と、取得手段222と、置換手段223と、切替手段224とを有する。これらの機能は、メモリ122又はストレージ123に記憶されたクライアントプログラムと、このプログラムプログラムを実行するプロセッサ121との協働により、プロセッサ121が演算を行い又は通信部124による通信を制御することにより実現される。 FIG. 6 is a diagram illustrating an example of a functional configuration of the edge device 120. The edge device 120 includes a confirmation unit 221, an acquisition unit 222, a replacement unit 223, and a switching unit 224. These functions are realized by the processor 121 performing calculations or controlling communication by the communication unit 124 in cooperation with the client program stored in the memory 122 or the storage 123 and the processor 121 that executes the program program. Is done.
 確認手段221は、サーバー110の掲示内容に基づいて、機械学習済みモデルの切り替えがあるかを確認する。この確認は、例えばサーバー110のストレージ113に記憶された掲示情報320をポーリングすることにより行われてもよい。 The confirmation unit 221 confirms whether there is a switch of the machine-learned model based on the posted contents of the server 110. This confirmation may be performed by polling the bulletin information 320 stored in the storage 113 of the server 110, for example.
 取得手段222は、サーバー110から機械学習済みモデルを取得する。この機械学習済みモデルの取得は、より具体的には、プル型配信により行われる。すなわち、機械学習済みモデルは、取得手段222からの要求に応じて送信される。このとき、機械学習済みモデルは、暗号化通信方式を用いて送信されてもよい。この暗号化通信方式とは、データを暗号化して通信する通信方式をいう。暗号化通信方式には、SSL(Secure Sockets Layer)やTLS(Transport Layer Security)等の周知の暗号化通信方式が用いられてもよい。 The acquisition unit 222 acquires a machine learned model from the server 110. More specifically, acquisition of the machine-learned model is performed by pull distribution. That is, the machine-learned model is transmitted in response to a request from the acquisition unit 222. At this time, the machine-learned model may be transmitted using an encrypted communication method. This encrypted communication method refers to a communication method in which data is encrypted for communication. As the encrypted communication method, a known encrypted communication method such as SSL (Secure Sockets Layer) or TLS (Transport Layer Security) may be used.
 置換手段223は、サーバー110の制御手段214の制御に従って、ストレージ123に記憶された(現在使用している)機械学習済みモデルを取得手段222が取得した機械学習済みモデルに置き換える。この置き換えとは、新たな機械学習済みモデルを使用可能な状態にすることをいう。置き換えは、例えばストレージ123に新たな機械学習済みモデルが記憶され、旧機械学習済みモデルに代えて新たな機械学習済みモデルが使用されるように設定されることにより実現されてもよい。 The replacement unit 223 replaces the machine-learned model stored in the storage 123 (currently used) with the machine-learned model acquired by the acquisition unit 222 according to the control of the control unit 214 of the server 110. This replacement means making a new machine-learned model usable. The replacement may be realized, for example, by storing a new machine learned model in the storage 123 and setting the new machine learned model to be used instead of the old machine learned model.
 切替手段224は、機械学習済みモデルが置き換えられると、エッジデバイス120が行う処理を、旧機械学習済みモデルを用いた処理から新たな機械学習済みモデルを用いた処理に切り替える。これらの処理は、互いに異なる時間に行われる。 When the machine-learned model is replaced, the switching unit 224 switches the process performed by the edge device 120 from the process using the old machine-learned model to the process using the new machine-learned model. These processes are performed at different times.
2.動作
2.1 機械学習済みモデルの切り替え
 図7は、エッジデバイス120の機械学習済みモデルを切り替える動作の一例を示すシーケンスチャートである。ここでは、サーバー110のストレージ113には、見守り用の機械学習済みモデル及び防犯用の機械学習済みモデルが記憶されているものとする。これらの機械学習済みモデルは、更新手段211により随時更新される。また、エッジデバイス120のストレージ123には、見守り用の機械学習済みモデルが記憶されており、エッジデバイス120は、見守り用の機械学習済みモデルを用いて見守り処理を行っているものとする。
2. Operation 2.1 Switch of Machine Learned Model FIG. 7 is a sequence chart illustrating an example of an operation of switching the machine learned model of the edge device 120. Here, it is assumed that the storage 113 of the server 110 stores a machine-learned model for watching and a machine-learned model for crime prevention. These machine-learned models are updated as needed by the updating unit 211. Further, it is assumed that the machine learning completed model for watching is stored in the storage 123 of the edge device 120, and the edge device 120 performs the watching process using the machine learning completed model for watching.
 サーバー110は、第1取得手段212によりタイムテーブル310から時間情報を読み出し、この時間情報に基づいてタイムテーブル310に含まれるいずれかの時間情報が示す起点となる時間になったか否かを判定する(ステップ401)。この判定は、例えばサーバー110の内蔵時計に基づいて行われてもよい。起点となる時間になっていない場合(ステップ401の判定がNO)、起点となる時間になるまでこの判定を繰り返す。一方、例えば図3に示すタイムテーブル310に含まれる時間情報が示す22時から翌6時という時間の起点である22時になると(ステップ401の判定がYES)、サーバー110は、機械学習済みモデルの切り替えがあることを示す掲示情報320を掲示手段213によりストレージ113に記憶させる(ステップ402)。 The server 110 reads the time information from the time table 310 by the first acquisition unit 212, and determines whether or not the time that is the starting point indicated by any of the time information included in the time table 310 is reached based on the time information. (Step 401). This determination may be performed based on, for example, a built-in clock of the server 110. If it is not the start time (NO at Step 401), this determination is repeated until the start time is reached. On the other hand, for example, at 22:00, which is the starting point of the time from 22:00 indicated by the time information included in the time table 310 illustrated in FIG. 3 (the determination in step 401 is YES), the server 110 determines that the machine-learned model The posting information 320 indicating that there is switching is stored in the storage 113 by the posting means 213 (step 402).
