WO2019169554A1 - 基于vr技术的弱视训练复健系统及方法 - Google Patents

基于vr技术的弱视训练复健系统及方法 Download PDF

Info

Publication number
WO2019169554A1
WO2019169554A1 PCT/CN2018/078162 CN2018078162W WO2019169554A1 WO 2019169554 A1 WO2019169554 A1 WO 2019169554A1 CN 2018078162 W CN2018078162 W CN 2018078162W WO 2019169554 A1 WO2019169554 A1 WO 2019169554A1
Authority
WO
WIPO (PCT)
Prior art keywords
fireworks
screen
training
amblyopia
mode
Prior art date
Application number
PCT/CN2018/078162
Other languages
English (en)
French (fr)
Inventor
陈佳进
Original Assignee
陈佳进
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陈佳进 filed Critical 陈佳进
Priority to PCT/CN2018/078162 priority Critical patent/WO2019169554A1/zh
Publication of WO2019169554A1 publication Critical patent/WO2019169554A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H5/00Exercisers for the eyes

Definitions

  • the invention relates to the field of vision correction, and particularly relates to a system and method for amblyopia training rehabilitation based on VR technology.
  • the inventors of the present invention are expected to propose a VR-based amblyopia training rehabilitation system and method having the effect of correcting amblyopia, so that the user can easily operate the assembly, and the research and design system is To provide user convenience.
  • the object of the present invention is to provide a system and method for amblyopia training rehabilitation based on VR technology, which can solve the technical problem that the existing amblyopia group, especially children, miss the optimal treatment period because the vision is not corrected in time, and finally the vision cannot be recovered. .
  • the invention provides a visual acuity training rehabilitation system based on VR technology, wherein the system is used for training vision to help amblyopia people to perform vision correction or rehabilitation.
  • the system is applicable to a virtual reality device, including a VR glasses body, and is disposed at the office. a lens, a display screen, a control module and a memory on the VR glasses body, wherein the memory stores a movie, the display screen includes a left view screen and a right view screen, and the control module is configured to control the movie according to the naked eye vision of the trainee a play mode and an eye training mode; wherein the control module comprises:
  • the operation setting module is configured to perform, according to the visual acuity of the trainee, the start and end point setting, the moving speed setting, the pause setting and the mode setting of the image motion according to the vision of the trainee; wherein the operation setting a module is coupled to the memory;
  • the video playing module is configured to play a movie with the set image motion mode, so that the image frame of the movie can display regular motion or irregular motion according to the setting of the image motion, thereby making the unshadowed or fogged
  • the amblyopia of the right or left screen can be visually trained along with the image of the played video; wherein the video playing module is connected to the display screen and the memory;
  • the operation setting module, the selection video screen module and the movie playing module are all electrically connected.
  • the memory further stores an eye chart for the trainee to perform vision detection before and after the training to detect the training result;
  • the control module further includes an editing module, and the editing module is connected to the memory for storing and setting the visual value of the trainee.
  • the masking or atomization mode in the selected video screen module is set as follows:
  • the screen of the display screen is blackened or blacked out
  • Atomization Blurr the picture clarity in the display to reduce the visibility of the superior eye, and to adjust the visibility of the superior eye with the degree of vision improvement of the amblyopic eye.
  • the regular motion or irregular motion in the movie playing module is set as follows:
  • Irregular motion The video frame of the movie will move arbitrarily in the front, back, up, down, left and right directions or the cross direction, and the video frame will be played at the moved position. After a certain time, move to the next position. The video screen is played.
  • control module further includes a fireworks playing module, wherein the fireworks playing module is configured to directly display the fireworks in the display screen, and the fireworks are fireworks of different colors and different playing frequencies;
  • the fireworks playing module includes a fireworks playing module and a full fireworks playing module, and the inserted fireworks playing module is configured to insert a fireworks playing at any time during a movie playing process, where the full fireworks playing module is used by the trainee according to the Need to choose to watch only fireworks.
  • the invention also provides a visual acuity training rehabilitation method based on VR technology, wherein the method is used for training vision to help amblyopia people to perform vision correction or rehabilitation, and the method is suitable for virtual reality devices, including VR glasses body, setting a lens, a display screen, a control module and a memory on the VR glasses body, wherein the memory stores a movie, the display screen includes a left view screen and a right view screen, and the control module is configured to perform naked eyesight according to the trained person Controlling a play mode of the movie and an eyeball training mode; wherein the VR-based amblyopia training rehabilitation method comprises the following steps:
  • Operation setting the movie to be played is firstly based on the visual acuity of the trainee to perform the start and end point setting, the moving speed setting, the pause setting and the mode setting of the image motion;
  • the video is played, and the video of the set image motion is played, so that the image of the movie can exhibit regular motion or irregular motion according to the setting of the image motion;
  • Eyeball training enables unobstructed or fogged right or left amblyopia to be visually trained along with the image of the playing video.
  • the amblyopia training method further includes:
  • Vision detection A visual acuity is presented in the display screen to detect the naked eye vision of the eye of the trainee before or after training (ie, the vision of the corrective spectacles).
  • the eyeball training comprises the steps of:
  • Extraocular muscle training move the image frame of a film in the display from the middle to the left, right, up or down in the display, and then move to the middle from either end, and move back and forth several times.
  • the mode of motion includes continuous or jumping motion; and/or
  • Oblique eye training move the image frame of a movie in the display from the middle to the upper right, lower right, upper left or lower left direction of the display, then move to the middle, move back and forth multiple times, among which Ways include continuous or skip motion.
  • the masking or atomizing mode in the step of selecting a video screen is set as follows:
  • the screen of the display screen is blackened or blacked out
  • Atomization Adjust the blurriness of the screen in the display to reduce the visibility of the superior eye.
  • the amblyopia training method further includes a step fireworks mode, wherein the fireworks mode includes a full fireworks mode and/or an inserted fireworks mode, wherein
  • the full fireworks mode is to directly display fireworks in the display screen, and the fireworks are fireworks of different colors and different playing frequencies;
  • the insert fireworks mode is to add a fireworks mode at any position where the image frame of the movie is moved to the screen.
  • the operation setting step or the image motion in the operation setting module performs the following setting mode:
  • Starting and ending point setting starting point set with zero distance, simulation 6 cm, simulation 8 cm, simulation 10 cm, simulation 12 cm, simulation 15 cm, simulation 18 cm or simulation 20 cm, and the starting point is set to simulate 100 cm , simulate 120 cm, simulate 150 cm or simulate 180 cm;
  • Movement speed setting the speed is set to 1 second, 1.5 seconds, 2 seconds or 3 seconds;
  • Pause setting The duration of the movie in play is set to less than 0.5 seconds, 0.75 seconds, 1 second or non-stop at the "start" point and at the "go” point;
  • Mode setting The mode is set to front and rear mode, up and down mode, left and right mode or cross mode.
  • the VR technology-based amblyopia training rehabilitation system and method of the present invention has the following beneficial effects as compared with the prior art: the amblyopia correction procedure can be used to enable the amblyopia to perform visual training to correct the visual acuity of the amblyopic eye, so that The sense of distance and speed in the three-dimensional space increases the overall practicality.
  • Figure 1 is a schematic flow chart of the main steps of the present invention:
  • FIG. 2 is a schematic perspective view of a wearable virtual reality device of the present invention
  • FIG. 3 is a schematic diagram of setting of image motion according to the present invention.
  • FIG. 4 is a schematic rear view showing the front and rear modes of the film of the present invention.
  • Figure 5 is a front view showing the front and rear modes of the film of the present invention.
  • Figure 6 is a schematic diagram showing the lower display of the upper and lower modes of the film of the present invention.
  • Figure 7 is a schematic diagram showing the upper display of the upper and lower modes of the film of the present invention.
  • FIG. 8 is a schematic diagram of left visualization of a left and right mode of a movie of the present invention.
  • Figure 9 is a schematic diagram showing the right visualization of the left and right modes of the movie of the present invention.
  • Figure 10 is a schematic diagram showing the lower left imaging of the cross mode of the film of the present invention.
  • Figure 11 is a schematic diagram showing the lower right imaging of the cross mode of the film of the present invention.
  • Figure 12 is a schematic diagram showing the upper right development of the cross mode of the film of the present invention.
  • Figure 13 is a schematic diagram showing the upper left imaging of the cross mode of the film of the present invention.
