WO2019169622A1 - 检测方法及设备 - Google Patents

检测方法及设备 Download PDF

Info

Publication number
WO2019169622A1
WO2019169622A1 PCT/CN2018/078550 CN2018078550W WO2019169622A1 WO 2019169622 A1 WO2019169622 A1 WO 2019169622A1 CN 2018078550 W CN2018078550 W CN 2018078550W WO 2019169622 A1 WO2019169622 A1 WO 2019169622A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
preset
coordinate
receiving end
coordinate system
Prior art date
Application number
PCT/CN2018/078550
Other languages
English (en)
French (fr)
Inventor
杨川
乔夕
邓耀明
王剑
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880032225.1A priority Critical patent/CN110636889A/zh
Priority to PCT/CN2018/078550 priority patent/WO2019169622A1/zh
Publication of WO2019169622A1 publication Critical patent/WO2019169622A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/02Shooting or hurling games

Definitions

  • the present application relates to the field of detection technologies, and in particular, to a detection method and device.
  • the hitting position is determined by incorporating a pressure sensor on the striking face side of the object.
  • the face can be divided into 3*3 Jiugong blocks, each block corresponding to one panel, and each panel is mounted with a pressure sensor of the corresponding block.
  • the pressure sensor of the block can detect a certain pressure and determine the hitting position by the pressure value detected by the pressure sensor.
  • the built-in pressure sensor has a problem of complicated installation and difficulty in maintenance.
  • the present invention provides a detection method and device for solving the problem that the built-in pressure sensor in the prior art is complicated to install and difficult to maintain.
  • an embodiment of the present application provides a detection method, including:
  • the electromagnetic wave transmitting end emits electromagnetic waves periodically by the preset duration, and the electromagnetic wave receiving end receives the electromagnetic wave emitted by the corresponding electromagnetic wave transmitting end, wherein the preset duration is determined according to the staying length of the hitting object on the striking surface; and the electromagnetic wave is received according to the receiving end of the electromagnetic wave
  • the receiving strength determines the hitting position of the hitter on the face.
  • the embodiment of the present application provides a detecting apparatus, including: a processor, an electromagnetic wave transmitting end, and an electromagnetic wave receiving end; the processor is respectively connected to the electromagnetic wave transmitting end and the electromagnetic wave receiving end;
  • the electromagnetic wave transmitting end is configured to emit electromagnetic waves
  • the electromagnetic wave receiving end is configured to receive electromagnetic waves emitted by the corresponding electromagnetic wave transmitting end
  • the processor is configured to periodically control the electromagnetic wave transmitting end to emit electromagnetic waves by a preset duration, and the electromagnetic wave receiving end receives the electromagnetic wave emitted by the corresponding electromagnetic wave transmitting end, wherein the preset duration is determined according to the staying length of the hitting object on the striking surface;
  • the processor is further configured to determine a hitting position of the hitter on the striking surface according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end.
  • the detection method and device provided by the present application periodically control the electromagnetic wave transmitting end to emit electromagnetic waves by a preset duration, and the electromagnetic wave receiving end receives the electromagnetic wave emitted by the corresponding electromagnetic wave transmitting end, and determine the hitting object according to the receiving intensity of the receiving electromagnetic wave received by the electromagnetic wave receiving end.
  • the hitting position on the striking surface avoids the built-in pressure sensor on the striking surface side of the object to determine the striking position of the striking object, which is advantageous for solving the problem that the built-in sensor mounting load on the striking surface side is difficult to maintain.
  • the detection density of the striking position of the striking object can be controlled, which is advantageous for preventing the detection dead angle on the striking surface, and at the same time, by the preset duration as the basis The length of stay of the hitter on the face is determined, avoiding the problem of hitting the object leak detection in the scene where the complete scan is not completed and the hitter has left the face.
  • FIG. 1 is a schematic diagram of an application architecture of a detection method provided by the present application.
  • Embodiment 1 of a detection method provided by the present application
  • FIG. 3 is a schematic diagram 1 of an embodiment of a detection method provided by the present application.
  • Embodiment 4 is a flowchart of Embodiment 2 of a detection method provided by the present application.
  • FIG. 5 is a flowchart of Embodiment 3 of a detection method provided by the present application.
  • 6A is a schematic diagram 2 of an embodiment of a detection method provided by the present application.
  • 6B is a schematic diagram 3 of an embodiment of a detection method provided by the present application.
  • 6C is a schematic diagram 4 of an embodiment of a detection method provided by the present application.
  • 6D is a schematic diagram 5 of an embodiment of a detection method provided by the present application.
  • FIG. 7A is a schematic diagram 6 of an embodiment of a detection method provided by the present application.
  • FIG. 7B is a schematic diagram 7 of an embodiment of a detection method provided by the present application.
  • FIG. 7C is a schematic diagram 7 of an embodiment of a detection method provided by the present application.
  • Figure 8 is a schematic structural view 1 of an embodiment of a detecting device provided by the present application.
  • FIG. 9 is a schematic structural diagram 2 of an embodiment of a detecting apparatus provided by the present application.
  • FIG. 1 is a schematic diagram of an application architecture of a detection method provided by the present application.
  • the application architecture of the method may include a processor (not shown), a plurality of electromagnetic wave transmitting ends 11 and a plurality of electromagnetic wave receiving ends 12.
  • the processor is respectively connected to the plurality of electromagnetic wave transmitting ends 11 and the plurality of electromagnetic wave receiving ends 12.
  • the processor can control the electromagnetic wave transmitting end 11 to emit electromagnetic waves, and control the electromagnetic wave receiving end 12 corresponding to the electromagnetic wave transmitting end 11 to receive electromagnetic waves.
  • the receiving intensity of the electromagnetic wave received by the one or more electromagnetic wave receiving ends 12 is affected, and the processor can determine the receiving intensity of the electromagnetic wave according to the receiving end of the electromagnetic wave receiving end 12, and determine the hitting object on the striking surface. Hit the location.
  • the electromagnetic wave may be infrared or laser.
  • the face can be used in a related entertainment or game in which the thrower throws the hitter.
  • the processor can determine the hitting object according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end.
  • the hitting position of the face can be, for example, a game robot, and the hitter can be, for example, a projectile.
  • the embodiment of the present application will use the thrower as the game robot, and the detection method is applied to the robot game scene as an example.
  • the detection of the hit position on the striking surface can be used to detect the throwing of the game robot.
  • the projectile hits the face it is beneficial to set the rules of the game and increase the fun of the game.
  • the game robot can be any movable object, such as a car, the object where the face is located can be part of the props used in the game of the game robot, or can be part of other game robots. It can be understood that the detection method in the embodiment of the present application can also be applied to other scenarios, which is not specifically limited herein.
  • FIG. 1 is only used for the electromagnetic wave between the electromagnetic wave transmitting end and the electromagnetic wave receiving end, and is not used to indicate the coverage of the electromagnetic wave. It can be understood that the electromagnetic wave received by all electromagnetic wave receiving ends should cover the entire striking surface. The scope of detection.
  • the electromagnetic wave transmitting end 11 and the electromagnetic wave receiving end 12 are both disposed around the striking surface as an example. It is to be understood that, under the condition that the detection range of the electromagnetic wave covering face is satisfied, alternatively, the electromagnetic wave transmitting end 11 and the electromagnetic wave receiving end 12 may be disposed at other positions. For example, when there is a gap in the center of the striking surface, the electromagnetic wave emitting end may be disposed at the center of the striking surface, and the electromagnetic wave receiving end may be disposed around the striking surface; or, the electromagnetic wave transmitting end may be disposed around the striking surface, and the electromagnetic wave receiving end may be Set in the center of the face.
  • the electromagnetic wave transmitting end and/or the electromagnetic wave receiving end may be fixed on the striking surface, or may be fixed on other components directly connected or indirectly connected to the striking surface, which is not limited in this application.
  • the striking surface is taken as a plane. It can be understood that the striking face can also be composed of a plurality of planes of the same or different directions.
  • the shape of the plane may be a regular shape such as a circle, a square, or a rectangle, or may be an irregular shape, which is not limited in this application.
  • FIG. 2 is a flowchart of Embodiment 1 of a detection method provided by the present application.
  • the method of this embodiment can be performed by the processor described above for determining the hitting position of the striking object on the striking face. As shown in FIG. 2, the method in this embodiment may include:
  • Step 201 periodically control the electromagnetic wave transmitting end to emit electromagnetic waves with a preset duration, and the electromagnetic wave receiving end receives the electromagnetic waves emitted by the corresponding electromagnetic wave transmitting end, wherein the preset duration is determined according to the staying duration of the striking object on the striking surface.
  • the preset duration for controlling the electromagnetic wave transmitting end to periodically emit electromagnetic waves is determined according to the length of stay of the striking object on the striking surface. Since the embodiment of the present application is based on the principle that when the hitting object strikes the striking surface, the impact strength of the electromagnetic wave received by one or more electromagnetic wave receiving ends is determined to determine the hitting position of the striking object on the striking surface, and thus When the preset duration is longer than the duration of the striking object on the striking surface, a scene in which the complete scan is not completed and the striking object has left the striking surface may occur, so that it is not determined which electromagnetic wave receiving end receives the electromagnetic wave receiving intensity.
  • the effect is the result of the detection of the hitting object leakage, and the probability of the hitting object leak detection is greater when the preset time length is greater than the dwell time and the difference is greater than the dwell time.
  • all the electromagnetic wave transmitting ends in the control chart 1 emit at least one electromagnetic wave, which can be regarded as a complete scan.
  • the preset duration may be less than or equal to the duration of the striking object on the striking surface, and at the same time, a complete scan may be completed within each preset duration, and the complete scan may be determined according to the detection rule.
  • the length of stay of the hitter on the face can be related to many factors, such as the weight of the hitter, the throwing force (for example, the robot) throwing force, etc., and the length of stay may not be a completely accurate value. Therefore, the relationship between the preset duration and the duration of the stay may be: the preset duration is less than or equal to the sum of the stay duration and the duration offset, and the duration offset is a minimum positive value, such as a few microseconds.
  • the detection rule may be set before the electromagnetic wave transmitting end is transmitted, or may be adjusted during the transmitting process.
  • periodically controlling the electromagnetic wave transmitting end to emit electromagnetic waves by using a preset duration may include: periodically controlling all the electromagnetic wave transmitting ends 11 in FIG. 1 to emit electromagnetic waves one by one by a preset duration; or, periodically, with a preset duration Each of the electromagnetic wave transmitting ends 11 of the electromagnetic wave transmitting end 11 in FIG. 1 is controlled to emit electromagnetic waves; or, the predetermined time period periodically controls all the electromagnetic wave transmitting ends 11 in FIG. 1 to simultaneously emit electromagnetic waves, and the like. It should be noted that the embodiment of the present application does not limit the specific manner of periodically controlling the electromagnetic wave transmitting end to emit electromagnetic waves by a preset duration.
  • electromagnetic wave transmitting ends include a1, a2, a3, a4, a5, a6, and a7
  • electromagnetic wave receiving ends include b1, b2, b3, b4, b5, b6, and b7.
  • A1 corresponds to b1, a2 corresponds to b2, a3 corresponds to b3, a4 corresponds to b4, a5 corresponds to b5, a6 corresponds to b6, and a7 corresponds to b7.
  • step 201 may be, for example, periodically controlled with a preset duration: first, a1 emits electromagnetic waves, and a1 emits electromagnetic waves.
  • b1 receives the electromagnetic wave emitted by a1; then, a1 stops emitting electromagnetic waves, a2 emits electromagnetic waves, and in the process of a2 electromagnetic waves, b2 receives electromagnetic waves emitted by a2; then, a2 stops emitting electromagnetic waves, and a3 emits electromagnetic waves, which is sent in a3
  • b3 receives the electromagnetic wave emitted by a3; then, a3 stops emitting electromagnetic waves, a4 emits electromagnetic waves, and in the process of a4 electromagnetic waves, b4 receives electromagnetic waves emitted by a4; then, a4 stops emitting electromagnetic waves, and a5 emits electromagnetic waves at a5
  • b5 receives electromagnetic waves emitted by a5; then, a5 stops emitting electromagnetic waves, and a6 emits electromagnetic waves.
  • b6 receives electromagnetic waves emitted by a6; then, a6 stops emitting electromagnetic waves, and a7 emits electromagnetic waves.
  • b7 receives electromagnetic waves emitted by a6; then, a7 stops emitting electromagnetic waves, a1 emits electromagnetic waves, ..., so cyclic Said step.
  • step 201 may be, for example, periodically controlled with a preset duration: first, a1 and A2 emits electromagnetic waves at the same time.
  • b1 receives the electromagnetic wave emitted by a1
  • b2 receives the electromagnetic wave emitted by a2; then, a1 and a2 stop emitting electromagnetic waves, and a3-a5 simultaneously emits electromagnetic waves, which are emitted at a3-a5.
  • b3 receives electromagnetic waves emitted by a3, b4 receives electromagnetic waves emitted by a4, and b5 receives electromagnetic waves emitted by a5; then, a3-a5 stops emitting electromagnetic waves, and a6 and a7 simultaneously emit electromagnetic waves, and electromagnetic waves are emitted at a6 and a7.
  • b6 receives the electromagnetic wave emitted by a6, and b7 receives the electromagnetic wave emitted by a7; then, a6 and a7 stop emitting electromagnetic waves, and a1 and a2 simultaneously emit electromagnetic waves, ..., thus repeating the above steps.
  • Step 202 Determine the hitting position of the hitter on the striking surface according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end.
  • the receiving intensity of the electromagnetic wave received by the one or more electromagnetic wave receiving ends is affected, so that the hitting object can be determined according to the receiving intensity of the electromagnetic wave receiving end receiving the electromagnetic wave.
  • the hitting position of the face may correspond to 12 blocks, and 12 positions are numbered as 1, 2, and 3 in order from left to right. Hence, 12, suppose that when the hitting object strikes the striking surface, it will affect the receiving intensity of the electromagnetic wave receiving end b6 and the electromagnetic wave receiving end b2, so that the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end can be determined to be hit.
  • the object hits the position numbered 7, that is, the hitting position of the hitter on the face is 7.
  • the hitting position of the hitter on the striking surface can be determined by determining the striking position of the striking object in the preset coordinate system. For details, refer to the embodiment shown in FIG. 5 below. It should be noted that the embodiment of the present application does not limit the specific manner of determining the hitting position of the striking object on the striking surface according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end.
  • the electromagnetic wave receiving end receives the electromagnetic wave emitted by the corresponding electromagnetic wave transmitting end, and determining the hitting object on the striking surface according to the receiving intensity of the electromagnetic wave receiving end received by the electromagnetic wave receiving end.
  • the hitting position avoids the problem that when the hitting position of the hitting object is determined by the built-in pressure sensor on the striking side of the object, it is advantageous to solve the problem that the built-in sensor on the striking side is complicated to install and difficult to maintain, especially in the competition. In the use scenario of the robot, the impact force of the projectile hitting the hitting surface is large, which may cause damage to the pressure sensor.
  • the detection density of the striking position of the striking object can be controlled, which is advantageous for preventing the detection dead angle on the striking surface, and at the same time, by the preset duration as the basis The length of stay of the hitter on the face is determined, avoiding the problem of hitting the object leak detection in the scene where the complete scan is not completed and the hitter has left the face.
  • FIG. 4 is a flowchart of Embodiment 2 of a detection method provided by the present application.
  • the method of this embodiment mainly describes an optional implementation of step 201 on the basis of the method embodiment shown in FIG. 2 .
  • the method in this embodiment may include:
  • Step 401 The electromagnetic wave transmitting end of the plurality of groups is periodically controlled by the preset duration to emit electromagnetic waves according to a preset rule, and the electromagnetic wave receiving end receives the electromagnetic waves emitted by the corresponding electromagnetic wave transmitting end, wherein the preset duration is according to the hitting object on the striking surface.
  • the length of stay is ok.
  • all of the electromagnetic wave transmitting ends 11 in FIG. 1 can be divided into a plurality of groups.
  • the electromagnetic wave transmitting end that periodically controls the plurality of packets by the preset duration is configured to transmit the electromagnetic wave according to the preset rule, and the method further includes: periodically controlling the electromagnetic wave transmitting ends of the plurality of packets to emit electromagnetic waves group by group according to a preset duration; or The electromagnetic wave transmitting end of the plurality of packets may be periodically controlled to emit electromagnetic waves every at least two groups by a preset duration; or, the electromagnetic wave transmitting end of the plurality of packets may be periodically controlled according to a preset duration according to the first direction.
  • the electromagnetic wave is emitted in groups in the order of the corresponding group in the second direction; or, the electromagnetic wave transmitting end of the corresponding group in different directions can be periodically controlled to emit electromagnetic waves in parallel, and the electromagnetic wave transmitting end corresponding to the group in the same direction is controlled.
  • the electromagnetic wave is emitted group by group; or, the electromagnetic wave transmitting end of the plurality of packets may be periodically controlled to emit electromagnetic waves in parallel at a preset duration, and the electromagnetic wave transmitting end of the same group is controlled to sequentially emit electromagnetic waves; and the like. It should be noted that the embodiment of the present application does not limit the specific manner in which the electromagnetic wave transmitting end of the plurality of packets is periodically controlled by the preset duration to emit electromagnetic waves according to a preset rule.
  • the first direction corresponding grouping may be a grouping of electromagnetic wave transmitting ends arranged in a parallel direction along the first direction and/or the first direction
  • the second direction corresponding grouping may be for the second direction and/or Or a grouping of electromagnetic wave transmitting ends arranged in parallel with the second direction.
  • the scanning time in the first direction may be the same as or different from the scanning time in the second group, which is not limited in this application.
  • the scanning time in the first direction may be a time for controlling the electromagnetic wave transmitting end of the corresponding group in the first direction to transmit at least one electromagnetic wave
  • the scanning time in the second direction may be to transmit the electromagnetic wave transmitting end of the corresponding group in the second direction at least once.
  • the time of the electromagnetic wave, but the first direction and the second direction are scanned according to a preset rule within a preset time period.
  • a1 and a2 are divided into packets 1
  • a3 is divided into packets 2
  • a4 and a5 are divided into packets 3
  • a6 and a7 are divided into packets 4.
  • the step 401 may be, for example, periodically performing the following control with a preset duration: first, a1 and a2 simultaneously emit electromagnetic waves, at a1 and In the process of a2 electromagnetic wave, b1 receives the electromagnetic wave emitted by a1, and b2 receives the electromagnetic wave emitted by a2; then, a1 and a2 stop emitting electromagnetic waves, and a6 and a7 simultaneously emit electromagnetic waves. In the process of electromagnetic waves generated by a6 and a7, b6 receives a6.