 図8は、掲示情報320の一例を示す図である。図3に示すタイムテーブル310では、22時から翌6時までの時間を示す時間情報と対応付けて、防犯用の機械学習済みモデルの識別情報が記憶されている。例えば22時になった場合、エッジデバイス120を識別するデバイスID「001」と、機械学習済みモデルの切り替えがあることを示す「あり」という情報と、防犯用の機械学習済みモデルの取得先、すなわちストレージ113において防犯用の機械学習済みモデルが記憶された場所を示すアドレス「http://www.example.com/MCP」とが対応付けて記憶される。 FIG. 8 is a diagram illustrating an example of the posting information 320. In the time table 310 shown in FIG. 3, identification information of a machine-learned model for crime prevention is stored in association with time information indicating the time from 22:00 to next 6:00. For example, at 22:00, the device ID “001” for identifying the edge device 120, the information “Yes” indicating that there is a switch of the machine-learned model, and the acquisition destination of the machine-learned model for crime prevention, In the storage 113, an address “http://www.example.com/MCP” indicating the location where the machine-learned model for crime prevention is stored is stored in association with it.
 エッジデバイス120は、所定の時間間隔で、ストレージ113に記憶された掲示情報320を確認手段221によりポーリングし(ステップ403)、機械学習済みモデルの切り替えがあるか否かを確認手段221により判定する(ステップ404)。例えば掲示情報320において、デバイスID「001」と対応付けて、機械学習済みモデルの切り替えがないことを示す「なし」という情報が記憶されている場合、学習済みモデルの切り替えがないと判定される(ステップ404の判定がNO)。この場合、処理は上述したステップ403に戻り、所定の時間間隔を経てから再び掲示情報320のポーリングが行われる。一方、図8に示すように、掲示情報320において、デバイスID「001」と対応付けて、機械学習済みモデルの切り替えがあることを示す「あり」という情報が記憶されている場合、機械学習済みモデルの切り替えがあると判定される(ステップ404の判定がYES)。この場合、次のステップに進む。 The edge device 120 polls the posting information 320 stored in the storage 113 at predetermined time intervals by the confirmation unit 221 (step 403), and determines whether or not the machine-learned model is switched by the confirmation unit 221. (Step 404). For example, in the bulletin information 320, when information “None” indicating that there is no switching of the machine-learned model is stored in association with the device ID “001”, it is determined that there is no switching of the learned model. (NO at step 404). In this case, the process returns to step 403 described above, and the posting information 320 is polled again after a predetermined time interval. On the other hand, as shown in FIG. 8, in the bulletin information 320, when the information “Yes” indicating that there is a switch of the machine-learned model is stored in association with the device ID “001”, the machine learning has been completed. It is determined that there is a model change (YES in step 404). In this case, the process proceeds to the next step.
 サーバー110は、上述したステップ403に応じて、暗号化通信方式を用いて次の機械学習済みモデルを取得させて、ストレージ123に記憶された機械学習済みモデルを置き換えさせるための制御信号を、制御手段214によりデバイスIDが「001」のエッジデバイス120に送信する(ステップ405)。この制御信号には、暗号化通信方式を指定する情報が含まれる。 In accordance with step 403 described above, the server 110 obtains the next machine learned model using the encrypted communication method, and controls the control signal for replacing the machine learned model stored in the storage 123. The means 214 transmits the result to the edge device 120 whose device ID is “001” (step 405). This control signal includes information specifying the encrypted communication method.
 エッジデバイス120は、受信された制御信号に従って、暗号化通信方式を用いて、図8に示される掲示情報320に含まれる「http://www.example.com/MCP」というアドレスにより示されるストレージ113内の場所から取得手段222により防犯用の機械学習済みモデルを取得する(ステップ406)。具体的には、取得手段222がサーバー110に防犯用の機械学習済みモデルを要求する信号を送信し、この信号の要求に応じてサーバー110から送信された防犯用の機械学習済みモデルを受信する。 The edge device 120 uses the encrypted communication method in accordance with the received control signal, and the storage indicated by the address “http://www.example.com/MCP” included in the bulletin information 320 shown in FIG. A machine-learned model for crime prevention is acquired from the location in 113 by the acquisition means 222 (step 406). Specifically, the acquisition unit 222 transmits a signal requesting a machine-learned model for crime prevention to the server 110, and receives the machine-learned model for crime prevention transmitted from the server 110 in response to the request for this signal. .
 エッジデバイス120は、受信された制御信号に従って、ストレージ123に記憶された見守り用の機械学習済みモデルを置換手段223により防犯用の機械学習済みモデルに置き換える(ステップ407)。例えばストレージ123に記憶された見守り用の機械学習済みモデルが削除された後、防犯用の機械学習済みモデルが記憶され、見守り用の機械学習済みモデルに代えて防犯用の機械学習済みモデルが使用されるように設定される。 The edge device 120 replaces the machine-learned model for watching stored in the storage 123 with the machine-learned model for crime prevention by the replacement unit 223 according to the received control signal (step 407). For example, after a machine-learned model for watching stored in the storage 123 is deleted, a machine-learned model for crime prevention is stored, and a machine-learned model for crime prevention is used instead of the machine-learned model for watching To be set.
