WO2019171450A1 - Image display device - Google Patents

Image display device Download PDF

Info

Publication number
WO2019171450A1
WO2019171450A1 PCT/JP2018/008469 JP2018008469W WO2019171450A1 WO 2019171450 A1 WO2019171450 A1 WO 2019171450A1 JP 2018008469 W JP2018008469 W JP 2018008469W WO 2019171450 A1 WO2019171450 A1 WO 2019171450A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
substrate
image display
reflected
Prior art date
Application number
PCT/JP2018/008469
Other languages
French (fr)
Japanese (ja)
Inventor
与希 有田
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2018/008469 priority Critical patent/WO2019171450A1/en
Priority to JP2020504511A priority patent/JPWO2019171450A1/en
Publication of WO2019171450A1 publication Critical patent/WO2019171450A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to an image display device that displays image information as a virtual image in front of a user's eyes, and more particularly to an image display device that uses a light guide that expands a light beam (exit pupil).
  • the image display device according to the present invention is suitable for an image display device such as a helmet-mounted display, a head-up display, or a glasses-type display (so-called smart glass).
  • a head that forms a display image with a virtual image in front of the driver's eyes by projecting an image displayed on a display element such as a liquid crystal display (LCD) onto a windshield or combiner and reflecting the image on the driver's side Up display is used.
  • a helmet-mounted display that projects images onto a combiner provided in a helmet worn by the pilot on the head and forms a display image as a virtual image in front of the pilot is used by a similar mechanism.
  • eyeglass-type or head-mounted head-mounted displays called smart glasses have begun to spread.
  • Such image display devices are known in various types as an optical system for displaying a virtual image in front of the observer's eyes, and one of them is a method using a light guide (light guide plate).
  • a light beam having a small cross-sectional area including image information formed by an image forming unit and a collimating optical system is formed in a substantially rectangular flat plate shape. It is introduced into a certain light guide, and the light beam is enlarged and displayed by the light guide.
  • an image display device using such a light guide is simply referred to as an image display device.
  • FIG. 4 and 5 are schematic views showing an optical path configuration in an example of a conventional image display device.
  • FIG. 4 is a diagram of a state where an observer observing the displayed image is viewed from the side
  • FIG. It is the figure of the state which looked at the light guide 20 in 4 from the front.
  • x, y, and z axes orthogonal to each other are defined as shown in the figure.
  • the image display device 2 includes a light source unit 21, a display element 22, a collimating optical system 23, and a light guide 20.
  • the display element 22 is a transmissive liquid crystal display element
  • the light source unit 21 is a backlight light source for a so-called transmissive liquid crystal display element.
  • the light emitted from the light source unit 21 illuminates the display element 22 from the back side, and light including information formed on the display surface of the display element 22 as information (hereinafter referred to as “image light”) is emitted from the display element 22. Is done.
  • the collimating optical system 23 introduces the image light emitted from each point (pixel) on the display surface of the display element 22 into the light guide 20 as a substantially parallel light beam. Accordingly, the light introduced from the collimating optical system 23 into the light guide 20 includes information on different parts of the image formed on the display surface of the display element 22 and enters the light guide 20 at different angles. Is a set of
  • the light guide 20 includes a transparent substrate 200 having a flat cubic shape having a first surface 200a and a second surface 200b parallel to the yz plane, and a third surface 200c and a fourth surface 200d parallel to the xy plane. Prepare. Inside the substrate 200, one incident-side reflecting surface 201 and a plurality (three in this example) of exit-side reflecting surfaces 202a to 202c are formed. The incident-side reflection surface 201 is perpendicular to the third surface and the fourth surface, and is inclined with respect to the first surface 200a and the second surface 200b.
  • the plurality of exit-side reflecting surfaces 202a to 202e are perpendicular to the third surface and the fourth surface, are inclined with respect to the first surface 200a and the second surface 200b, and are parallel to each other.
  • the incident-side reflecting surface 201 is a reflecting surface such as a mirror
  • the exit-side reflecting surfaces 202a to 202c are partial reflecting surfaces having a predetermined reflectance (that is, transmittance), that is, a beam splitter or a half mirror.
  • the image light introduced from the collimating optical system 23 into the light guide 20 is reflected by the incident-side reflection surface 201 and then totally reflected one or more times by the second surface 200b and the first surface 200a.
  • 200 propagates inside 200 and reaches the exit-side reflection surface 202a.
  • the exit-side reflecting surface 202a reflects part of the arrived image light and transmits the rest.
  • the transmitted image light reaches the next exit-side reflecting surface 202b, a part of the light is reflected, and the rest is transmitted.
  • the image light propagating through the inside of the substrate 200 of the light guide 20 is reflected by each of the plurality of exit-side reflecting surfaces 202a to 202c, passes through the first surface 200a of the substrate 200, and exits to the outside.
  • the image light reflected by the exit-side reflecting surfaces 202a to 202e is incident on the observer's eye E at a predetermined angle.
  • the image light including information on different parts of the image formed on the surface of the display element 22 is incident on the light guide 20 at different angles as a parallel light flux and is reflected by the incident-side reflection surface 201.
  • the light beam propagates through the substrate 200 while being totally reflected by the first surface 200a and the second surface 200b, is partially reflected by the plurality of exit-side reflecting surfaces 202a to 202e, and is emitted from the substrate 200.
  • the luminous flux, ie the exit pupil is enlarged.
  • the image formed on the display surface of the display element 22 is displayed as a virtual image in front of the observer's eyes.
  • the substrate 200 of the light guide 20 is transparent and the exit-side reflecting surfaces 202a to 202e are partially reflecting surfaces, the observer can also visually recognize the scenery in front through the light guide 20.
  • the see-through type image display device using such a light guide has a feature of being compact and lightweight.
  • the conventional image display apparatus has the following problems. That is, among the image light introduced from the collimating optical system 23 to the light guide 20, the light beam derived from the light emitted from the vicinity of the center of the display surface of the display element 22 is shown by a two-dot chain line in FIG. Further, after being reflected by the incident-side reflecting surface 101, it propagates along the y-axis in the yz plane.
  • the light beam derived from the light emitted from the position close to the left and right end (z-axis direction) on the display surface of the display element 22 is As indicated by the alternate long and short dash line in FIG. 5, after being reflected by the incident-side reflecting surface 101, it propagates within the yz plane with a predetermined angle with respect to the y axis (that is, obliquely upward).
  • the distance between the third surface 200c and the fourth surface 200d is larger than the distance between the first surface 200a and the second surface 200b.
  • the image light propagating at a predetermined angle with respect to the y-axis in the yz plane is unlikely to reach the third surface 200c or the fourth surface 200d, but the third surface 200c on the incident-side reflective surface 201.
  • part of the image light reflected at a position relatively close to the fourth surface 200d hits the third surface 200c or the fourth surface 200d and is reflected.
  • the image light reflected by the third surface 200c and the fourth surface 200d and the image light not reflected by the third surface 200c are reflected by the exit-side reflection surfaces 202a to 202e, respectively, and reach the observer's eye E.
  • FIG. 5 schematically shows images obtained at three positions I, II, and III on the light guide 20 at the top of the light guide 20.
  • Numbers 1, 2, and 3 in the image indicate positions on the image formed on the display surface of the display element 22, respectively, 2 is the center of the image, and 1 and 3 are near the left and right edges of the image, respectively. Indicates the position.
  • [1], [2], and [3] in FIG. 5 indicate the traveling directions of the luminous fluxes of image light emitted from 1, 2, and 3 on the image formed on the display surface of the display element 22, respectively. Show.
  • the image light obtained at the position II on the light guide 20 is reflected by the light beam [2] emitted from the vicinity of the center of the display surface of the display element 22 which is reflected by the position ii on the incident-side reflection surface 201 and incident.
  • Luminous flux [3] emitted from the end of the display surface.
  • the image light obtained at the position I on the light guide 20 is reflected by the position i on the incident-side reflection surface 201, and the light flux [2] emitted from the vicinity of the center of the display surface of the display element 22 arrives.
  • the image light that is reflected and arrives at the fourth surface 200d is reflected only once, and therefore includes image information in which the left and right are reversed (specularly reflected). Therefore, the image light reflected once is superimposed as an image obtained by horizontally inverting the original image. Similarly, the image obtained at the position III on the light guide 20 is also an overlapping of the images that are emitted from the position [iii] and reflected by the third surface 200c and reversed left and right.
  • An image displayed by an image display device used by a vehicle driver or an aircraft operator often includes important character information to be notified during driving or maneuvering. May greatly reduce the visibility of characters.
  • the light guide 20 is arranged so as to extend in the vertical direction (y-axis direction), so that a horizontally inverted ghost is generated, but the light guide is extended in the horizontal direction (z-axis direction). In the arranged image display device, a ghost of upside down is generated.
  • the present invention has been made to solve the above-described problems, and the object of the present invention is to reduce the occurrence of a ghost that is flipped left and right or up and down, which leads to a significant decrease in visibility.
  • An image display device is provided.
  • An image display device which has been made to solve the above problems, a) an image forming unit that emits image light including, as information, an image formed on the screen of the display element; b) an incident optical system that collimates the image light from the image forming unit and enters the light guide, which will be described later, c) a transparent substrate having first and second surfaces facing each other in parallel and a third surface and a fourth surface facing each other with a separation distance longer than the separation distance between the first surface and the second surface; An incident portion that guides the image light incident through the incident optical system to the inside of the substrate so as to be totally reflected by the first surface and the second surface, and is guided from the incident portion to the inside of the substrate.
