WO2019171414A1 - Dc/dc converter control device - Google Patents

Dc/dc converter control device Download PDF

Info

Publication number
WO2019171414A1
WO2019171414A1 PCT/JP2018/008246 JP2018008246W WO2019171414A1 WO 2019171414 A1 WO2019171414 A1 WO 2019171414A1 JP 2018008246 W JP2018008246 W JP 2018008246W WO 2019171414 A1 WO2019171414 A1 WO 2019171414A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
voltage
frequency
output
output current
Prior art date
Application number
PCT/JP2018/008246
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 齋藤
杉戸 健
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to JP2020504480A priority Critical patent/JP6898511B2/en
Priority to PCT/JP2018/008246 priority patent/WO2019171414A1/en
Publication of WO2019171414A1 publication Critical patent/WO2019171414A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention is used in, for example, an EV quick charger, which is an in-vehicle charging device for rapidly charging a secondary battery (battery) mounted on an electric vehicle (hereinafter referred to as “EV”), and DC (direct current).
  • EV secondary battery
  • DC direct current
  • the present invention relates to a control device for a DC / DC converter for converting a voltage into a desired DC voltage to rapidly charge a battery or the like.
  • a current resonance type circuit as a DC / DC converter includes, for example, a resonance inductor, a resonance capacitor, an exciting inductance of a transformer, and a switching element, and an output range can be determined by each parameter of a component.
  • FIG. 6 is a diagram showing an example of output characteristics of the EV quick charger.
  • the horizontal axis represents the DC output current Io
  • the vertical axis represents the DC output voltage Vo.
  • a hatched area surrounded by points A, B, C, D, E, and F is an output possible power range Par of the EV quick charger.
  • the EV quick charger requires a wide range of output characteristics due to the difference in battery voltage depending on the vehicle type.
  • the output current Io is 30 A and the output voltage Vo is 500 V
  • the point B is the output current Io is 33.3 A and the output voltage Vo is 450 V
  • the point C is the output current Io is 38 A.
  • This is a critical point where the voltage Vo is 395 V and the output power Po is 1501.0 W.
  • the output current Io is 38A and the output voltage Vo is 150V
  • the output current Io is 1A and the output voltage Vo is 150V
  • the output current Io is 1A and the output voltage Vo is 500V. is there.
  • the hatched area surrounded by these points A, B, C, D, E, and F is the output power range Par of the EV quick charger, and current control CC is required.
  • the output voltage Vo is decreased by increasing the switching frequency f of the switching element and the output voltage Vo is increased by decreasing the switching frequency f by frequency control. For this reason, when a conventional current resonance circuit is applied to an EV quick charger that requires a wide range of output characteristics, if the battery is to be charged with a low output voltage Vo of approximately 200 V to 150 V, the switching frequency f However, since the maximum allowable frequency is exceeded, it is difficult to charge the battery. Also, in order to realize a wide range of output characteristics, it is necessary to set parameters such that a reactive current that does not contribute to output power always flows through the excitation inductance.
  • the reactive current causes a conduction loss in the route through which the reactive current flows (for example, the resonance capacitor ⁇ the switching element ⁇ the transformer primary winding ⁇ the resonance inductor ⁇ the current path of the resonance capacitor), and thus the loss cannot be reduced.
  • the DC input voltage is switched by a plurality of switching elements that are turned on / off by a plurality of switching drive signals, respectively, and a three-phase AC (AC) voltage is switched
  • a DC / AC conversion circuit that converts the three-phase resonance voltage to generate a three-phase resonance voltage by resonating with the three-phase AC voltage, and a three-phase conversion by converting the three-phase resonance voltage into a predetermined voltage
  • a main circuit of a DC / DC converter comprising: a three-phase transformer that outputs a voltage; and a three-phase rectifier circuit that rectifies the three-phase conversion voltage and outputs a DC output current to a load.
  • a control device for a DC / DC converter that supplies a plurality of switching drive signals.
  • the control device counts the DC output current, calculates the calculation value to obtain a calculation result, compares the calculation result with a reference value, and when the calculation result is larger than the reference value,
  • the phase difference between the three phases in the AC voltage of the phase is set to an angle 2 ⁇ / 3, and the frequency of the plurality of switching drive signals is changed by frequency control so that the desired DC output current is output from the rectifier circuit
  • the frequency of the plurality of switching drive signals is set to the maximum value, and the desired DC output current is output from the rectifier circuit by phase shift control.
  • the phase difference between the three phases is changed.
  • the control device for example, counts the DC output current, calculates a count value to calculate the calculation result, compares the calculation result with the reference value, and the calculation result is A comparison unit that outputs a first comparison result when larger than a reference value, and outputs a second comparison result when the calculation result is smaller than the reference value, and the three-phase AC voltage based on the first comparison result
  • the phase difference between the three phases is set to the angle 2 ⁇ / 3, and the frequency of the plurality of switching drive signals is changed by the frequency control so that the desired DC output current is output from the rectifier circuit.
  • the frequency control unit to set the frequency of the plurality of switching drive signals to the maximum value based on the second comparison result, and the rectification by the phase shift control As it said desired DC output current from the road is output, and a, and the phase shift control unit for changing the phase difference between the three phases.
  • the DC / DC converter control device of the present invention when the DC output current is supplied to the load by frequency control and the power supply region is smaller than the reference value that is difficult to control, the DC output current is switched to the phase shift control. Is supplied to the load. Therefore, a low-loss DC / DC converter that suppresses reactive current can be realized.
  • FIG. 1 is a schematic circuit diagram showing the entirety of a DC / DC converter in Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a control device in the DC / DC converter of FIG.
  • FIG. 3 is a diagram showing output characteristics of the EV quick charger in the first embodiment of the present invention.
  • FIG. 4 is a flowchart showing the operation of the control device of FIG.
  • FIG. 5 is a timing chart of the on / off operation in the switching element (for example, a field effect transistor, hereinafter referred to as “FET”) in FIG.
  • FIG. 6 is a diagram showing output characteristics of a conventional EV quick charger.
  • FIG. 1 is a schematic circuit diagram showing the entire DC / DC converter in Embodiment 1 of the present invention.
  • the DC / DC converter 1 switches the three-phase (for example, U-phase, V-phase, W-phase) DC input voltages Viu, Viv, Viw and converts them into a predetermined DC output voltage Vo and DC output current Io.
  • the main circuit 2 includes three-phase DC / AC conversion circuits 10U, 10V, and 10W.
  • the three-phase DC / AC conversion circuits 10U, 10V, and 10W are circuits that switch the three-phase DC input voltages Viu, Viv, and Viw, respectively, to convert them into three-phase AC voltages, and each phase is the same circuit. It is configured.
  • the U-phase DC / AC conversion circuit 10U includes a plurality of switching elements (for example, FETs) 11U, 12U, 13U, and 14U that are turned on / off by a plurality of switching drive signals S11U, S12U, S13U, and S14U, respectively. These FETs 11U, 12U, 13U, and 14U are bridge-connected. A parasitic diode 15 that is a body diode is connected in antiparallel between the source and drain of each of the FETs 11U, 12U, 13U, and 14U.
  • FETs switching elements
  • the V-phase DC / AC conversion circuit 10V includes a plurality of switching elements (for example, FETs) 11V, 12V, 13V, and 14V that are turned on / off by a plurality of switching drive signals S11V, S12V, S13V, and S14V, respectively.
  • FETs 11V, 12V, 13V, and 14V are bridge-connected.
  • Parasitic diodes 15 are connected in antiparallel between the sources and drains of the FETs 11V, 12V, 13V, and 14V, respectively.
  • the W-phase DC / AC conversion circuit 10W includes a plurality of switching elements (eg, FETs) 11W, 12W, 13W, and 14W that are turned on / off by a plurality of switching drive signals S11W, S12W, S13W, and S14W, respectively.
  • FETs 11W, 12W, 13W, and 14W are bridge-connected.
  • Parasitic diodes 15 are connected in antiparallel between the sources and drains of the FETs 11W, 12W, 13W, and 14W, respectively.
  • Three-phase resonance circuits 20U, 20V, and 20W are connected to the output sides of the three-phase DC / AC conversion circuits 10U, 10V, and 10W.
  • the three-phase resonance circuits 20U, 20V, and 20W are circuits that resonate with the three-phase AC voltage output from the three-phase DC / AC conversion circuits 10U, 10V, and 10W to generate a three-phase resonance voltage.
  • Each phase is composed of the same circuit.
  • the U-phase resonance circuit 20U is constituted by a current resonance type circuit having a resonance capacitor 21U, a resonance inductor 22U, and an excitation inductor 23U.
  • the resonant capacitor 21U, the resonant inductor 22U, and the exciting inductor 23U are connected in series between a connection point between the FET 11U and the FET 12U and a connection point between the FET 13U and the FET 14U.
  • the V-phase resonance circuit 20V is constituted by a current resonance circuit having a resonance capacitor 21V, a resonance inductor 22V, and an excitation inductor 23V.
  • the resonant capacitor 21V, the resonant inductor 22V, and the exciting inductor 23V are connected in series between a connection point between the FET 11V and the FET 12V and a connection point between the FET 13V and the FET 14V.
  • the W-phase resonance circuit 20W is constituted by a current resonance circuit having a resonance capacitor 21W, a resonance inductor 22W, and an excitation inductor 23W.
  • the resonant capacitor 21W, the resonant inductor 22W, and the exciting inductor 23W are connected in series between a connection point between the FET 11W and the FET 12W and a connection point between the FET 13W and the FET 14W.
  • Three-phase transformers 30U, 30V, 30W are connected to the output sides of the three-phase resonance circuits 20U, 20V, 20W.
  • the three-phase transformers 30U, 30V, and 30W convert the three-phase resonance voltage output from the three-phase resonance circuits 20U, 20V, and 20W into a predetermined voltage and output a three-phase conversion voltage.
  • Each phase has the same configuration.
  • the U-phase transformer 30U has a primary winding 31U and a secondary winding 32U.
  • the winding start side (black dot in FIG. 1) of the primary winding 31U is connected to the resonant inductor 20U, and the winding end side of the primary winding 31U is connected to the connection point between the FETs 13U and 14U.
  • the V-phase transformer 30V has a primary winding 31V and a secondary winding 32V, and the winding start side of the primary winding 31V is connected to the resonant inductor 20V, and the primary winding 31V. Is connected to the connection point between the FETs 13V and 14V.
  • the W-phase transformer 30W has a primary winding 31W and a secondary winding 32W, and the winding start side of the primary winding 31W is connected to the resonant inductor 20W, and the primary winding 31W The winding end side is connected to a connection point between the FETs 13W and 14W.
  • a three-phase rectifier circuit 40 is connected to the three-phase secondary windings 32U, 32V, and 32W.
  • the three-phase rectifier circuit 40 is a circuit that rectifies the three-phase conversion voltage converted by the three-phase transformers 30U, 30V, and 30W and outputs the DC output voltage Vo and the DC output current Io to the load 48.
  • the three-phase rectifier circuit 40 includes a rectifier unit in which a plurality of (for example, six) rectifier elements (for example, diodes 41, 42, 43, 44, 45, and 46) are bridge-connected, an output voltage of the rectifier unit, and And a smoothing section (for example, a smoothing capacitor 47) that smoothes the output current.
  • the control device 50 includes a plurality of (for example, 12) switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, This device supplies S14W to the gates of FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in the main circuit 2.
  • FIG. 2 is a block diagram showing the control device 50 in the DC / DC converter 1 of FIG.
  • the control device 50 includes a count value calculation unit 51, a comparison unit 52, a frequency control unit 53, a phase shift control unit 54, and a pulse drive unit 55.
  • the count value calculation unit 51, the comparison unit 52, the frequency control unit 53, and the phase shift control unit 54 are configured by a processor having a central processing unit (CPU) capable of program control, or an individual circuit.
  • the pulse driving unit 55 is configured by an individual circuit.
  • the count value calculation unit 51 counts the DC output current Io measured by a current measuring instrument (not shown), calculates the count value, and obtains a calculation result CV.
  • the count value calculation unit 51 includes an analog / digital conversion unit (hereinafter referred to as “A / D conversion unit”) 51a that converts the measured DC output current Io into an output current value IO of a digital signal, and an output current value IO thereof. And a calculation unit 51b for calculating a calculation result CV.