  • FIG. 14 is a schematic flow chart of a visual acuity detecting step provided before the operation setting step according to the present invention.
  • 15 is a schematic flow chart of a step of detecting vision after the eyeball training step of the present invention.
  • Figure 16 is a schematic view of the eye chart of the present invention.
  • FIG. 17 is a schematic structural view of a frame of an eyeball training step of the present invention.
  • FIG. 18 is a schematic flow chart of setting a fireworks mode according to the present invention.
  • Figure 19 is a schematic view showing the structure of a control module of the present invention.
  • the invention provides an amblyopia training rehabilitation system based on VR technology, wherein the system is used for training vision to help amblyopia people to perform vision correction or rehabilitation.
  • the system is applicable to the virtual reality device 10, including the VR glasses body, and is disposed on a lens on the body of the VR glasses, a display screen, a control module 13 and a memory, wherein the memory 20 stores a film 20, the display screen includes a left view screen 11 and a right view screen 12, and the control module 13 is configured to control the film 20 according to the naked eyesight of the trainee.
  • the play mode and the eyeball training mode are as shown in FIG. 19, wherein the control module 13 includes:
  • the operation setting module 131 is configured to perform the start and end point setting, the moving speed setting, the starting point and the ending point pause setting and the mode setting of the image motion according to the visual acuity of the trainee according to the visual force of the trainee;
  • the operation setting module 131 is connected to the memory, that is, the operation setting module 131 is configured to set the playing parameters of the movie 20 in the memory;
  • the movie playing module 133 is configured to play the film 20 of the set image motion mode, so that the image frame of the film 20 can display regular motion or irregular motion according to the setting 2 of the image motion, thereby causing no
  • the visually trained video device 133 is connected to the display screen and the memory, that is, the video playback module 133 is used for visually training the video of the movie 20;
  • the movie 20 in the memory is played on the display screen.
  • the operation setting module 131, the selection screen module 132 and the movie playing module 133 are electrically connected.
  • the memory further stores an eye chart for the vision of the trainee to detect the training result before and after the training;
  • the control module 13 further includes an editing module 134, the editing module 134 and the memory. Connection, used to store and set the visual value of the trainee.
  • the masking or atomization mode of the selection screen module 132 is set as follows: the masking is to blacken the screen of the display screen or to mask the black object; the fogging is to blur the screen in the display screen. Adjust the degree to reduce the visibility of the superior eye. That is to say, the masking of the left or right screen 11 or the screen 12 is such that the screen is blackened or blacked out, so that the superior screen under the screen can give up the visual tracking motion, and the left screen 11 or The fogging of the right view screen 12 is to adjust the blur degree of the picture (as shown in FIG. 4 to FIG.
  • the regular or irregular motion in the movie play module 133 is set as follows: the regular motion moves the image frame of the movie 20 in a clockwise direction or counterclockwise, and after moving At the position of the video screen, after a certain period of time, move to the next position to play the video screen; irregular motion will be the image frame of the movie 20 will be in the front, back, up, down, left or right direction or cross direction Move freely, and play the video screen at the position after the move. After a certain time, move to the next position to play the video screen.
  • the rule motion is that the image frame of the film 20 moves in a clockwise direction or in a counterclockwise direction, and the image frame is played at the moved position, and after a certain time, moves to the next position.
  • Play the video screen for example, move in the clockwise direction 12 ⁇ 3 ⁇ 6 ⁇ 9 ⁇ 12, or move in the counterclockwise direction 12 ⁇ 9 ⁇ 6 ⁇ 3 ⁇ 12, and the image is displayed at each position for 20 seconds. After that, it moves in the next direction, and rests for 10 minutes after 15-20 minutes of continuous watching.
  • the irregular motion is that the image frame of the film 20 will be in the front and rear directions (as shown in FIG. 4 and FIG. 5), in the up and down direction (as shown in FIG. 6 and FIG.
  • the control module 13 further includes a fireworks playing module, and the fireworks playing module is configured to directly display the fireworks in the display screen, and the fireworks are fireworks of different colors and different playing frequencies.
  • the fireworks playing module includes a fireworks playing module and a full fireworks playing module, and the fireworks playing module is inserted for inserting the fireworks at any time during the playing of the movie 20, that is, in the amblyopia training rehabilitation system based on the VR technology.
  • Fireworks can be added during any sport, either ordinary fireworks or 101 fireworks. That is, the fireworks video can be added when the image frame of the film 20 in the amblyopia training process moves to the outer end of each direction, and the fireworks video can be displayed at the end of each direction training.
  • the specific fireworks video can be 10 seconds.
  • the effect of adding a fireworks display is to increase the visual stimulation of the trainee, and thus better eye tracking ability.
  • the full fireworks playing module is used by the trainee to select only the fireworks display according to the needs, that is, the trainee can select the full fireworks playing module in the amblyopia correction program according to his own needs, and the full fireworks playing module is in the display screen.
  • the fireworks are directly displayed.
  • the fireworks are fireworks of different colors and different colors in different styles. That is to say, when the whole fireworks playing module is selected, only the fireworks video is displayed in the display, and the playing of the movie 20 is not displayed.
  • the present invention also provides a method for amblyopia training rehabilitation based on VR technology, wherein the method is used for training vision to help amblyopia people to perform vision correction or rehabilitation, and the method is applicable to virtual reality device 10, the virtual reality
  • the device 10 is worn at the eyes of a child or an adult (as shown in FIG. 2), and the virtual reality device 10 can be connected to an external device through a button provided on the virtual reality device 10 or wirelessly or in a wired manner (Fig. Not shown) for operation control, wherein the external device is any one of a remote controller, a mobile phone, a mouse, or an operation panel, and the virtual reality device 10 includes a VR glasses body, a lens disposed on the VR glasses body, and a display screen.
  • the technical amblyopia training rehabilitation method includes the following steps:
  • the movie 20 to be played is firstly based on the visual acuity of the trainee to perform the image start and end point setting 211, the moving speed setting 212, the pause setting 213 and the mode setting 214;
  • S110 selects a video screen: masking or atomizing the left view screen 11 or the right view screen 12 of the superior view eye superior to the amblyopia according to the vision of the trainee;
  • S120 video playback playing the video 20 of the set image motion, so that the image of the movie 20 can exhibit regular motion or irregular motion according to the setting 21 of the image motion;
  • S130 eyeball training visually training the unsightly or atomized right-view screen 12 or the amblyopia under the left-view screen 11 along with the image of the played movie 20.
  • FIGS. 1 to 18 are schematic diagrams of an embodiment of the present invention, and the preferred embodiment of the VR-based amblyopia training rehabilitation system and method of the present invention is applied to an inconsistency state of two eyes or two Children or adults with an parallax of 150 degrees or more can visually train the amblyopic eye to correct the visual acuity of the amblyopic eye, and have a sense of distance and speed in a three-dimensional space.
  • the movie 20 may be any one of a cartoon film, an image film, a game film, a movie film, a television film, or the like.
  • the film 20 of the present invention can be replaced with a tracked moving target, that is, not only the film 20 is used in the process of amblyopia correction, but also other movable objects, as long as it can satisfy the side of the display screen. Just move around.
  • the setting of step S100 is as shown in FIG. 1 , that is, the starting and ending point setting 211 and the moving speed setting of the video 20 to be played according to the visual acuity of the trainee.
  • the virtual reality device 10 first displays an interface 21 (as shown in FIG. 3) for moving the image of the movie 20 to be played, and the setting 21 of the image motion starts.
  • the moving speed setting 212 in the operation setting of step S100 is specifically set to 1 second, 1.5 seconds, 2 seconds or 3 seconds, and the moving speed setting 212 is used to confirm the amblyopia of the trainee.
  • Can the eye's concentration keep up with the moving speed and rhythm of the image of the film 20, and then the trainer will get used to the speed and rhythm of the movement and then slowly increase the speed to ensure that the amblyopic eye can adjust the three-connected muscle to adapt to the movement.
  • the pause setting 213 in the operation setting of step S100 is set in such a manner that the pause interval of the movie 20 is less than 0.5 seconds, 0.75 seconds, 1 second or no pause.
  • the present invention moves the eye muscles slowly and outwardly by the pause setting 213 to help the image to fuse and strengthen the fusion ability of both eyes.
  • the mode setting 214 in the step S100 operation setting is a front-rear mode, an up-down mode, a left-right mode or a cross mode, and the mode setting 214 is used to make the image of the film 20 in the trainee.