  • a light guide having an emission unit that emits image light propagated through the substrate while being totally reflected by the first surface and the second surface to the outside of the substrate at a predetermined position while expanding the light flux; , And a part of at least one of the third surface and the fourth surface of the light guide is a non-reflective surface.
  • a part of at least one of the third surface and the fourth surface is at least a part of a portion where the image light guided to the inside of the substrate by the incident part can reach.
  • the non-reflective surface may be any surface as long as it has an effect of eliminating or reducing the degree of reflection at the interface between the substrate and its external environment (typically, the outside atmosphere). It may be.
  • the non-reflective surface may be a light shielding surface.
  • a light shielding surface can be formed by applying an antireflection agent to the surface of the substrate.
  • the non-reflective surface may be a light scattering surface.
  • such a light scattering surface can be a surface subjected to a process for forming fine irregularities on the surface of the substrate, for example, a polishing process.
  • the image light that has been collimated through the incident optical system and introduced into the light guide substrate is totally reflected by the light guide incident portion between the first surface and the second surface of the substrate. Guided into the substrate.
  • the image light propagates through the inside of the substrate and reaches the emission part while being totally reflected between the first surface and the second surface, which are narrower than the separation distance between the third surface and the fourth surface. .
  • image light is extracted from the substrate to the outside by the emitting unit, and a virtual image is formed in front of the observer's eyes.
  • part of the image light guided into the substrate by the incident portion hits the third surface and the fourth surface while facing the first surface and the second surface, respectively, but at least the portion where the image light hits on these surfaces is not Since it is a reflective surface, the image light that hits it will not be reflected. For this reason, the image light emitted to the outside of the substrate in the emitting portion, that is, the image light contributing to the formation of the virtual image does not include the reflected light on the third surface and the fourth surface. Thereby, for example, a phenomenon that a ghost in which the image as described above is reversed left and right or up and down is generated can be reduced.
  • the image display device of the present invention it is possible to reduce the superimposition of a ghost that is reversed left and right or up and down on a regular image and improve the visibility of a virtual image displayed by a light guide. .
  • FIG. 1 and FIG. 2 are schematic configuration diagrams of an optical system in the image display apparatus according to the present embodiment.
  • FIG. 1 shows an observer observing the displayed image from the side.
  • FIG. 2 is a plan view of the light guide 10 in FIG. 1 as viewed from the front.
  • FIG. 3 is a plan view of the light guide 10 in FIG. 1 as viewed from below.
  • the image display apparatus 1 includes a light source unit 11, a display element 12, a collimating optical system 13, and a light guide 10 as in the conventional image display apparatus 2 shown in FIGS.
  • the light source unit 11, the display element 12, and the collimating optical system 13 can be the same as the light source unit 21, the display element 22, and the collimating optical system 23 in the conventional image display apparatus 2, but are not limited thereto.
  • a reflective liquid crystal display element, an organic EL display, a DMD (digital macro mirror device), a MEMS mirror, or the like can be used instead of the transmissive liquid crystal display element.
  • the light source unit 11 illuminates the liquid crystal display element or DMD from the front side.
  • a self-luminous display element such as an organic EL display
  • a MEMS mirror whose angle is scanned is used as the display element 12
  • a laser light source that irradiates a thin laser beam toward the MEMS mirror may be used as the light source unit 11.
  • the light guide 10 includes a first surface 100a and a second surface 100b parallel to the yz plane, a third surface 100e and a second surface 100e parallel to the xy plane.
  • a substrate 100 having a flat cubic shape having four surfaces 100f is provided.
  • the substrate 100 is a transparent body such as polycarbonate resin or quartz glass.
  • Inside the substrate 100 there is one incident-side reflecting surface 101 corresponding to the incident portion in the present invention, and a plurality of (in this example, five) exit-side reflecting surfaces 102a to 102e corresponding to the emitting portion in the present invention. Is formed.
  • the incident-side reflection surface 101 is perpendicular to the third surface 100e and the fourth surface 100f, and is inclined (non-parallel) to the first surface 100a and the second surface 100b.
  • the plurality of exit-side reflecting surfaces 102a to 102e are perpendicular to the third surface 100e and the fourth surface 100f, are inclined with respect to the first surface 100a and the second surface 100b, and are parallel to each other.
  • the incident side reflection surface 101 is a total reflection surface
  • the emission side reflection surfaces 102a to 102c are partial reflection surfaces having a predetermined reflectance.
  • the light guide 10 is different from the light guide 20 in the conventional image display apparatus 2 in that the third surface 100e and the fourth surface 100f are considerably larger than the distance between the first surface 100a and the second surface 100b.
  • the third surface 100e and the fourth surface 100f are considerably larger than the distance between the first surface 100a and the second surface 100b.
  • a coating layer in which an antireflection coating is applied to the surface of the substrate 100 (interface with the outside world) with a predetermined thickness is formed.
  • the method of using a non-reflective surface is not limited to this.
  • the surface of the substrate 100 may be polished to form fine irregularities, and light reaching the surface may be scattered.
  • the “non-reflective surface” may be a surface that has a reflectivity reduced to such an extent that it can be regarded that there is substantially no reflection even if it has no complete non-reflectivity.
  • the image light emitted from the display screen of the display element 12 upon receiving the illumination light from the light source unit 11 is made substantially parallel light by the collimating optical system 13 and passes through the second surface 100b. It is introduced into the light guide 10. Similar to the conventional image display device, the image light introduced from the collimating optical system 13 to the light guide 10 includes information on different parts of the two-dimensional image formed on the display surface of the display element 12. , A set of parallel light beams incident on the light guide 10 at different angles.
  • the image light is reflected by the incident-side reflecting surface 101 and then propagates through the substrate 100 while being totally reflected one or more times by the second surface 100b and the first surface 100a, and is the lowest reflecting side reflecting surface. 102a is reached.
  • a light beam derived from light emitted from the vicinity of the center of the display surface of the display element 12 is reflected by the incident-side reflection surface 101 and then the yz plane. Propagates along the y-axis.
  • the light beam derived from the light emitted from the position close to the end in the left-right direction (z-axis direction) on the display surface of the display element 12 is reflected on the incident-side reflection surface. After being reflected at 101, it propagates in the yz plane with a predetermined angle with respect to the y-axis (that is, obliquely upward). Therefore, a part of such image light hits the third surface 100e or the fourth surface 100f, but these surfaces are non-reflective surfaces. Therefore, the image light reaching the third surface 100e and the fourth surface 100f disappears without being reflected (strictly, they are absorbed or scattered). Therefore, image light that has hit the third surface 100e or the fourth surface 100f even once does not reach the subsequent exit-side reflecting surfaces 102a to 100e.
  • the exit-side reflecting surface 102a reflects a part of the reached light beam and transmits the rest.
  • the transmitted light reaches the next exit-side reflecting surface 102b, a part of the light beam is reflected, and the rest is transmitted.
  • the reflected light from the third surface 100e and the fourth surface 100f of the substrate 100 hardly reaches the exit-side reflection surfaces 102a to 102e, it is reflected by the exit-side reflection surfaces 102a to 102e and passes through the first surface 100a.
  • the image light emitted to the outside of the light guide 10 contains almost no reflected light from the third surface 100e and the fourth surface 100f.
  • the image light obtained at the position I on the light guide 10 is reflected by the position i on the incident-side reflection surface 101 and is emitted from the vicinity of the center of the display surface of the display element 12 [2 , And a light beam [3] emitted from the end of the display surface of the display element 12 that is reflected and arrived at the position ii on the incident-side reflection surface 101, unlike the conventional image display device,
  • the light flux [3] emitted from the end of the display surface of the display element 12 that is reflected at the position i on the side reflection surface 101 and further reflected by the fourth surface 100f is not included. Therefore, an image whose left and right sides are reversed by reflection once is not superimposed.
  • the image display apparatus 1 of the present embodiment can provide an observer with a highly visible image (virtual image).
  • the configuration of the light guide 10 in the image display apparatus of the above embodiment, specifically, the configuration of the incident portion and the emission portion in the present invention can be variously modified according to the configuration of the known light guide.
  • a part of the first surface 100 a of the substrate 100 of the light guide 10 is a first part.
  • it may be a reflective surface that reflects image light on the non-parallel surface (interface between the substrate 100 and the outside).
  • a reflective volume hologram grating as described in Non-Patent Document 2 or Patent Document 2 may be used as the incident portion.
  • a reflective volume hologram grating may be used as an emitting unit that emits image light from the inside of the substrate 100 of the light guide 10 to the outside.
  • the third surface 100e and the fourth surface 100f of the substrate 100 do not need to be parallel to each other.
  • the third surface 100e and the fourth surface 100f do not need to be non-reflective surfaces as a whole. Regardless of the difference, the effects described above can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