 エッジデバイス120は、見守り用の機械学習済みモデルが防犯用の機械学習済みモデルに置き換えられると、切替手段224により見守り処理を防犯処理に切り替える(ステップ408)。これより、エッジデバイス120は、22時から翌6時までは、防犯用の機械学習済みモデルを用いて防犯処理を行う。また、翌6時になると、上述したステップ402~408と同様の処理が行われ、ストレージ123に記憶された防犯用の機械学習済みモデルが見守り用の機械学習済みモデルに置き換えられ、防犯処理が見守り処理に切り替えられる。これにより、エッジデバイス120は、6時から22時までは、見守り用の機械学習済みモデルを用いて見守り処理を行う。 When the machine-learned model for watching is replaced with the machine-learned model for security, the edge device 120 switches the watching process to the security process by the switching unit 224 (step 408). As a result, the edge device 120 performs crime prevention processing using the machine-learned model for crime prevention from 22:00 to next 6 o'clock. At the next 6 o'clock, the same processing as steps 402 to 408 described above is performed, and the machine-learned model for crime prevention stored in the storage 123 is replaced with the machine-learned model for watching, and the crime prevention process is watched over. Switch to processing. Thereby, the edge device 120 performs the watching process from 6 o'clock to 22:00 using the machine learning completed model for watching.
2.2 スケジュールの最適化
 図9は、機械学習済みモデルを切り替えるスケジュールを最適化する動作の一例を示すシーケンスチャートである。ここでは、撮像部125は、ユーザが生活する場所を撮影しているものとする。
2.2 Optimization of Schedule FIG. 9 is a sequence chart showing an example of an operation for optimizing a schedule for switching machine-learned models. Here, it is assumed that the imaging unit 125 is shooting a place where the user lives.
 エッジデバイス120は、撮像部125により撮影された画像を示す画像データを所定の時間間隔でサーバー110に送信する(ステップ501)。この画像データを第2取得手段215にて受信すると、サーバー110は、この画像データをストレージ113に記憶させる。サーバー110は、ストレージ113に記憶された画像データを解析することにより、推定手段216により見守り処理及び防犯処理を開始するのに適した時間を推定する(ステップ502)。例えば推定手段216は、画像データに画像認識処理を施すことにより、ユーザ及びユーザの行動を認識する。見守り処理は、ユーザが起きている間に行われるのが好ましい。この場合、推定手段216は、画像認識の結果を機械学習することにより、ユーザが起床する時間を推定し、推定された時間を見守り処理を開始するのに適した時間として用いる。一方、防犯処理は、ユーザが寝ている間に行われるのが好ましい。この場合、推定手段216は、画像認識の結果を機械学習することにより、ユーザが就寝する時間を推定し、推定された時間を防犯処理を開始するのに適した時間として用いる。サーバー110は、推定された時間に基づいて、変更手段217によりタイムテーブル310を変更する(ステップ503)。例えば、防犯処理を開始するのに適した時間として21時が推定され、見守り処理を開始するのに適した時間として5時が推定された場合を想定する。この場合、図3に示すタイムテーブル310において、22時から翌6時を示す時間情報が、21時から翌5時を示す時間情報に変更される。また、6時から22時を示す時間情報が、5時から21時を示す時間情報に変更される。 The edge device 120 transmits image data indicating an image captured by the imaging unit 125 to the server 110 at predetermined time intervals (step 501). When the image data is received by the second acquisition unit 215, the server 110 stores the image data in the storage 113. The server 110 analyzes the image data stored in the storage 113 to estimate a time suitable for starting the watching process and the security process by the estimation unit 216 (step 502). For example, the estimation unit 216 recognizes the user and the user's behavior by performing image recognition processing on the image data. The watching process is preferably performed while the user is awake. In this case, the estimation unit 216 estimates the time when the user wakes up by machine learning of the result of image recognition, and uses it as a time suitable for watching the estimated time and starting the processing. On the other hand, the security process is preferably performed while the user is sleeping. In this case, the estimating unit 216 estimates the time when the user goes to bed by machine learning the result of the image recognition, and uses the estimated time as a time suitable for starting the crime prevention process. The server 110 changes the time table 310 by the changing means 217 based on the estimated time (step 503). For example, it is assumed that 21:00 is estimated as a time suitable for starting the crime prevention process, and 5 o'clock is estimated as a time suitable for starting the watching process. In this case, in the time table 310 shown in FIG. 3, the time information indicating from 22:00 to next 6:00 is changed to time information indicating from 21:00 to next 5:00. Also, the time information indicating 6 o'clock to 22:00 is changed to time information indicating 5 o'clock to 21 o'clock.
 なお、上述した実施形態では、「第1取得手段212」、「取得手段222」、「ストレージ113」、「ストレージ123」、「見守り用の機械学習済みモデル」、「防犯用の機械学習済みモデル」、「見守り処理」、「防犯処理」が、それぞれ、本発明に係る「取得手段」、「第2取得手段」、「第1記憶手段」、「第2記憶手段」、「第1機械学習済みモデル」、「第2機械学習済みモデル」、「第1処理」、「第2処理」として用いられている。 In the above-described embodiment, “first acquisition unit 212”, “acquisition unit 222”, “storage 113”, “storage 123”, “watched machine-learned model”, “crime-proof machine-learned model” ”,“ Watching process ”,“ crime prevention process ”are respectively“ acquisition means ”,“ second acquisition means ”,“ first storage means ”,“ second storage means ”,“ first machine learning ”according to the present invention. Used model ”,“ second machine learned model ”,“ first process ”, and“ second process ”.
