WO2019168173A1 - Multilayer structure in which plasticizer-containing sheets are stacked - Google Patents

Multilayer structure in which plasticizer-containing sheets are stacked Download PDF

Info

Publication number
WO2019168173A1
WO2019168173A1 PCT/JP2019/008177 JP2019008177W WO2019168173A1 WO 2019168173 A1 WO2019168173 A1 WO 2019168173A1 JP 2019008177 W JP2019008177 W JP 2019008177W WO 2019168173 A1 WO2019168173 A1 WO 2019168173A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl acetal
layer
multilayer structure
sheet
mass
Prior art date
Application number
PCT/JP2019/008177
Other languages
French (fr)
Japanese (ja)
Inventor
芳聡 淺沼
淳 小石川
磯上 宏一郎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2020503655A priority Critical patent/JPWO2019168173A1/en
Priority to KR1020207024976A priority patent/KR20200128013A/en
Publication of WO2019168173A1 publication Critical patent/WO2019168173A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating

Definitions

  • the present invention relates to a multilayer structure in which two or more plasticizer-containing sheets having a conductive structure are stacked.
  • a method for removing icing and fogging of windshields or the like is required for glass in buildings or vehicles, such as automobiles, and conventionally, a method of applying hot air to glass is known as this method.
  • this method has a problem that it takes time to obtain sufficient forward visibility.
  • electric vehicles that cannot use the combustion heat of gasoline fuel to remove icing and fogging, there is a problem that the method of heating air with electricity and applying hot air to glass is inefficient and directly leads to a decrease in cruising distance. .
  • Patent Document 1 includes a transparent base material, an adhesive layer provided on at least one surface of the transparent base material, a conductive heating wire provided on the adhesive layer, the conductive heating wire, and the heating wire.
  • a heating film including a coating film that encapsulates an upper surface of an uncovered adhesive layer, a bus bar electrically connected to the conductive heating wire, and a power supply unit connected to the bus bar is described. Describes an example using a PET (polyethylene terephthalate) film as a transparent substrate.
  • Patent Document 2 discloses a method of manufacturing a laminated glass having a conductive structure by disposing and bonding at least one sheet A and at least one sheet B between two transparent plates.
  • the sheet A contains a polyvinyl acetal PA and a plasticizer WA, and has a discontinuous conductive structure
  • the sheet B describes a method containing a polyvinyl acetal PB and a plasticizer WB. ing.
  • a resin sheet having a conductive structure when producing a laminated glass having a conductive structure, a resin sheet having a conductive structure may be used.
  • a resin sheet having such a conductive structure can have any conductive structure and can be produced by an economical method, but better handling during transportation or storage may be required.
  • the resin sheet with conductive structure When transporting from production site to use site and when storing at production site or use site, the resin sheet with conductive structure is rolled up or cut into two or more sheets and stacked in a compact state. It is preferable from the viewpoint of handleability.
  • the conductive structure when transported or stored in such a form, the conductive structure may break or peel from the resin sheet at the part where the resin sheets overlap each other, and further the resin sheet on which the conductive structure overlaps When the resin sheet is pulled out from the roll, the conductive structure may be disconnected.
  • Such breakage, peeling, or disconnection of the conductive structure is a cause of deteriorating the appearance of the finally obtained laminated glass and a cause of reducing the conductivity and heating performance.
  • the performance (safety) as a safety laminated glass may be insufficient only with a resin sheet having a conventional conductive structure, and in that case, it is necessary to use a commonly used interlayer film for laminated glass.
  • the present invention solves the above problems. That is, the present invention is a multi-layer structure of a sheet having a conductive structure that has excellent transparency and can be used in the production of laminated glass, and has defects such as breakage, peeling and disconnection in the conductive structure during the production of laminated glass.
  • An object of the present invention is to provide a multilayer structure that is less likely to occur, has excellent workability, and provides a laminated glass having safety required for a laminated safety glass.
  • the present inventors have studied in detail a multilayer structure in which sheets having a conductive structure disposed between two polyvinyl acetal layers are overlapped to complete the present invention. It came to.
  • the present invention includes the following preferred embodiments.
  • a multilayer structure At least one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 10 parts by mass or more. Multilayer structure. [3] One of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 to 10 parts by mass, and The multilayer structure according to [1] or [2], wherein one is 10 parts by mass or more and 80 parts by mass or less. [4] The multilayer structure according to any one of [1] to [3], wherein the sheet (A) has an uneven structure on at least one surface thereof.