  • a comparison unit 52 is connected to the output side of the calculation unit 51b. The comparison unit 52 compares the calculation result CV with the reference value RV, and outputs the first comparison result CR1 to the frequency control unit 53 when the calculation result CV is larger than the reference value RV (CV ⁇ RV). When the result CV is smaller than the reference value RV (CV ⁇ RV), the second comparison result CR2 is output to the phase shift control unit 54.
  • the switching frequency f of S11W, S12W, S13W, S14W is changed.
  • the PFM pulse generation unit 53b modulates the switching frequency f of the plurality of switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, and S14W by frequency control to generate the PFM pulse.
  • P1 is generated, and a pulse driving unit 55 is connected to the output side.
  • the phase shift control unit 54 determines the values of the switching frequencies f of the plurality of switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, and S14W.
  • the phase difference ⁇ between the U, V, and W phases is fixed so that the maximum switching frequency fmax of the maximum value is fixed (that is, set), and the desired DC output current Io is output from the rectifier circuit 40 by phase shift control. It is something to change.
  • the phase shift control unit 54 includes a frequency setting unit 54a that sets the switching frequency f of the switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, and S14W to the maximum frequency fmax; And a phase shift control pulse generator 54b connected to the output side.
  • the phase shift control pulse generator 54b generates a phase shift control pulse P2 by changing the phase difference ⁇ between the U, V, and W phases by phase shift control.
  • the pulse driver 55 It is connected.
  • the pulse driving unit 55 generates a switching drive signal S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W by driving the PFM pulse P1 or the phase shift control pulse P2.
  • There are individual circuits such as transistors.
  • the frequency control unit 53 in the control device 50 sets the phase difference ⁇ between the U, V, and W phases to 120 °, and by frequency control, A PFM pulse P1 is generated, and this PFM pulse P1 is output to the pulse driving unit 55.
  • the PFM pulse P1 is generated by performing frequency modulation such that the DC output voltage Vo is increased to decrease the DC output voltage Vo.
  • the pulse driver 55 drives the PFM pulse P1 to generate the switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W, and the U, V, W phase
  • the voltage is applied to each gate of the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in the DC / AC conversion circuits 10U, 10V, and 10W.
  • the FETs 11U, 14U and the FETs 12U, 13U are alternately turned on / off with a predetermined dead time by the switching drive signals S11U, S12U, S13U, S14U.
  • the FETs 11V, 14V and FETs 12V, 14V are alternately delayed by 120 ° from the U-phase with a predetermined dead time by the switching drive signals S11V, S12V, S13V, S14V. Turns on / off.
  • the switching drive signals S11W, S12W, S13W, and S14W cause the FETs 11W and 14W and the FETs 12W and 13W to be delayed by 120 ° from the V phase and have a predetermined dead time. Turns on / off alternately.
  • the U-phase DC input voltage Viu causes the FET 11U ⁇ resonance capacitor 21U ⁇ resonance inductor 22U ⁇ excitation inductor 23U and A power supply current flows through the path of the primary winding 31U ⁇ the FET 14U ⁇ the DC input voltage Viu of the transformer 30U.
  • the resonant circuit 20U is resonated by the converted AC voltage to generate a resonant voltage, which is applied to the primary winding 31U of the transformer 30U. Then, a predetermined conversion voltage is induced in the secondary winding 32U of the transformer 30.
  • the induced conversion voltage is rectified by a plurality of diodes 41-46 in the rectifier circuit 40, smoothed by the smoothing capacitor 47, and the DC output voltage Vo is supplied to the load 48.
  • the V-phase DC / AC conversion circuit 10V performs a switching operation with a 120 ° delay from the U-phase, and the V-phase DC input voltage Viv is converted into an AC voltage.
  • the resonance circuit 20V resonates to generate a resonance voltage.
  • the generated resonance voltage is converted into a predetermined voltage by the transformer 30V, rectified by the plurality of diodes 41-46 in the rectifier circuit 40, and then smoothed by the smoothing capacitor 47, and the DC output voltage Vo is applied to the load 48. Supplied to.
  • the W-phase DC / AC conversion circuit 10W performs a switching operation with a 120 ° delay from the V-phase, and the W-phase DC input voltage Viw is converted into an AC voltage. Due to the converted AC voltage, the resonant circuit 20W resonates to generate a resonant voltage. The generated resonance voltage is converted into a predetermined voltage by the transformer 30W, rectified by the plurality of diodes 41-46 in the rectifier circuit 40, and then smoothed by the smoothing capacitor 47, and the DC output voltage Vo is applied to the load 48. Supplied to.
  • FIG. 3 is a diagram showing the output characteristics of the EV quick charger according to the first embodiment of the present invention. Elements common to those shown in FIG. 6 are denoted by common reference numerals.
  • the horizontal axis represents the DC output current Io
  • the vertical axis represents the DC output voltage Vo.
  • the boundary line BL of the LLC control limit that becomes the reference value RV in FIG. 6 is added, and other portions are the same as those in FIG.
  • the frequency control CF is performed in a region exceeding the boundary line BL that becomes the reference value RV in the output power range Par, and is below the boundary line BL that becomes the reference value RV. In the region, phase shift control C ⁇ is performed.
  • FIG. 4 is a flowchart showing the operation of the control device 50 of FIG.
  • FIG. 5 is a timing chart of the on / off operation in the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in FIG.
  • the battery as the load 48 is rapidly charged by the following steps ST1, ST2, ST3, ST4, ST5, ST6, ST7.
  • step ST1 the DC output current Io is measured by a current measuring instrument (not shown), and converted into an output current value IO of a digital signal by the A / D converter 51a in the count value calculator 51.
  • the converted output current value IO is counted by the calculation unit 51b in the count value calculation unit 51, the count value is calculated to obtain the calculation result CV, and the process proceeds to step ST2.
  • step ST2 the comparison unit 52 compares the calculation result CV of the count value with the reference value RV that is the boundary line BL in FIG. 3, and when the calculation result CV is larger than the reference value RV (CV ⁇ RV).
  • the first comparison result CR1 is output to the frequency control unit 53, and the process proceeds to step ST3.
  • the second comparison result CR2 is output to the phase shift control unit 54.
  • step ST3 the phase difference setting unit 53a in the frequency control unit 53 sets the phase difference ⁇ of the V phase with respect to the U phase to 120 °, and further the phase difference ⁇ of the W phase with respect to the U phase to 240 °.
  • Each is set, that is, the phase difference ⁇ between the U, V, and W phases is set to 120 °, and the process proceeds to step ST4.
  • step ST4 the PFM pulse generation unit 53b in the frequency control unit 53 generates a PFM pulse P1 by the frequency control CF, and outputs this PFM pulse P1 to the pulse drive unit 55.
  • the switching frequency f is increased to increase the DC output current Io.
  • the DC output current Io becomes larger than the target current Ith
  • the PFM pulse P1 is generated by performing frequency modulation such that the frequency f is lowered to reduce the DC output current Io.
  • the pulse driver 55 drives the PFM pulse P1 to generate the switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W, and the U, V, W phase
  • the voltage is applied to each gate of the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in the DC / AC conversion circuits 10U, 10V, and 10W.
  • the U-phase FETs 11U and 14U and the FETs 12U and 13U are alternately turned on / off with a predetermined dead time.
  • V-phase FETs 11V and 14V and the FETs 12V and 14V are alternately turned on / off with a predetermined dead time delayed by 120 ° from the U-phase. Furthermore, the W-phase FETs 11W and 14W and the FETs 12W and 13W are alternately turned on / off with a predetermined dead time delayed by 120 ° from the V-phase.
  • the U-phase DC / AC conversion circuit 10U performs a switching operation, and the U-phase DC input voltage Viu is converted into an AC voltage.
  • the resonance circuit 20U resonates to generate a resonance voltage.
  • the generated resonance voltage is converted into a predetermined voltage by the transformer 30U, rectified and smoothed by the rectifier circuit 40, and a DC output current Io is generated.
  • the V-phase DC / AC conversion circuit 10V performs a switching operation with a 120 ° delay from the U-phase, and the V-phase DC input voltage Viv is converted into an AC voltage.
  • the resonance circuit 20V resonates to generate a resonance voltage.
  • the generated resonance voltage is converted into a predetermined voltage by the transformer 30V, and rectified and smoothed by the rectifier circuit 40 to generate a DC output current Io.
  • the W-phase DC / AC conversion circuit 10W performs a switching operation with a 120 ° delay from the V-phase, and the W-phase DC input voltage Viw is converted into an AC voltage. Due to the converted AC voltage, the resonant circuit 20W resonates to generate a resonant voltage.
  • the generated resonance voltage is converted into a predetermined voltage by the transformer 30W, rectified and smoothed by the rectifier circuit 40, and a DC output current Io is generated.
  • the battery as the load 48 is rapidly charged by the DC output current Io generated in this way, and the process proceeds to step ST7.
  • step ST7 a charging end determination unit (not shown) in the control device 50 determines whether or not there is a request to end battery charging. When there is a request to end battery charging (Yes), the operation ends and the battery charging ends. When there is no termination request (No), the process returns to step ST1 and the above steps ST1 to ST7 are repeated.
  • step ST2 when the calculation result CV is smaller than the reference value RV (CV ⁇ RV), the second comparison result CR2 is output to the phase shift control unit 54, and the process proceeds to step ST5.
  • step ST5 the frequency setting unit 54a in the phase shift control unit 54 sets the switching frequency f to the value of the maximum frequency fmax, and proceeds to step ST6.
  • step ST6 the phase shift control pulse generator 54b in the phase shift controller 54 changes the phase difference ⁇ between the U, V, and W phases by the phase shift control C ⁇ as indicated by the arrows in FIG. That is, a phase shift control pulse P 2 that is shifted) is generated, and this phase shift control pulse P 2 is output to the pulse driver 55.
  • step ST3 the phase difference ⁇ between the U, V, and W phases is set to 120 °.
  • step ST6 the phase difference ⁇ is changed.
  • the phase difference ⁇ between the U, V, and W phases is made smaller than 120 ° to increase the DC output current Io.
  • the pulse driver 55 drives the phase shift control pulse P2 to generate switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W, and U, V, W
  • This is applied to the respective gates of the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, 14W in the phase DC / AC conversion circuits 10U, 10V, 10W.
  • the U-phase FETs 11U and 14U and the FETs 12U and 13U are alternately turned on / off at a timing indicated by an arrow in FIG. 5 with a predetermined dead time.
  • the V-phase FETs 11V and 14V and the FETs 12V and 14V are alternately turned on / off with a predetermined dead time after the phase difference ⁇ ( ⁇ 120 °) after the change from the U-phase. Furthermore, the W-phase FETs 11W and 14W and the FETs 12W and 13W are alternately turned on / off with a predetermined dead time after the phase difference ⁇ ( ⁇ 120 °) after the change from the V-phase.
  • the DC input voltages Viu, Viv, Viw of each phase are converted into AC voltages.
  • the resonance circuits 20U, 20V, and 20W resonate with the converted AC voltages of the respective phases to generate a resonance voltage.
  • the generated resonance voltage of each phase is converted into a predetermined voltage by the transformers 30U, 30V, and 30W, and rectified and smoothed by the rectifier circuit 40 to generate the DC output current Io.
  • the battery is rapidly charged by the generated DC output current Io, and the process proceeds to step ST7.
  • step ST7 a charging end determination unit (not shown) in the control device 50 determines whether or not there is a request to end battery charging. When there is a request to end battery charging (Yes), the operation ends and the battery charging ends. When there is no request for termination (No), the process returns to step ST1 to repeat the above steps ST1, ST2, ST5, ST6, ST7.
  • the control device 50 of the DC / DC converter 1 in the first embodiment for example, when the battery as the load 48 is rapidly charged, the DC output current Io is supplied to the battery by frequency control and becomes the reference value RV. In the power supply region below the difficult boundary line BL, the phase shift control C ⁇ is switched to supply the DC output current Io to the battery. Therefore, the low loss DC / DC converter 1 in which the reactive current is suppressed can be realized.
  • the present invention is not limited to the first embodiment, and various usage forms and modifications are possible.
  • the following forms (a) and (b) are used as the usage form and the modified examples.
  • the main circuit 2 in the DC / DC converter 1 of FIG. 1 may be changed to another circuit configuration.
  • each FET 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, 14W may be replaced with another switching element such as an insulated gate bipolar transistor (IGBT).
  • IGBT insulated gate bipolar transistor
  • the resonance circuits 20U, 20V, and 20W may be changed to other circuit configurations.
  • the leakage impedance of the transformers 30U, 30V, and 30W may be used.
  • the plurality of diodes 41 to 46 constituting the rectifier circuit 40 may be replaced with other rectifier elements such as switch elements.
  • the three-phase DC / AC conversion circuits 10U, 10V, and 10W may be replaced with one full-bridge type DC / AC conversion circuit having six switching elements instead.