According to the present invention, image light that has been generated by a light source part and a display element passes through a collimator optical system and is introduced into a light guide (10). The image light is reflected by an incidence-side reflection surface (101) that is inside a substrate (100) of the light guide (10), is totally reflected between a narrowly spaced first surface and second surface, and arrives at a plurality of emission-side reflection surfaces (102a–102e) that constitute a beam splitter. A portion of the image light that has been reflected by the incidence-side reflection surface (101) strikes a third surface and a fourth surface (100e, 100f), but the third surface and the fourth surface (100e, 100f) are both non-reflecting surfaces. As a result, almost no light that has been reflected by the third surface and the fourth surface (100e, 100f) reaches the emission-side reflection surfaces (102a–102e). Image light that has been reflected by the plurality of emission-side reflection surfaces (102a–102e) forms a virtual image in front of an eye E of an observer, and there is no overlap by a right-left-inverted ghost from light reflected at the third surface and the fourth surface (100e, 100f), which makes it possible to achieve high visibility.

Description

画像表示装置Image display device
 本発明は、画像情報を虚像として使用者の眼前に表示する画像表示装置に関し、さらに詳しくは、光束(射出瞳)を拡大するライトガイドを用いた画像表示装置に関する。本発明に係る画像表示装置は、ヘルメットマウントディスプレイ、ヘッドアップディスプレイ、眼鏡型ディスプレイ(いわゆるスマートグラス)などの画像表示装置に好適である。 The present invention relates to an image display device that displays image information as a virtual image in front of a user's eyes, and more particularly to an image display device that uses a light guide that expands a light beam (exit pupil). The image display device according to the present invention is suitable for an image display device such as a helmet-mounted display, a head-up display, or a glasses-type display (so-called smart glass).
 自動車や電車では、液晶ディスプレイ(LCD)などの表示素子に表示された画像をフロントガラスやコンバイナに投影して運転者側に反射させることにより、運転者の眼前に虚像による表示画像を形成するヘッドアップディスプレイが使用されている。また、航空機では、同様の仕組みにより、操縦者が頭部に着用するヘルメットに設けられたコンバイナに画像を投影し、操縦者の眼前に虚像による表示画像を形成するヘルメットマウントディスプレイが使用されている。また最近では、スマートグラス等と呼ばれる眼鏡型、或いは頭部装着型のヘッドマウントディスプレイも普及し始めている。 In automobiles and trains, a head that forms a display image with a virtual image in front of the driver's eyes by projecting an image displayed on a display element such as a liquid crystal display (LCD) onto a windshield or combiner and reflecting the image on the driver's side Up display is used. Also, in aircraft, a helmet-mounted display that projects images onto a combiner provided in a helmet worn by the pilot on the head and forms a display image as a virtual image in front of the pilot is used by a similar mechanism. . Recently, eyeglass-type or head-mounted head-mounted displays called smart glasses have begun to spread.
 こうした画像表示装置には観察者の眼前に虚像を表示する光学系として様々な方式のものが知られているが、その一つとして、ライトガイド(導光板)を用いた方式がある。これは、特許文献1、2、非特許文献1、2などに記載されているように、画像形成部とコリメート光学系とで形成した画像情報を含む断面積の小さな光束を略矩形平板状であるライトガイドに導入し、該ライトガイドによって光束を拡大して表示するものである。以下の説明では、こうしたライトガイドを利用した画像表示装置を単に画像表示装置という。 Such image display devices are known in various types as an optical system for displaying a virtual image in front of the observer's eyes, and one of them is a method using a light guide (light guide plate). As described in Patent Documents 1 and 2, Non-Patent Documents 1 and 2, and the like, a light beam having a small cross-sectional area including image information formed by an image forming unit and a collimating optical system is formed in a substantially rectangular flat plate shape. It is introduced into a certain light guide, and the light beam is enlarged and displayed by the light guide. In the following description, an image display device using such a light guide is simply referred to as an image display device.
 図4及び図5は従来の画像表示装置の一例における光路構成を示す概略図であり、図4は表示される画像を観察している観察者を真横から見た状態の図、図5は図4中のライトガイド20を正面から見た状態の図である。説明の便宜上、図中に示すように互いに直交するx、y、z軸を定めている。 4 and 5 are schematic views showing an optical path configuration in an example of a conventional image display device. FIG. 4 is a diagram of a state where an observer observing the displayed image is viewed from the side, and FIG. It is the figure of the state which looked at the light guide 20 in 4 from the front. For convenience of explanation, x, y, and z axes orthogonal to each other are defined as shown in the figure.
 画像表示装置2は、光源部21、表示素子22、コリメート光学系23、及びライトガイド20を備える。ここでは表示素子22は透過型液晶表示素子であり、光源部21はいわゆる透過型液晶表示素子に対するバックライト光源である。光源部21から出射した光は表示素子22を背面側から照明し、表示素子22の表示面上に形成された画像を情報として含む光(以下「画像光」という)が該表示素子22から射出される。コリメート光学系23は、表示素子22の表示面の各点(画素)から射出された画像光をそれぞれ略平行な光束としてライトガイド20に導入する。したがって、コリメート光学系23からライトガイド20に導入される光は、それぞれが表示素子22の表示面上に形成される画像の異なる部位の情報を含み、異なる角度でライトガイド20に入射する平行光束の集合である。 The image display device 2 includes a light source unit 21, a display element 22, a collimating optical system 23, and a light guide 20. Here, the display element 22 is a transmissive liquid crystal display element, and the light source unit 21 is a backlight light source for a so-called transmissive liquid crystal display element. The light emitted from the light source unit 21 illuminates the display element 22 from the back side, and light including information formed on the display surface of the display element 22 as information (hereinafter referred to as “image light”) is emitted from the display element 22. Is done. The collimating optical system 23 introduces the image light emitted from each point (pixel) on the display surface of the display element 22 into the light guide 20 as a substantially parallel light beam. Accordingly, the light introduced from the collimating optical system 23 into the light guide 20 includes information on different parts of the image formed on the display surface of the display element 22 and enters the light guide 20 at different angles. Is a set of
 ライトガイド20は、y-z平面に平行な第一面200a及び第二面200b、x-y平面に平行な第三面200c及び第四面200dを有する偏平立方体形状である透明な基板200を備える。その基板200の内部に一つの入射側反射面201と複数(この例では3枚)の射出側反射面202a~202cが形成されている。入射側反射面201は第三面及び第四面に垂直であり、第一面200a及び第二面200bに対して傾斜している。複数の射出側反射面202a~202eは同様に第三面及び第四面に垂直であり、第一面200a及び第二面200bに対して傾斜しており、且つそれらは互いに平行である。また、入射側反射面201はミラー等の反射面であり、射出側反射面202a~202cは所定の反射率(つまりは透過率)を有する部分反射面つまりはピームスプリッタ又はハーフミラーである。 The light guide 20 includes a transparent substrate 200 having a flat cubic shape having a first surface 200a and a second surface 200b parallel to the yz plane, and a third surface 200c and a fourth surface 200d parallel to the xy plane. Prepare. Inside the substrate 200, one incident-side reflecting surface 201 and a plurality (three in this example) of exit-side reflecting surfaces 202a to 202c are formed. The incident-side reflection surface 201 is perpendicular to the third surface and the fourth surface, and is inclined with respect to the first surface 200a and the second surface 200b. Similarly, the plurality of exit-side reflecting surfaces 202a to 202e are perpendicular to the third surface and the fourth surface, are inclined with respect to the first surface 200a and the second surface 200b, and are parallel to each other. The incident-side reflecting surface 201 is a reflecting surface such as a mirror, and the exit-side reflecting surfaces 202a to 202c are partial reflecting surfaces having a predetermined reflectance (that is, transmittance), that is, a beam splitter or a half mirror.
 上述したようにコリメート光学系23からライトガイド20に導入された画像光は、入射側反射面201で反射されたあと第二面200bと第一面200aとで1又は複数回全反射しながら基板200の内部を伝搬し、射出側反射面202aに達する。射出側反射面202aは到達した画像光の一部を反射させ、残りを透過させる。透過した画像光は次の射出側反射面202bに到達し、その光の一部は反射され、残りは透過する。射出側反射面202c~202eも同様である。したがって、ライトガイド20の基板200の内部を伝搬してきた画像光は複数の射出側反射面202a~202cでそれぞれ反射され、基板200の第一面200aを透過して外部に射出する。各射出側反射面202a~202eで反射された画像光はそれぞれ所定の角度で観察者の眼Eに入射する。 As described above, the image light introduced from the collimating optical system 23 into the light guide 20 is reflected by the incident-side reflection surface 201 and then totally reflected one or more times by the second surface 200b and the first surface 200a. 200 propagates inside 200 and reaches the exit-side reflection surface 202a. The exit-side reflecting surface 202a reflects part of the arrived image light and transmits the rest. The transmitted image light reaches the next exit-side reflecting surface 202b, a part of the light is reflected, and the rest is transmitted. The same applies to the exit-side reflecting surfaces 202c to 202e. Therefore, the image light propagating through the inside of the substrate 200 of the light guide 20 is reflected by each of the plurality of exit-side reflecting surfaces 202a to 202c, passes through the first surface 200a of the substrate 200, and exits to the outside. The image light reflected by the exit-side reflecting surfaces 202a to 202e is incident on the observer's eye E at a predetermined angle.
 上述したように表示素子22の表面面上に形成される画像の異なる部位の情報を含む画像光は平行光束として異なる角度でライトガイド20に入射し、入射側反射面201で反射される。この光束が第一面200aと第二面200bとで全反射されつつ基板200の内部を伝搬し、複数の射出側反射面202a~202eで部分的に反射されて基板200から射出される過程で、光束つまり射出瞳は拡大される。このようにしてこの画像表示装置2では、表示素子22の表示面に形成された画像が虚像として観察者の眼前に表示される。また、ライトガイド20の基板200は透明であり、射出側反射面202a~202eは部分反射面であるため、観察者はライトガイド20を通して前方の風景を視認することもできる。 As described above, the image light including information on different parts of the image formed on the surface of the display element 22 is incident on the light guide 20 at different angles as a parallel light flux and is reflected by the incident-side reflection surface 201. In the process in which the light beam propagates through the substrate 200 while being totally reflected by the first surface 200a and the second surface 200b, is partially reflected by the plurality of exit-side reflecting surfaces 202a to 202e, and is emitted from the substrate 200. The luminous flux, ie the exit pupil, is enlarged. In this way, in the image display device 2, the image formed on the display surface of the display element 22 is displayed as a virtual image in front of the observer's eyes. Further, since the substrate 200 of the light guide 20 is transparent and the exit-side reflecting surfaces 202a to 202e are partially reflecting surfaces, the observer can also visually recognize the scenery in front through the light guide 20.