  • the amblyopia can appear in different positions in front of the eye to attract the visual acuity of the amblyopic eye to continuously focus on tracking the image of the film 20 to train the eye muscle strength.
  • step S001 visual acuity detection may be set before the operation setting in the above step S100, that is, the visual force map 30 is presented in the display screen to detect the visual acuity of the eye (as shown in FIG. 14).
  • the visual acuity 30 of the two eyes is first detected by appearing in the left view 11 and the right view 12 of the virtual reality device 10 (as shown in FIG. 16), so as to operate as a reference value for the step of setting the step S100.
  • the visual acuity chart 30 may be represented by a common English letter C or E, or may be represented by various patterns such as animals or the like (not shown), or other objects whose sizes are sequentially changed. It is not limited to the representation of the letter E.
  • the screen is selected in step S110 as shown in FIG. 1, that is, after the step S100 is completed, the step S110 is performed, and the step S110 is superior to the amblyopia according to the vision of the trainee.
  • the sight of the eye is shaded or fogged.
  • the superior vision and the amblyopia can be separated according to the naked vision of the trainee, and the display screen of the virtual reality device 10 superior to the superior vision of the amblyopic eye is masked. (not shown) or fogging, for example, when the left eye is amblyopia, the right view 12 of the virtual reality device 10 is masked or fogged, and vice versa.
  • the shielding of the display screen is to blacken the screen or to obscure the black object, so that the superior vision under the display screen can give up the motion, and the fog of the display screen is the clarity of the screen.
  • Perform blur adjustment (as shown in Figure 4 to Figure 13) to simulate visual vision, that is, reduce the visibility of the superior eye, such as adjusting the blurriness of the screen to 480 ⁇ 480, so that the excellent eye can not see Clear but still able to track images to work with amblyopia.
  • the method of adjusting the blur degree of the screen may be adjusting the resolution, adjusting the contrast and brightness, or adjusting the opacity.
  • the movie is played in step S120, and the movie 20 in which the image motion mode has been set is played, so that the image frame of the movie 20 can be displayed according to the setting 21 of the image motion.
  • Regular or irregular movements After the step of selecting the video screen in step S110, the movie 20 that has been set to the image motion is played, so that the image frame of the movie 20 can include the start and end point setting 211 and the moving speed setting 212 according to the image movement setting 21,
  • the pause setting 213 and the mode setting 214 (shown in Figure 3) present a regular or irregular motion.
  • the rule motion is that the image frame of the film 20 moves in a clockwise direction or in a counterclockwise direction, and the image frame is played at the moved position, and after a certain time, moves to the next position.
  • Play the video screen for example, move in the clockwise direction 12 ⁇ 3 ⁇ 6 ⁇ 9 ⁇ 12, or move in the counterclockwise direction 12 ⁇ 9 ⁇ 6 ⁇ 3 ⁇ 12, and the image is displayed at each position for 20 seconds. After that, it moves in the next direction, and rests for 10 minutes after 15-20 minutes of continuous watching.
  • the irregular motion is that the image frame of the film 20 will be in the front and rear directions (as shown in FIG. 4 and FIG. 5), in the up and down direction (as shown in FIG. 6 and FIG.
  • the eyeball training in step S130 is as shown in FIG. 1, that is, after the step S120 is completed, the step S130 is performed, that is, the left screen 11 or the right is not blocked or fogged.
  • the amblyopic eye under the screen 12 can be visually trained with the image of the 20-second film being played.
  • the unsightly or atomized left-view screen 11 or the amblyopic eye under the right-view screen 12 can perform regular or irregular motion along with the image of the played movie 20 to strengthen the eye muscle of the amblyopic eye.
  • Three linkages (appropriate contraction and relaxation and interactive movements) enable the amblyopia of the trainee to be better adjusted after visual training to achieve normal standard vision.
  • the method of the present invention can view the visual acuity improvement situation after the amblyopia is subjected to the above steps, that is, the visual acuity detection in step S140 can be set, that is, the visual acuity 30 is presented in the video screen, so that the visual acuity 30 is not obscured or
  • the amblyopic eye under the atomized screen detects its vision after passing the eyeball training step (as shown in Figure 15).
  • the eyesight map 30 shown in FIG.
  • 16 may be represented by a common English letter C or E, or may be in various patterns such as The animal or the like is used as a representation to enable the amblyopia under the unscreened or fogged screen to detect the degree of improvement of the visual acuity of the amblyopic eye.
  • the eyeball training may specifically include the step extra-muscle training S1301, that is, the image frame of a film 20 in the display screen starts from the middle and turns to the left in the display screen. Move to the right, top or bottom, and then move to the middle from either end, and move back and forth multiple times, wherein the motion mode includes continuous or skip motion.
  • the extra-muscle training S1301 may be specifically performed by moving the image frame of one film 20 in the display screen from the middle to the horizontal end of the display screen, wherein one film 20 is in two directions.
  • the film 20 can also be moved back and forth, so that the setting can enhance the ability of the eyes to blend.
  • the specific training method may be to move a film 20 in the display clockwise or counterclockwise in the display screen, which can be rotated 5 times clockwise and then 5 times counterclockwise, so as to move back and forth.
  • Many times, generally 10 times or other numerical times, of course, the film 20 can be moved back and forth in addition to the horizontal movement mode, so that the setting can enhance the fusion ability of both eyes.
  • the eyeball training may further include a step oblique eye training S1302, that is, an image frame of a film 20 in the display screen starts from the middle and is displayed in the display screen. Move in the upper right, lower right, upper left or lower left direction, then move to the middle and move back and forth multiple times, including the continuous or skip motion mode.
  • the specific training manner may be that the image frame of one movie 20 starts to move in one direction from the middle position, and if it is the left eye shadow, the film 20 moves in the upper right direction, the horizontal direction, the lower right direction, and the movement.
  • the mode may be continuous motion or skip motion mode.
  • the jump motion mode may be set to jump 4-5 grids each time; if it is right eye shadow, the image frame of the film 20 is left upper, horizontal, and lower left.
  • Directional motion the motion mode can be continuous motion or skip motion, and the jump motion mode can be set to jump 4-5 grids each time.
  • the number of movements in each direction is the same or different, for example, in the case of the left eye, the image of the film 20
  • the frame can be moved back and forth 3 times in the upper right direction, then moved back and forth twice in the horizontal direction, then back and forth 3 times in the right and down direction, or it can be moved horizontally 1 time to the right and then to the lower right. Exercise once, then move to the upper right direction once, and the movement mode is cycled for 5 minutes.
  • a step fireworks mode S150 is included at any position in the screen of the film 20 that is moved to the screen, the fireworks mode S150 including a full fireworks mode and/or an inserted fireworks mode.
  • inserting the fireworks mode is to add fireworks in any step of the amblyopia training rehabilitation method based on VR technology, or to add a fireworks mode at any position in the image frame of the movie to move to the screen
  • the fireworks can be ordinary Fireworks can also be 101 fireworks.
  • the fireworks can be displayed every time the image frame of the film 20 moves to both ends of the display screen and back to the middle position, and the screening can be ended every 15 minutes of training. 10 seconds of fireworks, preferably 101 fireworks video; in addition, in the oblique eye training S1302 in the eye training step S130, the fireworks video can be added when the film 20 is moved to the outer end of each direction, and can also be in each direction.
  • Fireworks video is displayed at the end of the training.
  • the specific fireworks video can be 10 seconds, 20 seconds, 30 seconds or other time. It is set according to the specific exercise time. The effect of adding the fireworks display is to increase the visual stimulation of the trainee. To better exercise eye tracking.
  • the full fireworks mode is to directly display fireworks in the display screen
  • the fireworks are fireworks of different colors and different playing frequencies, that is, the trainee can select the full fireworks mode in the amblyopia correction program according to his own needs
  • the full fireworks mode That is, the fireworks are directly displayed in the display screen.
  • the fireworks are fireworks of different colors and different colors in different colors. That is to say, when the full fireworks mode is selected, only the fireworks video is displayed in the display, and the playback of the movie 20 is not displayed.
  • the image frame of the film 20 keeps the image frame in the horizontal plane of the display screen during the movement, that is, the image frame is only during the motion.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种基于VR技术的弱视训练复健系统和弱视训练复健方法,该系统用于训练视力以帮助弱视人群进行视力矫正或复健,该系统适用于虚拟现实装置(10),包括VR眼镜本体,设置于VR眼镜本体上的透镜、显示屏、控制模块(13)和存储器,存储器中存储有影片(20),显示屏包括左视屏(11)与右视屏(12),控制模块(13)用于根据被训练者的裸眼视力控制影片(20)的播放模式及眼球训练模式;控制模块(13)包括操作设定模块(131)、选择视屏模块(132)与影片播放模块(133),其中,操作设定模块(131)、选择视屏模块(132)与影片播放模块(133)之间均为电连接。该方法通过弱视训练步骤来使弱视眼能进行视觉训练,以矫正该弱视眼的视力,获得使视觉具有立体空间的距离感及速度感的有益效果。

