WO2019169790A1 - 具有复合薄膜电极的摩擦发电机、制备方法及发电鞋 - Google Patents

具有复合薄膜电极的摩擦发电机、制备方法及发电鞋 Download PDF

Info

Publication number
WO2019169790A1
WO2019169790A1 PCT/CN2018/092316 CN2018092316W WO2019169790A1 WO 2019169790 A1 WO2019169790 A1 WO 2019169790A1 CN 2018092316 W CN2018092316 W CN 2018092316W WO 2019169790 A1 WO2019169790 A1 WO 2019169790A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
composite film
friction
polymer
film electrode
Prior art date
Application number
PCT/CN2018/092316
Other languages
English (en)
French (fr)
Inventor
王珊
王晓静
彭磊
徐传毅
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2019169790A1 publication Critical patent/WO2019169790A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • A43B3/38Footwear characterised by the shape or the use with electrical or electronic arrangements with power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • B32B3/085Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts spaced apart pieces on the surface of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0007Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality
    • B32B37/003Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding involving treatment or provisions in order to avoid deformation or air inclusion, e.g. to improve surface quality to avoid air inclusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/02Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by a sequence of laminating steps, e.g. by adding new layers at consecutive laminating stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1808Handling of layers or the laminate characterised by the laying up of the layers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/047Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present disclosure relates to the field of friction power generation technology, and in particular to a friction generator having a composite film electrode, a preparation method, and a power generation shoe.
  • Friction generators have been widely used in many fields.
  • the friction component is a key component in the friction generator, and the nature of the friction component has great influence on the power generation efficiency, working performance and service life of the friction generator.
  • the friction components are mostly formed by laminating a polymer film layer and a metal layer.
  • the manufacturing process of the friction component is complicated, the manufacturing cost is high, and the yield rate is low, and it is difficult to ensure the production.
  • the polymer film layer and the metal layer in the friction component can be flat and closely adhered together, thereby causing the friction generator to have low power generation efficiency, unstable working performance, and the polymer film in the case of relatively large force.
  • the metal layer on the layer is easily detached or damaged, resulting in a shorter service life of the friction generator. Therefore, the prior art lacks a friction generator with simple manufacturing process, low cost, high power generation efficiency, stable working performance and long service life.
  • the disclosure of the present disclosure is directed to the defects of the prior art, and provides a friction generator having a composite film electrode, a preparation method, and a power generation shoe, which are used to solve the complicated structure of the friction generator in the prior art, and the manufacturing process is complicated and manufactured. High cost, low power generation efficiency, unstable performance and short service life.
  • the present disclosure provides a friction generator having a composite film electrode, comprising: a first friction assembly and a second friction assembly that are sequentially stacked;
  • the first friction component is composed of a first composite film electrode and a first polymer film, and the first composite film electrode is embedded in the first polymer film and is wrapped by the first polymer film;
  • a composite film electrode includes: a second polymer film and a first electrode disposed on a surface of one side of the second polymer film;
  • the second friction assembly includes at least a second electrode; the first electrode and the second electrode are signal output ends of a friction generator having a composite membrane electrode.
  • At least one first through hole is disposed on the first composite film electrode, and the first polymer film is partially filled in the first through hole.
  • the first electrode is disposed on a side surface of the second polymer film that is close to or away from the second friction component.
  • a first concave-convex array structure is disposed on a surface of the first polymer polymer film opposite to the second friction component.
  • the second friction component further includes a third polymer film, and the third polymer film is disposed on a surface of the second electrode opposite to the first friction component.
  • the second friction component is composed of the second composite film electrode and the third polymer film, and the second composite film electrode is embedded in the third polymer film and is wrapped by the third polymer film;
  • the second composite film electrode includes: a fourth polymer film and a second electrode disposed on a surface of one side of the fourth polymer film.
  • At least one second through hole is disposed on the second composite film electrode, and the third polymer film is partially filled in the second through hole.
  • first through holes are arranged in an array on the first composite film electrode and/or a plurality of second through holes are arranged in an array on the second composite film electrode.
  • the second electrode is disposed on a side surface of the fourth polymer film that is close to or away from the first friction component.
  • a second concave-convex array structure is disposed on a surface of the third polymer film opposite to the first friction member.
  • the friction generator having the composite film electrode further includes: an intermediate layer; the intermediate layer is disposed between the first friction component and the second friction component.
  • the present disclosure also provides a method of fabricating a friction generator having a composite film electrode as described above, comprising:
  • the first composite film electrode is disposed on a portion of the surface of the first polymer film intermediate, and the first polymer material is coated on the first composite film electrode and the first polymer film intermediate. Obtaining a first friction component
  • the first friction component and the second friction component are stacked together to obtain a friction generator having a composite film electrode.
  • fabricating the first composite film electrode further comprises:
  • a first composite film electrode is fabricated, and at least one first through hole is formed on the first composite film electrode.
  • the first friction component further comprises:
  • one side surface of the first template is previously provided with a first concave-convex array structure
  • Coating the first polymer material on the first template to obtain the first polymer film intermediate further comprises: coating the first polymer material on the surface of the first template away from the first concave-convex array structure The first polymer film intermediate is obtained.
  • the second electrode is fabricated, and the second friction component further includes:
  • the second electrode and the third polymer film are laminated in this order to obtain a second friction member.
  • the second electrode is fabricated, and the second friction component further includes:
  • the second composite film electrode comprises: a fourth polymer film and a second electrode disposed on a surface of one side of the fourth polymer film;
  • the second composite film electrode is disposed on a portion of the surface of the third polymer film intermediate, and the third polymer material is coated on the second composite film electrode and the third polymer film intermediate. A second friction assembly is obtained.
  • fabricating the second composite film electrode further comprises:
  • a second composite film electrode is fabricated, and at least one second through hole is formed on the second composite film electrode.
  • the second friction component further comprises:
  • a side surface of the second template is previously provided with a second concave-convex array structure
  • Coating the third polymer material on the second template to obtain the third polymer film intermediate further comprises: coating the third polymer material on the surface of the second template away from the second concave-convex array structure , obtaining a third polymer film intermediate.
  • the method further comprises: fabricating an intermediate layer
  • Laminating the first friction component and the second friction component together to obtain the friction generator having the composite film electrode further comprises: laminating the first friction component, the intermediate layer and the second friction component together to obtain a composite film electrode Friction generator.
  • the present disclosure also provides a power generating shoe comprising: a friction generator having a composite film electrode as described above.
  • the friction generator with composite film electrode uses the same polymer material to wrap the first composite film electrode to obtain the first friction component, improves the working stability of the first friction component, and makes the whole friction component more Consistently, it helps to improve the power generation efficiency of the friction generator and prolongs the service life of the friction generator; and, between the first polymer film and the second polymer film in the first composite film electrode A transition layer can be formed, and the presence of the transition layer can reduce the neutralization of positive and negative charges, thereby further improving the power generation efficiency of the friction generator.
  • the first polymer film can be embedded in the through hole through the first through hole on the first composite film electrode to be closely fitted with the first composite film electrode, and the bonding strength is high and effective.
  • the reinforcement of the first friction component is enhanced.
  • the friction generator with the composite film electrode provided by the present disclosure not only has high power generation efficiency, stable working performance, long service life, but also has the advantages of simple manufacturing process, low cost, and suitable for large-scale industrial production.
  • FIG. 1 is a schematic cross-sectional view showing a first embodiment of a friction generator having a composite film electrode according to the present disclosure
  • FIG. 2a is a schematic view showing a setting of a first through hole provided by the present disclosure
  • FIG. 2b is another schematic diagram of a first through hole provided by the present disclosure
  • FIG. 3 is a schematic cross-sectional structural view of a second embodiment of a friction generator having a composite film electrode according to the present disclosure
  • FIG. 4 is a schematic cross-sectional structural view of a third embodiment of a friction generator having a composite film electrode according to the present disclosure
  • FIG. 5 is a schematic flow chart of a method for preparing a friction generator having a composite film electrode provided by the present disclosure.
  • the present disclosure provides a friction generator having a composite film electrode, comprising: a first friction component and a second friction component which are sequentially stacked; the first friction component is composed of a first composite film electrode and a first polymer film The first composite film electrode is embedded in the first polymer film and wrapped by the first polymer film; wherein the first composite film electrode comprises: a second polymer film and is disposed at the second highest a first electrode on a side surface of the molecular polymer film; the second friction component includes at least a second electrode; the first electrode and the second electrode are signal output ends of a friction generator having a composite film electrode.
  • a frictional generator having a composite film electrode includes: a first friction component 110 and a layer which are sequentially stacked. Two friction components 120.
  • the first friction module 110 is composed of a first composite film electrode 111 and a first polymer film 112, and the first composite film electrode 111 is embedded in the first polymer film 112 and polymerized by the first polymer.
  • the film 112 is wrapped. 1 shows a case where the first composite film electrode 111 is entirely embedded in the first polymer film 112, which is equivalent to wrapping the first composite film electrode 111 with the same polymer material.
  • the first composite film electrode 111 may be partially embedded in the first polymer film 112, and a person skilled in the art may select a specific embedding method according to actual needs, which is not limited herein.
  • the material of the first polymer film 112 can be set according to actual needs, which is not limited herein.
  • the first polymer film 112 may be a thermosetting or thermoplastic polymer material such as silica gel or rubber.
  • the first friction component 110 obtained by wrapping the first composite film electrode 111 with the same polymer material is more rigid and can be obtained. More stable working performance helps to improve the power generation efficiency of the friction generator.
  • the first composite film electrode 111 includes a second polymer film 1111 and a first electrode 1112 disposed on a surface of one side of the second polymer film 1111.
  • the first electrode 1112 can be disposed on a side surface of the second polymer film 1111 that is close to or away from the second friction component 120.
  • the setting position of the first electrode 1112 can be determined by those skilled in the art according to actual needs. Specifically, FIG. 1 illustrates a case where the first electrode 1112 is disposed on a side surface of the second polymer film 1111 away from the second friction member 120.
  • a person skilled in the art can set the first electrode 1112 on the side surface of the second polymer film 1111 near the second friction component 120 with reference to FIG. 1, which is equivalent to changing the first electrode 1112 and the second height in FIG. The position of the molecular polymer film 1111.