 このようなライトガイドを用いたシースルー型の画像表示装置はコンパクトで軽量であるという特長を有する。しかしながら、従来の画像表示装置では次のような問題がある。
 即ち、コリメート光学系23からライトガイド20に導入された画像光の中で、表示素子22の表示面の中心付近から射出された光に由来する光束は、図5中に二点鎖線で示すように、入射側反射面101で反射されたあとy-z面内ではほぼy軸に沿って伝搬する。一方、コリメート光学系23からライトガイド20に導入された画像光の中で、表示素子22の表示面において左右方向の(z軸方向)端部に近い位置から射出された光に由来する光束は、図5中に一点鎖線で示すように、入射側反射面101で反射されたあとy-z面内でy軸に対し所定の角度を有して(つまりは斜め上方向に)伝搬する。ライトガイド20において第三面200cと第四面200dとの間隔は第一面200aと第二面200bとの間隔に比べて大きい。そのため、y-z面内でy軸に対し所定の角度を有して伝搬する画像光は第三面200cや第四面200dに到達しにくいものの、入射側反射面201上の第三面200cや第四面200dに比較的近い位置で反射した画像光の一部は第三面200c又は第四面200dに当たり反射される。こうして第三面200cや第四面200dで反射された画像光と反射されない画像光とが射出側反射面202a~202eでそれぞれ反射され、観察者の眼Eに到達することになる。
The see-through type image display device using such a light guide has a feature of being compact and lightweight. However, the conventional image display apparatus has the following problems.
That is, among the image light introduced from the collimating optical system 23 to the light guide 20, the light beam derived from the light emitted from the vicinity of the center of the display surface of the display element 22 is shown by a two-dot chain line in FIG. Further, after being reflected by the incident-side reflecting surface 101, it propagates along the y-axis in the yz plane. On the other hand, in the image light introduced from the collimating optical system 23 to the light guide 20, the light beam derived from the light emitted from the position close to the left and right end (z-axis direction) on the display surface of the display element 22 is As indicated by the alternate long and short dash line in FIG. 5, after being reflected by the incident-side reflecting surface 101, it propagates within the yz plane with a predetermined angle with respect to the y axis (that is, obliquely upward). In the light guide 20, the distance between the third surface 200c and the fourth surface 200d is larger than the distance between the first surface 200a and the second surface 200b. Therefore, the image light propagating at a predetermined angle with respect to the y-axis in the yz plane is unlikely to reach the third surface 200c or the fourth surface 200d, but the third surface 200c on the incident-side reflective surface 201. And part of the image light reflected at a position relatively close to the fourth surface 200d hits the third surface 200c or the fourth surface 200d and is reflected. Thus, the image light reflected by the third surface 200c and the fourth surface 200d and the image light not reflected by the third surface 200c are reflected by the exit-side reflection surfaces 202a to 202e, respectively, and reach the observer's eye E.
 図5では、ライトガイド20上のI、II、IIIの三つの位置においてそれぞれ得られる画像をライトガイド20の上部に概略的に示している。この画像中の数字1、2、3はそれぞれ表示素子22の表示面上に形成される画像上の位置を示しており、2は画像中央、1、3はそれぞれ画像の左右の端部付近の位置を示す。また、図5中の[1]、[2]、[3]はそれぞれ、表示素子22の表示面上に形成される画像上の1、2、3から発した画像光の光束の進行方向を示している。例えばライトガイド20上のIIの位置において得られる画像光は、入射側反射面201上の位置iiで反射して到来する表示素子22の表示面の中央付近から発した光束[2]と、入射側反射面201上の位置iで反射して到来する表示素子22の表示面の端部から発した光束[1]と、入射側反射面201上の位置iiiで反射して到来する表示素子22の表示面の端部から発した光束[3]とを含む。 FIG. 5 schematically shows images obtained at three positions I, II, and III on the light guide 20 at the top of the light guide 20. Numbers 1, 2, and 3 in the image indicate positions on the image formed on the display surface of the display element 22, respectively, 2 is the center of the image, and 1 and 3 are near the left and right edges of the image, respectively. Indicates the position. In addition, [1], [2], and [3] in FIG. 5 indicate the traveling directions of the luminous fluxes of image light emitted from 1, 2, and 3 on the image formed on the display surface of the display element 22, respectively. Show. For example, the image light obtained at the position II on the light guide 20 is reflected by the light beam [2] emitted from the vicinity of the center of the display surface of the display element 22 which is reflected by the position ii on the incident-side reflection surface 201 and incident. The light beam [1] emitted from the end of the display surface of the display element 22 that is reflected at the position i on the side reflection surface 201 and the display element 22 that is reflected at the position iii on the incident side reflection surface 201 and arrives. Luminous flux [3] emitted from the end of the display surface.
 一方、例えばライトガイド20上のIの位置において得られる画像光は、入射側反射面201上の位置iで反射して到来する表示素子22の表示面の中央付近から発した光束[2]と、入射側反射面201上の位置iiで反射して到来する表示素子22の表示面の端部から発した光束[3]と、入射側反射面201上の位置iで反射し第四面200dでさらに反射して到来する表示素子22の表示面の端部から発した光束[3]とを含む。この第四面200dで反射して到達する画像光は、1回だけ反射しているので左右が反転した(鏡面反射した状態)の画像情報を含む。そのため、この1回反射した画像光は元の画像を左右反転させた画像として重畳されることになる。ライトガイド20上の位置IIIの位置において得られる画像も同様に、位置[iii]から発して第三面200cで反射して左右反転した画像が重なったものとなる。 On the other hand, for example, the image light obtained at the position I on the light guide 20 is reflected by the position i on the incident-side reflection surface 201, and the light flux [2] emitted from the vicinity of the center of the display surface of the display element 22 arrives. The light beam [3] emitted from the end of the display surface of the display element 22 that has been reflected and arrived at the position ii on the incident side reflection surface 201 and the fourth surface 200d reflected at the position i on the incident side reflection surface 201 And the light beam [3] emitted from the end portion of the display surface of the display element 22 that is reflected and arrives. The image light that is reflected and arrives at the fourth surface 200d is reflected only once, and therefore includes image information in which the left and right are reversed (specularly reflected). Therefore, the image light reflected once is superimposed as an image obtained by horizontally inverting the original image. Similarly, the image obtained at the position III on the light guide 20 is also an overlapping of the images that are emitted from the position [iii] and reflected by the third surface 200c and reversed left and right.
 上述したような単純なゴーストでなく画像の左右反転を伴うゴーストは特に画像の視認性の低下をもたらす。車両の運転者や航空機の操縦者が使用する画像表示装置により表示される画像には運転中や操縦中に知らせるべき重要な文字情報が含まれることがよくあるが、画像の左右反転を伴うゴーストは文字の視認性を大きく低下させるおそれがある。
 なお、上記例ではライトガイド20を垂直方向(y軸方向)に延伸するように配置しているため左右反転のゴーストが発生するが、ライトガイドを水平方向(z軸方向)に延伸するように配置した画像表示装置では上下反転のゴーストが発生することになる。
A ghost that is not a simple ghost as described above but that causes the image to be reversed horizontally particularly reduces the visibility of the image. An image displayed by an image display device used by a vehicle driver or an aircraft operator often includes important character information to be notified during driving or maneuvering. May greatly reduce the visibility of characters.
In the above example, the light guide 20 is arranged so as to extend in the vertical direction (y-axis direction), so that a horizontally inverted ghost is generated, but the light guide is extended in the horizontal direction (z-axis direction). In the arranged image display device, a ghost of upside down is generated.
特許第5447714号公報Japanese Patent No. 5447714 特許第5299391号公報Japanese Patent No. 5299391
 本発明は上記課題を解決するために成されたものであり、その目的とするところは、視認性の大きな低下に繋がる、左右に反転した或いは上下に反転したゴーストの発生を軽減することができる画像表示装置を提供することである。 The present invention has been made to solve the above-described problems, and the object of the present invention is to reduce the occurrence of a ghost that is flipped left and right or up and down, which leads to a significant decrease in visibility. An image display device is provided.
 上記課題を解決するために成された本発明に係る画像表示装置は、
 a)表示素子の画面上に形成される画像を情報として含む画像光を発する画像形成部と、
 b)前記画像形成部からの画像光を平行光化して後記ライトガイドに入射させる入射光学系と、
 c)互いに平行に対向する第一面及び第二面と該第一面及び第二面の離間距離よりも長い離間距離を有して対向する第三面及び第四面とを有する透明な基板、前記入射光学系を通して入射された画像光が前記第一面及び第二面で全反射されるように前記基板の内部に案内する入射部、並びに、前記入射部から前記基板の内部に案内され前記第一面及び第二面で全反射されつつ該基板内を伝搬して来た画像光を、その光束を拡大しつつ所定位置で該基板の外部に射出させる射出部、を有するライトガイドと、
 を備え、前記ライトガイドの第三面と第四面の少なくとも一方の一部を非反射面としたことを特徴としている。
An image display device according to the present invention, which has been made to solve the above problems,
a) an image forming unit that emits image light including, as information, an image formed on the screen of the display element;
b) an incident optical system that collimates the image light from the image forming unit and enters the light guide, which will be described later,
c) a transparent substrate having first and second surfaces facing each other in parallel and a third surface and a fourth surface facing each other with a separation distance longer than the separation distance between the first surface and the second surface; An incident portion that guides the image light incident through the incident optical system to the inside of the substrate so as to be totally reflected by the first surface and the second surface, and is guided from the incident portion to the inside of the substrate. A light guide having an emission unit that emits image light propagated through the substrate while being totally reflected by the first surface and the second surface to the outside of the substrate at a predetermined position while expanding the light flux; ,
And a part of at least one of the third surface and the fourth surface of the light guide is a non-reflective surface.