Description

基于VR技术的弱视训练复健系统及方法 技术领域
本发明涉及视力矫正领域,具体涉及一种基于VR技术的弱视训练复健系统及方法。
背景技术
大约5000人就会有1人,而现今社会发展下,近距离用眼的机会较过去多,不正确的写字阅读姿势,因此,两眼视差就愈来越严重。
而少部分的人在幼儿时期会因为眼球的先天性眼球屈光条件不佳而产生弱视眼,且该具有弱视眼的幼儿大都伴随着有融像困难的现象,所以在这种不利视觉发展条件下,具有弱视眼的幼儿在成长过程中的视欲能力大都是以另一只优视眼来使用,而另一只弱视眼则经常被放弃使用。
当幼儿在发展过程中,一旦发现具有弱视眼时,目前的作法大都是通过配戴眼镜的方式来进行矫正,但是对幼儿来说,因为视差的关系所以常常会有戴不住眼镜的现象,而使治疗效果变得毫无帮助,进而超过6岁前的黄金矫正期,造成视力无法回复的后果。
因此,本发明人鉴于上述缺点,期望能够提出一种具有矫正弱视眼的效能的基于VR技术的弱视训练复健系统及方法,使使用者可轻易操作组装,乃潜心研思、设计组制,以提供使用者便利性。
发明内容
本发明之目的是提供一种基于VR技术的弱视训练复健系统及方法,其能够解决现有的弱视人群尤其是儿童因为不及时矫正视力错过最佳治疗时期,最终造成视力无法恢复的技术问题。
本发明提供一种基于VR技术的弱视训练复健系统,其中,该系统用于训练视力以帮助弱视人群进行视力矫正或复健,该系统适用于虚拟现实装置,包括VR眼镜本体,设置于所述VR眼镜本体上的透镜、显示屏、控制模块和存储器,所述存储器中存储有影片,所述显示屏包括左视屏与右视屏,所述控制模块用于根据被训练者的裸眼视力控制影片的播放模式及眼球训练模式;其中,所述控制模块包括:
操作设定模块,用于将欲播放的影片先依据被训练者的视力来进行影像运动的起迄点设定、移动速度设定、停顿设定及模式设定;其中,所述操作设定模块与所述存储器连接;
选择视屏模块,用于依据被训练者的视力将优于弱视眼的优视眼的所述左视屏或右视屏进行遮蔽或雾化;
影片播放模块,用于将己设定好的影像运动方式的影片进行播放,使该影片的影像框能根据影像运动的设定来呈现出规则运动或不规则运动,进而使得未被遮蔽或雾化的所述右视屏或左视屏下的弱视眼能随着播放影片的影像来进行视觉训练;其中,所述影片播放模块与所述显示屏、存储器均连接;
所述操作设定模块、选择视屏模块与所述影片播放模块之间均为电连接。
优选地,所述存储器中还存储有视力表,用于被训练者在训练前后进行视力检测,以检测训练结果;
所述控制模块中还包括编辑模块,所述编辑模块与所述存储器连接,用于存储与设置被训练者的视力值。
优选地,所述选择视屏模块中遮蔽或雾化方式设置如下:
遮蔽:将显示屏的画面以变黑方式或以黑色对象遮蔽方式;
雾化:将显示屏中的画面清晰度进行模糊调整,以降低优视眼的可视度,且可随着弱视眼的视力提升程度,来重新调整优视眼的可视度。
优选地,所述影片播放模块中的规则运动或不规则运动设置如下:
规则运动:影片的影像框会以顺时针方向来移动或逆时针方向来移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放;
不规则运动:影片的影像框会以前后方向、上下方向、左右方向或交叉方向来任意进行移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放。
优选地,所述控制模块中还包括烟花播放模块,所述烟花播放模块用于在所述显示屏中直接放映烟花,该烟花为不同样式不同播放频率不同颜色的烟花;
其中,所述烟花播放模块包括插入烟花播放模块与全烟花播放模块,所述插入烟花播放模块用于在影片播放过程中的任意时刻插入烟花播放,所述全烟花播放模块用于被训练者根据需要选择只观看烟花播放。
本发明还提供一种基于VR技术的弱视训练复健方法,其中,该方法用于训练视力以帮助弱视人群进行视力矫正或复健,并且该方法适用于虚拟现实装置,包括VR眼镜本体,设置于所述VR眼镜本体上的透镜、显示屏、控制模块和存储器,所述存储器中存储有影片,所述显示屏包括左视屏与右视屏,所述控制模块用于根据被训练者的裸眼视力控制影片的播放模式及眼球训练模式;其中,所述基于VR技术的弱视训练复健方法包括如下步骤:
操作设定,将欲播放的影片先依据被训练者的视力来进行影像运动的起迄点设定、移动速度设定、停顿设定及模式设定;
选择视屏,依据被训练者的视力将优于弱视眼的优视眼的左视屏或右视屏进行遮蔽或雾化;
影片播放,将己设定好的影像运动的影片进行播放,使该影片的影像能根据影像运动的设定来呈现出规则运动或不规则运动;以及
眼球训练,使未被遮蔽或雾化的右视屏或左视屏下的弱视眼能随着播放 影片的影像来进行视觉训练。
优选地,所述弱视训练方法还包括:
视力检测:在所述显示屏中呈现出视力图,以检测被训练者在训练前或训练后眼睛的裸眼视力(即戴矫正眼镜的视力)。
优选地,所述眼球训练包括步骤:
眼外肌训练:将显示屏中的一个影片的影像框以中间为起点,向显示屏中的左、右、上或下任一端进行移动,再由任一端移动至中间,来回运动多次,其中运动方式包括连续式或跳跃式运动方式;和/或
斜位眼训练:将显示屏中的一个影片的影像框以中间为起点,向显示屏中的右上、右下、左上或左下方向进行移动,然后再移动至中间,来回运动多次,其中运动方式包括连续式或跳跃式运动方式。
优选地,所述选择视屏步骤中遮蔽或雾化方式设置如下:
遮蔽:将显示屏的画面以变黑方式或以黑色对象遮蔽方式;
雾化:将显示屏中的画面模糊度进行调整,以降低优视眼的可视度。
优选地,所述弱视训练方法还包括步骤烟花模式,所述烟花模式包括全烟花模式和/或插入烟花模式,其中,
所述全烟花模式为在显示屏中直接放映烟花,该烟花为不同样式不同播放频率不同颜色的烟花;以及
所述插入烟花模式为在影片的影像框运动至屏幕中的任何位置处加入烟花模式。
优选地,所述操作设定步骤或所述操作设定模块中的影像运动进行如下设定模式:
起迄点设定:起点设定有零距离、模拟6公分、模拟8公分、模拟10公分、模拟12公分、模拟15公分、模拟18公分或模拟20公分,而迄点设定有模拟100公分、模拟120公分、模拟150公分或模拟180公分;
移动速度设定:速度设定为1秒、1.5秒、2秒或3秒;
停顿设定:播放中的影片在“起”点及在“迄”点停顿时间设定为小于0.5秒、0.75秒、1秒或不停顿;以及
模式设定:模式设定为前后模式、上下模式、左右模式或交叉模式。
本发明的基于VR技术的弱视训练复健系统及方法相比现有技术具有如下有益效果:通过该弱视矫正程序的步骤来使弱视眼能进行视觉训练,以矫正该弱视眼的视力,使具有立体空间的距离感及速度感,进而增加整体的实用性。
附图说明
下面将简要说明本申请所使用的附图,显而易见地,这些附图仅用于解释本发明的构思。
图l为本发明主要步骤流程示意图:
图2为本发明的穿戴虚拟现实装置的立体外观示意图;
图3为本发明的影像运动的设定示意图;
图4为本发明的影片的前后模式的后显像示意图;
图5为本发明的影片的前后模式的前显像示意图;
图6为本发明的影片的上下模式的下显像示意图;
图7为本发明的影片的上下模式的上显像示意图;
图8为本发明的影片的左右模式的左显像示意图;
图9为本发明的影片的左右模式的右显像示意图;
图10为本发明的影片的交叉模式的左下显像示意图;
图11为本发明的影片的交叉模式的右下显像示意图;
图12为本发明的影片的交叉模式的右上显像示意图;
图13为本发明的影片的交叉模式的左上显像示意图;
图14为本发明于操作设定步骤前设有视力检测步骤的流程示意图;
图15为本发明于眼球训练步骤后设有视力检测步骤的流程示意图;
图16为本发明的视力图示意图;
图17为本发明的眼球训练步骤的框架结构示意图;
图18为本发明设置有烟花模式的流程示意图;
图19为本发明的控制模块的框架结构示意图。
附图标记汇总:
10    虚拟现实装置
11    左视屏
12    右视屏
13    控制模块
131   操作设定模块
132   选择视屏模块
133   影片播放模块
134   编辑模块
20    影片
2     影像运动的设定
211   起迄点设定
212   移动速度设定
213   停顿设定
214   模式设定
30    视力图
S001  视力检测
S100  操作设定
S110  选择视屏
S120  影片播放
S130  眼球训练
S1301 眼外肌训练
S1302 斜位眼训练
S140  视力检测
S150  烟花模式
具体实施方式
在下文中,将参照附图描述本发明的基于VR技术的弱视训练复健系统及方法的实施例。
在此记载的实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本申请权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括对在此记载的实施例做出任何显而易见的替换和修改的技术方案。
