WO2019170087A1 - 一种链路维护的方法及装置 - Google Patents
一种链路维护的方法及装置 Download PDFInfo
- Publication number
- WO2019170087A1 WO2019170087A1 PCT/CN2019/077027 CN2019077027W WO2019170087A1 WO 2019170087 A1 WO2019170087 A1 WO 2019170087A1 CN 2019077027 W CN2019077027 W CN 2019077027W WO 2019170087 A1 WO2019170087 A1 WO 2019170087A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- node
- backhaul link
- neighbor node
- candidate neighbor
- request
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000012423 maintenance Methods 0.000 title claims abstract description 30
- 238000005259 measurement Methods 0.000 claims abstract description 205
- 238000004891 communication Methods 0.000 claims abstract description 46
- 230000006870 function Effects 0.000 claims description 53
- 230000004044 response Effects 0.000 claims description 44
- 238000012545 processing Methods 0.000 claims description 20
- 238000004590 computer program Methods 0.000 claims description 6
- 230000001052 transient effect Effects 0.000 abstract description 7
- 238000005516 engineering process Methods 0.000 abstract description 2
- 238000012217 deletion Methods 0.000 description 41
- 230000037430 deletion Effects 0.000 description 41
- 238000010586 diagram Methods 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 17
- 230000008859 change Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 8
- 238000012790 confirmation Methods 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 230000006978 adaptation Effects 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000011664 signaling Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/04—Arrangements for maintaining operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0231—Traffic management, e.g. flow control or congestion control based on communication conditions
- H04W28/0236—Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/04—Scheduled access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
- H04W84/042—Public Land Mobile systems, e.g. cellular systems
- H04W84/047—Public Land Mobile systems, e.g. cellular systems using dedicated repeater stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/14—Backbone network devices
Definitions
- the present invention relates to communication technologies, and in particular, to a method and apparatus for link maintenance.
- the high frequency is an important deployment scenario for the new radio (NR).
- NR new radio
- electromagnetic waves have the disadvantages of poor diffraction capability and severe propagation attenuation, resulting in a large probability of coverage in the network.
- Due to factors such as deployment cost it is difficult for operators to rely solely on wired TRP to solve the problem of coverage blind zone. In this case, it is necessary to introduce a relay with a wireless backhaul link.
- a relay transmission reception point (rTRP) is used to distinguish between LTE relays.
- the in-band relay is a relay scheme in which the backhaul link and the access link have the same frequency band.
- the inband relay has the advantages of high spectrum efficiency and low deployment cost, but has an impact on the physical layer protocol.
- the long term evolution advance (LTE-A) standardizes the in-band relay scheme in Release 11.
- LTE-A the relay network can only implement two-hop transmission, that is, the relay node cannot Serve another relay node.
- the third generation partnership project (3GPP) determined that integrated access and backhaul (IAB) is an important feature to improve NR performance.
- IAB is an access backhaul link.
- Multi-hop multi-connection is a main design goal of NR IAB.
- the relay node can provide services for another relay node, that is, one relay node can have both upper and lower nodes.
- the lower-level node may be another relay, or may be a user equipment (UE) served by the relay node.
- UE user equipment
- the relay system has both a backhaul link and an access link.
- the relay in the network forms a relay network, which has a certain Topology.
- the bandwidth variation in the network may be fast.
- the relay node supporting the IAB has only one backhaul link, it is likely to cause congestion.
- a large bandwidth may cause a base station or a relay node to use a high frequency.
- a main characteristic of the high frequency is that it is easily affected by the environment, and is prone to instantaneous interruption, thereby causing a change in the backhaul link of the wireless relay network. Affects the availability of backhaul links. Therefore, in the IAB of the NR, improving the availability of the backhaul link is a problem that needs to be solved.
- Embodiments of the present application provide a method and apparatus for topology maintenance of a relay, which solves the problem that a backhaul link is unavailable due to a transient change of network traffic or a transient interruption of a high frequency link in a multi-hop relay network.
- a first aspect provides a method for link maintenance, where a first node determines a candidate neighbor node to be measured, a first node measures a candidate neighbor node, and the first node determines, according to the measurement result, whether to establish or delete the first node and the candidate.
- a backup backhaul link between neighbor nodes the first node sends a request to the second node, the request is for requesting the second node to establish or delete a backup backhaul link between the first node and the candidate neighbor node.
- the service interruption delay caused by the instantaneous change of the network traffic or the instantaneous interruption of the high-frequency link in the multi-hop relay network can be reduced, and the transient change of the terminal or the traffic of the backhaul link is avoided. Traffic congestion, improving the availability of backhaul links.
- the first node receives a backhaul link measurement threshold configured by the second node, and the backhaul link measurement threshold is used by the first node to determine the backhaul link quality.
- the first node may determine whether to establish a backup backhaul link with the candidate neighbor node, reduce the calculation amount of the second node, and improve system performance.
- the first node receives the measurement indication sent by the second node, the measurement indication includes an identifier of the potential neighbor node, and the identifier of the potential neighbor node is used by the first node to determine the candidate neighbor node.
- the second node determines the measured potential neighbor node for the first node, and avoids some simple relay nodes, such as the layer 2 relay node processing the measurement message, which is beneficial to the second node access network performance. Optimization.
- the first node receives the measurement result of the potential neighbor node sent by the terminal, and the measurement result of the potential neighbor node is used by the first node to determine the candidate neighbor node.
- the first node may use the terminal to measure the neighboring cell, thereby reducing the frequency of the first node to the neighboring cell, improving the service performance of the first node, and minimizing the neighboring cell measurement of the first node. The business disruption.
- the first node determines to establish a backhaul link between the first node and the candidate neighbor node, the first node initiates a random access procedure to the candidate neighbor node.
- the first node automatically establishes a backup backhaul link with the candidate neighbor node through random access, thereby reducing the setup overhead of the second node, and simultaneously interacting with the candidate neighbor node through random access, thereby reducing the backup. The time when the backhaul link was established.
- the determining, by the first node, whether to establish or delete the backup backhaul link between the first node and the candidate neighbor node according to the measurement result includes: when the condition M r -H ys >Thresh is satisfied , the backup node determining backhaul link established between the first node and the candidate neighbors, M r is the measurement result of the first point candidate neighbor node, H ys hysteresis parameter for the event, for the backhaul link measurement Thresh threshold; or When the condition M r +H ys ⁇ Thresh is satisfied, the first node determines to delete the backup backhaul link between the first node and the candidate neighbor node.
- the first node determines whether to establish or delete a backup backhaul link by using an event trigger, improves the stability of the backup backhaul link, and avoids signaling overhead caused by unnecessary backhaul link establishment.
- a second aspect provides a method for link maintenance, where a second node receives a first request sent by a first node, where the first request is used to request the second node to establish or delete a backup between the first node and the candidate neighbor node.
- a backhaul link the second node sends a response to the first node.
- the second node controls the addition or deletion of the backup backhaul link of the first node, which is beneficial to the network to maintain the link of the relay system, reduce the interference of the backhaul link change on the system, and improve the access network. performance.
- the second node sends a backhaul link measurement threshold to the first node, and the backhaul link measurement threshold is used by the first node to determine the backhaul link quality.
- the first node may determine whether to establish a backup backhaul link with the candidate neighbor node, reduce the calculation amount of the second node, and improve system performance.
- the second node sends a measurement indication to the first node, where the measurement indication includes an identifier of the potential neighbor node, and the identifier of the potential neighbor node is used by the first node to determine the candidate neighbor node.
- the second node determines the measured potential neighbor node for the first node, and avoids some simple relay nodes, such as the layer 2 relay node processing the measurement message, which is beneficial to the second node access network performance. Optimization.
- the second node sends a second request to the candidate neighbor node, where the second request is used by the candidate neighbor node to establish or delete the bearer to the second node or the user plane function.
- the pre-establishment of the bearer can avoid the service interruption caused by the interruption or congestion of the backhaul link being used, and the backup backhaul link can be quickly activated through the pre-established bearer, thereby reducing the service interruption of the first node. Delay, avoiding business interruption or delay caused by link changes.
- a first node is provided, where the first node is used to implement the functions in the link maintenance method provided by the foregoing first aspect or any possible implementation manner of the first aspect, where
- the functions described can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more corresponding units of the above functions.
- the first node device includes a processor and a memory, where the memory stores code and data, and the memory is coupled to the processor, and the processor is configured to support the first node to perform the foregoing A link maintenance method provided by the first aspect or any of the possible implementations of the first aspect.
- the first node may further include a communication interface and a bus, where the communication interface is connected to the processor through the bus.
- a second node is provided, where the second node is configured to implement the functions in the link maintenance method provided by the foregoing second aspect or any possible implementation manner of the second aspect, where
- the functions described can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more corresponding units of the above functions.
- the structure of the second node includes a processor and a memory, where the code stores data and data, and the memory is coupled to the processor, and the processor is configured to support the second node to perform the foregoing A link maintenance method provided by the second aspect or any of the possible implementation manners of the second aspect.
- the second node may further include a communication interface and a bus, and the communication interface is connected to the processor through the bus.
- a still further aspect of the present application provides a computer readable storage medium having stored therein instructions that, when executed on a computer, cause the computer to perform the first aspect or the first aspect described above
- the link maintenance method provided by any one of the possible implementation manners, or the link maintenance method provided by any of the foregoing possible implementation manners of the second aspect or the second aspect.
- a computer program product comprising instructions which, when executed on a computer, cause the computer to perform any of the above-described first aspect or any of the possible implementations of the first aspect, or perform The link maintenance method provided by the foregoing second aspect or any possible implementation manner of the second aspect.
- a communication system in a further aspect of the present application, includes a plurality of nodes, the plurality of devices including a first node and a second node, wherein the first node is a first node provided by the foregoing aspects, a link maintenance method provided by the first node to perform the foregoing first aspect or any one of the possible implementations of the first aspect; and/or the second node is provided by the second node provided by the foregoing aspects, The link maintenance method provided by the second node or any of the possible implementation manners of the second aspect is performed by the second node.
- FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied;
- FIG. 2 and FIG. 3 are respectively a protocol stack architecture diagram of a user plane and a control plane of a layer 2 relay system
- 4 and 5 are respectively a user plane and a control plane protocol stack architecture diagram of the layer 3 relay system
- FIG. 6 is a flowchart of establishing a backup backhaul link between a relay node and a neighbor node according to an embodiment of the present application
- FIG. 7 is a schematic diagram of a first node initiating a random access procedure to a candidate neighbor node according to an embodiment of the present disclosure
- FIG. 8 is a flowchart of establishing a to a neighboring node to an UPF bearer according to an embodiment of the present application
- FIG. 9 is a schematic structural diagram of a first node according to an embodiment of the present application.
- FIG. 10 is a schematic diagram of a possible logical structure of a first node according to an embodiment of the present application.
- FIG. 11 is a schematic diagram of a possible structure of a second node according to an embodiment of the present application.
- FIG. 12 is a schematic diagram of a possible logical structure of a second node according to an embodiment of the present application.
- FIG. 13 is a schematic diagram of a possible structure of a candidate neighbor node according to an embodiment of the present application.
- FIG. 14 is a schematic diagram of a possible logical structure of a candidate neighbor node according to an embodiment of the present application.
- NR is considering introducing an integrated access and backhaul (IAB) solution to further reduce deployment costs and increase deployment flexibility, thereby introducing integrated access backhaul.
- IAB integrated access and backhaul
- the relay node integrated with the backhaul is referred to as a relay transmission reception point (rTRP) to distinguish the relay of the LTE.
- the third generation partnership project (3GPP) has identified NR IAB as the standardization target for release 16, which is currently in its infancy.
- the bandwidth of the access link and the backhaul link on the relay node integrated with the backhaul will be multiplied or tens of times higher than that of the traditional LTE. Therefore, at the IAB.
- the introduction of high frequencies is an option.
- more IAB nodes may be operating in the 6 GHz or lower band.
- transient interruptions may occur due to environmental influences, resulting in backhaul links being unavailable.
- NR will support multi-hop wireless relay. Therefore, the route of the backhaul link of the relay node may have multiple choices, and the change of the high-frequency link may bring about the change of the routing topology of the IAB node. Thereby affecting the performance of the IAB node.
- maintaining the IAB with a backhaul link and routing to the network is a problem to be solved.
- FIG. 1 is a schematic structural diagram of a communication system to which an embodiment of the present application is applied.
- the communication system mentioned in the embodiments of the present application includes, but is not limited to, a narrow band-internet of things (NB-IoT) system, a long term evolution (LTE) system, and a next generation 5G.
- NB-IoT narrow band-internet of things
- LTE long term evolution
- 5G next generation 5G
- D2D device to device
- An IAB system includes at least one base station 100, and one or more user equipment (UE) 101 served by the base station 100, one or more relay nodes rTRP 110, and one or more services served by the rTRP 110 UE 111, typically base station 100 is referred to as donor next generation node B (DgNB), and rTRP 110 is connected to base station 100 via wireless backhaul link 113.
- the donor base station is also referred to herein as a host node, ie, a Donor node.
- the base station includes, but is not limited to, an evolved node base (eNB), a radio network controller (RNC), a node B (node B, NB), and a base station controller (BSC).
- eNB evolved node base
- RNC radio network controller
- node B node B
- BSC base station controller
- a base transceiver station (BTS) a home base station (for example, home evolved node B, or home node B, HNB), a baseband unit (BBU), or a next-generation new air base station (such as gNB).
- the integrated access and backhaul system may also include a plurality of other relay nodes, such as rTRP 120 and rTRP 130, which are connected to the relay node rTRP 110 via wireless backhaul link 123 for access to the network, rTRP 130
- the rTRP 120 serves one or more UEs 121
- the rTRP 130 serves one or more UEs 131 by connecting to the relay node rTRP 110 over the wireless backhaul link 133.
- both relay node rTRP 110 and rTRP 120 are connected to the network via a wireless backhaul link.
- the wireless backhaul link is from the perspective of a relay node, such as the wireless backhaul link 113 is a backhaul link of the relay node rTRP 110, and the wireless backhaul link 123 is a relay node rTRP 120.
- Backhaul link As shown in FIG. 1, a relay node, such as 120, can connect to another network through a wireless backhaul link, such as 123, to connect to another network, and the relay node can pass through multiple levels of wireless relay nodes. Connect to the network.
- a node that provides wireless backhaul link resources such as 110
- a superior node of the relay node 120 is referred to as a lower node of the relay node 110.
- a subordinate node can be regarded as a user equipment UE of a superior node. It should be understood that in the integrated access and backhaul system shown in FIG.
- a relay node For example, 120, a plurality of upper nodes may serve a relay node at the same time, and the rTRP 130 in the figure may also be connected to the relay node rTRP 120 through the backhaul link 134, that is, both rTRP 110 and rTRP 120 are rTRP 130.
- the superior node In the present application, the user equipment UE 101, 111, 121, 131 may be a stationary or mobile device.
- the mobile device can be a mobile phone, a smart terminal, a tablet, a laptop, a video game console, a multimedia player, or even a mobile relay node.
- a stationary device is usually located at a fixed location, such as a computer, an access point (connected to a network via a wireless link, such as a stationary relay node), and the like.
- the name of the relay node rTRP 110, 120, 130 does not limit the scenario or network it deploys, and may be any other name such as relay, RN, and the like. The use of rTRP in this application is only for convenience of description.
- the wireless links 102, 112, 122, 132, 113, 123, 133, 134 may be bidirectional links, including uplink and downlink transmission links.
- the wireless backhaul links 113, 123, 133, 134 may be used by the upper node to provide services for the lower nodes, such as the upper node 100.
- a wireless backhaul service is provided for the lower node 110.
- the uplink and downlink of the backhaul link may be separate, ie, the uplink and downlink are not transmitted through the same node.
- the downlink transmission refers to a superior node, such as node 100, a lower-level node, such as node 110, transmitting information or data
- uplink transmission refers to a lower-level node, such as node 110, to a higher-level node, such as node 100, transmitting information or data.
- the node is not limited to being a network node or a UE.
- the UE may act as a relay node to serve other UEs.
- the wireless backhaul link may in turn be an access link in some scenarios.
- the backhaul link 123 may also be regarded as an access link for the node 110, and the backhaul link 113 is also an access link of the node 100.
- the above-mentioned upper-level node may be a base station or a relay node
- the lower-level node may be a relay node or a UE with a relay function.
- the lower-level node may also be a UE.
- the relay nodes shown in FIG. 1, such as 110, 120, and 130, may have two existing forms: one exists as an independent access node, and can independently manage UEs that access the relay node.
- the relay node usually has an independent physical cell identifier (PCI).
- PCI physical cell identifier
- This type of relay usually needs to have a complete protocol stack function, such as radio resource control (RRC) function.
- RRC radio resource control
- layer 3 relay Usually referred to as layer 3 relay; and another form of relay node does not have a separate PCI, and it belongs to the same cell as the donor node, such as Donor eNB and Donor gNB, and does not manage the user.
- the protocol stacks for Layer 2 and Layer 3 relays are shown in Figures 2 through 5.
- a Donor node refers to a node that can access the core network through the node, or an anchor base station of the radio access network, through which the base station can access the network.
- the anchor base station is responsible for data processing of the packet data convergence protocol (PDCP) layer, or is responsible for receiving data of the core network and forwarding it to the relay node, or receiving data of the relay node and forwarding it to the core network.
- PDCP packet data convergence protocol
- FIGS and Figure 3 are the protocol stack architecture diagrams of the user plane and control plane of the layer 2 relay system, respectively.
- the next generation user plane (NG-UP) in the figure is mainly a user plane gateway, and the next generation control plane (NG-CP) is a control plane node.
- the user plane protocol layer of the UE includes: a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a PDCP layer, and a service data adaptation.
- the service data adaptation protocol (SDAP) layer and the internet protocol (IP) layer wherein the SDAP layer mainly provides service adaptation functions, including quality of service (QoS) management and flow management.
- QoS quality of service
- the layer 2 (L2) relay and the air interface protocol layer for communication between the UE mainly include: a PHY layer, a MAC layer, and an RLC layer, and a protocol stack of an interface that communicates with the Donor node through the backhaul link includes: a PHY layer, a MAC Layer, RLC layer and adaptation (Adpt.) layer, wherein the adaptation layer mainly provides functions including bearer management and security management.
- the protocol stack of the interface for communicating between the Donor node that is, the DgNB and the layer 2 relay, includes: a PHY layer, a MAC layer, an RLC layer, an Adpt. layer, a PDCP layer, and a SDAP layer.
- the DgNB and the NG-UP are generally wired connections, and the service bearer is usually established through the tunnel.
- the protocol stack of the DgNB corresponding to the NG-UP includes: L1 (layer 1, L1), L2 (layer 2, L2), IP layer, and user data.
- the protocol stack of the NG-UP includes: L1, L2, IP layer, UDP layer, GTP-U layer, and IP layer.
- FIG. 3 shows the control plane protocol stack structure of the Layer 2 relay system.
- the protocol stack of the UE includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an RRC layer, and a non-access stratum (NAS) layer, and a layer 2 relay control plane protocol stack and a user plane protocol stack are the same. No longer.
- the control plane interface protocol stack of DgNB and layer 2 relay communication includes: PHY layer, MAC layer, RLC layer, Adpt. layer, PDCP layer and RRC layer.
- the DgNB and the core network control plane network element NG-CP are usually connected by wire.
- the protocol stack of the DgNB on the interface includes: L1, L2, IP layer, stream control transmission protocol (SCTP) layer and S1.
- SCTP stream control transmission protocol
- S1 appl ication protocol (S1-AP) layer where S1 is the code of the interface.
- the protocol stack of the NG-CP on the S1 interface includes: an L1, an L2, an IP layer, an SCTP layer, an S1-AP layer, and a NAS layer, where the NAS layer corresponds to the NAS layer of the UE.
- Figures 4 and 5 are the user plane and control plane protocol stack architecture of the layer 3 relay system, respectively.
- the layer 3 relay and the UE support a complete air interface protocol stack on the air interface, including: PHY layer, MAC layer, RLC layer, PDCP layer, and SDAP layer.
- the protocol stack of the relay node includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, a UDP layer, and a GTP-U layer.
- the protocol stack of the S1 interface of the DgNB includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, a UDP layer, and a GTP-U layer.
- the user plane protocol stack structure of other peer 2 relay systems will not be described again.
- Figure 5 shows the control plane protocol stack structure of the Layer 3 relay protocol.
- the layer 3 relay system control plane protocol stack structure, the layer 3 relay and the UE support the complete control plane protocol stack on the air interface, including: PHY layer, MAC layer , RLC layer, PDCP layer, and RRC layer.
- the protocol stack of the interface between the layer 3 relay and the DgNB includes: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, an SCTP layer, and an S1-AP layer.
- the protocol stacks of the DgNB and Layer 3 relay interfaces include: a PHY layer, a MAC layer, an RLC layer, a PDCP layer, an IP layer, an SCTP layer, and an S1-AP layer.
- the control plane protocol stack structure of other peer 2 relay systems will not be described again.
- the relay node is referred to as a first node
- the host base station or the upper node of the first node is referred to as a second node
- the cell that is physically adjacent to the cell where the first node is located and has a certain signal coverage overlap is used.
- the base station or relay node forming the neighboring cell is called a neighboring node.
- the relay node is layer 2 relay
- the cell where the relay node is located is the same as the cell of the host node, and the neighbor node of the relay node is also the neighbor node of the host node.
- the neighbor node is a cell that is physically adjacent to the cell of the relay node and has a certain signal coverage overlap.
- the relay node establishes an X2 interface with the neighbor node through the host node, but the neighbor A node is not necessarily a neighbor node of a host node.
- a neighboring cell is a cell with a certain coverage formed by signals transmitted by neighboring nodes.
- the X2 interface refers to an interface for communication between base stations. It should be understood that only X2 is used to represent the interface between the base stations, but it does not mean that this is a limitation on the name, or the interface name limits the application scope of the application, and may be other names.
- the first node may be any device having a relay function, such as a base station, a relay node, and a UE having a relay function.
- the second node is usually the host base station or the superior node of the first node. It should be understood that the first node and the second node may not directly communicate through the backhaul link, that is, may be connected to each other through multi-hop relay; the X2 interface of the neighbor node and the first node may not be directly wired or A wireless connection may be a connection established by other means, such as a tunnel.
- candidate neighbor nodes and potential neighbor nodes are defined.
- the candidate neighbor node is a neighbor node that is determined to be measured, and the candidate neighbor node may be a host node of the first node, that is, some or all of the neighbor nodes of the potential neighbor node configured by the second node to the first node may also pass The neighbor node selected by the first node among the potential neighbor nodes sent by the second node, for example, when the measurement result of the potential neighbor node measured by the terminal is greater than a certain threshold, the potential neighbor node is used as a candidate node.
- the potential neighbor node is a neighbor node of the first node or the cell where the first node is located, and the potential neighbor node may be the upper node of the first node, or all the neighbor nodes of the candidate neighbor node of the first node, and whether the potential neighbor node can
- the candidate node is determined according to the measurement result of the terminal to the potential neighbor node.
- the backup backhaul link refers to the transmission of the backhaul link through the node, that is, as the upper node of the first node, the state of the backup backhaul link may be an inactive state or an active state. , depending on the configuration.
- the first node determines the candidate neighbor node to be measured, the first node measures the candidate neighbor node, and the first node determines whether to establish or delete the first node according to the measurement result. And a backhaul link between the candidate neighbor node, the first node sending a request to the second node, the request for requesting the second node to establish or delete a backup backhaul link between the first node and the candidate neighbor node.
- the first node determines the candidate neighbor node to be measured, and may be based on the measurement indication sent by the second node, or the measurement result of the potential neighbor node measured by the terminal sent by the second node, or the potential neighbor sent by the terminal to the first node.
- the measurement results of the nodes are determined. If it is determined that the measurement is performed on the candidate neighbor node, the first node may send a measurement configuration request to the second node to obtain configuration information of a channel state information reference signal (CSI-RS) of the candidate neighbor node, and The CSI-RS of the neighboring cell performs measurement, or the first node measures the synchronization signal/physical broadcast channel (SS/PBCH block) of the neighboring cell.
- CSI-RS channel state information reference signal
- SS/PBCH block synchronization signal/physical broadcast channel
- the first node sends a first request to the second node, and the second node receives the first request sent by the first node.
- the first request is for requesting the second node to establish or delete a backup backhaul link between the first node and the candidate neighbor node.
- the second node can send a response to the first node.
- the first request is for requesting the second node to establish a backup backhaul link between the first node and the candidate neighbor node, or if the first node Determining to delete a backhaul link between the first node and the candidate neighbor node, the first request for requesting the second node to delete the backup backhaul link between the first node and the candidate neighbor node.
- the second node After receiving the first request, the second node sends a second request to the candidate neighbor node, where the second request is used by the candidate neighboring node to establish or delete the bearer to the second node or the user plane function. If the first request is for requesting the second node to establish a backup backhaul link between the first node and the candidate neighbor node, the second request is used by the candidate neighbor node to establish a bearer to the second node or the user plane function; if the first request is used The requesting second node deletes the backup backhaul link between the first node and the candidate neighbor node, and the second request is used for the candidate neighbor node to delete the bearer to the second node or the user plane function.
- FIG. 6 is a flowchart of establishing a backup backhaul link between a relay node and a neighbor node according to an embodiment of the present disclosure. The main steps of the embodiment of Figure 6 are as follows:
- the first node receives measurement configuration information sent by the second node, where the measurement configuration information includes a backhaul link measurement threshold, and the backhaul link measurement threshold is used by the first node to determine a backhaul link quality.
- the backhaul link measurement threshold is used to determine whether the candidate neighbor node can be the upper node of the first node when the first node measures the candidate neighbor node.
- the measurement configuration information may further include a hysteresis parameter of candidate links (hysteresis, H ys), where H ys candidate link entry conditions for determining the condition or leaving the first node to trigger the event meets establish or remove a neighbor node Backhaul link.
- the second node may further include a terminal measurement threshold in the measurement configuration, where the terminal measurement threshold is used to determine whether the neighbor measured by the terminal is to be measured when the first node receives the terminal measurement result.
- the terminal measurement threshold is used to measure whether the measurement result of the terminal satisfies a certain signal strength, and the backhaul link measurement threshold is used by the first node to measure the neighbor node.
- the terminal measurement threshold may be the same as the backhaul link measurement threshold, or may be different.
- the specific configuration depends on the configuration, which is not limited in this application.
- the measurement configuration may be independent of the following steps, and this embodiment does not mean that the subsequent S602(a) or S602(b) and subsequent steps must necessarily be performed immediately after the S601 step. It should be understood that the measurement configuration is used by the first node to determine whether to establish or delete the backhaul link of the first node and the candidate neighbor node, and therefore, the execution of the following S602(a) or S602(b) and S603 steps is not dependent on In step S601.
- the second node may configure a plurality of backhaul link measurement thresholds for the first node, for example, the first backhaul link measurement threshold is for the SS/PBCH block, and the second backhaul link measurement threshold is for the dedicated reference signal, such as CSI -RS. It is also possible to configure only one backhaul link measurement threshold, regardless of whether it is for the SS/PBCH block or for the dedicated reference signal. There are several specific configurations. Whether to distinguish different reference signals depends on the protocol definition or configuration. This application does not impose any restrictions.
- the UE sends a measurement report to the first node.
- the first node receives the measurement report sent by the terminal.
- the measurement report includes measurements of potential neighbor nodes.
- the terminal accesses the network through the first node, and the measurement result of the potential neighbor node is used by the first node to determine the candidate neighbor node.
- the first node may configure the UE belonging to the first node to perform neighbor measurement, and the UE belonging to the first node will measure The result is sent to the first node, wherein the UE accesses the network through the first node, and the first node has an RRC function, that is, serves as a layer 3 relay node to provide services for the UE. If the first node is a layer 2 relay, then this step will not be performed.
- the measurement report includes at least one of the following parameters: a cell global identifier (CGI) of the neighboring cell, a physical cell identifier (PCI), a tracking area identifier (TAI), and a public Reference signal received power (RSRP) corresponding to the public land mobile network (PLMN), CGI or PCI, index of the SS/PBCH block measured by the terminal, or CSI-RS, location information of the terminal, terminal
- CGI cell global identifier
- PCI physical cell identifier
- TAI tracking area identifier
- RSRP public Reference signal received power
- PLMN public land mobile network
- CGI or PCI index of the SS/PBCH block measured by the terminal
- CSI-RS location information of the terminal, terminal
- the location information may be global positioning system (GPS) information.
- GPS global positioning system
- step S602(a) is performed, at which time steps S602(b) and S603 are not performed.
- the UE sends a measurement report to the second node, and the second node sends the measurement indication to the first node or the measurement result of the neighbor node measured by the terminal, and then steps S602(b) and S603 are performed.
- step S604 the flow goes to step S604, that is, either step S602(a) is performed or steps S602(b) and S603 are performed.
- the UE sends a measurement report to the second node.
- the neighbor discovery function is performed by the second node by configuring the UE to which the second node belongs to discover a new cell, or discover a certain The neighborhood was removed.
- the second node obtains the status of the neighboring cell by receiving the measurement report of the UE, that is, whether there is a new neighboring cell, or a neighboring cell is removed.
- the parameters of the measurement report are as described above and will not be described again.
- the first node receives the measurement indication sent by the second node, where the measurement indication includes an identifier of the potential neighbor node, the identifier of the potential neighbor node is used by the first node to determine the candidate neighbor node, or the first node receives the terminal sent by the second node.
- the measured result of the measured potential neighbor node, the terminal accesses the network through the first node, and the measurement result of the potential neighbor node is used by the first node to determine the candidate neighbor node.
- the second node After receiving the measurement report sent by the UE, the second node determines the neighbor node to be measured by the first node, that is, the second node determines the neighbor node to be measured by the first node according to the neighboring cell measurement result measured by the UE, if the UE measures If the neighboring cell measurement result, such as RSRP, is greater than a certain threshold, the neighboring node corresponding to the neighboring cell may be used as the potential neighboring node of the first node, and sent to the first node in the measurement indication.
- the neighboring cell measurement result such as RSRP
- the second node may select the largest one of the RSRPs as the neighboring area measurement result, or select a measurement result of the UE closest to the first node position as the measurement result.
- the neighboring area measurement result, or the measurement result of the same neighbor node measured by all the UEs is weighted and averaged as the neighboring area measurement result, and the specific implementation manner is not limited in this application.
- the CSI-RS configuration information of the neighbor node may be included in the measurement indication, where the CSI-RS configuration information includes the time-frequency resource of the CSI-RS. Location, period, starting system frame number, slot number or subframe number sent, number of transmissions, etc. If the CSI-RS is included in the measurement indication, the second node sends a measurement configuration request to the neighbor node to request the CSI-RS configuration information of the neighbor node before sending the measurement indication to the first node, and details are not described herein again.
- the second node sends the neighboring cell measurement result received by the UE to the first node for processing.
- the RRC function of the access link means that the first node does not process the RRC layer of the UE, and does not mean that there is no RRC function between the first node and the second node. Therefore, the first node can process the RRC message from the second node, but will not process the RRC message of the UE. Therefore, the second node can transmit the measurement result from the UE to the first node without processing.
- the measurement result of the neighbor node measured by the terminal sent by the second node to the first node is associated with a neighbor node, which is called a potential neighbor node, that is, a superior node that may be called the first node.
- a neighbor node which is called a potential neighbor node, that is, a superior node that may be called the first node.
- the measurement configuration in step S601 above may also be sent to the first node in step S603. If the measurement configuration is sent to the first node along with the measurement indication or the measurement result of the neighbor node measured by the terminal, step S601 is optional. Moreover, the measurement configuration may be sent to the first node when the second node sends the measurement indication or the measurement result of the neighbor node measured by the terminal to the second node for the first time, and subsequently uses the measurement configuration.
- the second node may also include a measurement configuration when the measurement indication of the neighboring node or the measurement result of the neighbor node measured by the terminal is sent to the second node, so as to reconfigure the measurement configuration, or even send the measurement weight to the first node again. Configure the message to update the measurement configuration.
- the above measurement indication includes an identifier of a candidate neighbor node, and the identifier may be one of CGI or PCI.
- the measurement result of the neighbor node measured by the terminal includes the RSRP of the neighbor node measured by the terminal and the identifier of the corresponding neighbor node, and may also include the location information of the measured terminal, such as global positioning system information.
- the first node determines a candidate neighbor node. If the second node sends the measurement indication to the second node, since the measurement result of the neighbor node in the measurement indication has been processed by the second node, the first node may select some or all of the neighbor nodes to perform measurement, and the selection is to be performed.
- the measured potential neighbor nodes are candidate neighbor nodes.
- the first node may be selected based on the result of the previous measurement or the measurement of the cell that is not in the neighboring cell list. The specific selection rule is not limited in this application.
- the neighbor node measured by the terminal is a potential neighbor node of the first node, and whether the neighbor node is to be measured needs to be measured according to the neighboring area measured by the terminal.
- the result is determined.
- the results measured by multiple terminals may be different.
- the first node may select the largest one of the RSRPs as the neighboring area measurement result, or select one closest to its own position as the neighboring area measurement result. Or the weighted average of the measurement results of the same neighbor node measured by all the UEs is used as the neighboring area measurement result.
- the specific implementation manner is not limited in this application.
- the process proceeds to step S605. Otherwise, the first node may perform measurement by using the SS/PBCH block of the neighbor node, and then directly proceeds to step S609. Whether the SS/PBCH block is used to measure the neighboring area or the CSI-RS is used to measure the neighboring area may be configured. For example, the second node configures the first node neighboring area measurement mode, or may be a protocol definition manner. Do the constraints.
- the first node may send a measurement configuration request to the second node, requesting the candidate neighbor node to send the CSI-RS configuration information.
- the measurement configuration request includes an identifier of the first node, and an identifier of the candidate neighbor node, and the identifier is not described above.
- the measurement configuration request may further include location information of the first node, such as GPS information, information of the measured beam, such as an index of the beam, and the like.
- the second node After receiving the measurement configuration request sent by the first node, the second node forwards the measurement configuration request to the candidate neighbor node.
- the content included in the measurement configuration request is as described in step S605 above, and will not be described again.
- the candidate neighboring node After receiving the measurement configuration request, the candidate neighboring node includes the parameter according to the measurement configuration request, determines CSI-RS configuration information, and sends a measurement configuration response to the second node, where the measurement configuration response includes CSI-RS configuration information, CSI-RS.
- the configuration information is as described above and will not be described again.
- the second node After receiving the measurement configuration response of the candidate neighbor node, the second node forwards the measurement configuration response to the first node, and the content of the measurement configuration response is as described in step S607, and details are not described herein.
- the first node performs measurement on the candidate neighbor node. If the first node receives the CSI-RS configuration information of the candidate neighbor node, the measurement is performed on the given CSI-RS resource according to the configuration information of the CSI-RS. If the first node does not receive the CSI-RS of the candidate node, the SS/PBCH block of the candidate neighbor node is measured, and the measurement result is obtained. The first node determines, based on the obtained measurement result, whether the candidate neighbor node can be an candidate node of the backhaul link.
- the foregoing measurement of the candidate node further includes that the first node measures the established backup backhaul link to the neighbor node, and the measurement of the neighbor node of the established backup backhaul link may be periodic, or may be The event is triggered. For example, when the quality of the backup backhaul link to a neighbor node measured by the UE is lower than a certain threshold, the first node is triggered to perform measurement.
- the first node determines, according to the foregoing measurement result, whether to establish or delete a backhaul link with the candidate neighbor node. Specifically, when the condition M r -H ys> Thresh, the first node determines an event entry conditions are satisfied, M r is the measurement result of the first point candidate neighbor node, H ys hysteresis parameter for the event, for the backhaul link Thresh The road measurement threshold, the first node sends a backup backhaul link addition request to the second node, and the backup backhaul link addition request is used by the second node to establish a backup backhaul link between the first node and the candidate neighbor node; or, when the condition is met When M r +H ys ⁇ Thresh, the first node determines that the leaving condition of the event is satisfied, the first node sends a backup backhaul link deletion request to the second node, and the backup backhaul link deletion request is used by the second node to delete the
- the above trigger entry condition may also satisfy that M r -H ys ⁇ Thresh, and the trigger departure condition may also satisfy that M r +H ys ⁇ Thresh.
- the first node sends a first request to the second node.
- the first request is for the second node to establish or delete a backup backhaul link between the first node and the candidate neighbor node.
- the second node can send a response to the first node. If the first node determines to establish a backhaul link between the first node and the candidate neighbor node, the first request is for requesting the second node to establish a backup backhaul link between the first node and the candidate neighbor node, or if the first node Determining to delete a backhaul link between the first node and the candidate neighbor node, the first request for requesting the second node to delete the backup backhaul link between the first node and the candidate neighbor node.
- the first node determines, according to the measurement result, that when the condition M r -H ys >Thresh is satisfied, that is, the first node determines that the entry condition of the event is met, the first node triggers sending to the second node.
- the backup backhaul link adds the requested signal or generates a request message indicating that other modules or processes of the first node send a backup backhaul link addition request to the second node.
- the first node when the condition M r +H ys ⁇ Thresh is satisfied, that is, the first node determines that the leaving condition of the event is satisfied, the first node triggers a signal to send a backup backhaul link deletion request to the second node, or generates a delete message.
- the signal or delete message indicates that other modules or processes of the first node send a backup backhaul link deletion request to the second node.
- the above trigger entry condition may also satisfy that M r -H ys ⁇ Thresh, and the trigger departure condition may also satisfy that M r +H ys ⁇ Thresh.
- the second node determines whether the requested candidate neighbor is to be requested.
- the node is added as the node of the backup backhaul link of the first node.
- the second node may reject the backup backhaul link addition request of the first node, and the second node sends a first response to the first node, where the first response includes the backup backhaul link adding a response. , including an indication to reject the addition, and may also include the reason value of the rejection. If the second node accepts the backup backhaul link addition request sent by the first node, step S611 is performed.
- the backup backhaul link deletion request sent by the first node performs a similar operation and will not be described again.
- first response described above may also be used to back up the backhaul link deletion response, indicating the result of deleting the backup backhaul link between the first node and the candidate neighbor node.
- the second node can enable the backup backhaul link. Therefore, the second node can control the state of the backup backhaul link of the first node, that is, the backup backhaul link can be activated or deactivated.
- the second node After receiving the foregoing first request, the second node sends a second request to the candidate neighbor node, where the second request is used to establish or delete the bearer of the second node or the user plane function (UPF). . If the first request is for requesting the second node to establish a backup backhaul link between the first node and the candidate neighbor node, the second request is used by the candidate neighbor node to establish a bearer to the second node or the user plane function; if the first request is used The requesting second node deletes the backup backhaul link between the first node and the candidate neighbor node, and the second request is used for the candidate neighbor node to delete the bearer to the second node or the user plane function.
- the first request is for requesting the second node to establish a backup backhaul link between the first node and the candidate neighbor node
- the second request is used by the candidate neighbor node to establish a bearer to the second node or the user plane function.
- the first request is used by the second node to establish a backup backhaul link relationship between the first node and the candidate neighbor node
- the second request is used for the candidate neighbor node to establish a bearer to the second node or the UPF. Since the backhaul link of the first node that is being used may be instantaneously interrupted for some reason, such as a change in the environment or occlusion, the backup backhaul link needs to be enabled at this time.
- the candidate neighbor node will be established.
- the bearer of the two nodes or the bearer established to the UPF.
- the bearer established to the second node is mainly configured to route the data sent by the first node through the backup backhaul link to the second node through the dual-connection or multi-connection manner, thereby enabling the second node to control Backing up the state of the backhaul link, that is, activating or deactivating the backhaul link, and the user plane data transmitted by the first node through the candidate neighbor node is sent to the second node by the bearer between the candidate neighbor node and the second node, by Two nodes are routing.
- the candidate neighbor node may establish a bearer to the UPF for the first node. That is, there is no need to forward through the second node.
- the candidate neighbor node receives the second request sent by the second node, if the second request is used to establish a backup backhaul link between the first node and the candidate neighbor node, the candidate neighbor node directly establishes a bearer to the UPF.
- the bearer to the UPF established by the candidate neighbor node is in a deactivated state.
- the backup backhaul link may be switched, and the bearer of the candidate neighbor node to the UPF is activated, thereby providing a data forwarding channel for the first node.
- the candidate neighboring node is a bearer established to the second node or a bearer established to the UPF, and depends on a specific application scenario. If it is a layer 2 relay, whether the bearer established to the second node or the bearer established to the UPF is controlled by the second node, that is, the second node is in the first request (for establishing the first node and the candidate neighbor node)
- the backup backhaul link includes an indication of the data plane route, which is used to indicate whether the candidate neighbor node establishes a route to the second node or a route to the UPF, but the second node can accept, and can also change the indication of the data plane route. And inform the first node of the selected result.
- the first node may also include an indication of the data plane route in the first request (used to establish a backup backhaul link between the first node and the candidate neighbor node), and the second node does not change at this time.
- An indication of the data plane route is also included in the first request (used to establish a backup backhaul link between the first node and the candidate neighbor node), and the second node does not change at this time.
- the candidate neighbor node sends a second response to the second node, where the second response includes a backup backhaul link add response or a backup backhaul link delete response. It should be understood that the candidate neighbor node may reject the second node as the upper node of the first node, and at this time, indicate that the request is rejected in the second response message.
- the second node After receiving the second response sent by the candidate neighbor node, the second node sends the first response to the first node. If the first request is used to establish a backup backhaul link between the first node and the candidate neighbor node, the second node also uses the candidate node as a node of the backup backhaul link of the first node, and passes control signaling when needed. Activate the backup backhaul link.
- the first node when the first request is used to establish a backup backhaul link request between the first node and the candidate neighbor node, the first node may request to activate the backup backhaul link of the candidate neighbor node.
- the second node also includes an activation indication in the second request to the candidate neighbor node.
- the candidate neighbor node will include an activation status indication in the second response.
- the second node when the first request is used to delete the backup backhaul link between the first node and the candidate neighbor node, the second node may request to activate the backup backhaul link of the candidate neighbor node.
- the second node includes a deactivation indication in the second request message addressed to the candidate neighbor node.
- the candidate neighbor node may include a deactivation status indication in the second response message.
- the second node may include a backup backhaul link retention time in the second request, and the candidate neighbor node starts the timer according to the backup backhaul link retention time, and does not receive the reserved backup backhaul of the second node when the timer expires. After the link message, delete the backup backhaul link.
- the first node may switch to the backup backhaul link as needed if the first request (used to establish a backup backhaul link between the first node and the candidate neighbor node) is accepted. , or activate the backup backhaul link to establish a dual or multiple connection for the first node.
- the second node accepts the first request sent by the first node, the first response and the second response are the same, and if the second node rejects the first request, there is no second response, the first response The response of the second node to the first request.
- the first node may determine whether to establish or delete the first node by receiving the measurement indication of the second node, or the measurement result of the neighbor node measured by the terminal forwarded by the second node, or the measurement report reported by the terminal.
- the backup backhaul link between the candidate neighbor nodes reduces the measurement overhead caused by the first node's own measurement, and discovers the new available upper node through the auxiliary measurement of the terminal, and the backup backhaul link enhances the back link of the first node.
- the availability of the path can improve the quality of the backhaul link and quickly establish a new backhaul link to reduce the service interruption time when the current backhaul link quality or bandwidth is insufficient.
- FIG. 7 is a schematic diagram of a first node initiating a random access procedure to a candidate neighbor node according to an embodiment of the present disclosure. The figure further includes that the first node determines to delete the backhaul link between the first node and the candidate neighbor node, and the first node initiates a random access procedure to the candidate neighbor node, that is, the first node establishes and deletes and the backhaul between the candidate neighbor nodes
- the first node can implement random access to the candidate neighbor nodes. Specific steps are as follows:
- the first node determines to establish or delete the backhaul link of the candidate neighbor node, if the first node establishes a backhaul link with the candidate neighbor node by means of random access, the first node also needs to acquire the candidate neighbor.
- the random access information of the node including the random access preamble packet, the random access resource, and whether the state of the cell is in a blocked state. If the first node is to delete the candidate neighbor node, the random access information may be acquired when the backhaul link is established with the candidate neighbor node without reacquisition, but the backhaul chain between the deleted and candidate neighbor nodes When the road is in progress, it can be reacquired, mainly to prevent the random access information of the candidate neighbor nodes from being changed.
- the first node sends a random access preamble to the candidate neighbor node.
- the first node selects a random access preamble to send according to the obtained random access information of the candidate neighbor node.
- the transmission of the random access preamble is well known to those of ordinary skill in the art and will not be described again.
- the candidate neighbor node After receiving the random access preamble sent by the first node, the candidate neighbor node sends a random access response to the first node, including a random access preamble identifier, and/or a timing advance (TA) adjustment. , and / or backoff indicator (BI),. This step is well known to those of ordinary skill in the art and will not be described again.
- TA timing advance
- BI backoff indicator
- the first node After receiving the random access response of the candidate neighbor node, the first node sends a message 3 to the candidate neighbor node, where the message 3 includes establishing a backhaul link indication and a first node identifier.
- establishing a backhaul link indication is used to notify the candidate neighbor node of random access for establishing a backhaul link, and/or indicating that the first node is a relay node.
- the message 3 may further include a first node attribute indication.
- the first node attribute indication indicates that the first node is a relay node.
- Message 3 may include only one of establishing a backhaul link indication and a first node attribute.
- the candidate neighboring node After receiving the message 3 sent by the first node, the candidate neighboring node sends a contention resolution message to the first node, and the contention resolution message is also called message 4.
- the contention resolution message is the same as the traditional competition resolution message, which is well known to those skilled in the art and will not be described again.
- the first node sends a backup backhaul link addition or deletion request to the candidate neighbor node.
- the backup backhaul link addition or deletion request may also include the identity of the second node.
- the backup backhaul link request may further include a backhaul link activation indication for requesting whether to activate the backhaul link between the first node and the candidate neighboring node.
- the backup backhaul link addition request may further include an indication of whether the data plane is routed through the second node, and is used to indicate whether the candidate neighbor node establishes a bearer to the second node.
- the candidate neighbor node After receiving the backup link addition or deletion request, the candidate neighbor node determines whether to accept the backhaul link establishment request of the first node according to the current resource situation.
- the candidate neighbor node sends a backup backhaul link addition or deletion notification to the second node.
- the candidate neighbor node notifies the second node that the backup backhaul link has been established or deleted with the first node.
- the backup backhaul link addition or deletion notification includes the identifier of the first node and the identifier of the candidate neighbor node.
- the backup backhaul link addition notification may further include establishing a bearer indication, configured to request a bearer between the candidate neighbor node and the second node for the first node. It should be understood that the backup backhaul link addition or deletion notification herein may be two messages, namely, a backup backhaul link addition notification and a backup backhaul link deletion notification.
- Backup backhaul link add notification or backup backhaul link delete notification can also indicate its function through a field of a message.
- a backup backhaul link notification uses a field to indicate whether it is a backup backhaul link add notification or a backup backhaul chain.
- Road delete notification It should be understood that the names herein are merely illustrative and that any message names having similar functions are within the scope of the present invention. The same applies to the following, and will not be described again.
- the second node sends a backup backhaul link addition or deletion confirmation to the candidate neighbor node.
- the message is used to confirm to the second node that the backup backhaul link between the candidate neighbor node and the first node is accepted.
- the second node may also refuse to accept the backup backhaul link between the candidate neighbor node and the first node.
- backup backhaul link addition or deletion acknowledgement here may be two messages, namely, a backup backhaul link addition confirmation and a backup backhaul link deletion confirmation.
- Backup backhaul link add confirmation or backup backhaul link delete confirmation can also indicate its function through a field of a message, such as backup backhaul link confirmation with a field to indicate whether it is backup backhaul link add notification or backup backhaul chain Road delete notification.
- the names herein are merely illustrative and that any message names having similar functions are within the scope of the present invention. The same applies to the following, and will not be described again.
- the second node may also include the bearer information, such as the identifier of the bearer, the port number, etc., in the backup backhaul link addition confirmation, and the bearer establishment process is the same as the traditional dual connection.
- the X2 interface bearer establishment process is not described here.
- the candidate neighbor node sends a backup backhaul link addition or deletion response to the first node. If the candidate neighbor node accepts the backup backhaul link addition or deletion request of the first node, and the second node also accepts the establishment of the backup backhaul link between the candidate neighbor node and the first node, then in the backup backhaul link addition or deletion response Including the indication information of accepting the request, if the candidate neighbor node does not accept the backup backhaul link addition or deletion request of the first node, or the second node does not accept the establishment of the backup backhaul link between the candidate neighbor node and the first node, then the backup The backhaul link addition or deletion response includes an indication of the rejection request.
- the backup backhaul link addition or deletion response further includes routing indication information for indicating whether the bearer of the user data transmission is established through the second node or the UPF.
- the backup backhaul link addition or deletion response may further include bearer indication information for indicating whether the candidate neighbor node establishes a bearer to the second node or a bearer to the UPF.
- the backup backhaul link add or delete response may also include a backhaul link activation indication to indicate whether the backhaul link is activated.
- the backup backhaul link addition or deletion response may also include a backhaul link retention time for the first node to delete the backhaul link between the first node and the candidate neighboring node, indicating that the backhaul link will be deleted after a predetermined time.
- the candidate neighbor node only needs to simply modify the state of the backup backhaul link, that is, stop the timer. And mark it as a backup backhaul link or activate as directed.
- the first node sends a backup backhaul link addition or deletion complete message to the candidate neighbor node to notify the candidate neighbor node that the first node has received the backup backhaul link addition or deletion response.
- the relay node determines whether to establish a backhaul link with the candidate neighbor node according to the result of the measurement of the candidate neighbor node, and directly accesses the candidate neighbor node by means of random access, thereby reducing signaling overhead and reducing
- the delay of establishing the backhaul link is beneficial to the energy saving of the first node.
- the backup link is established by directly accessing the candidate neighbor nodes, and the topology and routing of the relay node are optimized.
- the first node may send a measurement configuration request to the candidate neighbor node to request the candidate neighbor node to send a dedicated reference signal to the first node for measurement, such as CSI. -RS, the first node re-measures the CSI-RS and re-determines whether to establish or delete a backup backhaul link with the candidate neighbor nodes. If the first node determines to continue backup backhaul link establishment, then step S706 is continued. Through this scheme, the measurement result of the backhaul link between the first node and the candidate neighboring node can be made more accurate, and the established backup backhaul link will be more reliable.
- the candidate neighbor node configures a dedicated measurement reference signal for the first node, requesting the first node to perform the measurement again, and reporting the measurement result.
- the candidate neighbor node determines whether to establish or delete a backup backhaul link with the first node according to the measurement result reported by the first node, or the first node determines, according to the measurement result, whether to establish or delete a backup backhaul link with the candidate neighbor node. If the candidate neighbor node determines to continue to establish or delete the backup backhaul link, then step S707 is continued, otherwise, the process proceeds to step S709, and the establishment of the backhaul link is rejected in the backup backhaul link addition or deletion response.
- the indication information is sent to the candidate neighbor node to continue to establish or delete the backup backhaul link, that is, to continue to step S707.
- the measurement result of the backhaul link between the first node and the candidate neighboring node can be made more accurate, and the established backup backhaul link makes the backhaul link more reliable.
- steps S706 to S710 in FIG. 7 are only added for the backup backhaul link, and the deletion of the backup backhaul link is performed by the method shown in FIG. The deletion of the link.
- the first node is connected by random access.
- the candidate node is added to the candidate node, the first node is required to use a larger power to transmit, which may cause the transmission to fail. Therefore, the second node performs the transmission, which can improve the success rate of the message transmission and reduce the power consumption of the first node.
- FIG. 8 is a flowchart of establishing a candidate neighboring node to an UPF bearer according to an embodiment of the present application.
- the user plane function is mainly a function network element that provides user plane data routing and forwarding, such as a gateway.
- the candidate node may establish a bearer according to the indication of the data plane route in the backup backhaul link addition or deletion request.
- the candidate neighbor node may choose whether to establish a bearer to the second node or a bearer to the UPF.
- AMF access and mobility management function
- SMF session management function
- FIG. 8 is mainly a network element of a control plane, and is used for an access node, a user, and Gateway control. It should be understood that the message names in FIG. 8 are only used to represent functions, and other similar names are used in actual standards or product implementations, and the message names in the figures should not be considered to limit their scope of use.
- Figure 8 shows an example of establishing a bearer to the UPF. The steps are as follows:
- step S801 the same as step S701, will not be described again.
- the first node sends a backup backhaul link addition or deletion request to the second node. If the first node determines to request to establish or delete a backup backhaul link between the first node and the candidate neighbor node through the second node, then steps S802(a1) and S802(a2) are performed. If the first node establishes or deletes the backup backhaul link between the first node and the candidate neighbor node through the candidate neighbor node by means of random access, steps S802(a1) and S802(a2) are not executed, and execution is performed. Steps S802 (b1) and S802 (b2). And if steps S802(a1) and S802(a2) are performed, the following steps S802(b1) and S802(b2) are not executed. The specific step is the same as S611 and will not be described again.
- step S802 (a2) the second node sends a backup backhaul link addition or deletion request to the candidate neighbor node. If the above step S802 (a1) is performed, step S802 (a2) is executed.
- the candidate neighbor node herein refers to a candidate neighbor node that the first node determines to establish or delete a backup backhaul link, that is, a candidate neighbor node in the backup backhaul link addition or deletion request.
- Step S802 (a2) is the same as step S612 and will not be described again.
- S802(a1) is not executed
- S802(a2) will also not be executed.
- step S802 (b1) the first node initiates a random access procedure to the candidate neighboring node, and replaces the random access procedure with a step, which is only used to simplify the description. For details, refer to steps S702 to S705, and details are not described herein. It should be understood that if the first node establishes or deletes the backup backhaul link between the first node and the candidate neighbor node through the candidate neighbor node by means of random access, step S802 (b1) is performed, and the above steps are performed. S802 (a1) and S802 (a2) are not executed.
- S802 (b2) The first node sends a backup backhaul link addition or deletion request to the candidate neighbor node.
- S706 The first node sends a backup backhaul link addition or deletion request to the candidate neighbor node.
- step S802 (b1) If step S802 (b1) is performed, step S802 (b2) is performed, otherwise, this step is not performed. That is, in the above steps, S802 (a1) and S802 (a2) are not executed, and S802 (b1) and S802 (b2) are not executed.
- the candidate neighbor node sends a bearer setup or modification request to the AMF/SMF.
- the bearer setup request includes at least one of the following parameters: an identifier of the first node, an identifier of the candidate neighbor node, a bearer identifier of the candidate neighbor node, a port number of the candidate neighbor node, an identifier of the UPF, and an access point name (accessing point naming, APN).
- the bearer setup request may further include a bearer activation indication for indicating whether the established bearer needs to be activated. If the first node sends a backup backhaul link deletion request, the candidate neighbor node sends a bearer modification request to the AMF/SMF, where the bearer modification request includes deleting the bearer indication.
- the candidate neighbor node may directly go to step S807 and start a timer, and then execute steps S803 to S806 after the timer expires.
- the SMF and the AMF/SMF may send a request for creating or modifying a bearer to the UPF, that is, the bearer request may be created, or the bearer request may be modified, where the modify bearer request may be used to delete a bearer.
- the UPF sends a create or modify bearer response to the AMF/SMF.
- the method for creating or modifying a bearer response includes at least one of the following parameters: a bearer identifier assigned by the UFP for the bearer, an identifier of the UFP, an identifier of the first node, an identifier of the candidate neighbor node, a port number, a QoS parameter, and a status of the bearer (whether activated ).
- the candidate neighboring node can establish a bearer to the UPF, and the bearer can be activated at any time through the established bearer, thereby reducing the impact of the service interruption of the first node due to the unavailable backhaul link of the first node. It can realize fast route switching, reduce service interruption delay and improve service quality.
- each network element for example, the first node and the second node, in order to implement the above functions, includes corresponding hardware structures and/or software modules for performing respective functions.
- the present application can be implemented in a combination of hardware or hardware and computer software in conjunction with the network elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
- the embodiment of the present application may perform the division of the function modules on the first node and the second node according to the foregoing method example.
- each function module may be divided according to each function, or two or more functions may be integrated into one processing module. in.
- the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
- FIG. 9 is a schematic diagram of a possible structure of a first node involved in the foregoing embodiment provided by the embodiment of the present application, where the first node includes: a processing unit 902 and Transmitting unit 903.
- the processing unit 901 is configured to support step S604, S609 or S610 in FIG. 6 , step S701 in FIG. 7 , S801 in FIG. 8
- the sending unit 901 is configured to support the first node to execute S605 or S611 in FIG. 6 .
- the first node may further include: a receiving unit 903, configured to support the first node to perform S601, S602(a), S603, S608 or S614 in FIG. 6, step S703, S705 or S709 in FIG. 7, in FIG. Step S802 (b1) or S809.
- a receiving unit 903 configured to support the first node to perform S601, S602(a), S603, S608 or S614 in FIG. 6, step S703, S705 or S709 in FIG. 7, in FIG. Step S802 (b1) or S809.
- the processing unit 902 may be a processor; the sending unit 901 may be a transmitter, the receiving unit 903 may be a receiver, and the receiver and the transmitter may constitute a communication interface.
- FIG. 10 is a schematic diagram of a possible logical structure of a first node involved in the foregoing embodiment provided by an embodiment of the present application.
- the first node includes a processor 1002.
- the processor 1002 is configured to perform control management on the action of the first node, for example, the processor 1002 is configured to support the first node to perform step S604, S609 or S610 in FIG. 6, in FIG. Step S701, S801 in Fig. 8.
- the first node may further include: a memory 1001 and a communication interface 1003; the processor 1002, the communication interface 1003, and the memory 1001 may be connected to each other or to each other through the bus 1004.
- the communication interface 1003 is configured to support communication of the first node, and the memory 1001 is configured to store program codes and data of the first node.
- the processor 1002 calls the code stored in the memory 1001 for control management.
- the memory 1001 may or may not be coupled to the processor.
- the processor 1002 can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
- the bus 1004 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 10, but it does not mean that there is only one bus or one type of bus.
- FIG. 11 is a schematic diagram of a possible structure of a second node involved in the foregoing embodiment provided by the embodiment of the present application, where the second node includes: a sending unit 1101 and Receiving unit 1103.
- the sending unit 1101 is configured to support the second node to perform S601, S603, S606, S608, S612, or S614 in FIG. 6, step S708 in FIG. 7, step S802(a2), S808 in FIG. 8, and receiving unit 1103. It is used to support the second node to execute S602(b), S605, S607, S611, S613 in Fig. 6, step S802(a1) or S807 in Fig. 8.
- the second node may further include: a processing unit 1102, configured to support the second node to determine a potential neighbor node in the measurement indication after transmitting the measurement report according to the received terminal, or determine a backhaul link measurement threshold configured for the first node, or Determine whether to accept the backup backhaul link addition request sent by the first node or the candidate neighbor node.
- a processing unit 1102 configured to support the second node to determine a potential neighbor node in the measurement indication after transmitting the measurement report according to the received terminal, or determine a backhaul link measurement threshold configured for the first node, or Determine whether to accept the backup backhaul link addition request sent by the first node or the candidate neighbor node.
- the processing unit 1102 may be a processor; the sending unit 1101 may be a transmitter, the receiving unit 1103 may be a receiver, and the receiver and the transmitter may constitute a communication interface.
- FIG. 12 is a schematic diagram of a possible logical structure of a second node involved in the foregoing embodiment according to an embodiment of the present application.
- the second node includes a processor 1202.
- the processor 1202 is configured to perform control management on the action of the second node, for example, the processor 1202 is configured to support the second node to perform determining the potential neighbor node in the measurement indication, or determine to be the first
- the backhaul link configured by the node measures the threshold or determines whether to accept the backup backhaul link addition request sent by the first node or the candidate neighbor node.
- the second node may further include: a memory 1201 and a communication interface 1203; the processor 1202, the communication interface 1203, and the memory 1201 may be connected to each other or to each other through a bus 1204.
- the communication interface 1203 is configured to support the second node to communicate.
- the memory 1201 is configured to store program codes and data of the second node.
- the processor 1202 calls the code stored in the memory 1201 for control management.
- the memory 1201 may or may not be coupled to the processor.
- the processor 1202 can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
- the bus 1204 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus or the like.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- FIG. 13 is a schematic structural diagram of a candidate neighbor node involved in the foregoing embodiment provided by the embodiment of the present application, where the candidate neighbor node includes: a sending unit 1301 and The receiving unit 1303.
- the sending unit 1301 is configured to support the candidate neighbor node to perform S607 or S613 in FIG. 6, step S703, S705, S707 or S709 in FIG. 7, step S803, S807 or S809 in FIG. 8; and receiving unit 1303 is used to support
- the candidate neighbor nodes perform S606, S612 in FIG. 6, step S702, S704, S706, S708 or S710 in FIG. 7, S802 (a2), S802 (b1), S802 (b2), S806, S808 in FIG.
- the candidate neighboring node may further include: a processing unit 1302, configured to support the candidate neighboring node to configure the CSI-RS resource for the first node according to the received measurement configuration request, or determine whether to accept the backup backhaul link addition request sent by the second node, Or determine whether to accept the backup backhaul link addition request of the first node, or determine whether to establish a bearer to the UPF or the second node.
- a processing unit 1302 configured to support the candidate neighboring node to configure the CSI-RS resource for the first node according to the received measurement configuration request, or determine whether to accept the backup backhaul link addition request sent by the second node, Or determine whether to accept the backup backhaul link addition request of the first node, or determine whether to establish a bearer to the UPF or the second node.
- the processing unit 1302 may be a processor; the sending unit 1301 may be a transmitter, the receiving unit 1303 may be a receiver, and the receiver and the transmitter may constitute a communication interface.
- FIG. 14 is a schematic diagram of a possible logical structure of a candidate neighbor node involved in the foregoing embodiment according to an embodiment of the present application.
- the candidate neighbor node includes a processor 1402.
- the processor 1402 is configured to perform control management on the action of the second node, for example, the processor 1402 is configured to support the candidate neighbor node to perform configuration of the CSI-RS resource for the first node, or determine whether to accept The backup backhaul link sent by the second node adds a request, or determines whether to accept the backup backhaul link addition request of the first node, or determines whether to establish a bearer to the UPF or the second node.
- the candidate neighbor nodes may further include: a memory 1401 and a communication interface 1403; the processor 1402, the communication interface 1403, and the memory 1401 may be connected to each other or to each other through the bus 1404.
- the communication interface 1403 is configured to support the candidate neighbor node to perform communication.
- the memory 1401 is configured to store program codes and data of candidate neighbor nodes.
- the processor 1402 calls the code stored in the memory 1401 for control management.
- the memory 1401 may or may not be coupled to the processor.
- the processor 1402 can be a central processing unit, a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
- the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, combinations of digital signal processors and microprocessors, and the like.
- the bus 1404 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus or the like.
- PCI peripheral component interconnect
- EISA extended industry standard architecture
- a readable storage medium stores computer execution instructions, and when a device (which may be a single chip microcomputer, a chip, etc.) or a processor executes FIG. 6 and FIG. 7 In the step of the first link, the second node, and the candidate neighbor node in the backhaul link maintenance method provided in FIG. 8, the computer execution instruction in the storage medium is read.
- the aforementioned readable storage medium may include various media that can store program codes, such as a USB flash drive, a removable hard disk, a read only memory, a random access memory, a magnetic disk, or an optical disk.
- a computer program product comprising computer executed instructions stored in a computer readable storage medium; at least one processor of the device may be Reading the storage medium to read the computer execution instruction, the at least one processor executing the computer execution instruction, causing the device to implement the first node, the second node, and the candidate neighbor node in the resource configuration method provided in FIG. 6, FIG. 8, and FIG. .
- a communication system comprising a plurality of devices including a first node, a second node, and a candidate neighbor node.
- the first node may be the first node provided in FIG. 6, FIG. 7, or FIG. 8, and is used to perform the steps of the first node in the link maintenance method provided in FIG. 6, FIG. 7, and FIG. 8;
- the second node may be the second node provided in FIG. 6, FIG. 7, or FIG. 8, and is used to perform the steps of the second node in the link maintenance method provided in FIG. 6, FIG. 7, or FIG.
- the communication system can include a plurality of first nodes, i.e., the second node can have a plurality of first nodes, and the plurality of first nodes perform the same or similar functions.
- the second node after the first node sends a backup backhaul link addition or deletion request to the second node, the second node adds or deletes the backup backhaul link for the first node, which solves the problem in the multi-hop relay network.
- the delay or data transmission interruption time due to the quality or interruption of the backhaul link can be reduced, and the transmission efficiency of the relay node can be improved by backing up the backhaul link.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种中继系统中链路维护的方法及装置,涉及通信技术领域,用于减小多跳中继网络中由于网络流量的瞬时变化或者由于高频链路的瞬时中断而带来的业务中断时延,避免由于回程链路的终端或流量的瞬时变化而造成的业务拥塞,提升回程链路的可用性。所述方法包括:第一节点确定待测量的候选邻居节点,第一节点对候选邻居节点进行测量,第一节点根据测量结果确定是否建立或者删除第一节点和候选邻居节点间的备份回程链路,第一节点向第二节点发送请求,所述请求用于请求第二节点建立或删除第一节点和候选邻居节点间的备份回程链路。
Description
本申请要求于2018年3月8日提交中国国家知识产权局、申请号为201810190096.0、发明名称为“一种链路维护的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信技术,具体涉及链路维护的方法和装置。
高频为新空口(new radio,NR)的重要部署场景。在高频,电磁波具有绕射能力差和传播衰减严重等缺点,造成网络中有很大概率出现覆盖盲区。限于部署成本等因素,运营商难以仅依赖于有线TRP解决覆盖盲区问题,此时有必要引入具有无线回传链路的中继,本申请将接入回程一体化的中继节点称为中继传输接收点(relay transmission reception point,rTRP)以区分LTE的中继。
带内中继是回传链路与接入链路具有相同频段的中继方案,带内中继具有频谱效率高及部署成本低等优点,但是对物理层协议有影响。先进长期演进(long termevolution advance,LTE-A)在版本(release)11对带内中继方案进行了标准化,然而在LTE-A中,中继网络仅能实现两跳传输,即中继节点不能为另一中继节点提供服务。
在NR中,第三代合作伙伴计划(third generation partnership project;3GPP)确定将集成的接入和回程(integrated access and backhaul,IAB)作为重要特性以提升NR的性能,IAB是接入回程链路一体化的带内中继方案。多跳多连接是NR IAB的一个主要设计目标,在多跳多连接中继网络中,中继节点可以为另外的中继节点提供服务,即一个中继节点可以既有上级节点又有下级节点,其中,下级节点可以是另一个中继,也可以是中继节点所服务的用户设备(user equipment,UE)。当某个中继节点同时具有上级节点与下级节点时,中继系统同时具有回程链路和接入链路,在多跳中继的场景下,网络中的中继形成中继网络,具有一定的拓扑结构。
在NR中,由于支持的带宽会比较大,例如,下行带宽会达到1Gbps(giga bits per second,Gbps)甚至更高,网络中的带宽变化可能也会很快。如果支持IAB的中继节点仅有一条回程链路,很可能会造成拥塞。另一方面,大带宽可能会使得基站或中继节点需要使用高频,高频的一个主要特性是容易受环境影响,容易出现瞬时中断,由此导致无线中继网络的回程链路变化,进而影响回程链路的可用性。因此,在NR的IAB中,提升回程链路的可用性是一个需要解决的问题。
发明内容
本申请的实施例提供一种中继的拓扑维护的方法及装置,解决了多跳中继网络中由于网络流量的瞬时变化或者由于高频链路的瞬时中断而导致的回程链路不可用的问题。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供一种链路维护的方法,第一节点确定待测量的候选邻居节点,第一节点对候选邻居节点进行测量,第一节点根据测量结果确定是否建立或者删除第一节点和候选邻 居节点间的备份回程链路,第一节点向第二节点发送请求,所述请求用于请求第二节点建立或删除第一节点和候选邻居节点间的备份回程链路。上述技术方案中,可以减小多跳中继网络中由于网络流量的瞬时变化或者由于高频链路的瞬时中断而带来的业务中断时延,避免由于回程链路的终端或流量的瞬时变化而造成的业务拥塞,提升回程链路的可用性。
在第一方面的一种可能的实现方式中,第一节点接收第二节点配置的回程链路测量阈值,回程链路测量阈值用于第一节点确定回程链路质量。上述技术方案中,通过为第一节点配置阈值,使得第一节点可以自行确定是否要建立和候选邻居节点的备份回程链路,减少了第二节点的计算量,提升系统性能。
在第一方面的一种可能的实现方式中,第一节点接收第二节点发送的测量指示,测量指示包含潜在邻居节点的标识,潜在邻居节点的标识用于第一节点确定候选邻居节点。上述技术方案中,第二节点为第一节点确定测量的潜在邻居节点,避免某些简单的中继节点,如层2中继节点对测量消息的处理,有利于第二节点对接入网络性能的优化。
在第一方面的一种可能的实现方式中,第一节点接收终端发送的潜在邻居节点的测量结果,潜在邻居节点的测量结果用于第一节点确定候选邻居节点。上述技术方案中,第一节点可以利用终端对邻区进行测量,从而减小了第一节点对邻区测量的频度,提升了第一节点业务传输性能,最小化第一节点的邻区测量带来的业务中断。
在第一方面的一种可能的实现方式中,如果第一节点确定建立第一节点和候选邻居节点间的回程链路,第一节点向候选邻居节点发起随机接入过程。上述技术方案中,第一节点通过随机接入自动建立和候选邻居节点的备份回程链路,减少了第二节点的建立开销,同时,通过随机接入直接和候选邻居节点进行交互,减少了备份回程链路建立的时间。
在第一方面的一种可能的实现方式中,第一节点根据测量结果确定是否建立或者删除第一节点和候选邻居节点间的备份回程链路包括:当满足条件M
r-H
ys>Thresh时,第一节点确定建立第一节点和候选邻居节点间的备份回程链路,M
r为第一节点对候选邻居节点的测量结果,H
ys为事件迟滞参数,Thresh为回程链路测量阈值;或者,当满足条件M
r+H
ys<Thresh时,第一节点确定删除第一节点和候选邻居节点间的备份回程链路。上述技术方案中,第一节点通过事件触发来确定是否建立或删除备份回程链路,提升了备份回程链路的稳定性,避免不必要的回程链路建立带来的信令开销。
第二方面,提供一种链路维护的方法,第二节点接收第一节点发送的第一请求,所述第一请求用于请求第二节点建立或者删除第一节点和候选邻居节点间的备份回程链路,第二节点向所述第一节点发送响应。上述技术方案中,第二节点控制第一节点的备份回程链路的添加或删除,有利于网络维护中继系统的链路,降低回程链路的变化对系统的产生的干扰,提升接入网络性能。
在第二方面的一种可能的实现方式中,第二节点发送回程链路测量阈值给第一节点,回程链路测量阈值用于第一节点确定回程链路质量。上述技术方案中,通过为第一节点配置阈值,使得第一节点可以自行确定是否要建立和候选邻居节点的备份回程链路,减少了第二节点的计算量,提升系统性能。
在第二方面的一种可能的实现方式中,第二节点向第一节点发送测量指示,测量指示包含潜在邻居节点的标识,潜在邻居节点的标识用于第一节点确定候选邻居节点。上述技术方案中,第二节点为第一节点确定测量的潜在邻居节点,避免某些简单的中继节点,如层2中继节点对测量消息的处理,有利于第二节点对接入网络性能的优化。
在第二方面的一种可能的实现方式中,第二节点向候选邻居节点发送第二请求,第二请求用于候选邻居节点建立或删除到第二节点或用户面功能的承载。上述技术方案中,通过承 载的预建立,可以避免由于正在使用的回程链路中断或拥塞造成的业务中断,通过预先建立的承载可以快速激活备份回程链路,减小第一节点的业务中断时延,避免链路的变化而导致的业务中断或延迟。
在本申请的又一方面,提供了一种第一节点,第一节点用于实现上述第一方面或第一方面的任一种可能的实现方式所提供的链路维护方法中的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第一节点设备的结构中包括处理器和存储器,该存储器中存储代码和数据,该存储器与处理器耦合,该处理器被配置为支持该第一节点执行上述第一方面或第一方面的任一种可能的实现方式所提供的链路维护方法。可选的,第一节点还可以包括通信接口和总线,该通信接口通过总线与存储器与处理器连接。
在本申请的又一方面,提供了一种第二节点,第二节点用于实现上述第二方面或第二方面的任一种可能的实现方式所提供的链路维护方法中的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个上述功能相应的单元。
在一种可能的实现方式中,第二节点的结构中包括处理器和存储器,该存储器中存储代码和数据,该存储器与处理器耦合,该处理器被配置为支持该第二节点执行上述第二方面或第二方面的任一种可能的实现方式所提供的链路维护方法。可选的,第二节点还可以包括通信接口和总线,该通信接口通过总线与存储器与处理器连接。
本申请的又一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所提供的链路维护方法,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的链路维护方法。
本申请的又一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一种可能的实现方式所,或者执行上述第二方面或第二方面的任一种可能的实现方式所提供的链路维护方法。
本申请的又一方面,提供一种通信系统,该通信系统包括多个节点,该多个设备包括第一节点、第二节点;其中,第一节点为上述各方面所提供的第一节点,用于支持第一节点执行上述第一方面或第一方面的任一种可能的实现方式所提供的链路维护方法;和/或,第二节点为上述各方面所提供的第二节点,用于支持第二节点执行上述第二方面或第二方面的任一种可能的实现方式所提供的链路维护方法。
可以理解地,上述提供的任一种链路维护方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
可以理解地,上述提供的任一种链路维护方法的装置、计算机存储介质或者计算机程序产品均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
图1为本申请实施例所适用的通信系统的结构示意图;
图2和图3分别为层2中继系统用户面和控制面的协议栈架构图;
图4和图5分别为层3中继系统的用户面和控制面协议栈架构图;
图6为本申请实施例提供的中继节点和邻居节点建立备份回程链路的流程图;
图7为本申请实施例提供的第一节点向候选邻居节点发起随机接入过程的示意图;
图8为本申请实施例候选邻居节点建立到UPF承载的流程;
图9为本申请的实施例提供的第一节点的一种可能的结构示意图;
图10为本申请的实施例提供的第一节点的一种可能的逻辑结构示意图;
图11为本申请的实施例提供的第二节点的一种可能的结构示意图;
图12为本申请的实施例提供的第二节点的一种可能的逻辑结构示意图;
图13为本申请的实施例提供的候选邻居节点的一种可能的结构示意图;
图14为本申请的实施例提供的候选邻居节点的一种可能的逻辑结构示意图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本申请中所有节点、消息的名称仅仅是本申请为描述方便而设定的名称,在实际网络中的名称可能不同,不应理解本申请限定各种节点、消息的名称,相反,任何和本申请中用到的节点或消息具有相同或类似功能的名称都视作本申请的方法或等效替换,都在本申请的保护范围之内,以下不再赘述。
考虑到未来无线网络的高带宽,NR考虑引入一体化的接入和回程(integrated access and backhaul,IAB)方案以进一步降低部署成本,提高部署灵活性,并由此引入具有接入回程一体化的中继,本申请将接入回程一体化的中继节点称为中继传输接收点(relay transmission reception point,rTRP)以区分LTE的中继。第三代合作伙伴计划(third generation partnership project,3GPP)已确定将NR IAB作为版本(release)16的标准化目标,目前刚处于研究起步阶段。
但是,NR中由于高带宽的需要,导致接入回程一体化的中继节点上接入链路和回程链路的带宽都会相对传统的LTE有成倍或数十倍的增加,因此,在IAB中引入高频是一种选择。另一方面,在部署的初期,可能更多的IAB节点是工作在6GHz或以下频段。对高频,由于受环境的影响可能导致瞬时中断,从而导致回程链路不可用。而另一方面,NR将支持多跳无线中继,因此,中继节点的回程链路的路由可能会有多种选择的可能,而高频链路的变化可能会带来IAB节点路由拓扑的变化,从而影响IAB节点的性能。为了保证NR中的IAB,尤其是IAB的回程链路在发生变化时,维持IAB有可以使用的回程链路及到网络的路由是一个需要解决的问题。
图1为本申请实施例所适用的通信系统的结构示意图。
需要说明的是,本申请实施例提及的通信系统包括但不限于:窄带物联网(narrow band-internet of things,NB-IoT)系统、长期演进(long term evolution,LTE)系统,下一代5G移动通信系统或者5G之后的通信系统,或者设备到设备(device to device,D2D)通信系统。
在图1所示的通信系统中,给出了一体化的接入和回程IAB系统。一个IAB系统至少包括一个基站100,及基站100所服务的一个或多个用户设备(user equipment,UE)101,一 个或多个中继节点rTRP 110,及该rTRP 110所服务的一个或多个UE 111,通常基站100被称为宿主基站(donor next generation node B,DgNB),rTRP 110通过无线回程链路113连接到基站100。宿主基站在本申请中也称为宿主节点,即,Donor节点。基站包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network control ler,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(baseband unit,BBU)、或下一代新空口基站(比如gNB)等。
一体化的接入和回程系统还可以包括多个其他中继节点,例如rTRP 120和rTRP 130,rTRP 120是通过无线回程链路123连接到中继节点rTRP 110以接入到网络的,rTRP 130是通过无线回程链路133连接到中继节点rTRP 110以接入到网络的,rTRP 120为一个或多个UE 121服务,rTRP 130为一个或多个UE 131服务。图1中,中继节点rTRP 110和rTRP 120都通过无线回程链路连接到网络。在本申请中,所述无线回程链路都是从中继节点的角度来看的,比如无线回程链路113是中继节点rTRP 110的回程链路,无线回程链路123是中继节点rTRP 120的回程链路。如图1所示,一个中继节点,如120,可以通过无线回程链路,如123,连接另一个中继节点110,从而连接到网络,而且,中继节点可以经过多级无线中继节点连接到网络。通常,把提供无线回程链路资源的节点,如110,称为中继节点120的上级节点,而120则称为中继节点110下级节点。通常,下级节点可以被看作是上级节点的一个用户设备UE。应理解,图1所示的一体化接入和回程系统中,一个中继节点连接一个上级节点,但是在未来的中继系统中,为了提高无线回程链路的可靠性,一个中继节点,如120,可以有多个上级节点同时为一个中继节点提供服务,如图中的rTRP 130还可以通过回程链路134连接到中继节点rTRP 120,即,rTRP 110和rTRP 120都为rTRP 130的上级节点。在本申请中,所述用户设备UE 101,111,121,131,可以是静止或移动设备。例如移动设备可以是移动电话,智能终端,平板电脑,笔记本电脑,视频游戏控制台,多媒体播放器,甚至是移动的中继节点等。静止设备通常位于固定位置,如计算机,接入点(通过无线链路连接到网络,如静止的中继节点)等。中继节点rTRP 110,120,130的名称并不限制其所部署的场景或网络,可以是比如relay,RN等任何其他名称。本申请使用rTRP仅是方便描述的需要。
在图1中,无线链路102,112,122,132,113,123,133,134可以是双向链路,包括上行和下行传输链路,特别地,无线回程链路113,123,133,134可以用于上级节点为下级节点提供服务,如上级节点100为下级节点110提供无线回程服务。应理解,回程链路的上行和下行可以是分离的,即,上行链路和下行链路不是通过同一个节点进行传输的。所述下行传输是指上级节点,如节点100,向下级节点,如节点110,传输信息或数据,上行传输是指下级节点,如节点110,向上级节点,如节点100,传输信息或数据。所述节点不限于是网络节点还是UE,例如,在D2D场景下,UE可以充当中继节点为其他UE服务。无线回程链路在某些场景下又可以是接入链路,如回程链路123对节点110来说也可以被视作接入链路,回程链路113也是节点100的接入链路。应理解,上述上级节点可以是基站,也可以是中继节点,下级节点可以是中继节点,也可以是具有中继功能的UE,如D2D场景下,下级节点也可以是UE。
图1所示的中继节点,如110,120,130,可以有两种存在的形态:一种是作为一个独立的接入节点存在,可以独立管理接入到中继节点的UE,此时的中继节点通常具有独立的物理小区标识(physical cell identifier,PCI),这种形态的中继通常需要有完全的协议栈功能,比如无线资源控制(radio resource control,RRC)的功能,这种中继通常被称为层3中继;而另一种形态的中继节点没有独立的PCI,其和宿主节点(donor),如Donor eNB,Donor gNB,属于同一个小区,不会对用户进行管理。层2和层3中继的协议栈如图2到图5所示。Donor节点是指通过该节点可以接入到核心网的节点,或者是无线接入网的一个锚点基站,通过该锚点基站可以接入到网络。锚点基站负责分组数据汇聚协议(packet data convergence protocol,PDCP)层的数据处理,或者负责接收核心网的数据并转发给中继节点,或者接收中继节点的数据并转发给核心网。
图2和图3分别为层2中继系统用户面和控制面的协议栈架构图。图中的下一代用户面(next generation user plane,NG-UP)主要是用户面网关,下一代控制面(next generation control plane,NG-CP)为控制面节点。其中UE的用户面协议层包括:物理(physical,PHY)层、媒体接入控制(medium access control,MAC)层、无线链路控制(radio link control,RLC)层、PDCP层、业务数据适配协议(service data adaptation protocol,SDAP)层以及因特网协议(internet protocol,IP)层,其中SDAP层主要是提供业务适配功能,包括服务质量(quality of service,QoS)管理,流管理的功能。层2(layer 2,L2)中继和UE进行通信的空口协议层主要包括:PHY层、MAC层、RLC层,而通过回程链路与Donor节点通信的接口的协议栈包括:PHY层、MAC层、RLC层以及适配(adaptation,Adpt.)层,其中适配层主要提供包括承载管理、安全管理的功能。对应地,Donor节点,即DgNB和层2中继进行通信的接口的协议栈包括:PHY层、MAC层、RLC层、Adpt.层、PDCP层以及SDAP层。DgNB和NG-UP之间一般为有线连接,通常通过隧道建立业务承载,DgNB对应NG-UP的协议栈包括:L1(layer 1,L1)、L2(layer 2,L2)、IP层、用户数据包协议(user datagram protocol,UDP)层以及通用分组无线业务隧道协议用户面(general packet radio service tunnelling protocol user plane,GTP-U)层。对应地,NG-UP的协议栈包括:L1、L2、IP层、UDP层、GTP-U层以及IP层。上述各协议层及功能为本领域普通技术人员所熟知,不再赘述。
同样地,图3为层2中继系统的控制面协议栈结构。UE的协议栈包括:PHY层、MAC层、RLC层、PDCP层、RRC层以及非接入(non-access stratum,NAS)层、层2中继的控制面协议栈和用户面协议栈相同,不再赘述。DgNB和层2中继通信的控制面接口协议栈包括:PHY层、MAC层、RLC层、Adpt.层、PDCP层以及RRC层。DgNB和核心网控制面网元NG-CP之间通常通过有线连接,DgNB在该接口上的协议栈包括:L1、L2、IP层、流控制传输协议(stream control transmission protocol,SCTP)层以及S1应用协议(S1 appl ication protocol,S1-AP)层,其中S1为接口的代号。对应地,NG-CP在S1接口的协议栈包括:L1、L2、IP层、SCTP层、S1-AP层以及NAS层,其中NAS层和UE的NAS层对应。
类似地,图4和图5分别为层3中继系统的用户面和控制面协议栈架构。和层2中继系统中用户面协议栈不同的是层3中继和UE在空口上支持完整的空口协议栈,包括:PHY层、MAC层、RLC层、PDCP层以及SDAP层。而在中继和DgNB之间的接口上,中继节点的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、UDP层以及GTP-U层。对应地,DgNB的S1接口的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、UDP层以及GTP-U层。其他同层2中继系统的用户面协议栈结构,不再赘述。
图5为层3中继协议的控制面协议栈结构。和层2中继系统中控制面协议栈不同的是层3中继系统控制面协议栈结构中,层3中继和UE在空口上支持完整的控制面协议栈,包括:PHY层、MAC层、RLC层、PDCP层以及RRC层。而层3中继和DgNB之间的接口的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、SCTP层以及S1-AP层。对应地,DgNB和层3中继接口的协议栈包括:PHY层、MAC层、RLC层、PDCP层、IP层、SCTP层以及S1-AP层。其他同层2中继系统的控制面协议栈结构,不再赘述。
为描述方便,以下将中继节点称为第一节点,第一节点的宿主基站或上级节点称为第二节点,将和第一节点所在的小区物理上相邻且具有一定信号覆盖重叠的小区称为邻区,形成邻区的基站或中继节点称为邻居节点。当中继节点为层2中继的时候,中继节点所在的小区和宿主节点的小区相同,中继节点的邻居节点也就是宿主节点的邻居节点。当中继节点为层3中继的时候,邻居节点是在物理上和中继节点的小区相邻且有一定信号覆盖重叠的小区,中继节点通过宿主节点建立与邻居节点的X2接口,但是邻居节点不一定是宿主节点的邻居节点。通常,邻区是由邻居节点发射的信号形成的具有一定覆盖的小区。其中X2接口是指基站之间进行通信的接口。应理解,这里只是用X2代表基站之间的接口,但并不表示这是对名称的限定,或者接口名称限制了本申请的应用范围,也可以是其他名称。第一节点可以为任何具有中继功能的设备,如基站,中继节点,具有中继功能的UE。第二节点通常是宿主基站或者第一节点的上级节点。应理解,第一节点和第二节点间可以不是通过回程链路直接进行通信的,即,可以是经过多跳中继而互相连接;邻居节点和第一节点的X2接口可能也不是直接的有线或无线连接,可能是通过其他方式建立的连接,如隧道。
同样地,定义候选邻居节点和潜在邻居节点。候选邻居节点为被确定要进行测量的邻居节点,候选邻居节点可以是第一节点的宿主节点,即第二节点配置给第一节点的潜在邻居节点中的部分或全部邻居节点,也可以是通过第二节点发送的潜在邻居节点中由第一节点选择的邻居节点,比如终端测量到的潜在邻居节点的测量结果大于某个阈值时,则将该潜在邻居节点作为候选节点。潜在邻居节点是第一节点或第一节点所在的小区的邻居节点,潜在邻居节点可能能够作为第一节点的上级节点,或作为第一节点的候选邻居节点的所有邻居节点,潜在邻居节点能否成为候选节点要依据终端对潜在邻居节点的测量结果来进行判定。备份回程链路是指能够通过该节点实现回程链路的传输,即,作为第一节点的上级节点,备份回程链路的状态可以是去激活(inactive)状态,也可以是激活(active)状态,具体依赖于配置。
为了对回程链路进行维护,第一节点,即,中继节点,确定待测量的候选邻居节点,第一节点对候选邻居节点进行测量,第一节点根据测量结果确定是否建立或者删除第一节点和候选邻居节点间的回程链路,第一节点向第二节点发送请求,所述请求用于请求第二节点建立或删除第一节点和候选邻居节点间的备份回程链路。其中,第一节点确定待测量的候选邻居节点,可以根据第二节点发送的测量指示,或者第二节点发送的终端测量到的潜在邻居节点的测量结果,或者终端发送给第一节点的潜在邻居节点的测量结果来进行确定。如果确定对候选邻居节点进行测量,则第一节点可以向第二节点发送测量配置请求以获取候选邻居节点的信道状态信息参考信号(channel state information reference signal,CSI-RS)的配置信息,并对邻区的CSI-RS进行测量,或者第一节点对邻区的同步信号/物理广播信道块(synchronization signal/physical broadcast channel,SS/PBCH block)进行测量,当测量结果满足某个阈值时,则认为候选邻居节点可以作为备份回程链路的候选。
第一节点向第二节点发送第一请求,第二节点接收第一节点发送的第一请求。第一请求用于请求第二节点建立或者删除第一节点和候选邻居节点间的备份回程链路。第二节点可以向第一节点发送响应。如果第一节点确定建立第一节点和候选邻居节点间的回程链路,该第一请求用于请求第二节点建立第一节点和候选邻居节点间的备份回程链路,或者,如果第一节点确定删除第一节点和候选邻居节点间的回程链路,该第一请求用于请求第二节点删除第一节点和候选邻居节点间的备份回程链路。
第二节点接收到上述第一请求后,向候选邻居节点发送第二请求,第二请求用于候选邻 居节点建立或删除到第二节点或用户面功能的承载。如果第一请求用于请求第二节点建立第一节点和候选邻居节点间的备份回程链路,第二请求用于候选邻居节点建立到第二节点或用户面功能的承载;如果第一请求用于请求第二节点删除第一节点和候选邻居节点间的备份回程链路,第二请求用于候选邻居节点删除到第二节点或用户面功能的承载。
图6为本申请实施例提供的中继节点和邻居节点建立备份回程链路的流程图。图6实施例的主要步骤如下:
S601、第一节点接收第二节点发送的测量配置信息,该测量配置信息包括回程链路测量阈值,回程链路测量阈值用于第一节点确定回程链路质量。回程链路测量阈值是指第一节点对候选邻居节点进行测量时,用于判断候选邻居节点是否可以作为第一节点的上级节点。该测量配置信息还可以包括备选链路的迟滞参数(hysteresis,H
ys),其中备选链路的H
ys用于判断进入条件或离开条件事件满足以触发第一节点建立或删除到邻居节点的回程链路。
在一种可选的方案中,第二节点还可以在测量配置中包括终端测量阈值,终端测量阈值用于第一节点接收到终端测量结果时,判断是否要对终端测量到的邻居进行测量。终端测量阈值用于测量终端的测量结果是否满足一定的信号强度的判断依据,而回程链路测量阈值用于第一节点测量邻居节点。终端测量阈值可以和回程链路测量阈值相同,也可以不同,具体配置依赖于配置,本申请不做限定。
测量配置可以独立于下述步骤,本实施例并不意味着S601步骤之后一定必然立即执行后续的S602(a)或S602(b)及其以后的步骤。应理解,测量配置是用于第一节点判断是否建立或删除第一节点和候选邻居节点的回程链路的,因此,下述S602(a)或S602(b)及S603步骤的执行并不依赖于步骤S601。
应理解,第二节点可以为第一节点配置多个回程链路测量阈值,例如,第一回程链路测量阈值是针对SS/PBCH block,第二回程链路测量阈值针对专用参考信号,如CSI-RS。也可以只配置一个回程链路测量阈值,而不区分是针对SS/PBCH block还是针对专用参考信号的。具体配置几个,是否区分不同参考信号依赖于协议定义或配置,本申请不做约束。
S602(a)、UE向第一节点发送测量报告。第一节点接收终端发送的测量报告。该测量报告包括潜在邻居节点的测量结果。终端通过第一节点接入网络,潜在邻居节点的测量结果用于第一节点确定候选邻居节点。如果第一节点是层3中继,即第一节点是一个独立的小区,包含RRC功能,那么,第一节点可以配置属于第一节点的UE进行邻居测量,该属于第一节点的UE将测量结果发送给第一节点,其中,UE是通过第一节点接入网络的,并且第一节点具有RRC功能,即作为层3中继节点为UE提供服务。如果第一节点是层2中继,则该步骤不会被执行。测量报告中包括以下参数中的至少一个:邻区的小区全球识别符(cell global identifier,CGI)、物理小区标识(physical cell identifier,PCI)、跟踪区域识别符(tracking area identifier,TAI)、公共地面移动网(public land mobile network,PLMN)、CGI或PCI对应的参考信号功率(reference signal received power,RSRP)、终端测量到的SS/PBCH block的索引或者CSI-RS、终端的位置信息,终端的位置信息可以是全球定位系统(global positioning system,GPS)信息。应理解,在不同的方案中,UE可以向第一节点发送测量报告(如第一节点是层3中继),或者向第二节点发送测量报告(如第一节点是层2中继)。如果UE向第一节点发送测量报告,则执行步骤S602(a),此时,步骤S602(b)以及S603不被执行。UE发送测量报告给第二节点,而由第二节点给第一节点发送测量指示或终端测量到的邻居节点的测量结果,则步骤S602(b)及S603被执行。当S602(a)被执行时,则跳到步骤S604,即,要么执行步骤S602(a),要么执行步骤S602(b)和S603。
S602(b)、UE向第二节点发送测量报告。如果第一节点是层2中继,由于接入链路上没有RRC功能,因此,邻区发现功能由第二节点通过配置第二节点所属的UE进行测量,以发现新的小区,或者发现某个邻区被移除了。此时,第二节点通过接收UE的测量报告来获得邻区的状态,即是否有新的邻区,或者某个邻区被移除了。测量报告的参数如上所述,不再赘述。
S603、第一节点接收第二节点发送的测量指示,测量指示包含潜在邻居节点的标识,潜在邻居节点的标识用于第一节点确定候选邻居节点,或者,第一节点接收第二节点发送的终端测量到的潜在邻居节点的测量结果,终端通过第一节点接入网络,潜在邻居节点的测量结果用于第一节点确定候选邻居节点。
第二节点收到UE发送的测量报告后,确定第一节点要测量的邻居节点,即,第二节点根据UE测量到的邻区测量结果来确定第一节点要测量的邻居节点,如果UE测量到的邻区测量结果,如RSRP,大于一定的阈值,则可以将该邻区对应的邻居节点作为第一节点的潜在邻居接点,并在测量指示中发送给第一节点。测量指示中可以包括多个潜在邻居节点。由于可能多个UE测量到的同一个邻居节点的结果不同,因此,第二节点可以选取RSRP最大的一个作为邻区测量结果,或者选择一个和第一节点位置最接近的一个UE的测量结果作为邻区测量结果,或者将所有UE测量到的同一个邻居节点的测量结果进行加权平均作为邻区测量结果,具体实现方式本申请不做约束。
在一种可选的方案中,如果第二节点向第一节点发送测量指示,则可以在测量指示中包括邻居节点的CSI-RS配置信息,CSI-RS配置信息包括CSI-RS的时频资源位置,周期,发送的起始系统帧号、时隙号或子帧号,发送的次数等。如果在测量指示中包括CSI-RS,则第二节点在向第一节点发送测量指示之前,还会向邻居节点发送测量配置请求以请求邻居节点的CSI-RS配置信息,此处不再赘述。
在一种可选的方案中,第二节点将从UE接收到的邻区测量结果发送给第一节点进行处理。应理解,由于第一节点是层2中继,接入链路没有RRC功能是指第一节点不对UE的RRC层进行处理,并不意味着第一节点和第二节点之间没有RRC功能,因此,第一节点可以处理来自第二节点的RRC消息,但是不会处理UE的RRC消息。因此,第二节点可以将来自UE的测量结果不经处理地发送给第一节点。第二节点发送给第一节点的终端测量到的邻居节点的测量结果会被关联到某个邻居节点,该邻居节点被称为潜在邻居节点,即,有可能会称为第一节点的上级节点的邻居节点。
在一种可选的方案中,上述步骤S601中的测量配置也可以在步骤S603中发送给第一节点。如果测量配置是和测量指示或终端测量到的邻居节点的测量结果一起发送给第一节点,那么步骤S601可选。而且测量配置可以在第二节点第一次向第二节点发送测量指示或终端测量到的邻居节点的测量结果时发送给第一节点,后续使用所述测量配置。可选地,第二节点也可以在后续向第二节点发送测量指示或终端测量到的邻居节点的测量结果时包含测量配置,以便对测量配置进行重新配置,甚至重新向第一节点发送测量重配置消息以更新测量配置。
上述测量指示包括候选邻居节点的标识,所述标识可以是CGI或PCI中的一种。终端测量到的邻居节点的测量结果包括终端测量到的邻居节点的RSRP及其对应的邻居节点的标识,还可以包括测量的终端的位置信息,如全球定位系统信息。
S604、第一节点确定候选邻居节点。如果第二节点发送测量指示给第二节点,由于测量指示中的邻居节点的测量结果已经经过第二节点的处理,因此,第一节点可以选择其中的部分或全部邻居节点进行测量,选择要进行测量的潜在邻居节点为候选邻居节点。第一节点选择的依据可以是根据以往测量的结果,或者对不在邻区列表中的小区进行测量,具体选择规 则本申请不做限定。
如果第二节点发送的是终端测量到的邻居节点的测量结果,终端测量到的邻居节点是第一节点的潜在邻居节点,是否要对潜在邻居节点进行测量,需要依据终端测量到的邻区测量结果来进行确定。对同一个潜在邻居节点,可能多个终端测量到的结果会不一样,第一节点可以选取RSRP最大的一个作为邻区测量结果,或者选择一个和自己位置最接近的一个作为邻区测量结果,或者将所有UE测量到的同一个邻居节点的测量结果进行加权平均作为邻区测量结果,具体实现方式本申请不做约束。
如果第一节点对候选邻居节点的测量需要通过CSI-RS进行测量,则进入步骤S605,否则,第一节点可以通过对邻居节点的SS/PBCH block来进行测量,则直接进入步骤S609。是采用SS/PBCH block对邻区进行测量还是CSI-RS对邻区进行测量可以是配置的,例如,第二节点配置第一节点邻区测量方式,也可以是协议定义的方式,本申请不做约束。
S605、如果第一节点对邻区的测量是通过CSI-RS,那么第一节点可以向第二节点发送测量配置请求,请求候选邻居节点发送CSI-RS配置信息。所述测量配置请求中包含第一节点的标识,候选邻居节点的标识,所述标识如前所述,不再赘述。测量配置请求中还可以包括第一节点的位置信息,如GPS信息,测量到的波束的信息,如波束的索引等。
S606、第二节点收到第一节点发送的测量配置请求后,向候选邻居节点转发测量配置请求。测量配置请求包含的内容如上述步骤S605所述,不再赘述。
S607、候选邻居节点收到测量配置请求后,根据测量配置请求包含参数,确定CSI-RS配置信息,并向第二节点发送测量配置响应,测量配置响应中包含CSI-RS配置信息,CSI-RS配置信息如前所述,不再赘述。
S608、第二节点收到候选邻居节点的测量配置响应后,向第一节点转发测量配置响应,测量配置响应包含的内容如步骤S607所述,不再赘述。
S609、第一节点对候选邻居节点进行测量。如果第一节点收到候选邻居节点的CSI-RS配置信息,则根据CSI-RS的配置信息,在给定的CSI-RS资源上进行测量。如果第一节点没有收到候选节点的CSI-RS,则对候选邻居节点的SS/PBCH block进行测量,并获得测量结果。第一节点根据获得的测量结果,确定候选邻居节点是否可以作为回程链路的备选节点。
应理解,上述对候选节点测量还包括第一节点对已建立的到邻居节点的备份回程链路的测量,对已经建立的备份回程链路的邻居节点的测量可能是周期性的,也可能是事件触发的,比如,UE测量得到的到某个邻居节点的备份回程链路的质量低于某个阈值时触发第一节点进行测量。
S610、第一节点根据上述测量结果,确定是否建立或删除和候选邻居节点间的回程链路。具体地,当满足条件M
r-H
ys>Thresh时,第一节点确定满足事件的进入条件,M
r为第一节点对候选邻居节点的测量结果,H
ys为事件迟滞参数,Thresh为回程链路测量阈值,第一节点向第二节点发送备份回程链路添加请求,备份回程链路添加请求用于第二节点建立第一节点和候选邻居节点间的备份回程链路;或者,当满足条件M
r+H
ys<Thresh时,第一节点确定满足事件的离开条件,第一节点向第二节点发送备份回程链路删除请求,备份回程链路删除请求用于第二节点删除第一节点和候选邻居节点间的备份回程链路。
应理解,上述触发进入条件也可以是满足M
r-H
ys≥Thresh,触发离开条件也可以是满足M
r+H
ys≤Thresh。
S611、第一节点向第二节点发送第一请求。第一请求用于第二节点建立或删除第一节点和候选邻居节点间的备份回程链路。第二节点可以向第一节点发送响应。如果第一节点确定建立第一节点和候选邻居节点间的回程链路,该第一请求用于请求第二节点建立第一节点和 候选邻居节点间的备份回程链路,或者,如果第一节点确定删除第一节点和候选邻居节点间的回程链路,该第一请求用于请求第二节点删除第一节点和候选邻居节点间的备份回程链路。
在一种可选的方案中,第一节点根据测量结果,当满足条件M
r-H
ys>Thresh时,即,第一节点确定满足事件的进入条件,第一节点触发一个向第二节点发送备份回程链路添加请求的信号,或者产生一个请求消息,所述信号或请求消息指示第一节点的其他模块或进程向第二节点发送备份回程链路添加请求。或者,当满足条件M
r+H
ys<Thresh时,即,第一节点确定满足事件的离开条件,第一节点触发一个向第二节点发送备份回程链路删除请求的信号,或者产生一个删除消息,所述信号或删除消息指示第一节点的其他模块或进程向第二节点发送备份回程链路删除请求。
应理解,上述触发进入条件也可以是满足M
r-H
ys≥Thresh,触发离开条件也可以是满足M
r+H
ys≤Thresh。
具体地,第二节点接收到第一节点发送的第一请求后,如果第一请求是建立第一节点和候选邻居节点间的备份回程链路,第二节点将会确定是否将请求的候选邻居节点添加为第一节点的备份回程链路的节点。在一种可选的方案中,第二节点可能会拒绝第一节点的备份回程链路添加请求,第二节点向第一节点发送第一响应,其中,第一响应包括备份回程链路添加响应,包括拒绝添加的指示,还可以包括拒绝的原因值。如果第二节点接受第一节点发送的备份回程链路添加请求,则执行步骤S611。对第一节点发送的备份回程链路删除请求,执行类似的操作,不再赘述。
应理解,上述第一响应还可以用于备份回程链路删除响应,指示删除第一节点和候选邻居节点间的备份回程链路的结果。
如果第一请求用于第二节点建立第一节点和候选邻居节点间的备份回程链路,当第一节点的正在使用的回程链路质量不好,或者由于当前使用的回程链路容量不够时,第二节点可以启用备份回程链路。因此,第二节点可以控制第一节点的备份回程链路的状态,即可以激活或去激活备份回程链路。
S612、第二节点接收到上述第一请求后,向候选邻居节点发送第二请求,第二请求用于候选邻居节点建立或删除到第二节点或用户面功能(user plane function,UPF)的承载。如果第一请求用于请求第二节点建立第一节点和候选邻居节点间的备份回程链路,第二请求用于候选邻居节点建立到第二节点或用户面功能的承载;如果第一请求用于请求第二节点删除第一节点和候选邻居节点间的备份回程链路,第二请求用于候选邻居节点删除到第二节点或用户面功能的承载。
如上所述,第一请求用于第二节点建立第一节点和候选邻居节点间的备份回程链路关系,第二请求用于候选邻居节点建立到第二节点或UPF的承载。由于第一节点的正在使用的回程链路可能由于某种原因而出现瞬时中断,如环境的变化或者遮挡,此时需要启用备份回程链路。为了减少由于候选邻居节点到UPF的承载建立的时间,在第二节点向候选邻居节点发送第二请求以建立第一节点和候选邻居节点间的备份回程链路时,候选邻居节点将建立到第二节点的承载,或者建立到UPF的承载。建立到第二节点的承载,主要是通过双连接或者多连接的方式,将第一节点的通过备份回程链路发送的数据通过候选邻居节点路由到第二节点,从而,使得第二节点可以控制备份回程链路的状态,即激活或去激活该回程链路,而且,第一节点通过候选邻居节点传输的用户面数据经过候选邻居节点和第二节点间的承载发送给第二节点,由第二节点进行路由。
而在另一种可选的方案中,当第一节点为层3中继的时候,当第一节点通过候选邻居节点进行数据发送时,候选邻居节点可以为第一节点建立到UPF的承载,即,不需要通过第二 节点进行转发。此时,候选邻居节点在收到第二节点发送的第二请求时,如果第二请求用于建立第一节点和候选邻居节点间的备份回程链路,候选邻居节点直接建立到UPF的承载,但是候选邻居节点建立的到UPF的承载处于去激活状态。如果由于环境变化等原因导致第一节点当前使用的回程链路不可用,则可以切换到备份回程链路,并激活候选邻居节点到UPF的承载,从而为第一节点提供数据转发通道。
应理解,上述方案中,候选邻居节点是建立到第二节点的承载还是建立到UPF的承载,依赖于具体的应用场景。如果是层2中继,是建立到第二节点的承载还是建立到UPF的承载是由第二节点控制的,即,第二节点在第一请求(用于建立第一节点和候选邻居节点间的备份回程链路)中包含数据面路由的指示,用于指示候选邻居节点是建立到第二节点的路由还是到UPF的路由,但是第二节点可以接受,也可以更改数据面路由的指示,并通知第一节点选择的结果。如果是层3中继,第一节点也可以在第一请求(用于建立第一节点和候选邻居节点间的备份回程链路)中包含数据面路由的指示,此时第二节点不会更改数据面路由的指示。
S613、候选邻居节点向第二节点发送第二响应,所述第二响应包括备份回程链路添加响应或备份回程链路删除响应。应理解,候选邻居节点可以拒绝第二节点将其作为第一节点的上级节点,此时,在所述第二响应消息里指示请求被拒绝。
S614、第二节点收到候选邻居节点发送的第二响应后,向第一节点发送第一响应。如果第一请求用于建立第一节点和候选邻居节点间的备份回程链路,第二节点也将候选节点作为所述第一节点的备份回程链路的节点,在需要的时候通过控制信令激活备份回程链路。
在一种可选的方案中,第一节点在上述第一请求用于建立第一节点和候选邻居节点间的备份回程链路请求时,可以请求激活候选邻居节点的备份回程链路,此时第二节点在发往候选邻居节点的第二请求中也会包含激活指示。候选邻居节点在第二响应中会包含激活状态指示。
在另一种可选的方案中,第二节点在上述第一请求用于删除第一节点和候选邻居节点间的备份回程链路时,可以请求去激活候选邻居节点的备份回程链路,此时第二节点在发往候选邻居节点的第二请求消息中包含去激活指示。候选邻居节点在第二响应消息中会包含去激活状态指示。可选地,第二节点可以在第二请求中包括一个备份回程链路保留时间,候选邻居节点根据备份回程链路保留时间启动定时器,当定时器超时没有收到第二节点的保留备份回程链路消息后,删除备份回程链路。
第一节点收到第二节点发送的第一响应后,如果第一请求(用于建立第一节点和候选邻居节点间的备份回程链路)被接受,则可以根据需要切换到备份回程链路,或者激活备份回程链路以为第一节点建立双连接或多连接。
上述技术方案中,如果第二节点接受第一节点发送的第一请求,那么第一响应和第二响应是相同的,如果第二节点拒绝第一请求,则不存在第二响应,第一响应为第二节点对第一请求的响应。
通过上述技术方案,第一节点可以通过接收第二节点的测量指示,或者第二节点转发的终端测量到的邻居节点的测量结果,或者终端上报的测量报告,确定是否建立或删除第一节点和候选邻居节点间的备份回程链路,减少了第一节点自己的测量带来的测量开销,并且通过终端的辅助测量,发现新的可用上级节点,备份回程链路增强了第一节点的回程链路的可用性,在当前使用的回程链路质量或带宽出现不足的时候,可以改善回程链路的质量,快速建立新的回程链路,减小业务中断时间。
在一种可选的方案中,如果第一节点确定建立第一节点和候选邻居节点间的回程链路,第一节点向候选邻居节点发起随机接入过程。图7为本申请实施例提供的第一节点向候选邻居节点发起随机接入过程的示意图。图中还包括第一节点确定删除第一节点和候选邻居节点间的回程链路,第一节点向候选邻居节点发起随机接入过程,即,第一节点建立和删除和候选邻居节点间的回程链路,第一节点都可以向候选邻居节点发起随机接入来实现。具体步骤如下:
S701、确定建立或删除和候选邻居节点间的回程链路。其确定方式同前述实施例步骤S610,不再赘述。
此外,由于第一节点在确定建立或删除候选邻居节点的回程链路后,如果第一节点通过随机接入的方式建立和候选邻居节点间的回程链路,则第一节点还需要获取候选邻居节点的随机接入信息,包括随机接入前导分组,随机接入资源,小区的状态是否处于阻塞状态。如果第一节点是删除候选邻居节点,则可以在之前和该候选邻居节点建立回程链路的时候,就可以获取随机接入信息,而不用重新获取,但是在删除和候选邻居节点间的回程链路的时候,也可以重新获取,主要是防止候选邻居节点的随机接入信息发生了变更。
S702、第一节点向候选邻居节点发送随机接入前导。第一节点根据获得的候选邻居节点的随机接入信息,选择一个随机接入前导进行发送。随机接入前导的发送为本领域普通技术人员所熟知,不再赘述。
S703、候选邻居节点收到第一节点发送的随机接入前导后,向第一节点发送随机接入响应,其中包括随机接入前导识别符,和/或定时提前量(timing advance,TA)调整,和/或回退指示(backoff indicator,BI),。本步骤为本领域普通技术人员所熟知,不再赘述。
S704、第一节点收到候选邻居节点的随机接入响应后,向候选邻居节点发送消息3,消息3中包括建立回程链路指示,和第一节点标识符。其中,建立回程链路指示用于通知候选邻居节点随机接入的目的是建立回程链路,和/或表示第一节点是中继节点。可选地,消息3还可以包括第一节点属性指示。第一节点属性指示表示第一节点是中继节点。消息3中可以仅包含建立回程链路指示和第一节点属性中的一种。
S705、候选邻居节点接收到第一节点发送的消息3后,向第一节点发送竞争解决消息,竞争解决消息又称为消息4。竞争解决消息同传统的竞争解决消息,为本领域普通技术人员所熟知,不再赘述。
S706、第一节点向候选邻居节点发送备份回程链路添加或删除请求。备份回程链路添加或删除请求中还可以包括第二节点的标识。备份回程链路请求中还可以包括回程链路激活指示,用于请求是否激活第一节点和候选邻居节点间的回程链路。备份回程链路添加请求中还可以包括是否通过第二节点进行数据面路由的指示,用于指示候选邻居节点是否建立到第二节点的承载。
候选邻居节点收到备份链路添加或删除请求后,根据当前资源情况,确定是否接受第一节点的回程链路建立请求。
S707、候选邻居节点向第二节点发送备份回程链路添加或删除通知。候选邻居节点通知第二节点,已经和第一节点间建立了或删除了备份回程链路。备份回程链路添加或删除通知中包括第一节点的标识,候选邻居节点的标识。备份回程链路添加通知中还可以包括建立承载指示,用于请求候选邻居节点和第二节点间为第一节点建立承载。应理解,这里备份回程链路添加或删除通知可以是两条消息,即,备份回程链路添加通知和备份回程链路删除通知。备份回程链路添加通知或备份回程链路删除通知也可以通过一个消息的某个字段来指示其功 能,比如备份回程链路通知中用一个字段来表示是备份回程链路添加通知还是备份回程链路删除通知。应理解,这里的名字只是示意性的,任何具有类似的功能的消息名称都在本发明的保护范围。以下相同,不再赘述。
S708、第二节点向候选邻居节点发送备份回程链路添加或删除确认。该消息用于向第二节点确认接受候选邻居节点和第一节点间的备份回程链路。第二节点也可以拒绝接受候选邻居节点和第一节点间的备份回程链路。
应理解,这里备份回程链路添加或删除确认可以是两条消息,即,备份回程链路添加确认和备份回程链路删除确认。备份回程链路添加确认或备份回程链路删除确认也可以通过一个消息的某个字段来指示其功能,比如备份回程链路确认中用一个字段来表示是备份回程链路添加通知还是备份回程链路删除通知。应理解,这里的名字只是示意性的,任何具有类似的功能的消息名称都在本发明的保护范围。以下相同,不再赘述。
如果备份回程链路添加通知中包括建立承载指示,则第二节点还可以在备份回程链路添加确认中包括承载的信息,如承载的标识符,端口号等,承载建立过程同传统的双连接的X2接口承载建立过程,不再赘述。
S709、候选邻居节点向第一节点发送备份回程链路添加或删除响应。如果候选邻居节点接受第一节点的备份回程链路添加或删除请求,且第二节点也接受在候选邻居节点和第一节点间建立备份回程链路,则在备份回程链路添加或删除响应中包括接受请求的指示信息,如果候选邻居节点不接受第一节点的备份回程链路添加或删除请求,或者第二节点不接受在候选邻居节点和第一节点间建立备份回程链路,则在备份回程链路添加或删除响应中包括拒绝请求的指示信息。
备份回程链路添加或删除响应还包括路由指示信息,用于指示是通过第二节点还是UPF建立了用户数据传输的承载。备份回程链路添加或删除响应还可以包括承载指示信息,用于指示候选邻居节点是建立到第二节点的承载还是建立到UPF的承载。备份回程链路添加或删除响应还可以包括回程链路激活指示,用于指示回程链路是否被激活。备份回程链路添加或删除响应还可以包括回程链路保留时间,用于第一节点删除第一节点和候选邻居节点间的回程链路时,指示在预定的时间后回程链路将被删除。如果第一节点在回程链路保留时间到期之前,再次添加该候选邻居节点作为备份回程链路,那么候选邻居节点仅需要简单地将备份回程链路的状态进行修改即可,即停止定时器,并将其标记为备份回程链路,或者根据指示激活。
S710、第一节点向候选邻居节点发送备份回程链路添加或删除完成消息,以通知候选邻居节点第一节点已经收到备份回程链路添加或删除响应。
通过上述实施例,中继节点根据对候选邻居节点测量的结果确定是否建立和候选邻居节点间的回程链路,通过随机接入的方式直接接入到候选邻居节点,减少了信令开销,降低了建立回程链路的时延,有利于第一节点能耗的节省。通过直接接入到候选邻居节点,实现备份链路的建立,优化中继节点的拓扑和路由。
在一种可选的方案中,在图7所示的步骤S705之后,第一节点可以向候选邻居节点发送测量配置请求,以请求候选邻居节点向第一节点发送专用参考信号进行测量,如CSI-RS,第一节点重新对CSI-RS进行测量,并重新确定是否建立或删除和候选邻居节点间的备份回程链路。如果第一节点确定继续备份回程链路建立,则继续步骤S706。通过该方案,可以使得第一节点和候选邻居节点间的回程链路的测量结果更加准确,建立的备份回程链路将更加可靠。
在一种可选的方案中,在图7所示的步骤S706之后,候选邻居节点为第一节点配置专用测量参考信号,要求第一节点重新进行测量,并报告测量结果。候选邻居节点根据第一节点报告的测量结果确定是否建立或删除和第一节点间的备份回程链路,或者第一节点根据测量结果确定是否建立或删除和候选邻居节点间的备份回程链路。如果候选邻居节点确定继续建立或删除备份回程链路,则继续步骤S707,否则,跳到步骤S709,并在备份回程链路添加或删除响应中拒绝回程链路的建立。如果第一节点确定继续建立或删除备份回程链路,则向候选邻居节点发送指示信息,以继续建立或删除备份回程链路,即继续执行步骤S707。通过该方案,可以使得第一节点和候选邻居节点间的回程链路的测量结果更加准确,建立的备份回程链路将回程链路更加可靠。
在一种可选的方案中,图7中的步骤S706到步骤S710仅针对备份回程链路添加,而备份回程链路的删除则通过图6所示的方法,即通过第二节点进行备份回程链路的删除。由于在测量的过程中,如果第一节点发现和某个候选邻居节点的备份回程链路的测量值低于配置的阈值(如步骤S610中的阈值),第一节点通过随机接入的方法接入到候选邻居节点,则要求第一节点采用较大的功率进行发送,容易造成发送失败,因此,通过第二节点进行发送,可以提高消息发送的成功率,降低第一节点的功耗。
图8为本申请实施例候选邻居节点建立到UPF承载的流程。用户面功能主要是提供用户面数据路由和转发的功能网元,如网关。如前所述,候选节点可以根据备份回程链路添加或删除请求中的数据面路由的指示来建立承载,如果备份回程链路添加或删除请求中的数据面路由的指示通过UPF建立承载,那么候选邻居节点对第一节点的数据面的路由就不通过第二节点进行中转,候选邻居节点就建立到UPF的承载,并根据备份回程链路添加或删除请求中的回程链路激活指示确定是否激活到UPF的承载。如果备份回程链路添加或删除请求中不包含数据面路由的指示,则候选邻居节点可以自行选择是建立到第二节点的承载还是建立到UPF的承载。具体地,图8中的接入和移动管理功能(access and mobility management function,AMF)/会话管理功能(session management function,SMF)主要是控制面的网元,用于对接入节点,用户及网关的控制。应理解,图8中的消息名称只是用于表示功能,在实际标准或者产品实现中采用其他类似的名称,不应认为图中的消息名称限制了其使用范围。图8为建立到UPF的承载的示例,步骤如下:
S801、同步骤S701,不再赘述。
S802(a1)、第一节点向第二节点发送备份回程链路添加或删除请求。如果第一节点确定通过第二节点来请求建立或删除第一节点和候选邻居节点间的备份回程链路,则执行S802(a1)和S802(a2)步骤。如果第一节点是通过随机接入的方式通过候选邻居节点来建立或或删除第一节点和候选邻居节点间的备份回程链路,则步骤S802(a1)和S802(a2)不被执行,执行步骤S802(b1)和S802(b2)。而如果步骤S802(a1)和S802(a2)被执行,则下述步骤S802(b1)和S802(b2)不被执行。具体的该步骤同S611,不再赘述。
S802(a2)、第二节点向候选邻居节点发送备份回程链路添加或删除请求。如果上述步骤S802(a1)被执行,则步骤S802(a2)被执行。应理解,这里的候选邻居节点,是指第一节点确定要建立或删除备份回程链路的候选邻居节点,即,备份回程链路添加或删除请求中的候选邻居节点。步骤S802(a2)同步骤S612,不再赘述。
如上所述,如果S802(a1)不被执行,则S802(a2)也将不被执行。
S802(b1)、第一节点向候选邻居节点发起随机接入过程,这里用一个步骤取代随机接入过程,仅是为了简化描述的需要,具体可以参考步骤S702到S705,不再赘述。应理解,如果第一节点是通过随机接入的方式通过候选邻居节点来建立或或删除第一节点和候选邻居节点间的备份回程链路,此时步骤S802(b1)被执行,而上述步骤S802(a1)和S802(a2)则不被执行。
S802(b2)、第一节点向候选邻居节点发送备份回程链路添加或删除请求。具体参考S706,不再赘述。
如果步骤S802(b1)被执行,则步骤S802(b2)被执行,否则,本步骤也不被执行。即,上述步骤中,要不执行S802(a1)和S802(a2),要不执行S802(b1)和S802(b2)。
S803、候选邻居节点向AMF/SMF发送承载建立或者修改请求。承载建立请求中包括以下参数中的至少一个:第一节点的标识,候选邻居节点的标识,候选邻居节点的承载标识,候选邻居节点的端口号,UPF的标识,接入点名(accessing point naming,APN)。承载建立请求还可以包括承载激活指示,用于指示是否需要激活建立的承载。如果第一节点发送的是备份回程链路删除请求,则候选邻居节点向AMF/SMF发送承载修改请求,承载修改请求中包括删除承载指示。可选地,如果第一节点发送的是备份回程链路删除请求,候选邻居节点可以直接进入步骤S807,并启动一个定时器,等定时器超时后再执行步骤S803到S806。
S804、AMF/SMF接收到承载建立或者修改请求后,向UPF发送创建或修改承载请求,即可以是创建承载请求,或者是修改承载请求,其中修改承载请求可以用于删除某个承载。
S805、UPF向AMF/SMF发送创建或修改承载响应。创建或修改承载响应中包括以下参数中的至少一个:UFP为承载分配的承载标识,UFP的标识,第一节点的标识,候选邻居节点的标识,端口号,QoS参数,承载的状态(是否激活)。
S807到S810、同S707到S710,不再赘述。
通过上述实施例,候选邻居节点可以建立到UPF的承载,通过建立的承载,可以随时对承载进行激活,从而降低由于第一节点的回程链路不可用导致第一节点的服务中断而产生的影响,能够实现快速的路由切换,降低服务中断时延,提高服务质量。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如第一节点、第二节点为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的网元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一节点、第二节点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,根据上述方法示例,可以有多个候选邻居节点,多个候选邻居节点的在功能上相同,其在对应的各个功能模块相同,以下实施例将仅以一个候选邻居节点作为示例进行描述,但应理解,同一个第一节点可以有多个候选邻居节点。
在采用对应各个功能划分各个功能模块的情况下,图9为本申请的实施例提供的上述实施例中所涉及的第一节点的一种可能的结构示意图,第一节点包括:处理单元902和发送单元903。其中,处理单元901用于支持图6中的步骤S604、S609或S610,图7中的步骤S701,图8中的S801;发送单元901用于支持第一节点执行图6中的S605或S611,图7中的步骤S702、S704、S706或S710,图8中的步骤S802(a1)、S802(b2)或S810。第一节点还可以包括:接收单元903,,用于支持第一节点执行图6中的S601、S602(a)、S603、S608或S614,图7中的步骤S703、S705或S709,图8中的步骤S802(b1)或S809。
在硬件实现上,上述处理单元902可以为处理器;发送单元901可以为发送器,接收单元903可以为接收器,接收器和发送器可以构成通信接口。
图10为本申请的实施例提供的上述实施例中所涉及的第一节点的一种可能的逻辑结构示意图。第一节点包括:处理器1002。在本申请的实施例中,处理器1002用于对该第一节点的动作进行控制管理,例如,处理器1002用于支持第一节点执行图6中的步骤S604、S609或S610,图7中的步骤S701,图8中的S801。第一节点还可以包括:存储器1001和通信接口1003;处理器1002、通信接口1003以及存储器1001可以相互连接或者通过总线1004相互连接。其中,通信接口1003用于支持该第一节点进行通信,存储器1001用于存储第一节点的程序代码和数据。处理器1002调用存储器1001中存储的代码进行控制管理。该存储器1001可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器1002可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1004可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图11为本申请的实施例提供的上述实施例中所涉及的第二节点的一种可能的结构示意图,第二节点包括:发送单元1101和接收单元1103。其中,发送单元1101用于支持第二节点执行图6中的S601、S603、S606、S608、S612或S614,图7中的步骤S708、图8中的步骤S802(a2)、S808;接收单元1103用于支持第二节点执行图6中的S602(b)、S605、S607、S611、S613,图8中的步骤S802(a1)或S807。第二节点还可以包括:处理单元1102,用于支持第二节点根据接收到的终端发送测量报告后确定测量指示中的潜在邻居节点,或者确定为第一节点配置的回程链路测量阈值,或者确定是否接受第一节点或候选邻居节点发送的备份回程链路添加请求。
在硬件实现上,上述处理单元1102可以为处理器;发送单元1101可以为发送器,接收单元1103可以为接收器,接收器和发送器可以构成通信接口。
图12为本申请的实施例提供的上述实施例中所涉及的第二节点的一种可能的逻辑结构示意图。第二节点包括:处理器1202。在本申请的实施例中,处理器1202用于对该第二节点的动作进行控制管理,例如,处理器1202用于支持第二节点执行确定测量指示中的潜在邻居节点,或者确定为第一节点配置的回程链路测量阈值,或者确定是否接受第一节点或候选邻居节点发送的备份回程链路添加请求。第二节点还可以包括:存储器1201和通信接口1203;处理器1202、通信接口1203以及存储器1201可以相互连接或通过总线1204相互连接。其 中,通信接口1203用于支持该第二节点进行通信。存储器1201用于存储第二节点的程序代码和数据。处理器1202调用存储器1201中存储的代码进行控制管理。该存储器1201可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器1202可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1204可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图13为本申请的实施例提供的上述实施例中所涉及的候选邻居节点的一种可能的结构示意图,候选邻居节点包括:发送单元1301和接收单元1303。其中,发送单元1301用于支持候选邻居节点执行图6中的S607或S613,图7中的步骤S703、S705、S707或S709,图8中的步骤S803、S807或S809;接收单元1303用于支持候选邻居节点执行图6中的S606、S612,图7中的步骤S702、S704、S706、S708或S710,图8中的S802(a2)、S802(b1)、S802(b2)、S806、S808或S810。候选邻居节点还可以包括:处理单元1302,用于支持候选邻居节点根据接收到的测量配置请求为第一节点配置CSI-RS资源,或者确定是否接受第二节点发送的备份回程链路添加请求,或者确定是否接受第一节点的备份回程链路添加请求,或者确定建立到UPF还是第二节点的承载。
在硬件实现上,上述处理单元1302可以为处理器;发送单元1301可以为发送器,接收单元1303可以为接收器,接收器和发送器可以构成通信接口。
图14为本申请的实施例提供的上述实施例中所涉及的候选邻居节点的一种可能的逻辑结构示意图。候选邻居节点包括:处理器1402。在本申请的实施例中,处理器1402用于对该第二节点的动作进行控制管理,例如,处理器1402用于支持候选邻居节点执行为第一节点配置CSI-RS资源,或者确定是否接受第二节点发送的备份回程链路添加请求,或者确定是否接受第一节点的备份回程链路添加请求,或者确定建立到UPF还是第二节点的承载。候选邻居节点还可以包括:存储器1401和通信接口1403;处理器1402、通信接口1403以及存储器1401可以相互连接或通过总线1404相互连接。其中,通信接口1403用于支持该候选邻居节点进行通信。存储器1401用于存储候选邻居节点的程序代码和数据。处理器1402调用存储器1401中存储的代码进行控制管理。该存储器1401可以跟处理器耦合在一起,也可以不耦合在一起。
其中,处理器1402可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。总线1404可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请的另一实施例中,还提供一种可读存储介质,可读存储介质中存储有计算机执行指令,当一个设备(可以是单片机,芯片等)或者处理器执行图6、图7、图8所提供的回程链路维护方法中第一节点、第二节点及候选邻居节点的步骤时,读取存储介质中的计算机执行指令。前述的可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的另一实施例中,还提供一种计算机程序产品,该计算机程序产品包括计算机执行指令,该计算机执行指令存储在计算机可读存储介质中;设备的至少一个处理器可以从计算机可读存储介质读取该计算机执行指令,至少一个处理器执行该计算机执行指令使得设备实施图6、图8、图8所提供的资源配置方法中第一节点、第二节点以及候选邻居节点的步骤。
在本申请的另一实施例中,还提供一种通信系统,该通信系统包括多个设备,该多个设备包括第一节点、第二节点和候选邻居节点。其中,第一节点可以为图6、图7或图8所提供的第一节点,且用于执行图6、图7、图8所提供的链路维护方法中第一节点的步骤;和/或,第二节点可以为图6、图7或图8所提供的第二节点,且用于执行图6、图7、或者图8所提供的链路维护方法中第二节点的步骤。应理解,该通信系统可以包括多个第一节点,即,第二节点可以有多个第一节点,多个第一节点执行相同或类似的功能。
在本申请实施例中,当第一节点向第二节点发送备份回程链路添加或删除请求后,第二节点为第一节点添加或删除备份回程链路,解决了多跳中继网络中由于网络流量的瞬时变化或者由于高频链路的瞬时中断而导致的回程链路不可用的问题。通过对备份回程链路的维护,可以减少由于回程链路质量或中断产生的延迟或数据传输中断时间,通过备份回程链路,提高中继节点的传输效率。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (35)
- 一种链路维护的方法,其特征在于,包括:第一节点确定待测量的候选邻居节点;所述第一节点对所述候选邻居节点进行测量;所述第一节点根据测量结果确定是否建立或者删除所述第一节点和所述候选邻居节点间的备份回程链路;所述第一节点向第二节点发送请求,所述请求用于请求所述第二节点建立或删除所述第一节点和所述候选邻居节点间的备份回程链路。
- 根据权利要求1所述的方法,其特征在于,还包括:所述第一节点接收所述第二节点配置的回程链路测量阈值,所述回程链路测量阈值用于所述第一节点确定回程链路质量。
- 根据权利要求1或2所述的方法,其特征在于,包括:所述第一节点接收所述第二节点发送的测量指示,所述测量指示包含潜在邻居节点的标识,所述潜在邻居节点的标识用于所述第一节点确定所述候选邻居节点。
- 根据权利要求1或2所述的方法,其特征在于,还包括:所述第一节点接收终端发送的潜在邻居节点的测量结果,所述潜在邻居节点的测量结果用于所述第一节点确定所述候选邻居节点。
- 根据权利要求1-4任一项所述的方法,其特征在于,还包括:如果所述第一节点确定建立所述第一节点和所述候选邻居节点间的回程链路,所述第一节点向所述候选邻居节点发起随机接入过程。
- 根据权利要求1-5任一项所述的方法,其特征在于,所述第一节点根据测量结果确定是否建立或者删除所述第一节点和所述候选邻居节点间的备份回程链路包括:当满足条件M r-H ys>Thresh时,所述第一节点确定建立所述第一节点和所述候选邻居节点间的备份回程链路,所述M r为所述第一节点对候选邻居节点的测量结果,所述H ys为事件迟滞参数,所述Thresh为回程链路测量阈值;或者,当满足条件M r+H ys<Thresh时,所述第一节点确定删除所述第一节点和所述候选邻居节点间的备份回程链路。
- 一种链路维护的方法,其特征在于,包括:第二节点接收第一节点发送的第一请求,所述第一请求用于请求所述第二节点建立或者删除所述第一节点和候选邻居节点间的备份回程链路;所述第二节点向所述第一节点发送响应。
- 根据权利要求7所述的方法,其特征在于,还包括:所述第二节点发送回程链路测量阈值给所述第一节点,所述回程链路测量阈值用于所述 第一节点确定回程链路质量。
- 根据权利要求7所述的方法,其特征在于,还包括:所述第二节点向所述第一节点发送测量指示,所述测量指示包含潜在邻居节点的标识,所述潜在邻居节点的标识用于所述第一节点确定所述候选邻居节点。
- 根据权利要求7-9任一项所述的方法,其特征在于,还包括:所述第二节点向所述候选邻居节点发送第二请求,所述第二请求用于所述候选邻居节点建立或删除到所述第二节点或用户面功能的承载。
- 一种第一节点,其特征在于,包括:处理单元,用于确定待测量的候选邻居节点,对所述候选邻居节点进行测量,以及确定是否建立或者删除所述第一节点和所述候选邻居节点间的备份回程链路;发送单元,用于向第二节点发送请求,所述请求用于请求所述第二节点建立或删除所述第一节点和所述候选邻居节点间的备份回程链路。
- 根据权利要求11所述的设备,其特征在于,还包括:接收单元,用于接收所述第二节点配置的回程链路测量阈值,所述回程链路测量阈值用于所述第一节点确定回程链路质量。
- 根据权利要求11或12所述的设备,其特征在于,所述接收单元,还用于接收所述第二节点发送的测量指示,所述测量指示包含潜在邻居节点的标识,所述潜在邻居节点的标识用于所述第一节点确定所述候选邻居节点。
- 根据权利要求12所述的设备,其特征在于,还包括:所述接收单元,还用于接收终端发送的潜在邻居节点的测量结果所述潜在邻居节点的测量结果用于所述第一节点确定所述候选邻居节点。
- 根据权利要求11-14所述的设备,其特征在于,还包括:所述处理单元,还用于确定建立所述第一节点和所述候选邻居节点间的回程链路;发送单元,用于向所述候选邻居节点发起随机接入过程。
- 根据权利要求11-15任一项所述的设备,其特征在于,当满足条件M r-H Gs>Thresh时,所述处理单元用于确定建立所述第一节点和所述候选邻居节点间的备份回程链路,所述M r为所述第一节点对候选邻居节点的测量结果,所述H ys为事件迟滞参数,所述Thresh为回程链路测量阈值;或者,当满足条件M r+H ys<Thresh时,所述处理单元用于确定删除所述第一节点和所述候选邻居节点间的备份回程链路。
- 一种第二节点,其特征在于,包括:接收单元,用于接收第一节点发送的第一请求,所述第一请求用于请求所述第二节点建 立或者删除所述第一节点和候选邻居节点间的备份回程链路;发送单元,用于向所述第一节点发送响应。
- 根据权利要求17所述的设备,其特征在于,所述发送单元,还用于发送回程链路测量阈值给所述第一节点,所述回程链路测量阈值用于所述第一节点确定回程链路质量。
- 根据权利要求17或18所述的设备,其特征在于,所述发送单元,还用于向所述第一节点发送测量指示,所述测量指示包含潜在邻居节点的标识,所述潜在邻居节点的标识用于所述第一节点确定所述候选邻居节点。
- 根据权利要求17-19任一项所述的设备,其特征在于,所述发送单元,还用于向所述候选邻居节点发送第二请求,所述第二请求用于所述候选邻居节点建立或删除到所述第二节点或用户面功能的承载。
- 一种通信装置,该通信装置为第一节点,其特征在于,包括:处理器,用于确定待测量的候选邻居节点,对所述候选邻居节点进行测量,以及确定是否建立或者删除所述第一节点和所述候选邻居节点间的备份回程链路;发送器,用于向第二节点发送请求,所述请求用于请求所述第二节点建立或删除所述第一节点和所述候选邻居节点间的备份回程链路。
- 根据权利要求21所述的通信装置,其特征在于,还包括:接收器,用于接收所述第二节点配置的回程链路测量阈值,所述回程链路测量阈值用于所述第一节点确定回程链路质量。
- 根据权利要求21或22所述的通信装置,其特征在于,所述接收器,还用于接收所述第二节点发送的测量指示,所述测量指示包含潜在邻居节点的标识,所述潜在邻居节点的标识用于所述第一节点确定所述候选邻居节点。
- 根据权利要求22所述的通信装置,其特征在于,还包括:所述接收器,还用于接收终端发送的潜在邻居节点的测量结果所述潜在邻居节点的测量结果用于所述第一节点确定所述候选邻居节点。
- 根据权利要求21-24所述的通信装置,其特征在于,还包括:所述处理器,还用于确定建立所述第一节点和所述候选邻居节点间的回程链路;发送器,用于向所述候选邻居节点发起随机接入过程。
- 根据权利要求21-25任一项所述的通信装置,其特征在于,当满足条件M r-H ys>Thresh时,所述处理器用于确定建立所述第一节点和所述候选邻居节点间的备份回程链路,所述M r为所述第一节点对候选邻居节点的测量结果,所述H ys为事件迟滞参数,所述Thresh为回程链路测量阈值;或者,当满足条件M r+H ys<Thresh时,所述处理器用于确定删除所述第一节点和所述候选邻 居节点间的备份回程链路。
- 一种通信装置,所述通信装置为第二节点,其特征在于,包括:接收器,用于接收第一节点发送的第一请求,所述第一请求用于请求所述第二节点建立或者删除所述第一节点和候选邻居节点间的备份回程链路;发送器,用于向所述第一节点发送响应。
- 根据权利要求27所述的通信装置,其特征在于,所述发送器,还用于发送回程链路测量阈值给所述第一节点,所述回程链路测量阈值用于所述第一节点确定回程链路质量。
- 根据权利要求27或28所述的通信装置,其特征在于,所述发送器,还用于向所述第一节点发送测量指示,所述测量指示包含潜在邻居节点的标识,所述潜在邻居节点的标识用于所述第一节点确定所述候选邻居节点。
- 根据权利要求27-29任一项所述的通信装置,其特征在于,所述发送器,还用于向所述候选邻居节点发送第二请求,所述第二请求用于所述候选邻居节点建立或删除到所述第二节点或用户面功能的承载。
- 一种装置,其特征在于,包括处理器和存储器,该存储器中存储代码和数据,该存储器与处理器耦合,该处理器被配置为实现如权利要求1-6任一项所述的链路维护的方法,或者实现如权利要求7-10任一项所述的链路维护的方法。
- 一种可读存储介质,其特征在于,所述可读存储介质上存储有程序,当所述程序运行时,实现如权利要求1-6任一项所述的链路维护的方法,或者实现如权利要求7-10任一项所述的链路维护的方法。
- 一种包含指令的计算机程序产品,其特征在于,所述计算机程序产品运行时,实现如权利要求1-6任一项所述的链路维护的方法,或者实现如权利要求7-10任一项所述的链路维护的方法。
- 一种芯片系统,其特征在于,所述设备包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述设备执行权利要求1-6任一项所述的链路维护的方法,或者实现如权利要求7-10任一项所述的链路维护的方法。
- 一种通信系统,所述通信系统包括多个设备,所述多个设备包括第一节点设备、第二节点设备,其特征在于,所述第一节点设备实现如权利要求1-6任一项所述的链路维护的方法,所述第二节点设备实现如权利要求7-10任一项所述的链路维护的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19763882.8A EP3749009B1 (en) | 2018-03-08 | 2019-03-05 | Method and apparatus for link maintenance |
US17/014,405 US11405805B2 (en) | 2018-03-08 | 2020-09-08 | Link maintenance method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810190096.0A CN110248376B (zh) | 2018-03-08 | 2018-03-08 | 一种链路维护的方法及装置 |
CN201810190096.0 | 2018-03-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/014,405 Continuation US11405805B2 (en) | 2018-03-08 | 2020-09-08 | Link maintenance method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019170087A1 true WO2019170087A1 (zh) | 2019-09-12 |
Family
ID=67845830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/077027 WO2019170087A1 (zh) | 2018-03-08 | 2019-03-05 | 一种链路维护的方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11405805B2 (zh) |
EP (1) | EP3749009B1 (zh) |
CN (1) | CN110248376B (zh) |
WO (1) | WO2019170087A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021055466A1 (en) * | 2019-09-20 | 2021-03-25 | Qualcomm Incorporated | Integrated access and backhaul network random access parameter optimization |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110474742B (zh) * | 2018-05-11 | 2021-03-30 | 电信科学技术研究院有限公司 | 一种确定rrm测量配置的方法及设备 |
US12063089B2 (en) * | 2018-09-21 | 2024-08-13 | Apple Inc. | Signaling to child nodes for backhaul beam failure in fifth generation (5G) new radio (NR) (5G-NR) integrated access and backhaul (IAB) |
US11076306B2 (en) | 2018-09-21 | 2021-07-27 | Qualcomm Incorporated | Relay nodes with multi-connected cellular backhaul |
US11490390B2 (en) * | 2019-08-28 | 2022-11-01 | Qualcomm Incorporated | Enhanced resource management for mobile integrated access backhaul (IAB) |
WO2021062807A1 (zh) * | 2019-09-30 | 2021-04-08 | 华为技术有限公司 | 一种通信方法、装置以及系统 |
US20230106809A1 (en) * | 2019-10-10 | 2023-04-06 | Lenovo (Beijing) Ltd. | Method and apparatus for hop-by-hop flow control |
CN116056119B (zh) * | 2023-03-30 | 2023-06-23 | 北京市大数据中心 | 一种宏基站配置信息的检测方法、装置及终端设备 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170325250A1 (en) * | 2016-05-09 | 2017-11-09 | Qualcomm Incorporated | Scalable numerology with symbol boundary alignment for uniform and non-uniform symbol duration in wireless communication |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1801995A1 (en) * | 2005-12-21 | 2007-06-27 | Fujitsu Limited | Signalling in multi-hop communication systems |
CN102064992B (zh) * | 2009-11-13 | 2012-11-28 | 中兴通讯股份有限公司 | 一种中继节点、中继节点的分布式网络及其组网方法 |
US20140016537A1 (en) * | 2012-05-04 | 2014-01-16 | Qualcomm Incorporated | Associating terminal user equipment with user equipment relays |
EP2954624A1 (en) * | 2013-02-07 | 2015-12-16 | Interdigital Patent Holdings, Inc. | Physical layer (phy) design for a low latencymillimeter wave (mmw) backhaul system |
CN104981026B (zh) | 2014-04-04 | 2019-02-19 | 华为技术有限公司 | 一种回程链路调整方法、移动节点及系统 |
CN106034343B (zh) * | 2015-03-10 | 2020-02-18 | 电信科学技术研究院 | 一种接入方法及装置 |
WO2016159007A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社Nttドコモ | ユーザ装置、及び制御情報送信方法 |
US10009260B2 (en) * | 2015-06-30 | 2018-06-26 | Qualcomm Incorporated | Management of network routing domains in communication networks |
US10136359B2 (en) * | 2015-06-30 | 2018-11-20 | Qualcomm Incorporated | Traffic flow migration in backhaul networks |
US11076306B2 (en) * | 2018-09-21 | 2021-07-27 | Qualcomm Incorporated | Relay nodes with multi-connected cellular backhaul |
-
2018
- 2018-03-08 CN CN201810190096.0A patent/CN110248376B/zh active Active
-
2019
- 2019-03-05 WO PCT/CN2019/077027 patent/WO2019170087A1/zh unknown
- 2019-03-05 EP EP19763882.8A patent/EP3749009B1/en active Active
-
2020
- 2020-09-08 US US17/014,405 patent/US11405805B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170325250A1 (en) * | 2016-05-09 | 2017-11-09 | Qualcomm Incorporated | Scalable numerology with symbol boundary alignment for uniform and non-uniform symbol duration in wireless communication |
Non-Patent Citations (3)
Title |
---|
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Integrated Access and Backhaul; (Release 15)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 38.874, vol. 3GPP TR 38.874, no. V0.1.0, 9 February 2018 (2018-02-09), pages 1 - 11, XP009522881 * |
ITRI: "Discussion on the topology and protocol stack of IAB", 3GPP DRAFT; R2-1801348, 26 January 2018 (2018-01-26), Vancouver, Canada, pages 1 - 4, XP051386761 * |
See also references of EP3749009A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021055466A1 (en) * | 2019-09-20 | 2021-03-25 | Qualcomm Incorporated | Integrated access and backhaul network random access parameter optimization |
US11895697B2 (en) | 2019-09-20 | 2024-02-06 | Qualcomm Incorporated | Integrated access and backhaul network random access parameter optimization |
Also Published As
Publication number | Publication date |
---|---|
US20200404518A1 (en) | 2020-12-24 |
EP3749009A1 (en) | 2020-12-09 |
US11405805B2 (en) | 2022-08-02 |
EP3749009B1 (en) | 2023-06-21 |
EP3749009A4 (en) | 2021-04-21 |
CN110248376A (zh) | 2019-09-17 |
CN110248376B (zh) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019170087A1 (zh) | 一种链路维护的方法及装置 | |
CN106664606B (zh) | 准入控制和负载平衡 | |
WO2020001575A1 (zh) | Iab节点的切换方法、iab节点和宿主基站 | |
US11627512B2 (en) | Method and apparatus for transmitting data | |
JP6705500B2 (ja) | 通信装置、通信デバイス及び方法 | |
WO2018010123A1 (zh) | 通信方法、网络设备和终端设备 | |
EP2781123B1 (en) | Performing mobility load balancing and mobility robustness optimization between access nodes for only a subset of user equipment | |
US11653246B2 (en) | Method and device for configuring and reporting measurement for LTE/NR interworking in wireless communication system | |
JP7302683B2 (ja) | マスターノード、セカンダリノード、通信システム並びにマスターノード及びセカンダリノードの制御方法 | |
WO2015039449A1 (zh) | 一种小小区切换方法、基站和计算机存储介质 | |
WO2022051900A1 (zh) | 发送成功切换报告的方法、终端设备和网络设备 | |
CN112534874A (zh) | 用于处置链路转换的第一网络节点、无线装置以及由此执行的方法 | |
US9503393B2 (en) | S-GW relocation and QoS change without mobility | |
WO2017042204A1 (en) | Method and apparatus for implementing radio resource control of multi-connectivity | |
CN114390634A (zh) | 一种中继终端的选择方法、终端及存储介质 | |
US20220201553A1 (en) | Radio network node, network node and methods performed therein for controlling transmission | |
US20240064093A1 (en) | Design for 3gpp r18 multi-path | |
US11350342B1 (en) | Network node and method therein in a radio communications network | |
WO2022082690A1 (zh) | 群组切换的方法、装置和系统 | |
US20240196233A1 (en) | Method and device for self-configuration and self-optimization | |
WO2021097678A1 (zh) | 一种接入回传控制方法及装置 | |
EP3542590B1 (en) | Multi-connectivity control plane anchor | |
WO2016112985A1 (en) | Event signalling in a wireless backhaul network | |
WO2020064095A1 (en) | Paging control in a non-homogenous network scenario | |
EP4325798A1 (en) | Communication method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19763882 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019763882 Country of ref document: EP Effective date: 20200904 |