 ここで「第三面と第四面の少なくとも一方の一部」とは具体的には、入射部により基板の内部に案内された画像光が到達し得る部分の少なくとも一部である。 Here, specifically, “a part of at least one of the third surface and the fourth surface” is at least a part of a portion where the image light guided to the inside of the substrate by the incident part can reach.
 本発明において、前記非反射面は基板とその外界(典型的には外側の大気)との界面での反射をなくす又はその反射の程度を軽減する作用を有しさえすれば、どのような面であってもよい。 In the present invention, the non-reflective surface may be any surface as long as it has an effect of eliminating or reducing the degree of reflection at the interface between the substrate and its external environment (typically, the outside atmosphere). It may be.
 例えば本発明の一態様として、前記非反射面は遮光面であるものとするとよい。具体的には例えば、こうした遮光面は反射防止剤を基板の表面の塗布することで形成されているものとすることができる。また本発明の他の態様として、前記非反射面は光散乱面であるものとしてもよい。具体的には例えば、こうした光散乱面は基板の表面に微細な凹凸を形成する加工、例えば磨り加工を施した面とすることができる。 For example, as one aspect of the present invention, the non-reflective surface may be a light shielding surface. Specifically, for example, such a light shielding surface can be formed by applying an antireflection agent to the surface of the substrate. As another aspect of the present invention, the non-reflective surface may be a light scattering surface. Specifically, for example, such a light scattering surface can be a surface subjected to a process for forming fine irregularities on the surface of the substrate, for example, a polishing process.
 本発明において、入射光学系を通し平行光化されてライトガイドの基板に導入された画像光はライトガイドの入射部により、基板の第一面と第二面との間で全反射するように該基板の内部に案内される。この画像光は、第三面と第四面との間の離間間隔に比べて狭い間隔の第一面と第二面との間で全反射されつつ基板の内部を伝搬し射出部に到達する。そして、射出部により画像光は基板から外部に取り出され、観察者の眼前に虚像が形成される。一方、入射部により基板内部に案内された画像光の一部は第一面と第二面とにそれぞれ向かいつつ第三面、第四面に当たるが、これら面において少なくとも画像光が当たる部分は非反射面であるので、当たった画像光は反射しない。そのため、射出部において基板の外部に射出される画像光、つまり虚像の形成に寄与する画像光には、第三面、第四面での反射光は含まれない。それにより、例えば上述したような画像が左右に反転した或いは上下に反転したゴーストが生じるという現象を軽減することができる。 In the present invention, the image light that has been collimated through the incident optical system and introduced into the light guide substrate is totally reflected by the light guide incident portion between the first surface and the second surface of the substrate. Guided into the substrate. The image light propagates through the inside of the substrate and reaches the emission part while being totally reflected between the first surface and the second surface, which are narrower than the separation distance between the third surface and the fourth surface. . Then, image light is extracted from the substrate to the outside by the emitting unit, and a virtual image is formed in front of the observer's eyes. On the other hand, part of the image light guided into the substrate by the incident portion hits the third surface and the fourth surface while facing the first surface and the second surface, respectively, but at least the portion where the image light hits on these surfaces is not Since it is a reflective surface, the image light that hits it will not be reflected. For this reason, the image light emitted to the outside of the substrate in the emitting portion, that is, the image light contributing to the formation of the virtual image does not include the reflected light on the third surface and the fourth surface. Thereby, for example, a phenomenon that a ghost in which the image as described above is reversed left and right or up and down is generated can be reduced.
 本発明に係る画像表示装置によれば、左右に反転した或いは上下に反転したゴーストが正規の画像に重畳することを軽減して、ライトガイドにより表示される虚像の視認性を向上させることができる。 According to the image display device of the present invention, it is possible to reduce the superimposition of a ghost that is reversed left and right or up and down on a regular image and improve the visibility of a virtual image displayed by a light guide. .
本発明の一実施例である画像表示装置における光学系の概略構成図であり、表示される画像を観察している観察者を真横から見た状態の断面図。It is a schematic block diagram of the optical system in the image display apparatus which is one Example of this invention, and is the sectional view of the state which looked at the observer observing the image displayed from the side. 本実施例の画像表示装置における光学系の概略構成図であり、図1中のライトガイド10を正面から見た状態の平面図。It is a schematic block diagram of the optical system in the image display apparatus of a present Example, and is the top view of the state which looked at the light guide 10 in FIG. 1 from the front. 本実施例の画像表示装置におけるライトガイド10を下方から見た状態の平面図。The top view of the state which looked at the light guide 10 in the image display apparatus of a present Example from the downward direction. 従来の画像表示装置における光学系の概略構成図であり、表示される画像を観察している観察者を真横から見た状態の断面図。It is a schematic block diagram of the optical system in the conventional image display apparatus, and is sectional drawing of the state which looked at the observer observing the image displayed from the side. 従来の画像表示装置における光学系の概略構成図であり、図4中のライトガイド20を正面から見た状態の平面図。It is a schematic block diagram of the optical system in the conventional image display apparatus, and the top view of the state which looked at the light guide 20 in FIG. 4 from the front.
 本発明の一実施例である画像表示装置について、添付図面を参照して説明する。
 図1及び図2は本実施例の画像表示装置における光学系の概略構成図であり、図4及び図5と同様に、図1は表示される画像を観察している観察者を真横から見た状態の断面図、図2は図1中のライトガイド10を正面から見た状態の平面図である。また、図3は図1中のライトガイド10を下方から見た状態の平面図である。
An image display apparatus according to an embodiment of the present invention will be described with reference to the accompanying drawings.
FIG. 1 and FIG. 2 are schematic configuration diagrams of an optical system in the image display apparatus according to the present embodiment. Like FIG. 4 and FIG. 5, FIG. 1 shows an observer observing the displayed image from the side. FIG. 2 is a plan view of the light guide 10 in FIG. 1 as viewed from the front. FIG. 3 is a plan view of the light guide 10 in FIG. 1 as viewed from below.
 本実施例の画像表示装置1は、図4、図5に示した従来の画像表示装置2と同じく、光源部11、表示素子12、コリメート光学系13、及びライトガイド10を備える。光源部11、表示素子12及びコリメート光学系13は、従来の画像表示装置2における光源部21、表示素子22、コリメート光学系23と同じものを用いることができるが、これに限るものではない。例えば表示素子12としては、透過型液晶表示素子に代えて、反射型液晶表示素子や有機ELディスプレイ、或いは、DMD(デジタルマクロミラーデバイス)、MEMSミラーなどを用いることもできる。 The image display apparatus 1 according to the present embodiment includes a light source unit 11, a display element 12, a collimating optical system 13, and a light guide 10 as in the conventional image display apparatus 2 shown in FIGS. The light source unit 11, the display element 12, and the collimating optical system 13 can be the same as the light source unit 21, the display element 22, and the collimating optical system 23 in the conventional image display apparatus 2, but are not limited thereto. For example, as the display element 12, a reflective liquid crystal display element, an organic EL display, a DMD (digital macro mirror device), a MEMS mirror, or the like can be used instead of the transmissive liquid crystal display element.
 表示素子12として反射型液晶表示素子やDMDが使用される場合には、光源部11は該液晶表示素子やDMDを前面側から照明するものを用いる。また表示素子12として有機ELディスプレイなどの自己発光型の表示素子が使用される場合には、該表示素子12に光源部11が内蔵されているとみなすことができる。また表示素子12として角度が走査されるMEMSミラーが使用される場合には、光源部11として該MEMSミラーに向けて細いレーザ光を照射するレーザ光源を用いればよい。 When a reflective liquid crystal display element or DMD is used as the display element 12, the light source unit 11 illuminates the liquid crystal display element or DMD from the front side. When a self-luminous display element such as an organic EL display is used as the display element 12, it can be considered that the light source unit 11 is built in the display element 12. When a MEMS mirror whose angle is scanned is used as the display element 12, a laser light source that irradiates a thin laser beam toward the MEMS mirror may be used as the light source unit 11.
 ライトガイド10は、従来の画像表示装置2におけるライトガイド20と同じく、y-z平面に平行である第一面100a及び第二面100b、x-y平面に平行である第三面100e及び第四面100fを有する偏平立方体形状である基板100を備える。基板100は例えばポリカーボネート樹脂や石英ガラスなどの透明体である。この基板100の内部に、本発明における入射部に相当する一つの入射側反射面101と、本発明における射出部に相当する複数(この例では5枚)の射出側反射面102a~102eとが形成されている。入射側反射面101は第三面100e及び第四面100fに垂直であり、第一面100a及び第二面100bに対して傾斜している(非平行である)。複数の射出側反射面102a~102eは同様に第三面100e及び第四面100fに垂直であり、第一面100a及び第二面100bに対して傾斜しており、且つそれらは互いに平行である。入射側反射面101は全反射面であり、射出側反射面102a~102cは所定の反射率を有する部分反射面である。 Like the light guide 20 in the conventional image display device 2, the light guide 10 includes a first surface 100a and a second surface 100b parallel to the yz plane, a third surface 100e and a second surface 100e parallel to the xy plane. A substrate 100 having a flat cubic shape having four surfaces 100f is provided. The substrate 100 is a transparent body such as polycarbonate resin or quartz glass. Inside the substrate 100, there is one incident-side reflecting surface 101 corresponding to the incident portion in the present invention, and a plurality of (in this example, five) exit-side reflecting surfaces 102a to 102e corresponding to the emitting portion in the present invention. Is formed. The incident-side reflection surface 101 is perpendicular to the third surface 100e and the fourth surface 100f, and is inclined (non-parallel) to the first surface 100a and the second surface 100b. Similarly, the plurality of exit-side reflecting surfaces 102a to 102e are perpendicular to the third surface 100e and the fourth surface 100f, are inclined with respect to the first surface 100a and the second surface 100b, and are parallel to each other. . The incident side reflection surface 101 is a total reflection surface, and the emission side reflection surfaces 102a to 102c are partial reflection surfaces having a predetermined reflectance.