 以上説明した実施形態によれば、機械学習済みモデルを切り替える時間になると、エッジデバイス120が使用している機械学習済みモデルとは目的の異なる機械学習済みモデルがサーバー110からエッジデバイス120に提供されるため、エッジデバイス120が使用する機械学習済みモデルを時間によって切り替えることができる。また、エッジデバイス120は、多数の機械学習済みモデルを記憶するだけの記憶容量を有していなくてもよいため、エッジデバイス120が必要なハードウェアリソースを減らすことができる。また、機械学習済みモデルの更新には高い処理能力が必要となるが、上述した実施形態では、サーバー110が新機械学習済みモデルを更新しているため、エッジデバイス120が高い処理能力を有していなくてもよい。 According to the embodiment described above, when it is time to switch the machine-learned model, a machine-learned model whose purpose is different from the machine-learned model used by the edge device 120 is provided from the server 110 to the edge device 120. Therefore, the machine-learned model used by the edge device 120 can be switched according to time. In addition, since the edge device 120 does not have to have a storage capacity for storing a large number of machine-learned models, the hardware resources necessary for the edge device 120 can be reduced. In addition, although high processing capability is required for updating the machine-learned model, in the above-described embodiment, since the server 110 updates the new machine-learned model, the edge device 120 has high processing capability. It does not have to be.
 さらに、上述した実施形態では、掲示情報320及び機械学習済みモデルをエッジデバイス120からのプル配信、すなわちエッジデバイス120からの要求に応じて送信している。仮に、サーバー110がこれらのデータをプッシュ型配信、すなわちエッジデバイス120から要求しなくてもサーバー110から送信する構成を採用した場合には、エッジデバイス120がサーバー110だけでなく、サーバー110を装った他の装置からプッシュ側配信で送信される情報をも受け取れるようになる。この場合、悪意ある他の装置により送信された情報により被害がもたらされるリスクがある。これに対し、上述した実施形態のように、これらのデータをプル配信、すなわちエッジデバイス120からの要求に応じてサーバー110から送信する場合には、このようなリスクが減るため、情報セキュリティが高くなる。 Furthermore, in the above-described embodiment, the bulletin information 320 and the machine-learned model are transmitted in response to a pull distribution from the edge device 120, that is, in response to a request from the edge device 120. If the server 110 adopts a push-type delivery, that is, a configuration in which the server 110 transmits the data without requesting it from the edge device 120, the edge device 120 impersonates the server 110 as well as the server 110. It is also possible to receive information transmitted by push-side distribution from other devices. In this case, there is a risk that damage is caused by information transmitted by another malicious device. On the other hand, when such data is transmitted from the server 110 in response to a request from the edge device 120 as in the above-described embodiment, such a risk is reduced, so that information security is high. Become.
 さらに、上述した実施形態によれば、暗号化通信方式を用いて機械学習済みモデルが取得されるため、悪意ある第三者により機械学習済みモデルが取得されるのを防ぐことができる。さらに、上述した実施形態によれば、機械学習済みモデルを切り替えるスケジュールがユーザの状態に応じて最適化されるため、エッジデバイス120はユーザの状態に応じたスケジュールに沿って処理を切り替えることができる。 Furthermore, according to the above-described embodiment, since the machine-learned model is acquired using the encrypted communication method, it is possible to prevent the machine-learned model from being acquired by a malicious third party. Furthermore, according to the above-described embodiment, since the schedule for switching the machine-learned model is optimized according to the user state, the edge device 120 can switch the process according to the schedule according to the user state. .
3.変形例
 本発明は上述した実施形態に限定されない。上述した実施形態に対し、種々の変形がなされてもよい。また、以下の変形例が組み合わせて実施されてもよい。
3. The present invention is not limited to the above-described embodiment. Various modifications may be made to the above-described embodiment. Moreover, the following modifications may be implemented in combination.
 上述した実施形態において、エッジデバイス120は、監視カメラに限定されない。エッジデバイス120は、機械学習済みモデルを用いて処理を行う装置であれば、どのような装置であってもよい。また、エッジデバイス120は、センサーを備え、このセンサーから出力されたセンサーデータが、学習データとして用いられてもよい。 In the above-described embodiment, the edge device 120 is not limited to the monitoring camera. The edge device 120 may be any device as long as it performs processing using a machine-learned model. The edge device 120 may include a sensor, and sensor data output from the sensor may be used as learning data.
 上述した実施形態において、エッジデバイス120が切り替える機械学習済みモデルの数は、2つに限定されない。エッジデバイス120は、3つ以上の機械学習済みモデルを切り替えて使用してもよい。また、機械学習済みモデルは、見守り用の機械学習済みモデル及び防犯用の機械学習済みモデルに限定されない。例えば、機械学習済みモデルには、天候を観測する処理を精度よく行うための専用の機械学習済みモデルが含まれてもよい。要するに、複数の機械学習済みモデルは、互いに目的の異なる機械学習済みモデルであれば、どのような処理に用いられる機械学習済みモデルであってもよい。 In the embodiment described above, the number of machine learned models that the edge device 120 switches is not limited to two. The edge device 120 may switch between three or more machine learned models. The machine-learned model is not limited to the machine-learned model for watching and the machine-learned model for crime prevention. For example, the machine-learned model may include a dedicated machine-learned model for accurately performing the process of observing the weather. In short, the plurality of machine-learned models may be machine-learned models used for any process as long as they are machine-learned models having different purposes.