本说明书的附图为示意图,辅助说明本发明的构思,示意性地表示各部分的相互关系。请注意,为了便于清楚地表现出本发明实施例的各部分的关系。相同或相似的参考标记用于表示相同或相似的部分。
本发明提供一种基于VR技术的弱视训练复健系统,其中,该系统用于训练视力以帮助弱视人群进行视力矫正或复健,该系统适用于虚拟现实装置10,包括VR眼镜本体,设置于VR眼镜本体上的透镜、显示屏、控制模块13和存储器,存储器中存储有影片20,显示屏包括左视屏11与右视屏12,控制模块13用于根据被训练者的裸眼视力控制影片20的播放模式及眼球训练模式;如图19所示,其中,控制模块13包括:
操作设定模块131,用于将欲播放的影片20先依据被训练者的视力来进行影像运动的起迄点设定、移动速度设定、起点与迄点停顿设定及模式设定;其中,操作设定模块131与存储器连接,即操作设定模块131用于设定存储器中影片20的播放参数;
选择视屏模块132,用于依据被训练者的视力将优于弱视眼的优视眼的 左视屏11或右视屏12进行遮蔽或雾化;
影片播放模块133,用于将己设定好的影像运动方式的影片20进行播放,使该影片20的影像框能根据影像运动的设定2来呈现出规则运动或不规则运动,进而使得未被遮蔽或雾化的右视屏12或左视屏11下的弱视眼能随着播放影片20的影像来进行视觉训练;其中,影片播放模块133与显示屏、存储器均连接,即影片播放模块133用于将存储器中的影片20在显示屏上进行播放。
上述操作设定模块131、选择视屏模块132与影片播放模块133之间均为电连接。
在本发明的进一步实施例中,存储器中还存储有视力表,用于被训练者在训练前后进行视力检测,以检测训练结果;控制模块13中还包括编辑模块134,该编辑模块134与存储器连接,用于存储与设置被训练者的视力值。
在本发明的进一步实施例中,选择视屏模块132中遮蔽或雾化方式设置如下:遮蔽即是将显示屏的画面以变黑方式或以黑色对象遮蔽方式;雾化即将显示屏中的画面模糊度进行调整,以降低优视眼的可视度。也就是说,左视屏11或右视屏12的遮蔽为将该视屏以画面变黑方式或以黑色对象遮蔽方式,使位于视屏下的具有优视眼能放弃视觉追踪运动,而该左视屏11或右视屏12的雾化为将画面的模糊度进行调整(如图4至图13所示),以模糊可视的视力,即降低优视眼的可视度,如将画面的模糊度调整为480×480,使优视眼虽然看不清楚但仍可以追踪影像,以配合弱视眼来协同视觉追踪并同时训练双眼合作。
在本发明的进一步实施例中,影片播放模块133中的规则运动或不规则运动设置如下:规则运动即将影片20的影像框会以顺时针方向来移动或逆时针方向来移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放;不规则运动即将影片20的影像框会以前后方向、上下方向、左右方向或交叉方向来任意进行移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行 影像画面的播放。其中,该规则运动为该影片20的影像框会以顺时针方向来移动或逆时针方向来移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放,例如:以顺时针方向12→3→6→9→12移动,或以逆时针方向12→9→6→3→12移动,且影像在每处的位置放映20秒后即向下一方向移动,而每次持续观看15-20分钟后休息10分钟。另外,该不规则运动为该影片20的影像框会以前后方向(如图4及图5所示)、上下方向(如图6及图7所示)、左右方向(如图8及图9所示)或交叉方向(如图10、图11、图12及图13所示)来任意进行移动,并在移动后的位置处进行影像画面播放,在一定时间后,再移动至下一位置处进行影像画面的播放。例如:以12→6→12移动、9→3→9移动、11→5→2→8移动等任意方向进行移动,且影像在每处的位置放映20秒后即向下一方向移动,而每次持续观看15-20分钟后休息10分钟。
在本发明的进一步实施例中,控制模块13中还包括烟花播放模块,烟花播放模块用于在显示屏中直接放映烟花,该烟花为不同样式不同播放频率不同颜色的烟花。其中,烟花播放模块包括插入烟花播放模块与全烟花播放模块,插入烟花播放模块用于在影片20播放过程中的任意时刻插入烟花播放,也就是说,在基于VR技术的弱视训练复健系统中任何一个运动过程中均可以加入烟花,可以是普通烟花,也可以是101烟花。即可以在弱视训练过程中的影片20的影像框运动至每个方向的外端时可以加入烟花视频,还可以在每个方向训练结束时放映烟花视频,具体烟花视频的时间可以为10秒、20秒、30秒或为其他时间,根据具体运动时间进行设置,加入烟花放映的效果是为了增加被训练者视觉上的刺激感,进而更好地锻炼眼部追踪能力。另外,全烟花播放模块用于被训练者根据需要选择只观看烟花播放,即被训练者可以根据自身需要在弱视矫正程序中进行选择全烟花播放模块,该全烟花播放模块即是在显示屏中直接放映烟花,具体地,烟花为不同样式不同播放频率不同颜色的烟花,也就是说,选择全烟花播放模块时显示屏中仅显示烟花视频, 不会显示影片20的播放。
此外,本发明还提供一种基于VR技术的弱视训练复健方法,其中,该方法用于训练视力以帮助弱视人群进行视力矫正或复健,并且该方法适用于虚拟现实装置10,该虚拟现实装置10戴于孩童或成人的眼睛处(如图2所示),而该虚拟现实装置10能通过设于虚拟现实装置10上的按键或是以无线方式或有线方式来与外部装置连接(图未示)以进行操作控制,其中,该外部装置为遥控器、手机、鼠标或操作板等其中任一种,该虚拟现实装置10包括VR眼镜本体,设置于VR眼镜本体上的透镜、显示屏、控制模块13和存储器,存储器中存储有影片,显示屏包括左视屏11与右视屏12,控制模块13用于根据被训练者的裸眼视力控制影片的播放模式及眼球训练模式;其中,基于VR技术的弱视训练复健方法包括如下步骤:
S100操作设定:将欲播放的影片20先依据被训练者的视力来进行影像运动的起迄点设定211、移动速度设定212、停顿设定213及模式设定214;
S110选择视屏:依据被训练者的视力将优于弱视眼的优视眼的左视屏11或右视屏12进行遮蔽或雾化;
S120影片播放:将己设定好的影像运动的影片20进行播放,使该影片20的影像能根据影像运动的设定21来呈现出规则运动或不规则运动;以及
S130眼球训练:使未被遮蔽或雾化的右视屏12或左视屏11下的弱视眼能随着播放影片20的影像来进行视觉训练。
参见本发明的图1至图18,其为本发明实施例的示意图,而本发明的基于VR技术的弱视训练复健系统及方法的最佳实施方式是运用于两眼不等视状态或两眼视差150度以上的孩童或成年人,使弱视眼能进行视觉训练,以矫正该弱视眼的视力,使具有立体空间的距离感及速度感。
其中,影片20可以是卡通影片、图像影片、游戏影片、电影影片、电视影片等其中任一种或是其他种类的影片20。
需要说明的是,本发明的影片20可以替换为被追踪移动目标,即不一 定在弱视矫正的过程中只用到影片20,还可以是其他可移动物体,只要能够满足在显示屏一侧能够进行随意移动即可。
在本发明的进一步实施例中,如图1所示步骤Sl00操作设定,即是将欲播放的影片20先依据被训练者的视力来进行影像运动的起迄点设定211、移动速度设定212、停顿设定213及模式设定214。其中,虚拟现实装置10在执行弱视矫正过程中,会先出现将欲播放的影片20的影像运动的设定21(如第3图所示)的界面,而该影像运动的设定21有起迄点设定、移动速度设定212、停顿设定213及模式设定214,其中,该起迄点设定211的起点设有距角膜顶点起零距离、模拟6公分、模拟8公分、模拟10公分、模拟12公分、模拟15公分、模拟18公分、模拟20公分、模拟22公分、模拟25公分或模拟30公分,而该迄点设有模拟100公分、模拟120公分、模拟150公分或模拟180公分。例如:假设屈亮度设定:起点8cm←与→迄点l00cm之间变换,通过调节力(D)公式D=100/距离起点(近点)的调节力及调节力(D)公式D=l00/距离迄点(远点)的调节力,即可使眼球调节+1250°凸镜←与→+100°凸镜之间随着距离的变化,而调节力量也在随之发生变化。
在本发明的进一步实施例中,步骤Sl00操作设定中的移动速度设定212具体设置为1秒、1.5秒、2秒或3秒,通过该移动速度设定212来确认被训练者的弱视眼的专注力能否跟上影片20的影像的移动速度与节奏,待其被训练者习惯此移动速度与节奏后再慢慢加快速度,以确保弱视眼能调节三连动肌能适应该移动速度,并随时调整移动速度与节奏。
另外,在本发明的进一步实施例中,步骤Sl00操作设定中的停顿设定213设置方式为:影片20停顿间隔为小于0.5秒、0.75秒、1秒或不停顿。其中,本发明通过停顿设定213来使眼肌慢慢由外散开往内收缩来运动,以帮助影像融像,强壮双眼的融像能力。