  • the material of the second polymer film 1111 is different from the material of the first polymer film 112, and therefore, between the second polymer film 1111 and the first polymer film 112.
  • a transition layer can be formed, and the presence of the transition layer can reduce the neutralization of positive and negative charges, thereby further improving the power generation efficiency of the friction generator.
  • a person skilled in the art can set the materials of the second polymer film 1111 and the first electrode 1112 in the first composite film electrode 111 according to actual needs, which is not limited herein.
  • the first composite film electrode 111 may be polyethylene-plated polyethylene terephthalate (PET), ITO-plated PET, silver-plated PET, or aluminum-plated poly. Vinyl chloride (PVC), PVC coated with silver or PVC coated with nickel.
  • the first composite film electrode 111 may be provided with at least one first through hole 113, and the first polymer film 112 is also partially filled in the first through hole 113.
  • the first polymer material for forming the first polymer film 112 is filled in the first through hole 113. Therefore, the first polymer film 112 and the first composite film electrode 111 can be tightly fitted together, and the bonding strength is high, effectively enhancing the firmness of the first friction component 110, so that the entire first friction component 110 is more consistent and more stable.
  • At least one first through hole 113 may be formed on the first composite film electrode 111 by a punching, laser cutting or other process in a predetermined size.
  • the shape of the first through hole 113 may be a preset shape such as a circle, a square, a triangle, a stripe, a wavy line, a broken line, an ellipse, and an irregular shape.
  • the plurality of first through holes 113 may be arranged in an array on the first composite film electrode 111.
  • the plurality of first through holes 113 may be arranged in a shape such as a rectangle or a diamond.
  • a person skilled in the art can set the shape, size, and arrangement of the first through holes 113 according to actual needs, which is not limited herein.
  • the diameter of the first through hole 113 is preferably 0.1 mm to 10 mm.
  • the first through hole 113 on the first composite film electrode 111 has a circular shape, and the plurality of first through holes 113 are arranged in a rectangular shape; as shown in FIG. 2b, the first composite film electrode 111 is as shown in FIG. 2b.
  • the shape of the first through hole 113 is straight stripes, and the plurality of first through holes 113 are arranged at predetermined intervals.
  • the second friction component 120 includes a second electrode, and the two surfaces of the first polymer film 112 opposite to the second electrode constitute a friction interface, and the first electrode 1112 and the second electrode are signals of a friction generator having a composite film electrode Output.
  • the first composite film electrode 111 is embedded in the first polymer film 112
  • the electrical signal outputted by the first electrode 1112 can be extracted through the electrode lead, specifically, the first polymer film
  • the electrode lead is previously disposed in 112, and one end of the electrode lead is connected to the first electrode 1112, and the other end is disposed outside the first polymer film 112, thereby conveniently extracting an electrical signal output from the first electrode 1112.
  • a first concave-convex array structure 114 is disposed on a surface of the first polymer polymer film 112 opposite to the second friction component 120.
  • the presence of the first concave-convex array structure 114 increases the roughness of the friction surface. Degree, which contributes to the improvement of power generation efficiency of friction generators.
  • the first concave-convex array structure 114 is formed by arranging a plurality of protrusions in a rectangular or diamond shape, or a plurality of strip-shaped structures are arranged geometrically on two sides, four corners, four-sided edges or the entire surface of at least one surface.
  • the shape of the protrusion may be hemispherical, cylindrical, prismatic or pyramidal, etc., and is not specifically limited herein;
  • the strip structure may be in the shape of a well, a cross, a zebra, a cross or a word.
  • the array is arranged and is not specifically limited herein.
  • FIG. 3 is a cross-sectional structural view of a second embodiment of a friction generator having a composite film electrode according to the present disclosure.
  • the second embodiment of the friction generator differs from the friction generator embodiment in that: the second friction component The 220 includes not only the second electrode 221 but also a third polymer film 222 disposed on a side surface of the second electrode 221 opposite to the first friction member 110.
  • the two surfaces of the first polymer film 112 opposite to the third polymer film 222 constitute a friction interface, and the first electrode 1112 and the second electrode 221 are signal output ends of a friction generator having a composite film electrode.
  • a person skilled in the art can set the material of the third polymer film 222 according to actual needs, which is not limited herein.
  • the material of the third polymer film 222 is different from the material of the first polymer film 112, and there should be a certain polarity difference between them in order to obtain a better friction power generation effect.
  • the third embodiment of the friction generator differs from the second embodiment of the friction generator in that: the second friction component 320 is composed of a second composite film electrode 321 and a third polymer film 322, and the second composite film electrode 321 is embedded in the third polymer film 322 and is wrapped by the third polymer film 322. 4 shows a case where the second composite film electrode 321 is entirely embedded in the third polymer film 322, and corresponds to the second friction component obtained by wrapping the second composite film electrode 321 with the same polymer material.
  • the structure is more robust, this arrangement improves the working stability of the second friction component 320, and helps to further improve the power generation efficiency of the friction generator.
  • the second composite film electrode 321 may be partially embedded in the third polymer film 322, and a person skilled in the art may select a specific embedding method according to actual needs, which is not limited herein.
  • the second composite film electrode 321 includes a fourth polymer film 3211 and a second electrode 3212 disposed on a surface of one side of the fourth polymer film 3211.
  • the second electrode 3212 can be disposed on a side surface of the fourth polymer film 3211 that is close to or away from the first friction component 110.
  • the position of the second electrode 3212 can be determined by a person skilled in the art according to actual needs. Specifically, FIG. 4 shows a case where the second electrode 3212 is disposed on a side surface of the fourth polymer film 3211 away from the first friction member 110.
  • a second electrode 3212 can be disposed on a side surface of the fourth polymer film 3211 near the first friction component 110, which is equivalent to the second electrode 3212 and the fourth height in FIG. The position of the molecular polymer film 3211.
  • the material of the fourth polymer film 3211 is different from the material of the third polymer film 322, and therefore, between the fourth polymer film 3211 and the third polymer film 322.
  • a transition layer can be formed, and the presence of the transition layer can reduce the neutralization of positive and negative charges, thereby further improving the power generation efficiency of the friction generator.
  • a person skilled in the art can set the materials of the fourth polymer film 3211 and the second electrode 3212 in the second composite film electrode 321 according to actual needs, which are not limited herein.
  • the second composite film electrode 321 may be PET plated with aluminum, PET plated with ITO, PET plated with a silver mesh, PVC plated with aluminum, PVC plated with silver or plated with Nickel PVC, etc.
  • the second composite film electrode 321 may be the same as the first composite film electrode 111 or may be different from the first composite film electrode 111, and is not limited herein.
  • the two surfaces of the first polymer film 112 opposite to the third polymer film 322 constitute a friction interface, and the first electrode 1112 and the second electrode 3212 are signal output ends of a friction generator having a composite film electrode.
  • the electrode leads can be respectively passed through the two electrodes. An electrical signal outputted by the first electrode 1112 and the second electrode 3212 is extracted.
  • the electrode lead 1 may be previously disposed in the first polymer film 112, and one end of the electrode lead 1 is connected to the first electrode 1112.
  • the other end of the lead 1 is disposed outside the first polymer film 112, and the electrode lead 2 is previously disposed in the third polymer film 322, and one end of the electrode lead 2 is connected to the second electrode 3212.
  • the other end of 2 is disposed outside the third polymer film 322, thereby conveniently extracting electrical signals output from the first electrode 1112 and the second electrode 3212.
  • the second composite film electrode 321 may be provided with at least one second through hole (not shown), and the third polymer film 322 is also partially filled in the at least one second through hole.
  • the third polymer material used to form the third polymer film 322 is filled in the second through hole due to the presence of the second through hole. Therefore, the third polymer film 322 and the second composite film electrode 321 can be tightly fitted together, the bonding strength is high, and the firmness of the second friction component 320 is effectively enhanced, so that the entire second friction component 320 is further Consistent and more stable performance.
  • At least one second through hole may be formed on the second composite film electrode 321 by a blanking, laser cutting or other process in a predetermined size.
  • the shape of the second through hole may be a preset shape such as a circle, a square, a triangle, a stripe, a wavy line, a broken line, an ellipse, and an irregular shape.
  • the plurality of second through holes may be arranged in an array on the second composite film electrode 321, and specifically, the plurality of second through holes may be arranged in a shape such as a rectangle or a diamond.
  • a person skilled in the art can set the shape, size, and arrangement of the second through holes according to actual needs, which is not limited herein.
  • For a schematic diagram of the arrangement of the second through holes reference may be made to the arrangement of the first through holes shown in FIG. 2a or 2b.
  • a second bump array structure 324 is provided on the side surface of the third polymer film 322 opposite to the first friction component 110 .
  • the second concave-convex array structure 324 is formed by arranging a plurality of protrusions in a rectangular or diamond shape, or a plurality of strip-shaped structures are arranged geometrically on two sides, four corners, four-sided edges or the entire surface of at least one surface.
  • the shape of the protrusion may be hemispherical, cylindrical, prismatic or pyramidal, etc., and is not specifically limited herein; the strip structure may be in the shape of a well, a cross, a zebra, a cross or a word.
  • the array arrangement is not specifically limited herein.
  • the bump array may be provided only on the friction surface of one friction component of the friction generator, for example, only on the friction surface of the first friction component 110 or It is only disposed on the friction surface of the second friction assembly 320.
  • a frictional generator having a composite membrane electrode can include an intermediate layer in addition to the first friction component and the second friction component as shown in FIG. 3 or FIG.
  • the intermediate layer is disposed between the first friction component and the second friction component.
  • the intervening layer can be an intervening film or an intervening electrode.
  • the intervening layer is an intervening electrode
  • the two surfaces of the first polymer film opposite the intervening electrode and/or the two surfaces of the interposing electrode and the third polymer film form a friction interface
  • the intervening electrode is a signal.
  • the first electrode and the second electrode are connected as another signal output end.
  • the friction generator with composite film electrode uses the same polymer material to wrap the first composite film electrode to obtain the first friction component, improves the working stability of the first friction component, and helps to improve friction power generation.
  • the power generation efficiency of the machine; and a transition layer can be formed between the first polymer film and the second polymer film in the first composite film electrode, and the presence of the transition layer can reduce the neutralization of positive and negative charges. Thereby, the power generation efficiency of the friction generator is further improved.
  • the first polymer film and the first composite film electrode can be closely fitted together through the first through hole on the first composite film electrode, and the bonding strength is high, and the first strength is effectively enhanced.
  • the firmness of a friction component makes the entire first friction component more consistent and more stable.
  • the friction generator with the composite film electrode provided by the present disclosure not only has high power generation efficiency and stable working performance, but also has the consistency of the entire friction generator, prolongs the service life of the entire friction generator, and has the advantages of simple manufacturing process and low cost. Suitable for large-scale industrial production.
  • the present disclosure also provides a method of preparing a frictional generator having a composite film electrode for each of the above embodiments.