 上述した実施形態において、機械学習のアルゴリズムは、例えばコンピュータ上において、与えられたデータから機械学習した結果に基づいてモデルを生成し、そのモデルに対してさらに新たな入力データを入力することで、その入力データから予測される事象を出力するための、いわゆる教師あり学習のアルゴリズムであってもよい。ただし、機械学習用のアルゴリズムは、いわゆる教師あり学習のアルゴリズムに限定されず、教師なし学習、半教師あり学習、強化学習、表現学習等の機械学習用のアルゴリズムであってもよい。また、機械学習用のアルゴリズムは、データマイニングやディープラーニング等の、その他の学習用のアルゴリズムを含んでもよい。なお、これらの学習用のアルゴリズムは、例えば決定木学習、相関ルール学習、ニューラルネットワーク、遺伝的プログラミング、帰納論理プログラミング、サポートベクターマシン、クラスタリング、ベイジアンネットワーク等の各種の技法乃至技術を用いたものが含まれる。要するに、機械学習用のアルゴリズムは、データ提供者により提供される何らかのデータとともに処理されて、その処理の結果、ユーザが得たい情報を出力するものであればよい。 In the embodiment described above, the machine learning algorithm generates a model based on the result of machine learning from given data, for example, on a computer, and inputs new input data to the model. A so-called supervised learning algorithm for outputting an event predicted from the input data may be used. However, the machine learning algorithm is not limited to a so-called supervised learning algorithm, and may be an algorithm for machine learning such as unsupervised learning, semi-supervised learning, reinforcement learning, and expression learning. Further, the algorithm for machine learning may include other learning algorithms such as data mining and deep learning. Note that these learning algorithms use various techniques or techniques such as decision tree learning, correlation rule learning, neural network, genetic programming, inductive logic programming, support vector machine, clustering, and Bayesian network. included. In short, any machine learning algorithm may be used as long as it is processed together with some data provided by the data provider and outputs information desired by the user as a result of the processing.
 上述した実施形態において、機械学習済みモデルが記憶される場所は、サーバー110のストレージ113に限定されない。例えば通信ネットワーク130にストレージ装置が接続されている場合、機械学習済みモデルは、ストレージ113に代えてこのストレージ装置に記憶されてもよい。この場合、掲示情報320には、このストレージ装置内の場所を示すアドレスが含まれる。そして、エッジデバイス120は、このアドレスに基づいて、ストレージ装置から機械学習済みモデルを取得する。 In the above-described embodiment, the location where the machine-learned model is stored is not limited to the storage 113 of the server 110. For example, when a storage device is connected to the communication network 130, the machine-learned model may be stored in this storage device instead of the storage 113. In this case, the posting information 320 includes an address indicating a location in the storage apparatus. Then, the edge device 120 acquires a machine learned model from the storage device based on this address.
 上述した実施形態において、エッジデバイス120により機械学習済みモデルが取得されたことに応じて、掲示情報320が更新されてもよい。機械学習済みモデルが取得されたか否かの判定は、例えばエッジデバイス120から新機械学習済みモデルを取得したことを示す情報が取得されたか否かに基づいて行われてもよい。デバイスIDが「001」のエッジデバイス120により機械学習済みモデルが取得された場合、図8に示す掲示情報320において、デバイスID「001」と対応付けて記憶された機械学習済みモデルの切り替えの有無を示す情報が「あり」から「なし」に変更される。また、機械学習済みモデルの取得先が該当しないことを示す「‐」に変更される。これにより、エッジデバイス120が取得済みの機械学習済みモデルを再度取得しようとするのを防ぐことができる。 In the above-described embodiment, the posting information 320 may be updated in response to the machine-learned model acquired by the edge device 120. The determination as to whether or not a machine-learned model has been acquired may be made based on whether or not information indicating that a new machine-learned model has been acquired from the edge device 120, for example. When a machine-learned model is acquired by the edge device 120 with the device ID “001”, whether or not the machine-learned model stored in association with the device ID “001” in the bulletin information 320 illustrated in FIG. Is changed from “Yes” to “No”. The machine learning model is changed to “-” indicating that the acquisition destination of the model is not applicable. Thereby, it is possible to prevent the edge device 120 from trying to acquire the acquired machine-learned model again.
 機械学習済みモデル切り替えシステム100の機能を実現する主体は、上述した実施形態で説明した例に限定されない。例えばサーバー110の機能の一部をエッジデバイス120又は外部装置が有していてよい。例えば、AI(Artificial intelligence)ベンダー等の提供者が使用する外部装置がサーバー110に代えて更新手段211を有してもよい。この場合、外部装置は、学習データを用いて機械学習済みモデルを更新し、更新された機械学習済みモデルをサーバー110に送信する。このように、機械学習済みモデルは提供者側で更新され、サーバー110に登録されてもよい。他の例において、エッジデバイス120がサーバー110に代えて推定手段216を有してもよい。この場合、推定手段216により推定された時間を示す時間情報がサーバー110に送信される。また、エッジデバイス120の機能の一部をサーバー110又は外部装置が有していてもよい。 The subject that realizes the function of the machine learning model switching system 100 is not limited to the example described in the above embodiment. For example, the edge device 120 or an external device may have a part of the function of the server 110. For example, an external device used by a provider such as an AI (Artificial Intelligent) vendor may have the updating unit 211 instead of the server 110. In this case, the external device updates the machine learned model using the learning data, and transmits the updated machine learned model to the server 110. As described above, the machine-learned model may be updated on the provider side and registered in the server 110. In another example, the edge device 120 may include the estimation unit 216 instead of the server 110. In this case, time information indicating the time estimated by the estimating means 216 is transmitted to the server 110. Further, the server 110 or an external device may have a part of the function of the edge device 120.