 このライトガイド10が従来の画像表示装置2におけるライトガイド20と異なるのは、第一面100aと第二面100bとの間の間隔に比べてかなり間隔が大きい第三面100eと第四面100fが共に非反射面とされていることである。ここでは、第三面100e及び第四面100fを非反射面とするために、基板100の表面(外界との界面)に反射防止塗料を所定厚さで塗布した被膜層が形成されている。ただし、非反射面とする方法はこれに限らない。例えば、基板100の表面を研磨加工することで微細な凹凸を形成し、該面に達した光を散乱させるようにしてもよい。なお、ここで「非反射面」とは、完全な非反射性を有していなくても実質的に反射がないとみなせる程度に反射率を小さくした面であればよい。 The light guide 10 is different from the light guide 20 in the conventional image display apparatus 2 in that the third surface 100e and the fourth surface 100f are considerably larger than the distance between the first surface 100a and the second surface 100b. Are both non-reflective surfaces. Here, in order to make the third surface 100e and the fourth surface 100f non-reflective surfaces, a coating layer in which an antireflection coating is applied to the surface of the substrate 100 (interface with the outside world) with a predetermined thickness is formed. However, the method of using a non-reflective surface is not limited to this. For example, the surface of the substrate 100 may be polished to form fine irregularities, and light reaching the surface may be scattered. Here, the “non-reflective surface” may be a surface that has a reflectivity reduced to such an extent that it can be regarded that there is substantially no reflection even if it has no complete non-reflectivity.
 本実施例の画像表示装置1において、光源部11からの照明光を受けて表示素子12の表示画面から発せられた画像光は、コリメート光学系13によって略平行光化されて第二面100bを通してライトガイド10に導入される。従来の画像表示装置と同様に、コリメート光学系13からライトガイド10に導入される画像光は、それぞれが表示素子12の表示面上に形成される二次元的な画像の異なる部位の情報を含み、異なる角度でライトガイド10に入射する平行光束の集合である。 In the image display device 1 of the present embodiment, the image light emitted from the display screen of the display element 12 upon receiving the illumination light from the light source unit 11 is made substantially parallel light by the collimating optical system 13 and passes through the second surface 100b. It is introduced into the light guide 10. Similar to the conventional image display device, the image light introduced from the collimating optical system 13 to the light guide 10 includes information on different parts of the two-dimensional image formed on the display surface of the display element 12. , A set of parallel light beams incident on the light guide 10 at different angles.
 この画像光は入射側反射面101で反射されたあと第二面100bと第一面100aとで一又は複数回全反射されながら基板100の内部を伝搬し、最も下に位置する射出側反射面102aに達する。このとき、ライトガイド10に導入された画像光の中で、表示素子12の表示面の中心付近から射出された光に由来する光束は、入射側反射面101で反射されたあとy-z面内ではほぼy軸に沿って伝搬する。一方、ライトガイド10に導入された画像光の中で、表示素子12の表示面において左右方向の(z軸方向)端部に近い位置から射出された光に由来する光束は、入射側反射面101で反射されたあとy-z面内でy軸に対し所定の角度を有して(つまりは斜め上方向に)伝搬する。そのため、こうした画像光の一部は第三面100e又は第四面100fに当たるが、これら面は非反射面である。そのため、第三面100e及び第四面100fにそれぞれ達した画像光は反射されずに消滅する(厳密には吸収されたり散乱されたりする)。したがって、第三面100e又は第四面100fに一回でも当たった画像光はそれ以降の射出側反射面102a~100eに到達しない。 The image light is reflected by the incident-side reflecting surface 101 and then propagates through the substrate 100 while being totally reflected one or more times by the second surface 100b and the first surface 100a, and is the lowest reflecting side reflecting surface. 102a is reached. At this time, in the image light introduced into the light guide 10, a light beam derived from light emitted from the vicinity of the center of the display surface of the display element 12 is reflected by the incident-side reflection surface 101 and then the yz plane. Propagates along the y-axis. On the other hand, in the image light introduced into the light guide 10, the light beam derived from the light emitted from the position close to the end in the left-right direction (z-axis direction) on the display surface of the display element 12 is reflected on the incident-side reflection surface. After being reflected at 101, it propagates in the yz plane with a predetermined angle with respect to the y-axis (that is, obliquely upward). Therefore, a part of such image light hits the third surface 100e or the fourth surface 100f, but these surfaces are non-reflective surfaces. Therefore, the image light reaching the third surface 100e and the fourth surface 100f disappears without being reflected (strictly, they are absorbed or scattered). Therefore, image light that has hit the third surface 100e or the fourth surface 100f even once does not reach the subsequent exit-side reflecting surfaces 102a to 100e.
 射出側反射面102aは到達した光束の一部を反射させ、残りを透過させる。透過した光は次の射出側反射面102bに到達し、その光束の一部は反射され、残りは透過する。射出側反射面102c~102eも同様である。したがって、ライトガイド10の基板100の内部を伝搬してきた光束は複数の射出側反射面102a~102eでそれぞれ反射され、基板100の第一面100aを透過して外部に射出する。上述したように基板100の第三面100e及び第四面100fからの反射光は射出側反射面102a~102eに殆ど達しないため、射出側反射面102a~102eで反射されて第一面100aを通してライトガイド10の外部に射出される画像光は第三面100e及び第四面100fからの反射光を殆ど含まない。 The exit-side reflecting surface 102a reflects a part of the reached light beam and transmits the rest. The transmitted light reaches the next exit-side reflecting surface 102b, a part of the light beam is reflected, and the rest is transmitted. The same applies to the exit-side reflecting surfaces 102c to 102e. Therefore, the light beams that have propagated inside the substrate 100 of the light guide 10 are respectively reflected by the plurality of exit-side reflecting surfaces 102a to 102e, pass through the first surface 100a of the substrate 100, and exit to the outside. As described above, since the reflected light from the third surface 100e and the fourth surface 100f of the substrate 100 hardly reaches the exit-side reflection surfaces 102a to 102e, it is reflected by the exit-side reflection surfaces 102a to 102e and passes through the first surface 100a. The image light emitted to the outside of the light guide 10 contains almost no reflected light from the third surface 100e and the fourth surface 100f.
 例えば図2において、ライトガイド10上のIの位置において得られる画像光は、入射側反射面101上の位置iで反射して到来する表示素子12の表示面の中央付近から発した光束[2]と、入射側反射面101上の位置iiで反射して到来する表示素子12の表示面の端部から発した光束[3]と、を含むが、従来の画像表示装置とは異なり、入射側反射面101上の位置iで反射し第四面100fでさらに反射して到来する表示素子12の表示面の端部から発した光束[3]は含まない。それ故に、1回反射することで左右が反転した画像は重畳されない。ライトガイド10上のIの位置において得られる画像光についても同様である。そのため、観察者の眼Eから見える虚像には画像の左右が反転したゴーストが重畳しない。このように、本実施例の画像表示装置1は視認性の高い画像(虚像)を観察者に提供することができる。 For example, in FIG. 2, the image light obtained at the position I on the light guide 10 is reflected by the position i on the incident-side reflection surface 101 and is emitted from the vicinity of the center of the display surface of the display element 12 [2 , And a light beam [3] emitted from the end of the display surface of the display element 12 that is reflected and arrived at the position ii on the incident-side reflection surface 101, unlike the conventional image display device, The light flux [3] emitted from the end of the display surface of the display element 12 that is reflected at the position i on the side reflection surface 101 and further reflected by the fourth surface 100f is not included. Therefore, an image whose left and right sides are reversed by reflection once is not superimposed. The same applies to the image light obtained at the position I on the light guide 10. For this reason, a ghost in which the left and right sides of the image are reversed is not superimposed on the virtual image seen from the observer's eye E. Thus, the image display apparatus 1 of the present embodiment can provide an observer with a highly visible image (virtual image).
 上記実施例の画像表示装置におけるライトガイド10の構成、具体的には本発明における入射部及び射出部の構成は、周知のライトガイドの構成に従って様々に変形が可能である。
 例えば、ライトガイド10の基板100の内部に画像光を案内する入射部としては、例えば非特許文献1に記載されているように、ライトガイド10の基板100の第一面100aの一部を第二面100bに対し非平行とすることで、その非平行である面(基板100と外界との界面)で画像光を反射させる反射面としてもよい。或いは、入射部として、非特許文献2や特許文献2に記載されているような反射型体積ホログラムグレーティングを用いてもよい。
 また、ライトガイド10の基板100の内部から画像光を外部に射出する射出部として、反射型体積ホログラムグレーティングを用いてもよい。
 また、基板100の第三面100e及び第四面100fは互いに平行である必要はない。また、第三面100e及び第四面100fはその全体が非反射面である必要はなく、実質的に画像光が到達し得る範囲の全体又はその一部が非反射面であれば、程度の差はあれ、上述したような効果を得ることができる。
The configuration of the light guide 10 in the image display apparatus of the above embodiment, specifically, the configuration of the incident portion and the emission portion in the present invention can be variously modified according to the configuration of the known light guide.
For example, as an incident part that guides image light into the substrate 100 of the light guide 10, as described in Non-Patent Document 1, for example, a part of the first surface 100 a of the substrate 100 of the light guide 10 is a first part. By making it non-parallel to the two surfaces 100b, it may be a reflective surface that reflects image light on the non-parallel surface (interface between the substrate 100 and the outside). Alternatively, a reflective volume hologram grating as described in Non-Patent Document 2 or Patent Document 2 may be used as the incident portion.
In addition, a reflective volume hologram grating may be used as an emitting unit that emits image light from the inside of the substrate 100 of the light guide 10 to the outside.
Further, the third surface 100e and the fourth surface 100f of the substrate 100 do not need to be parallel to each other. In addition, the third surface 100e and the fourth surface 100f do not need to be non-reflective surfaces as a whole. Regardless of the difference, the effects described above can be obtained.
 また、上記実施例や上記記載の変形例に留まらず、本発明の趣旨の範囲で適宜、変更や修正、追加を行っても本願特許請求の範囲に包含されることは当然である。 Further, the present invention is not limited to the above-described embodiments and the above-described modifications, and any change, correction, or addition that is appropriately made within the scope of the present invention is naturally included in the scope of the claims of the present application.
1…画像表示装置
10…ライトガイド
100…基板
100a…第一面
100b…第二面
100e…第三面(非反射面)
100f…第四面(非反射面)
101…入射側反射面
102a~102e…射出側反射面
11…光源部
12…表示素子
13…コリメート光学系
DESCRIPTION OF SYMBOLS 1 ... Image display apparatus 10 ... Light guide 100 ... Board | substrate 100a ... 1st surface 100b ... 2nd surface 100e ... 3rd surface (non-reflective surface)
100f ... Fourth surface (non-reflective surface)
101: Incident-side reflecting surfaces 102a to 102e ... Emission-side reflecting surface 11 ... Light source unit 12 ... Display element 13 ... Collimating optical system