  • 5 is a schematic flow chart of a method for fabricating a friction generator having a composite film electrode according to the present disclosure. As shown in FIG. 5, the method includes the following steps:
  • step S501 a first composite film electrode is fabricated.
  • the first composite film electrode includes: a second polymer film and a first electrode disposed on a surface of one side of the second polymer film.
  • the second polymer film may be formed first, and then the first electrode is formed on one surface of the second polymer film; or the first electrode may be formed first, and then A second polymer film is formed on one surface of one electrode.
  • the second process can be realized by a spin coating process, a casting process, a coating process, an injection molding process, a hot pressing process, a spraying process, a screen printing process, an inkjet printing process, a magnetron sputtering process, or an evaporation process.
  • a person skilled in the art can select a specific manufacturing process according to the nature of the polymer material, which is not limited herein.
  • a second polymer film of PET material can be produced by an injection molding process.
  • the first electrode can be fabricated by a spin coating process, a screen printing process, an inkjet printing process, a magnetron sputtering process or an evaporation process, and a person skilled in the art can select a specific fabrication process to fabricate the first electrode according to actual needs. , here is not limited.
  • it is optional to use a polymer film.
  • a metal conductive film or a non-metal conductive film for fabrication in the process of fabricating the first electrode.
  • At least one first may be fabricated on the first composite film electrode.
  • Through hole Specifically, at least one first through hole may be formed on the first composite film electrode by a punching, laser cutting or other process in a predetermined size.
  • a plurality of first vias may be arranged in an array on the first composite film electrode.
  • Step S502 coating the first polymer material on the first template to obtain a first polymer film intermediate.
  • the first template may be previously provided with a first concave-convex array structure.
  • the first template may be made of acrylic, stainless steel, aluminum alloy, quartz or glass.
  • the first polymer material is coated on the surface of the first template away from the first concave-convex array structure by a spin coating process to obtain a first polymer film intermediate.
  • the first polymer film intermediate refers to an uncured film, that is, after the film is formed, the film is still uncured, and is still in a gel form.
  • thermosetting PDMS as an example, it can be configured according to the ratio of PDMS and curing agent to 10:1, and then uniformly agitated and vacuum degassed for 5 min to 30 min to obtain a first polymer material, and then through a spin coating process in the first template.
  • the first polymer material is coated on the surface away from the first uneven array structure to obtain a first polymer film intermediate.
  • Step S503 the first composite film electrode is disposed on a portion of the surface of the first polymer film intermediate, and the first polymer is coated on the first composite film electrode and the first polymer film intermediate.
  • the polymeric material results in a first friction component.
  • the arrangement of the first composite film electrode on a part of the surface of the first polymer film intermediate means that the first composite film electrode and the first polymer film intermediate are laminated.
  • the first composite film electrode may be disposed on a portion of the surface of the first polymer film intermediate body where the first concave-convex array structure is not disposed.
  • the surface area of the first composite film electrode is smaller than the surface area of the first polymer film intermediate.
  • the electrode is disposed flat on the surface at the intermediate position of the first polymer film intermediate, and then the first polymer film material is coated on the first composite film electrode and the first polymer film intermediate. Then, the template subjected to the coating treatment is placed in a vacuum drying oven, and the first polymer material is subjected to vacuum degassing, heat curing, and cutting treatment to obtain a first friction component.
  • the first electrode of the first composite film electrode can be placed close to or away from the first template, and can be selected according to actual needs by a person skilled in the art, which is not limited herein.
  • the first through hole is provided on the first composite film electrode
  • the first composite film electrode when the first composite film electrode is disposed on a part of the surface of the first polymer film intermediate, due to the middle of the first polymer film
  • the body is still gelatinous, so the first polymer material is filled into the first through hole of the first composite film electrode, and the process of coating the first polymer material on the first composite film electrode again
  • the first polymer material is also filled into the first through hole of the first composite film electrode, and after the heat curing treatment, the first polymer film is partially filled in the first through hole. A close fitting of the first composite film electrode to the first polymer film is achieved.
  • the disclosure adopts a first polymer film to wrap the first composite film electrode, and improves the tightness and the degree of bonding between the first composite film electrode and the first polymer film through the first through hole, and the obtained
  • the first friction assembly can achieve more stable working performance and make the entire friction assembly more consistent, which helps to improve the power generation efficiency of the friction generator.
  • step S504 a second electrode is fabricated to obtain a second friction component.
  • the second friction component includes only the second electrode, and then can be applied by a spin coating process, a casting process, a coating process, an injection molding process, a hot pressing process, a spraying process, a screen printing process, and an inkjet printing process.
  • a second electrode is fabricated by a process, a magnetron sputtering process, or an evaporation process to obtain a second friction component.
  • the second friction component comprises a second electrode and a third polymer film stacked in a stack, and then the third polymer film can be formed first, and then in the third polymer film.
  • a second electrode is formed on one surface; a second electrode may be formed first, and then a third polymer film is formed on one surface of the second electrode.
  • the third process can be realized by a spin coating process, a casting process, a coating process, an injection molding process, a hot pressing process, a spraying process, a screen printing process, an inkjet printing process, a magnetron sputtering process, or an evaporation process.
  • the second electrode can be fabricated by a spin coating process, a screen printing process, an inkjet printing process, a magnetron sputtering process or an evaporation process, and a person skilled in the art can select a specific fabrication process to prepare a second electrode according to actual needs. , here is not limited.
  • a specific fabrication process to prepare a second electrode according to actual needs. , here is not limited.
  • the second friction component is composed of the second composite film electrode and the third polymer film, and then the second friction component is fabricated in a manner similar to steps S501 to S503.
  • the second composite film electrode comprises: a fourth polymer film and a second electrode disposed on a surface of one side of the fourth polymer film.
  • at least one second through hole may be formed on the second composite film electrode.
  • a plurality of second vias may be arranged in an array on the second composite film electrode.
  • the second polymer film intermediate refers to an uncured film which is still in the form of a gel.
  • the arrangement of the second composite film electrode on a part of the surface of the third polymer film intermediate means that the second composite film electrode and the third polymer film intermediate are laminated.
  • the second composite film electrode is disposed on a portion of the surface of the third polymer film intermediate body where the second uneven array structure is not disposed.
  • the surface area of the second composite film electrode is smaller than the surface area of the third polymer film intermediate.
  • the electrode is disposed flat on the surface at the intermediate position of the third polymer film intermediate, and then the third polymer material is coated on the second composite film electrode and the third polymer film intermediate. Then, the template subjected to the coating treatment is placed in a vacuum drying oven, and the third polymer material is subjected to vacuum degassing, heat curing, and cutting treatment, thereby obtaining a second friction component.
  • the second electrode of the second composite film electrode may be placed close to or away from the second template. The person skilled in the art may select according to actual needs, which is not limited herein.
  • the second through hole is provided on the second composite film electrode
  • the second composite film electrode when the second composite film electrode is disposed on a part of the surface of the third polymer film intermediate, due to the middle of the third polymer film
  • the body is still gelatinous, so the third polymer material is filled into the second through hole of the second composite film electrode, and the third polymer film material is coated again on the second composite film electrode.
  • the third polymer material is also filled into the second through hole of the second composite film electrode, and after the heat curing treatment, the third polymer film is partially filled in the second through hole. A close fitting of the second composite film electrode to the third polymer film is achieved.
  • the disclosure adopts a third polymer film to wrap the second composite film electrode, and improves the tightness and the bonding degree between the second composite film electrode and the third polymer film through the second through hole, and the obtained
  • the second friction component can achieve more stable working performance and make the whole friction component more consistent, which helps to improve the power generation efficiency of the friction generator.
  • Step S505 the first friction component and the second friction component are stacked together to obtain a friction generator having a composite film electrode.
  • the first friction component and the second friction component are stacked together to obtain a friction generator having a composite film electrode. If the second friction assembly includes only the second electrode, the first friction member and the second friction member are stacked together such that the two surfaces of the first polymer film opposite the second electrode constitute a friction interface. If the second friction component includes the second electrode and the third polymer film which are stacked, the first friction component and the second friction component are stacked together, so that the first polymer film and the third polymer The opposite surfaces of the polymer film constitute a frictional interface. If the second friction component is composed of the second composite film electrode and the third polymer film, the first friction component and the second friction component are stacked together to make the first polymer film and the third polymer The opposite surfaces of the polymer film constitute a frictional interface.
  • the method of preparation may further comprise the step of making an intermediate layer, wherein the intermediate layer may be an intervening film or an intervening electrode. Then, in step S505, the first friction assembly, the intermediate layer and the second friction assembly are stacked together to obtain a friction generator having a composite film electrode.
  • the two surfaces of the first polymer film opposite the intermediate layer and/or the two surfaces of the intermediate layer opposite to the third polymer film constitute a frictional interface.
  • a friction generator having a composite film electrode can be prepared by a spin coating process, a screen printing process, an inkjet printing process, a magnetron sputtering process, or an evaporation process.
  • the present disclosure can conveniently obtain a friction generator with high power generation efficiency, stable working performance, strong consistency and long service life by using a suitable preparation method, and has the advantages of simple manufacturing process, high stability, easy processing, and low cost.
  • the present disclosure also provides a power generating shoe comprising a friction generator having a composite film electrode as described above.
  • a friction generator having a composite film electrode is disposed inside the shoe body, since the first composite film electrode in the first friction component employs a second polymer film provided with the first electrode, and the first composite film electrode is embedded into The first polymer film is wrapped by the first polymer film, and the first friction component has high bonding strength and good firmness, and solves the friction component of the existing power shoe under the condition of large force.
  • the problem of susceptibility to damage effectively improves the quality of power generation shoes and prolongs the service life of power generation shoes.
  • the friction generator with composite membrane electrode provided by the present disclosure can be applied not only as a generator to a power generating shoe, but also as a sensor to other devices, for example, for a pulse monitoring device for sensing and accepting. electric signal.
  • a person skilled in the art can apply a friction generator having a composite film electrode to other devices according to actual needs, which is not limited herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Quality & Reliability (AREA)
  • Laminated Bodies (AREA)