Abstract

Provided is a control device 50 for a DC/DC converter 1 with which it is possible to cover a wide range of obtainable output power with low loss. The control device 50 has a count value calculation unit 51, a comparator unit 52, a frequency control unit 53, a phase shift control unit 54, and a pulse drive unit 55. When rapidly charging a battery, for example, a DC output current Io is supplied to the battery by frequency control performed by the frequency control unit 53. Upon entering a power supply range less than or equal to the boundary of a current resonance control limit that serves as a reference value and is difficult to control, phase shift control performed by the phase shift control unit 54 is selected and the DC output current Io is supplied to the battery.

Description

DC/DCコンバータの制御装置Control device for DC / DC converter
 本発明は、例えば、電気自動車(Electric Vehicle;以下「EV」という。)に搭載された二次電池(バッテリー)を急速充電する車載充電装置であるEV急速充電器等に使用され、DC(直流)電圧を所望のDC電圧に変換してバッテリー等を急速充電するためのDC/DCコンバータの制御装置に関するものである。 The present invention is used in, for example, an EV quick charger, which is an in-vehicle charging device for rapidly charging a secondary battery (battery) mounted on an electric vehicle (hereinafter referred to as “EV”), and DC (direct current). The present invention relates to a control device for a DC / DC converter for converting a voltage into a desired DC voltage to rapidly charge a battery or the like.
 従来、例えば、バッテリーを充電するためのDC/DCコンバータとして、スイッチング損失等が少ない高効率のLLC回路等の電流共振型回路が、特許文献1,2等に記載されている。 Conventionally, for example, as a DC / DC converter for charging a battery, current resonant circuits such as a high-efficiency LLC circuit with low switching loss and the like are described in Patent Documents 1 and 2 and the like.
 DC/DCコンバータとしての電流共振型回路は、例えば、共振インダクタ、共振コンデンサ、及び変圧器の励磁インダクタンスとスイッチング素子とで構成されており、構成部品の各パラメータにより出力範囲をきめることができる。 A current resonance type circuit as a DC / DC converter includes, for example, a resonance inductor, a resonance capacitor, an exciting inductance of a transformer, and a switching element, and an output range can be determined by each parameter of a component.
特開2012-249375号公報JP 2012-249375 A 特開2013-243114号公報JP 2013-243114 A
 図6は、EV急速充電器の出力特性例を示す図である。 FIG. 6 is a diagram showing an example of output characteristics of the EV quick charger.
 図6において、横軸はDC出力電流Io、縦軸はDC出力電圧Voである。点A,B,C,D,E,Fで囲まれた斜線の領域は、EV急速充電器の出力可能電力範囲Parである。EV急速充電器では、車種によるバッテリー電圧の違いにより、広範囲な出力特性が要求される。 6, the horizontal axis represents the DC output current Io, and the vertical axis represents the DC output voltage Vo. A hatched area surrounded by points A, B, C, D, E, and F is an output possible power range Par of the EV quick charger. The EV quick charger requires a wide range of output characteristics due to the difference in battery voltage depending on the vehicle type.
 例えば、図6の点Aは、出力電流Ioが30A及び出力電圧Voが500V、点Bは、出力電流Ioが33.3A及び出力電圧Voが450V、点Cは、出力電流Ioが38A、出力電圧Voが395V及び出力電力Poが1501.0Wの臨界点である。更に、点Dは、出力電流Ioが38A及び出力電圧Voが150V、点Eは、出力電流Ioが1A及び出力電圧Voが150V、点Fは、出力電流Ioが1A及び出力電圧Voが500Vである。これらの点A,B,C,D,E,Fで囲まれた斜線の領域は、EV急速充電器の出力可能電力範囲Parであり、電流制御CCが必要となる。 For example, at point A in FIG. 6, the output current Io is 30 A and the output voltage Vo is 500 V, the point B is the output current Io is 33.3 A and the output voltage Vo is 450 V, and the point C is the output current Io is 38 A. This is a critical point where the voltage Vo is 395 V and the output power Po is 1501.0 W. Further, at point D, the output current Io is 38A and the output voltage Vo is 150V, at point E, the output current Io is 1A and the output voltage Vo is 150V, and at point F, the output current Io is 1A and the output voltage Vo is 500V. is there. The hatched area surrounded by these points A, B, C, D, E, and F is the output power range Par of the EV quick charger, and current control CC is required.
 LLC回路等の電流共振型回路では、周波数制御により、スイッチング素子のスイッチング周波数fを上げることによって出力電圧Voを下げ、スイッチング周波数fを下げることによって出力電圧Voを上げている。そのため、広範囲な出力特性が要求されるEV急速充電器に、従来の電流共振型回路を適用した場合、出力電圧Voが200Vから150V付近の低電圧にてバッテリーを充電しようとすると、スイッチング周波数fが、許容される最大周波数を超えるので、バッテリーの充電が困難になる。又、広範囲な出力特性を実現するためには、出力電力に寄与しない無効電流を、常に励磁インダクタンスに流すようなパラメータに設定する必要がある。しかし、無効電流は、流れるルート(例えば、共振キャパシタ→スイッチング素子→変圧器1次巻線→共振インダクタ→共振キャパシタの電流経路)の導通損を発生させるため、低損失化ができなくなる。 In a current resonance type circuit such as an LLC circuit, the output voltage Vo is decreased by increasing the switching frequency f of the switching element and the output voltage Vo is increased by decreasing the switching frequency f by frequency control. For this reason, when a conventional current resonance circuit is applied to an EV quick charger that requires a wide range of output characteristics, if the battery is to be charged with a low output voltage Vo of approximately 200 V to 150 V, the switching frequency f However, since the maximum allowable frequency is exceeded, it is difficult to charge the battery. Also, in order to realize a wide range of output characteristics, it is necessary to set parameters such that a reactive current that does not contribute to output power always flows through the excitation inductance. However, the reactive current causes a conduction loss in the route through which the reactive current flows (for example, the resonance capacitor → the switching element → the transformer primary winding → the resonance inductor → the current path of the resonance capacitor), and thus the loss cannot be reduced.
 このように、従来の電流共振型回路では、広範囲の出力可能電力範囲Parを低損失にてカバーできるDC/DCコンバータの制御装置を実現することが困難であった。 As described above, in the conventional current resonance type circuit, it is difficult to realize a DC / DC converter control device capable of covering a wide output possible power range Par with low loss.
 本発明は、三相のDC入力電圧が供給されると、複数のスイッチング駆動信号によりそれぞれオン/オフ動作する複数のスイッチング素子で、前記DC入力電圧をスイッチングして三相のAC(交流)電圧に変換するDC/AC変換回路と、前記三相のAC電圧に共振して三相の共振電圧を生成する共振回路と、前記三相の共振電圧を所定の電圧に変換して三相の変換電圧を出力する三相の変圧器と、前記三相の変換電圧を整流してDC出力電流を負荷へ出力する三相の整流回路と、を備えるDC/DCコンバータの主回路に対して、前記複数のスイッチング駆動信号を供給するDC/DCコンバータの制御装置である。 According to the present invention, when a three-phase DC input voltage is supplied, the DC input voltage is switched by a plurality of switching elements that are turned on / off by a plurality of switching drive signals, respectively, and a three-phase AC (AC) voltage is switched A DC / AC conversion circuit that converts the three-phase resonance voltage to generate a three-phase resonance voltage by resonating with the three-phase AC voltage, and a three-phase conversion by converting the three-phase resonance voltage into a predetermined voltage A main circuit of a DC / DC converter comprising: a three-phase transformer that outputs a voltage; and a three-phase rectifier circuit that rectifies the three-phase conversion voltage and outputs a DC output current to a load. A control device for a DC / DC converter that supplies a plurality of switching drive signals.
 前記制御装置は、前記DC出力電流をカウントし、このカウント値を演算して演算結果を求め、前記演算結果と基準値とを比較し、前記演算結果が前記基準値よりも大きい時には、前記三相のAC電圧における三相間の位相差を角度2π/3に設定し、周波数制御により、前記整流回路から所望の前記DC出力電流が出力されるように、前記複数のスイッチング駆動信号の周波数を変化させ、前記演算結果が前記基準値よりも小さい時には、前記複数のスイッチング駆動信号の周波数を最大値に設定し、位相シフト制御により、前記整流回路から所望の前記DC出力電流が出力されるように、前記三相間の位相差を変化させる、構成になっている。 The control device counts the DC output current, calculates the calculation value to obtain a calculation result, compares the calculation result with a reference value, and when the calculation result is larger than the reference value, The phase difference between the three phases in the AC voltage of the phase is set to an angle 2π / 3, and the frequency of the plurality of switching drive signals is changed by frequency control so that the desired DC output current is output from the rectifier circuit When the calculation result is smaller than the reference value, the frequency of the plurality of switching drive signals is set to the maximum value, and the desired DC output current is output from the rectifier circuit by phase shift control. The phase difference between the three phases is changed.
 前記制御装置は、例えば、前記DC出力電流をカウントし、このカウント値を演算して前記演算結果を求めるカウント値演算部と、前記演算結果と前記基準値とを比較し、前記演算結果が前記基準値よりも大きい時には第1比較結果を出力し、前記演算結果が前記基準値よりも小さい時には第2比較結果を出力する比較部と、前記第1比較結果に基づき、前記三相のAC電圧における前記三相間の位相差を前記角度2π/3に設定し、前記周波数制御により、前記整流回路から前記所望のDC出力電流が出力されるように、前記複数のスイッチング駆動信号の前記周波数を変化させる周波数制御部と、前記第2比較結果に基づき、前記複数のスイッチング駆動信号の前記周波数を前記最大値に設定し、前記位相シフト制御により、前記整流回路から前記所望のDC出力電流が出力されるように、前記三相間の位相差を変化させる位相シフト制御部と、を有している。 The control device, for example, counts the DC output current, calculates a count value to calculate the calculation result, compares the calculation result with the reference value, and the calculation result is A comparison unit that outputs a first comparison result when larger than a reference value, and outputs a second comparison result when the calculation result is smaller than the reference value, and the three-phase AC voltage based on the first comparison result The phase difference between the three phases is set to the angle 2π / 3, and the frequency of the plurality of switching drive signals is changed by the frequency control so that the desired DC output current is output from the rectifier circuit. And the frequency control unit to set the frequency of the plurality of switching drive signals to the maximum value based on the second comparison result, and the rectification by the phase shift control As it said desired DC output current from the road is output, and a, and the phase shift control unit for changing the phase difference between the three phases.
 本発明のDC/DCコンバータの制御装置によれば、周波数制御によってDC出力電流を負荷へ供給し、制御困難な基準値よりも小さい電力供給領域になると、位相シフト制御に切り替えて、DC出力電流を負荷へ供給する構成になっている。そのため、無効電流を抑制した低損失のDC/DCコンバータを実現できる。 According to the DC / DC converter control device of the present invention, when the DC output current is supplied to the load by frequency control and the power supply region is smaller than the reference value that is difficult to control, the DC output current is switched to the phase shift control. Is supplied to the load. Therefore, a low-loss DC / DC converter that suppresses reactive current can be realized.
図1は本発明の実施例1におけるDC/DCコンバータの全体を示す概略の回路図である。FIG. 1 is a schematic circuit diagram showing the entirety of a DC / DC converter in Embodiment 1 of the present invention. 図2は図1のDC/DCコンバータにおける制御装置を示す構成図である。FIG. 2 is a block diagram showing a control device in the DC / DC converter of FIG. 図3は本発明の実施例1におけるEV急速充電器の出力特性を示す図である。FIG. 3 is a diagram showing output characteristics of the EV quick charger in the first embodiment of the present invention. 図4は図2の制御装置の動作を示すフローチャートである。FIG. 4 is a flowchart showing the operation of the control device of FIG. 図5は図1中のスイッチング素子(例えば、電界効果トランジスタ、これを以下「FET」という。)におけるオン/オフ動作のタイミングチャートである。FIG. 5 is a timing chart of the on / off operation in the switching element (for example, a field effect transistor, hereinafter referred to as “FET”) in FIG. 図6は従来のEV急速充電器の出力特性を示す図である。FIG. 6 is a diagram showing output characteristics of a conventional EV quick charger.
 本発明を実施するための形態は、以下の好ましい実施例の説明を添付図面と照らし合わせて読むと、明らかになるであろう。但し、図面はもっぱら解説のためのものであって、本発明の範囲を限定するものではない。 The form for carrying out the present invention will become clear when the following description of the preferred embodiments is read with reference to the accompanying drawings. However, the drawings are only for explanation and do not limit the scope of the present invention.
 (実施例1の構成) (Configuration of Example 1)
 図1は、本発明の実施例1におけるDC/DCコンバータの全体を示す概略の回路図である。 FIG. 1 is a schematic circuit diagram showing the entire DC / DC converter in Embodiment 1 of the present invention.
 DC/DCコンバータ1は、三相(例えば、U相、V相、W相)のDC入力電圧Viu,Viv,Viwをスイッチングして所定のDC出力電圧Vo及びDC出力電流Ioに変換する電力変換の主回路2と、この主回路2のスイッチング動作を制御する制御装置50と、により構成されている。 The DC / DC converter 1 switches the three-phase (for example, U-phase, V-phase, W-phase) DC input voltages Viu, Viv, Viw and converts them into a predetermined DC output voltage Vo and DC output current Io. Main circuit 2 and a control device 50 for controlling the switching operation of the main circuit 2.
 主回路2は、三相のDC/AC変換回路10U,10V,10Wを備えている。三相のDC/AC変換回路10U,10V,10Wは、三相のDC入力電圧Viu,Viv,Viwをそれぞれスイッチングして三相のAC電圧に変換する回路であり、各相が同一の回路で構成されている。 The main circuit 2 includes three-phase DC / AC conversion circuits 10U, 10V, and 10W. The three-phase DC / AC conversion circuits 10U, 10V, and 10W are circuits that switch the three-phase DC input voltages Viu, Viv, and Viw, respectively, to convert them into three-phase AC voltages, and each phase is the same circuit. It is configured.