Claims (6)

  1.  a)表示素子の画面上に形成される画像を情報として含む画像光を発する画像形成部と、
     b)前記画像形成部からの画像光を平行光化して後記ライトガイドに入射させる入射光学系と、
     c)互いに平行に対向する第一面及び第二面と該第一面及び第二面の離間距離よりも長い離間距離を有して対向する第三面及び第四面とを有する透明な基板、前記入射光学系を通して入射された画像光が前記第一面及び第二面で全反射されるように前記基板の内部に案内する入射部、並びに、前記入射部から前記基板の内部に案内され前記第一面及び第二面で全反射されつつ該基板内を伝搬して来た画像光を、その光束を拡大しつつ所定位置で該基板の外部に射出させる射出部、を有するライトガイドと、
     を備え、前記ライトガイドの第三面と第四面の少なくとも一方の一部を非反射面としたことを特徴とする画像表示装置。
    a) an image forming unit that emits image light including, as information, an image formed on the screen of the display element;
    b) an incident optical system that collimates the image light from the image forming unit and enters the light guide, which will be described later,
    c) a transparent substrate having first and second surfaces facing each other in parallel and a third surface and a fourth surface facing each other with a separation distance longer than the separation distance between the first surface and the second surface; An incident portion that guides the image light incident through the incident optical system to the inside of the substrate so as to be totally reflected by the first surface and the second surface, and is guided from the incident portion to the inside of the substrate. A light guide having an emission unit that emits image light propagated through the substrate while being totally reflected by the first surface and the second surface to the outside of the substrate at a predetermined position while expanding the light flux; ,
    An image display device, wherein a part of at least one of the third surface and the fourth surface of the light guide is a non-reflecting surface.
  2.  請求項1に記載の画像表示装置であって、
     前記非反射面は遮光面であることを特徴とする画像表示装置。
    The image display device according to claim 1,
    The image display apparatus according to claim 1, wherein the non-reflective surface is a light shielding surface.
  3.  請求項2に記載の画像表示装置であって、
     前記遮光面は反射防止剤を塗布することで形成されていることを特徴とする画像表示装置。
    The image display device according to claim 2,
    The image display device, wherein the light shielding surface is formed by applying an antireflection agent.
  4.  請求項1に記載の画像表示装置であって、
     前記非反射面は光散乱面であることを特徴とする画像表示装置。
    The image display device according to claim 1,
    The non-reflective surface is a light scattering surface.
  5.  請求項4に記載の画像表示装置であって、
     前記光散乱面は前記基板の表面に微細な凹凸を形成する加工を施した面であることを特徴とする画像表示装置。
    The image display device according to claim 4,
    The image display device according to claim 1, wherein the light scattering surface is a surface subjected to processing for forming fine irregularities on the surface of the substrate.
  6.  請求項1~5のいずれか1項に記載の画像表示装置であって、
     前記入射部は、前記基板の内部に形成された、前記第一面及び第二面に非平行である反射面であり、
     前記射出部は、前記基板の内部に形成された、前記第一面及び第二面に非平行である複数の部分反射面であることを特徴とする画像表示装置。
    The image display device according to any one of claims 1 to 5,
    The incident portion is a reflecting surface formed inside the substrate and non-parallel to the first surface and the second surface,
    The image display apparatus according to claim 1, wherein the emission unit is a plurality of partial reflection surfaces formed inside the substrate and not parallel to the first surface and the second surface.
PCT/JP2018/008469 2018-03-06 2018-03-06 Image display device WO2019171450A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/008469 WO2019171450A1 (en) 2018-03-06 2018-03-06 Image display device
JP2020504511A JPWO2019171450A1 (en) 2018-03-06 2018-03-06 Image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008469 WO2019171450A1 (en) 2018-03-06 2018-03-06 Image display device