Abstract

本公开公开了一种具有复合薄膜电极的摩擦发电机、制备方法及发电鞋,其中,具有复合薄膜电极的摩擦发电机包括:依次层叠设置的第一摩擦组件和第二摩擦组件;第一摩擦组件由第一复合薄膜电极和第一高分子聚合物薄膜组成,第一复合薄膜电极嵌入至第一高分子聚合物薄膜中,并被第一高分子聚合物薄膜包裹;其中,第一复合薄膜电极包括:第二高分子聚合物薄膜以及设置在第二高分子聚合物薄膜一侧表面上的第一电极;第二摩擦组件至少包括第二电极;第一电极和第二电极为具有复合薄膜电极的摩擦发电机的信号输出端。

Description

具有复合薄膜电极的摩擦发电机、制备方法及发电鞋
相关申请的交叉参考
本申请要求于2018年3月5日提交中国专利局、申请号为201810179291.3、名称为“具有复合薄膜电极的摩擦发电机、制备方法及发电鞋”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及摩擦发电技术领域,具体涉及一种具有复合薄膜电极的摩擦发电机、制备方法及发电鞋。
背景技术
摩擦发电机已广泛应用在多个领域中。其中,摩擦组件是摩擦发电机中的关键组件,摩擦组件的本身性质对摩擦发电机的发电效率、工作性能、使用寿命等影响极大。在现有技术中,摩擦组件大多是由层叠设置的聚合物薄膜层和金属层而形成,这种摩擦组件的制作工艺比较复杂,制作成本较高,良品率较低,很难确保制作得到的摩擦组件中的聚合物薄膜层和金属层能够平整且紧密地贴合在一起,进而导致摩擦发电机的发电效率较低,工作性能不稳定;并且在受力比较大的情况下,聚合物薄膜层上的金属层很容易脱落或损坏,导致摩擦发电机的使用寿命较短。因此,现有技术中缺少一种制作工艺简单、成本低廉、发电效率高、工作性能稳定及使用寿命长的摩擦发电机。
发明内容
本公开的公开目的是针对现有技术的缺陷,提供了一种具有复合薄膜电极的摩擦发电机、制备方法及发电鞋,用于解决现有技术中摩擦发电机结构复杂,制作工艺复杂、制造成本高、发电效率低、工作性能不稳定及使用寿命短的问题。
本公开提供了一种具有复合薄膜电极的摩擦发电机,包括:依次层叠设 置的第一摩擦组件和第二摩擦组件;
第一摩擦组件由第一复合薄膜电极和第一高分子聚合物薄膜组成,第一复合薄膜电极嵌入至第一高分子聚合物薄膜中,并被第一高分子聚合物薄膜包裹;其中,第一复合薄膜电极包括:第二高分子聚合物薄膜以及设置在第二高分子聚合物薄膜一侧表面上的第一电极;
第二摩擦组件至少包括第二电极;第一电极和第二电极为具有复合薄膜电极的摩擦发电机的信号输出端。
进一步地,第一复合薄膜电极上设置有至少一个第一通孔,第一高分子聚合物薄膜还部分填充在第一通孔中。
进一步地,第一电极设置在第二高分子聚合物薄膜靠近或远离第二摩擦组件的一侧表面上。
进一步地,在第一高分子聚合物薄膜与第二摩擦组件相对的一侧表面上设置有第一凹凸阵列结构。
进一步地,第二摩擦组件还包括第三高分子聚合物薄膜,第三高分子聚合物薄膜设置在第二电极与第一摩擦组件相对的一侧表面上。
进一步地,第二摩擦组件由第二复合薄膜电极和第三高分子聚合物薄膜组成,第二复合薄膜电极嵌入至第三高分子聚合物薄膜中,并被第三高分子聚合物薄膜包裹;其中,第二复合薄膜电极包括:第四高分子聚合物薄膜以及设置在第四高分子聚合物薄膜一侧表面上的第二电极。
进一步地,第二复合薄膜电极上设置有至少一个第二通孔,第三高分子聚合物薄膜还部分填充在第二通孔中。
进一步地,多个第一通孔在第一复合薄膜电极上阵列排布和/或多个第二通孔在第二复合薄膜电极上阵列排布。
进一步地,第二电极设置在第四高分子聚合物薄膜靠近或远离第一摩擦组件的一侧表面上。
进一步地,在第三高分子聚合物薄膜与第一摩擦组件相对的一侧表面上设置有第二凹凸阵列结构。
进一步地,具有复合薄膜电极的摩擦发电机还包括:居间层;居间层设 置在第一摩擦组件和第二摩擦组件之间。
本公开还提供了一种如上述的具有复合薄膜电极的摩擦发电机的制备方法,包括:
制作第一复合薄膜电极;
在第一模板上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体;
将第一复合薄膜电极设置在第一高分子聚合物薄膜中间体的部分表面上,并在第一复合薄膜电极和第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,得到第一摩擦组件;
制作第二电极,得到第二摩擦组件;
将第一摩擦组件和第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。
进一步地,制作第一复合薄膜电极进一步包括:
制作第一复合薄膜电极,并在第一复合薄膜电极上制作至少一个第一通孔。
进一步地,在第一复合薄膜电极和第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,得到第一摩擦组件进一步包括:
在第一复合薄膜电极和第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,并对第一高分子聚合物材料进行真空除气、加热固化和裁剪处理,得到第一摩擦组件。
进一步地,第一模板的一侧表面预先设置有第一凹凸阵列结构;
在第一模板上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体进一步包括:在第一模板远离第一凹凸阵列结构的表面上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体。
进一步地,制作第二电极,得到第二摩擦组件进一步包括:
依次层叠制作第二电极和第三高分子聚合物薄膜,得到第二摩擦组件。
进一步地,制作第二电极,得到第二摩擦组件进一步包括:
制作第二复合薄膜电极;其中,第二复合薄膜电极包括:第四高分子聚合物薄膜以及设置在第四高分子聚合物薄膜一侧表面上的第二电极;
在第二模板上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体;
将第二复合薄膜电极设置在第三高分子聚合物薄膜中间体的部分表面上,并在第二复合薄膜电极和第三高分子聚合物薄膜中间体上涂布第三高分子聚合物材料,得到第二摩擦组件。
进一步地,制作第二复合薄膜电极进一步包括:
制作第二复合薄膜电极,并在第二复合薄膜电极上制作至少一个第二通孔。
进一步地,在第二复合薄膜电极和第三高分子聚合物薄膜中间体上涂布第三高分子聚合物材料,得到第二摩擦组件进一步包括:
在第二复合薄膜电极和第三高分子聚合物薄膜中间体上涂布第三高分子聚合物材料,并对第三高分子聚合物材料进行真空除气、加热固化和裁剪处理,得到第二摩擦组件。
进一步地,第二模板的一侧表面预先设置有第二凹凸阵列结构;
在第二模板上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体进一步包括:在第二模板远离第二凹凸阵列结构的表面上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体。
进一步地,在得到第二摩擦组件之后,该方法还包括:制作居间层;
将第一摩擦组件和第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机进一步包括:将第一摩擦组件、居间层和第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。
本公开还提供了一种发电鞋,包括:如上述的具有复合薄膜电极的摩擦发电机。
本公开提供的具有复合薄膜电极的摩擦发电机,采用同一种高分子聚合物材料包裹第一复合薄膜电极得到第一摩擦组件,提高了第一摩擦组件的工作稳定性,并使整个摩擦组件更具一致性,有助于提高摩擦发电机的发电效 率,延长了摩擦发电机的使用寿命;并且,第一高分子聚合物薄膜和第一复合薄膜电极中的第二高分子聚合物薄膜之间能够形成过渡层,过渡层的存在能够减少正、负电荷的中和,从而进一步提高了摩擦发电机的发电效率。可选地,还可通过第一复合薄膜电极上的第一通孔,使得第一高分子聚合物薄膜嵌入通孔而和第一复合薄膜电极能够紧密地嵌合在一起,结合强度高,有效地增强了第一摩擦组件的牢固度。另外,本公开提供的具有复合薄膜电极的摩擦发电机不仅发电效率高、工作性能稳定,使用寿命长,同时还具有制作工艺简单、成本低廉、适合大规模工业生产的优点。
附图说明