 U相のDC/AC変換回路10Uは、複数のスイッチング駆動信号S11U,S12U,S13U,S14Uによりそれぞれオン/オフ動作する複数のスイッチング素子(例えば、FET)11U,12U,13U,14Uを有し、これらのFET11U,12U,13U,14Uがブリッジ接続されている。各FET11U,12U,13U,14Uのソース・ドレイン間には、ボディダイオードである寄生ダイオード15がそれぞれ逆並列に接続されている。 The U-phase DC / AC conversion circuit 10U includes a plurality of switching elements (for example, FETs) 11U, 12U, 13U, and 14U that are turned on / off by a plurality of switching drive signals S11U, S12U, S13U, and S14U, respectively. These FETs 11U, 12U, 13U, and 14U are bridge-connected. A parasitic diode 15 that is a body diode is connected in antiparallel between the source and drain of each of the FETs 11U, 12U, 13U, and 14U.
 同様に、V相のDC/AC変換回路10Vは、複数のスイッチング駆動信号S11V,S12V,S13V,S14Vによりそれぞれオン/オフ動作する複数のスイッチング素子(例えば、FET)11V,12V,13V,14Vを有し、これらのFET11V,12V,13V,14Vがブリッジ接続されている。各FET11V,12V,13V,14Vのソース・ドレイン間には、寄生ダイオード15がそれぞれ逆並列に接続されている。 Similarly, the V-phase DC / AC conversion circuit 10V includes a plurality of switching elements (for example, FETs) 11V, 12V, 13V, and 14V that are turned on / off by a plurality of switching drive signals S11V, S12V, S13V, and S14V, respectively. These FETs 11V, 12V, 13V, and 14V are bridge-connected. Parasitic diodes 15 are connected in antiparallel between the sources and drains of the FETs 11V, 12V, 13V, and 14V, respectively.
 更に、W相のDC/AC変換回路10Wは、複数のスイッチング駆動信号S11W,S12W,S13W,S14Wによりそれぞれオン/オフ動作する複数のスイッチング素子(例えば、FET)11W,12W,13W,14Wを有し、これらのFET11W,12W,13W,14Wがブリッジ接続されている。各FET11W,12W,13W,14Wのソース・ドレイン間には、寄生ダイオード15がそれぞれ逆並列に接続されている。 Further, the W-phase DC / AC conversion circuit 10W includes a plurality of switching elements (eg, FETs) 11W, 12W, 13W, and 14W that are turned on / off by a plurality of switching drive signals S11W, S12W, S13W, and S14W, respectively. These FETs 11W, 12W, 13W, and 14W are bridge-connected. Parasitic diodes 15 are connected in antiparallel between the sources and drains of the FETs 11W, 12W, 13W, and 14W, respectively.
 三相のDC/AC変換回路10U,10V,10Wの出力側には、三相の共振回路20U,20V,20Wが接続されている。三相の共振回路20U,20V,20Wは、三相のDC/AC変換回路10U,10V,10Wから出力される三相のAC電圧に共振して三相の共振電圧を生成する回路であり、各相が同一の回路で構成されている。 Three- phase resonance circuits 20U, 20V, and 20W are connected to the output sides of the three-phase DC / AC conversion circuits 10U, 10V, and 10W. The three- phase resonance circuits 20U, 20V, and 20W are circuits that resonate with the three-phase AC voltage output from the three-phase DC / AC conversion circuits 10U, 10V, and 10W to generate a three-phase resonance voltage. Each phase is composed of the same circuit.
 U相の共振回路20Uは、共振コンデンサ21U、共振インダクタ22U、及び励磁インダクタ23Uを有する電流共振型回路により構成されている。共振コンデンサ21U、共振インダクタ22U、及び励磁インダクタ23Uは、FET11U及びFET12U間の接続点と、FET13U及びFET14U間の接続点と、の間に直列に接続されている。 The U-phase resonance circuit 20U is constituted by a current resonance type circuit having a resonance capacitor 21U, a resonance inductor 22U, and an excitation inductor 23U. The resonant capacitor 21U, the resonant inductor 22U, and the exciting inductor 23U are connected in series between a connection point between the FET 11U and the FET 12U and a connection point between the FET 13U and the FET 14U.
 同様に、V相の共振回路20Vは、共振コンデンサ21V、共振インダクタ22V、及び励磁インダクタ23Vを有する電流共振型回路により構成されている。共振コンデンサ21V、共振インダクタ22V、及び励磁インダクタ23Vは、FET11V及びFET12V間の接続点と、FET13V及びFET14V間の接続点と、の間に直列に接続されている。 Similarly, the V-phase resonance circuit 20V is constituted by a current resonance circuit having a resonance capacitor 21V, a resonance inductor 22V, and an excitation inductor 23V. The resonant capacitor 21V, the resonant inductor 22V, and the exciting inductor 23V are connected in series between a connection point between the FET 11V and the FET 12V and a connection point between the FET 13V and the FET 14V.
 更に、W相の共振回路20Wは、共振コンデンサ21W、共振インダクタ22W、及び励磁インダクタ23Wを有する電流共振型回路により構成されている。共振コンデンサ21W、共振インダクタ22W、及び励磁インダクタ23Wは、FET11W及びFET12W間の接続点と、FET13W及びFET14W間の接続点と、の間に直列に接続されている。 Further, the W-phase resonance circuit 20W is constituted by a current resonance circuit having a resonance capacitor 21W, a resonance inductor 22W, and an excitation inductor 23W. The resonant capacitor 21W, the resonant inductor 22W, and the exciting inductor 23W are connected in series between a connection point between the FET 11W and the FET 12W and a connection point between the FET 13W and the FET 14W.
 三相の共振回路20U,20V,20Wの出力側には、三相の変圧器30U,30V,30Wが接続されている。三相の変圧器30U,30V,30Wは、三相の共振回路20U,20V,20Wから出力される三相の共振電圧を所定の電圧に変換して三相の変換電圧を出力するものであり、各相が同一の構成である。 Three- phase transformers 30U, 30V, 30W are connected to the output sides of the three- phase resonance circuits 20U, 20V, 20W. The three- phase transformers 30U, 30V, and 30W convert the three-phase resonance voltage output from the three- phase resonance circuits 20U, 20V, and 20W into a predetermined voltage and output a three-phase conversion voltage. Each phase has the same configuration.
 U相の変圧器30Uは、1次巻線31U及び2次巻線32Uを有している。1次巻線31Uの巻き初め側(図1中の黒丸点箇所)は、共振インダクタ20Uに接続され、その1次巻線31Uの巻き終わり側が、FET13U,14U間の接続点に接続されている。同様に、V相の変圧器30Vは、1次巻線31V及び2次巻線32Vを有し、その1次巻線31Vの巻き初め側が、共振インダクタ20Vに接続され、その1次巻線31Vの巻き終わり側が、FET13V,14V間の接続点に接続されている。更に、W相の変圧器30Wは、1次巻線31W及び2次巻線32Wを有し、その1次巻線31Wの巻き初め側が、共振インダクタ20Wに接続され、その1次巻線31Wの巻き終わり側が、FET13W,14W間の接続点に接続されている。 The U-phase transformer 30U has a primary winding 31U and a secondary winding 32U. The winding start side (black dot in FIG. 1) of the primary winding 31U is connected to the resonant inductor 20U, and the winding end side of the primary winding 31U is connected to the connection point between the FETs 13U and 14U. . Similarly, the V-phase transformer 30V has a primary winding 31V and a secondary winding 32V, and the winding start side of the primary winding 31V is connected to the resonant inductor 20V, and the primary winding 31V. Is connected to the connection point between the FETs 13V and 14V. Further, the W-phase transformer 30W has a primary winding 31W and a secondary winding 32W, and the winding start side of the primary winding 31W is connected to the resonant inductor 20W, and the primary winding 31W The winding end side is connected to a connection point between the FETs 13W and 14W.
 三相の2次巻線32U,32V,32Wには、三相の整流回路40が接続されている。三相の整流回路40は、三相の変圧器30U,30V,30Wにより変換された三相の変換電圧を整流してDC出力電圧Vo及びDC出力電流Ioを負荷48へ出力する回路である。三相の整流回路40は、複数(例えば、6個)の整流素子(例えば、ダイオード41,42,43,44,45,46)がブリッジ接続された整流部と、この整流部の出力電圧及び出力電流を平滑する平滑部(例えば、平滑用コンデンサ47)と、により構成されている。 A three-phase rectifier circuit 40 is connected to the three-phase secondary windings 32U, 32V, and 32W. The three-phase rectifier circuit 40 is a circuit that rectifies the three-phase conversion voltage converted by the three- phase transformers 30U, 30V, and 30W and outputs the DC output voltage Vo and the DC output current Io to the load 48. The three-phase rectifier circuit 40 includes a rectifier unit in which a plurality of (for example, six) rectifier elements (for example, diodes 41, 42, 43, 44, 45, and 46) are bridge-connected, an output voltage of the rectifier unit, and And a smoothing section (for example, a smoothing capacitor 47) that smoothes the output current.
 制御装置50は、主回路2のスイッチング動作を制御するために、複数(例えば、12個)のスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wをその主回路2中のFET11U,12U,13U,14U,11V,12V,13V,14V,11W,12W,13W,14Wのゲートへ供給する装置である。 In order to control the switching operation of the main circuit 2, the control device 50 includes a plurality of (for example, 12) switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, This device supplies S14W to the gates of FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in the main circuit 2.
 図2は、図1のDC/DCコンバータ1における制御装置50を示す構成図である。 FIG. 2 is a block diagram showing the control device 50 in the DC / DC converter 1 of FIG.
 制御装置50は、カウント値演算部51、比較部52、周波数制御部53、位相シフト制御部54、及びパルス駆動部55を有している。カウント値演算部51、比較部52、周波数制御部53、及び位相シフト制御部54は、プログラム制御可能な中央処理装置(CPU)を有するプロセッサ、又は、個別回路により構成されている。パルス駆動部55は、個別回路により構成されている。 The control device 50 includes a count value calculation unit 51, a comparison unit 52, a frequency control unit 53, a phase shift control unit 54, and a pulse drive unit 55. The count value calculation unit 51, the comparison unit 52, the frequency control unit 53, and the phase shift control unit 54 are configured by a processor having a central processing unit (CPU) capable of program control, or an individual circuit. The pulse driving unit 55 is configured by an individual circuit.
 カウント値演算部51は、図示しない電流計測器により計測されたDC出力電流Ioをカウントし、このカウント値を演算して演算結果CVを求めるものである。カウント値演算部51は、計測されたDC出力電流Ioをデジタル信号の出力電流値IOに変換するアナログ/デジタル変換部(以下「A/D変換部」という。)51aと、その出力電流値IOを演算して演算結果CVを求める演算部51bと、を有し、この演算部51bの出力側に、比較部52が接続されている。比較部52は、演算結果CVと基準値RVとを比較し、演算結果CVが基準値RVよりも大きい時(CV≧RV)には第1比較結果CR1を周波数制御部53へ出力し、演算結果CVが基準値RVよりも小さい時(CV<RV)には第2比較結果CR2を位相シフト制御部54へ出力するものである。 The count value calculation unit 51 counts the DC output current Io measured by a current measuring instrument (not shown), calculates the count value, and obtains a calculation result CV. The count value calculation unit 51 includes an analog / digital conversion unit (hereinafter referred to as “A / D conversion unit”) 51a that converts the measured DC output current Io into an output current value IO of a digital signal, and an output current value IO thereof. And a calculation unit 51b for calculating a calculation result CV. A comparison unit 52 is connected to the output side of the calculation unit 51b. The comparison unit 52 compares the calculation result CV with the reference value RV, and outputs the first comparison result CR1 to the frequency control unit 53 when the calculation result CV is larger than the reference value RV (CV ≧ RV). When the result CV is smaller than the reference value RV (CV <RV), the second comparison result CR2 is output to the phase shift control unit 54.
 周波数制御部53は、第1比較結果CR1に基づき、DC/AC変換回路10U,10V,10Wにより変換された三相のAC電圧におけるU,V,W相間の位相差φを角度2π/3(=120°)に設定し、周波数制御により、整流回路40から所望のDC出力電流Ioが出力されるように、複数のスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wのスイッチング周波数fを変化させるものである。周波数制御部53は、U,V,W相間の位相差φを角度2π/3(=120°)に設定する位相差設定部53aと、この出力側に接続された周波数変調(以下「PFM」という。)パルス生成部53bと、を有している。PFMパルス生成部53bは、周波数制御により、複数のスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wのスイッチング周波数fを変調して、PFMパルスP1を生成するものであり、この出力側に、パルス駆動部55が接続されている。 The frequency control unit 53 sets the phase difference φ between the U, V, and W phases in the three-phase AC voltage converted by the DC / AC conversion circuits 10U, 10V, and 10W based on the first comparison result CR1 to an angle 2π / 3 ( = 120 °) and a plurality of switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, and the like so that a desired DC output current Io is output from the rectifier circuit 40 by frequency control. The switching frequency f of S11W, S12W, S13W, S14W is changed. The frequency control unit 53 includes a phase difference setting unit 53a that sets the phase difference φ between the U, V, and W phases to an angle 2π / 3 (= 120 °), and a frequency modulation (hereinafter referred to as “PFM”) connected to the output side. And a pulse generator 53b. The PFM pulse generation unit 53b modulates the switching frequency f of the plurality of switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, and S14W by frequency control to generate the PFM pulse. P1 is generated, and a pulse driving unit 55 is connected to the output side.
 位相シフト制御部54は、第2比較結果CR2に基づき、複数のスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wのスイッチング周波数fの値を、最大値の最大スイッチング周波数fmaxに固定(即ち、設定)し、位相シフト制御により、整流回路40から所望のDC出力電流Ioが出力されるように、U,V,W相間の位相差φを変化させるものである。位相シフト制御部54は、スイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wのスイッチング周波数fを最大周波数fmaxに設定する周波数設定部54aと、この出力側に接続された位相シフト制御パルス生成部54bと、を有している。位相シフト制御パルス生成部54bは、位相シフト制御により、U,V,W相間の位相差φを変化させて位相シフト制御パルスP2を生成するものであり、この出力側に、パルス駆動部55が接続されている。 Based on the second comparison result CR2, the phase shift control unit 54 determines the values of the switching frequencies f of the plurality of switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, and S14W. The phase difference φ between the U, V, and W phases is fixed so that the maximum switching frequency fmax of the maximum value is fixed (that is, set), and the desired DC output current Io is output from the rectifier circuit 40 by phase shift control. It is something to change. The phase shift control unit 54 includes a frequency setting unit 54a that sets the switching frequency f of the switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, and S14W to the maximum frequency fmax; And a phase shift control pulse generator 54b connected to the output side. The phase shift control pulse generator 54b generates a phase shift control pulse P2 by changing the phase difference φ between the U, V, and W phases by phase shift control. On the output side, the pulse driver 55 It is connected.