  • the electromagnetic wave emitted by b7 receives the electromagnetic wave emitted by a7; then, a6 and a7 stop emitting electromagnetic waves, a3 emits electromagnetic waves, and while a3 emits electromagnetic waves, b3 receives electromagnetic waves transmitted by a3; then, a3 stops emitting electromagnetic waves, and a4 and a5 are simultaneously emitted.
  • b4 receives the electromagnetic wave emitted by a4
  • b5 receives the electromagnetic wave emitted by a5; then, a4 and a5 stop emitting electromagnetic waves, and a1 and a2 simultaneously emit electromagnetic waves, ..., thus repeating the above steps.
  • the step 401 is, for example, periodically, by a preset duration.
  • the following control is performed: First, a1 and a2 simultaneously emit electromagnetic waves.
  • b1 receives electromagnetic waves emitted by a1, and b2 receives electromagnetic waves emitted by a2; then, a1 and a2 stop emitting electromagnetic waves, and a3 emits electromagnetic waves, While a3 emits electromagnetic waves, b3 receives electromagnetic waves transmitted by a3; then, a3 stops emitting electromagnetic waves, and a4 and a5 simultaneously emit electromagnetic waves.
  • b4 receives electromagnetic waves emitted by a4 and b5 receives a5 signals.
  • Electromagnetic wave then, a4 and a5 stop emitting electromagnetic waves, a6 and a7 simultaneously emit electromagnetic waves, in the process of a6 and a7 electromagnetic waves, b6 receives electromagnetic waves emitted by a6, b7 receives electromagnetic waves emitted by a7; then, a6 and a7 stop emitting electromagnetic waves , a1 and a2 simultaneously emit electromagnetic waves, ..., thus repeating the above steps.
  • step 401 may be, for example, periodically controlled with a preset duration: first , a1, a3, a4, and a6 simultaneously emit electromagnetic waves.
  • b1 receives electromagnetic waves emitted by a1, b3 receives electromagnetic waves emitted by a3, b4 receives electromagnetic waves emitted by a4, and b6 receives a6
  • b2 receives electromagnetic waves emitted by a2, and b5 receives a5 waves.
  • Electromagnetic wave, b7 receives the electromagnetic wave emitted by a7; then, a2, a5 and a7 stop emitting electromagnetic waves, and a1, a3, a4 and a6 simultaneously emit electromagnetic waves, ..., thus repeating the above steps.
  • the electromagnetic wave transmitting end of the same group is used to transmit electromagnetic waves in parallel.
  • electromagnetic waves emitted by different groups of electromagnetic wave transmitting ends are taken as an example.
  • the electromagnetic wave emitted in parallel by the plurality of electromagnetic wave transmitting ends can increase the scanning efficiency compared with the electromagnetic wave transmitting end of the plurality of electromagnetic wave transmitting ends one by one.
  • the electromagnetic wave generally has a scattering characteristic
  • the determined hitting position is inaccurate, and the electromagnetic wave is emitted.
  • the grouping of the ends can be determined based on the scattering characteristics of the electromagnetic waves. Specifically, the electromagnetic wave transmitting end limited by the scattering characteristic may be divided into different groups, and the electromagnetic wave transmitting end not restricted by the scattering characteristic may be divided into the same group.
  • control modes of Examples 1 and 2 may be adopted; or, The electromagnetic wave transmitting end limited by the scattering characteristic is divided into the same group, and the electromagnetic wave transmitting end not restricted by the scattering characteristic is divided into different groups, and the control method of the example 3 can be adopted at this time.
  • the preset duration is determined according to the determination of the duration of the stay of the striking object on the striking surface, and the embodiment shown in FIG. 2 may be referred to, and details are not described herein again.
  • Step 402 Determine the hitting position of the hitter on the striking surface according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end.
  • step 402 is similar to step 202, and details are not described herein again.
  • the electromagnetic wave transmitting end of the plurality of packets is periodically controlled by the preset duration to emit electromagnetic waves according to a preset rule, and the receiving position of the hitting object on the striking surface is determined according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end.
  • the flexible control of the electromagnetic wave emitted from the electromagnetic wave transmitting end is realized.
  • FIG. 5 is a flowchart of Embodiment 3 of a detection method provided by the present application.
  • the method of this embodiment mainly describes an optional implementation of step 202 on the basis of the method embodiment shown in FIG. 2 .
  • the method in this embodiment may include:
  • Step 501 periodically controlling the electromagnetic wave transmitting end to emit electromagnetic waves with a preset duration, and receiving, by the electromagnetic wave receiving end, the electromagnetic waves emitted by the corresponding electromagnetic wave transmitting end, wherein the preset duration is determined according to the staying duration of the hitting object on the striking surface.
  • step 501 can be referred to the foregoing step 201 and step 401, and details are not described herein again.
  • Step 502 Determine the hitting coordinates of the hitter in the preset coordinate system according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end, and the preset coordinate system is set according to the striking surface.
  • the preset coordinate system may specifically be a plane rectangular coordinate system or a plane polar coordinate system.
  • the preset coordinate system may specifically be a space rectangular coordinate system. Taking the striking surface as a rectangular plane as an example, on the basis of FIG. 3, the relationship between the preset coordinate system and the striking surface can be as shown in FIG. 6A or FIG. 6B.
  • each of the coordinate axes of the preset coordinate system that is, the X-axis and the Y-axis
  • the receiving end for example, a1 corresponds to b1.
  • only a part of the coordinate axes in the preset coordinate system may have corresponding electromagnetic wave transmitting ends. For example, as shown in FIG. 6C and FIG.
  • only the X-axis of the preset coordinate system has a corresponding electromagnetic wave transmitting end, wherein one electromagnetic wave transmitting end may correspond to a plurality of electromagnetic wave receiving ends, for example, a5 corresponds to b5 and b7.
  • the position of one or more electromagnetic wave transmitting ends and their corresponding electromagnetic wave receiving ends may be interchanged. Therefore, as can be seen from FIG. 6A to FIG. 6D, the electromagnetic wave transmitting end corresponding to the same coordinate axis in the preset coordinate system may be along the coordinate axis.
  • the directions are arranged, and/or arranged in parallel directions along the coordinate axes.
  • each electromagnetic wave receiving end has corresponding coordinates in a preset coordinate system, and when the hitting object strikes the striking surface, one or more electromagnetic wave receiving ends (hereinafter referred to as The target electromagnetic wave receiving end receives the influence of the receiving intensity of the electromagnetic wave, so the hitting coordinate of the hitting object in the preset coordinate system can be determined according to the coordinates of the target electromagnetic wave receiving end in the preset coordinate system.
  • the level signal of the electromagnetic wave received by the electromagnetic wave receiving end may be H.
  • the level signal of the electromagnetic wave receiving end receiving the electromagnetic wave may be L. Where L and H are both values and L is less than H.
  • the relationship between the level of the electromagnetic wave receiving end receiving the electromagnetic wave and the receiving intensity of the electromagnetic wave receiving end may be: the greater the shielding degree of the electromagnetic wave, the lower the level signal of the electromagnetic wave receiving end receiving the electromagnetic wave, and the higher the receiving intensity of the electromagnetic wave receiving end Small; the smaller the degree of occlusion of electromagnetic waves, the higher the level signal of the electromagnetic wave receiving end receiving electromagnetic waves, and the higher the receiving intensity of the electromagnetic wave receiving end. It can be seen that at this time, the reception intensity of the electromagnetic wave is negatively correlated with the degree of occlusion of the electromagnetic wave.
  • the level signal of the electromagnetic wave received by the electromagnetic wave receiving end may be L.
  • the level signal of the electromagnetic wave receiving end receiving the electromagnetic wave may be H.
  • L and H are both values and L is less than H.
  • the relationship between the level of the electromagnetic wave receiving end receiving electromagnetic wave and the receiving intensity of the electromagnetic wave receiving end may also be: the smaller the shielding degree of the electromagnetic wave, the lower the level signal of the electromagnetic wave receiving end receiving the electromagnetic wave, and the higher the receiving intensity of the electromagnetic wave receiving end is. Small; the greater the degree of occlusion of electromagnetic waves, the higher the level signal of the electromagnetic wave receiving end receiving electromagnetic waves, the greater the receiving intensity of the electromagnetic wave receiving end. It can be seen that at this time, the receiving intensity of the electromagnetic wave is positively correlated with the degree of occlusion of the electromagnetic wave.
  • the hitting coordinate of the hitting object in the preset coordinate system may be determined according to the coordinate of the electromagnetic wave receiving end with a small receiving intensity in the preset coordinate system.
  • it can be implemented by the following method one or two.
  • the hitting coordinate of the hitting object in the preset coordinate system may be determined according to the coordinate of the electromagnetic wave receiving end with the receiving intensity in the preset coordinate system.
  • it can be implemented by the following three or four ways.
  • the preset coordinate axes may include all coordinate axes or partial coordinate axes in the preset coordinate system.
  • the preset coordinate system is a plane rectangular coordinate system
  • the preset coordinate axis includes an X axis and a Y axis as an example, and the modes 1 to 4 are specifically described.
  • the striking position of the striking object on the striking surface is as shown in FIG. 7A, wherein the solid circle represents the striking object, and the electromagnetic wave receiving end receives the electromagnetic wave when the electromagnetic wave is not blocked.
  • the receiving intensity is 255, and after a complete scan, the receiving intensity of b1 receiving electromagnetic waves is 255, the receiving intensity of b2 receiving electromagnetic waves is 10, the receiving intensity of b3 receiving electromagnetic waves is 255, and the receiving intensity of b4 receiving electromagnetic waves is 255, b5
  • the receiving intensity of the received electromagnetic wave is 255, the receiving intensity of the receiving electromagnetic wave of b6 is 80, and the receiving intensity of the receiving electromagnetic wave of b7 is 100.
  • the target electromagnetic wave receiving end with the smallest receiving intensity in the electromagnetic wave receiving end corresponding to the X axis is b6, and the target electromagnetic wave receiving end with the smallest receiving intensity in the electromagnetic wave receiving end corresponding to the Y axis is b2, and the hitting object is preset.
  • the hitting coordinate of the coordinate system is (L b6 , L b2 ), where L b6 represents the first coordinate of b6 in the preset coordinate system, and L b2 represents the first coordinate of b2 in the preset coordinate system.
  • the hitting object when the hitting object hits the striking surface, in addition to affecting the receiving intensity of the target electromagnetic wave receiving end, it may affect the receiving intensity of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end. Therefore, in order to improve the accuracy of the determination of the hitting position, further, the hitting coordinates of the hitter in the preset coordinate system may be determined according to the receiving intensity of the adjacent electromagnetic wave receiving end.
  • the method 1 may further include: determining, according to the preset receiving strength and the receiving intensity of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end, the coordinate weight of the second coordinate of the adjacent electromagnetic wave receiving end in the preset coordinate system; according to the target electromagnetic wave receiving end
  • the first coordinate of the coordinate system is determined, and the hitting coordinates of the hitter in the preset coordinate system are determined, including: determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate, the second coordinate, and the coordinate weight.
  • the adjacent electromagnetic wave receiving ends of b2 are b1 and b3
  • the adjacent electromagnetic wave receiving ends of b6 are b5 and b7.
  • the coordinate weights of the second coordinate L b1 of b1 in the preset coordinate system are W b1 and b3 are in the preset coordinate system.
  • the coordinate weight W b3 of the second coordinate L b3 is determined according to the preset receiving intensity and the receiving intensity of the adjacent electromagnetic wave receiving ends b5 and b7 of b6, and the coordinate weight W b5 of the second coordinate L b5 of b5 in the preset coordinate system is determined.
  • And b7 is in the coordinate coordinate W b7 of the second coordinate L b7 of the preset coordinate system, and further, according to L b1 , L b2 , L b3 , L b5 , L b6 , L b7 , W b1 , W b3 , W b5 And W b7 , for example, if W b1 is greater than W b3 and W b5 is greater than W b7 , then it is determined that L b2 needs to be shifted to L b1 , L b6 needs to be shifted to L b5 , and then according to the weighting values of L b1 and L b2 , The weighting values of L b5 and L b6 determine the hitting coordinates of the hitter in the preset coordinate system.
  • the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end includes a plurality of adjacent electromagnetic wave receiving ends of the target electromagnetic wave receiving end, in addition to all electromagnetic wave receiving ends adjacent to the surrounding electromagnetic wave receiving end, It may be one or several electromagnetic wave receiving ends of all adjacent electromagnetic wave receiving ends, such as determining the adjacent electromagnetic wave receiving end according to the biasing position in the preset coordinate system according to the first coordinate, which is not specifically limited herein.
  • the preset coordinate axis includes the X axis and the Y axis
  • the first coordinate and the X axis corresponding to the target electromagnetic wave receiving end corresponding to the X axis are adopted for the X axis.
  • a second coordinate of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end, and a coordinate weight of the second coordinate determining a hitting coordinate of the hitting object on the X axis of the preset coordinate system, and a target electromagnetic wave corresponding to the Y axis according to the Y axis
  • the first coordinate of the receiving end, the second coordinate of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end corresponding to the Y axis, and the coordinate weight of the second coordinate determine the hitting coordinate of the hitting object in the Y coordinate of the preset coordinate system, thereby determining The hitting coordinates of the hitter in the preset coordinate system.
  • the principle that the smaller the receiving strength is, the larger the coordinate weight is, the smaller the receiving strength is, the smaller the coordinate weight is.
  • determining the adjacent electromagnetic wave receiving end is pre-determined.
  • the preset receiving strength may be a receiving strength of the electromagnetic wave received by the electromagnetic wave receiving end when the electromagnetic wave is not blocked.
  • the coordinate weight of the second coordinate L b1 of b1 in the preset coordinate system, the coordinate weight of the second coordinate L b3 of b3 in the preset coordinate system, and b5 at the preset coordinates may be equal to 0 (ie, 255-255), and the coordinate weight of the second coordinate L b7 of b7 in the preset coordinate system may be equal to (255-100)/255.
  • the method may include: determining, according to the receiving intensity of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end corresponding to the X axis, determining the second preset receiving intensity and the target of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end corresponding to the X axis in the preset coordinate system; The receiving intensity of the adjacent electromagnetic wave receiving end of the electromagnetic wave receiving end determines the coordinate weight of the second coordinate of the adjacent electromagnetic wave receiving end in the preset coordinate system.
  • the coordinate of the hitter in the preset coordinate axis is equal to the first coordinate + (the second coordinate - First coordinate) * coordinate weight; or, the coordinates of the hitter on the preset coordinate axis are equal to the first coordinate + (second coordinate - first coordinate) /
  • the embodiment of the present application does not limit the specific manner of determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate, the second coordinate, and the coordinate weight.
  • the receiving end of the electromagnetic wave receiving end corresponding to the X-axis is smaller than the first predetermined threshold, and the receiving end of the electromagnetic wave receiving end corresponding to the Y-axis is less than the receiving intensity.
  • the target electromagnetic wave receiving end of the first preset threshold is b2, and the hitting coordinates of the hitter in the preset coordinate system are (L b6 , L b2 ).
  • the number of the target electromagnetic wave receiving ends whose receiving intensity is less than the first preset threshold in the electromagnetic wave receiving end corresponding to the preset coordinate axis may be one or more.
  • the target electromagnetic wave receiving ends whose receiving intensity is less than the first predetermined threshold in the electromagnetic wave receiving end corresponding to the X axis are b6 and b7. Therefore, the number of the first coordinates corresponding to the preset coordinate axis may also be plural.
  • determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system including: performing weighting calculation on the first coordinate; determining the hitting object according to the calculation result The hitting coordinates in the preset coordinate system.
  • the weighting calculation is performed on the first coordinate; and the hitting of the hitting object in the preset coordinate system is determined according to the calculation result.
  • the playing coordinates may specifically include: performing weighting calculation on respective first coordinates of the target electromagnetic wave receiving end corresponding to the X axis, obtaining a calculation result corresponding to the X axis, and performing weighting calculation on respective first coordinates of the target electromagnetic wave receiving end corresponding to the Y axis
  • the calculation result corresponding to the Y axis is obtained, and the hitting coordinates of the hitter in the preset coordinate system are determined according to the calculation results corresponding to the X axis and the Y axis.
  • the number of the plurality of target electromagnetic wave receiving ends corresponding to the preset coordinate axis and the coordinate weight of the first coordinate may be pre-agreed.
  • the coordinate weights of the two first coordinates are respectively 0.5.
  • the coordinate weights of the three first coordinates corresponding to the coordinates from small to large are 0.2, 0.3, and 0.5, respectively.
  • weighting calculation is performed on the first coordinate corresponding to the X axis to obtain coordinates (L b6 + L b7 ) /2. It should be noted that the embodiment of the present application does not perform weighting calculation on the first coordinate; and the specific manner of determining the hitting coordinate of the hitting object in the preset coordinate system according to the calculation result is limited.
  • determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system including: determining according to the preset receiving intensity and the receiving intensity of the target electromagnetic wave receiving end The coordinate weight of the first coordinate; determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate and the coordinate weight.
  • determining the coordinate weight of the first coordinate according to the preset receiving intensity and the receiving intensity of the target electromagnetic wave receiving end; Determining the hitting coordinates of the hitting object in the preset coordinate system may include: determining the target electromagnetic wave receiving end corresponding to the X axis according to the preset receiving intensity and the receiving intensity of the target electromagnetic wave receiving end corresponding to the X axis; The coordinate weight of the first coordinate is determined according to the first coordinate of the target electromagnetic wave receiving end corresponding to the X-axis, the coordinate weight, and the coordinate of the X-axis of the hitting object in the preset coordinate system is determined; according to the preset receiving intensity and the target electromagnetic wave corresponding to the Y-axis The receiving intensity of the receiving end determines the coordinate weight of the first coordinate of the target electromagnetic wave receiving end corresponding to the Y axis, and determines the hitting object in the Y axi
  • the coordinate weight is smaller.
  • the target electromagnetic wave receiving end is determined at the preset coordinate. The coordinate weight of the first coordinate of the system.
  • the coordinate weight of b6 in the first coordinate of the preset coordinate system It may be equal to (255-80) / (255-80 + 255-100), and the coordinate weight of b7 in the first coordinate of the preset coordinate system may be equal to (255-100) / (255-80 + 255-100). It should be noted that the embodiment of the present application does not limit the specific manner of determining the coordinate weight of the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system according to the preset receiving strength and the receiving intensity of the target electromagnetic receiving end.
  • determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate and the coordinate weight including: determining, according to the first coordinate and the coordinate weight, by using a weighted average (or weighted summation) The hitting coordinates of the object in the preset coordinate system.