  • the multilayer structure includes an adhesive layer between at least one of the polyvinyl acetal layer (1) and the conductive structure and between the polyvinyl acetal layer (2) and the conductive structure.
  • the multilayer structure does not have an adhesive layer between the polyvinyl acetal layer (1) and the conductive structure, and between the polyvinyl acetal layer (2) and the conductive structure.
  • the polyvinyl acetal (1) is represented by the formula (1):
  • the polyvinyl acetal (2) has the structure represented by formula (2): Wherein R1 and R2 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and R1 and R2 have the same carbon number.
  • R1 and R2 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and R1 and R2 have the same carbon number.
  • the plasticizer content in the polyvinyl acetal layer (1) is smaller than the plasticizer content in the polyvinyl acetal layer (2), and the degree of polymerization of the polyvinyl acetal (1) is that of the polyvinyl acetal (2).
  • Two sheets (A) are stacked so that the surface on the polyvinyl acetal layer (1) side and the surface on the polyvinyl acetal layer (2) side are in contact with each other, and are perpendicular to the surface at 23 ° C.
  • the multilayer structure according to any one of the above [1] to [18], wherein the peeling force showing blocking resistance after applying a pressure of 0.02 MPa for 48 hours in the direction is 30 N / 30 mm or less.
  • the degree of polymerization of the polyvinyl acetal (1) is smaller than the degree of polymerization of the polyvinyl acetal (2), and the thickness of the polyvinyl acetal layer (1) is smaller than the thickness of the polyvinyl acetal layer (2).
  • Tg 1 is a temperature at which tan ⁇ of the composition constituting the polyvinyl acetal layer (1) takes a maximum value
  • Tg 2 is a temperature at which tan ⁇ of the composition constituting the polyvinyl acetal layer (2) takes a maximum value.
  • the sheet (A) has a terminal for receiving an electric power or an electric signal disposed so as to protrude outward.
  • the present invention is a multilayer structure of a sheet having a conductive structure that has excellent transparency and can be used in the production of laminated glass, and when the laminated glass is produced, defects such as breakage, peeling and disconnection occur in the conductive structure.
  • a multilayer structure that provides a laminated glass that is difficult and has excellent workability and has the safety required for a laminated safety glass is provided.
  • the multilayer structure of the present invention is a multilayer structure in which two or more sheets (A) are overlapped.
  • the “multilayer structure in which two or more sheets (A) are overlapped” means that the sheet (A) is cut into a certain size and two or more sheets are stacked or wound in a roll shape. Means a state in which two or more sheets (A) are overlapped (that is, a state in which they are overlapped in a roll shape).
  • the sheet (A) comprises 100 parts by weight of polyvinyl acetal (1) and a polyvinyl acetal layer (1) containing 0 to 200 parts by weight of a plasticizer, 100 parts by weight of polyvinyl acetal (2) and 0 to 200 parts by weight of a plasticizer.
  • Polyvinyl acetal (1) and polyvinyl acetal (2) As the polyvinyl acetal (1) and the polyvinyl acetal (2), a polyvinyl acetal resin produced by acetalization of a polyvinyl alcohol resin such as polyvinyl alcohol or an ethylene vinyl alcohol copolymer can be used.
  • the polyvinyl acetal resin constituting the polyvinyl acetal (1) and the polyvinyl acetal resin constituting the polyvinyl acetal (2) may be the same or different.
  • the polyvinyl acetal (1) may be composed of a single polyvinyl acetal resin.
  • the degree of polymerization, the degree of acetalization, the amount of acetyl groups, the amount of hydroxyl groups, the ethylene content, the molecular weight of the aldehyde used for acetalization, and the chain length Any one or more of them may be composed of two or more different polyvinyl acetal resins.
  • the polyvinyl acetal (1) is composed of two or more polyvinyl acetal resins different from each other, from the viewpoint of ease of melt molding, deformation of the conductive structure during the production of laminated glass, deviation of the glass when using the laminated glass, etc.
  • the polyvinyl acetal (1) is a mixture of two or more polyvinyl acetal resins having different polymerization degrees or an acetalization product of a mixture of at least two polyvinyl alcohol resins having different viscosity average polymerization degrees. It is preferable.
  • the matters described in this paragraph are the same for the polyvinyl acetal (2).
  • Polyvinyl acetal (1) and polyvinyl acetal (2) can be produced, for example, by the following method, but are not limited thereto.
  • the temperature of the reaction solution is raised to a temperature of 20 to 80 ° C. over 30 to 200 minutes and held for 30 to 300 minutes. Then, after filtering a reaction liquid as needed, neutralizing agents, such as an alkali, are added and neutralized, and a polyvinyl acetal resin is obtained by filtering resin, washing with water, and drying.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and organic acids and inorganic acids such as acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid and hydrochloric acid can be used. Among these, hydrochloric acid, sulfuric acid, and nitric acid are preferable from the viewpoint of acid strength and ease of removal during washing.