 機械学習済みモデル切り替えシステム100において行われる処理のステップは、上述した実施形態で説明した例に限定されない。この処理のステップは、矛盾のない限り、入れ替えられてもよい。また、本発明は、機械学習済みモデル切り替えシステム100において行われる機械学習済みモデル切り替え方法として提供されてもよい。 The steps of processing performed in the machine learning completed model switching system 100 are not limited to the example described in the above embodiment. The steps of this process may be interchanged as long as there is no contradiction. In addition, the present invention may be provided as a machine-learned model switching method performed in the machine-learned model switching system 100.
 本発明は、サーバー110又はエッジデバイス120において実行されるプログラムとして提供されてもよい。このプログラムは、インターネットなどの通信回線を介してダウンロードされてもよいし、磁気記録媒体(磁気テープ、磁気ディスクなど)、光記録媒体(光ディスクなど)、光磁気記録媒体、半導体メモリなどの、コンピュータが読取可能な記録媒体に記録した状態で提供されてもよい。 The present invention may be provided as a program executed on the server 110 or the edge device 120. This program may be downloaded via a communication line such as the Internet, or a computer such as a magnetic recording medium (magnetic tape, magnetic disk, etc.), an optical recording medium (optical disk, etc.), a magneto-optical recording medium, or a semiconductor memory. May be provided in a state of being recorded on a readable recording medium.
 上述した実施形態において、撮像部125により撮影された画像を示す画像データを解析することにより、機械学習済みモデルを切り替えるタイミングが決定されてもよい。この場合、エッジデバイス120は、撮像部125により撮影された画像を示す画像データを解析することにより、機械学習済みモデルを用いた処理を開始する条件を満たすようになったか否かを判定する。エッジデバイス120は、この条件を満たすようになると、その旨を示す情報をサーバー110に送信する。この情報は、機械学習済みモデルを用いた処理を開始する条件を満たす時に送信されるものであるため、時間に関する情報である。したがって、この変形例では、この情報は時間情報として用いられる。この情報を受信すると、サーバー110は、対応する機械学習済みモデルをエッジデバイス120に取得させるように制御してもよい。例えば、ユーザが就寝した場合には、防犯処理を開始する条件を満たすようになる。したがって、画像データを解析することによりユーザが就寝したと判定されると、これに応じて、防犯処理に用いられる防犯用の機械学習済みモデルを取得させるようにエッジデバイス120が制御されてもよい。この変形例によれば、ユーザの状態に応じて機械学習済みモデルが切り替えられるため、エッジデバイス120はユーザの状態に応じたタイミングで処理を切り替えることができる。 In the embodiment described above, the timing for switching the machine-learned model may be determined by analyzing image data indicating an image captured by the imaging unit 125. In this case, the edge device 120 determines whether or not the condition for starting the process using the machine-learned model is satisfied by analyzing the image data indicating the image captured by the imaging unit 125. When this condition is satisfied, the edge device 120 transmits information indicating that fact to the server 110. Since this information is transmitted when the condition for starting the process using the machine-learned model is satisfied, it is information about time. Therefore, in this modification, this information is used as time information. Upon receiving this information, the server 110 may control the edge device 120 to acquire the corresponding machine learned model. For example, when the user goes to bed, the conditions for starting the crime prevention process are satisfied. Therefore, when it is determined that the user has gone to bed by analyzing the image data, the edge device 120 may be controlled so as to acquire a machine-learned model for crime prevention used for the crime prevention process. . According to this modification, since the machine-learned model is switched according to the user's state, the edge device 120 can switch processing at a timing according to the user's state.
100:モデル切り替えシステム、110:サーバー、120:エッジデバイス、211:更新手段、212:第1取得手段、213:掲示手段、214:制御手段、215:第2取得手段、216:推定手段、217:変更手段、221:確認手段、222:取得手段、223:置換手段、224:切替手段 100: Model switching system 110: Server 120: Edge device 211: Update unit 212: First acquisition unit 213: Posting unit 214: Control unit 215: Second acquisition unit 216: Estimation unit 217 : Change means, 221: confirmation means, 222: acquisition means, 223: replacement means, 224: switching means

Claims (9)

  1.  エッジデバイスに対して、目的の異なる機械学習済みモデルを切り替える機械学習済みモデル切り替えシステムであって、
     時間に関する時間情報を取得する取得手段と、
     前記エッジデバイスに、前記時間情報に対応付けられた機械学習済みモデルを取得させるように制御する制御手段と、
     を備える機械学習済みモデル切り替えシステム。
    A machine-learned model switching system for switching machine-learned models with different purposes for edge devices,
    An acquisition means for acquiring time information relating to time;
    Control means for controlling the edge device to acquire a machine-learned model associated with the time information;
    Machine learning completed model switching system.
  2.  前記制御手段は、暗号化通信方式を用いて、前記エッジデバイスに前記機械学習済みモデルを取得させるように制御する
     請求項1に記載の機械学習済みモデル切り替えシステム。
    The machine learning model switching system according to claim 1, wherein the control unit controls the edge device to acquire the machine learned model using an encrypted communication method.
  3.  学習器を用いて学習データを機械学習することにより、前記機械学習済みモデルを更新する更新手段をさらに備え、
     前記制御手段は、前記更新された機械学習済みモデルを前記エッジデバイスに取得させるように制御する
     請求項1又は2に記載の機械学習済みモデル切り替えシステム。
    Update means for updating the machine-learned model by machine learning of learning data using a learning device;
    The machine learning model switching system according to claim 1, wherein the control unit controls the edge device to acquire the updated machine learned model.