  • the striking position of the striking object on the striking surface is as shown in FIG. 7A, wherein the solid circle represents the striking object, and the electromagnetic wave is received when the electromagnetic wave is not blocked.
  • the intensity of the electromagnetic wave received by the terminal is 0, and after one complete scan, the receiving intensity of the electromagnetic wave received by b1 is 0, the receiving intensity of the receiving electromagnetic wave of b2 is 240, the receiving intensity of the receiving electromagnetic wave of b3 is 0, and the receiving intensity of the receiving electromagnetic wave of b4 is 0.
  • the receiving intensity of the electromagnetic wave received by b5 is 0, the receiving intensity of the receiving electromagnetic wave of b6 is 170, and the receiving intensity of the receiving electromagnetic wave of b7 is 150.
  • the target electromagnetic wave receiving end with the highest receiving intensity in the electromagnetic wave receiving end corresponding to the X axis is b6, and the target electromagnetic wave receiving end with the largest receiving intensity in the electromagnetic wave receiving end corresponding to the Y axis is b2, and the hitting object is preset.
  • the hitting coordinates of the coordinate system are (L b6 , L b2 ).
  • the method 3 may further include: determining a coordinate weight of the second coordinate of the adjacent electromagnetic wave receiving end in the preset coordinate system according to the preset receiving intensity and the receiving intensity of the adjacent electromagnetic wave receiving end of the target electromagnetic wave receiving end. Determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system, comprising: determining the hitting object in the preset according to the first coordinate, the second coordinate, and the coordinate weight The hitting coordinates of the coordinate system.
  • the receiving strength is smaller, the coordinate weight is larger, and the receiving strength is smaller, the coordinate weight is smaller, and the neighboring electromagnetic wave receiving end is determined according to the preset receiving strength and the receiving strength of the adjacent electromagnetic receiving end.
  • the preset receiving strength may be a receiving strength of the electromagnetic wave received by the electromagnetic wave receiving end when the electromagnetic wave is not blocked. For example, when the preset reception intensity is 0, the coordinate weight of the first coordinate L b1 of b1 in the preset coordinate system, the coordinate weight of the first coordinate L b3 of b3 in the preset coordinate system, and b5 are at the preset coordinates.
  • the coordinate weight of the first coordinate L b5 in the system may be equal to 0 (ie, 255-255), and the coordinate weight of the first coordinate L b7 of b7 in the preset coordinate system may be equal to 150/255. It should be noted that the embodiment of the present application does not limit the specific manner of determining the coordinate weight of the second coordinate of the adjacent electromagnetic wave receiving end in the preset coordinate system according to the preset receiving intensity and the receiving intensity of the adjacent electromagnetic receiving end.
  • the specific manner of determining the hitting coordinates of the hitting object in the preset coordinate system according to the first coordinate, the second coordinate, and the coordinate weight can be referred to the first method, and details are not described herein again.
  • the receiving end of the electromagnetic wave receiving end corresponding to the X axis is greater than the second predetermined threshold, and the receiving end of the electromagnetic wave receiving end corresponding to the Y axis is greater than the receiving intensity.
  • the target electromagnetic wave receiving end of the second preset threshold is b2, and the hitting coordinates of the hitter in the preset coordinate system are (L b6 , L b2 ).
  • the number of the target electromagnetic wave receiving ends whose receiving intensity is greater than the second preset threshold in the electromagnetic wave receiving end corresponding to the preset coordinate axis may be one or more.
  • a second preset threshold value 100 is assumed, and the target electromagnetic wave receiving ends whose receiving intensity is greater than the second predetermined threshold value in the electromagnetic wave receiving end corresponding to the X axis are b6 and b7. Therefore, the number of the first coordinates corresponding to the preset coordinate axis may also be plural.
  • determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system including: weighting the first coordinate; determining the hit according to the calculation result
  • the hitting coordinates of the object in the preset coordinate system For related content, refer to mode 2, and details are not described here.
  • determining the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system including: according to the preset receiving intensity and the receiving intensity of the target electromagnetic wave receiving end Determining a coordinate weight of the first coordinate; determining a hitting coordinate of the hitter in the preset coordinate system according to the first coordinate and the coordinate weight.
  • the coordinate weight is larger, and the receiving strength is smaller, the coordinate weight is smaller.
  • the target electromagnetic wave receiving end is determined at the preset coordinate. The coordinate weight of the first coordinate of the system.
  • the coordinate weight of b6 in the first coordinate of the preset coordinate system It may be equal to (255-150) / (255-150 + 255-170), and the coordinate weight of b7 in the first coordinate of the preset coordinate system may be equal to (255-170) / (255-150 + 255-170).
  • the specific implementation manner of determining the hitting coordinates of the hitting object in the preset coordinate system according to the first coordinate and the coordinate weight can be referred to the first method, and details are not described herein again.
  • the preset thresholds corresponding to different preset coordinate axes are the same in the embodiment, and all are the first preset threshold values.
  • different preset coordinate axes are used.
  • the corresponding preset thresholds are the same, and all are second preset threshold values.
  • the preset thresholds corresponding to different preset axes may also be different.
  • the preset coordinate system is a plane rectangular coordinate system, and the preset coordinate axis includes an X axis, and based on the method 1, the strike of the hitter in the preset coordinate system is determined.
  • the striking position of the striking object on the striking surface is as shown in FIG. 7B, wherein the solid circle represents the striking object, and the a4-a7 can emit electromagnetic waves in the vertical direction, or can be clipped along the vertical direction.
  • the electromagnetic wave is emitted in the direction of the angle.
  • b6 is the target electromagnetic wave receiving end with the smallest receiving intensity
  • b7 is the target with the smallest receiving intensity. Electromagnetic wave receiving end. Therefore, as shown in FIG.
  • the hitting coordinates of the hitter in the preset coordinate system are (L b6 , (L b7 - L b6 ) L 0 / (L b7 - L b5 )), where L b5 indicates that b5 is The first coordinate in the preset coordinate system, L b6 represents the first coordinate of b6 in the preset coordinate system, L b7 represents the first coordinate of b7 in the preset coordinate system, and L 0 represents the upper edge of the face in Y The coordinates of the axis.
  • FIGS. 6A-7B the positional relationship between the striking surface and the preset coordinate system in FIGS. 6A-7B is only an example, and it can be understood that the striking surface can be in the coordinate range of the preset coordinate system.
  • Step 503 determining the hitting position of the hitter on the face according to the hitting coordinates.
  • the hitting coordinate is the hitting position of the striking object hitting the striking surface
  • the coordinate in the preset coordinate system the striking position of the striking object on the striking surface can be determined according to the striking coordinate.
  • the hitting position may be determined according to the hitting coordinates determined in step 502 and the corresponding relationship; or, between the hitting coordinates and the hitting position,
  • There is a transformation relationship and the operation is performed using the transformation relationship according to the hit coordinates determined in step 502, and the hit position can be determined.
  • the hitting coordinate of the hitter in the preset coordinate system is determined according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end, and the hitting position of the hitting object on the striking surface is determined according to the striking coordinate, thereby realizing The determination of the hitting position of the preset coordinate system improves the application range of the detecting method.
  • periodically controlling the electromagnetic wave transmitting end to emit electromagnetic waves by using a preset duration including: periodically controlling the electromagnetic wave transmitting end to emit electromagnetic waves with a preset duration, and controlling At least one of the electromagnetic wave emitting ends emits electromagnetic waves in a direction at an angle to the initial emission direction.
  • the electromagnetic wave emitting end in the process of controlling the electromagnetic wave transmitting end within a preset time period, it is assumed that the electromagnetic wave emitting end has two emitting directions A and B at an angle, and the A transmitting direction precedes the transmitting direction.
  • the B emission direction performs electromagnetic wave emission, and then the A emission direction is the initial emission direction of the electromagnetic wave emission end.
  • all of the electromagnetic wave transmitting ends in FIG. 1 may be controlled to emit electromagnetic waves in an angle that is at an angle to the initial emission direction, or part of the electromagnetic wave transmitting ends in all electromagnetic wave transmitting ends in FIG. 1 may be controlled to be in accordance with the initial emission.
  • the direction of the electromagnetic wave is emitted in the direction of the angle, and the comparison is not limited herein.
  • controlling at least one of the electromagnetic wave emitting ends to emit electromagnetic waves in a direction that is at an angle to the initial emission direction includes: determining a reference hitting position of the plurality of hitters according to the receiving intensity of the electromagnetic wave receiving end for the initial transmitting direction And determining at least one target electromagnetic wave transmitting end in the electromagnetic wave transmitting end according to the reference striking position; controlling the at least one target electromagnetic wave transmitting end to emit the electromagnetic wave in a direction that is at an angle to the initial emission direction.
  • the angle between the initial emission direction of the electromagnetic wave transmitting end and the other transmitting directions other than the initial transmitting direction may be preset, or may be determined according to the reference hitting position, which is not limited in the present application.
  • the striking position of the striking object on the striking face is as shown in Fig. 7C, in which the solid circle indicates the striking object.
  • the emission direction of the electromagnetic wave emitted from the ai (i is equal to 1, 2, ..., 7) may be the initial emission direction of ai. As shown in FIG.
  • four reference hitting positions can be determined, which are respectively position coordinates (L b5 , L b2 ), (L b6 , L b2 ), (L b5 , L b3 ), (L b6 , L b3 ) corresponding to the hitting position, wherein the position coordinates (L b5 , L b2 ) and (L b6 , L b3 ) corresponding to the hitting position are The pseudo position, the position coordinates (L b6 , L b2 ) and the (L b5 , L b3 ) corresponding hit positions are true positions.
  • a4 emits electromagnetic waves to b6 according to the four reference hitting positions.
  • the position corresponding to the position coordinates (L b5 , L b2 ) and (L b6 , L b3 ) is a pseudo position
  • the positional coordinates (L b5 , L can be determined according to the reception intensity of the received electromagnetic wave of the a4 received by b6.
  • the hitting position corresponding to b2 ) and (L b6 , L b3 ) is a pseudo position
  • the hitting positions corresponding to the position coordinates (L b6 , L b2 ) and (L b5 , L b3 ) are true positions.
  • controlling the same electromagnetic wave transmitting end to emit electromagnetic waves in different emitting directions within a predetermined period of time is not only advantageous for distinguishing between the true and false hitting positions, but also for avoiding occurrence of multiple hitting positions in the same coordinate axis direction.
  • the occurrence of the missed detection situation for example, taking FIG. 7B as an example, assuming that there are multiple hitting positions in the emission directions of a6 to b6, that is, having the same L b6 , then the a5 to b7 are transmitted through the a5 to b5.
  • the scanning rule, the scanning direction of a4 to b4, and the scanning of the direction of a4 to b6, etc. can solve the above-mentioned missed detection problem.
  • the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end is affected, thereby causing the problem of false detection of the hitting object, the electromagnetic wave transmitting end and the electromagnetic wave receiving.
  • the height of the end and/or the mounting height may be less than or equal to the height of the hitter.
  • the arrows in FIG. 3 and FIG. 6A to FIG. 7B are only used for the electromagnetic wave between the electromagnetic wave transmitting end and the electromagnetic wave receiving end, and are not used to indicate the coverage of the electromagnetic wave, and it is understood that all the arrows
  • the electromagnetic wave received by the electromagnetic wave receiving end should cover the detection range of the entire striking surface.
  • the cross-sectional area of the hitter in order to ensure the accuracy of the determination of the hitting position, can be matched with the detection accuracy.
  • the detection accuracy can be represented by a square in the lattice area of FIG. 7A, and the cross-sectional area of the hitter is matched with the detection precision, and specifically, the cross-sectional area of the hitter is less than or equal to the area of one square.
  • FIG. 8 is a schematic structural diagram 1 of an embodiment of a detecting apparatus provided by the present application.
  • the detecting apparatus of this embodiment may include a processor 801, an electromagnetic wave transmitting end 802, and an electromagnetic wave receiving end 803; and the processor 801 is connected to the electromagnetic wave transmitting end 802 and the electromagnetic wave receiving end 803, respectively.
  • the electromagnetic wave transmitting end 802 is configured to emit electromagnetic waves
  • the electromagnetic wave receiving end 803 is configured to receive electromagnetic waves emitted by the corresponding electromagnetic wave transmitting end 802;
  • the processor 801 is configured to periodically control the electromagnetic wave transmitting end 802 to emit electromagnetic waves with a preset duration, and the electromagnetic wave receiving end 803 receives the electromagnetic wave emitted by the corresponding electromagnetic wave transmitting end 802, wherein the preset duration is a stay according to the hitting object on the striking surface. Time is determined;
  • the processor 801 is further configured to determine the hitting position of the hitter on the striking surface according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end 803.
  • the electromagnetic wave transmitting end is divided into a plurality of groups
  • the processor 801 is configured to periodically control the electromagnetic wave transmitting end 802 to emit electromagnetic waves by using a predetermined duration, and specifically includes:
  • the electromagnetic wave transmitting end 802 that periodically controls the plurality of packets with a preset duration transmits electromagnetic waves according to a preset rule.
  • the processor 801 is configured to periodically control the electromagnetic wave transmitting end of the plurality of packets to emit electromagnetic waves according to a preset rule by using a preset duration, and specifically includes:
  • the electromagnetic wave transmitting ends 802 of the different groups are periodically controlled to emit electromagnetic waves in parallel at a preset duration, and the electromagnetic wave transmitting ends 802 controlling the same group sequentially emit electromagnetic waves.
  • the grouping of the electromagnetic wave emitting ends is determined according to the scattering characteristics of the electromagnetic waves.
  • the processor 801 is configured to determine, according to the receiving strength of the electromagnetic wave received by the electromagnetic wave receiving end 803, the hitting position of the hitting object on the striking surface, specifically including:
  • the hitting coordinate of the hitting object in the preset coordinate system is determined, and the preset coordinate system is set according to the striking surface;
  • the hitting position of the hitter on the face is determined according to the hitting coordinates.
  • the processor 801 is configured to determine the hitting coordinate of the hitting object in the preset coordinate system according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end 803, specifically include:
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system.
  • the processor 801 is configured to determine, according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end 803, determining the hitting coordinate of the hitting object in the preset coordinate system, specifically including :
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system.
  • the processor 801 is further configured to:
  • the processor 801 is configured to determine the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system, and specifically includes:
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the first coordinate, the second coordinate, and the coordinate weight.
  • the processor 801 is configured to determine the hitting coordinate of the hitting object in the preset coordinate system according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end 803, specifically include:
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system.
  • the processor 801 is configured to determine, according to the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end 803, determining the hitting coordinate of the hitting object in the preset coordinate system, specifically including :
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system.
  • the processor 801 is configured to determine the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system, and specifically includes:
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the calculation result.
  • the processor 801 is configured to determine the hitting coordinates of the hitter in the preset coordinate system according to the first coordinate of the target electromagnetic wave receiving end in the preset coordinate system, and specifically includes:
  • the hitting coordinates of the hitter in the preset coordinate system are determined according to the first coordinate and the coordinate weight.
  • the receiving end of the electromagnetic wave is received by the electromagnetic wave receiving end.
  • the processor 801 is configured to periodically control the electromagnetic wave transmitting end 802 to emit electromagnetic waves by using a preset duration, which specifically includes:
  • the electromagnetic wave transmitting end 802 is periodically controlled to emit electromagnetic waves at a preset duration, and at least one of the electromagnetic wave transmitting ends 802 is controlled to emit electromagnetic waves in a direction at an angle to the initial emission direction.
  • the processor 801 is configured to control at least one of the electromagnetic wave transmitting ends 802 to emit electromagnetic waves in a direction that is at an angle to the initial transmitting direction, and specifically includes:
  • the at least one target electromagnetic wave emitting end is controlled to emit electromagnetic waves in a direction at an angle to the initial emission direction.
  • the electromagnetic wave emitting ends corresponding to the same coordinate axis in the preset coordinate system are arranged in the direction of the coordinate axis, and/or arranged in the parallel direction of the coordinate axis.
  • the height and/or the installation height of the electromagnetic wave transmitting end 802 and the electromagnetic wave receiving end 803 is less than or equal to the height of the hitter.
  • the electromagnetic wave is infrared or laser.
  • the apparatus of this embodiment may further include: a transmitting end gating circuit 804, a receiving end gating circuit 805, a transmitting end driving circuit 806, and a receiving end driving circuit 807.
  • the transmitting end gating circuit 804 is respectively connected to the processor 801 and the transmitting end driving circuit 806, the transmitting end driving circuit 806 is also connected to the electromagnetic wave transmitting end 802, and the receiving end gating circuit 805 is respectively connected to the processor 801 and the receiving end driving circuit.
  • the control receiving terminal drive circuit 807 drives the electromagnetic wave receiving end 803 to receive electromagnetic waves.
  • the apparatus of this embodiment may further include: a filtering circuit 808 connected to the electromagnetic wave receiving end 803 and the processor 801 respectively for filtering the signal output by the electromagnetic wave receiving end 803.
  • the signal is used to indicate the reception strength.
  • the apparatus of this embodiment may further include: an amplifying circuit 809, which is respectively connected to the filtering circuit 808 and the processor 801 for amplifying the signal output by the filtering circuit 808.
  • the function of the analog digital (Analog Digit, AD) acquisition may be implemented by the processor 801.
  • the apparatus of this embodiment may further include: an AD acquisition module 810.
  • the AD acquisition module 810 is connected to the processor 801 and the electromagnetic wave receiving end 803, respectively, for collecting the receiving intensity of the electromagnetic wave received by the electromagnetic wave receiving end 803, and transmitting the collected receiving intensity to the processor 801.
  • the detection device provided in this embodiment may be used to perform the technical solution of the foregoing method embodiment, and the implementation principle and the technical effect are similar to the method embodiment, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种检测方法及设备。检测方法包括:以预设时长周期性地控制电磁波发射端(11)发射电磁波、电磁波接收端(12)接收对应电磁波发射端(11)发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定(201);根据电磁波接收端(12)接收电磁波的接收强度,确定击打物在打击面上的击打位置(202)。解决了维护难度大的问题,且避免了击打物漏检测的问题。