 パルス駆動部55は、PFMパルスP1又は位相シフト制御パルスP2を駆動してスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wを生成するものであり、トランジスタ等の個別回路により構成されている。 The pulse driving unit 55 generates a switching drive signal S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W by driving the PFM pulse P1 or the phase shift control pulse P2. There are individual circuits such as transistors.
 (電圧が変動しない負荷への電力供給の動作) (Operation of supplying power to a load whose voltage does not fluctuate)
 図1のDC/DCコンバータ1において、負荷48として、電圧が変動しない機器を用いた場合の動作を説明する。 In the DC / DC converter 1 of FIG. 1, the operation when a device whose voltage does not vary is used as the load 48 will be described.
 例えば、定電圧のDC出力電圧Voを負荷48へ供給する場合、制御装置50内の周波数制御部53は、各U,V,W相間の位相差φを120°に設定し、周波数制御により、PFMパルスP1を生成し、このPFMパルスP1をパルス駆動部55へ出力する。周波数制御では、定電圧出力を行うために、DC出力電圧Voが目標電圧Vthよりも低くなれば、その誤差電圧ΔV(=Vth-Vo)が零になるように、フィードバック制御により、スイッチング周波数fを下げてDC出力電圧Voを高くし、DC出力電圧Voが目標電圧Vthよりも高くなれば、その誤差電圧ΔV(=Vth-Vo)が零になるように、フィードバック制御により、スイッチング周波数fを上げてDC出力電圧Voを低くする、ような周波数変調を行ってPFMパルスP1を生成する。パルス駆動部55は、PFMパルスP1を駆動してスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wを生成し、U,V,W相のDC/AC変換回路10U,10V,10W内のFET11U,12U,13U,14U,11V,12V,13V,14V,11W,12W,13W,14Wの各ゲートへ与える。 For example, when supplying a constant DC output voltage Vo to the load 48, the frequency control unit 53 in the control device 50 sets the phase difference φ between the U, V, and W phases to 120 °, and by frequency control, A PFM pulse P1 is generated, and this PFM pulse P1 is output to the pulse driving unit 55. In frequency control, in order to perform constant voltage output, if the DC output voltage Vo becomes lower than the target voltage Vth, the switching frequency f is controlled by feedback control so that the error voltage ΔV (= Vth−Vo) becomes zero. The DC output voltage Vo is increased to reduce the switching frequency f by feedback control so that the error voltage ΔV (= Vth−Vo) becomes zero when the DC output voltage Vo becomes higher than the target voltage Vth. The PFM pulse P1 is generated by performing frequency modulation such that the DC output voltage Vo is increased to decrease the DC output voltage Vo. The pulse driver 55 drives the PFM pulse P1 to generate the switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W, and the U, V, W phase The voltage is applied to each gate of the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in the DC / AC conversion circuits 10U, 10V, and 10W.
 U相のDC/AC変換回路10Uでは、スイッチング駆動信号S11U,S12U,S13U,S14Uにより、FET11U,14UとFET12U,13Uとが所定のデッドタイムをおいて交互にオン/オフ動作する。V相のDC/AC変換回路10Vでは、スイッチング駆動信号S11V,S12V,S13V,S14Vにより、FET11V,14VとFET12V,14Vとが、U相から120°遅れて、所定のデッドタイムをおいて交互にオン/オフ動作する。更に、W相のDC/AC変換回路10Wでは、スイッチング駆動信号S11W,S12W,S13W,S14Wにより、FET11W,14WとFET12W,13Wとが、V相から120°遅れて、所定のデッドタイムをおいて交互にオン/オフ動作する。 In the U-phase DC / AC conversion circuit 10U, the FETs 11U, 14U and the FETs 12U, 13U are alternately turned on / off with a predetermined dead time by the switching drive signals S11U, S12U, S13U, S14U. In the V-phase DC / AC conversion circuit 10V, the FETs 11V, 14V and FETs 12V, 14V are alternately delayed by 120 ° from the U-phase with a predetermined dead time by the switching drive signals S11V, S12V, S13V, S14V. Turns on / off. Further, in the W-phase DC / AC conversion circuit 10W, the switching drive signals S11W, S12W, S13W, and S14W cause the FETs 11W and 14W and the FETs 12W and 13W to be delayed by 120 ° from the V phase and have a predetermined dead time. Turns on / off alternately.
 U相のDC/AC変換回路10Uにおいて、FET11U,14Uがオン状態、FET12U,13Uがオフ状態になると、U相のDC入力電圧Viuにより、FET11U→共振コンデンサ21U→共振インダクタ22U→励磁インダクタ23U及び変圧器30Uの1次巻線31U→FET14U→DC入力電圧Viu、の経路で電源電流が流れる。所定のデッドタイムをおいて、FET12U,13Uがオン状態、FET11U,14Uがオフ状態なると、DC入力電圧Viuにより、FET13U→励磁インダクタ23U及び変圧器30Uの1次巻線31U→共振インダクタ22U→共振コンデンサ21U→FET12U→DC入力電圧Viu、の経路で電源電流が流れる。これにより、DC入力電圧ViuがDC/AC変換回路10Uのスイッチング動作によってAC電圧に変換される。 In the U-phase DC / AC conversion circuit 10U, when the FETs 11U and 14U are turned on and the FETs 12U and 13U are turned off, the U-phase DC input voltage Viu causes the FET 11U → resonance capacitor 21U → resonance inductor 22U → excitation inductor 23U and A power supply current flows through the path of the primary winding 31U → the FET 14U → the DC input voltage Viu of the transformer 30U. When the FETs 12U and 13U are turned on and the FETs 11U and 14U are turned off after a predetermined dead time, the FET 13U → the exciting inductor 23U and the primary winding 31U of the transformer 30U → the resonant inductor 22U → the resonance by the DC input voltage Viu. A power supply current flows through the path of the capacitor 21U → FET 12U → DC input voltage Viu. Thereby, the DC input voltage Viu is converted into an AC voltage by the switching operation of the DC / AC conversion circuit 10U.
 変換されたAC電圧により、共振回路20Uが共振して共振電圧が生成され、変圧器30Uの1次巻線31Uに印加される。すると、変圧器30の2次巻線32Uに所定の変換電圧が誘起される。誘起された変換電圧は、整流回路40内の複数のダイオード41-46によって整流された後、平滑用コンデンサ47によって平滑され、DC出力電圧Voが負荷48へ供給される。 The resonant circuit 20U is resonated by the converted AC voltage to generate a resonant voltage, which is applied to the primary winding 31U of the transformer 30U. Then, a predetermined conversion voltage is induced in the secondary winding 32U of the transformer 30. The induced conversion voltage is rectified by a plurality of diodes 41-46 in the rectifier circuit 40, smoothed by the smoothing capacitor 47, and the DC output voltage Vo is supplied to the load 48.
 同様に、U相から120°遅れてV相のDC/AC変換回路10Vがスイッチング動作を行い、V相のDC入力電圧VivがAC電圧に変換される。変換されたAC電圧により、共振回路20Vが共振して共振電圧が生成される。生成された共振電圧は、変圧器30Vによって所定の電圧に変換され、整流回路40内の複数のダイオード41-46によって整流された後、平滑用コンデンサ47によって平滑され、DC出力電圧Voが負荷48へ供給される。 Similarly, the V-phase DC / AC conversion circuit 10V performs a switching operation with a 120 ° delay from the U-phase, and the V-phase DC input voltage Viv is converted into an AC voltage. By the converted AC voltage, the resonance circuit 20V resonates to generate a resonance voltage. The generated resonance voltage is converted into a predetermined voltage by the transformer 30V, rectified by the plurality of diodes 41-46 in the rectifier circuit 40, and then smoothed by the smoothing capacitor 47, and the DC output voltage Vo is applied to the load 48. Supplied to.
 更に、V相から120°遅れてW相のDC/AC変換回路10Wがスイッチング動作を行い、W相のDC入力電圧ViwがAC電圧に変換される。変換されたAC電圧により、共振回路20Wが共振して共振電圧が生成される。生成された共振電圧は、変圧器30Wによって所定の電圧に変換され、整流回路40内の複数のダイオード41-46によって整流された後、平滑用コンデンサ47によって平滑され、DC出力電圧Voが負荷48へ供給される。 Further, the W-phase DC / AC conversion circuit 10W performs a switching operation with a 120 ° delay from the V-phase, and the W-phase DC input voltage Viw is converted into an AC voltage. Due to the converted AC voltage, the resonant circuit 20W resonates to generate a resonant voltage. The generated resonance voltage is converted into a predetermined voltage by the transformer 30W, rectified by the plurality of diodes 41-46 in the rectifier circuit 40, and then smoothed by the smoothing capacitor 47, and the DC output voltage Vo is applied to the load 48. Supplied to.
 (電圧が変動する負荷への電力供給の動作) (Operation of supplying power to a load whose voltage fluctuates)
 図1の負荷48として、電圧が変動する機器(例えば、バッテリー)を急速充電するために、DC/DCコンバータ1をEV急速充電器として使用する場合の動作を説明する。 An operation when the DC / DC converter 1 is used as an EV quick charger to rapidly charge a device (for example, a battery) whose voltage varies as the load 48 in FIG. 1 will be described.
 図3は、本発明の実施例1におけるEV急速充電器の出力特性を示す図であり、従来の図6中の要素と共通の要素には共通の符号が付されている。 FIG. 3 is a diagram showing the output characteristics of the EV quick charger according to the first embodiment of the present invention. Elements common to those shown in FIG. 6 are denoted by common reference numerals.
 図3において、横軸はDC出力電流Io、縦軸はDC出力電圧Voである。この図3では、図6において、基準値RVとなるLLC制御限界の境界線BLが付加されており、その他の箇所は図6と同一である。本実施例1のDC/DCコンバータ1では、出力可能電力範囲Parにおいて、基準値RVとなる境界線BLを超える領域では、周波数制御CFが行われ、その基準値RVとなる境界線BL以下の領域では、位相シフト制御CΦが行われる。 3, the horizontal axis represents the DC output current Io, and the vertical axis represents the DC output voltage Vo. In FIG. 3, the boundary line BL of the LLC control limit that becomes the reference value RV in FIG. 6 is added, and other portions are the same as those in FIG. In the DC / DC converter 1 according to the first embodiment, the frequency control CF is performed in a region exceeding the boundary line BL that becomes the reference value RV in the output power range Par, and is below the boundary line BL that becomes the reference value RV. In the region, phase shift control CΦ is performed.
 図4は、図2の制御装置50の動作を示すフローチャートである。 FIG. 4 is a flowchart showing the operation of the control device 50 of FIG.
 図5は、図1中のFET11U,12U,13U,14U,11V,12V,13V,14V,11W,12W,13W,14Wにおけるオン/オフ動作のタイミングチャートである。 FIG. 5 is a timing chart of the on / off operation in the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in FIG.
 図4のフローチャートにおいて、以下のステップST1,ST2,ST3,ST4,ST5,ST6,ST7により、負荷48であるバッテリーの急速充電が行われる。 In the flowchart of FIG. 4, the battery as the load 48 is rapidly charged by the following steps ST1, ST2, ST3, ST4, ST5, ST6, ST7.
 先ず、図1のDC/DCコンバータ1における制御装置50の動作が開始すると、ステップST1へ進む。ステップST1において、図示しない電流計測器によってDC出力電流Ioが計測され、カウント値演算部51内のA/D変換部51aによってデジタル信号の出力電流値IOに変換される。変換された出力電流値IOは、カウント値演算部51内の演算部51bによってカウントされ、そのカウント値が演算されて演算結果CVが求められ、ステップST2へ進む。 First, when the operation of the control device 50 in the DC / DC converter 1 of FIG. 1 starts, the process proceeds to step ST1. In step ST1, the DC output current Io is measured by a current measuring instrument (not shown), and converted into an output current value IO of a digital signal by the A / D converter 51a in the count value calculator 51. The converted output current value IO is counted by the calculation unit 51b in the count value calculation unit 51, the count value is calculated to obtain the calculation result CV, and the process proceeds to step ST2.
 ステップST2において、比較部52は、カウント値の演算結果CVを図3中の境界線BLである基準値RVと比較し、演算結果CVが基準値RVよりも大きい場合(CV≧RV)には、第1比較結果CR1を周波数制御部53へ出力してステップST3へ進み、演算結果CVが基準値RVよりも小さい場合(CV<RV)には、第2比較結果CR2を位相シフト制御部54へ出力してステップST5へ進む。 In step ST2, the comparison unit 52 compares the calculation result CV of the count value with the reference value RV that is the boundary line BL in FIG. 3, and when the calculation result CV is larger than the reference value RV (CV ≧ RV). The first comparison result CR1 is output to the frequency control unit 53, and the process proceeds to step ST3. When the calculation result CV is smaller than the reference value RV (CV <RV), the second comparison result CR2 is output to the phase shift control unit 54. To step ST5.
 ステップST3において、周波数制御部53内の位相差設定部53aは、U相に対してV相の位相差φを120°、更に、U相に対してW相の位相差φを240°、にそれぞれ設定する、つまり、各U,V,W相間の位相差φを120°に設定し、ステップST4へ進む。 In step ST3, the phase difference setting unit 53a in the frequency control unit 53 sets the phase difference φ of the V phase with respect to the U phase to 120 °, and further the phase difference φ of the W phase with respect to the U phase to 240 °. Each is set, that is, the phase difference φ between the U, V, and W phases is set to 120 °, and the process proceeds to step ST4.
 ステップST4において、周波数制御部53内のPFMパルス生成部53bは、周波数制御CFによってPFMパルスP1を生成し、このPFMパルスP1をパルス駆動部55へ出力する。周波数制御CFでは、例えば、定電流出力を行うために、DC出力電流Ioが目標電流Ithよりも小さくなれば、その誤差電流ΔI(=Ith-Io)が零になるように、フィードバック制御により、スイッチング周波数fを上げてDC出力電流Ioを大きくし、DC出力電流Ioが目標電流Ithよりも大きくなれば、その誤差電流ΔI(=Ith-Io)が零になるように、フィードバック制御により、スイッチング周波数fを下げてDC出力電流Ioを小さくする、ような周波数変調を行ってPFMパルスP1を生成する。 In step ST4, the PFM pulse generation unit 53b in the frequency control unit 53 generates a PFM pulse P1 by the frequency control CF, and outputs this PFM pulse P1 to the pulse drive unit 55. In the frequency control CF, for example, in order to perform constant current output, if the DC output current Io becomes smaller than the target current Ith, feedback control is performed so that the error current ΔI (= Ith−Io) becomes zero. The switching frequency f is increased to increase the DC output current Io. When the DC output current Io becomes larger than the target current Ith, switching is performed by feedback control so that the error current ΔI (= Ith−Io) becomes zero. The PFM pulse P1 is generated by performing frequency modulation such that the frequency f is lowered to reduce the DC output current Io.
 パルス駆動部55は、PFMパルスP1を駆動してスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wを生成し、U,V,W相のDC/AC変換回路10U,10V,10W内のFET11U,12U,13U,14U,11V,12V,13V,14V,11W,12W,13W,14Wの各ゲートへ与える。すると、図5に示すタイミングにて、U相のFET11U,14UとFET12U,13Uとが所定のデッドタイムをおいて交互にオン/オフ動作する。V相のFET11V,14VとFET12V,14Vとは、U相から120°遅れて、所定のデッドタイムをおいて交互にオン/オフ動作する。更に、W相のFET11W,14WとFET12W,13Wとは、V相から120°遅れて、所定のデッドタイムをおいて交互にオン/オフ動作する。 The pulse driver 55 drives the PFM pulse P1 to generate the switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W, and the U, V, W phase The voltage is applied to each gate of the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, and 14W in the DC / AC conversion circuits 10U, 10V, and 10W. Then, at the timing shown in FIG. 5, the U-phase FETs 11U and 14U and the FETs 12U and 13U are alternately turned on / off with a predetermined dead time. The V- phase FETs 11V and 14V and the FETs 12V and 14V are alternately turned on / off with a predetermined dead time delayed by 120 ° from the U-phase. Furthermore, the W-phase FETs 11W and 14W and the FETs 12W and 13W are alternately turned on / off with a predetermined dead time delayed by 120 ° from the V-phase.
 これにより、U相のDC/AC変換回路10Uがスイッチング動作を行い、U相のDC入力電圧ViuがAC電圧に変換される。変換されたAC電圧により、共振回路20Uが共振して共振電圧が生成される。生成された共振電圧は、変圧器30Uによって所定の電圧に変換され、整流回路40によって整流及び平滑されてDC出力電流Ioが生成される。 Thereby, the U-phase DC / AC conversion circuit 10U performs a switching operation, and the U-phase DC input voltage Viu is converted into an AC voltage. By the converted AC voltage, the resonance circuit 20U resonates to generate a resonance voltage. The generated resonance voltage is converted into a predetermined voltage by the transformer 30U, rectified and smoothed by the rectifier circuit 40, and a DC output current Io is generated.
 同様に、U相から120°遅れてV相のDC/AC変換回路10Vがスイッチング動作を行い、V相のDC入力電圧VivがAC電圧に変換される。変換されたAC電圧により、共振回路20Vが共振して共振電圧が生成される。生成された共振電圧は、変圧器30Vによって所定の電圧に変換され、整流回路40によって整流及び平滑されてDC出力電流Ioが生成される。更に、V相から120°遅れてW相のDC/AC変換回路10Wがスイッチング動作を行い、W相のDC入力電圧ViwがAC電圧に変換される。変換されたAC電圧により、共振回路20Wが共振して共振電圧が生成される。生成された共振電圧は、変圧器30Wによって所定の電圧に変換され、整流回路40によって整流及び平滑されてDC出力電流Ioが生成される。このようにして生成されたDC出力電流Ioにより、負荷48であるバッテリーが急速充電されていき、ステップST7へ進む。 Similarly, the V-phase DC / AC conversion circuit 10V performs a switching operation with a 120 ° delay from the U-phase, and the V-phase DC input voltage Viv is converted into an AC voltage. By the converted AC voltage, the resonance circuit 20V resonates to generate a resonance voltage. The generated resonance voltage is converted into a predetermined voltage by the transformer 30V, and rectified and smoothed by the rectifier circuit 40 to generate a DC output current Io. Further, the W-phase DC / AC conversion circuit 10W performs a switching operation with a 120 ° delay from the V-phase, and the W-phase DC input voltage Viw is converted into an AC voltage. Due to the converted AC voltage, the resonant circuit 20W resonates to generate a resonant voltage. The generated resonance voltage is converted into a predetermined voltage by the transformer 30W, rectified and smoothed by the rectifier circuit 40, and a DC output current Io is generated. The battery as the load 48 is rapidly charged by the DC output current Io generated in this way, and the process proceeds to step ST7.
 ステップST7において、制御装置50内の図示しない充電終了判定部は、バッテリー充電終了の要求があったか否かの判定を行い、バッテリー充電終了の要求が有る時には(Yes)、動作を終了し、バッテリー充電終了の要求が無い時には(No)、ステップST1に戻って上記のステップST1-ST7を繰り返す。 In step ST7, a charging end determination unit (not shown) in the control device 50 determines whether or not there is a request to end battery charging. When there is a request to end battery charging (Yes), the operation ends and the battery charging ends. When there is no termination request (No), the process returns to step ST1 and the above steps ST1 to ST7 are repeated.
 ステップST2において、演算結果CVが基準値RVよりも小さい場合(CV<RV)には、第2比較結果CR2が位相シフト制御部54へ出力されてステップST5へ進む。ステップST5において、位相シフト制御部54内の周波数設定部54aは、スイッチング周波数fを最大周波数fmaxの値に設定し、ステップST6へ進む。 In step ST2, when the calculation result CV is smaller than the reference value RV (CV <RV), the second comparison result CR2 is output to the phase shift control unit 54, and the process proceeds to step ST5. In step ST5, the frequency setting unit 54a in the phase shift control unit 54 sets the switching frequency f to the value of the maximum frequency fmax, and proceeds to step ST6.
 ステップST6において、位相シフト制御部54内の位相シフト制御パルス生成部54bは、図5中の矢印で示すように、位相シフト制御CΦにより、各U,V,W相間の位相差φを変化(即ち、シフト)させるような、位相シフト制御パルスP2を生成し、この位相シフト制御パルスP2をパルス駆動部55へ出力する。ステップST3では、各U,V,W相間の位相差φが120°に設定されているが、ステップST6では、その位相差φを変化させている。 In step ST6, the phase shift control pulse generator 54b in the phase shift controller 54 changes the phase difference φ between the U, V, and W phases by the phase shift control CΦ as indicated by the arrows in FIG. That is, a phase shift control pulse P 2 that is shifted) is generated, and this phase shift control pulse P 2 is output to the pulse driver 55. In step ST3, the phase difference φ between the U, V, and W phases is set to 120 °. In step ST6, the phase difference φ is changed.
 位相シフト制御CΦでは、例えば、低電圧の大電流出力を行うために、DC出力電流Ioが目標電流Ithよりも小さくなれば、その誤差電流ΔI(=Ith-Io)が零になるように、フィードバック制御により、各U,V,W相間の位相差φを120°よりも小さくしてDC出力電流Ioを大きくし、DC出力電流Ioが目標電流Ithよりも大きくなれば、その誤差電流ΔI(=Ith-Io)が零になるように、フィードバック制御により、各U,V,W相間の位相差φを大きくしてDC出力電流Ioを小さくする、ような位相シフトを行って位相シフト制御パルスP2を生成する。 In the phase shift control CΦ, for example, if the DC output current Io becomes smaller than the target current Ith in order to perform a large current output at a low voltage, the error current ΔI (= Ith−Io) becomes zero. By feedback control, the phase difference φ between the U, V, and W phases is made smaller than 120 ° to increase the DC output current Io. If the DC output current Io becomes larger than the target current Ith, the error current ΔI ( = Ith−Io) is phase-shifted by performing phase shift such that the phase difference φ between the U, V, and W phases is increased and the DC output current Io is decreased by feedback control so that it becomes zero. P2 is generated.
 パルス駆動部55は、位相シフト制御パルスP2を駆動してスイッチング駆動信号S11U,S12U,S13U,S14U,S11V,S12V,S13V,S14V,S11W,S12W,S13W,S14Wを生成し、U,V,W相のDC/AC変換回路10U,10V,10W内のFET11U,12U,13U,14U,11V,12V,13V,14V,11W,12W,13W,14Wの各ゲートへ与える。すると、図5の矢印で示すタイミングにて、U相のFET11U,14UとFET12U,13Uとが所定のデッドタイムをおいて交互にオン/オフ動作する。V相のFET11V,14VとFET12V,14Vとは、U相から変化後の位相差φ(<120°)遅れて、所定のデッドタイムをおいて交互にオン/オフ動作する。更に、W相のFET11W,14WとFET12W,13Wとは、V相から変化後の位相差φ(<120°)遅れて、所定のデッドタイムをおいて交互にオン/オフ動作する。 The pulse driver 55 drives the phase shift control pulse P2 to generate switching drive signals S11U, S12U, S13U, S14U, S11V, S12V, S13V, S14V, S11W, S12W, S13W, S14W, and U, V, W This is applied to the respective gates of the FETs 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, 14W in the phase DC / AC conversion circuits 10U, 10V, 10W. Then, the U-phase FETs 11U and 14U and the FETs 12U and 13U are alternately turned on / off at a timing indicated by an arrow in FIG. 5 with a predetermined dead time. The V- phase FETs 11V and 14V and the FETs 12V and 14V are alternately turned on / off with a predetermined dead time after the phase difference φ (<120 °) after the change from the U-phase. Furthermore, the W-phase FETs 11W and 14W and the FETs 12W and 13W are alternately turned on / off with a predetermined dead time after the phase difference φ (<120 °) after the change from the V-phase.
 これにより、各相のDC入力電圧Viu,Viv,ViwがAC電圧に変換される。変換された各相のAC電圧により、共振回路20U,20V,20Wが共振して共振電圧が生成される。生成された各相の共振電圧は、変圧器30U,30V,30Wによって所定の電圧に変換され、整流回路40によって整流及び平滑されてDC出力電流Ioが生成される。生成されたDC出力電流Ioにより、バッテリーが急速充電されていき、ステップST7へ進む。 Thereby, the DC input voltages Viu, Viv, Viw of each phase are converted into AC voltages. The resonance circuits 20U, 20V, and 20W resonate with the converted AC voltages of the respective phases to generate a resonance voltage. The generated resonance voltage of each phase is converted into a predetermined voltage by the transformers 30U, 30V, and 30W, and rectified and smoothed by the rectifier circuit 40 to generate the DC output current Io. The battery is rapidly charged by the generated DC output current Io, and the process proceeds to step ST7.
 ステップST7において、制御装置50内の図示しない充電終了判定部は、バッテリー充電終了の要求があったか否かの判定を行い、バッテリー充電終了の要求が有る時には(Yes)、動作を終了し、バッテリー充電終了の要求が無い時には(No)、ステップST1に戻って上記のステップST1,ST2,ST5,ST6,ST7を繰り返す。 In step ST7, a charging end determination unit (not shown) in the control device 50 determines whether or not there is a request to end battery charging. When there is a request to end battery charging (Yes), the operation ends and the battery charging ends. When there is no request for termination (No), the process returns to step ST1 to repeat the above steps ST1, ST2, ST5, ST6, ST7.
 (実施例1の効果) (Effect of Example 1)
 本実施例1におけるDC/DCコンバータ1の制御装置50によれば、例えば、負荷48であるバッテリーを急速充電する場合、周波数制御によってDC出力電流Ioをバッテリーへ供給し、基準値RVとなる制御困難な境界線BL以下の電力供給領域になると、位相シフト制御CΦに切り替えて、DC出力電流Ioをバッテリーへ供給する構成になっている。そのため、無効電流を抑制した低損失のDC/DCコンバータ1を実現できる。 According to the control device 50 of the DC / DC converter 1 in the first embodiment, for example, when the battery as the load 48 is rapidly charged, the DC output current Io is supplied to the battery by frequency control and becomes the reference value RV. In the power supply region below the difficult boundary line BL, the phase shift control CΦ is switched to supply the DC output current Io to the battery. Therefore, the low loss DC / DC converter 1 in which the reactive current is suppressed can be realized.
 (変形例) (Modification)
 本発明は、上記実施例1に限定されず、種々の利用形態や変形が可能である。この利用形態や変形例としては、例えば、次の(a)、(b)のようなものがある。 The present invention is not limited to the first embodiment, and various usage forms and modifications are possible. For example, the following forms (a) and (b) are used as the usage form and the modified examples.
 (a) 図1のDC/DCコンバータ1における主回路2は、他の回路構成に変更しても良い。例えば、各FET11U,12U,13U,14U,11V,12V,13V,14V,11W,12W,13W,14Wは、絶縁ゲートバイポーラトランジスタ(IGBT)等の他のスイッチング素子に置き換えても良い。共振回路20U,20V,20Wは、他の回路構成に変更しても良い。例えば、共振インダクタ21U,21V,21Wに代えて、変圧器30U,30V,30Wの漏れインピーダンスを利用しても良い。又、整流回路40を構成している複数のダイオード41-46は、スイッチ素子等の他の整流素子に置き換えても良い。 (A) The main circuit 2 in the DC / DC converter 1 of FIG. 1 may be changed to another circuit configuration. For example, each FET 11U, 12U, 13U, 14U, 11V, 12V, 13V, 14V, 11W, 12W, 13W, 14W may be replaced with another switching element such as an insulated gate bipolar transistor (IGBT). The resonance circuits 20U, 20V, and 20W may be changed to other circuit configurations. For example, instead of the resonant inductors 21U, 21V, and 21W, the leakage impedance of the transformers 30U, 30V, and 30W may be used. Further, the plurality of diodes 41 to 46 constituting the rectifier circuit 40 may be replaced with other rectifier elements such as switch elements.
 (b) 3相のDC/AC変換回路10U,10V,10Wは、これに代えて、6個のスイッチング素子を有するフルブリッジ型の1つのDC/AC変換回路に置き換えても良い。 (B) The three-phase DC / AC conversion circuits 10U, 10V, and 10W may be replaced with one full-bridge type DC / AC conversion circuit having six switching elements instead.
 1   DC/DCコンバータ
 2   主回路
 10U,10V,10W   DC/AC変換回路
 20U,20V,20W   共振回路
 30U,30V,30W   変圧器
 40   整流回路
 48   負荷
 50   制御装置
 51   カウント値演算部
 51a   A/D変換部
 51b   演算部
 52   比較部
 53   周波数制御部
 53a   位相差設定部
 53b   PFMパルス生成部
 54   位相シフト制御部
 54a   周波数設定部
 54b   位相シフト制御パルス生成部
 55   パルス駆動部
DESCRIPTION OF SYMBOLS 1 DC / DC converter 2 Main circuit 10U, 10V, 10W DC / AC conversion circuit 20U, 20V, 20W Resonance circuit 30U, 30V, 30W Transformer 40 Rectifier circuit 48 Load 50 Control apparatus 51 Count value calculation part 51a A / D conversion Unit 51b Calculation unit 52 Comparison unit 53 Frequency control unit 53a Phase difference setting unit 53b PFM pulse generation unit 54 Phase shift control unit 54a Frequency setting unit 54b Phase shift control pulse generation unit 55 Pulse drive unit