  4.  前記取得手段は、第1取得手段であり、
     複数の時間を示す時間情報と、互いに目的の異なる複数の機械学習済みモデルを識別する識別情報とを対応付けて記憶する記憶手段と、
     前記エッジデバイスが有するセンサーから出力されたセンサーデータを取得する第2取得手段と、
     前記取得されたセンサーデータを解析することにより、前記複数の機械学習済みモデルを用いた複数の処理を開始する条件を満たすようになる時間を推定する推定手段と、
     前記記憶手段に記憶された前記時間情報を、前記推定された時間を示す時間情報に変更する変更手段とをさらに備え、
     前記制御手段は、前記記憶手段に記憶された前記時間情報に基づいて前記複数の時間のうちいずれかの時間の起点になったと判定されると、前記複数の機械学習済みモデルのうち当該時間を示す時間情報と対応付けて記憶された前記識別情報により識別される機械学習済みモデルを前記エッジデバイスに取得させるように制御する
     請求項1から3のいずれか1項に記載の機械学習済みモデル切り替えシステム。
    The acquisition means is a first acquisition means,
    Storage means for storing time information indicating a plurality of times and identification information for identifying a plurality of machine-learned models having different purposes from each other;
    Second acquisition means for acquiring sensor data output from a sensor of the edge device;
    By estimating the sensor data acquired, an estimation unit that estimates a time that satisfies a condition for starting a plurality of processes using the plurality of machine-learned models;
    Changing means for changing the time information stored in the storage means to time information indicating the estimated time;
    When it is determined that the starting point of any one of the plurality of times is based on the time information stored in the storage unit, the control unit determines the time among the plurality of machine-learned models. The machine-learned model switching according to any one of claims 1 to 3, wherein control is performed to cause the edge device to acquire a machine-learned model identified by the identification information stored in association with time information to be displayed. system.
  5.  複数の時間を示す時間情報と、互いに目的の異なる複数の機械学習済みモデルを識別する識別情報とを対応付けて記憶する第1記憶手段と、
     前記第1記憶手段に記憶された前記時間情報に基づいて前記複数の時間のいずれかの時間の起点になったと判定されると、前記エッジデバイスが使用する第1機械学習済みモデルの切り替えがあることを示す情報と、前記複数の機械学習済みモデルのうち当該時間を示す時間情報と対応付けて記憶された前記識別情報により識別される第2機械学習済みモデルが記憶された場所を示すアドレスとを掲示する掲示手段とをさらに備え、
     前記取得手段は、第1取得手段であり、
     前記エッジデバイスは、
     前記第1機械学習済みモデルを記憶する第2記憶手段と、
     前記掲示された情報をポーリングすることにより、前記第1機械学習済みモデルの切り替えがあるかを確認する確認手段と、
     前記第1機械学習済みモデルの切り替えがある場合には、前記制御手段の制御に従って、前記掲示されたアドレスが示す前記場所から前記第2機械学習済みモデルを取得する第2取得手段と、
     前記第2記憶手段に記憶された前記第1機械学習済みモデルを、前記取得された第2機械学習済みモデルに置き換える置換手段と、
     前記第1機械学習済みモデルが前記第2機械学習済みモデルに置き換えられると、前記エッジデバイスが行う処理を、前記第1機械学習済みモデルを用いた第1処理から前記第2機械学習済みモデルを用いた第2処理に切り替える切替手段とを有する
     請求項1から4のいずれか1項に記載の機械学習済みモデル切り替えシステム。
    First storage means for storing time information indicating a plurality of times in association with identification information for identifying a plurality of machine-learned models having different purposes;
    When it is determined based on the time information stored in the first storage means that any one of the plurality of times has started, there is a switch of the first machine learned model used by the edge device. And an address indicating a location where the second machine learned model identified by the identification information stored in association with the time information indicating the time among the plurality of machine learned models is stored. And posting means for posting
    The acquisition means is a first acquisition means,
    The edge device is
    Second storage means for storing the first machine-learned model;
    Confirmation means for confirming whether there is a switch of the first machine-learned model by polling the posted information;
    When there is a switch of the first machine learned model, a second acquisition unit that acquires the second machine learned model from the location indicated by the posted address according to the control of the control unit;
    Replacement means for replacing the first machine learned model stored in the second storage means with the acquired second machine learned model;
    When the first machine learned model is replaced with the second machine learned model, the processing performed by the edge device is changed from the first process using the first machine learned model to the second machine learned model. The machine learning-completed model switching system according to any one of claims 1 to 4, further comprising switching means for switching to the second process used.
  6.  前記制御手段は、前記エッジデバイスが有するセンサーから出力されたセンサーデータを解析することにより、前記機械学習済みモデルを用いた処理を開始する条件を満たすようになったと判定されたことに応じて、前記機械学習済みモデルを前記エッジデバイスに取得させるように制御する
     請求項1に記載の機械学習済みモデル切り替えシステム。
    In response to determining that the condition for starting the process using the machine-learned model has been satisfied by analyzing the sensor data output from the sensor of the edge device, the control means, The machine-learned model switching system according to claim 1, wherein control is performed to cause the edge device to acquire the machine-learned model.