Description

检测方法及设备 技术领域
本申请涉及检测技术领域,尤其涉及一种检测方法及设备。
背景技术
为了丰富生活,提供了击打打击面的比赛或娱乐活动,例如可以举办机器人击打打击面的比赛,在这个过程中通常需要确定击打位置。
现有技术中,通过在物体的打击面侧内置压力传感器,来确定击打位置。具体的,可以将打击面分割成3*3的九宫格块,每块对应一个面板,每个面板上安装有对应块的压力传感器。当击打到某一块时,该块的压力传感器可以检测到一定的压力,通过压力传感器检测到的压力值来确定击打位置。
但是,现有技术中,内置压力传感器存在安装复杂,维护难度大的问题。
发明内容
本申请提供一种检测方法及设备,用于解决现有技术中内置压力传感器安装复杂,维护难度大的问题。
第一方面,本申请实施例提供一种检测方法,包括:
以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定;根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置。
第二方面,本申请实施例提供一种检测装置,包括:处理器、电磁波发射端和电磁波接收端;处理器分别与电磁波发射端和电磁波接收端连接;
所述电磁波发射端用于发射电磁波,所述电磁波接收端用于接收对应电磁波发射端发射的电磁波;
处理器,用于以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定;
处理器,还用于根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置。
本申请提供的检测方法及设备,通过以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置,避免了通过在物体的打击面侧内置压力传感器来确定击打物的击打位置,有利于解决在打击面侧内置传感器安装负载、维护难度大的问题。另外,利用电磁波进行检测,通过设置电磁波在打击面上的覆盖范围,可以控制击打物的击打位置的检测密度,有利于防止打击面上的检测死角,同时,通过预设时长为根据击打物在打击面的停留时长确定,避免了一次完整扫描未完成而击打物已离开打击面的场景下击打物漏检测的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的检测方法的应用架构示意图;
图2为本申请提供的检测方法实施例一的流程图;
图3为本申请提供的检测方法实施例的示意图一;
图4为本申请提供的检测方法实施例二的流程图;
图5为本申请提供的检测方法实施例三的流程图;
图6A为本申请提供的检测方法实施例的示意图二;
图6B为本申请提供的检测方法实施例的示意图三;
图6C为本申请提供的检测方法实施例的示意图四;
图6D为本申请提供的检测方法实施例的示意图五;
图7A为本申请提供的检测方法实施例的示意图六;
图7B为本申请提供的检测方法实施例的示意图七;
图7C为本申请提供的检测方法实施例的示意图七;
图8为本申请提供的检测装置实施例的结构示意图一;
图9为本申请提供的检测装置实施例的结构示意图二。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请提供的检测方法的应用架构示意图。如图1所示,该方法的应用架构可以包括:处理器(未示出)、多个电磁波发射端11和多个电磁波接收端12。其中,处理器分别与多个电磁波发射端11和多个电磁波接收端12连接。处理器可以控制电磁波发射端11发射电磁波,并控制电磁波发射端11对应的电磁波接收端12接收电磁波。当击打物击打打击面时,会对一个或多个电磁波接收端12接收电磁波的接收强度造成影响,处理器可以根据电磁波接收端12接收电磁波的接收强度,确定击打物在打击面的击打位置。可选的,电磁波可以为红外线或者激光等。
可选的,打击面可以用于投掷者投掷击打物的相关娱乐或比赛中。具体的,当投掷者向打击面投掷击打物时,若所投掷的击打物击中击打面的检测范围,则处理器可以根据电磁波接收端接收电磁波的接收强度确定击打物在打击面的击打位置。其中,投掷者例如可以为诸如比赛机器人,击打物例如可以为弹丸。
本申请实施例将以投掷者为比赛机器人,该检测方法应用于机器人比赛场景为例进行说明,在机器人比赛过程中,通过对打击面上的击打位置的检测,可以用于检测比赛机器人投掷的弹丸是否打击到打击面上,有利于设置比赛规则,增加比赛趣味性。其中,比赛机器人可以为任意的可移动物体,如小车,打击面所在的物体可以为比赛机器人比赛过程中所使用的道具的一部分,也可以为其它比赛机器人上的一部分。可以理解的是,本申请实施例中的检测方法也可以应用于其它场景,此处不做具体限定。
需要说明的是,图1中箭头仅用于电磁波发射端与电磁波接收端之间电磁波的示意,并不用于表示电磁波的覆盖范围,可以理解的是所有电磁 波接收端接收的电磁波应覆盖整个打击面的检测范围。
需要说明的是,图1中以电磁波发射端11和电磁波接收端12均设置在打击面的周围为例。可以理解的是,在满足电磁波覆盖打击面的检测范围的条件下,可替换地,电磁波发射端11和电磁波接收端12也可以设置在其他位置。例如,当打击面的中央具有缺口时,电磁波发射端可以设置在打击面的中央,电磁波接收端可以设置在打击面的周围;或者,电磁波发射端可以设置在打击面的周围,电磁波接收端可以设置在打击面的中央。可选的,电磁波发射端和/或电磁波接收端可以固定在打击面上,也可以固定在打击面直接连接或间接连接的其他部件上,本申请对此并不作限定。
需要说明的是,图1中以打击面为一个平面为例。可以理解的是,打击面也可以由多个相同或者不同方向的平面组成。其中,平面的形状例如可以为圆形、正方形、长方形等规则形状,也可以为不规则形状,本申请对此并不作限定。
图2为本申请提供的检测方法实施例一的流程图。本实施例的方法可以由上述处理器执行,用于确定击打物在打击面的击打位置。如图2所示,本实施例的方法可以包括:
步骤201,以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定。
本步骤中,控制电磁波发射端周期性发射电磁波的预设时长是根据击打物在打击面的停留时长确定的。由于本申请实施例是基于当击打物击打打击面时,会对一个或多个电磁波接收端接收电磁波的接收强度造成影响的原理来确定击打物在打击面的击打位置,因此在预设时长较击打物在打击面的停留时长较大时,会出现一次完整扫描未完成而击打物已离开打击面的场景,从而出现未确定出哪个电磁波接收端接收电磁波的接收强度受到影响,而导致击打物漏检测的问题,并且当预设时长大于停留时长且与停留时长相差越大时,击打物漏检测的概率越大。其中,控制图1中的所有电磁波发射端均发射至少一次电磁波,可以认为是一次完整扫描。
可选的,预设时长可以小于或等于击打物在打击面的停留时长,同时,在每一个预设时长内可以完成一次完整扫描,该完整扫描可以根据检测规 则确定。其中,击打物在打击面的停留时长可以与很多因素相关,例如,击打物的重量、投掷方(例如,机器人)投掷力等等,停留时长可以不是一个完全精确的值。因此,预设时长与停留时长的关系具体还可以为:预设时长小于或等于停留时长与时长偏移量之和,时长偏移量为极小的正值,例如零点几微妙。
其中,检测规则可以在电磁波发射端发射之前设置,也可以在发射过程中调整。
可选的,以预设时长周期性地控制电磁波发射端发射电磁波具体可以包括:以预设时长周期性地控制图1中的所有电磁波发射端11逐个发射电磁波;或者,以预设时长周期性地控制图1中的所有电磁波发射端11中每至少两个电磁波发射端发射电磁波;或者,预设时长周期性地控制图1中的所有电磁波发射端11同时发射电磁波,等等。需要说明的是,本申请实施例并不对以预设时长周期性地控制电磁波发射端发射电磁波的具体方式作限定。
如图3所示,假设格子区域用于表示打击面,电磁波发射端包括a1、a2、a3、a4、a5、a6和a7,电磁波接收端包括b1、b2、b3、b4、b5、b6和b7,a1与b1对应、a2与b2对应、a3与b3对应、a4与b4对应、a5与b5对应、a6与b6对应、a7与b7对应。
当以预设时长周期性地控制图1中的所有电磁波发射端11逐个发射电磁波时,步骤201例如可以为以预设时长周期性地进行如下控制:首先,a1发电磁波,在a1发电磁波的过程中,b1接收a1发的电磁波;然后,a1停止发射电磁波,a2发电磁波,在a2发电磁波的过程中,b2接收a2发的电磁波;然后,a2停止发射电磁波,a3发电磁波,在a3发电磁波的过程中,b3接收a3发的电磁波;然后,a3停止发射电磁波,a4发电磁波,在a4发电磁波的过程中,b4接收a4发的电磁波;然后,a4停止发射电磁波,a5发电磁波在a5发电磁波的过程中,b5接收a5发的电磁波;然后,a5停止发射电磁波,a6发电磁波,在a6发电磁波的过程中,b6接收a6发的电磁波;然后,a6停止发射电磁波,a7发电磁波,在a7发电磁波的过程中,b7接收a6发的电磁波;然后,a7停止发射电磁波,a1发电磁波,……,如此循环上述步骤。
当以预设时长周期性地控制图1中的所有电磁波发射端11中每至少两个电磁波发射端发射电磁波时,步骤201例如可以为以预设时长周期性地进行如下控制:首先,a1和a2同时发电磁波,在a1和a2发电磁波的过程中,b1接收a1发的电磁波,b2接收a2发的电磁波;然后,a1和a2停止发射电磁波,a3-a5同时发电磁波,在a3-a5发电磁波的过程中,b3接收a3发的电磁波,b4接收a4发的电磁波,b5接收a5发的电磁波;然后,a3-a5停止发射电磁波,a6和a7同时发电磁波,在a6和a7发电磁波的过程中,b6接收a6发的电磁波,b7接收a7发的电磁波;然后,a6和a7停止发射电磁波,a1和a2同时发电磁波,……,如此循环上述步骤。
步骤202,根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置。
本步骤中,由于当击打物击打打击面时,会对一个或多个电磁波接收端接收电磁波的接收强度造成影响,因此可以根据电磁波接收端接收电磁波的接收强度,来确定击打物在打击面的击打位置。可选的,如图3所示,相应的电磁波发射端与电磁波接收端可以对应12个块,作为12个位置,按照从上之下从左至右的顺序依次编号为1、2、3、……、12,假设当击打物击打打击面时,会对电磁波接收端b6和电磁波接收端b2接收电磁波的接收强度造成影响,因此可以根据电磁波接收端接收电磁波的接收强度,确定击打物击打了编号为7的位置,即击打物在打击面的击打位置为7。或者,在实际应用中,也可以不对打击面进行诸如上述块的区分,而是根据电磁波发射端与电磁波接收端的相应位置来确定击打物的击打位置,如计算a2与b2、a6与b6的连接直线的交叉点。或者,可选的,也可以通过确定击打物在预设坐标系中击打位置,来确定击打物在打击面上的击打位置,具体可以参见下述图5所示实施例。需要说明的是,本申请实施例并不对根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置的具体方式作限定。
本实施例中,通过以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置,避免了通过在物体的打击面侧内置压力传感器来确定击打物的击打位置时,有利于解决在打击面侧内置传感器安装复杂、维护难度大的问题,尤其是在比赛机器 人的使用场景中,弹丸击打至打击面的冲击力较大,易引起压力传感器的损坏。另外,利用电磁波进行检测,通过设置电磁波在打击面上的覆盖范围,可以控制击打物的击打位置的检测密度,有利于防止打击面上的检测死角,同时,通过预设时长为根据击打物在打击面的停留时长确定,避免了一次完整扫描未完成而击打物已离开打击面的场景下击打物漏检测的问题。
图4为本申请提供的检测方法实施例二的流程图。本实施例的方法在图2所示方法实施例的基础上,主要描述了步骤201的一种可选的实现方式。如图4所示,本实施例的方法可以包括:
步骤401,以预设时长周期性地控制多个分组的电磁波发射端按照预设规则发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定。
本步骤中,图1中的所有电磁波发射端11可以分为多个分组。可选的,以预设时长周期性地控制多个分组的电磁波发射端按照预设规则发射电磁波具体可以包括:以预设时长周期性地控制多个分组的电磁波发射端逐组发射电磁波;或者,也可以以预设时长周期性地控制多个分组的电磁波发射端每至少两个分组发射电磁波;或者,还可以以预设时长周期性地控制多个分组的电磁波发射端按照先第一方向对应分组,再第二方向对应分组的顺序逐组发射电磁波;或者,还可以以预设时长周期性地控制不同方向对应分组的电磁波发射端并行发射电磁波,并控制同一方向对应分组的电磁波发射端逐组发射电磁波;或者,还可以以预设时长周期性地控制多个分组的电磁波发射端并行发射电磁波,并控制同一分组的电磁波发射端依次发射电磁波;等等。需要说明的是,本申请实施例并不对以预设时长周期性地控制多个分组的电磁波发射端按照预设规则发射电磁波的具体方式作限定。
需要说明的是,第一方向对应分组可以为对于沿第一方向和/或与第一方向的平行方向排列的电磁波发射端划分的分组,第二方向对应分组可以为对于沿第二方向和/或与第二方向的平行方向排列的电磁波发射端划分的分组。第一方向的扫描时间与第二分组的扫描时间可以相同也可以不同,本申请对此并不做限定。其中,第一方向的扫描时间可以为控制第一方向对应分组的电磁波发射端均发射至少一次电磁波的时间,第二方向的扫描 时间可以为控制第二方向对应分组的电磁波发射端均发射至少一次电磁波的时间,但在预设时长内第一方向以及第二方向均按照预设规则扫描完成。
如图3所示,在下述举例1-举例3中,以a1和a2划分为分组1,a3划分为分组2,a4和a5划分为分组3,a6和a7划分为分组4为例。
举例1
当以预设时长周期性地控制多个分组的电磁波发射端逐组发射电磁波时,步骤401例如可以为以预设时长周期性地进行如下控制:首先,a1和a2同时发电磁波,在a1和a2发电磁波的过程中,b1接收a1发的电磁波,b2接收a2发的电磁波;然后,a1和a2停止发射电磁波,a6和a7同时发电磁波,在a6和a7发电磁波的过程中,b6接收a6发的电磁波,b7接收a7发的电磁波;然后,a6和a7停止发射电磁波,a3发射电磁波,在a3发射电磁波的同时,b3接收a3发送的电磁波;然后,a3停止发射电磁波,a4和a5同时发电磁波,在a4和a5发电磁波的过程中,b4接收a4发的电磁波,b5接收a5发的电磁波;然后,a4和a5停止发射电磁波,a1和a2同时发电磁波,……,如此循环上述步骤。
举例2
当以预设时长周期性地控制多个分组的电磁波发射端按照先第一方向对应分组,再第二方向对应分组的顺序逐组发射电磁波时,步骤401例如可以为以预设时长周期性地进行如下控制:首先,a1和a2同时发电磁波,在a1和a2发电磁波的过程中,b1接收a1发的电磁波,b2接收a2发的电磁波;然后,a1和a2停止发射电磁波,a3发射电磁波,在a3发射电磁波的同时,b3接收a3发送的电磁波;然后,a3停止发射电磁波,a4和a5同时发电磁波,在a4和a5发电磁波的过程中,b4接收a4发的电磁波,b5接收a5发的电磁波;然后,a4和a5停止发射电磁波,a6和a7同时发电磁波,在a6和a7发电磁波的过程中,b6接收a6发的电磁波,b7接收a7发的电磁波;然后,a6和a7停止发射电磁波,a1和a2同时发电磁波,……,如此循环上述步骤。
举例3
当以预设时长周期性地控制多个分组的电磁波发射端并行发射电磁 波,并控制同一分组的电磁波发射端依次发射电磁波时,步骤401例如可以为以预设时长周期性地进行如下控制:首先,a1、a3、a4和a6同时发射电磁波,在a1、a3、a4和a6发电磁波的过程中,b1接收a1发的电磁波,b3接收a3发的电磁波,b4接收a4发的电磁波,b6接收a6发的电磁波;然后,a1、a3、a4和a6停止发射电磁波,a2、a5和a7同时发射电磁波,在a2、a5和a7发电磁波的过程中,b2接收a2发的电磁波,b5接收a5发的电磁波,b7接收a7发的电磁波;然后,a2、a5和a7停止发射电磁波,a1、a3、a4和a6同时发射电磁波,……,如此循环上述步骤。
需要说明的是,同一分组中电磁波发射端的个数可以相同也可以不同,本申请对此并不对限定。
需要说明的是,举例1和举例2中以同一分组的电磁波发射端并行发射电磁波为例,举例3中以不同组的电磁波发射端并行发射电磁波为例。这里,多个电磁波发射端并行发射电磁波与多个电磁波发射端逐个发送电磁波相比,可以提高扫描的效率。
可选的,由于电磁波通常均具有散射特性,为了避免电磁波接收端接收到其对应电磁波发射端之外的其他电磁波发射端发射的电磁波,而导致所确定的击打位置不准确的问题,电磁波发射端的分组可以为根据电磁波的散射特性确定。具体的,可以将受散射特性限制的电磁波发射端划分至不同分组,并将不受散射特性限制的电磁波发射端划分至同一分组,此时可以采用举例1和举例2的控制方式;或者,可以将受散射特性限制的电磁波发射端划分至同一分组,并将不受散射特性限制的电磁波发射端划分至不同分组,此时可以采用举例3的控制方式。
需要说明的是,本实施例中关于预设时长为根据击打物在打击面的停留时长确定的相关说明,可以参见图2所示实施例,在此不再赘述。
步骤402,根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置。
需要说明的是,步骤402与步骤202类似,在此不再赘述。
本实施例中,通过以预设时长周期性地控制多个分组的电磁波发射端按照预设规则发射电磁波,根据电磁波接收端接收电磁波的接收强度,确定击打物在打击面上的击打位置,实现了对电磁波发射端发射电磁波的灵 活控制。
图5为本申请提供的检测方法实施例三的流程图。本实施例的方法在图2所示方法实施例的基础上,主要描述了步骤202的一种可选的实现方式。如图5所示,本实施例的方法可以包括:
步骤501,以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定。
需要说明的是,关于步骤501的具体说明可以参见上述步骤201和步骤401,在此不再赘述。
步骤502,根据电磁波接收端接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,预设坐标系为根据打击面设定。
本步骤中,可选的,当打击面由一个或多个相同方向的平面组成时,预设坐标系具体可以为诸如平面直角坐标系或者平面极坐标系。当打击面由多个不同方向的平面组成时,预设坐标系具体可以为空间直角坐标系。以打击面为一个长方形的平面为例,在图3的基础上,预设坐标系与打击面的关系可以如图6A或图6B所示。
需要说明的是,图6A和图6B中以预设坐标系中的每一个坐标轴,即X轴和Y轴,均存在对应的电磁波发射端为例,其中,一个电磁波发射端可以对应一个电磁波接收端,例如a1与b1对应。可选的,也可以仅预设坐标系中部分坐标轴存在对应的电磁波发射端。例如,如图6C和图6D所示,预设坐标系中仅X轴存在对应的电磁波发射端,其中,一个电磁波发射端可以对应多个电磁波接收端,例如,a5对应b5和b7。
需要说明的是,一个或多个电磁波发射端与其对应电磁波接收端的位置可以互换,因此通过图6A-图6D可以看出,预设坐标系中对应同一坐标轴的电磁波发射端可以沿坐标轴的方向排列,和/或沿坐标轴的平行方向排列。
如图6A-图6D所示,每一个电磁波接收端在预设坐标系中均有对应坐标,而当击打物击打打击面时,会对一个或多个电磁波接收端(下述记为目标电磁波接收端)接收电磁波的接收强度造成影响,因此可以根据目标电磁波接收端在预设坐标系中的坐标,确定击打物在预设坐标系的击打坐标。
可选的,当电磁波未被击打物遮挡时,电磁波接收端接收的电磁波的电平信号可以为H,当电磁波被击打物完全遮挡时,电磁波接收端接收电磁波的电平信号可以为L,其中,L和H均为数值,且L小于H。
其中,电磁波接收端接收电磁波的电平信号的高低与电磁波接收端的接收强度大小的关系可以为:电磁波的遮挡程度越大,电磁波接收端接收电磁波的电平信号越低,电磁波接收端的接收强度越小;电磁波的遮挡程度越小,电磁波接收端接收电磁波的电平信号越高,电磁波接收端的接收强度越大。可以看出,此时,电磁波的接收强度与电磁波的遮挡程度呈负相关。
可选的,当电磁波未被击打物遮挡时,电磁波接收端接收的电磁波的电平信号可以为L,当电磁波被击打物完全遮挡时,电磁波接收端接收电磁波的电平信号可以为H,其中,L和H均为数值,且L小于H。
其中,电磁波接收端接收电磁波的电平的高低与电磁波接收端的接收强度大小的关系也可以为:电磁波的遮挡程度越小,电磁波接收端接收电磁波的电平信号越低,电磁波接收端的接收强度越小;电磁波的遮挡程度越大,电磁波接收端接收电磁波的电平信号越高,电磁波接收端的接收强度越大。可以看出,此时,电磁波的接收强度与电磁波的遮挡程度呈正相关。
可选的,当电磁波的接收强度与电磁波的遮挡程度呈负相关时,可以根据接收强度小的电磁波接收端在预设坐标系中的坐标,确定击打物在预设坐标系的击打坐标。相应的,可以通过下述方式一或方式二来实现。
可选的,当电磁波的接收强度与电磁波的遮挡程度呈正相关时,可以根据接收强度大的电磁波接收端在预设坐标系中的坐标,确定击打物在预设坐标系的击打坐标。相应的,可以通过下述方式三或方式四来实现。
可选的,如图6A-图6D所示,预设坐标轴可以包括预设坐标系中的全部坐标轴或者部分坐标轴。以下,以预设坐标系为平面直角坐标系,预设坐标轴包括X轴和Y轴为例,对方式一至方式四进行具体说明。
如下方式一和方式二中,假设在图6B的基础上,击打物在打击面的击打位置如图7A所示,其中实心圆表示击打物,电磁波未被阻挡时电磁波接收端接收电磁波的接收强度为255,并且在一次完整扫描后,b1接收电磁波的接收强度为255,b2接收电磁波的接收强度为10,b3接收电磁波的接收强度为255,b4接收电磁波的接收强度为255,b5接收电磁波的 接收强度为255,b6接收电磁波的接收强度为80,b7接收电磁波的接收强度为100。
方式一
确定预设坐标系中预设坐标轴对应的电磁波接收端中接收强度最小的目标电磁波接收端;根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
例如,图7A中,X轴对应的电磁波接收端中接收强度最小的目标电磁波接收端为b6,Y轴对应的电磁波接收端中接收强度最小的目标电磁波接收端为b2,击打物在预设坐标系的击打坐标为(L b6,L b2),其中L b6表示b6在预设坐标系中的第一坐标,L b2表示b2在预设坐标系中的第一坐标。
如图7A所示,在击打物击打到打击面上时,除了影响目标电磁波接收端的接收强度之外,还可能影响目标电磁波接收端的相邻电磁波接收端的接收强度。因此,为了提高击打位置确定的准确性,进一步的,还可以根据相邻电磁波接收端的接收强度确定击打物在预设坐标系的击打坐标。方式一还可以包括:根据预设接收强度以及目标电磁波接收端的相邻电磁波接收端的接收强度,确定相邻电磁波接收端在预设坐标系的第二坐标的坐标权重;根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,包括:根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标。图7A中,b2的相邻电磁波接收端为b1和b3,b6的相邻电磁波接收端为b5和b7。例如,可以根据预设接收强度以及b2的相邻电磁波接收端b1和b3的接收强度,确定b1在预设坐标系的第二坐标L b1的坐标权重为W b1以及b3在预设坐标系的第二坐标L b3的坐标权重W b3,并根据预设接收强度以及b6的相邻电磁波接收端b5和b7的接收强度,确定b5在预设坐标系的第二坐标L b5的坐标权重W b5以及b7在预设坐标系的第二坐标L b7的坐标权重W b7,进一步的,可以根据L b1、L b2、L b3、L b5、L b6、L b7、W b1、W b3、W b5和W b7,例如,W b1大于W b3、W b5大于W b7,则确定L b2需要向L b1偏移、L b6需要向L b5偏移,而后可以根据L b1与L b2的加权值、L b5与L b6的加权值确定击打物在预设坐标系的击打坐标。
可以理解的是,本申请实施例中,当目标电磁波接收端的相邻电磁波接收端包括多个时,目标电磁波接收端的相邻电磁波接收端除了可以为周围相邻的所有电磁波接收端之外,也可以为相邻的所有电磁波接收端中的一个或几个电磁波接收端,如根据第一坐标在预设坐标系中的偏向位置确定相邻电磁波接收端,此处不做具体限定。
需要说明的是,方式一和下述的方式三中,当预设坐标轴包括X轴和Y轴时,通过对于X轴,根据X轴对应的目标电磁波接收端的第一坐标、X轴对应的目标电磁波接收端的相邻电磁波接收端的第二坐标,以及第二坐标的坐标权重,确定击打物在预设坐标系的X轴的击打坐标,以及对于Y轴,根据Y轴对应的目标电磁波接收端的第一坐标、Y轴对应的目标电磁波接收端的相邻电磁波接收端的第二坐标,以及第二坐标的坐标权重,确定击打物在预设坐标系的Y轴的击打坐标,从而确定击打物在预设坐标系的击打坐标。
可选的,可以基于接收强度越小则坐标权重越大,接收强度越大则坐标权重越小的原则,根据预设接收强度以及相邻电磁接收端的接收强度,确定相邻电磁波接收端在预设坐标系的第二坐标的坐标权重。可选的,预设接收强度可以为电磁波未被阻挡时,由电磁波接收端接收电磁波的接收强度。例如,当预设接收强度为255时,b1在预设坐标系中的第二坐标L b1的坐标权重、b3在预设坐标系中的第二坐标L b3的坐标权重以及b5在预设坐标系中的第二坐标L b5的坐标权重均可以等于0(即,255-255),b7在预设坐标系中的第二坐标L b7的坐标权重可以等于(255-100)/255。
需要说明的是,方式一和方式三中,当预设坐标轴包括X轴和Y轴时,根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标,具体可以包括:根据X轴对应的目标电磁波接收端的相邻电磁波接收端的接收强度,确定X轴对应的目标电磁波接收端的相邻电磁波接收端在预设坐标系的第二预设接收强度以及目标电磁波接收端的相邻电磁波接收端的接收强度,确定相邻电磁波接收端在预设坐标系的第二坐标的坐标权重。
根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标,例如可以为:击打物在预设坐标轴的坐标等于第一坐标+(第 二坐标-第一坐标)*坐标权重;或者,击打物在预设坐标轴的坐标等于第一坐标+(第二坐标-第一坐标)/|第二坐标-第一坐标|*第二坐标*坐标权重;等等。需要说明的是,本申请实施例并不对根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标的具体方式作限定。
方式二
确定预设坐标系中预设坐标轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端;根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
例如,图7A中,假设第一预设阈值100,则X轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端为b6,Y轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端为b2,击打物在预设坐标系的击打坐标为(L b6,L b2)。
可选的,预设坐标轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端的个数可以为一个或多个。例如,如图7A所示,假设第一预设阈值200,则X轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端为b6和b7。因此,预设坐标轴对应的第一坐标的个数也可以为多个。
可选的,根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,包括:对第一坐标进行加权计算;根据计算结果确定击打物在预设坐标系的击打坐标。
需要说明的是,方式二和下述的方式四中,当预设坐标轴包括X轴和Y轴时,对第一坐标进行加权计算;根据计算结果确定击打物在预设坐标系的击打坐标,具体可以包括:对X轴对应的目标电磁波接收端各自的第一坐标进行加权计算,获得X轴对应的计算结果,对Y轴对应的目标电磁波接收端各自的第一坐标进行加权计算,获得Y轴对应的计算结果,根据X轴以及Y轴对应的计算结果,确定击打物在预设坐标系的击打坐标。
可选的,可以对预设坐标轴对应的多个目标电磁波接收端个数与第一坐标的坐标权重进行预先约定。例如,当同一预设坐标轴对应2个第一坐标时,2个第一坐标的坐标权重分别为0.5。又例如,当同一预设坐标轴对应3个第一坐标时,3个第一坐标按照坐标由小至大的顺序对应的坐标权 重分别为0.2、0.3、0.5。例如,当X轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端为b6和b7,对X轴对应的第一坐标进行加权计算可以获得坐标(L b6+L b7)/2。需要说明的是,本申请实施例并不对对第一坐标进行加权计算;根据计算结果确定击打物在预设坐标系的击打坐标的具体方式作限定。
或者,可选的,根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,包括:根据预设接收强度与目标电磁波接收端的接收强度确定第一坐标的坐标权重;根据第一坐标、坐标权重,确定击打物在预设坐标系的击打坐标。
需要说明的是,方式二和下述的方式四中,当预设坐标轴包括X轴和Y轴时,根据预设接收强度与目标电磁波接收端的接收强度确定第一坐标的坐标权重;根据第一坐标、坐标权重,确定击打物在预设坐标系的击打坐标,具体可以包括:根据预设接收强度以及X轴对应的目标电磁波接收端的接收强度,确定X轴对应的目标电磁波接收端的第一坐标的坐标权重,根据X轴对应的目标电磁波接收端的第一坐标,坐标权重,确定击打物在预设坐标系的X轴的坐标;根据预设接收强度以及Y轴对应的目标电磁波接收端的接收强度,确定Y轴对应的目标电磁波接收端的第一坐标的坐标权重,根据Y轴对应的目标电磁波接收端的第一坐标,坐标权重,确定击打物在预设坐标系的Y轴的坐标。其中,击打物在预设坐标系的X和Y轴的坐标组成击打物在预设坐标系的击打坐标。
可选的,可以基于接收强度越小则坐标权重越大,接收强度越大则坐标权重越小的原则,根据预设接收强度以及目标电磁接收端的接收强度,确定目标电磁波接收端在预设坐标系的第一坐标的坐标权重。例如,当X轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端为b6和b7,预设接收强度为255时,b6在预设坐标系的第一坐标的坐标权重可以等于(255-80)/(255-80+255-100),b7在预设坐标系的第一坐标的坐标权重可以等于(255-100)/(255-80+255-100)。需要说明的是,本申请实施例并不对根据预设接收强度以及目标电磁接收端的接收强度,确定目标电磁波接收端在预设坐标系的第一坐标的坐标权重的具体方式作限定。
可选的,根据第一坐标、坐标权重,确定击打物在预设坐标系的击打坐标,包括:根据第一坐标、坐标权重,采用加权平均(或者加权求和)的方式确定击打物在预设坐标系的击打坐标。
如下方式三和下述的方式四中,假设在图6B的基础上,击打物在打击面的击打位置如图7A所示,其中实心圆表示击打物,电磁波未被阻挡时电磁波接收端接收电磁波的强度为0,并且在一次完整扫描后,b1接收电磁波的接收强度为0,b2接收电磁波的接收强度为240,b3接收电磁波的接收强度为0,b4接收电磁波的接收强度为0,b5接收电磁波的接收强度为0,b6接收电磁波的接收强度为170,b7接收电磁波的接收强度为150。
方式三
确定预设坐标系中预设坐标轴对应的电磁波接收端中接收强度最大的目标电磁波接收端;根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
例如,图7A中,X轴对应的电磁波接收端中接收强度最大的目标电磁波接收端为b6,Y轴对应的电磁波接收端中接收强度最大的目标电磁波接收端为b2,击打物在预设坐标系的击打坐标为(L b6,L b2)。
与方式一类似,方式三还可以包括:根据预设接收强度以及目标电磁波接收端的相邻电磁波接收端的接收强度,确定相邻电磁波接收端在预设坐标系的第二坐标的坐标权重。根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,包括:根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标。
可选的,可以基于接收强度越大则坐标权重越大,接收强度越小则坐标权重越小的原则,根据预设接收强度以及相邻电磁接收端的接收强度,确定相邻电磁波接收端在预设坐标系的第二坐标的坐标权重。可选的,预设接收强度可以为电磁波未被阻挡时,由电磁波接收端接收电磁波的接收强度。例如,当预设接收强度为0时,b1在预设坐标系中的第一坐标L b1的坐标权重,b3在预设坐标系中的第一坐标L b3的坐标权重以及b5在预设坐标系中的第一坐标L b5的坐标权重均可以等于0(即,255-255),b7在预设坐标系中的第一坐标L b7的坐标权重可以等于150/255。需要说明的是,本申请实施例并不对根据预设接收强度以及相邻电磁接收端的接收强 度,确定相邻电磁波接收端在预设坐标系的第二坐标的坐标权重的具体方式作限定。
需要说明的是,方式三中,根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标的具体方式可以参见方式一,在此不再赘述。
方式四
确定预设坐标系中预设坐标轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端;根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
例如,图7A中,假设第一预设阈值150,则X轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端为b6,Y轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端为b2,击打物在预设坐标系的击打坐标为(L b6,L b2)。
可选的,预设坐标轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端的个数可以为一个或多个。例如,如图7A所示,假设第二预设阈值100,则X轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端为b6和b7。因此,预设坐标轴对应的第一坐标的个数也可以为多个。
与方式二类似,根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,包括:对第一坐标进行加权计算;根据计算结果确定击打物在预设坐标系的击打坐标。相关内容可以参见方式二,在此不再赘述。
或者,与方式二类似,根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,包括:根据预设接收强度与目标电磁波接收端的接收强度确定第一坐标的坐标权重;根据第一坐标、坐标权重,确定击打物在预设坐标系的击打坐标。
可选的,可以基于接收强度越大则坐标权重越大,接收强度越小则坐标权重越小的原则,根据预设接收强度以及目标电磁接收端的接收强度,确定目标电磁波接收端在预设坐标系的第一坐标的坐标权重。例如,当X轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收 端为b6和b7,预设接收强度为255时,b6在预设坐标系的第一坐标的坐标权重可以等于(255-150)/(255-150+255-170),b7在预设坐标系的第一坐标的坐标权重可以等于(255-170)/(255-150+255-170)。
需要说明的是,方式四中,根据第一坐标、坐标权重,确定击打物在预设坐标系的击打坐标的具体实现方式可以参见方式一,在此不再赘述。
需要说明的是,方式二中,本实施例中以不同预设坐标轴对应的预设阈值相同,均为第一预设阈值为例,方式三中,本实施例中以不同预设坐标轴对应的预设阈值相同,均为第二预设阈值为例。可选的,不同预设坐标轴对应的预设阈值也可以不同。
对于预设坐标轴包括预设坐标系的部分坐标轴的场景,以预设坐标系为平面直角坐标系,预设坐标轴包括X轴,基于方式一确定击打物在预设坐标系的击打坐标为例,作如下说明:
假设在图6C的基础上,击打物在打击面的击打位置如图7B所示,其中实心圆表示击打物,a4-a7可以沿垂直方向发射电磁波,也可以沿与垂直方向呈夹角的方向发射电磁波,一次完整的扫描后,沿垂直方向发射电磁波时,b6为接收强度最小的目标电磁波接收端,沿与垂直方向呈夹角的方向发射电磁波时,b7为接收强度最小的目标电磁波接收端。因此,如图7B所示,击打物在预设坐标系的击打坐标为(L b6,(L b7-L b6)L 0/(L b7-L b5)),其中L b5表示b5在预设坐标系中的第一坐标,L b6表示b6在预设坐标系中的第一坐标,L b7表示b7在预设坐标系中的第一坐标,L 0表示打击面的上边缘在Y轴的坐标。
需要说明的是,图6A-图7B中打击面与预设坐标系位置关系仅为举例,可以理解的是打击面在预设坐标系的坐标范围即可。
步骤503,根据击打坐标确定击打物在打击面的击打位置。
本步骤中,由于击打坐标为击打物击打到打击面的击打位置,在预设坐标系下的坐标,因此可以根据击打坐标确定击打物在打击面的击打位置。可选的,不同击打坐标与击打位置之间可以存在对应关系,根据步骤502中确定的击打坐标以及该对应关系可以确定击打位置;或者,击打坐标与击打位置之间可以有变换关系,根据步骤502中确定的击打坐标使用该变换关系进行运算,可以确定击打位置。
本实施例中,通过根据电磁波接收端接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,并根据击打坐标确定击打物在打击面的击打位置,实现了基于预设坐标系的击打位置的确定,提高了检测方法的应用范围。
上述实施例中,可选的,当击打物包括多个时,以预设时长周期性地控制电磁波发射端发射电磁波,包括:以预设时长周期性地控制电磁波发射端发射电磁波,并控制电磁波发射端中的至少一个按照与初始发射方向呈夹角的方向发射电磁波。需要说明的是,对于同一电磁波发射端而言,在预设时长内控制该电磁波发射端的过程中,假设该电磁波发射端有两个呈夹角的发射方向A、B,且A发射方向先于B发射方向进行电磁波的发射,那么A发射方向即为该电磁波发射端的初始发射方向。
可选的,可以控制图1中的所有电磁波发射端均按照与初始发射方向呈夹角的方向发射电磁波,或者,也可以控制图1中所有电磁波发射端中的部分电磁波发射端按照与初始发射方向呈夹角的方向发射电磁波,本申请对比并不作限定。
可选的,控制电磁波发射端中的至少一个按照与初始发射方向呈夹角的方向发射电磁波,包括:根据电磁波接收端针对初始发射方向的接收强度,确定多个击打物的参考击打位置;根据参考击打位置在电磁波发射端中确定至少一个目标电磁波发射端;控制至少一个目标电磁波发射端按照与初始发射方向呈夹角的方向发射电磁波。
需要说明的是,电磁波发射端的初始发射方向与初始发射方向之外的其他发射方向之间的夹角可以预先设定,或者,也可以根据参考击打位置确定,本申请对此并不作限定。
假设在图6B的基础上,击打物在打击面的击打位置如图7C所示,其中实心圆表示击打物。具体的,ai(i等于1、2、……、7)向bi发射电磁波的发射方向可以为ai的初始发射方向。如图7C所示,通过上述相关描述可以得到,根据电磁波发射端针对初始电磁波发射方向的接收强度,可以确定4个参考击打位置,分别为位置坐标(L b5,L b2)、(L b6,L b2)、(L b5,L b3)、(L b6,L b3)对应的击打位置,其中位置坐标(L b5,L b2)和(L b6,L b3)对应的击打位置为伪位置,位置坐标(L b6,L b2)和(L b5, L b3)对应的击打位置为真位置。进一步的,可以根据4个参考击打位置,确定a4向b6发射电磁波。进一步的,由于位置坐标(L b5,L b2)和(L b6,L b3)对应的击打位置为伪位置,因此根据b6接收到a4发射电磁波的接收强度可以确定位置坐标(L b5,L b2)和(L b6,L b3)对应的击打位置为伪位置,位置坐标(L b6,L b2)和(L b5,L b3)对应的击打位置为真位置。需要说明的是,关于确定参考击打位置的具体方式可以参见前述实施例中的相关描述,在此不再赘述。
可以理解,在一预设时长内,控制同一电磁波发射端以不同的发射方向发射电磁波,不仅有利于辨别真伪击打位置,也有利于避免在同一坐标轴方向上出现多个击打位置时出现的漏检情况,例如,以图7B为例,假设在a6至b6的发射方向上存在多个击打位置,即具有相同L b6,那么通过a5至b5的发射方向后再对a5至b7的方向扫描、a4至b4的发射方向后再对a4至b6的方向扫描等扫描规则,可以解决上述漏检问题。
上述实施例中,可选的,为了避免击打物在击打打击面反弹时,对电磁波接收端接收电磁波的接收强度造成影响,而导致击打物误检测的问题,电磁波发射端和电磁波接收端的高度和/或安装高度可以小于或等于击打物的高度。
需要说明的是,上述实施例中,图3、图6A-图7B中箭头仅用于电磁波发射端与电磁波接收端之间电磁波的示意,并不用于表示电磁波的覆盖范围,可以理解的是所有电磁波接收端接收的电磁波应覆盖整个打击面的检测范围。
需要说明的是,上述实施例中,为了确保击打位置确定的准确性,击打物的截面积可以与检测精度相匹配。其中,检测精度可以通过图7A的格子区域中的方格表示,击打物的截面积与检测精度相匹配,具体可以为击打物的截面积小于或等于一个方格的面积。
图8为本申请提供的检测装置实施例的结构示意图一。如图8所示,本实施例的检测装置可以包括:处理器801、电磁波发射端802和电磁波接收端803;处理器801分别与电磁波发射端802和电磁波接收端803连接。
其中,电磁波发射端802用于发射电磁波,电磁波接收端803用于接收对应电磁波发射端802发射的电磁波;
处理器801,用于以预设时长周期性地控制电磁波发射端802发射电磁波、电磁波接收端803接收对应电磁波发射端802发射的电磁波,其中,预设时长为根据击打物在打击面的停留时长确定;
处理器801,还用于根据电磁波接收端803接收电磁波的接收强度,确定击打物在打击面上的击打位置。
可选的,电磁波发射端划分为多个分组;
处理器801用于以预设时长周期性地控制电磁波发射端802发射电磁波,具体包括:
以预设时长周期性地控制多个分组的电磁波发射端802按照预设规则发射电磁波。
可选的,处理器801用于以预设时长周期性地控制多个分组的电磁波发射端按照预设规则发射电磁波,具体包括:
以预设时长周期性地控制不同分组的电磁波发射端802并行发射电磁波,并控制同一分组的电磁波发射端802依次发射电磁波。
可选的,电磁波发射端的分组为根据电磁波的散射特性确定。
可选的,处理器801用于根据电磁波接收端803接收电磁波的接收强度,确定击打物在打击面上的击打位置,具体包括:
根据电磁波接收端803接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,预设坐标系为根据打击面设定;
根据击打坐标确定击打物在打击面的击打位置。
可选的,当电磁波的接收强度与电磁波的遮挡程度呈负相关时,处理器801用于根据电磁波接收端803接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,具体包括:
确定预设坐标系中预设坐标轴对应的电磁波接收端803中接收强度最小的目标电磁波接收端;
根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
可选的,当电磁波的接收强度与电磁波的遮挡程度呈正相关时,处理器801用于根据电磁波接收端803接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,具体包括:
确定预设坐标系中预设坐标轴对应的电磁波接收端803中接收强度最大的目标电磁波接收端;
根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
可选的,处理器801还用于:
根据目标电磁波接收端的相邻电磁波接收端在预设坐标系的第二坐标,并根据预设接收强度与相邻电磁波接收端的接收强度确定第二坐标的坐标权重;
处理器801用于根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,具体包括:
根据第一坐标、第二坐标以及坐标权重,确定击打物在预设坐标系的击打坐标。
可选的,当电磁波的接收强度与电磁波的遮挡程度呈负相关时,处理器801用于根据电磁波接收端803接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,具体包括:
确定预设坐标系中预设坐标轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端;
根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
可选的,当电磁波的接收强度与电磁波的遮挡程度呈正相关时,处理器801用于根据电磁波接收端803接收电磁波的接收强度,确定击打物在预设坐标系的击打坐标,具体包括:
确定预设坐标系中预设坐标轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端;
根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标。
可选的,处理器801用于根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,具体包括:
对第一坐标进行加权计算;
根据计算结果确定击打物在预设坐标系的击打坐标。
可选的,处理器801用于根据目标电磁波接收端在预设坐标系的第一坐标,确定击打物在预设坐标系的击打坐标,具体包括:
根据预设接收强度与目标电磁波接收端的接收强度确定第一坐标的坐标权重;
根据第一坐标、坐标权重,确定击打物在预设坐标系的击打坐标。
可选的,预设接收强度为电磁波未被阻挡时,由电磁波接收端接收电磁波的接收强度。
可选的,当击打物包括多个时,处理器801用于以预设时长周期性地控制电磁波发射端802发射电磁波,具体包括:
以预设时长周期性地控制电磁波发射端802发射电磁波,并控制电磁波发射端802中的至少一个按照与初始发射方向呈夹角的方向发射电磁波。
可选的,处理器801用于控制电磁波发射端802中的至少一个按照与初始发射方向呈夹角的方向发射电磁波,具体包括:
根据电磁波接收端803针对初始发射方向的接收强度,确定多个击打物的参考击打位置;
根据参考击打位置在电磁波发射端中确定至少一个目标电磁波发射端;
控制至少一个目标电磁波发射端按照与初始发射方向呈夹角的方向发射电磁波。
可选的,预设坐标系中对应同一坐标轴的电磁波发射端沿坐标轴的方向排列,和/或,沿坐标轴的平行方向排列。
可选的,电磁波发射端802和电磁波接收端803的高度和/或安装高度小于或等于击打物的高度。
可选的,电磁波为红外线或激光。
如图9所示,可选的,本实施例的装置还可以包括:发射端选通电路804、接收端选通电路805、发射端驱动电路806和接收端驱动电路807。其中,发射端选通电路804分别与处理器801和发射端驱动电路806连接,发射端驱动电路806还与电磁波发射端802连接;接收端选通电路805分别与处理器801和接收端驱动电路807连接,接收端驱动电路807还与电磁波接收端803连接;处理器11通过发射端选通电路804控制发射端驱 动电路806驱动电磁波发射端802发射电磁波,处理器11通过接收端选通电路805控制接收端驱动电路807驱动电磁波接收端803接收电磁波。
可选的,本实施例的装置还可以包括:滤波电路808,分别与电磁波接收端803和处理器801连接,用于对电磁波接收端803输出的信号进行滤波。其中,该信号用于表示接收强度。
进一步可选的,本实施例的装置还可以包括:放大电路809,分别与滤波电路808和处理器801连接,用于对滤波电路808输出的信号进行放大。
可选的,可以通过处理器801实现模拟数字(Analog Digit,AD)采集的功能,或者,本实施例的装置还可以包括:AD采集模块810。AD采集模块810,分别与处理器801和电磁波接收端803连接,用于采集电磁波接收端803接收电磁波的接收强度,并将采集到的接收强度发送给处理器801。
本实施例提供的检测装置,可以用于执行前述方法实施例的技术方案,其实现原理和技术效果与方法实施例类似,在此不再赘述。本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (36)

  1. 一种检测方法,其特征在于,包括:
    以预设时长周期性地控制电磁波发射端发射电磁波、电磁波接收端接收对应电磁波发射端发射的电磁波,其中,所述预设时长为根据击打物在打击面的停留时长确定;
    根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在所述打击面上的击打位置。
  2. 根据权利要求1所述的方法,其特征在于,所述电磁波发射端划分为多个分组;
    所述以预设时长周期性地控制电磁波发射端发射电磁波,包括:
    以预设时长周期性地控制所述多个分组的电磁波发射端按照预设规则发射电磁波。
  3. 根据权利要求2所述的方法,其特征在于,所述以预设时长周期性地控制所述多个分组的电磁波发射端按照预设规则发射电磁波,包括:
    以预设时长周期性地控制不同分组的电磁波发射端并行发射电磁波,并控制同一分组的电磁波发射端依次发射电磁波。
  4. 根据权利要求2或3所述的方法,其特征在于,所述电磁波发射端的分组为根据所述电磁波的散射特性确定。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在所述打击面上的击打位置,包括:
    根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,所述预设坐标系为根据所述打击面设定;
    根据所述击打坐标确定所述击打物在所述打击面的击打位置。
  6. 根据权利要求5所述的方法,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈负相关时,所述根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度最小的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述 击打物在所述预设坐标系的击打坐标。
  7. 根据权利要求5所述的方法,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈正相关时,所述根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度最大的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    根据预设接收强度以及所述目标电磁波接收端的相邻电磁波接收端的接收强度,确定所述相邻电磁波接收端在所述预设坐标系的第二坐标的坐标权重;
    所述根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标,包括:
    根据所述第一坐标、所述第二坐标以及所述坐标权重,确定所述击打物在所述预设坐标系的击打坐标。
  9. 根据权利要求5所述的方法,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈负相关时,所述根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  10. 根据权利要求5所述的方法,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈正相关时,所述根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  11. 根据权利要求9或10所述的方法,其特征在于,所述根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标,包括:
    对所述第一坐标进行加权计算;
    根据计算结果确定所述击打物在所述预设坐标系的击打坐标。
  12. 根据权利要求9或10所述的方法,其特征在于,所述根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标,包括:
    根据预设接收强度与所述目标电磁波接收端的接收强度确定所述第一坐标的坐标权重;
    根据所述第一坐标、所述坐标权重,确定所述击打物在所述预设坐标系的击打坐标。
  13. 根据权利要求8或12所述的方法,其特征在于,所述预设接收强度为所述电磁波未被阻挡时,由所述电磁波接收端接收所述电磁波的接收强度。
  14. 根据权利要求1至4中任一项所述的方法,其特征在于,当所述击打物包括多个时,所述以预设时长周期性地控制电磁波发射端发射电磁波,包括:
    以预设时长周期性地控制电磁波发射端发射电磁波,并控制所述电磁波发射端中的至少一个按照与初始发射方向呈夹角的方向发射所述电磁波。
  15. 根据权利要求14所述的方法,其特征在于,所述控制所述电磁波发射端中的至少一个按照与初始发射方向呈夹角的方向发射所述电磁波,包括:
    根据所述电磁波接收端针对所述初始发射方向的接收强度,确定多个所述击打物的参考击打位置;
    根据所述参考击打位置在所述电磁波发射端中确定至少一个目标电磁波发射端;
    控制至少一个所述目标电磁波发射端按照与初始发射方向呈夹角的方向发射所述电磁波。
  16. 根据权利要求5至13中任一项所述的方法,其特征在于,所述预设坐标系中对应同一坐标轴的电磁波发射端沿所述坐标轴的方向排列,和/或,沿所述坐标轴的平行方向排列。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述电磁波发射端和所述电磁波接收端的高度和/或安装高度小于或等于所述击打物的高度。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述电磁波为红外线或激光。
  19. 一种检测装置,其特征在于,包括:处理器、电磁波发射端和电磁波接收端;所述处理器分别与所述电磁波发射端和所述电磁波接收端连接;
    所述电磁波发射端用于发射电磁波,所述电磁波接收端用于接收对应电磁波发射端发射的电磁波;
    所述处理器,用于以预设时长周期性地控制所述电磁波发射端发射电磁波、所述电磁波接收端接收对应电磁波发射端发射的电磁波,其中,所述预设时长为根据击打物在打击面的停留时长确定;
    所述处理器,还用于根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在所述打击面上的击打位置。
  20. 根据权利要求19所述的装置,其特征在于,所述电磁波发射端划分为多个分组;
    所述处理器用于以预设时长周期性地控制电磁波发射端发射电磁波,具体包括:
    以预设时长周期性地控制所述多个分组的电磁波发射端按照预设规则发射电磁波。
  21. 根据权利要求20所述的装置,其特征在于,所述处理器用于以预设时长周期性地控制所述多个分组的电磁波发射端按照预设规则发射电磁波,具体包括:
    以预设时长周期性地控制不同分组的电磁波发射端并行发射电磁波,并控制同一分组的电磁波发射端依次发射电磁波。
  22. 根据权利要求20或21所述的装置,其特征在于,所述电磁波发射端的分组为根据所述电磁波的散射特性确定。
  23. 根据权利要求19至22中任一项所述的装置,其特征在于,所述处理器用于根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在所述打击面上的击打位置,具体包括:
    根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,所述预设坐标系为根据所述打击面设定;
    根据所述击打坐标确定所述击打物在所述打击面的击打位置。
  24. 根据权利要求23所述的装置,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈负相关时,所述处理器用于根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,具体包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度最小的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  25. 根据权利要求23所述的装置,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈正相关时,所述处理器用于根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,具体包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度最大的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  26. 根据权利要求24或25所述的装置,其特征在于,所述处理器还用于:
    根据所述目标电磁波接收端的相邻电磁波接收端在所述预设坐标系的第二坐标,并根据预设接收强度与所述相邻电磁波接收端的接收强度确定所述第二坐标的坐标权重;
    所述处理器用于根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标,具体包括:
    根据所述第一坐标、所述第二坐标以及所述坐标权重,确定所述击打 物在所述预设坐标系的击打坐标。
  27. 根据权利要求23所述的装置,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈负相关时,所述处理器用于根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,具体包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度小于第一预设阈值的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  28. 根据权利要求23所述的装置,其特征在于,当所述电磁波的接收强度与所述电磁波的遮挡程度呈正相关时,所述处理器用于根据所述电磁波接收端接收电磁波的接收强度,确定所述击打物在预设坐标系的击打坐标,具体包括:
    确定所述预设坐标系中预设坐标轴对应的电磁波接收端中接收强度大于第二预设阈值的目标电磁波接收端;
    根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标。
  29. 根据权利要求27或28所述的装置,其特征在于,所述处理器用于根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标,具体包括:
    对所述第一坐标进行加权计算;
    根据计算结果确定所述击打物在所述预设坐标系的击打坐标。
  30. 根据权利要求27或28所述的装置,其特征在于,所述处理器用于根据所述目标电磁波接收端在所述预设坐标系的第一坐标,确定所述击打物在所述预设坐标系的击打坐标,具体包括:
    根据预设接收强度与所述目标电磁波接收端的接收强度确定所述第一坐标的坐标权重;
    根据所述第一坐标、所述坐标权重,确定所述击打物在所述预设坐标系的击打坐标。
  31. 根据权利要求26或30所述的装置,其特征在于,所述预设接收 强度为所述电磁波未被阻挡时,由所述电磁波接收端接收所述电磁波的接收强度。
  32. 根据权利要求19至22中任一项所述的装置,其特征在于,当所述击打物包括多个时,所述处理器用于以预设时长周期性地控制电磁波发射端发射电磁波,具体包括:
    以预设时长周期性地控制电磁波发射端发射电磁波,并控制所述电磁波发射端中的至少一个按照与初始发射方向呈夹角的方向发射所述电磁波。
  33. 根据权利要求32所述的装置,其特征在于,所述处理器用于控制所述电磁波发射端中的至少一个按照与初始发射方向呈夹角的方向发射所述电磁波,具体包括:
    根据所述电磁波接收端针对所述初始发射方向的接收强度,确定多个所述击打物的参考击打位置;
    根据所述参考击打位置在所述电磁波发射端中确定至少一个目标电磁波发射端;
    控制至少一个所述目标电磁波发射端按照与初始发射方向呈夹角的方向发射所述电磁波。
  34. 根据权利要求23至31中任一项所述的装置,其特征在于,所述预设坐标系中对应同一坐标轴的电磁波发射端沿所述坐标轴的方向排列,和/或,沿所述坐标轴的平行方向排列。
  35. 根据权利要求19至34中任一项所述的装置,其特征在于,所述电磁波发射端和所述电磁波接收端的高度和/或安装高度小于或等于所述击打物的高度。
  36. 根据权利要求19至35中任一项所述的装置,其特征在于,所述电磁波为红外线或激光。
PCT/CN2018/078550 2018-03-09 2018-03-09 检测方法及设备 WO2019169622A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880032225.1A CN110636889A (zh) 2018-03-09 2018-03-09 检测方法及设备
PCT/CN2018/078550 WO2019169622A1 (zh) 2018-03-09 2018-03-09 检测方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078550 WO2019169622A1 (zh) 2018-03-09 2018-03-09 检测方法及设备

Publications (1)

Publication Number Publication Date
WO2019169622A1 true WO2019169622A1 (zh) 2019-09-12

Family

ID=67846822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078550 WO2019169622A1 (zh) 2018-03-09 2018-03-09 检测方法及设备

Country Status (2)

Country Link
CN (1) CN110636889A (zh)
WO (1) WO2019169622A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306248A (zh) * 2007-05-17 2008-11-19 鈊象电子股份有限公司 电子游戏设备
CN101320307A (zh) * 2007-06-04 2008-12-10 北京汇冠新技术有限公司 一种识别红外触摸屏上多个触摸点的方法
CN101327373A (zh) * 2007-06-18 2008-12-24 柳州市蓝海科技有限公司 娱乐健身机
CN101406746A (zh) * 2007-10-12 2009-04-15 鈊象电子股份有限公司 在游戏机台中感应物体位置的红外线模组以及其制造方法
KR20100034643A (ko) * 2008-09-24 2010-04-01 주식회사 지닌 발광 소자 및 수광 소자를 이용한 다트 게임의 스코어링 장치 및 방법
CN101825416A (zh) * 2009-03-03 2010-09-08 卓钰富 一种bb弹或弹体自动计分的靶体结构
CN107045410A (zh) * 2016-12-21 2017-08-15 北京汇冠触摸技术有限公司 一种用于红外触摸屏高精度计算的方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698129B2 (ja) * 1988-11-16 1998-01-19 株式会社ナムコ 射的ゲーム装置
KR100901971B1 (ko) * 2008-11-07 2009-06-10 김용철 적외선 터치 스캐닝 모듈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101306248A (zh) * 2007-05-17 2008-11-19 鈊象电子股份有限公司 电子游戏设备
CN101320307A (zh) * 2007-06-04 2008-12-10 北京汇冠新技术有限公司 一种识别红外触摸屏上多个触摸点的方法
CN101327373A (zh) * 2007-06-18 2008-12-24 柳州市蓝海科技有限公司 娱乐健身机
CN101406746A (zh) * 2007-10-12 2009-04-15 鈊象电子股份有限公司 在游戏机台中感应物体位置的红外线模组以及其制造方法
KR20100034643A (ko) * 2008-09-24 2010-04-01 주식회사 지닌 발광 소자 및 수광 소자를 이용한 다트 게임의 스코어링 장치 및 방법
CN101825416A (zh) * 2009-03-03 2010-09-08 卓钰富 一种bb弹或弹体自动计分的靶体结构
CN107045410A (zh) * 2016-12-21 2017-08-15 北京汇冠触摸技术有限公司 一种用于红外触摸屏高精度计算的方法及系统

Also Published As

Publication number Publication date
CN110636889A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
US8885042B2 (en) System and method for measuring flight parameters of a spherical object
CN102183183B (zh) 双管齐射武器弹丸飞行速度与着靶坐标测量方法及装置
CN109917354B (zh) 激光雷达的接收装置、激光雷达及其回波处理方法
CN108169714B (zh) 一种基于振动波的定位方法及装置
US9057582B2 (en) Simulation system
JP2017537309A5 (zh)
US11181439B2 (en) Structure evaluation system and structure evaluation method
WO2017221909A1 (ja) 距離測定装置
WO2019169622A1 (zh) 检测方法及设备
CN106406638B (zh) 一种触摸点轮廓生成方法及设备
US20050026703A1 (en) Position detection system, game machine, program, and information storage medium
KR20110005448A (ko) 수중 표적 시뮬레이션 시스템 및 방법
JP5606222B2 (ja) 測定装置および測定方法
CN110927692A (zh) 海杂波场景下搜索雷达射频隐身工作方式的求解方法
CN111856392B (zh) 基于uwb测距和无人机飞行路径的地面节点定位方法
CN111637797A (zh) 一种炮兵实弹射击自动报靶装置及方法
JP6606930B2 (ja) 撮影装置
CN210952526U (zh) 一种反射式射击瞄准训练装置
WO2021134228A1 (zh) 检测方法、检测装置、检测组件和存储介质
RU2586465C1 (ru) Способ лазерной имитации стрельбы
KR101128967B1 (ko) 대상물체의 비행정보 측정 장치 및 방법
JPH02134182A (ja) 射的ゲーム装置
JP4695414B2 (ja) 射撃訓練装置
JP3811171B2 (ja) レーザ受信装置
CN111189355A (zh) 模拟射击系统及其实现方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909040

Country of ref document: EP

Kind code of ref document: A1