另外,在本发明的进一步实施例中,步骤Sl00操作设定中的模式设定 214为前后模式、上下模式、左右模式或交叉模式,通过模式设定214来使影片20的影像在被训练者的弱视眼前能出现于不同位置,以吸引弱视眼的视欲力来持续性专注追踪影片20的影像,以训练眼肌力。
另外,在上述步骤S100操作设定之前可以设置有步骤S001视力检测,即在显示屏中呈现出视力图30,以进行检测眼睛的视力(如图14所示)。通过在虚拟现实装置10的左视屏11及右视屏12中出现视力图30(如图16所示)来先检测两眼的裸视的视力,以便作为步骤S100操作设定的步骤的参考值,而该视力图30可以是以常见的英文字母C或E的表示方式,也可以是以各种的图案如动物等来作为表示方式(图未示),或者为其他大小依次变化的其他物体,其具体并非仅限于字母E的表示方式。
在本发明的进一步实施例中,如图1所示步骤S110选择视屏,即在完成上述步骤Sl00后即进行该步骤S110,该步骤S110即是依据被训练者的视力将优于弱视眼的优视眼的视屏进行遮蔽或雾化。在步骤S100操作设定的步骤后,能依据被训练者的裸视视力来分出优视眼及弱视眼,并将优于弱视眼的优视眼的该虚拟现实装置10的显示屏进行遮蔽(图未示)或雾化,例如左眼为弱视眼时,即将该虚拟现实装置10的右视屏12进行遮蔽或雾化,反之亦然。其中,该显示屏的遮蔽为将该视屏以画面变黑方式或以黑色对象遮蔽方式,使位于显示屏下的具有优视眼能放弃运动,而该显示屏的雾化为将画面的清晰度进行模糊调整(如图4至图13所示),以模拟可视的视力,即降低优视眼的可视度,如将画面的模糊度调整为480×480,使优视眼虽然看不清楚但仍可以追踪影像,以配合弱视眼来协同运动。其中,画面模糊度的调节方式可是调节分辨率、调节对比度和亮度或调节不透明度等方式。
在本发明的进一步实施例中,如图1所示步骤S120影片播放,即将己设定影像运动方式的影片20进行播放,使该影片20的影像框能根据影像运动的设定21来呈现出规则运动或不规则运动。在步骤S110选择视屏步骤后,即将已经设定好影像运动的影片20进行播放,使该影片20的影像框能根据 影像运动的设定21包括起迄点设定211、移动速度设定212、停顿设定213及模式设定214(如图3所示)来呈现出规则运动或不规则运动。其中,该规则运动为该影片20的影像框会以顺时针方向来移动或逆时针方向来移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放,例如:以顺时针方向12→3→6→9→12移动,或以逆时针方向12→9→6→3→12移动,且影像在每处的位置放映20秒后即向下一方向移动,而每次持续观看15-20分钟后休息10分钟。另外,该不规则运动为该影片20的影像框会以前后方向(如图4及图5所示)、上下方向(如图6及图7所示)、左右方向(如图8及图9所示)或交叉方向(如图10、图11、图12及图13所示)来任意进行移动,并在移动后的位置处进行影像画面播放,在一定时间后,再移动至下一位置处进行影像画面的播放;例如:以12→6→12移动、9→3→9移动、11→5→2→8移动等任意方向进行移动,且影像在每处的位置放映20秒后即向下一方向移动,而每次持续观看15-20分钟后休息10分钟。而完成上述步骤S120后即进行下一步骤S130。
在本发明的进一步实施例中,如图1所示步骤S130眼球训练,即在完成上述步骤Sl20后即进行该步骤S130,该步骤S130即是使未被遮蔽或雾化的左视屏11或右视屏12下的弱视眼能随着播放影片20刻的影像来进行视觉训练。在该步骤S130中,使未被遮蔽或雾化的左视屏11或右视屏12下的弱视眼能随着播放影片20的影像来进行规则运动或不规则运动,以强化弱视眼的眼肌的三连动(适当的收缩与放松及交互运动),使被训练者的弱视眼经过视觉训练后能被调节得更好,以达到正常的标准视力。
本发明的方法在完成上述步骤S130眼球训练之后可以检视该弱视眼经过上述步骤后的视力改善情形,即可以设置有步骤S140视力检测,即在视屏中呈现出视力图30,使未被遮蔽或雾化的视屏下的弱视眼在经过眼球训练步骤后检测其视力(如图15所示)。通过在虚拟现实装置10的显示屏中出 现视力图30(如图16所示),而该视力图30可以是以常见的英文字母C或E的表示方式,也可以是以各种的图案如动物等来作为表示方式,使未被遮蔽或雾化的视屏下的弱视眼能进行检测该弱视眼的视力的改善程度。
在本发明的进一步实施例中,如图17所示,其中眼球训练可以具体包括步骤眼外肌训练S1301,即将显示屏中的一个影片20的影像框以中间为起点,向显示屏中的左、右、上或下任一端进行移动,再由任一端移动至中间,来回运动多次,其中运动方式包括连续式或跳跃式运动方式。在该步骤眼外肌训练S1301中,具体训练的方式可以是将显示屏中的一个影片20的影像框由中间开始开散向显示屏的水平方向两端开始运动,其中一个影片20在向两端运动的过程中会逐渐分裂为两个影片20,然后两个影片20由两端又会逐渐运动至中间位置,如此来来回回运动多次,一般为6次或其他数值的次数,或重复运动5分钟,当然影片20除了水平移动方式之外,还可以是前后移动,这样设置可以加强双眼的融像能力。或者,具体训练的方式还可以是将显示屏中的一个影片20在显示屏中顺时针或者逆时针运动,其中可以先顺时针旋转5圈,然后再逆时针旋转5圈,如此来来回回运动多次,一般为10次或其他数值的次数,当然影片20除了水平移动方式之外,还可以是前后移动,这样设置可以加强双眼的融像能力。
在本发明的进一步实施例中,如图17所示,其中眼球训练还可以具体包括步骤斜位眼训练S1302,即将显示屏中的一个影片20的影像框以中间为起点,向显示屏中的右上、右下、左上或左下方向进行移动,然后再移动至中间,来回运动多次,其中运动方式包括连续式或跳跃式运动方式。在该斜位眼训练S1302中,具体训练的方式可以是一个影片20的影像框由中间位置开始单向移动,如果是左眼遮蔽,则影片20就向右上、水平、右下方向运动,运动方式可以是连续式运动,也可以是跳跃式运动方式,跳跃式运动方式每次具体可以设置为跳跃4-5格;如果是右眼遮蔽,则影片20的影像框就向左上、水平、左下方向运动,运动方式可以是连续式运动,也可以是跳跃式运 动方式,跳跃式运动方式每次具体可以设置为跳跃4-5格。其中,在向右上、右水平、右下、左上、左水平或左下运动的过程中,具体在每个方向上运动的次数相同或不同均可以,例如在左眼遮蔽情况下,影片20的影像框可以先向右上方向运动来回运动3次,然后向右水平方向来回运动2次,然后再向右下方向来回运动3次,或者还可以是向右水平方向运动1次,再向右下方向运动1次,再向右上方向运动1次,如此运动方式循环5分钟。
在本发明的进一步实施例中,在影片20的影像框运动至屏幕中的任何位置处加入步骤烟花模式S150,该烟花模式S150包括全烟花模式和/或插入烟花模式。
其中,插入烟花模式就是在基于VR技术的弱视训练复健方法中任何一个步骤中均可以加入烟花,或者是在影片的影像框运动至屏幕中的任何位置处加入烟花模式,该烟花可以是普通烟花,也可以是101烟花。例如,在眼球训练步骤S130中的眼外肌训练S1301中可以在影片20的影像框运动每至显示屏两端及返回至中间位置时均可以放映烟花,另外还可以在每训练15分钟结束放映10秒钟的烟花,优选为101烟花视频;此外,在眼球训练步骤S130中的斜位眼训练S1302中在影片20运动至每个方向的外端时可以加入烟花视频,还可以在每个方向训练结束时放映烟花视频,具体烟花视频的时间可以为10秒、20秒、30秒或为其他时间,根据具体运动时间进行设置,加入烟花放映的效果是为了增加被训练者视觉上的刺激感,进而更好地锻炼眼部追踪能力。
其中,全烟花模式为在显示屏中直接放映烟花,该烟花为不同样式不同播放频率不同颜色的烟花,即被训练者可以根据自身需要在弱视矫正程序中进行选择全烟花模式,该全烟花模式即是在显示屏中直接放映烟花,具体地,烟花为不同样式不同播放频率不同颜色的烟花,也就是说,选择全烟花模式时显示屏中仅显示烟花视频,不会显示影片20的播放。
需要说明的是,本发明的基于VR技术的弱视训练复健系统及方法中影 片20的影像框在运动的过程中均保持影像框在显示屏的水平面内,即影像框在运动过程中仅仅是影像框整体在发生运动,而影像框本身不发生运动或转动。
以上对本发明的基于VR技术的弱视训练复健系统及方法的实施方式进行了说明。对于本发明的基于VR技术的弱视训练复健系统及方法的具体特征可以根据上述披露的特征的作用进行具体设计,这些设计均是本领域技术人员能够实现的。而且,上述披露的各技术特征并不限于已披露的与其它特征的组合,本领域技术人员还可根据本发明之目的进行各技术特征之间的其它组合,以实现本发明之目的为准。