Publications (1)

Publication Number Publication Date
WO2019171450A1 true WO2019171450A1 (en) 2019-09-12

Family

ID=67846585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008469 WO2019171450A1 (en) 2018-03-06 2018-03-06 Image display device

Country Status (2)

Country Link
JP (1) JPWO2019171450A1 (en)
WO (1) WO2019171450A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049000A (en) * 2000-08-02 2002-02-15 Canon Inc Image display optics, image display device, image display system and apparatus
JP2007010830A (en) * 2005-06-29 2007-01-18 Nikon Corp Image display optical system and image display apparatus
JP2012163661A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Virtual image display device
US20170343810A1 (en) * 2016-05-24 2017-11-30 Osterhout Group, Inc. Pre-assembled solid optical assembly for head worn computers

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4751534B2 (en) * 2001-07-24 2011-08-17 大日本印刷株式会社 Optical system and apparatus using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049000A (en) * 2000-08-02 2002-02-15 Canon Inc Image display optics, image display device, image display system and apparatus
JP2007010830A (en) * 2005-06-29 2007-01-18 Nikon Corp Image display optical system and image display apparatus
JP2012163661A (en) * 2011-02-04 2012-08-30 Seiko Epson Corp Virtual image display device
US20170343810A1 (en) * 2016-05-24 2017-11-30 Osterhout Group, Inc. Pre-assembled solid optical assembly for head worn computers

Also Published As

Publication number Publication date
JPWO2019171450A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
WO2019150461A1 (en) Image display device
JP5742263B2 (en) Virtual image display device
JP5760465B2 (en) Virtual image display device
JP4911129B2 (en) Display device
JP6984752B2 (en) Image display device
US10884242B2 (en) Display apparatus and display method
JP6565496B2 (en) Light guide device and virtual image display device
JP5754154B2 (en) Virtual image display device
WO2019171450A1 (en) Image display device
JP7373984B2 (en) image display device
JP7355630B2 (en) image display device
WO2019155567A1 (en) Lightguide and image display device
WO2019239466A1 (en) Image display device
WO2019176071A1 (en) Image display device
JP2019113721A (en) Light guide device and display device
WO2021157044A1 (en) Display device and optical element for use in said display device
JP6977865B2 (en) Image display device
JP5754159B2 (en) Virtual image display device
JP2017161563A (en) Light guide device and virtual image display device
WO2020031247A1 (en) Image display device
WO2019239465A1 (en) Image display device
JP2015118223A (en) Head-up display device
JP6020624B2 (en) Virtual image display device
JP2018205418A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504511

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908797

Country of ref document: EP

Kind code of ref document: A1