Claims (8)

  1.  三相のDC入力電圧が供給されると、複数のスイッチング駆動信号によりそれぞれオン/オフ動作する複数のスイッチング素子で、前記DC入力電圧をスイッチングして三相のAC電圧に変換するDC/AC変換回路と、
     前記三相のAC電圧に共振して三相の共振電圧を生成する共振回路と、
     前記三相の共振電圧を所定の電圧に変換して三相の変換電圧を出力する三相の変圧器と、
     前記三相の変換電圧を整流してDC出力電流を負荷へ出力する三相の整流回路と、
     を備えるDC/DCコンバータの主回路に対して、前記複数のスイッチング駆動信号を供給するDC/DCコンバータの制御装置であって、
     前記DC出力電流をカウントし、このカウント値を演算して演算結果を求め、
     前記演算結果と基準値とを比較し、
     前記演算結果が前記基準値よりも大きい時には、前記三相のAC電圧における三相間の位相差を角度2π/3に設定し、周波数制御により、前記整流回路から所望の前記DC出力電流が出力されるように、前記複数のスイッチング駆動信号の周波数を変化させ、
     前記演算結果が前記基準値よりも小さい時には、前記複数のスイッチング駆動信号の周波数を最大値に設定し、位相シフト制御により、前記整流回路から所望の前記DC出力電流が出力されるように、前記三相間の位相差を変化させる、
     構成になっていることを特徴とするDC/DCコンバータの制御装置。
    When a three-phase DC input voltage is supplied, DC / AC conversion is performed by switching the DC input voltage to a three-phase AC voltage by a plurality of switching elements that are turned on / off by a plurality of switching drive signals. Circuit,
    A resonant circuit that resonates with the three-phase AC voltage to generate a three-phase resonant voltage;
    A three-phase transformer that converts the three-phase resonance voltage into a predetermined voltage and outputs a three-phase conversion voltage;
    A three-phase rectifier circuit that rectifies the three-phase conversion voltage and outputs a DC output current to a load;
    A controller for a DC / DC converter that supplies the plurality of switching drive signals to a main circuit of the DC / DC converter comprising:
    Count the DC output current, calculate the count value to obtain the calculation result,
    Comparing the calculation result with a reference value;
    When the calculation result is larger than the reference value, the phase difference between the three phases in the three-phase AC voltage is set to an angle 2π / 3, and the desired DC output current is output from the rectifier circuit by frequency control. So as to change the frequency of the plurality of switching drive signals,
    When the calculation result is smaller than the reference value, the frequency of the plurality of switching drive signals is set to a maximum value, and the desired DC output current is output from the rectifier circuit by phase shift control. Changing the phase difference between the three phases,
    A control device for a DC / DC converter, characterized by being configured.
  2.  前記DC出力電流をカウントし、このカウント値を演算して前記演算結果を求めるカウント値演算部と、
     前記演算結果と前記基準値とを比較し、前記演算結果が前記基準値よりも大きい時には第1比較結果を出力し、前記演算結果が前記基準値よりも小さい時には第2比較結果を出力する比較部と、
     前記第1比較結果に基づき、前記三相のAC電圧における前記三相間の位相差を前記角度2π/3に設定し、前記周波数制御により、前記整流回路から前記所望のDC出力電流が出力されるように、前記複数のスイッチング駆動信号の前記周波数を変化させる周波数制御部と、
     前記第2比較結果に基づき、前記複数のスイッチング駆動信号の前記周波数を前記最大値に設定し、前記位相シフト制御により、前記整流回路から前記所望のDC出力電流が出力されるように、前記三相間の位相差を変化させる位相シフト制御部と、
     を有することを特徴とする請求項1記載のDC/DCコンバータの制御装置。
    A count value calculation unit that counts the DC output current, calculates the count value, and obtains the calculation result;
    A comparison that compares the calculation result with the reference value, outputs a first comparison result when the calculation result is larger than the reference value, and outputs a second comparison result when the calculation result is smaller than the reference value. And
    Based on the first comparison result, the phase difference between the three phases in the three-phase AC voltage is set to the angle 2π / 3, and the desired DC output current is output from the rectifier circuit by the frequency control. As described above, a frequency controller that changes the frequency of the plurality of switching drive signals;
    Based on the second comparison result, the frequency of the plurality of switching drive signals is set to the maximum value, and the desired DC output current is output from the rectifier circuit by the phase shift control. A phase shift controller that changes the phase difference between the phases;
    The control apparatus for a DC / DC converter according to claim 1, comprising:
  3.  前記カウント値演算部は、
     計測された前記DC出力電流をデジタル信号の出力電流値に変換するアナログ/デジタル変換部と、
     前記デジタル信号の出力電流値を演算して前記演算結果を求める演算部と、
     を有することを特徴とする請求項2記載のDC/DCコンバータの制御装置。
    The count value calculator is
    An analog / digital converter that converts the measured DC output current into an output current value of a digital signal;
    A calculation unit for calculating an output current value of the digital signal to obtain the calculation result;
    The control device for a DC / DC converter according to claim 2, wherein:
  4.  請求項3記載のDC/DCコンバータの制御装置は、
     周波数変調パルス及び/又は位相シフト制御パルスを駆動して前記複数のスイッチング駆動信号を生成するパルス駆動部を有し、
     前記周波数制御部は、
     前記三相間の位相差を前記角度2π/3に設定する位相差設定部と、
     前記周波数制御により前記周波数を変調して、前記パルス駆動部に与える前記周波数変調パルスを生成する周波数変調パルス生成部と、
     を有することを特徴とするDC/DCコンバータの制御装置。
    The DC / DC converter control device according to claim 3 is:
    A pulse driver that drives a frequency modulation pulse and / or a phase shift control pulse to generate the plurality of switching drive signals;
    The frequency control unit
    A phase difference setting unit for setting the phase difference between the three phases to the angle 2π / 3;
    A frequency modulation pulse generator that modulates the frequency by the frequency control and generates the frequency modulation pulse to be given to the pulse driver; and
    The control apparatus of the DC / DC converter characterized by having.
  5.  前記位相シフト制御部は、
     前記周波数を前記最大値に設定する周波数設定部と、
     前記位相シフト制御により前記三相間の位相差を変化させて、前記パルス駆動部に与える前記位相シフト制御パルスを生成する位相シフト制御パルス生成部と、
     を有することを特徴とする請求項4記載のDC/DCコンバータの制御装置。
    The phase shift controller is
    A frequency setting unit for setting the frequency to the maximum value;
    A phase shift control pulse generating unit that changes the phase difference between the three phases by the phase shift control and generates the phase shift control pulse to be given to the pulse driving unit;
    5. The control device for a DC / DC converter according to claim 4, further comprising:
  6.  前記DC/AC変換回路は、前記複数のスイッチング素子のブリッジ回路により構成され、
     前記共振回路は、共振インダクタ、共振キャパシタ及び励磁インダクタを有する電流共振型回路により構成され、
     前記整流回路は、複数の整流素子がブリッジ接続された整流部と、前記整流部の出力電圧を平滑する平滑部と、により構成されている、
     ことを特徴とする請求項1記載のDC/DCコンバータの制御装置。
    The DC / AC conversion circuit is constituted by a bridge circuit of the plurality of switching elements,
    The resonant circuit is constituted by a current resonant circuit having a resonant inductor, a resonant capacitor, and an exciting inductor,
    The rectifier circuit includes a rectifier unit in which a plurality of rectifier elements are bridge-connected, and a smoother unit that smoothes the output voltage of the rectifier unit.
    The control device for a DC / DC converter according to claim 1.
  7.  前記負荷は、電圧が変動する機器であることを特徴とする請求項1記載のDC/DCコンバータの制御装置。 2. The DC / DC converter control device according to claim 1, wherein the load is a device whose voltage fluctuates.
  8.  前記機器は、バッテリーであることを特徴とする請求項7記載のDC/DCコンバータの制御装置。 8. The DC / DC converter control device according to claim 7, wherein the device is a battery.
PCT/JP2018/008246 2018-03-05 2018-03-05 Dc/dc converter control device WO2019171414A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020504480A JP6898511B2 (en) 2018-03-05 2018-03-05 DC / DC converter controller
PCT/JP2018/008246 WO2019171414A1 (en) 2018-03-05 2018-03-05 Dc/dc converter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/008246 WO2019171414A1 (en) 2018-03-05 2018-03-05 Dc/dc converter control device

Publications (1)

Publication Number Publication Date
WO2019171414A1 true WO2019171414A1 (en) 2019-09-12

Family

ID=67847222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008246 WO2019171414A1 (en) 2018-03-05 2018-03-05 Dc/dc converter control device

Country Status (2)

Country Link
JP (1) JP6898511B2 (en)
WO (1) WO2019171414A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004486A1 (en) * 2009-07-09 2011-01-13 トヨタ自動車株式会社 Converter control device and multi-phase converter
JP2017038456A (en) * 2015-08-07 2017-02-16 新電元工業株式会社 DC-DC converter
JP2017526331A (en) * 2014-07-24 2017-09-07 ライニシュ−ヴェストファーリシェ テクニシェ ホーホシューレ アーヘンRheinisch−Westfalische Technische Hochschule Aachen DC-DC converter having a transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011004486A1 (en) * 2009-07-09 2011-01-13 トヨタ自動車株式会社 Converter control device and multi-phase converter
JP2017526331A (en) * 2014-07-24 2017-09-07 ライニシュ−ヴェストファーリシェ テクニシェ ホーホシューレ アーヘンRheinisch−Westfalische Technische Hochschule Aachen DC-DC converter having a transformer
JP2017038456A (en) * 2015-08-07 2017-02-16 新電元工業株式会社 DC-DC converter

Also Published As

Publication number Publication date
JPWO2019171414A1 (en) 2021-02-04
JP6898511B2 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
WO2015004989A1 (en) Bidirectional dc-to-dc converter
JP4232845B1 (en) DC converter
JP6049861B2 (en) DC / DC converter
US20140198538A1 (en) Power converter with current feedback loop
WO2017131096A1 (en) Power converter
KR102387744B1 (en) AC-AC converter circuit
JP2021175306A (en) Switching power supply device and power supply system
JP6551340B2 (en) Voltage converter
JP2020182367A (en) DC-DC converter
US11070147B2 (en) Resonant inverter apparatus
JP2012010528A (en) Load driving device
JP4217950B2 (en) Control method of DC / DC converter
JP2019126228A (en) Control device for dc/dc converter
JP4951772B2 (en) Tap inductor converter
WO2019142318A1 (en) Dc/dc converter control method and control device
WO2019171414A1 (en) Dc/dc converter control device
WO2018221031A1 (en) Switching power supply device
JP5348427B2 (en) Voltage converter and voltage control circuit
JP2010172146A (en) Switching power supply and power supply control semiconductor integrated circuit
CN114128120B (en) Power conversion device and control method thereof
JP5169679B2 (en) Resonant power converter
JP5500438B2 (en) Load drive device
JP7325347B2 (en) Switching power supply and its control method
JP7304125B2 (en) Switching power supply device and its control circuit and control method
JP6238300B2 (en) Switching power supply control method and control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020504480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908492

Country of ref document: EP

Kind code of ref document: A1