Claims (10)

  1. 一种基于VR技术的弱视训练复健系统,其特征在于,该系统用于训练视力以帮助弱视人群进行视力矫正或复健,该系统适用于虚拟现实装置,包括VR眼镜本体,设置于所述VR眼镜本体上的透镜、显示屏、控制模块和存储器,所述存储器中存储有影片,所述显示屏包括左视屏与右视屏,所述控制模块用于根据被训练者的裸眼视力控制影片的播放模式及眼球训练模式;其中,所述控制模块包括:
    操作设定模块,用于将欲播放的影片先依据被训练者的视力来进行影像运动的起迄点设定、移动速度设定、停顿设定及模式设定;其中,所述操作设定模块与所述存储器连接;
    选择视屏模块,用于依据被训练者的视力将优于弱视眼的优视眼的所述左视屏或右视屏进行遮蔽或雾化;
    影片播放模块,用于将己设定好的影像运动方式的影片进行播放,使该影片的影像框能根据影像运动的设定来呈现出规则运动或不规则运动,进而使得未被遮蔽或雾化的所述右视屏或左视屏下的弱视眼能随着播放影片的影像来进行视觉训练;其中,所述影片播放模块与所述显示屏、存储器均连接;
    所述操作设定模块、选择视屏模块与所述影片播放模块之间均为电连接。
  2. 根据权利要求1所述的基于VR技术的弱视训练复健系统,其特征在于,
    所述存储器中还存储有视力表,用于被训练者在训练前后进行视力检测,以检测训练结果;
    所述控制模块中还包括编辑模块,所述编辑模块与所述存储器连接,用于存储与设置被训练者的视力值。
  3. 根据权利要求1所述的基于VR技术的弱视训练复健系统,其特征在于,所述选择视屏模块中遮蔽或雾化方式设置如下:
    遮蔽:将显示屏的画面以变黑方式或以黑色对象遮蔽方式;
    雾化:将显示屏中的画面清晰度进行模糊调整,以降低优视眼的可视度。
  4. 根据权利要求1所述的基于VR技术的弱视训练复健系统,其特征在于,所述影片播放模块中的规则运动或不规则运动设置如下:
    规则运动:影片的影像框会以顺时针方向来移动或逆时针方向来移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放;
    不规则运动:影片的影像框会以前后方向、上下方向、左右方向或交叉方向来任意进行移动,并在移动后的位置处进行影像画面的播放,在一定时间后,再移动至下一位置处进行影像画面的播放。
  5. 根据权利要求1所述的基于VR技术的弱视训练复健系统,其特征在于,所述控制模块中还包括烟花播放模块,所述烟花播放模块用于在所述显示屏中直接放映烟花,该烟花为不同样式不同播放频率不同颜色的烟花;
    其中,所述烟花播放模块包括插入烟花播放模块与全烟花播放模块,所述插入烟花播放模块用于在影片播放过程中的任意时刻插入烟花播放,所述全烟花播放模块用于被训练者根据需要选择只观看烟花播放。
  6. 一种基于VR技术的弱视训练复健方法,其特征在于,该方法用于训练视力以帮助弱视人群进行视力矫正或复健,并且该方法适用于虚拟现实装置,包括VR眼镜本体,设置于所述VR眼镜本体上的透镜、显示屏、控制模块和存储器,所述存储器中存储有影片,所述显示屏包括左视屏与右视屏,所述控制模块用于根据被训练者的裸眼视力控制影片的播放模式及眼球训练模式;其中,所述基于VR技术的弱视训练复健方法包括如下步骤:
    操作设定,将欲播放的影片先依据被训练者的视力来进行影像运动的起迄点设定、移动速度设定、停顿设定及模式设定;
    选择视屏,依据被训练者的视力将优于弱视眼的优视眼的左视屏或右视屏进行遮蔽或雾化;
    影片播放,将己设定好的影像运动的影片进行播放,使该影片的影像能根据影像运动的设定来呈现出规则运动或不规则运动;以及
    眼球训练,使未被遮蔽或雾化的右视屏或左视屏下的弱视眼能随着播放影片的影像来进行视觉训练。
  7. 根据权利要求6所述的基于VR技术的弱视训练复健方法,其特征在于,所述弱视训练方法还包括:
    视力检测:在所述显示屏中呈现出视力图,以检测被训练者在训练前或训练后眼睛的裸眼视力。
  8. 根据权利要求6所述的基于VR技术的弱视训练复健方法,其特征在于,所述眼球训练包括步骤:
    眼外肌训练:将显示屏中的一个影片的影像框以中间为起点,向显示屏中的左、右、上或下任一端进行移动,再由任一端移动至中间,来回运动多次,其中运动方式包括连续式或跳跃式运动方式;和/或
    斜位眼训练:将显示屏中的一个影片的影像框以中间为起点,向显示屏中的右上、右下、左上或左下方向进行移动,然后再移动至中间,来回运动多次,其中运动方式包括连续式或跳跃式运动方式。
  9. 根据权利要求6所述的基于VR技术的弱视训练复健方法,其特征在于,所述选择视屏步骤中遮蔽或雾化方式设置如下:
    遮蔽:将显示屏的画面以变黑方式或以黑色对象遮蔽方式;
    雾化:将显示屏中的画面模糊度进行调整,以降低优视眼的可视度。
  10. 根据权利要求6所述的基于VR技术的弱视训练复健方法,其特征在于,所述弱视训练方法还包括步骤烟花模式,所述烟花模式包括全烟花模式和/或插入烟花模式,其中,
    所述全烟花模式为在显示屏中直接放映烟花,该烟花为不同样式不同播 放频率不同颜色的烟花;以及
    所述插入烟花模式为在影片的影像框运动至屏幕中的任何位置处加入烟花模式。
PCT/CN2018/078162 2018-03-06 2018-03-06 基于vr技术的弱视训练复健系统及方法 WO2019169554A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078162 WO2019169554A1 (zh) 2018-03-06 2018-03-06 基于vr技术的弱视训练复健系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/078162 WO2019169554A1 (zh) 2018-03-06 2018-03-06 基于vr技术的弱视训练复健系统及方法

Publications (1)

Publication Number Publication Date
WO2019169554A1 true WO2019169554A1 (zh) 2019-09-12

Family

ID=67846448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078162 WO2019169554A1 (zh) 2018-03-06 2018-03-06 基于vr技术的弱视训练复健系统及方法

Country Status (1)

Country Link
WO (1) WO2019169554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110496019A (zh) * 2019-09-16 2019-11-26 姬海民 便携式视力训练仪及视力训练方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214630A1 (en) * 2002-05-17 2003-11-20 Winterbotham Chloe Tyler Interactive occlusion system
CN102319167A (zh) * 2011-08-03 2012-01-18 卓小勤 一种治疗各种屈光异常、弱视、眼球移动障碍和眼肌痉挛等疾病的医疗器械
WO2014197489A1 (en) * 2013-06-03 2014-12-11 University Of Louisville Systems and methods for improving sensory eye dominance, binocular imbalance, and/or stereopsis in a subject
CN105748268A (zh) * 2016-02-18 2016-07-13 杭州睩客科技有限公司 用于治疗眼睛疾病的3d图像系统
CN107095733A (zh) * 2017-04-21 2017-08-29 杭州瑞杰珑科技有限公司 基于ar技术的弱视治疗系统
CN107690617A (zh) * 2015-06-25 2018-02-13 英特尔公司 用于控制可穿戴计算设备的视力矫正的技术
CN108478401A (zh) * 2018-03-06 2018-09-04 大陆视觉(北京)眼镜销售有限公司 基于vr技术的弱视训练复健系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030214630A1 (en) * 2002-05-17 2003-11-20 Winterbotham Chloe Tyler Interactive occlusion system
CN102319167A (zh) * 2011-08-03 2012-01-18 卓小勤 一种治疗各种屈光异常、弱视、眼球移动障碍和眼肌痉挛等疾病的医疗器械
WO2014197489A1 (en) * 2013-06-03 2014-12-11 University Of Louisville Systems and methods for improving sensory eye dominance, binocular imbalance, and/or stereopsis in a subject
CN107690617A (zh) * 2015-06-25 2018-02-13 英特尔公司 用于控制可穿戴计算设备的视力矫正的技术
CN105748268A (zh) * 2016-02-18 2016-07-13 杭州睩客科技有限公司 用于治疗眼睛疾病的3d图像系统
CN107095733A (zh) * 2017-04-21 2017-08-29 杭州瑞杰珑科技有限公司 基于ar技术的弱视治疗系统
CN108478401A (zh) * 2018-03-06 2018-09-04 大陆视觉(北京)眼镜销售有限公司 基于vr技术的弱视训练复健系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110496019A (zh) * 2019-09-16 2019-11-26 姬海民 便携式视力训练仪及视力训练方法
CN110496019B (zh) * 2019-09-16 2024-03-22 姬海民 便携式视力训练仪及视力训练方法

Similar Documents

Publication Publication Date Title
CN108478401B (zh) 基于vr技术的弱视训练复健系统
Yao et al. Oculus vr best practices guide
WO2018014712A1 (zh) 统合实境智慧眼镜护眼遮光器
US20120179076A1 (en) Method and system for treating amblyopia
CN106309089A (zh) Vr视力矫正方法及装置
WO2012160741A1 (ja) 視覚疲労度測定装置、その方法、視覚疲労度測定システムおよび3次元メガネ
US11774759B2 (en) Systems and methods for improving binocular vision
JP2008256946A (ja) 画像表示装置のための酔い防止装置
CN106491323A (zh) 用于治疗弱视的视频系统的参数调节方法及系统和装置
JP2020137128A (ja) コンピュータ読取可能な非一過性の記憶媒体、Webサーバ、及び、瞳孔間のキャリブレーション方法
US11157078B2 (en) Information processing apparatus, information processing method, and program
CN111494177A (zh) 一种兼顾双眼视觉发育的视力训练方法
CN107977076B (zh) 一种可穿戴虚拟现实设备
WO2019169554A1 (zh) 基于vr技术的弱视训练复健系统及方法
WO2019169553A1 (zh) 弱视训练复健装置
CN110840721B (zh) 一种基于近眼显示的视力防控、训练方法及近眼显示设备
CN112926523A (zh) 基于虚拟现实的眼球追踪方法、系统
CN109752853A (zh) 一种画面位置校正方法、装置及头戴显示设备
CN205485057U (zh) 智能虚拟现实运动帽
CN208598765U (zh) 弱视训练复健装置
JP2018189711A (ja) 拡張現実のスマートグラス
TW201907882A (zh) 弱視矯正之方法
CN114028181A (zh) 一种调节训练和辐辏训练相结合的视觉训练方法及系统
CN108201505A (zh) 弱视训练复健装置
Intraub Scene perception

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908850

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908850

Country of ref document: EP

Kind code of ref document: A1