图1为本公开提供的具有复合薄膜电极的摩擦发电机实施例一的截面结构示意图;
图2a为本公开提供的第一通孔的一设置示意图;
图2b为本公开提供的第一通孔的另一设置示意图;
图3为本公开提供的具有复合薄膜电极的摩擦发电机实施例二的截面结构示意图;
图4是本公开提供的具有复合薄膜电极的摩擦发电机实施例三的截面结构示意图;
图5是本公开提供的具有复合薄膜电极的摩擦发电机的制备方法的流程示意图。
具体实施方式
为充分了解本公开之目的、特征及功效,借由下述具体的实施方式,对本公开做详细说明,但本公开并不仅仅限于此。
本公开提供了一种具有复合薄膜电极的摩擦发电机,包括:依次层叠设置的第一摩擦组件和第二摩擦组件;第一摩擦组件由第一复合薄膜电极和第一高分子聚合物薄膜组成,第一复合薄膜电极嵌入至第一高分子聚合物薄膜中,并被第一高分子聚合物薄膜包裹;其中,第一复合薄膜电极包括:第二 高分子聚合物薄膜以及设置在第二高分子聚合物薄膜一侧表面上的第一电极;第二摩擦组件至少包括第二电极;第一电极和第二电极为具有复合薄膜电极的摩擦发电机的信号输出端。
图1为本公开提供的具有复合薄膜电极的摩擦发电机实施例一的截面结构示意图,如图1所示,具有复合薄膜电极的摩擦发电机包括:依次层叠设置的第一摩擦组件110和第二摩擦组件120。
其中,第一摩擦组件110由第一复合薄膜电极111和第一高分子聚合物薄膜112组成,第一复合薄膜电极111嵌入至第一高分子聚合物薄膜112中,并被第一高分子聚合物薄膜112包裹。图1示出了第一复合薄膜电极111全部嵌入至第一高分子聚合物薄膜112中的情况,相当于采用同一种高分子聚合物材料包裹第一复合薄膜电极111。另外,也可以为第一复合薄膜电极111部分嵌入至第一高分子聚合物薄膜112中,本领域技术人员可根据实际需要选择具体嵌入方式,此处不做限定。
本领域技术人员可根据实际需要对第一高分子聚合物薄膜112的材料进行设置,此处不做限定。例如,第一高分子聚合物薄膜112可以为硅胶、橡胶等热固、热塑性的聚合物材料。与采用两种不同的高分子聚合物材料包裹第一复合薄膜电极111相比,采用同一种高分子聚合物材料包裹第一复合薄膜电极111而得到的第一摩擦组件110结构更加牢固,能够获得更加稳定的工作性能,有助于提高摩擦发电机的发电效率。
其中,第一复合薄膜电极111包括:第二高分子聚合物薄膜1111以及设置在第二高分子聚合物薄膜1111一侧表面上的第一电极1112。第一电极1112可设置在第二高分子聚合物薄膜1111靠近或远离第二摩擦组件120的一侧表面上,本领域技术人员可根据实际需要确定第一电极1112的设置位置。具体地,图1示出了第一电极1112设置在第二高分子聚合物薄膜1111远离第二摩擦组件120的一侧表面上的情况。本领域技术人员可参考图1将第一电极1112设置在第二高分子聚合物薄膜1111靠近第二摩擦组件120的一侧表面上,相当于调换了图1中第一电极1112和第二高分子聚合物薄膜1111的位置。
在本公开中,第二高分子聚合物薄膜1111的材料不同于第一高分子聚 合物薄膜112的材料,因此,在第二高分子聚合物薄膜1111和第一高分子聚合物薄膜112之间能够形成过渡层,过渡层的存在能够减少正、负电荷的中和,从而进一步提高了摩擦发电机的发电效率。本领域技术人员可根据实际需要对第一复合薄膜电极111中的第二高分子聚合物薄膜1111和第一电极1112的材料进行设置,此处不做限定。例如,第一复合薄膜电极111可以为镀制有铝的聚对苯二甲酸乙二醇酯(PET)、镀制有ITO的PET、镀制有银网格的PET、镀制有铝的聚氯乙烯(PVC)、镀制有银的PVC或者镀制有镍的PVC等。
另外,如图2a或图2b所示,第一复合薄膜电极111上可设置有至少一个第一通孔113,第一高分子聚合物薄膜112还部分填充在第一通孔113中。具体地,由于第一通孔113的存在,在制备第一摩擦组件110的过程中,用于制作第一高分子聚合物薄膜112的第一高分子聚合物材料会填充在第一通孔113中,从而使第一高分子聚合物薄膜112和第一复合薄膜电极111能够紧密地嵌合在一起,结合强度高,有效地增强了第一摩擦组件110的牢固度,使整个第一摩擦组件110更具一致性,性能更稳定。
具体地,可通过冲裁、激光切割或其他工艺按照预设尺寸在第一复合薄膜电极111上制作至少一个第一通孔113。第一通孔113的形状可以为圆形、方形、三角形、条纹、波浪线、断线、椭圆以及不规则形状等预设形状。多个第一通孔113可在第一复合薄膜电极111上阵列排布,具体地,多个第一通孔113可按照矩形或菱形等形状进行排列。本领域技术人员可根据实际需要对第一通孔113的形状、尺寸和排列方式进行设置,此处不做限定。以第一通孔113的形状为圆形为例,第一通孔113的直径优选为0.1mm~10mm。如图2a所示,第一复合薄膜电极111上的第一通孔113的形状为圆形,并且多个第一通孔113按照矩形进行排列;如图2b所示,第一复合薄膜电极111上的第一通孔113的形状为直条纹,并且多个第一通孔113按照预设间隔进行排列。
第二摩擦组件120包括第二电极,第一高分子聚合物薄膜112与第二电极相对的两个表面构成摩擦界面,第一电极1112和第二电极为具有复合薄膜电极的摩擦发电机的信号输出端。其中,由于第一复合薄膜电极111是嵌 入至第一高分子聚合物薄膜112中的,因此可通过电极引线引出第一电极1112输出的电信号,具体地,可在第一高分子聚合物薄膜112中预先设置电极引线,并使得电极引线的一端与第一电极1112相连,另一端设置在第一高分子聚合物薄膜112外部,从而方便地引出第一电极1112输出的电信号。
如图1所示,在第一高分子聚合物薄膜112与第二摩擦组件120相对的一侧表面上设置有第一凹凸阵列结构114,第一凹凸阵列结构114的存在增加了摩擦面的粗糙度,有助于摩擦发电机发电效率的提高。其中,第一凹凸阵列结构114为多个凸起按照矩形或菱形排列构成,或者为多个带状结构按照几何排列设置在至少一个表面的两侧、四角、四周边缘或整个表面上。可选地,凸起的形状可以为半球形、圆柱形、棱柱形或棱锥形等,此处不做具体限定;带状结构可以按照井字、叉字、斑马线型、十字或口字的形状阵列排列,此处不做具体限定。
图3为本公开提供的具有复合薄膜电极的摩擦发电机实施例二的截面结构示意图,如图3所示,摩擦发电机实施例二与摩擦发电机实施例一的区别在于:第二摩擦组件220不仅包括第二电极221,还包括第三高分子聚合物薄膜222,第三高分子聚合物薄膜222设置在第二电极221与第一摩擦组件110相对的一侧表面上。第一高分子聚合物薄膜112与第三高分子聚合物薄膜222相对的两个表面构成摩擦界面,第一电极1112和第二电极221为具有复合薄膜电极的摩擦发电机的信号输出端。本领域技术人员可根据实际需要对第三高分子聚合物薄膜222的材料进行设置,此处不做限定。优选地,第三高分子聚合物薄膜222的材料与第一高分子聚合物薄膜112的材料不同,它们之间应具有一定的极性差异,以便获得较好的摩擦发电效果。
图4为本公开提供的具有复合薄膜电极的摩擦发电机实施例三的截面结构示意图,如图4所示,摩擦发电机实施例三与摩擦发电机实施例二的区别在于:第二摩擦组件320由第二复合薄膜电极321和第三高分子聚合物薄膜322组成,第二复合薄膜电极321嵌入至第三高分子聚合物薄膜322中,并被第三高分子聚合物薄膜322包裹。图4示出了第二复合薄膜电极321全部嵌入至第三高分子聚合物薄膜322中的情况,相当于采用同一种高分子聚合物材料包裹第二复合薄膜电极321而得到的第二摩擦组件320,结构更加牢 固,这种设置方式提高了第二摩擦组件320的工作稳定性,有助于进一步提高摩擦发电机的发电效率。另外,也可以为第二复合薄膜电极321部分嵌入至第三高分子聚合物薄膜322中,本领域技术人员可根据实际需要选择具体嵌入方式,此处不做限定。
其中,第二复合薄膜电极321包括:第四高分子聚合物薄膜3211以及设置在第四高分子聚合物薄膜3211一侧表面上的第二电极3212。第二电极3212可设置在第四高分子聚合物薄膜3211靠近或远离第一摩擦组件110的一侧表面上,本领域技术人员可根据实际需要确定第二电极3212的设置位置。具体地,图4示出了第二电极3212设置在第四高分子聚合物薄膜3211远离第一摩擦组件110的一侧表面上的情况。本领域技术人员可参考图4将第二电极3212设置在第四高分子聚合物薄膜3211靠近第一摩擦组件110的一侧表面上,相当于调换了图4中第二电极3212和第四高分子聚合物薄膜3211的位置。
在本公开中,第四高分子聚合物薄膜3211的材料不同于第三高分子聚合物薄膜322的材料,因此,在第四高分子聚合物薄膜3211和第三高分子聚合物薄膜322之间能够形成过渡层,过渡层的存在能够减少正、负电荷的中和,从而进一步提高了摩擦发电机的发电效率。本领域技术人员可根据实际需要对第二复合薄膜电极321中的第四高分子聚合物薄膜3211和第二电极3212的材料进行设置,此处不做限定。其中,第二复合薄膜电极321可以为镀制有铝的PET、镀制有ITO的PET、镀制有银网格的PET、镀制有铝的PVC、镀制有银的PVC或者镀制有镍的PVC等。具体地,第二复合薄膜电极321可以与第一复合薄膜电极111相同,也可以与第一复合薄膜电极111不同,此处不做限定。
第一高分子聚合物薄膜112与第三高分子聚合物薄膜322相对的两个表面构成摩擦界面,第一电极1112和第二电极3212为具有复合薄膜电极的摩擦发电机的信号输出端。其中,由于第一复合薄膜电极111是嵌入至第一高分子聚合物薄膜112中的,且第二复合薄膜电极321嵌入至第三高分子聚合物薄膜322中,因此可分别通过两根电极引线引出第一电极1112和第二电极3212输出的电信号,具体地,可在第一高分子聚合物薄膜112中预先设 置电极引线1,并使得电极引线1的一端与第一电极1112相连,电极引线1的另一端设置在第一高分子聚合物薄膜112外部,并在第三高分子聚合物薄膜322中预先设置电极引线2,并使得电极引线2的一端与第二电极3212相连,电极引线2的另一端设置在第三高分子聚合物薄膜322外部,从而方便地引出第一电极1112和第二电极3212输出的电信号。
另外,第二复合薄膜电极321上可设置有至少一个第二通孔(图中未示出),第三高分子聚合物薄膜322还部分填充在至少一个第二通孔中。具体地,由于第二通孔的存在,在制备第二摩擦组件320的过程中,用于制作第三高分子聚合物薄膜322的第三高分子聚合物材料会填充在第二通孔中,从而使第三高分子聚合物薄膜322和第二复合薄膜电极321能够紧密地嵌合在一起,结合强度高,有效地增强了第二摩擦组件320的牢固度,使整个第二摩擦组件320更具一致性,性能更加稳定。
具体地,可通过冲裁、激光切割或其他工艺按照预设尺寸在第二复合薄膜电极321上制作至少一个第二通孔。第二通孔的形状可以为圆形、方形、三角形、条纹、波浪线、断线、椭圆以及不规则形状等预设形状。多个第二通孔可在第二复合薄膜电极321上阵列排布,具体地,多个第二通孔可按照矩形或菱形等形状进行排列。本领域技术人员可根据实际需要对第二通孔的形状、尺寸和排列方式进行设置,此处不做限定。第二通孔的设置示意图可参照图2a或图2b所示的第一通孔的设置示意图。
如图4所示,为了进一步使摩擦发电机感应出更多的感应电荷,以提高摩擦发电机的发电效率,在第三高分子聚合物薄膜322与第一摩擦组件110相对的一侧表面上设置有第二凹凸阵列结构324。其中,第二凹凸阵列结构324为多个凸起按照矩形或菱形排列构成,或者为多个带状结构按照几何排列设置在至少一个表面的两侧、四角、四周边缘或整个表面上。可选地,凸起的形状可以为半球形、圆柱形、棱柱形或棱锥形等,此处不做具体限定;带状结构可以按照井字、叉字、斑马线型、十字或口字的形状阵列排列,此处不做具体限定,当然凹凸阵列除了图4中设置方式,还可以只设置摩擦发电机的一个摩擦组件的摩擦表面上,例如仅设置在第一摩擦组件110的摩擦表面上或仅设置在第二摩擦组件320的摩擦表面上。
在一种可选的实施方式中,具有复合薄膜电极的摩擦发电机除了包括如图3或图4中所示的第一摩擦组件和第二摩擦组件之外,还可包括居间层。居间层设置在第一摩擦组件和第二摩擦组件之间。具体地,居间层可以为居间薄膜或居间电极。当居间层为居间薄膜时,第一高分子聚合物薄膜与居间薄膜相对的两个表面和/或居间薄膜与第三高分子聚合物薄膜相对的两个表面构成摩擦界面,第一电极和第二电极为信号输出端。当居间层为居间电极时,第一高分子聚合物薄膜与居间电极相对的两个表面和/或居间电极与第三高分子聚合物薄膜相对的两个表面构成摩擦界面,居间电极为一个信号输出端,第一电极和第二电极相连为另外一个信号输出端。
本公开提供的具有复合薄膜电极的摩擦发电机,采用同一种高分子聚合物材料包裹第一复合薄膜电极得到第一摩擦组件,提高了第一摩擦组件的工作稳定性,有助于提高摩擦发电机的发电效率;并且,第一高分子聚合物薄膜和第一复合薄膜电极中的第二高分子聚合物薄膜之间能够形成过渡层,过渡层的存在能够减少正、负电荷的中和,从而进一步提高了摩擦发电机的发电效率。可选地,还可通过第一复合薄膜电极上的第一通孔,使得第一高分子聚合物薄膜和第一复合薄膜电极能够紧密地嵌合在一起,结合强度高,有效地增强了第一摩擦组件的牢固度,使整个第一摩擦组件更具一致性,性能更加稳定。另外,本公开提供的具有复合薄膜电极的摩擦发电机不仅发电效率高、工作性能稳定,整个摩擦发电机更具一致性,延长了整个摩擦发电机使用寿命的同时还具有制作工艺简单、成本低廉、适合大规模工业生产的优点。
本公开还提供了针对上述各实施例的具有复合薄膜电极的摩擦发电机的制备方法。图5是本公开提供的具有复合薄膜电极的摩擦发电机的制备方法的流程示意图,如图5所示,该方法包括如下步骤:
步骤S501,制作第一复合薄膜电极。
其中,第一复合薄膜电极包括:第二高分子聚合物薄膜以及设置在第二高分子聚合物薄膜一侧表面上的第一电极。在制作第一复合薄膜电极时,可先制作第二高分子聚合物薄膜,然后在第二高分子聚合物薄膜的一侧表面上制作第一电极;也可先制作第一电极,然后在第一电极的一侧表面上制作第 二高分子聚合物薄膜。具体地,可通过旋涂工艺、流延工艺、涂布工艺、注塑工艺、热压工艺、喷涂工艺、丝网印刷工艺、喷墨打印工艺、磁控溅射工艺或蒸镀工艺实现对第二高分子聚合物薄膜的制作,本领域技术人员可根据聚合物材料的本身性质选择具体的制作工艺,此处不做限定。例如,可采用注塑工艺制作材料为PET的第二高分子聚合物薄膜。可通过旋涂工艺、丝网印刷工艺、喷墨打印工艺、磁控溅射工艺或蒸镀工艺实现对第一电极的制作,本领域技术人员可根据实际需要选择具体的制作工艺制作第一电极,此处不做限定。另外,在制作第二高分子聚合物薄膜的过程中,可选择利用聚合物薄膜进行制作。在制作第一电极的过程中,也可选择利用金属导电薄膜或非金属导电薄膜进行制作。
可选地,为了使第一复合薄膜电极能够更加紧密地与第一高分子聚合物薄膜进行嵌合,在制作得到第一复合薄膜电极之后,可在第一复合薄膜电极上制作至少一个第一通孔。具体地,可通过冲裁、激光切割或其他工艺按照预设尺寸在第一复合薄膜电极上制作至少一个第一通孔。多个第一通孔可在第一复合薄膜电极上阵列排布。
步骤S502,在第一模板上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体。
第一模板的一侧表面可预先设置有第一凹凸阵列结构。第一模板可以为亚克力、不锈钢、铝合金、石英或玻璃等材料。通过旋涂工艺在第一模板远离第一凹凸阵列结构的表面上涂布第一高分子聚合物材料,从而得到第一高分子聚合物薄膜中间体。其中,第一高分子聚合物薄膜中间体是指未固化的薄膜,即形成薄膜后,薄膜还未经固化处理,仍为胶状。以热固性的PDMS为例,可按照PDMS与固化剂为10比1的比例进行配置,搅拌均匀后真空除气5min~30min,得到第一高分子聚合物材料,然后通过旋涂工艺在第一模板远离第一凹凸阵列结构的表面上涂布第一高分子聚合物材料,从而得到第一高分子聚合物薄膜中间体。
步骤S503,将第一复合薄膜电极设置在第一高分子聚合物薄膜中间体的部分表面上,并在第一复合薄膜电极和第一高分子聚合物薄膜中间体上再次涂布第一高分子聚合物材料,得到第一摩擦组件。
将第一复合薄膜电极设置在第一高分子聚合物薄膜中间体的部分表面上是指将第一复合薄膜电极和第一高分子聚合物薄膜中间体进行层叠放置。其中,可将第一复合薄膜电极设置在第一高分子聚合物薄膜中间体未设置第一凹凸阵列结构的部分表面上。第一复合薄膜电极的表面积小于第一高分子聚合物薄膜中间体的表面积。在得到了第一高分子聚合物薄膜中间体之后,将第一复合薄膜电极设置在第一高分子聚合物薄膜中间体的部分表面上,为了便于制作第一摩擦组件,可将第一复合薄膜电极平整地设置在第一高分子聚合物薄膜中间体的中间位置处的表面上,接着在第一复合薄膜电极和第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,然后将完成涂布处理的模板放入真空干燥箱中,对第一高分子聚合物材料进行真空除气、加热固化和裁剪处理,从而得到第一摩擦组件。其中,第一复合薄膜电极中的第一电极靠近或远离第一模板放置均可,本领域技术人员可根据实际需要进行选择,此处不做限定。
在第一复合薄膜电极上设置有第一通孔的情况下,当将第一复合薄膜电极设置在第一高分子聚合物薄膜中间体的部分表面上时,由于第一高分子聚合物薄膜中间体仍为胶状,所以第一高分子聚合物材料会填充至第一复合薄膜电极的第一通孔中,另外,在第一复合薄膜电极上再次涂布第一高分子聚合物材料的过程中,第一高分子聚合物材料也会填充至第一复合薄膜电极的第一通孔中,那么在经过加热固化处理后,第一高分子聚合物薄膜还部分填充在第一通孔中,实现了第一复合薄膜电极与第一高分子聚合物薄膜的紧密嵌合。本公开采用第一高分子聚合物薄膜包裹第一复合薄膜电极,并通过第一通孔提高了第一复合薄膜电极与第一高分子聚合物薄膜之间的紧密度和结合度,所得到的第一摩擦组件能够获得更加稳定的工作性能并使整个摩擦组件更具一致性,有助于提高摩擦发电机的发电效率。
步骤S504,制作第二电极,得到第二摩擦组件。
在一种实施方式中,第二摩擦组件仅包括第二电极,那么可通过旋涂工艺、流延工艺、涂布工艺、注塑工艺、热压工艺、喷涂工艺、丝网印刷工艺、喷墨打印工艺、磁控溅射工艺或蒸镀工艺制作第二电极,从而得到第二摩擦组件。
在另一种实施方式中,第二摩擦组件包括层叠设置的第二电极和第三高分子聚合物薄膜,那么可先制作第三高分子聚合物薄膜,然后在第三高分子聚合物薄膜的一侧表面上制作第二电极;也可先制作第二电极,然后在第二电极的一侧表面上制作第三高分子聚合物薄膜。具体地,可通过旋涂工艺、流延工艺、涂布工艺、注塑工艺、热压工艺、喷涂工艺、丝网印刷工艺、喷墨打印工艺、磁控溅射工艺或蒸镀工艺实现对第三高分子聚合物薄膜的制作,本领域技术人员可根据聚合物材料的本身性质选择具体的制作工艺,此处不做限定。可通过旋涂工艺、丝网印刷工艺、喷墨打印工艺、磁控溅射工艺或蒸镀工艺实现对第二电极的制作,本领域技术人员可根据实际需要选择具体的制作工艺制作第二电极,此处不做限定。另外,在制作第三高分子聚合物薄膜的过程中,可选择利用聚合物薄膜进行制作。在制作第二电极的过程中,也可选择利用金属导电薄膜或非金属导电薄膜进行制作。
在又一种实施方式中,第二摩擦组件由第二复合薄膜电极和第三高分子聚合物薄膜组成,那么利用类似于步骤S501至步骤S503的方式实现对第二摩擦组件的制作。
具体地,(1)制作第二复合薄膜电极,其中,第二复合薄膜电极包括:第四高分子聚合物薄膜以及设置在第四高分子聚合物薄膜一侧表面上的第二电极。另外,还可在第二复合薄膜电极上制作至少一个第二通孔。多个第二通孔可在第二复合薄膜电极上阵列排布。制作第二复合薄膜电极与制作第一复合薄膜电极的过程相同,制作第二通孔与制作第一通孔的过程相同,此处不再赘述。
(2)在第二模板上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体,其中,第二模板的一侧表面可预先设置有第二凹凸阵列结构,那么在第二模板远离第二凹凸阵列结构的表面上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体。第二高分子聚合物薄膜中间体是指未固化的薄膜,仍为胶状。
(3)将第二复合薄膜电极设置在第三高分子聚合物薄膜中间体的部分表面上,并在第二复合薄膜电极和第三高分子聚合物薄膜中间体上再次涂布第三高分子聚合物材料,得到第二摩擦组件。
将第二复合薄膜电极设置在第三高分子聚合物薄膜中间体的部分表面上是指将第二复合薄膜电极和第三高分子聚合物薄膜中间体进行层叠放置。其中,将第二复合薄膜电极设置在第三高分子聚合物薄膜中间体未设置第二凹凸阵列结构的部分表面上。第二复合薄膜电极的表面积小于第三高分子聚合物薄膜中间体的表面积。在得到了第三高分子聚合物薄膜中间体之后,将第二复合薄膜电极设置在第三高分子聚合物薄膜中间体的部分表面上,为了便于制作第二摩擦组件,可将第二复合薄膜电极平整地设置在第三高分子聚合物薄膜中间体的中间位置处的表面上,接着在第二复合薄膜电极和第三高分子聚合物薄膜中间体上涂布第三高分子聚合物材料,然后将完成涂布处理的模板放入真空干燥箱中,对第三高分子聚合物材料进行真空除气、加热固化和裁剪处理,从而得到第二摩擦组件。其中,第二复合薄膜电极中的第二电极靠近或远离第二模板放置均可,本领域技术人员可根据实际需要进行选择,此处不做限定。
在第二复合薄膜电极上设置有第二通孔的情况下,当将第二复合薄膜电极设置在第三高分子聚合物薄膜中间体的部分表面上时,由于第三高分子聚合物薄膜中间体仍为胶状,所以第三高分子聚合物材料会填充至第二复合薄膜电极的第二通孔中,另外,在第二复合薄膜电极上再次涂布第三高分子聚合物材料的过程中,第三高分子聚合物材料也会填充至第二复合薄膜电极的第二通孔中,那么在经过加热固化处理后,第三高分子聚合物薄膜还部分填充在第二通孔中,实现了第二复合薄膜电极与第三高分子聚合物薄膜的紧密嵌合。本公开采用第三高分子聚合物薄膜包裹第二复合薄膜电极,并通过第二通孔提高了第二复合薄膜电极与第三高分子聚合物薄膜之间的紧密度和结合度,所得到的第二摩擦组件能够获得更加稳定的工作性能并使整个摩擦组件更具一致性,有助于提高摩擦发电机的发电效率。
步骤S505,将第一摩擦组件和第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。
在完成了第一摩擦组件和第二摩擦组件的制作之后,将第一摩擦组件和第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。若第二摩擦组件仅包括第二电极,则将第一摩擦组件和第二摩擦组件层叠设置在 一起,使得第一高分子聚合物薄膜与第二电极相对的两个表面构成摩擦界面。若第二摩擦组件包括层叠设置的第二电极和第三高分子聚合物薄膜,则将第一摩擦组件和第二摩擦组件层叠设置在一起,使得第一高分子聚合物薄膜与第三高分子聚合物薄膜相对的两个表面构成摩擦界面。若第二摩擦组件由第二复合薄膜电极和第三高分子聚合物薄膜组成,则将第一摩擦组件和第二摩擦组件层叠设置在一起,使得第一高分子聚合物薄膜与第三高分子聚合物薄膜相对的两个表面构成摩擦界面。
可选地,该制备方法还可包括制作居间层的步骤,其中,居间层可以为居间薄膜或居间电极。那么在步骤S505中将第一摩擦组件、居间层和第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。在这种情况下,第一高分子聚合物薄膜与居间层相对的两个表面和/或居间层与第三高分子聚合物薄膜相对的两个表面构成摩擦界面。
本公开提供的上述制备方法,通过旋涂工艺、丝网印刷工艺、喷墨打印工艺、磁控溅射工艺或蒸镀工艺等工艺能够制备出具有复合薄膜电极的摩擦发电机。本公开通过使用合适的制备方式就可方便地获得发电效率高、工作性能稳定,一致性强且使用寿命长的摩擦发电机,具有制作工艺简单、稳定性高、易于加工、成本低廉的优势。
本公开还提供了一种发电鞋,该发电鞋包括如上述的具有复合薄膜电极的摩擦发电机。具有复合薄膜电极的摩擦发电机设置在鞋本体的内部,由于在第一摩擦组件中第一复合薄膜电极采用设置有第一电极的第二高分子聚合物薄膜,并且第一复合薄膜电极嵌入至第一高分子聚合物薄膜中,并被第一高分子聚合物薄膜包裹,该第一摩擦组件结合强度高、牢固性好,解决了现有的发电鞋在受力较大的情况下摩擦组件易损坏的问题,从而有效地提高了发电鞋的质量,延长了发电鞋的使用寿命。
可以理解的是,本公开提供的具有复合薄膜电极的摩擦发电机不仅可以作为发电机应用到发电鞋中,还可作为传感器应用到其他设备中,例如用于脉搏监测装置用于感测并接受电信号。本领域技术人员可根据实际需要将具有复合薄膜电极的摩擦发电机应用到其他设备中,此处不做限定。
本领域技术人员应该理解,附图或实施例中所示的装置结构仅仅是示意 性的,表示逻辑结构。其中作为分离部件显示的模块可能是或者可能不是物理上分开的,作为模块显示的部件可能是或者可能不是物理模块。
最后,需要注意的是:以上列举的仅是本公开的具体实施例子,当然本领域的技术人员可以对本公开进行改动和变型,倘若这些修改和变型属于本公开权利要求及其等同技术的范围之内,均应认为是本公开的保护范围。

Claims (22)

  1. 一种具有复合薄膜电极的摩擦发电机,其特征在于,包括:依次层叠设置的第一摩擦组件和第二摩擦组件;
    所述第一摩擦组件由第一复合薄膜电极和第一高分子聚合物薄膜组成,所述第一复合薄膜电极嵌入至所述第一高分子聚合物薄膜中,并被所述第一高分子聚合物薄膜包裹;其中,所述第一复合薄膜电极包括:第二高分子聚合物薄膜以及设置在所述第二高分子聚合物薄膜一侧表面上的第一电极;
    所述第二摩擦组件至少包括第二电极;所述第一电极和所述第二电极为所述具有复合薄膜电极的摩擦发电机的信号输出端。
  2. 根据权利要求1所述的具有复合薄膜电极的摩擦发电机,其特征在于,所述第一复合薄膜电极上设置有至少一个第一通孔,所述第一高分子聚合物薄膜还部分填充在所述第一通孔中。
  3. 根据权利要求1或2所述的具有复合薄膜电极的摩擦发电机,其特征在于,所述第一电极设置在所述第二高分子聚合物薄膜靠近或远离所述第二摩擦组件的一侧表面上。
  4. 根据权利要求1-3任一项所述的具有复合薄膜电极的摩擦发电机,其特征在于,在所述第一高分子聚合物薄膜与所述第二摩擦组件相对的一侧表面上设置有第一凹凸阵列结构。
  5. 根据权利要求1-4任一项所述的具有复合薄膜电极的摩擦发电机,其特征在于,所述第二摩擦组件还包括第三高分子聚合物薄膜,所述第三高分子聚合物薄膜设置在所述第二电极与所述第一摩擦组件相对的一侧表面上。
  6. 根据权利要求1-4任一项所述的具有复合薄膜电极的摩擦发电机,其特征在于,所述第二摩擦组件由第二复合薄膜电极和第三高分子聚合物薄膜组成,所述第二复合薄膜电极嵌入至所述第三高分子聚合物薄膜中,并被所述第三高分子聚合物薄膜包裹;其中,所述第二复合薄膜电极包括:第四高分子聚合物薄膜以及设置在所述第四高分子聚合物薄膜一侧表面上的第二电极。
  7. 根据权利要求6所述的具有复合薄膜电极的摩擦发电机,其特征在 于,所述第二复合薄膜电极上设置有至少一个第二通孔,所述第三高分子聚合物薄膜还部分填充在所述第二通孔中。
  8. 根据权利要求2或7所述的具有复合薄膜电极的摩擦发电机,其特征在于,多个第一通孔在所述第一复合薄膜电极上阵列排布和/或多个第二通孔在所述第二复合薄膜电极上阵列排布。
  9. 根据权利要求6-8任一项所述的具有复合薄膜电极的摩擦发电机,其特征在于,所述第二电极设置在所述第四高分子聚合物薄膜靠近或远离所述第一摩擦组件的一侧表面上。
  10. 根据权利要求6-9任一项所述的具有复合薄膜电极的摩擦发电机,其特征在于,在所述第三高分子聚合物薄膜与所述第一摩擦组件相对的一侧表面上设置有第二凹凸阵列结构。
  11. 根据权利要求5-10任一项所述的具有复合薄膜电极的摩擦发电机,其特征在于,所述具有复合薄膜电极的摩擦发电机还包括:居间层;所述居间层设置在所述第一摩擦组件和所述第二摩擦组件之间。
  12. 一种如权利要求1-11任一项所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,包括:
    制作第一复合薄膜电极;
    在第一模板上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体;
    将所述第一复合薄膜电极设置在所述第一高分子聚合物薄膜中间体的部分表面上,并在所述第一复合薄膜电极和所述第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,得到第一摩擦组件;
    制作第二电极,得到第二摩擦组件;
    将所述第一摩擦组件和所述第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。
  13. 根据权利要求12所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述制作第一复合薄膜电极进一步包括:
    制作第一复合薄膜电极,并在所述第一复合薄膜电极上制作至少一个第 一通孔。
  14. 根据权利要求12或13所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述在所述第一复合薄膜电极和所述第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,得到第一摩擦组件进一步包括:
    在所述第一复合薄膜电极和所述第一高分子聚合物薄膜中间体上涂布第一高分子聚合物材料,并对所述第一高分子聚合物材料进行真空除气、加热固化和裁剪处理,得到第一摩擦组件。
  15. 根据权利要求12-14任一项所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述第一模板的一侧表面预先设置有第一凹凸阵列结构;
    所述在第一模板上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体进一步包括:在所述第一模板远离第一凹凸阵列结构的表面上涂布第一高分子聚合物材料,得到第一高分子聚合物薄膜中间体。
  16. 根据权利要求12-15任一项所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述制作第二电极,得到第二摩擦组件进一步包括:
    依次层叠制作第二电极和第三高分子聚合物薄膜,得到第二摩擦组件。
  17. 根据权利要求12-15任一项所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述制作第二电极,得到第二摩擦组件进一步包括:
    制作第二复合薄膜电极;其中,所述第二复合薄膜电极包括:第四高分子聚合物薄膜以及设置在所述第四高分子聚合物薄膜一侧表面上的第二电极;
    在第二模板上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体;
    将所述第二复合薄膜电极设置在所述第三高分子聚合物薄膜中间体的部分表面上,并在所述第二复合薄膜电极和所述第三高分子聚合物薄膜中间 体上涂布第三高分子聚合物材料,得到第二摩擦组件。
  18. 根据权利要求17所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述制作第二复合薄膜电极进一步包括:
    制作第二复合薄膜电极,并在所述第二复合薄膜电极上制作至少一个第二通孔。
  19. 根据权利要求17或18所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述在所述第二复合薄膜电极和所述第三高分子聚合物薄膜中间体上涂布第三高分子聚合物材料,得到第二摩擦组件进一步包括:
    在所述第二复合薄膜电极和所述第三高分子聚合物薄膜中间体上涂布第三高分子聚合物材料,并对所述第三高分子聚合物材料进行真空除气、加热固化和裁剪处理,得到第二摩擦组件。
  20. 根据权利要求17-19任一项所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,所述第二模板的一侧表面预先设置有第二凹凸阵列结构;
    所述在第二模板上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体进一步包括:在所述第二模板远离第二凹凸阵列结构的表面上涂布第三高分子聚合物材料,得到第三高分子聚合物薄膜中间体。
  21. 根据权利要求12-20任一项所述的具有复合薄膜电极的摩擦发电机的制备方法,其特征在于,在得到第二摩擦组件之后,所述方法还包括:制作居间层;
    所述将所述第一摩擦组件和所述第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机进一步包括:将所述第一摩擦组件、所述居间层和所述第二摩擦组件层叠设置在一起,得到具有复合薄膜电极的摩擦发电机。
  22. 一种发电鞋,其特征在于,包括:如权利要求1-11任一项所述的具有复合薄膜电极的摩擦发电机。
PCT/CN2018/092316 2018-03-05 2018-06-22 具有复合薄膜电极的摩擦发电机、制备方法及发电鞋 WO2019169790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810179291.3A CN108696173A (zh) 2018-03-05 2018-03-05 具有复合薄膜电极的摩擦发电机、制备方法及发电鞋
CN201810179291.3 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019169790A1 true WO2019169790A1 (zh) 2019-09-12

Family

ID=63844231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092316 WO2019169790A1 (zh) 2018-03-05 2018-06-22 具有复合薄膜电极的摩擦发电机、制备方法及发电鞋

Country Status (2)

Country Link
CN (1) CN108696173A (zh)
WO (1) WO2019169790A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751499B (zh) * 2019-10-29 2022-04-08 苏州慧闻纳米科技有限公司 基于微机电系统的摩擦纳米发电机及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167949A (zh) * 2013-05-16 2014-11-26 纳米新能源(唐山)有限责任公司 摩擦发电机的制造方法及摩擦发电机
CN205070839U (zh) * 2015-09-11 2016-03-02 纳智源科技(唐山)有限责任公司 摩擦发电机的电极
CN105846710A (zh) * 2016-05-20 2016-08-10 北京科技大学 一种完全可循环使用摩擦发电机及其制备方法
KR20160132225A (ko) * 2015-05-07 2016-11-17 한국기계연구원 임베디드 전극을 포함하는 마찰대전 발전소자
CN106585042A (zh) * 2016-08-26 2017-04-26 纳智源科技(唐山)有限责任公司 摩擦发电机用复合薄膜电极及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104578893B (zh) * 2013-10-18 2017-02-08 纳米新能源(唐山)有限责任公司 应用双聚合物复合膜的摩擦发电机、其制备方法及振动传感器
CN104660095B (zh) * 2015-02-13 2018-09-28 京东方科技集团股份有限公司 一种摩擦发电装置及其制备方法
CN107196551B (zh) * 2017-07-20 2019-01-08 京东方科技集团股份有限公司 一种摩擦发电机、具有该摩擦发电机的装置及制作方法
CN207968347U (zh) * 2018-03-05 2018-10-12 纳智源科技(唐山)有限责任公司 具有复合薄膜电极的摩擦发电机及发电鞋

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167949A (zh) * 2013-05-16 2014-11-26 纳米新能源(唐山)有限责任公司 摩擦发电机的制造方法及摩擦发电机
KR20160132225A (ko) * 2015-05-07 2016-11-17 한국기계연구원 임베디드 전극을 포함하는 마찰대전 발전소자
CN205070839U (zh) * 2015-09-11 2016-03-02 纳智源科技(唐山)有限责任公司 摩擦发电机的电极
CN105846710A (zh) * 2016-05-20 2016-08-10 北京科技大学 一种完全可循环使用摩擦发电机及其制备方法
CN106585042A (zh) * 2016-08-26 2017-04-26 纳智源科技(唐山)有限责任公司 摩擦发电机用复合薄膜电极及其制备方法和应用

Also Published As

Publication number Publication date
CN108696173A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
KR101956998B1 (ko) 고민감도 유연 압력 센서 및 이의 제조방법
CN108036879B (zh) 一种电容式柔性触觉传感器及其制造方法
US10096803B2 (en) Flexible battery
JP5288419B2 (ja) ゲルアクチュエータ及びこれに用いるゲル
US8421316B2 (en) Transducer comprising a composite material and method of making such a composite material
KR101502080B1 (ko) 신축가능한 에너지 저장소자용 전극 구조물의 제조방법, 이 방법에 의해 제조된 전극 구조물 및 이를 포함하는 에너지 저장소자
WO2016127575A1 (zh) 一种摩擦发电装置及其制备方法
KR101963313B1 (ko) 이차전지의 제조방법 및 전극 조립체의 제조방법
US9563298B2 (en) Touch panel fabricating method and conductive-electroded film
US3970862A (en) Polymeric sensor of vibration and dynamic pressure
JP2006179867A5 (zh)
KR101691910B1 (ko) 스트레인 센서 및 그 제조 방법
JP2012002924A5 (zh)
WO2019169790A1 (zh) 具有复合薄膜电极的摩擦发电机、制备方法及发电鞋
CN113237420B (zh) 一种高灵敏度柔性电阻式应变传感器及其制备方法
JPS58157183A (ja) 圧電重合体材料からなるウエ−ハの作製方法及び圧電重合体変換器の作製方法
CN204214576U (zh) 摩擦电和压电复合传感器
US20150344312A1 (en) Method of manufacturing graphene and conductor
JP2018067381A5 (zh)
JP6275986B2 (ja) 全固体型リチウムイオン電池および全固体型リチウムイオン電池の製造方法
US10770644B2 (en) Piezoelectric device
CN104167950A (zh) 摩擦发电机
CN203722511U (zh) 一体式摩擦发电机及振动传感器
CN109002212B (zh) 触摸屏结构、触控显示装置及其制作方法
CN207968347U (zh) 具有复合薄膜电极的摩擦发电机及发电鞋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908464

Country of ref document: EP

Kind code of ref document: A1