  7.  目的の異なる機械学習済みモデルを切り替えて使用するエッジデバイスであって、
     請求項1に記載の機械学習済みモデル切り替えシステムの制御に従って、前記機械学習済みモデルを取得し、現在使用している他の機械学習済みモデルを前記取得された機械学習済みモデルに置き換えるエッジデバイス。
    An edge device that switches between different machine-learned models for different purposes,
    An edge device that acquires the machine-learned model according to the control of the machine-learned model switching system according to claim 1 and replaces the other machine-learned model currently used with the acquired machine-learned model.
  8.  エッジデバイスに対して、目的の異なる機械学習済みモデルを切り替える機械学習済みモデル切り替え方法であって、
     時間に関する時間情報を取得するステップと、
     前記エッジデバイスに、前記時間情報に対応付けられた機械学習済みモデルを取得させるように制御するステップと、
     を備える機械学習済みモデル切り替え方法。
    A machine-learned model switching method for switching machine-learned models with different purposes for edge devices,
    Obtaining time information about time;
    Controlling the edge device to acquire a machine-learned model associated with the time information;
    A machine-learned model switching method comprising:
  9.  コンピュータに、エッジデバイスに対して、目的の異なる機械学習済みモデルを切り替える機械学習済みモデル切り替え処理を実行させるためのプログラムであって、
     時間に関する時間情報を取得するステップと、
     前記エッジデバイスに、前記時間情報に対応付けられた機械学習済みモデルを取得させるように制御するステップと、
     を実行させるためのプログラム。
    A program for causing a computer to execute a machine-learned model switching process for switching a machine-learned model with a different target for an edge device,
    Obtaining time information about time;
    Controlling the edge device to acquire a machine-learned model associated with the time information;
    A program for running
PCT/JP2018/008580 2018-03-06 2018-03-06 Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program WO2019171468A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008580 WO2019171468A1 (en) 2018-03-06 2018-03-06 Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008580 WO2019171468A1 (en) 2018-03-06 2018-03-06 Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program

Publications (1)

Publication Number Publication Date
WO2019171468A1 true WO2019171468A1 (en) 2019-09-12

Family

ID=67846610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008580 WO2019171468A1 (en) 2018-03-06 2018-03-06 Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program

Country Status (1)

Country Link
WO (1) WO2019171468A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112686387A (en) * 2020-11-24 2021-04-20 中国电子科技集团公司电子科学研究院 Common technical model training and scheduling method and device and readable storage medium
WO2021090868A1 (en) * 2019-11-07 2021-05-14 川崎重工業株式会社 Surgery system and control method
WO2023010302A1 (en) * 2021-08-04 2023-02-09 Qualcomm Incorporated Machine learning group switching

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016118815A1 (en) * 2015-01-22 2016-07-28 Preferred Networks, Inc. Machine learning heterogeneous edge device, method, and system
JP2017146279A (en) * 2016-02-19 2017-08-24 ヤフー株式会社 Estimation device, estimation method, and estimation program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016118815A1 (en) * 2015-01-22 2016-07-28 Preferred Networks, Inc. Machine learning heterogeneous edge device, method, and system
JP2017146279A (en) * 2016-02-19 2017-08-24 ヤフー株式会社 Estimation device, estimation method, and estimation program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090868A1 (en) * 2019-11-07 2021-05-14 川崎重工業株式会社 Surgery system and control method
JP2021074242A (en) * 2019-11-07 2021-05-20 川崎重工業株式会社 Surgery system and control method
JP7432340B2 (en) 2019-11-07 2024-02-16 川崎重工業株式会社 Surgical system and control method
CN112686387A (en) * 2020-11-24 2021-04-20 中国电子科技集团公司电子科学研究院 Common technical model training and scheduling method and device and readable storage medium
WO2023010302A1 (en) * 2021-08-04 2023-02-09 Qualcomm Incorporated Machine learning group switching

Similar Documents

Publication Publication Date Title
KR102611454B1 (en) Storage device for decentralized machine learning and machine learning method thereof
US11069214B2 (en) Event entity monitoring network and method
US10587776B2 (en) Electronic device and method for controlling the electronic device
US11754986B2 (en) Systems and methods for evaluating sensor data of internet-of-things (IoT) devices and responsively controlling control devices
WO2019171468A1 (en) Machine learning-trained model switching system, edge device, machine learning-trained model switching method, and program
JP6678246B2 (en) Semantic segmentation based on global optimization
US9961028B2 (en) Automated image consolidation and prediction
KR20190054702A (en) Method and apparatus for detecting action of object in viedio stream
JP7380567B2 (en) Information processing device, information processing method, and information processing program
JP2018205900A (en) Monitoring system and monitoring method
TW201717159A (en) Systems and methods for processing recorded data for storage using computer-aided dispatch information
WO2023015152A1 (en) Systems and methods for on-device person recognition and provision of intelligent alerts
JP6759472B2 (en) Trained model update system, trained model update method, and program
US11126830B2 (en) Computerized system and method for adaptive stranger detection
JP2010238187A (en) Security system and security method
JP7326903B2 (en) Information processing device and program
JP6905849B2 (en) Image processing system, information processing device, program
US11070425B2 (en) Method and system of detecting device rearrangement in manufacturing field
US20210356928A1 (en) System and method for detecting change over in manufacturing field
WO2019171443A1 (en) Machine learning-trained model update system, edge device, machine learning-trained model update method, and program
WO2018035679A1 (en) Cloud-based security monitoring and processing method
US10922091B2 (en) Distributed realtime edge-core analytics with feedback
JP2018077712A (en) Information processing device and information processing program
CN112437274A (en) Transmission method of snapshot picture and snapshot machine
KR20210079823A (en) Electronic device and Method for controlling the electronic device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP