WO2019170029A1 - 传输速率切换方法、蓝牙设备及计算机可读介质 - Google Patents

传输速率切换方法、蓝牙设备及计算机可读介质 Download PDF

Info

Publication number
WO2019170029A1
WO2019170029A1 PCT/CN2019/076505 CN2019076505W WO2019170029A1 WO 2019170029 A1 WO2019170029 A1 WO 2019170029A1 CN 2019076505 W CN2019076505 W CN 2019076505W WO 2019170029 A1 WO2019170029 A1 WO 2019170029A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission rate
control information
bluetooth
rate
field
Prior art date
Application number
PCT/CN2019/076505
Other languages
English (en)
French (fr)
Inventor
刘华章
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19764965.0A priority Critical patent/EP3748999A1/en
Publication of WO2019170029A1 publication Critical patent/WO2019170029A1/zh
Priority to US17/008,848 priority patent/US20200396017A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • H04L1/0018Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement based on latency requirement

Definitions

  • the present invention relates to the field of communications, and in particular, to a transmission rate switching method, a Bluetooth device, and a computer readable medium.
  • Bluetooth is a radio technology that supports short-range communication between devices, enabling wireless information exchange between devices including mobile phones, wireless headsets, laptops, and related peripherals. Due to the rapid development of mobile communication technologies, portable devices such as mobile phones and tablet computers have become a necessity in daily life, and Bluetooth technology has become the standard for these portable devices. With the evolution of Bluetooth technology, the major version of the Bluetooth standard has evolved from version 1.1 to the current version 5.0. In the latest version 5.0, Bluetooth Low Energy (BLE) has been able to support BLE 1M, BLE 2M and BLE long distances at 3 physical speeds. It can be expected that with the introduction of the Bluetooth standard 5.0, more audio functions will be implemented by BLE technology.
  • BLE Bluetooth Low Energy
  • the Bluetooth chip can no longer rely on traditional Bluetooth to support music playback and calls, thereby reducing the cost of Bluetooth-enabled audio.
  • the network status will change. If the high-speed physical channel is used, the retransmission and error packets will be high, which will result in audio playback or continuous call.
  • the Bluetooth module notifies the Bluetooth host to pause audio or call, and performs physical channel setting on the controller side to select a physical channel with smaller physical bandwidth and stronger anti-interference capability for data transmission. At the same time, after the interference is weakened or disappeared, it is also necessary to switch the physical channel back to the high rate mode as soon as possible.
  • the Bluetooth specification establishes a physical rate update procedure at the link control layer for how to achieve switching between different physical rates.
  • the main feature of the process is that the physical rate of the current link is switched through the interaction of three link controls. That is to say, in the current Bluetooth specification, the update of the physical rate requires three times of messaging on the air interface to complete, so that the communication parties consume at least three BLE connection intervals to complete the transmission and confirmation of the physical layer channel information.
  • the shortest BLE connection interval is 7.5 milliseconds, so it takes about 22.5 milliseconds to complete the transmission and confirmation of physical layer channel messages.
  • the BLE specification stipulates that the time point of channel switching must be at least 6 connection intervals after the rate update control information is sent or received. Thus, from the physical rate switching initiation to the final completion, at least 9 BLE connection intervals are required, that is, it takes at least 75 milliseconds to complete.
  • the physical solution switching of the current technical solution takes a long time, and cannot meet the requirement of fast switching of the physical rate in a specific scenario such as an audio play or a call.
  • the embodiment of the invention provides a transmission rate switching method, a Bluetooth device and a computer readable medium, which can improve the process of switching the transmission rate of the Bluetooth device and improve the switching efficiency.
  • an embodiment of the present invention provides a transmission rate switching method, where the method is applied to a first device that uses a Bluetooth physical channel to communicate with a second device, where the method includes:
  • a target transmission rate corresponding to the link quality according to a preset relationship between a link quality and a transmission rate, where the target transmission rate includes: a first sending rate and a second sending rate;
  • the first device sends first control information to the second device to indicate that the second device sets a rate at which information is sent to the first device by using the Bluetooth physical channel to the second sending rate.
  • the first device and the second device are both Bluetooth devices.
  • a Bluetooth device is a device that can communicate using Bluetooth technology, that is, a device with Bluetooth communication capabilities.
  • One of the first device and the second device is a master device, and the other is a slave device.
  • the first device may be a slave device or a master device.
  • the Bluetooth technology stipulates that when Bluetooth communication is performed between each pair of Bluetooth devices, one must be the master device and the other slave device can communicate.
  • the master device performs a lookup and initiates pairing. After the link is successfully established, both parties can send and receive data. That is, the master device is a Bluetooth device that actively initiates communication; the slave device is a device that is selected for communication by the master device.
  • the Bluetooth physical channel is any physical link or physical transmission channel between the first device and the second device.
  • the link quality is a quality of a physical link of a to-be-adjusted transmission rate between the first device and the second device.
  • the target transmission rate is a transmission rate of data transmitted through the Bluetooth physical channel.
  • the first device detects the quality of the Bluetooth physical channel, and obtains the link quality. It can be understood that the target transmission rate is a transmission rate that the link quality can support. Optionally, the target transmission rate is a larger transmission rate of the transmission rate that the link quality can support.
  • the target transmission rate corresponding to the link quality of the Bluetooth physical channel is determined according to the preset relationship between the link quality and the transmission rate, and the second device sets the transmission rate by using the control information, and sets the first device.
  • the sending rate; the switching process is simple, which can reduce the overhead of the message sequence.
  • the determining, by the first device, the target transmission rate corresponding to the link quality according to the preset relationship between the link quality and the transmission rate includes:
  • the first device After determining, by the first device, that the amount of change in the link quality of the Bluetooth physical channel exceeds the quality threshold, the first device determines the target transmission rate corresponding to the link quality according to the correspondence between the link quality and the transmission rate.
  • the reference duration is a preset duration of the first device, such as 100 milliseconds, 500 milliseconds, 2 seconds, and the like.
  • the first control information includes a first field, a second field, and a third field; the first field indicates the first sending rate; the second field indicates the a second transmission rate; the third field indicates a target time point; and the rate at which the first device sends information to the second device by using the Bluetooth physical channel is set to the first sending rate, including:
  • the rate at which the first device sends information to the second device through the Bluetooth physical channel is set to the first sending rate.
  • the target time point is a time point of switching the transmission rate; the first device and the second device both switch the transmission rate to the target transmission rate at the target time point. In this manner, the time interval between the first device and the second device to complete the transmission rate switching is shorter, and the data rates of the first device and the second device are consistent.
  • the third field includes a target duration; after the first device sends the first control information to the second device, the method further includes:
  • the confirmation information After receiving the confirmation information from the second device, start timing; the confirmation information indicates that the second device receives the first control information;
  • the time point of reaching the target includes:
  • the duration of the timing reaches the target duration.
  • the method further includes:
  • the rejection information In the case where the rejection information is received before the target time point is reached, the timing is stopped; the rejection information indicates that the second device rejects the first control information.
  • the timing is stopped, that is, the switching operation of the current transmission rate is stopped. It can be understood that, after the timer is stopped, the first device cannot meet the condition of reaching the target time point, and thus the switching operation of the transmission rate is not required. If the second device rejects the first control information, the first device may generate another control information, indicating that the transmission rate between the first device and the second device is switched to another A transmission rate that is different from the target transmission rate. In this way, the problem of poor transmission quality between the first device and the second device after the second device switches to the target transmission rate can be avoided.
  • the first control information further includes a fourth field and/or a fifth field; the fourth field indicates a link corresponding to the link quality; and the fifth field indicates A channel available between the first device and the second device.
  • the first control information may further include information such as a link identifier, an available channel, and an encoding manner.
  • the first device is a master device
  • the second device is a slave device.
  • the method further includes:
  • the first time point is a time point at which the first device sends the first control information
  • the second time point is a time point at which the first device receives the second control information.
  • both the master device and the slave device can send control information; if the time interval at which the master device and the slave device send control information is less than the time threshold, the control information sent by the slave device is rejected, and the control information sent by the master device is executed. In this way, it is possible to prevent the master device and the slave device from performing switching operations of two transmission rates in the same period of time.
  • the embodiment of the present invention provides another method for switching a transmission rate, where the method is applied to a second device that uses a Bluetooth physical channel to communicate with a first device, where the method includes:
  • the second device switches from a current sending rate to a sending rate of the second device indicated by the control information; the sending rate of the second device indicated by the control information is And a transmission rate corresponding to the link quality of the Bluetooth physical channel determined by the correspondence between the link quality and the transmission rate.
  • the first device and the second device are both Bluetooth devices.
  • One of the first device and the second device is a master device, and the other is a slave device.
  • the first device may be a slave device or a master device.
  • the second device may switch the transmission rate according to the control information sent by the first device. Specifically, the second device may switch the transmission rate to the transmission rate indicated by the control information. It can be understood that the transmission rate of the second device can be quickly switched according to the link quality, and the transmission quality between the first device and the second device is guaranteed.
  • the method further includes:
  • the second device in a case that at least one of a sending rate and a receiving rate that the second device can support under the link quality is greater than a requirement of the target transmission rate, or the second device is in the In case the at least one of the transmit rate and the receive rate that can be supported under the link quality cannot meet the requirement of the target transmission rate, it is determined to reject the control information. It can be understood that if the second device switches the transmission rate to the target transmission rate and fails to fully utilize the transceiver performance of the second device, determining to reject the control information; if the second device cannot reach the target The reception rate or transmission rate required by the transmission rate is determined to reject the control information.
  • Transceiver performance refers to the performance of receiving data and transmitting data, corresponding to the receiving rate and the sending rate.
  • the method further includes:
  • control information includes a first field, a second field, and a third field; the first field indicates a sending rate to be adopted by the first device; the second field indicates a transmission rate to be adopted by the second device; the third field indicates a target time point;
  • the switching of the second device from the current sending rate to the sending rate of the second device indicated by the control information includes:
  • the second device After reaching the target time point, the second device switches from the current transmission rate to the transmission rate indicated by the second field.
  • the third field includes a target duration; after the sending the confirmation information to the first device, the method further includes:
  • the time point of reaching the target includes:
  • the duration of the timing reaches the target duration.
  • the method further includes:
  • the timing is stopped.
  • the first control information further includes a fourth field and/or a fifth field; the fourth field indicates a link corresponding to the link quality; and the fifth field indicates A channel available between the first device and the second device.
  • an embodiment of the present invention provides a Bluetooth device, where the Bluetooth device includes a hardware module for performing the method of the foregoing first aspect.
  • an embodiment of the present invention provides another Bluetooth device, where the Bluetooth device includes a hardware module for performing the method of the foregoing second aspect.
  • an embodiment of the present invention provides a computer readable storage medium, where the computer storage medium stores a computer program, where the computer program includes program instructions, and the program instructions, when executed by a processor, cause the processing The method of the first aspect or the second aspect above is performed.
  • FIG. 1 is a schematic structural diagram of a Bluetooth system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a transmission rate switching process in a Bluetooth protocol specification
  • 3 is a schematic structural diagram of control data in negotiation information
  • FIG. 5 is a schematic flowchart of a method for switching a transmission rate according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of control information according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a method for switching a transmission rate according to another embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of a method for switching a transmission rate according to another embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of a method for switching a transmission rate according to another embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a Bluetooth device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a Bluetooth device according to another embodiment of the present invention.
  • FIG. 12 is a schematic block diagram showing the structure of a hardware module of a Bluetooth device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a Bluetooth system.
  • the entire Bluetooth system structure can be composed of the bottom hardware module, the intermediate protocol layer and the application layer.
  • the Bluetooth underlying hardware module is composed of a baseband (BB), a link management layer (LM), and a radio frequency (RF).
  • the RF layer is mainly responsible for RF processing and baseband modulation.
  • the baseband layer is responsible for frequency hopping and transmission of Bluetooth data and information frames.
  • the link management layer is responsible for connection establishment, teardown, and link security and control.
  • SCO Synchronous Connection Oriented
  • ACL Asynchronous Connectionless Link
  • the SCO connection is a symmetric connection that uses a reserved time slot to transmit packets. After the connection is established, the master device and the slave device can send SCO packets without being selected. SCO packets can transmit both voice and data, but only transfer the corrupted portion of the data when it is transmitted.
  • An ACL link is a directional transmission packet that supports both symmetric and asymmetric connections (one-to-one or one-to-many). The master device is responsible for controlling the link bandwidth and determining how much bandwidth and connection symmetry each slave device in the piconet can occupy. Data can only be transferred when the slave device is selected. The ACL link also supports receiving broadcast messages from the master device to all slave devices in the piconet. Both the intermediate protocol layer and the application layer are software modules.
  • HCI Host Controller Interface
  • HCI is actually the bridge between hardware and software in the Bluetooth protocol.
  • HCI provides a unified command interface that calls the underlying baseband layer, link management layer, state and control registers.
  • the Bluetooth intermediate protocol layer completes the functions of data frame decomposition and reorganization, service quality control, group extraction, etc., provides services for upper-layer applications, and provides an interface with the underlying hardware modules.
  • the intermediate protocol layer includes a Logical Link Control and Adaptation Protocol (L2CAP), a Service Discovery Protocol (SDP), a Serial Port Emulation Protocol (RFCOMM), and an Object Exchange Protocol (OBEX).
  • WAP Wireless Application Protocol
  • TCS Telephony Control Protocol
  • the AT command set is used to control a mobile phone or modem and a protocol stack that carries other service data.
  • the top layer is the application layer, which corresponds to various application models and applications.
  • the Link Manager Protocol is a data link layer protocol in the Bluetooth protocol stack and is responsible for establishing connections between Bluetooth devices.
  • the LMP performs identity authentication and encryption through initiation, exchange, and verification of the connection, and determines the baseband data packet size through negotiation.
  • the LMP performs link setup, authentication, link configuration, and the like.
  • the link manager discovers other remote link managers and communicates with them through the Link Management Protocol (LMP).
  • the Base Band Protocol is located above the Bluetooth radio layer in the Bluetooth protocol stack and forms the physical layer of Bluetooth together with the radio frequency layer.
  • the baseband and link control layers ensure a physical connection between Bluetooth devices.
  • the baseband protocol uses the query and paging process to synchronize the transmission frequency and clock between different devices, providing connection-oriented (SCO) and connectionless (ACL) physical connection methods for baseband data packets, and multiple data transmissions can be implemented on the same radio frequency.
  • ACL applies to data packets
  • SCO applies to voice and voice and data combinations
  • both voice and data packets are forward error corrected or cyclically redundant, and can be encrypted.
  • a special channel is assigned to different data types, including connection management information and control information.
  • the baseband protocol allows voice to be transmitted between Bluetooth devices using a variety of user modes, and the connection-oriented voice packets need only be transmitted over the baseband without reaching L2CAP.
  • L2CAP is an adaptation protocol for shielding high-level protocols from baseband protocols. It is located above the baseband protocol and belongs to the data link layer. It provides connection-oriented and connection-oriented data services for high-level, completes protocol multiplexing, segmentation and reassembly, and services. Features such as mass transfer and group abstraction. Although the baseband protocol provides both SCO and ACL connection types, L2CAP only supports ACLs.
  • Bluetooth is a technical specification for open short-range wireless communications that enables short-range wireless voice and data communications.
  • the Bluetooth device may be a mobile phone, a cordless phone, a notebook computer, a tablet computer, a personal digital assistant, a printer, a digital camera, a local area network device, or the like.
  • Bluetooth devices can support multiple transmission rates. For example, in the Bluetooth 5.0 specification, BLE can support three physical rates of BLE 1M, BLE 2M, and BLE long distance. In practical applications, the Bluetooth device can switch the transmission rate when the network status changes.
  • the master device and the slave device negotiate to determine a new transmission rate to be used, and the transmission rate is determined. Switch to this new transmission rate.
  • the following describes a transmission rate switching procedure in the Bluetooth protocol specification. As shown in FIG. 2, the handover process includes:
  • Host A is the host of the master device, and host B is the host of the slave device.
  • Link layer A is the link layer of the master device, and link layer B is the link layer of the slave device.
  • the master device and the slave device establish a link connection and transmit data.
  • the link can be an ACL link or an SCO link.
  • Host A sends a handover transmission rate request to link layer A.
  • the host controller of the master device sends a handover transmission rate request to the link layer A.
  • Link layer A is implemented by the upper layer software module of the master device. Specifically, the host A sends an LE Set PHY HCI command to the link layer A, requesting the link layer A to switch the transmission rate.
  • the link layer A sends the reply information to the host A.
  • the above reply information is information that the link layer A feeds back to the received handover transmission rate request.
  • the above reply information may be command status information sent for the above handover rate request, that is, Command status.
  • the link layer A sends the first negotiation information to the link layer B.
  • the foregoing first negotiation information is a type of control information indicating a transmission rate of the primary device determined by the primary device and a transmission rate preferentially used by the secondary device.
  • the foregoing first negotiation information is LL_PHY_REQ.
  • the link layer B sends the second negotiation information to the link layer A.
  • the foregoing second negotiation information is also a type of control information indicating a transmission rate that the master device determines to use preferentially and a transmission rate that is preferentially used by the slave device.
  • the foregoing second negotiation information is LL_PHY_RSP.
  • the format of the control data in the protocol data unit (PDU) corresponding to the first negotiation information and the second negotiation information is the same. specific.
  • the format of the control data in the PDU is as shown in FIG. 3, where 301 is the first transmission rate, indicating the transmission rate preferentially used by the master device, and 302 is the second transmission rate, indicating the transmission rate preferentially used by the slave device.
  • the link layer A sends the control information to the link layer B.
  • the above control information indicates that the transmission rate is switched from the device.
  • the foregoing control information indicates a transmission rate to be used by the master device and a transmission rate to be used by the slave device.
  • the control information is LL_PHY_UPDATE_IND, the format of the control data in the PDU corresponding to the control information is as shown in FIG. 4, and 401 is the third sending rate, which represents the PHY type that the master device sends to the slave device, that is, the sending rate of the master device; 402 is a fourth transmission rate, which represents the PHY type sent from the device to the master device, that is, the transmission rate of the slave device; 403 represents the time point at which the transmission rate is switched, that is, the time point at which the new transmission rate takes effect.
  • the foregoing link layer A and the link layer B respectively switch a transmission rate.
  • the link layer A switches the transmission rate of the master device to the transmission rate specified by the control information
  • the link layer B switches the transmission rate of the device to the transmission rate specified by the control information.
  • the master device and the slave device switch the transmission rate.
  • the baseband layer implements switching of the transmission rate.
  • the link layer A sends the first indication information to the host A.
  • the first indication information indicates that the switching of the transmission rate is completed. Specifically, the first indication information is LE PHY Update Complete.
  • the link layer B sends the second indication information to the host B.
  • the second indication information indicates that the switching of the transmission rate is completed. Specifically, the second indication information is LE PHY Update Complete.
  • the slave device can perform a process of switching the transmission rate of the master device, and the master device can also perform a process of switching the transmission rate from the device. That is to say, both the master device and the slave device can actively initiate a process of switching the transmission rate. It can be seen from the above transmission rate switching procedure that before transmitting the control information, the master device and the slave device need to negotiate to determine the transmission rate to which the handover is required. The negotiation operation between the master device and the slave device takes some time. In some application scenarios, the transmission quality may be degraded and the user experience may be affected.
  • An embodiment of the present invention provides a method for switching a transmission rate, where the method is applied to a first device that uses a Bluetooth physical channel to communicate with a second device. As shown in FIG. 5, the method includes:
  • the first device determines the link quality of the Bluetooth physical channel.
  • the Bluetooth physical channel may be any physical link between the first device and the second device.
  • the above Bluetooth physical channel may be an ACL link or an SCO link.
  • the first device detects the quality of the physical link between the first device and the second device, that is, the quality of the Bluetooth physical channel, to obtain the link quality.
  • the first device may determine the link quality of the Bluetooth physical channel according to the link quality measurement report reported by the second device.
  • the link quality measurement report includes information on the link quality of the Bluetooth physical channel.
  • the first device determines, according to a preset correspondence between a link quality and a transmission rate, a target transmission rate corresponding to the link quality.
  • the target transmission rate includes a first transmission rate and a second transmission rate.
  • the first transmission rate is a transmission rate to be adopted by the first device
  • the second transmission rate is a transmission rate to be adopted by the second device.
  • the first device may preset a correspondence between link quality and a transmission rate.
  • the first device may be configured with a mapping table of link quality and a transmission rate, where the first device may search for a transmission rate corresponding to any link quality in the corresponding relationship table.
  • Table 1 is a table of correspondence between link quality and transmission rate according to an embodiment of the present invention. It can be seen from Table 1 that the link quality in different intervals corresponds to different transmission rates, and the transmission rate includes the first device to be used.
  • the transmission rate and the transmission rate to be adopted by the second device For example, the link quality between the first device and the second device is in the second interval, and the link quality corresponds to the second transmission rate; the second transmission rate includes the sending rate to be adopted by the first device, and the The transmission rate to be adopted by the second
  • the foregoing first device may acquire a transmission rate that the second device can support in a process of establishing a physical link connection with the second device, or after establishing a physical link connection.
  • the first device determines, according to the capability information reported by the second device, a transmission rate that can be supported by the second device.
  • the first device may be preset with a transmission rate supported by the first device.
  • the first device determines a reference transmission rate according to a transmission rate supported by the first device and the second device, where the reference transmission rate is a transmission rate that can be adopted between the first device and the second device.
  • the transmission rate that can be adopted between the first device and the second device is the third transmission. Rate and fourth transmission rate.
  • the first device may determine the reference transmission rate in other manners, which is not limited in the embodiment of the present invention.
  • the above target transmission rate is a transmission rate that can be supported by the above link quality.
  • the foregoing target transmission rate is a larger transmission rate of the transmission rate that can be supported by the foregoing link quality.
  • the reference transmission rate is a transmission rate to be selected for transmission of data between the first device and the second device.
  • the target transmission rate is a more suitable transmission rate determined by the first device from the foregoing transmission rate according to the link quality.
  • the target transmission rate can be determined according to the reference transmission rate and the link quality in multiple manners, which is not limited in the embodiment of the present invention.
  • the first device may determine that the maximum transmission rate that the link quality can support in the reference transmission rate is the target transmission rate.
  • the first device may determine that the transmission rate that is the lowest in the reference transmission rate for the slave transceiver performance requirement is the target transmission rate; the link quality supports the transmission rate that the pair of slave transceiver performance requirements are the least.
  • the determining, by the first device, the target transmission rate corresponding to the link quality according to the preset relationship between the link quality and the transmission rate includes:
  • the first device After determining that the change amount of the link quality of the Bluetooth physical channel in the reference duration exceeds the quality threshold, the first device determines the target transmission rate corresponding to the link quality according to the correspondence between the link quality and the transmission rate.
  • the reference duration is the duration preset by the first device, for example, 100 milliseconds, 500 milliseconds, 2 seconds, and the like.
  • the amount of change in the link quality between the first device and the second device in the reference duration may be a difference between the first link quality and the second link quality, the first link quality and the second chain.
  • the quality of the link is the link quality between the first device and the second device measured by the first device at different time points, and the time point of the first link quality is measured and the second link quality is measured.
  • the interval of time points is the above reference duration.
  • the first device measures the link quality between the first device and the second device at an interval of 3 seconds, and the difference between the currently measured link quality of the first device and the last measured link quality.
  • the value is the amount of change in the link quality between the first device and the second device within 3 seconds.
  • the above quality threshold may be a preset fixed value or a variable related to link quality.
  • the quality threshold is a fixed value; if the amount of change in the link quality within the reference duration exceeds the fixed value, it is determined that the amount of change in the link quality within the reference duration exceeds the quality threshold.
  • the quality threshold is 20% of the link quality; if the change of the link quality within the reference duration exceeds 20% of the link quality, it is determined that the change of the link quality within the reference duration exceeds the quality threshold.
  • the change in the link quality is insufficient to affect the transmission quality, and the transmission rate is not required to be switched.
  • the above-mentioned link quality changes within the reference duration exceeds the above-mentioned quality threshold, it can be considered that the change in link quality is sufficient to affect the transmission quality, and the transmission rate needs to be switched to improve the transmission quality. It can be understood that the change of the link quality within the reference duration exceeds the quality threshold as a condition for starting the transmission rate switching operation, and it is necessary to switch the transmission rate after the condition is met.
  • the rate at which the first device sends information to the second device by using the foregoing Bluetooth physical channel is set to the first sending rate.
  • the first device may send control information and data to the second device by using the Bluetooth physical channel.
  • the rate at which the first device sends information to the second device by using the Bluetooth physical channel to the first sending rate may be that the first device sends information to the second device through the Bluetooth physical channel from the current rate.
  • the transmission rate is switched to the above first transmission rate.
  • the first device sends the first control information to the second device, to indicate that the second device sets the rate of sending information to the first device by using the Bluetooth physical channel to the second sending rate.
  • the rate at which the second device sends information to the first device through the Bluetooth physical channel to the second sending rate may be that the second device sends information to the first device through the Bluetooth physical channel from the current rate.
  • the transmission rate is switched to the above second transmission rate.
  • the foregoing first control information includes a first field, a second field, and a third field; the first field indicates the first sending rate; and the second field indicates the second sending rate; The third field indicates a target time point; the rate at which the first device sends information to the second device by using the Bluetooth physical channel to the first sending rate includes:
  • the rate at which the first device sends information to the second device through the Bluetooth physical channel is set to the first sending rate.
  • the transmission rate between the first device and the second device relates to a transmission rate of the first device, a reception rate of the first device, a transmission rate of the second device, and a reception rate of the second device.
  • the receiving rate of the first device corresponds to the sending rate of the second device, and the receiving rate of the first device is corresponding to the sending rate of the second device. Therefore, the first device determines the transmission rate to be adopted by the first device and the transmission rate to be adopted by the second device, and determines the transmission rate to be used, that is, the target transmission rate.
  • 401 is a first field indicating a first transmission rate
  • 402 is a second field indicating a second transmission rate
  • 403 indicates a target time point.
  • the target time point is a time point for switching the transmission rate; the first device and the second device both switch the transmission rate to the target transmission rate at the target time point.
  • the time interval between the first device and the second device to complete the transmission rate switching is short, and the data rate of the first device and the second device can be consistent.
  • the consistent data rate of the first device and the second device is that the sending rate of the first device is consistent with the receiving rate of the second device, and the sending rate of the second device is consistent with the receiving rate of the first device. .
  • the first control information indicates the sending rate to be adopted by the first device, the sending rate to be adopted by the second device, and the time point for switching the transmission rate; the implementation is simple, the control resources consumed are small, and the foregoing The data rate of a device and the second device is consistent.
  • the target transmission rate corresponding to the link quality between the first device and the second device is determined according to the correspondence between the link quality and the transmission rate, and the second device switches the transmission rate by using the control information, and switches.
  • the sending rate of the first device; the switching process is simple, and no negotiation operation is required, which can reduce the overhead of the message sequence.
  • the third field includes a target duration; after the first device sends the first control information to the second device, the method further includes:
  • the confirmation information After receiving the confirmation information from the second device, starting timing; the confirmation information indicating that the second device receives the first control information;
  • the above time points for reaching the above target include:
  • the duration of the above timing reaches the above target duration.
  • the above confirmation information may be an empty data packet or information including a specific identifier.
  • the confirmation information includes an acknowledgement bit for the first control information.
  • the third field includes a target duration, and the bit of the third field may correspond to the target duration.
  • the third field occupies two bytes, and the third field is the number of connection events.
  • the target duration is the duration corresponding to the number of connection events. For example, if the number of connection events is 9, the third field is 0000000000001001.
  • the master sends a packet to the slave in each connection event.
  • a connection event refers to the process of sending data packets between a master device and a slave device.
  • the target time point is a connection event in which the number indicated by the third field is pushed back based on the current connection event.
  • the current connection event is an event in which the first control information and the confirmation information are transmitted and received between the first device and the second device.
  • the counter records the number of connection events, the count value corresponding to the current connection event is 10, and the number of connection events indicated by the third field is 6;
  • the target time point is the time when the counter value of the counter reaches 26 Point, the target duration is the duration corresponding to 6 connection events.
  • the above start timing may be that the number of connection events is recorded by the counter, that is, the count value corresponding to the current connection event is recorded.
  • the duration of the time period of the above-mentioned target may be that the difference between the current count value of the counter and the count value corresponding to the current connection event reaches the number of connection events indicated by the third field.
  • the value corresponding to the third field is multiplied by a coefficient to obtain the target duration.
  • the method of counting connection events or timing is used to accurately determine the situation at which the target time point is reached, and the implementation is simple.
  • the method further includes:
  • the rejection information In the case where the rejection information is received before the target time point is reached, the timing is stopped; the rejection information indicates that the second device rejects the first control information.
  • the first device and the second device switch the transmission rate after reaching the target time point.
  • the condition that the first device and the second device need to meet the switching transmission rate is that the duration of the timing reaches the target duration. After the time is stopped, the duration of the above timing cannot reach the above target duration, and the above target time point cannot be reached. Therefore, in this way, the operation of switching the transmission rate initiated by the first device described above can be stopped.
  • the second device may send the rejection information, indicating that the first device stops the operation of switching the transmission rate; the second device may be resolved. The device cannot switch the transmission rate according to the indication of the first control information described above.
  • the timing is stopped; and the problem that the second device cannot switch the transmission rate according to the control information sent by the first device may be solved.
  • the foregoing first control information further includes a fourth field and/or a fifth field, where the fourth field indicates a link corresponding to the link quality, and the fifth field indicates the first device.
  • the link identifier included in the fourth field above corresponds to the link quality described above.
  • the link identifier may be an identifier of the current link or an identifier of another link.
  • the current link refers to a link that sends the first control information.
  • the fourth field is 0xffff, it represents the transmission rate of the current link; if it is another value, it represents the transmission rate of the link corresponding to the value.
  • the fifth field may be a code corresponding to a channel available between the first device and the second device, and the specific format and definition are the same as defined by the standard Bluetooth.
  • FIG. 6 is a schematic structural diagram of first control information according to an embodiment of the present invention.
  • 601 is a link identifier
  • 602 is a first rate, representing a PHY type that the first device sends to the second device, that is, a sending rate to be adopted by the first device
  • 603 is a second rate, representing a second rate.
  • the PHY type that the device sends to the first device that is, the transmission rate to be adopted by the second device
  • 604 indicates the channel indicating the available
  • 605 indicates the time point at which the transmission rate is switched, that is, the time point at which the new transmission rate takes effect.
  • the link is identified as the identity of the link that needs to switch the transmission rate.
  • the first control information may further include a link identifier and a channel available between the first device and the second device.
  • the first device is a master device
  • the second device is a slave device.
  • the method further includes:
  • the second control information is rejected;
  • the first time point is a time point at which the first device sends the first control information, and the second time The time point is a time point at which the first device receives the second control information.
  • both the master device and the slave device can send control information; when the time interval at which the master device and the slave device send control information is less than the time threshold, the master device rejects the control information sent by the master device, and performs the control sent by the master device. information. In this way, it is possible to prevent the master device and the slave device from performing two different transmission rate switching operations in the same time period.
  • An embodiment of the present invention provides another method for switching a transmission rate. As shown in FIG. 7, the method includes:
  • the first device and the second device establish a link and transmit data.
  • the link can be an ACL link or an SCO link.
  • the first device and the second device establish an audio connection.
  • the host of the first device sends a handover transmission rate request to the first link layer.
  • the host controller of the first device sends the foregoing handover transmission rate request to the first link layer.
  • the first link layer is a link layer of the first device, and is implemented by a software module of the first device.
  • the foregoing handover transmission rate request may be an LE Set PHY HCI command.
  • the host of the first device after determining that the amount of change in the link quality exceeds the quality threshold, sends a handover transmission rate request to the first link layer.
  • the first link layer sends a reply message to the host of the first device.
  • the above reply information is information that the first link layer feeds back the received handover transmission rate request.
  • the above reply information may be command status information sent for the above handover rate request, that is, Command status.
  • the first link layer sends control information to the second link layer.
  • the above control information indicates that the second device switches the transmission rate.
  • the second link layer is a link layer of the second device, and is implemented by a software module of the second device.
  • the foregoing control information indicates a sending rate to be used by the first device and a sending rate to be used by the second device.
  • the control information is LL_PHY_UPDATE_IND, and the format of the control data in the PDU corresponding to the control information is as shown in FIG. 6.
  • the second link layer sends the acknowledgement information to the first link layer.
  • the above confirmation information may be an empty data packet or information including a specific identifier.
  • the confirmation information includes an acknowledgement bit for the control information.
  • the first link layer confirms that the second device receives the foregoing control information.
  • the first link layer starts timing.
  • the first link layer switches the transmission data after reaching a time point of switching the transmission rate indicated by the control information.
  • the first link layer switches the transmission rate of the first device to a transmission rate specified by the control information.
  • the second link layer starts timing after sending the acknowledgement information.
  • the second link layer switches the transmission data after reaching a time point of switching the transmission rate indicated by the control information.
  • the second link layer switches the transmission rate of the second device to a transmission rate specified by the control information.
  • the first link layer sends the first indication information to the host of the first device.
  • the first indication information indicates that the switching of the transmission rate is completed.
  • the second link layer sends the second indication information to the host of the second device.
  • the second indication information indicates that the switching of the transmission rate is completed.
  • the transmission rate switching procedure provided by the embodiment of the present invention saves the negotiation process between two Bluetooth devices, and can complete the switching of the transmission rate more quickly.
  • the first device may be a master device or a slave device. That is to say, both the master device and the slave device can actively initiate a process of switching the transmission rate.
  • An embodiment of the present invention provides another method for switching a transmission rate. As shown in FIG. 8, the method includes:
  • the second link layer parses control information from the first link layer.
  • 701 to 707 in FIG. 7 may be performed first.
  • the second link layer After determining that the control information is rejected, the second link layer stops timing, and sends rejection information to the first link layer.
  • the first link layer stops timing.
  • the first link layer sends the indication information to the host of the first device.
  • the above indication information indicates that the operation of switching the transmission rate has been stopped.
  • the second device may reject the control information sent by the first device, and may solve the problem that the second device cannot switch the transmission rate according to the control information sent by the first device.
  • An embodiment of the present invention provides another method for switching a transmission rate, where the method is applied to a second device that communicates with a first device by using a Bluetooth physical channel. As shown in FIG. 9, the method includes:
  • the foregoing second device receives the control information sent by the first device.
  • the first device and the second device are both Bluetooth devices.
  • One of the first device and the second device is a master device, and the other device is a slave device.
  • the first device may be a slave device or a master device.
  • the second device may switch the transmission rate according to the control information sent by the first device.
  • the second device is switched from the current sending rate to the sending rate of the second device indicated by the control information, and the sending rate of the second device indicated by the control information is that the first device is configured according to the preset link.
  • the transmission rate corresponding to the link quality of the above-mentioned Bluetooth physical channel determined by the correspondence between the quality and the transmission rate.
  • the transmission rate of the foregoing second device can be quickly switched according to the link quality, and the transmission quality between the first device and the second device is ensured.
  • the second device does not need to negotiate with the first device to complete the switching of the transmission rate, and the switching efficiency is higher.
  • the method further includes:
  • the rejection information is sent to the first device; the rejection information indicates that the second device rejects the control information.
  • the second device may be in the foregoing link quality.
  • the at least one of the supported transmission rate and the reception rate cannot meet the requirements of the above target transmission rate, it is determined to reject the above control information. It can be understood that if the second device switches the transmission rate to the target transmission rate and fails to fully utilize the transmission and reception performance of the second device, determining to reject the control information; if the second device cannot reach the required transmission rate of the target transmission rate The rate or the transmission rate determines that the above control information is rejected. In this way, the transmission quality between the first device and the second device can be ensured, and the transceiving performance of the second device can be fully utilized.
  • the second device may send the rejection information to the first device, so that the first device re-determines a transmission rate that the second device can support.
  • the method further includes:
  • the second device is configured to receive the control information by sending the confirmation information to the first device, so that the first device performs the timing operation in time.
  • the target transmission rate includes a sending rate of the first device and a sending rate of the second device, where the control information includes a first field, a second field, and a third field; a field indicating a transmission rate to be adopted by the first device; the second field indicating a transmission rate to be adopted by the second device; and the third field indicating a target time point;
  • the foregoing second device switching from the current sending rate to the sending rate of the second device indicated by the control information includes:
  • the second device After reaching the target time point, the second device switches from the current transmission rate to the transmission rate indicated by the second field.
  • control information indicates the sending rate of the first device, the sending rate of the second device, and the time point of switching the transmission rate; the implementation is simple, the control resources consumed are small, and the first device and the second device are ensured.
  • the data rate of the device is consistent.
  • the foregoing third field includes a target duration; after the sending the confirmation information to the first device, the method further includes:
  • the above time points for reaching the above target include:
  • the duration of the above timing reaches the above target duration.
  • the third field includes a target duration, and the bit of the third field may correspond to the target duration.
  • the third field occupies two bytes, and the third field is the number of connection events.
  • the target duration is the duration corresponding to the number of connection events.
  • the above start timing may be that the number of connection events is recorded by the counter, that is, the count value corresponding to the current connection event is recorded.
  • the duration of the time period of the above-mentioned target may be that the difference between the current count value of the counter and the count value corresponding to the current connection event reaches the number of connection events indicated by the third field.
  • the value corresponding to the third field is multiplied by a coefficient to obtain the target duration.
  • the target time point can be accurately determined, and the implementation is simple.
  • the method further includes:
  • the second device fails to perform the transmission and reception performance of the second device by switching the transmission rate to the target transmission rate, determining to reject the control information; or if the second device cannot meet the target transmission rate.
  • the reception rate or transmission rate is determined to reject the above control information. In this way, the transmission quality between the first device and the second device can be ensured, and the transceiving performance of the second device can be fully utilized. Rejecting the above control information means that the second device does not switch the transmission rate according to the above control information.
  • the second device may timely reject the transmission rate switching operation initiated by the first device, which is simple to implement.
  • the foregoing first control information further includes a fourth field and/or a fifth field, where the fourth field indicates a link corresponding to the link quality, and the fifth field indicates the first device.
  • the embodiment of the present invention provides a Bluetooth device.
  • the Bluetooth device is a first device that uses a Bluetooth physical channel to communicate with a second device, where the Bluetooth device includes:
  • a baseband controller 1001 configured to determine a link quality of the foregoing Bluetooth physical channel
  • the baseband controller 1001 is further configured to determine, according to a preset correspondence between a link quality and a transmission rate, a target transmission rate corresponding to the link quality, where the target transmission rate includes a first transmission rate and a second transmission rate;
  • the wireless transceiver 1002 is configured to set, by using the foregoing Bluetooth physical channel, a rate of sending information to the second device to the first sending rate.
  • the wireless transceiver 1002 is further configured to send the first control information to the second device, to indicate that the second device sets the rate of sending information to the first device by using the Bluetooth physical channel to the second sending rate.
  • the specific implementation method is the same as the method in FIG. 5 and will not be described in detail herein.
  • the above baseband controller is used to implement the functions of the link management layer.
  • the target transmission rate corresponding to the link quality between the first device and the second device is determined according to the correspondence between the link quality and the transmission rate, and the second device switches the transmission rate by using the control information, and switches the The sending rate of a device; the switching process is simple, which can reduce the overhead of the message sequence.
  • the baseband controller 1001 is specifically configured to: after determining that the change of the link quality of the Bluetooth physical channel in the reference duration exceeds a quality threshold, according to the preset link quality and The correspondence of the transmission rates determines the target transmission rate corresponding to the above link quality.
  • the foregoing first control information includes a first field, a second field, and a third field; the first field indicates a sending rate of the first device; and the second field indicates the second device Transmission rate; the third field above indicates a target time point;
  • the wireless transceiver 1002 is specifically configured to switch from the current transmission rate to the first transmission rate after reaching the target time point.
  • the first control information indicates the sending rate to be adopted by the first device, the sending rate to be adopted by the second device, and the time point for switching the transmission rate; the implementation is simple, the control resources consumed are small, and the foregoing The data rate of a device and the second device is consistent.
  • the third field includes a target duration; the wireless transceiver 1002 is further configured to receive confirmation information from the second device, where the confirmation information indicates that the second device receives the first Control information; the above Bluetooth device further includes:
  • the timer 1003 is configured to start timing after the wireless transceiver receives the confirmation information.
  • the processor 1004 is further configured to determine that the timer duration of the timer reaches the target duration.
  • the processor 1004 can control the wireless transceiver to switch the transmission rate.
  • the method of counting connection events or timing is used to accurately determine the situation at which the target time point is reached, and the implementation is simple.
  • the wireless transceiver 1002 is further configured to receive the rejection information, where the rejection information indicates that the second device rejects the first control information;
  • the processor 1004 is further configured to control the timer to stop timing when determining that the wireless transceiver receives the rejection information before the target time point.
  • the timing is stopped; and the problem that the second device cannot switch the transmission rate according to the control information sent by the first device may be solved.
  • the foregoing first control information further includes a fourth field and/or a fifth field, where the fourth field indicates a link corresponding to the link quality, and the fifth field indicates the first device.
  • the first control information may further include a link identifier and a channel available between the first device and the second device.
  • the first device is a master device
  • the second device is a slave device.
  • the Bluetooth device further includes:
  • the wireless transceiver 1002 is further configured to receive second control information sent by the second device, where the second control information indicates that the first device switches a transmission rate;
  • the processor 1004 is further configured to reject the second control information when the time interval between the first time point and the second time point is less than a time threshold; the first time point is, the first device sends the first control The time point of the information, the second time point is a time point when the first device receives the second control information.
  • both the master device and the slave device can send control information; when the time interval at which the master device and the slave device send control information is less than the time threshold, the master device rejects the control information sent by the master device, and performs the control sent by the master device. information. In this way, it is possible to prevent the master device and the slave device from performing two different transmission rate switching operations in the same time period.
  • An embodiment of the present invention provides another Bluetooth device.
  • the Bluetooth device is a second device that communicates with the first device by using a Bluetooth physical channel, and the Bluetooth device includes:
  • a wireless transceiver 1101 configured to receive control information sent by the first device
  • the wireless transceiver 1101 is further configured to switch from a current transmission rate to a sending rate of the second device indicated by the control information, where the sending rate of the second device indicated by the control information is a preset according to the first device.
  • the correspondence between the link quality and the transmission rate determines the transmission rate corresponding to the link quality of the Bluetooth physical channel.
  • the second device does not need to negotiate with the first device to complete the switching of the transmission rate, and the switching efficiency is higher.
  • the foregoing Bluetooth device further includes:
  • the processor 1102 is configured to determine a situation in which the foregoing control information is rejected
  • the wireless transceiver 1101 is further configured to send the rejection information to the first device, where the rejection information indicates that the second device rejects the control information.
  • the second device may send the rejection information to the first device, so that the first device re-determines a transmission rate that the second device can support.
  • the wireless transceiver 1101 is further configured to send the acknowledgement information to the first device, where the acknowledgement information indicates that the second device receives the control information.
  • the second device is configured to receive the control information by sending the confirmation information to the first device, so that the first device performs the timing operation in time.
  • the foregoing control information includes a first field, a second field, and a third field, where the first field indicates a sending rate to be adopted by the first device, and the second field indicates the second device.
  • the wireless transceiver 1101 is specifically configured to switch from a current transmission rate to a transmission rate indicated by the second field after reaching the target time point.
  • control information indicates the sending rate of the first device, the sending rate of the second device, and the time point of switching the transmission rate; the implementation is simple, the control resources consumed are small, and the first device and the second device are ensured.
  • the data rate of the device is consistent.
  • the foregoing third field includes a target duration; the foregoing Bluetooth device further includes:
  • a timer 1103, configured to start timing after the wireless transceiver sends the confirmation information
  • the processor 1102 is further configured to determine that the timer duration of the timer reaches the target duration.
  • the target time point can be accurately determined, and the implementation is simple.
  • the processor 1102 is further configured to parse the foregoing control information
  • the processor 1102 is further configured to control the timer to stop timing when determining that the control information is rejected and the timer starts timing.
  • the second device may timely reject the transmission rate switching operation initiated by the first device, which is simple to implement.
  • the foregoing control information further includes a fourth field and/or a fifth field, where the fourth field indicates a link corresponding to the link quality, and the fifth field indicates the first device and the foregoing The channel available between the second devices.
  • the Bluetooth specification includes the application part of Bluetooth (ie, the application model) in addition to the protocol part.
  • it is generally considered to divide Bluetooth into two parts.
  • One is the software implementation part, which is located above HCI, including L2CAP, RFCOMM, SDP and TCS and some applications of Bluetooth on the upper layer of the Bluetooth protocol stack;
  • It is a hardware implementation part, which is located below the HCI, ie the underlying hardware module mentioned above, which is indicated in Figure 1. The structure and performance of the Bluetooth hardware module are discussed below.
  • FIG. 12 is a schematic block diagram showing the structure of a hardware module of a Bluetooth device according to an embodiment of the present invention.
  • the Bluetooth hardware module consists of the wireless transceiver (RF), baseband controller (BB) and link management layer of the Bluetooth protocol stack. At present, most manufacturers use the System-On-Chip (SOC) to embed these three functional modules on the same chip.
  • the Bluetooth device includes a processor 1201, a wireless transceiver (RF) 1202, a baseband controller (BB) 1203, a static random access memory (SRAM) 1204, a flash memory (Flash program memory) 1205, and a universal asynchronous transceiver 1206.
  • the wireless transceiver 1202 is the core of the Bluetooth device, and any Bluetooth device must have a wireless transceiver. It differs from ordinary wireless transceivers for broadcasting in that it is small in size and low in power. It consists of a phase-locked loop, a transmitting module, and a receiving module.
  • the transmitting part includes a frequency multiplier and is directly modulated by a voltage controlled oscillator;
  • the receiving part includes a mixer, an intermediate frequency amplifier, a discriminator, and a low noise amplifier.
  • the main functions of the wireless transceiver are modulation/demodulation, frame timing recovery, and frequency hopping to perform both transmit and receive operations.
  • the transmission operation includes carrier generation, carrier modulation, power control, and automatic gain control AGC; the receiving operation includes frequency tuning to the correct carrier frequency and signal strength control.
  • the baseband controller 1203 is a key module of the Bluetooth hardware module. It is mainly composed of link control sequence generator, programmable program column generator, internal voice processor, shared RAM router and timing chain management, encryption/decryption processing and other functional units. Its main function: realize the real-time processing function of the Bluetooth baseband part under the control of the microprocessor module, including the recovery of the symbol timing extraction of the received bit stream; the cyclic margin check of the packet header and the payload; the packet header and Forward error correction code processing and transmission processing of payload; encryption and decryption processing, and the like. And can provide an interface from the baseband controller to other chips (such as data path RAM client interface, microprocessor interface, pulse code modulation interface, etc.
  • the baseband controller 1203 can also determine the link quality of the Bluetooth physical channel and adjust the Bluetooth device to send The rate of information.
  • the processor 1201 is responsible for all bit level processing of Bluetooth bitstream modulation and demodulation, and is also responsible for controlling the transceiver and dedicated language codecs and decoders.
  • the speech codec consists of a digital-to-analog converter, an analog-to-digital conversion port, a digital interface, and an encoding module.
  • Main functions Provide voice coding and decoding functions, provide continuous variable slope incremental modulation and pulse code modulation.
  • the Bluetooth test module 1209 is composed of a tested module and a test device and a metering device.
  • the general test equipment is composed of a test device to form a piconet, the test device is the master node, and the tested module is a slave node.
  • the test equipment controls the entire test process, and its main functions provide certification and conformance specifications for the wireless layer and the baseband layer, as well as management of product production and after-sales testing.
  • the function of the universal asynchronous transceiver 1206 and the universal serial interface 1207 is to provide a physical connection to the HCI to the transport layer, which is a channel through which the upper layer communicates with the physical module.
  • the processor 1201 may be a central processing unit (CPU), and the processor may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • a computer readable storage medium stores a computer program, where the computer program includes program instructions, and when the program instructions are executed by a processor, the first device determines The link quality of the Bluetooth physical channel, the first device uses the Bluetooth physical channel to communicate with the second device; the first device determines the link according to a preset relationship between the link quality and the transmission rate.
  • the target transmission rate includes: a first transmission rate and a second transmission rate; and the rate at which the first device sends information to the second device by using the Bluetooth physical channel is set to Transmitting, by the first device, the first control information to the second device, to indicate that the rate at which the second device sends information to the first device by using the Bluetooth physical channel is set to The second transmission rate.
  • another computer readable storage medium the computer readable storage medium storing a computer program, the computer program comprising program instructions, the program instructions being implemented by a processor: second Receiving, by the device, control information sent by the first device, where the second device uses a Bluetooth physical channel to communicate with the first device; the second device switches from a current sending rate to the control information a sending rate of the second device, where the sending rate of the second device indicated by the control information is the Bluetooth physical channel determined by the first device according to a preset correspondence between a link quality and a transmission rate.
  • the link quality corresponds to the transmission rate.
  • the above computer readable storage medium may be an internal storage unit of the Bluetooth device in any of the foregoing embodiments, such as a hard disk or a memory of the Bluetooth device.
  • the above computer readable storage medium may also be an external storage device of the above Bluetooth device, such as a plug-in hard disk equipped with the above-mentioned Bluetooth device, a smart memory card (SMC), and a Secure Digital (SD) card. Flash card, etc.
  • the above computer readable storage medium may also include both an internal storage unit of the above Bluetooth device and an external storage device.
  • the above computer readable storage medium is used to store the above computer program and other programs and data required by the above Bluetooth device.
  • the computer readable storage medium described above can also be used to temporarily store data that has been output or is about to be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本发明实施例公开了一种传输速率切换方法、蓝牙设备及计算机可读介质,该方法应用于使用蓝牙物理信道与第二设备进行通信的第一设备,该方法包括:所述第一设备确定所述蓝牙物理信道的链路质量;所述第一设备根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率,其中,所述目标传输速率包括:第一发送速率和第二发送速率;所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率;所述第一设备向所述第二设备发送第一控制信息,以指示所述第二设备将通过所述蓝牙物理信道向所述第一设备发送信息的速率设置为所述第二发送速率;可以快速地完成传输速率切换,减少信令开销。

Description

传输速率切换方法、蓝牙设备及计算机可读介质 技术领域
本发明涉及通信领域,尤其涉及一种传输速率切换方法、蓝牙设备及计算机可读介质。
背景技术
蓝牙是一种支持设备短距离通信的无线电技术,能在包括移动电话、无线耳机、笔记本电脑、相关外设等众多设备之间进行无线信息交换。由于移动通信技术的快速发展,手机、平板电脑等便携设备成为人们日常生活的必需品,蓝牙技术已成为这些便携设备的标配。随着蓝牙技术的演进,蓝牙标准的主要版本从1.1版本一直演进到当前的5.0版本。在最新的5.0版本中,低功耗蓝牙(Bluetooth Low Energy,BLE)已可以支持BLE 1M、BLE 2M以及BLE长距离3种物理速率。可以预计,随着蓝牙标准5.0的推出,会有更多的音频功能通过BLE技术来实现。这样的好处是蓝牙芯片不用再依赖于传统蓝牙才能支持音乐播放和通话,从而可以降低蓝牙支持音频的成本。但是考虑到在音乐播放或通话中,网络状况会发生变化,如果一直采用高速率的物理信道,重传和错包会很高,会导致音频播放或通话连续卡顿。为解决该问题,理想的情况是蓝牙模块通知蓝牙主机暂停音频或通话,并在控制器侧进行物理信道设置,选择物理带宽更小,抗干扰能力更强的物理信道进行数据的传输。同时,在干扰减弱或消失以后,也需要尽快将物理信道切换回高速率模式。
针对如何实现不同物理速率之间的切换,蓝牙规范在链路控制层制定了物理速率更新流程。该流程的主要特点是通过3条链路控制的交互来实现当前链路的物理速率的切换。也就是说,在当前的蓝牙规范中物理速率的更新需要3次空口上的消息收发才能完成,这样通信双方至少消耗3个BLE连接间隔才能完成物理层信道信息的传输和确认。按照BLE规范,最短的BLE连接间隔为7.5毫秒,这样算来大约至少需要22.5毫秒才能完成物理层信道消息的传输和确认。另外,BLE规范规定:信道切换的时间点,至少是在速率更新控制信息发送或收到后至少6个连接间隔才能生效。这样,从物理速率切换发起到最终完成,至少需要9个BLE连接间隔,即至少需要75毫秒左右才能完成。
因此,当前采用的技术方案物理速率切换花费时间长,无法满足特定场景例如音频播放或通话等场景对物理速率快速切换的需求。
发明内容
本发明实施例提供一种传输速率切换方法、蓝牙设备及计算机可读介质,可改善蓝牙设备切换传输速率的流程,提高切换效率。
第一方面,本发明实施例提供了一种传输速率切换方法,该方法应用于使用蓝牙物理信道与第二设备进行通信的第一设备,该方法包括:
所述第一设备确定所述蓝牙物理信道的链路质量;
所述第一设备根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率,其中,所述目标传输速率包括:第一发送速率和第二发送速率;
所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率;
所述第一设备向所述第二设备发送第一控制信息,以指示所述第二设备将通过所述蓝牙物理信道向所述第一设备发送信息的速率设置为所述第二发送速率。
所述第一设备和所述第二设备均为蓝牙设备。蓝牙设备为可采用蓝牙技术通信的设备,即具备蓝牙通讯功能的设备。所述第一设备和所述第二设备中的一个为主设备,另一个为从设备。所述第一设备可以是从设备,也可以是主设备。蓝牙技术规定每一对蓝牙设备之间进行蓝牙通讯时,必须一个为主设备,另一为从设备,才能进行通信。通信时,由主设备进行查找,发起配对,在链路建立成功后,双方可收发数据。也就是说,主设备为主动发起通信的蓝牙设备;从设备为被主设备选中进行通信的设备。
本申请中,所述第一设备和所述第二设备之间至少存在一个物理链路。所述蓝牙物理信道为所述第一设备和所述第二设备之间任意一个物理链路或物理传输信道。所述链路质量为所述第一设备和所述第二设备之间的一个待调整传输速率的物理链路的质量。所述目标传输速率为通过所述蓝牙物理信道传输数据的传输速率。具体的,所述第一设备检测所述蓝牙物理信道的质量,得到所述链路质量。可以理解,所述目标传输速率为所述链路质量可支持的传输速率。可选的,所述目标传输速率为所述链路质量可支持的传输速率中较大的传输速率。
本申请中,依据预设的链路质量和传输速率的对应关系确定蓝牙物理信道的链路质量对应的目标传输速率,通过控制信息指示该第二设备设置发送速率,并设置该第一设备的发送速率;切换流程简单,可以减少消息序列的开销。
在一种可选的实现方式中,所述第一设备根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率包括:
所述第一设备在确定所述蓝牙物理信道的链路质量在参考时长内的变化量超过质量阈值后,根据链路质量与传输速率的对应关系确定所述链路质量对应的目标传输速率。
可以理解,所述链路质量在参考时长内的变化量超过质量阈值为切换传输速率所需满足的条件。也就是说,若所述链路质量在参考时长内的变化量超过所述质量阈值,则切换传输速率;若所述链路质量在参考时长内的变化量未超过所述质量阈值,则不切换传输速率。所述参考时长为所述第一设备预设的时长,例如100毫秒、500毫秒、2秒等。
在一种可选的实现方式中,所述第一控制信息包含第一字段、第二字段以及第三字段;所述第一字段指示所述第一发送速率;所述第二字段指示所述第二发送速率;所述第三字段指示目标时间点;所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率包括:
在到达所述目标时间点后,所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率。
可以理解,所述目标时间点为切换传输速率的时间点;所述第一设备和所述第二设备均在所述目标时间点将传输速率切换为所述目标传输速率。采用这种方式,所述第一设备和所述第二设备完成传输速率切换的时间间隔较短,可以保证所述第一设备和所述第二设备收发数据速率的一致。
在一种可选的实现方式中,所述第三字段包含目标时长;所述第一设备向所述第二设备发送第一控制信息之后,所述方法还包括:
在接收到来自所述第二设备的确认信息后,开始计时;所述确认信息指示所述第二设备接收到所述第一控制信息;
所述到达所述目标时间点包括:
所述计时的时长达到所述目标时长。
在一种可选的实现方式中,所述在接收到来自所述第二设备的确认信息后,开始计时之后,所述方法还包括:
在到达所述目标时间点之前接收到拒绝信息的情况下,停止计时;所述拒绝信息指示所述第二设备拒绝所述第一控制信息。
在所述第二设备拒绝所述第一控制信息的情况下,停止计时,即停止本次传输速率的切换操作。可以理解,停止计时后,所述第一设备无法满足达到目标时间点的条件,也就不需要执行传输速率的切换操作。如果所述第二设备拒绝所述第一控制信息,所述第一设备可以生成另外一个控制信息,该控制信息指示将所述第一设备和所述第二设备之间的传输速率切换为另一个传输速率,该传输速率不同于所述目标传输速率。通过这种方式,可以避免第二设备切换至目标传输速率后,所述第一设备和所述第二设备之间传输质量较差的问题。
在一种可选的实现方式中,所述第一控制信息还包括第四字段和/或第五字段;所述第四字段指示所述链路质量对应的链路;所述第五字段指示所述第一设备和所述第二设备之间可用的信道。
所述第一控制信息中还可以包含链路标识、可用的信道、编码方式等信息。
在一种可选的实现方式中,所述第一设备为主设备,所述第二设备为从设备;所述方法还包括:
接收所述第二设备发送的第二控制信息;所述第二控制信息指示所述第一设备切换发送速率;
在第一时间点和第二时间点的时间间隔小于时间阈值的情况下,拒绝所述第二控制信息;所述第一时间点为所述第一设备发送所述第一控制信息的时间点,所述第二时间点为所述第一设备接收到所述第二控制信息的时间点。
本申请中,主设备和从设备均可以发送控制信息;在主设备和从设备发送控制信息的时间间隔小于时间阈值的情况下,拒绝从设备发送的控制信息,执行主设备发送的控制信息。通过这种方式,可以避免主设备和从设备在同一时间段内执行两个传输速率的切换操作。
第二方面,本发明实施例提供了另一种传输速率切换方法,该方法应用于使用蓝牙物理信道与第一设备进行通信的第二设备,,该方法包括:
所述第二设备接收所述第一设备发送的控制信息;
所述第二设备从当前发送速率切换到所述控制信息所指示的所述第二设备的发送速率;所述控制信息所指示的所述第二设备的发送速率为所述第一设备根据预设的链路质量与传输速率的对应关系确定的所述蓝牙物理信道的链路质量对应的发送速率。
所述第一设备和所述第二设备均为蓝牙设备。所述第一设备和所述第二设备中的一个为主设备,另一个为从设备。所述第一设备可以是从设备,也可以是主设备。所述第二设备可以依据所述第一设备发送的控制信息切换传输速率。具体的,所述第二设备可以将传输速率切换为所述控制信息所指示的传输速率。可以理解,所述第二设备的传输速率可以根据链路质量快速地进行切换,并保证所述第一设备和所述第二设备之间的传输质量。
在一种可选的实现方式中,所述第二设备接收所述第一设备发送的控制信息之后,所述方法还包括:
在确定拒绝所述控制信息的情况下,向所述第一设备发送拒绝信息;所述拒绝信息指示所述第二设备拒绝所述控制信息。
可选的,所述第二设备在所述链路质量下可支持的发送速率和接收速率中的至少一个大于所述目标传输速率的要求的情况下,或者,所述第二设备在所述链路质量下可支持的发送速率和接收速率中的至少一个不能达到所述目标传输速率的要求的情况下,确定拒绝所述控制信息。可以理解,若所述第二设备将传输速率切换至所述目标传输速率不能充分发挥所述第二设备的收发性能,则确定拒绝所述控制信息;若所述第二设备不能达到所述目标传输速率所要求的接收速率或发送速率,则确定拒绝所述控制信息。这样可以保证第一设备和第二设备之间的传输质量,并充分利用第二设备的收发性能。收发性能是指接收数据和发送数据的性能,对应接收速率和发送速率。
在一种可选的实现方式中,所述第二设备接收所述第一设备发送的控制信息之后,所述方法还包括:
向所述第一设备发送确认信息,所述确认信息指示所述第二设备接收到所述控制信息。
在一种可选的实现方式中,所述控制信息包含第一字段、第二字段以及第三字段;所述第一字段指示所述第一设备待采用的发送速率;所述第二字段指示所述第二设备待采用的发送速率;所述第三字段指示目标时间点;
所述第二设备从当前发送速率切换到所述控制信息所指示的所述第二设备的发送速率包括:
在到达所述目标时间点后,所述第二设备从当前发送速率切换到所述第二字段指示的发送速率。
在一种可选的实现方式中,所述第三字段包含目标时长;所述向所述第一设备发送确认信息之后,所述方法还包括:
开始计时;
所述到达所述目标时间点包括:
所述计时的时长达到所述目标时长。
在一种可选的实现方式中,所述第二设备接收第一设备发送的控制信息之后,所述方法还包括:
解析所述控制信息;
在确定拒绝所述控制信息且启动计时的情况下,停止计时。
在一种可选的实现方式中,所述第一控制信息还包括第四字段和/或第五字段;所述第四字段指示所述链路质量对应的链路;所述第五字段指示所述第一设备和所述第二设备之 间可用的信道。
第三方面,本发明实施例提供了一种蓝牙设备,该蓝牙设备包括用于执行上述第一方面的方法的硬件模块。
第四方面,本发明实施例提供了另一种蓝牙设备,该蓝牙设备包括用于执行上述第二方面的方法的硬件模块。
第五方面,本发明实施例提供了一种计算机可读存储介质,所述计算机存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时使所述处理器执行上述第一方面或上述第二方面的方法。
附图说明
下面将对本申请实施例中所需要使用的附图进行说明。
图1是本发明实施例提供的一种蓝牙系统结构示意图;
图2是蓝牙协议规范中的一种传输速率切换流程示意图;
图3是一种协商信息中控制数据的结构示意图;
图4是一种控制信息中控制数据的结构示意图;
图5是本发明实施例提供的一种传输速率切换方法流程示意图;
图6是本发明实施例提供的一种控制信息的结构示意图;
图7是本发明另一实施例提供的一种传输速率切换方法流程示意图;
图8是本发明另一实施例提供的一种传输速率切换方法流程示意图;
图9是本发明另一实施例提供的一种传输速率切换方法流程示意图;
图10是本发明实施例提供的一种蓝牙设备的结构示意图;
图11是本发明另一实施例提供的一种蓝牙设备的结构示意图;
图12是本发明实施例提供的一种蓝牙设备的硬件模块结构示意框图。
具体实施方式
请参阅图1,图1是一种蓝牙系统结构示意图。整个蓝牙系统结构可由底层硬件模块、中间协议层和应用层三部分组成。如图1所示,蓝牙底层硬件模块由基带层(Base Band,BB)、链路管理层(Link Manager,LM)和射频层(Radio Frequency,RF)构成。射频层主要负责射频处理和基带调制,基带层负责跳频和蓝牙数据及信息帧的传输,链路管理层负责连接的建立、拆除以及链路的安全和控制。链路分为两种类型:面向连接的同步链路(Synchronous Connection Oriented,SCO),面向无连接的异步链路(Asynchronous Connectionless Link,ACL)。前者主要用于同步话音传送,后者主要用于分组数据传送。SCO连接为对称连接,利用保留时隙传送数据包。连接建立后,主设备和从设备可以不被选中就发送SCO数据包。SCO数据包既可以传送话音,也可以传送数据,但在传送数据时,只用于重发被损坏的那部分的数据。ACL链路就是定向发送数据包,它既支持对称连接,也支持不对称连接(既可以一对一,也可以一对多)。主设备负责控制链路带宽,并决定微微网中的每个从设备可以占用多少带宽和连接的对称性。从设备只有被选中时才能传送数据。ACL链路也支持接收主设备发给微微网中所有从设备的广播消息。中间协议层和应用层均 为软件模块。上层软件模块不能和底层硬件模块直接连接,两个模块接口之间的消息和数据通过主机控制器接口(Host Controller Interface,HCI)的解释才能进行传递。HCI实际上相当于蓝牙协议中软硬件之间的桥梁。HCI提供一个调用下层基带层、链路管理层、状态和控制寄存器等硬件的统一命令接口。蓝牙中间协议层完成数据帧的分解与重组、服务质量控制、组提取等功能,为上层应用提供服务,并提供与底层硬件模块的接口。中间协议层包括逻辑链路与适配协议(Logical Link Control and Adaptation Protocol,L2CAP)、服务发现协议(Service Discovery Protocol,SDP)、串口仿真协议(RFCOMM)、对象交换协议(Object Exchange,OBEX)、无线应用协议(Wireless Application Protocol,WAP)、电话控制协议(Telephony Control Protocol Spectocol,TCS)等。AT命令集用来控制移动电话或调制解调器以及传送其他业务数据的协议栈。最上层是应用层,对应于各种应用模型和应用程序。
下面介绍一下本申请涉及的蓝牙协议栈中的协议。
链路管理协议(Link Manager Protocol,LMP)是蓝牙协议栈中的一个数据链路层协议,负责各蓝牙设备间连接的建立。LMP通过连接的发起、交换、核实,进行身份认证和加密,通过协商确定基带数据分组大小。LMP执行链路设置、认证、链路配置等。链路管理器发现其它远程链路管理器并与它们通过链路管理协议(LMP)进行通信。
基带协议(Base Band Protocol)在蓝牙协议栈中位于蓝牙射频层之上,同射频层一起构成了蓝牙的物理层。基带和链路控制层确保各蓝牙设备之间的物理连接。基带协议使用查询和分页进程同步不同设备间的发送频率和时钟,为基带数据分组提供面向连接(SCO)和无连接(ACL)两种物理连接方式,而且,同一射频上可实现多路数据传送。ACL适用于数据分组,SCO适用于话音以及话音与数据的组合,上述话音和数据分组都进行前向纠错或循环冗余校验,且可加密。此外,对应不同数据类型(包括连接管理信息和控制信息)都分配一个特殊通道。基带协议可使用各种用户模式在蓝牙设备间传送话音,面向连接的话音分组只需经过基带传输,而不到达L2CAP。
L2CAP是一个为高层协议屏蔽基带协议的适配协议,位于基带协议之上,属于数据链路层,为高层提供面向连接和面向无连接的数据服务,完成协议复用、分段和重组、服务质量传输以及组抽象等功能。虽然基带协议提供了SCO和ACL两种连接类型,但L2CAP只支持ACL。
蓝牙是一种开放的短距无线通信的技术规范,可实现短距离的无线语音和数据通信。本申请中,蓝牙设备可以是移动电话、无绳电话、笔记本电脑、平板电脑、个人数字助理、打印机、数字相机、局域网络设备等。当前,蓝牙设备可以支持多种传输速率。例如,在蓝牙5.0规范中,BLE已可以支持BLE 1M、BLE 2M以及BLE长距离3种物理速率。在实际应用中,蓝牙设备在网络状况发生变化的情况下,可以切换传输速率。具体的,若主设备和从设备在传输数据的过程中网络状况发生变化,即链路质量发生变化,则该主设备和该从设备协商确定所需使用的新的传输速率,并将传输速率切换为该新的传输速率。下面介绍蓝牙协议规范中的一种传输速率切换流程,如图2所示,该切换流程包括:
201、建立链路,并传输数据;
主机A为主设备的主机,主机B为从设备的主机。链路层A为主设备的链路层,链路 层B为从设备的链路层。主设备和从设备建立链路连接,并传输数据。该链路可以是ACL链路,也可以是SCO链路。
202、主机A向链路层A发送切换传输速率请求;
可选的,主设备的主机控制器向链路层A发送切换传输速率请求。链路层A是由主设备的上层软件模块实现的。具体的,主机A向链路层A发送LE Set PHY HCI命令,请求链路层(Link Layer)A切换传输速率。
203、上述链路层A向上述主机A发送回复信息;
上述回复信息为上述链路层A对接收到的切换传输速率请求进行反馈的信息。上述回复信息可以是针对上述切换传输速率请求发送的命令状态信息,即Command status。
204、上述链路层A向链路层B发送第一协商信息;
上述第一协商信息为一种控制信息,指示主设备确定的主设备优先使用的发送速率以及从设备优先使用的发送速率。具体的,上述第一协商信息为LL_PHY_REQ。
205、上述链路层B向上述链路层A发送第二协商信息;
上述第二协商信息也为一种控制信息,指示从设备确定的主设备优先使用的发送速率以及从设备优先使用的发送速率。具体的,上述第二协商信息为LL_PHY_RSP。上述第一协商信息和上述第二协商信息对应的协议数据单元(Protocol Data Unit,PDU)中控制数据的格式相同。具体的。PDU中控制数据的格式如图3所示,301为第一发送速率,表示主设备优先使用的发送速率;302为第二发送速率,表示从设备优先使用的发送速率。
206、上述链路层A向上述链路层B发送控制信息;
上述控制信息指示从设备切换传输速率。具体的,上述控制信息指示主设备待使用的发送速率以及从设备待使用的发送速率。具体的,控制信息为LL_PHY_UPDATE_IND,该控制信息对应的PDU中控制数据的格式如图4所示,401为第三发送速率,代表主设备发送到从设备的PHY类型,即主设备的发送速率;402为第四发送速率,代表从设备发送给主设备的PHY类型,即从设备的发送速率;403表示切换传输速率的时间点,即新的传输速率生效的时间点。
207、上述链路层A和上述链路层B分别切换传输速率;
具体的,上述链路层A将主设备的发送速率切换为上述控制信息所指定的发送速率;上述链路层B将从设备的发送速率切换为上述控制信息所指定的发送速率。在实际应用中,主设备和从设备切换传输速率。在实际应用中,基带层实现传输速率的切换。
208、上述链路层A向主机A发送第一指示信息;
上述第一指示信息指示完成传输速率的切换。具体的,第一指示信息为LE PHY Update Complete。
209、上述链路层B向主机B发送第二指示信息。
上述第二指示信息指示完成传输速率的切换。具体的,第二指示信息为LE PHY Update Complete。
从设备可以执行主设备切换传输速率的流程,主设备也可以执行从设备切换传输速率的流程。也就是说,主设备和从设备均可以主动发起切换传输速率的流程。从上述传输速率切换流程可以看出,在发送控制信息之前,主设备和从设备需要协商确定所需切换至的 传输速率。由于主设备和从设备的协商操作需要消耗一些时间,在一些应用场景中,可能会带来传输质量的下降,影响用户体验。
本发明实施例提供了一种传输速率切换方法,该方法应用于使用蓝牙物理信道与第二设备进行通信的第一设备,如图5所示,该方法包括:
501、上述第一设备确定上述蓝牙物理信道的链路质量;
上述第一设备和上述第二设备之间至少存在一个物理链路。上述蓝牙物理信道可以为上述第一设备和上述第二设备之间任意一个物理链路。上述蓝牙物理信道可以是ACL链路,也可以是SCO链路。可选的,上述第一设备检测上述第一设备和上述第二设备之间的物理链路的质量,即上述蓝牙物理信道的质量,得到上述链路质量。可选的,上述第一设备可以根据上述第二设备上报的链路质量测量报告,确定上述蓝牙物理信道的链路质量。上述链路质量测量报告包含上述蓝牙物理信道的链路质量的信息。
502、上述第一设备根据预设的链路质量与传输速率的对应关系,确定上述链路质量对应的目标传输速率;
上述目标传输速率包含第一发送速率和第二发送速率;上述第一发送速率为上述第一设备待采用的发送速率,上述第二发送速率为上述第二设备待采用的发送速率。上述第一设备可以预置有链路质量与传输速率的对应关系。具体的,上述第一设备可以预置有链路质量与传输速率的对应关系表,上述第一设备可以在上述对应关系表中查找任意链路质量对应的传输速率。表1为本发明实施例提供的一种链路质量与传输速率的对应关系表,从表1可以看出处于不同区间的链路质量对应不同的传输速率,传输速率包含第一设备待采用的发送速率和第二设备待采用的发送速率。举例来说,第一设备和第二设备之间的链路质量处于第二区间,则该链路质量对应第二传输速率;该第二传输速率包含该第一设备待采用的发送速率和该第二设备待采用的发送速率。
表1
链路质量 传输速率
第一区间 第一传输速率
第二区间 第二传输速率
…… ……
第N区间 第N传输速率
上述第一设备可以在与上述第二设备建立物理链路连接的过程中,或者,在建立物理链路连接之后,获取上述第二设备可支持的传输速率。可选的,上述第一设备根据上述第二设备上报的能力信息确定上述第二设备可支持的传输速率。上述第一设备可以预置有上述第一设备支持的传输速率。可选的,上述第一设备根据上述第一设备和上述第二设备分别支持的传输速率确定参考传输速率,上述参考传输速率为上述第一设备和上述第二设备之间可采用的传输速率。假定第一设备支持第一传输速率至第四传输速率,第二设备支持第三传输速率和第四传输速率;则该第一设备和该第二设备之间可采用的传输速率为第三传输速率和第四传输速率。第一设备可以采用其他方式确定参考传输速率,本发明实施例不作限定。
上述目标传输速率为上述链路质量可支持的传输速率。可选的,上述目标传输速率为 上述链路质量可支持的传输速率中较大的传输速率。可以理解,上述参考传输速率为上述第一设备和上述第二设备之间传输数据待选用的传输速率。上述目标传输速率为上述第一设备根据链路质量从上述待选用的传输速率中确定的较为合适的传输速率。在实际应用中,可以采用多种方式根据参考传输速率以及链路质量确定目标传输速率,本发明实施例不作限定。举例来说,第一设备可以确定参考传输速率中链路质量可支持的最大的传输速率为目标传输速率。又举例来说,第一设备可以确定参考传输速率中对从设备收发性能要求最低的传输速率为目标传输速率;链路质量支持该对从设备收发性能要求最低的传输速率。
在一种可选的实现方式中,上述第一设备根据预设的链路质量与传输速率的对应关系,确定上述链路质量对应的目标传输速率包括:
上述第一设备在确定上述蓝牙物理信道的链路质量在参考时长内的变化量超过质量阈值后,根据链路质量与传输速率的对应关系确定上述链路质量对应的目标传输速率。
上述参考时长为上述第一设备预设的时长,例如100毫秒、500毫秒、2秒等。上述第一设备和上述第二设备之间的链路质量在参考时长内的变化量可以是第一链路质量和第二链路质量的差值,上述第一链路质量和上述第二链路质量为上述第一设备在不同时间点测得的上述第一设备和上述第二设备之间的链路质量,测得上述第一链路质量的时间点和测得上述第二链路质量的时间点的间隔为上述参考时长。举例来说,第一设备测量该第一设备和第二设备之间的链路质量的间隔为3秒,该第一设备当前测得的链路质量和上一次测得的链路质量的差值为该第一设备和该第二设备之间的链路质量在3秒内的变化量。上述质量阈值可以是一个预置的固定值,也可以是与链路质量相关的变量。举例来说,质量阈值为固定值;若链路质量在参考时长内的变化量超过该固定值,则确定链路质量在参考时长内的变化量超过质量阈值。又举例来说,质量阈值为链路质量的20%;若链路质量在参考时长内的变化量超过该链路质量的20%,则确定链路质量在参考时长内的变化量超过质量阈值。
在上述链路质量在参考时长内的变化量未超过上述质量阈值的情况下,可以认为链路质量的变化不足以影响传输质量,也就不需要切换传输速率。在上述链路质量在参考时长内的变化量超过上述质量阈值的情况下,可以认为链路质量的变化足以影响传输质量,需要切换传输速率以改善传输质量。可以理解,链路质量在参考时长内的变化量超过质量阈值为启动传输速率切换操作的条件,在满足该条件后才有必要切换传输速率。
本发明实施例中,通过设置链路质量在参考时长内的变化量超过质量阈值作为启动切换传输速率操作的条件,可以减少不必要的传输速率切换操作以及信令开销,并在链路质量发生变化时及时切换传输速率。
503、上述第一设备将通过上述蓝牙物理信道向上述第二设备发送信息的速率设置为上述第一发送速率;
上述第一设备可以通过上述蓝牙物理信道向上述第二设备发送控制信息和数据。上述第一设备将通过上述蓝牙物理信道向上述第二设备发送信息的速率设置为上述第一发送速率可以是上述第一设备将通过上述蓝牙物理信道向上述第二设备发送信息的速率从当前的发送速率切换到上述第一发送速率。
504、上述第一设备向上述第二设备发送第一控制信息,以指示上述第二设备将通过上 述蓝牙物理信道向上述第一设备发送信息的速率设置为上述第二发送速率。
上述第二设备将通过上述蓝牙物理信道向上述第一设备发送信息的速率设置为上述第二发送速率可以是上述第二设备将通过上述蓝牙物理信道向上述第一设备发送信息的速率从当前的发送速率切换到上述第二发送速率。
在一种可选的实现方式中,上述第一控制信息包含第一字段、第二字段以及第三字段;上述第一字段指示上述第一发送速率;上述第二字段指示上述第二发送速率;上述第三字段指示目标时间点;上述第一设备将通过上述蓝牙物理信道向上述第二设备发送信息的速率设置为上述第一发送速率包括:
在到达上述目标时间点后,上述第一设备将通过上述蓝牙物理信道向上述第二设备发送信息的速率设置为上述第一发送速率。
上述第一设备和上述第二设备之间的传输速率涉及上述第一设备的发送速率、上述第一设备的接收速率、上述第二设备的发送速率以及上述第二设备的接收速率。由于上述第一设备的发送速率和上述第二设备的接收速率是对应的,上述第一设备的接收速率和上述第二设备的发送速率是对应的。因此,上述第一设备确定上述第一设备待采用的发送速率和上述第二设备待采用的发送速率,也就确定了待使用的传输速率,即上述目标传输速率。如图4所示,401为第一字段,指示第一发送速率;402为第二字段,指示第二发送速率;403指示目标时间点。
可以理解,上述目标时间点为切换传输速率的时间点;上述第一设备和上述第二设备均在上述目标时间点将传输速率切换为上述目标传输速率。采用这种方式,上述第一设备和上述第二设备完成传输速率切换的时间间隔较短,可以保证上述第一设备和上述第二设备收发数据速率的一致。上述第一设备和上述第二设备收发数据速率的一致是指上述第一设备的发送速率和上述第二设备的接收速率一致,以及上述第二设备的发送速率和上述第一设备的接收速率一致。
本发明实施例中,通过第一控制信息指示第一设备待采用的发送速率、第二设备待采用的发送速率以及切换传输速率的时间点;实现简单,消耗的控制资源少,可以保证上述第一设备和上述第二设备收发数据速率的一致。
本发明实施例中,依据链路质量和传输速率的对应关系确定第一设备和第二设备之间的链路质量对应的目标传输速率,通过控制信息指示该第二设备切换发送速率,并切换该第一设备的发送速率;切换流程简单,不需要进行协商操作,可以减少消息序列的开销。
在一种可选的实现方式中,上述第三字段包含目标时长;上述第一设备向上述第二设备发送第一控制信息之后,上述方法还包括:
在接收到来自上述第二设备的确认信息后,开始计时;上述确认信息指示上述第二设备接收到上述第一控制信息;
上述到达上述目标时间点包括:
上述计时的时长达到上述目标时长。
上述确认信息可以是一个空数据包,也可以是包含特定标识的信息。具体的,上述确认信息包含对上述第一控制信息的确认位。上述第三字段包含目标时长可以是上述第三字段的比特位对应上述目标时长。可选的,上述第三字段占用两个字节,上述第三字段为连 接事件个数。上述目标时长为上述连接事件个数对应的时长。举例来说,若连接事件个数为9,则第三字段为0000000000001001。在一个连接当中,主设备会在每个连接事件里向从设备发送数据包。一个连接事件是指主设备和从设备之间相互发送数据包的过程。上述目标时间点为以当前连接事件为基准推后上述第三字段所指示个数的连接事件。上述当前连接事件是指上述第一设备和上述第二设备之间收发上述第一控制信息和上述确认信息的事件。举例来说,计数器记录连接事件的个数,当前连接事件对应的计数值为10,第三字段所指示的连接事件个数为6;则目标时间点为该计数器的计数值达到26时的时间点,目标时长为6个连接事件对应的时长。上述开始计时可以是通过计数器记录连接事件的个数,即记录当前连接事件对应的计数值。上述计时的时长达到上述目标时长可以是上述计数器当前的计数值与上述当前连接事件对应的计数值的差值达到上述第三字段所指示的连接事件个数。可选的,上述第三字段对应的数值乘以一个系数,得到上述目标时长。举例来说,第三字段为0000000000001001,对应的数值为9,系数为1.25ms;则目标时长为1.25*9=11.25ms。
本发明实施例中,采用统计连接事件的方式或者计时的方式,可以准确地确定达到目标时间点的情况,实现简单。
在一种可选的实现方式中,上述在接收到来自上述第二设备的确认信息后,开始计时之后,上述方法还包括:
在到达上述目标时间点之前接收到拒绝信息的情况下,停止计时;上述拒绝信息指示上述第二设备拒绝上述第一控制信息。
上述第一设备和上述第二设备在到达上述目标时间点后,切换传输速率。上述第一设备和上述第二设备切换传输速率所需满足的条件为计时的时长达到上述目标时长。停止计时后,上述计时的时长无法达到上述目标时长,也就无法达到上述目标时间点。因此,通过这种方式可以停止上述第一设备发起的切换传输速率的操作。在实际应用中,第二设备由于某些原因不能接受指示切换传输速率的第一控制信息的情况下,可以发送拒绝信息,指示第一设备停止本次切换传输速率的操作;可以解决该第二设备不能按照上述第一控制信息的指示切换传输速率的问题。
本发明实施例中,第一设备在到达目标时间点之前接收到拒绝信息的情况下,停止计时;可以解决第二设备不能根据该第一设备发送的控制信息切换传输速率的问题。
在一种可选的实现方式中,上述第一控制信息还包括第四字段和/或第五字段;上述第四字段指示上述链路质量对应的链路;上述第五字段指示上述第一设备和上述第二设备之间可用的信道。
上述第四字段包含的链路标识与上述链路质量相对应。上述链路标识可以是当前链路的标识,也可以是其他链路的标识。上述当前链路是指发送上述第一控制信息的链路。可选的,如果第四字段为0xffff,则代表切换当前链路的传输速率;如果是其他的值,则代表切换该值对应的链路的传输速率。具体的,上述第五字段可以为上述第一设备和上述第二设备之间可用的信道对应的编码,具体的格式、定义和标准蓝牙定义的相同。
可选的,上述第一控制信息还可以包含其他信息,例如编码方式、调制方式等。图6为本发明实施例提供的一种第一控制信息的结构示意图。如图6所示,601为链路标识; 602为第一速率,代表第一设备发送到第二设备的PHY类型,即第一设备待采用的发送速率;603为第二速率,代表第二设备发送给第一设备的PHY类型,即第二设备待采用的发送速率;604表示表示可用的信道;605表示切换传输速率的时间点,即新的传输速率生效的时间点。链路标识为需要切换传输速率的链路的标识。
本发明实施例中,第一控制信息还可以包含链路标识以及第一设备和第二设备之间可用的信道;一方面可以克服现有技术方案仅能切换当前链路的传输速率的问题,另一方面可以为切换传输速率提供更多的信息。
在一种可选的实现方式中,上述第一设备为主设备,上述第二设备为从设备;上述方法还包括:
接收上述第二设备发送的第二控制信息;上述第二控制信息指示上述第一设备切换发送速率;
在第一时间点和第二时间点的时间间隔小于时间阈值的情况下,拒绝上述第二控制信息;上述第一时间点为上述第一设备发送上述第一控制信息的时间点,上述第二时间点为上述第一设备接收到上述第二控制信息的时间点。
本申请中,主设备和从设备均可以发送控制信息;在主设备和从设备发送控制信息的时间间隔小于时间阈值的情况下,主设备拒绝从设备发送的控制信息,执行主设备发送的控制信息。通过这种方式,可以避免主设备和从设备在同一时间段内执行两个不同的传输速率切换操作。
本发明实施例提供了另一种传输速率切换方法,如图7所示,该方法包括:
701、第一设备和第二设备建立链路,并传输数据;
该链路可以是ACL链路,也可以是SCO链路。可选的,上述第一设备和上述第二设备建立音频连接。
702、上述第一设备的主机向第一链路层发送切换传输速率请求;
可选的,上述第一设备的主机控制器向上述第一链路层发送上述切换传输速率请求。上述第一链路层为上述第一设备的链路层,是由上述第一设备的软件模块实现的。具体的,上述切换传输速率请求可以是LE Set PHY HCI命令。可选的,上述第一设备的主机在确定链路质量的变化量超过质量阈值后,向第一链路层发送切换传输速率请求。
703、上述第一链路层向上述第一设备的主机发送回复信息;
上述回复信息为上述第一链路层对接收到的上述切换传输速率请求进行反馈的信息。上述回复信息可以是针对上述切换传输速率请求发送的命令状态信息,即Command status。
704、上述第一链路层向第二链路层发送控制信息;
上述控制信息指示上述第二设备切换传输速率。上述第二链路层为上述第二设备的链路层,是由上述第二设备的软件模块实现的。具体的,上述控制信息指示上述第一设备待使用的发送速率以及上述第二设备待使用的发送速率。可选的,控制信息为LL_PHY_UPDATE_IND,该控制信息对应的PDU中控制数据的格式如图6所示。
705、上述第二链路层向上述第一链路层发送确认信息;
上述确认信息可以是一个空数据包,也可以是包含特定标识的信息。具体的,上述确认信息包含对上述控制信息的确认位。
706、上述第一链路层确认上述第二设备接收到上述控制信息;
707、上述第一链路层开始计时;
708、上述第一链路层在到达上述控制信息指示的切换传输速率的时间点后,切换传输数据;
具体的,上述第一链路层将上述第一设备的发送速率切换为上述控制信息所指定的发送速率。
709、上述第二链路层在发送上述确认信息后,开始计时;
710、上述第二链路层在到达上述控制信息指示的切换传输速率的时间点后,切换传输数据;
具体的,上述第二链路层将上述第二设备的发送速率切换为上述控制信息所指定的发送速率。
711、上述第一链路层向上述第一设备的主机发送第一指示信息;
上述第一指示信息指示完成传输速率的切换。
712、上述第二链路层向上述第二设备的主机发送第二指示信息。
上述第二指示信息指示完成传输速率的切换。
比较图7和图2的传输速率切换流程,可以看出本发明实施例提供的传输速率切换流程节省了两个蓝牙设备之间的协商过程,可以更快速地完成传输速率的切换。本发明实施例中,上述第一设备可以是主设备,也可以是从设备。也就是说,主设备和从设备均可以主动发起切换传输速率的流程。
本发明实施例提供了另一种传输速率切换方法,如图8所示,该方法包括:
801、第二链路层解析来自第一链路层的控制信息;
在执行801步骤之前,可以先执行图7中的701至707。
802、上述第二链路层在确定拒绝上述控制信息后,停止计时,并向上述第一链路层发送拒绝信息;
803、上述第一链路层接收到上述拒绝信息后,停止计时;
804、上述第一链路层向第一设备的主机发送指示信息。
上述指示信息指示已停止本次切换传输速率的操作。
本发明实施例中,第二设备可以拒绝第一设备发送的控制信息,可以解决第二设备不能根据该第一设备发送的控制信息切换传输速率的问题。
本发明实施例提供了另一种传输速率切换方法,该方法应用于使用蓝牙物理信道与第一设备进行通信的第二设备,如图9所示,该方法包括:
901、上述第二设备接收上述第一设备发送的控制信息;
上述第一设备和上述第二设备均为蓝牙设备。上述第一设备和上述第二设备中的一个为主设备,另一个为从设备。上述第一设备可以是从设备,也可以是主设备。上述第二设备可以依据上述第一设备发送的控制信息切换传输速率。
902、上述第二设备从当前发送速率切换到上述控制信息所指示的上述第二设备的发送速率;上述控制信息所指示的上述第二设备的发送速率为上述第一设备根据预设的链路质量与传输速率的对应关系确定的上述蓝牙物理信道的链路质量对应的发送速率。
可以理解,上述第二设备的传输速率可以根据链路质量快速地进行切换,并保证上述第一设备和上述第二设备之间的传输质量。
本发明实施例中,第二设备不需要和第一设备进行协商就可以是完成传输速率的切换,切换效率更高。
在一种可选的实现方式中,上述第二设备接收上述第一设备发送的控制信息之后,上述方法还包括:
在确定拒绝上述控制信息的情况下,向上述第一设备发送拒绝信息;上述拒绝信息指示上述第二设备拒绝上述控制信息。
可选的,上述第二设备在上述链路质量下可支持的发送速率和接收速率中的至少一个大于上述目标传输速率的要求的情况下,或者,上述第二设备在上述链路质量下可支持的发送速率和接收速率中的至少一个不能达到上述目标传输速率的要求的情况下,确定拒绝上述控制信息。可以理解,若上述第二设备将传输速率切换至上述目标传输速率不能充分发挥上述第二设备的收发性能,则确定拒绝上述控制信息;若上述第二设备不能达到上述目标传输速率所要求的接收速率或发送速率,则确定拒绝上述控制信息。这样可以保证第一设备和第二设备之间的传输质量,并充分利用第二设备的收发性能。
本发明实施例中,第二设备可以向第一设备发送拒绝信息,以便于该第一设备重新确定一个该第二设备可支持的传输速率。
在一种可选的实现方式中,上述第二设备接收上述第一设备发送的控制信息之后,上述方法还包括:
向上述第一设备发送确认信息,上述确认信息指示上述第二设备接收到上述控制信息。
本发明实施例中,通过向第一设备发送确认信息指示第二设备接收到控制信息,以便于该第一设备及时执行计时操作。
在一种可选的实现方式中,上述目标传输速率包含上述第一设备的发送速率和上述第二设备的发送速率;上述控制信息包含第一字段、第二字段以及第三字段;上述第一字段指示上述第一设备待采用的发送速率;上述第二字段指示上述第二设备待采用的发送速率;上述第三字段指示目标时间点;
上述第二设备从当前发送速率切换到上述控制信息所指示的上述第二设备的发送速率包括:
在到达上述目标时间点后,上述第二设备从当前发送速率切换到上述第二字段指示的发送速率。
本发明实施例中,通过控制信息指示第一设备的发送速率、第二设备的发送速率以及切换传输速率的时间点;实现简单,消耗的控制资源少,可以保证上述第一设备和上述第二设备收发数据速率的一致。
在一种可选的实现方式中,上述第三字段包含目标时长;上述向上述第一设备发送确认信息之后,上述方法还包括:
开始计时;
上述到达上述目标时间点包括:
上述计时的时长达到上述目标时长。
上述第三字段包含目标时长可以是上述第三字段的比特位对应上述目标时长。可选的,上述第三字段占用两个字节,上述第三字段为连接事件个数。上述目标时长为上述连接事件个数对应的时长。上述开始计时可以是通过计数器记录连接事件的个数,即记录当前连接事件对应的计数值。上述计时的时长达到上述目标时长可以是上述计数器当前的计数值与上述当前连接事件对应的计数值的差值达到上述第三字段所指示的连接事件个数。可选的,上述第三字段对应的数值乘以一个系数,得到上述目标时长。
本发明实施例中,采用统计连接事件的方式或者计时的方式,可以准确地确定达到目标时间点,实现简单。
在一种可选的实现方式中,上述第二设备接收第一设备发送的控制信息之后,上述方法还包括:
解析上述控制信息;
在确定拒绝上述控制信息且启动计时的情况下,停止计时。
可以理解,若上述第二设备将传输速率切换至上述目标传输速率不能充分发挥上述第二设备的收发性能,则确定拒绝上述控制信息;或者,若上述第二设备不能达到上述目标传输速率所要求的接收速率或发送速率,则确定拒绝上述控制信息。这样可以保证第一设备和第二设备之间的传输质量,并充分利用第二设备的收发性能。拒绝上述控制信息是指上述第二设备不按照上述控制信息切换发送速率。
本发明实施例中,第二设备可以及时拒绝第一设备发起的传输速率切换操作,实现简单。
在一种可选的实现方式中,上述第一控制信息还包括第四字段和/或第五字段;上述第四字段指示上述链路质量对应的链路;上述第五字段指示上述第一设备和上述第二设备之间可用的信道。
本发明实施例提供了一种蓝牙设备,如图10所示,蓝牙设备为使用蓝牙物理信道与第二设备进行通信的第一设备,该蓝牙设备包括:
基带控制器1001,用于确定上述蓝牙物理信道的链路质量;
上述基带控制器1001,还用于根据预设的链路质量与传输速率的对应关系确定上述链路质量对应的目标传输速率;其中,上述目标传输速率包含第一发送速率和第二发送速率;
无线收发器1002,用于将通过上述蓝牙物理信道向上述第二设备发送信息的速率设置为上述第一发送速率;
上述无线收发器1002,还用于向上述第二设备发送第一控制信息,以指示上述第二设备将通过上述蓝牙物理信道向上述第一设备发送信息的速率设置为上述第二发送速率。
具体实现方法与图5中的方法相同,这里不作详述。上述基带控制器用于实现链路管理层的功能。
本申请中,依据链路质量和传输速率的对应关系确定第一设备和第二设备之间的链路质量对应的目标传输速率,通过控制信息指示该第二设备切换发送速率,并切换该第一设备的发送速率;切换流程简单,可以减少消息序列的开销。
在一种可选的实现方式中,上述基带控制器1001,具体用于在确定上述蓝牙物理信道的链路质量在参考时长内的变化量超过质量阈值后,根据上述预设的链路质量与传输速率 的对应关系确定上述链路质量对应的目标传输速率。
本发明实施例中,通过设置链路质量在参考时长内的变化量超过质量阈值作为启动切换传输速率操作的条件,可以减少不必要的传输速率切换操作以及信令开销,并在链路质量发生变化时及时切换传输速率。
在一种可选的实现方式中,上述第一控制信息包含第一字段、第二字段以及第三字段;上述第一字段指示上述第一设备的发送速率;上述第二字段指示上述第二设备的发送速率;上述第三字段指示目标时间点;
上述无线收发器1002,具体用于在到达上述目标时间点后,从当前发送速率切换到上述第一发送速率。
本发明实施例中,通过第一控制信息指示第一设备待采用的发送速率、第二设备待采用的发送速率以及切换传输速率的时间点;实现简单,消耗的控制资源少,可以保证上述第一设备和上述第二设备收发数据速率的一致。
在一种可选的实现方式中,上述第三字段包含目标时长;上述无线收发器1002,还用于接收来自上述第二设备的确认信息;上述确认信息指示上述第二设备接收到上述第一控制信息;上述蓝牙设备还包括:
计时器1003,用于在上述无线收发器接收到上述确认信息后,开始计时;
处理器1004,还用于确定上述计时器的计时时长达到上述目标时长。
上述处理器1004可以控制上述无线收发器切换发送速率。
本发明实施例中,采用统计连接事件的方式或者计时的方式,可以准确地确定达到目标时间点的情况,实现简单。
在一种可选的实现方式中,上述无线收发器1002,还用于接收拒绝信息;上述拒绝信息指示上述第二设备拒绝上述第一控制信息;
上述处理器1004,还用于在确定上述无线收发器在上述目标时间点之前接收到上述拒绝信息的情况下,控制上述计时器停止计时。
本发明实施例中,第一设备在到达目标时间点之前接收到拒绝信息的情况下,停止计时;可以解决第二设备不能根据该第一设备发送的控制信息切换传输速率的问题。
在一种可选的实现方式中,上述第一控制信息还包括第四字段和/或第五字段;上述第四字段指示上述链路质量对应的链路;上述第五字段指示上述第一设备和上述第二设备之间可用的信道。
本发明实施例中,第一控制信息还可以包含链路标识以及第一设备和第二设备之间可用的信道;一方面可以克服现有技术方案仅能切换当前链路的传输速率的问题,另一方面可以为切换传输速率提供更多的信息。
在一种可选的实现方式中,上述第一设备为主设备,上述第二设备为从设备;上述蓝牙设备还包括:
上述无线收发器1002,还用于接收上述第二设备发送的第二控制信息;上述第二控制信息指示上述第一设备切换发送速率;
上述处理器1004,还用于在第一时间点和第二时间点的时间间隔小于时间阈值的情况下,拒绝上述第二控制信息;上述第一时间点为上述第一设备发送上述第一控制信息的时 间点,上述第二时间点为上述第一设备接收到上述第二控制信息的时间点。
本申请中,主设备和从设备均可以发送控制信息;在主设备和从设备发送控制信息的时间间隔小于时间阈值的情况下,主设备拒绝从设备发送的控制信息,执行主设备发送的控制信息。通过这种方式,可以避免主设备和从设备在同一时间段内执行两个不同的传输速率切换操作。
本发明实施例提供了另一种蓝牙设备,如图11所示,该蓝牙设备为使用蓝牙物理信道与第一设备进行通信的第二设备,该蓝牙设备包括:
无线收发器1101,用于接收上述第一设备发送的控制信息;
上述无线收发器1101,还用于从当前发送速率切换到上述控制信息所指示的上述第二设备的发送速率;上述控制信息所指示的上述第二设备的发送速率为上述第一设备根据预设的链路质量与传输速率的对应关系确定的上述蓝牙物理信道的链路质量对应的发送速率。
具体实现方法与图9中的方法相同,这里不作详述。
本发明实施例中,第二设备不需要和第一设备进行协商就可以是完成传输速率的切换,切换效率更高。
在一种可选的实现方式中,上述蓝牙设备还包括:
处理器1102,用于确定拒绝上述控制信息的情况;
上述无线收发器1101,还用于向上述第一设备发送拒绝信息;上述拒绝信息指示上述第二设备拒绝上述控制信息。
本发明实施例中,第二设备可以向第一设备发送拒绝信息,以便于该第一设备重新确定一个该第二设备可支持的传输速率。
在一种可选的实现方式中,上述无线收发器1101,还用于向上述第一设备发送确认信息,上述确认信息指示上述第二设备接收到上述控制信息。
本发明实施例中,通过向第一设备发送确认信息指示第二设备接收到控制信息,以便于该第一设备及时执行计时操作。
在一种可选的实现方式中,上述控制信息包含第一字段、第二字段以及第三字段;上述第一字段指示上述第一设备待采用的发送速率;上述第二字段指示上述第二设备待采用的发送速率;上述第三字段指示目标时间点;
上述无线收发器1101,具体用于在到达上述目标时间点后,从当前发送速率切换到上述第二字段指示的发送速率。
本发明实施例中,通过控制信息指示第一设备的发送速率、第二设备的发送速率以及切换传输速率的时间点;实现简单,消耗的控制资源少,可以保证上述第一设备和上述第二设备收发数据速率的一致。
在一种可选的实现方式中,上述第三字段包含目标时长;上述蓝牙设备还包括:
计时器1103,用于在上述无线收发器发送上述确认信息后,开始计时;
上述处理器1102,还用于确定上述计时器的计时时长达到上述目标时长。
本发明实施例中,采用统计连接事件的方式或者计时的方式,可以准确地确定达到目标时间点,实现简单。
在一种可选的实现方式中,上述处理器1102,还用于解析上述控制信息;
上述处理器1102,还用于在确定拒绝上述控制信息且上述计时器启动计时的情况下,控制上述计时器停止计时。
本发明实施例中,第二设备可以及时拒绝第一设备发起的传输速率切换操作,实现简单。
在一种可选的实现方式中,上述控制信息还包括第四字段和/或第五字段;上述第四字段指示上述链路质量对应的链路;上述第五字段指示上述第一设备和上述第二设备之间可用的信道。
蓝牙的技术规范除了包括协议部分外还包括蓝牙的应用部分(即应用模型)。在实现蓝牙的时候,一般是将蓝牙分成两部分来考虑,其一是软件实现部分,它位于HCI的上面,包括蓝牙协议栈上层的L2CAP、RFCOMM、SDP和TCS以及蓝牙的一些应用;其二是硬件实现部分,它位于HCI的下面,亦即上面提到的底层硬件模块,已在图1中标示出。下面讨论蓝牙硬件模块的结构与性能。
参见图12,是本发明实施例提供的一种蓝牙设备的硬件模块结构示意框图。蓝牙硬件模块由蓝牙协议栈的无线收发器(RF)、基带控制器(BB)和链路管理层组成。目前大多数生产厂家都是利用片上系统技术(System-On-Chip,SOC)将这三层功能模块集嵌在同一块芯片上。如图12所示,蓝牙设备包括处理器1201、无线收发器(RF)1202、基带控制器(BB)1203、静态随机存储器(SRAM)1204、闪存(Flash程序存储器)1205、通用异步收发器1206、通用串行接口1207、语音编/解码器1208、蓝牙测试模块1209及数据总线1210。下面分别叙述各部分的组成及功能。
无线收发器1202是蓝牙设备的核心,任何蓝牙设备都要有无线收发器。它与用于广播的普通无线收发器的不同之处在于体积小、功率小。它由锁相环、发送模块和接收模块等组成。发送部分包括一个倍频器,且直接使用压控振荡器调制;接收部分包括混频器、中频器放大器、鉴频器以及低噪音放大器等。无线收发器的主要功能是调制/解调、帧定时恢复和跳频功能同时完成发送和接收操作。发送操作包括载波的产生、载波调制、功率控制及自动增益控制AGC;接收操作包括频率调谐至正确的载波频率及信号强度控制等。
基带控制器1203是蓝牙硬件模块的关键模块。它主要由链路控制序列发生器、可编程程序列发生器、内部语音处理器、共享RAM裁器及定时链管理、加密/解密处理等功能单元组成。其主要功能:在微处理器模块控制下,实现蓝牙基带部分的实时处理功能,包括负责对接收比特流进行符号定时提取的恢复;分组头及净荷的循环沉余度校验;分组头及净荷的前向纠错码处理和发送处理;加密和解密处理等。且能提供从基带控制器到其它芯片的接口(诸如数据路径RAM客户接口、微处理器接口、脉码调制接口等。基带控制器1203还可以确定蓝牙物理信道的链路质量以及调整蓝牙设备发送信息的速率。
处理器1201负责蓝牙比特流调制和解调所的所有比特级处理,且还负责控制收发器和专用的语言编码和解码器。
语音编/解码器由数模转换器、模数转换口、数字接口、编码模块等组成。主要功能:提供语音编码和解码功能,提供连续可变斜率增量调制及脉码调制两种编码方式。
蓝牙测试模块1209由被测试模块与测试设备及计量设备组成。一般测试设备被测试设备构成一个微微网,测试设备是主节点,被测试模块是从节点。测试设备对整个测试过程 进行控制,其主要功能提供无线层和基带层的认证和一致性规范,同时还管理产品的生产和售后测试。
通用异步收发器1206和通用串行接口1207的功能是提供到HCI到传输层的物理连接,是高层与物理模块进行通信的通道。
应当理解,在本发明实施例中,所称处理器1201可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在本发明的另一实施例中提供一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序包括程序指令,上述程序指令被处理器执行时实现:第一设备确定蓝牙物理信道的链路质量,所述第一设备使用所述蓝牙物理信道与第二设备进行通信;所述第一设备根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率,其中,所述目标传输速率包括:第一发送速率和第二发送速率;所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率;所述第一设备向所述第二设备发送第一控制信息,以指示所述第二设备将通过所述蓝牙物理信道向所述第一设备发送信息的速率设置为所述第二发送速率。
在本发明的另一实施例中提供了另一种计算机可读存储介质,上述计算机可读存储介质存储有计算机程序,上述计算机程序包括程序指令,上述程序指令被处理器执行时实现:第二设备接收第一设备发送的控制信息,所述第二设备使用蓝牙物理信道与所述第一设备进行通信的第二设备;所述第二设备从当前发送速率切换到所述控制信息所指示的所述第二设备的发送速率;所述控制信息所指示的所述第二设备的发送速率为所述第一设备根据预设的链路质量与传输速率的对应关系确定的所述蓝牙物理信道的链路质量对应的发送速率。
上述计算机可读存储介质可以是前述任一实施例中蓝牙设备的内部存储单元,例如蓝牙设备的硬盘或内存。上述计算机可读存储介质也可以是上述蓝牙设备的外部存储设备,例如上述蓝牙设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,上述计算机可读存储介质还可以既包括上述蓝牙设备的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述蓝牙设备所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种传输速率切换方法,其特征在于,所述方法应用于使用蓝牙物理信道与第二设备进行通信的第一设备,所述方法包括:
    所述第一设备确定所述蓝牙物理信道的链路质量;
    所述第一设备根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率,其中,所述目标传输速率包括:第一发送速率和第二发送速率;
    所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率;
    所述第一设备向所述第二设备发送第一控制信息,以指示所述第二设备将通过所述蓝牙物理信道向所述第一设备发送信息的速率设置为所述第二发送速率。
  2. 根据权利要求1所述的传输速率切换方法,其特征在于,所述第一设备根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率包括:
    所述第一设备在确定所述蓝牙物理信道的链路质量在参考时长内的变化量超过质量阈值后,根据链路质量与传输速率的对应关系确定所述链路质量对应的目标传输速率。
  3. 根据权利要求1所述的传输速率切换方法,其特征在于,所述第一控制信息包含第一字段、第二字段以及第三字段;所述第一字段指示所述第一发送速率;所述第二字段指示所述第二发送速率;所述第三字段指示目标时间点;所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率包括:
    在到达所述目标时间点后,所述第一设备将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率。
  4. 根据权利要求3所述的传输速率切换方法,其特征在于,所述第三字段包含目标时长;所述第一设备向所述第二设备发送第一控制信息之后,所述方法还包括:
    在接收到来自所述第二设备的确认信息后,开始计时;所述确认信息指示所述第二设备接收到所述第一控制信息;
    所述到达所述目标时间点包括:
    所述计时的时长达到所述目标时长。
  5. 根据权利要求4所述的传输速率切换方法,其特征在于,所述在接收到来自所述第二设备的确认信息后,开始计时之后,所述方法还包括:
    在到达所述目标时间点之前接收到拒绝信息的情况下,停止计时;所述拒绝信息指示所述第二设备拒绝所述第一控制信息。
  6. 根据权利要求3至5任意一项所述的传输速率切换方法,其特征在于,所述第一控制信息还包括第四字段和/或第五字段;所述第四字段指示所述链路质量对应的链路;所述 第五字段指示所述第一设备和所述第二设备之间可用的信道。
  7. 根据权利要求1至5任意一项所述的传输速率切换方法,其特征在于,所述第一设备为主设备,所述第二设备为从设备;所述方法还包括:
    接收所述第二设备发送的第二控制信息;所述第二控制信息指示所述第一设备切换发送速率;
    在第一时间点和第二时间点的时间间隔小于时间阈值的情况下,拒绝所述第二控制信息;所述第一时间点为所述第一设备发送所述第一控制信息的时间点,所述第二时间点为所述第一设备接收到所述第二控制信息的时间点。
  8. 一种传输速率切换方法,其特征在于,所述方法应用于使用蓝牙物理信道与第一设备进行通信的第二设备,所述方法包括:
    所述第二设备接收所述第一设备发送的控制信息;
    所述第二设备从当前发送速率切换到所述控制信息所指示的所述第二设备的发送速率;所述控制信息所指示的所述第二设备的发送速率为所述第一设备根据预设的链路质量与传输速率的对应关系确定的所述蓝牙物理信道的链路质量对应的发送速率。
  9. 根据权利要求8所述的传输速率切换方法,其特征在于,所述第二设备接收所述第一设备发送的控制信息之后,所述方法还包括:
    在确定拒绝所述控制信息的情况下,向所述第一设备发送拒绝信息;所述拒绝信息指示所述第二设备拒绝所述控制信息。
  10. 根据权利要求9所述的传输速率切换方法,其特征在于,所述第二设备接收所述第一设备发送的控制信息之后,所述方法还包括:
    向所述第一设备发送确认信息,所述确认信息指示所述第二设备接收到所述控制信息。
  11. 根据权利要求10所述的传输速率切换方法,其特征在于,所述控制信息包含第一字段、第二字段以及第三字段;所述第一字段指示所述第一设备待采用的发送速率;所述第二字段指示所述第二设备待采用的发送速率;所述第三字段指示目标时间点;
    所述第二设备从当前发送速率切换到所述控制信息所指示的所述第二设备的发送速率包括:
    在到达所述目标时间点后,所述第二设备从当前发送速率切换到所述第二字段指示的发送速率。
  12. 根据权利要求11所述的传输速率切换方法,其特征在于,所述第三字段包含目标时长;所述向所述第一设备发送确认信息之后,所述方法还包括:
    开始计时;
    所述到达所述目标时间点包括:
    所述计时的时长达到所述目标时长。
  13. 根据权利要求12所述的传输速率切换方法,其特征在于,所述第二设备接收所述第一设备发送的控制信息之后,所述方法还包括:
    解析所述控制信息;
    在确定拒绝所述控制信息且启动计时的情况下,停止计时。
  14. 一种蓝牙设备,其特征在于,所述蓝牙设备为使用蓝牙物理信道与第二设备进行通信的第一设备,包括:
    基带控制器,用于确定所述蓝牙物理信道的链路质量;
    所述基带控制器,还用于根据预设的链路质量与传输速率的对应关系,确定所述链路质量对应的目标传输速率,其中,所述目标传输速率包含第一发送速率和第二发送速率;
    无线收发器,用于将通过所述蓝牙物理信道向所述第二设备发送信息的速率设置为所述第一发送速率;
    所述无线收发器,还用于向所述第二设备发送第一控制信息,以指示所述第二设备将通过所述蓝牙物理信道向所述第一设备发送信息的速率设置为所述第二发送速率。
  15. 根据权利要求14所述的蓝牙设备,其特征在于,所述基带控制器,具体用于在确定所述蓝牙物理信道的链路质量在参考时长内的变化量超过质量阈值后,根据所述预设的链路质量与传输速率的对应关系确定所述链路质量对应的目标传输速率。
  16. 根据权利要求14所述的蓝牙设备,其特征在于,所述第一控制信息包含第一字段、第二字段以及第三字段;所述第一字段指示所述第一发送速率;所述第二字段指示所述第二发送速率;所述第三字段指示目标时间点;
    所述无线收发器,具体用于在到达所述目标时间点后,从当前发送速率切换到所述第一发送速率。
  17. 根据权利要求16所述的蓝牙设备,其特征在于,所述第三字段包含目标时长;
    所述无线收发器,还用于接收来自所述第二设备的确认信息;所述确认信息指示所述第二设备接收到所述第一控制信息;所述蓝牙设备还包括:
    计时器,用于在所述无线收发器接收到所述确认信息后,开始计时;
    处理器,用于确定所述计时器的计时时长达到所述目标时长。
  18. 根据权利要求17所述的蓝牙设备,其特征在于,所述无线收发器,还用于接收拒绝信息;所述拒绝信息指示所述第二设备拒绝所述第一控制信息;
    所述处理器,还用于在确定所述无线收发器在所述目标时间点之前接收到所述拒绝信息的情况下,控制所述计时器停止计时。
  19. 根据权利要求16至18任意一项所述的蓝牙设备,其特征在于,所述第一控制信息还包括第四字段和/或第五字段;所述第四字段指示所述链路质量对应的链路;所述第五字段指示所述第一设备和所述第二设备之间可用的信道。
  20. 根据权利要求14至18任意一项所述的蓝牙设备,其特征在于,所述第一设备为主设备,所述第二设备为从设备;
    所述无线收发器,还用于接收所述第二设备发送的第二控制信息;所述第二控制信息指示所述第一设备切换发送速率;
    所述处理器,还用于在第一时间点和第二时间点的时间间隔小于时间阈值的情况下,拒绝所述第二控制信息;所述第一时间点为所述第一设备发送所述第一控制信息的时间点,所述第二时间点为所述第一设备接收到所述第二控制信息的时间点。
  21. 一种蓝牙设备,其特征在于,所述蓝牙设备为使用蓝牙物理信道与第一设备进行通信的第二设备,包括:
    无线收发器,用于接收所述第一设备发送的控制信息;
    所述无线收发器,还用于从当前发送速率切换到所述控制信息所指示的所述第二设备的发送速率;所述控制信息所指示的所述第二设备的发送速率为所述第一设备根据预设的链路质量与传输速率的对应关系确定的所述蓝牙物理信道的链路质量对应的发送速率。
  22. 根据权利要求21所述的蓝牙设备,其特征在于,所述蓝牙设备还包括:
    处理器,用于确定拒绝所述控制信息的情况;
    所述无线收发器,还用于向所述第一设备发送拒绝信息;所述拒绝信息指示所述第二设备拒绝所述控制信息。
  23. 根据权利要求22所述的蓝牙设备,其特征在于,所述无线收发器,还用于向所述第一设备发送确认信息,所述确认信息指示所述第二设备接收到所述控制信息。
  24. 根据权利要求23所述的蓝牙设备,其特征在于,所述控制信息包含第一字段、第二字段以及第三字段;所述第一字段指示所述第一设备待采用的发送速率;所述第二字段指示所述第二设备的待采用发送速率;所述第三字段指示目标时间点;
    所述无线收发器,具体用于在到达所述目标时间点后,从当前发送速率切换到所述第二字段指示的发送速率。
  25. 根据权利要求24所述的蓝牙设备,其特征在于,所述第三字段包含目标时长;所述蓝牙设备还包括:
    计时器,用于在所述无线收发器发送所述确认信息后,开始计时;
    所述处理器,还用于确定所述计时器的计时时长达到所述目标时长。
  26. 根据权利要求25所述的蓝牙设备,其特征在于,所述处理器,还用于解析所述控制信息;
    所述处理器,还用于在确定拒绝所述控制信息且所述计时器启动计时的情况下,控制所述计时器停止计时。
PCT/CN2019/076505 2018-03-08 2019-02-28 传输速率切换方法、蓝牙设备及计算机可读介质 WO2019170029A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19764965.0A EP3748999A1 (en) 2018-03-08 2019-02-28 Transmission rate switching method, bluetooth device, and computer-readable medium
US17/008,848 US20200396017A1 (en) 2018-03-08 2020-09-01 Transmission rate switching method, bluetooth device, and computer-readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810190068.9A CN110248341A (zh) 2018-03-08 2018-03-08 传输速率切换方法、蓝牙设备及计算机可读介质
CN201810190068.9 2018-03-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/008,848 Continuation US20200396017A1 (en) 2018-03-08 2020-09-01 Transmission rate switching method, bluetooth device, and computer-readable medium

Publications (1)

Publication Number Publication Date
WO2019170029A1 true WO2019170029A1 (zh) 2019-09-12

Family

ID=67846858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076505 WO2019170029A1 (zh) 2018-03-08 2019-02-28 传输速率切换方法、蓝牙设备及计算机可读介质

Country Status (4)

Country Link
US (1) US20200396017A1 (zh)
EP (1) EP3748999A1 (zh)
CN (1) CN110248341A (zh)
WO (1) WO2019170029A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822663B (zh) * 2019-10-31 2022-06-14 华为技术有限公司 蓝牙连接方法及相关装置
CN111182516B (zh) * 2019-12-25 2022-04-12 展讯半导体(成都)有限公司 Ble链路的数据传输系统
CN111328059B (zh) * 2020-02-25 2023-01-06 Oppo广东移动通信有限公司 一种数据传输方法、数据传输装置及电子设备
CN113572569B (zh) * 2020-04-28 2024-03-26 华为技术有限公司 一种传输速率切换方法以及相关装置
CN112349416A (zh) * 2020-11-06 2021-02-09 罗鑫龙 基于区块链和大数据的大健康管理平台
US11770647B2 (en) 2021-02-02 2023-09-26 Mediatek Inc. Task assigning method and task assigning device
JP2022155052A (ja) * 2021-03-30 2022-10-13 キヤノン株式会社 通信装置、制御方法及びプログラム
CN113079496A (zh) * 2021-04-06 2021-07-06 深圳市鼎浩丰科技有限公司 一种蓝牙传输速率控制方法以及储存介质
CN113179538B (zh) * 2021-05-20 2022-06-14 南京矽力微电子技术有限公司 蓝牙Mesh网络的数据转发方法及装置
CN115022852B (zh) * 2021-12-16 2023-10-20 荣耀终端有限公司 控制蓝牙传输速率的方法及电子设备
WO2023122924A1 (zh) * 2021-12-28 2023-07-06 华为技术有限公司 一种有线数据传输方法及相关有线数据传输装置
CN117200880A (zh) * 2022-05-30 2023-12-08 中国移动通信有限公司研究院 一种速率调整方法、装置、设备和存储介质
CN115482827A (zh) * 2022-09-15 2022-12-16 哲库科技(上海)有限公司 一种音频数据传输方法及装置和芯片
WO2024082286A1 (zh) * 2022-10-21 2024-04-25 哲库科技(上海)有限公司 蓝牙通信的信息指示方法、装置、设备及存储介质
CN115865809B (zh) * 2023-02-02 2023-06-02 爱集微咨询(厦门)有限公司 数据传输方法、装置、电子设备以及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100994A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Wireless communication device and method for power-efficient data transfer
US20140146061A1 (en) * 2011-09-30 2014-05-29 Dell Products, Lp System and Method for a Wireless Display Low Power Managed Adapter
CN104135741A (zh) * 2014-07-08 2014-11-05 福建联迪商用设备有限公司 蓝牙低功耗通信的方法、蓝牙设备和系统
CN105898672A (zh) * 2014-05-09 2016-08-24 苹果公司 扩展蓝牙通信模式
CN106464303A (zh) * 2014-04-29 2017-02-22 华为终端有限公司 一种数据传输的方法和终端
WO2017193315A1 (zh) * 2016-05-11 2017-11-16 华为技术有限公司 一种语音编码速率的调整方法及设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855973B2 (en) * 2004-07-14 2010-12-21 Sony Ericsson Mobile Communications Ab Apparatus, methods and computer program products for transmission of data over an adjustable synchronous radio channel
CN102355432B (zh) * 2011-08-12 2014-07-02 福建星网锐捷网络有限公司 确定无线报文传输速率的方法及基站
GB2514817A (en) * 2013-06-05 2014-12-10 Nordic Semiconductor Asa Digital radio communication
CN106792462B (zh) * 2016-12-22 2020-05-22 深圳Tcl数字技术有限公司 蓝牙音频传输调整方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140146061A1 (en) * 2011-09-30 2014-05-29 Dell Products, Lp System and Method for a Wireless Display Low Power Managed Adapter
WO2013100994A1 (en) * 2011-12-28 2013-07-04 Intel Corporation Wireless communication device and method for power-efficient data transfer
CN106464303A (zh) * 2014-04-29 2017-02-22 华为终端有限公司 一种数据传输的方法和终端
CN105898672A (zh) * 2014-05-09 2016-08-24 苹果公司 扩展蓝牙通信模式
CN104135741A (zh) * 2014-07-08 2014-11-05 福建联迪商用设备有限公司 蓝牙低功耗通信的方法、蓝牙设备和系统
WO2017193315A1 (zh) * 2016-05-11 2017-11-16 华为技术有限公司 一种语音编码速率的调整方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3748999A4 *

Also Published As

Publication number Publication date
EP3748999A4 (en) 2020-12-09
EP3748999A1 (en) 2020-12-09
US20200396017A1 (en) 2020-12-17
CN110248341A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2019170029A1 (zh) 传输速率切换方法、蓝牙设备及计算机可读介质
WO2020164365A1 (zh) 信息传输的方法及装置
US20100177712A1 (en) Multichannel/multiband operation for wireless device to device communication
US20140086125A1 (en) Enhanced rate physical layer for bluetooth™ low energy
US20150043427A1 (en) Method and apparatus for connection in a bluetooth communication system
CN113473541A (zh) 一种通信方法及装置
WO2008008918A2 (en) A method and apparatus for time synchronization of parameters
WO2021063344A1 (zh) 一种随机接入方法及装置
CN113455026B (zh) 接入方法及通信装置
CN113228717A (zh) 一种通信方法及装置
US20240049116A1 (en) Method for transmitting and receiving data and device for same in short-range wireless communication system
KR20210015101A (ko) 듀얼 커넥티비티를 지원하는 전자 장치 및 그 동작 방법
KR20230073287A (ko) 무선 통신 방법, 장치, 릴레이 장비, 원격 장비 및 기지국
US20230361920A1 (en) Method and apparatus for survival time and communication service availability
US20230261801A1 (en) Communication method and device
US20230337319A1 (en) Methods, devices, and systems for configuring sidelink drx
WO2023102940A1 (zh) 无线通信方法、远端终端以及中继终端
EP4142359A1 (en) Method, device, and computer program for selecting channel in wireless communication system, and recording medium therefor
WO2022151262A1 (zh) 非连续接收配置方法、通信装置及通信系统
US20230103916A1 (en) Audio data reception method using short-range wireless communication in wireless communication system, and apparatus therefor
WO2021179325A1 (zh) 一种数据处理的方法及装置
WO2020029838A1 (zh) 一种配置载波的方法及设备
KR20240040677A (ko) 생존 시간을 이용한 적용 및 자원 할당을 위한 방법 및 장치
WO2021022423A1 (zh) 一种传输数据的方法和装置
WO2021143997A1 (en) First client device for sidelink communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019764965

Country of ref document: EP

Effective date: 20200902

NENP Non-entry into the national phase

Ref country code: DE