  • the polyvinyl acetal (1) and the polyvinyl acetal (2) are preferably those obtained by acetalizing at least one polyvinyl alcohol-based resin with one or more aldehydes or keto compounds having 2 to 10 carbon atoms.
  • the polyvinyl alcohol-based resin include polyvinyl alcohol and ethylene vinyl alcohol copolymer, and polyvinyl alcohol is preferable.
  • the aldehyde or keto compound may be linear, branched or cyclic, preferably linear or branched, more preferably a linear aliphatic aldehyde, n- Particularly preferred is butyraldehyde.
  • polyvinyl acetal (1) and polyvinyl acetal (2) tend to have suitable breaking energy.
  • the polyvinyl acetal (1) and the polyvinyl acetal (2) may be an acetalized product of a mixture of a plurality of aldehydes or keto compounds, and the content of n-butyraldehyde in the mixture is preferably 50% by mass or more, 80 mass% or more is more preferable, 95 mass% or more is further more preferable, 99 mass% or more is especially preferable, and 100 mass% may be sufficient.
  • the polyvinyl alcohol resin used in the production of the polyvinyl acetal (1) and the polyvinyl acetal (2) may be a single resin, or two or more polyvinyl alcohol resins having different viscosity average polymerization degrees or hydrolysis degrees. It may be a mixture.
  • the viscosity average polymerization degree of the polyvinyl alcohol resin is preferably 400 or more, more preferably 800 or more, further preferably 1000 or more, particularly preferably 1300 or more, and most preferably 1500 or more.
  • the viscosity average degree of polymerization is preferably 5000 or less, more preferably 3000 or less, further preferably 2500 or less, particularly preferably 2300 or less, and most preferably 2000 or less.
  • the viscosity average degree of polymerization is measured based on JIS K 6726 “Testing method for polyvinyl alcohol”.
  • the viscosity average polymerization degree of at least one polyvinyl alcohol resin is preferably not less than the lower limit and not more than the upper limit.
  • the degree of polymerization of at least one of the polyvinyl acetal (1) and the polyvinyl acetal (2) is 800 or more, more preferably 900 or more, still more preferably 1000 or more, particularly preferably 1300 or more, and most preferably 1500. That's it.
  • the preferable upper limit value of the polymerization degree in this embodiment is the same as the preferable upper limit value of the viscosity average polymerization degree of the polyvinyl alcohol resin.
  • the degree of polymerization of at least one of the polyvinyl acetal (1) and the polyvinyl acetal (2) is equal to or higher than the lower limit, deformation and disconnection of the conductive structure are easily suppressed during the production of the laminated glass, and the resulting laminated glass is heated by heat. The phenomenon of slippage is easily prevented.
  • the degree of polymerization of the polyvinyl acetal resin means a value measured based on JIS K6728 (1977).
  • the degree of polymerization of polyvinyl acetal (1) is less than 1500, and the degree of polymerization of polyvinyl acetal (2) is 1500 or more.
  • the degree of polymerization of the polyvinyl acetal (1) is more preferably less than 1450, even more preferably less than 1400, particularly preferably less than 1350, and most preferably less than 1300.
  • the degree of polymerization of the polyvinyl acetal (2) is more preferably 1550 or more, further preferably 1580 or more, particularly preferably 1600 or more, and most preferably 1620 or more.
  • the polymerization degree of the polyvinyl acetal (1) is less than the above upper limit value and the polymerization degree of the polyvinyl acetal (2) is not less than the above lower limit value, when the sheet (A) is used as an interlayer film for laminated glass, the transparency Excellent in penetration resistance.
  • the preferable lower limit of the degree of polymerization of the polyvinyl acetal (1) in this embodiment is the same as the preferable lower limit of the viscosity average degree of polymerization of the polyvinyl alcohol resin described above, and the preferable upper limit of the degree of polymerization of the polyvinyl acetal (2) is The upper limit value of the viscosity average polymerization degree of the polyvinyl alcohol resin is the same as that described above.
  • the amount of acetyl groups in the polyvinyl acetal (1) and the polyvinyl acetal (2) is preferably 0.1 to 20 mol%, more preferably 0.5 to 8 mol%, based on the ethylene unit of the polyvinyl acetal main chain. More preferably, it is 0.5 to 3 mol% or 5 to 8 mol%.
  • the amount of the acetyl group can be adjusted by appropriately adjusting the degree of saponification of the raw material polyvinyl alcohol resin.
  • the plasticizer compatibility and mechanical strength of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) tend to be excellent, and the polyvinyl acetal layer (1) and the polyvinyl acetal layer (1) Good bondability with the acetal layer (2), reduction of optical distortion, and the like are easily achieved.
  • the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the average acetyl group amount of the polyvinyl acetal (1) or the average acetyl group amount of the polyvinyl acetal (2) is It is preferable to be within the above range.
  • the degree of acetalization of the polyvinyl acetal (1) and the polyvinyl acetal (2) is not particularly limited, but is preferably 40 to 86 mol%, more preferably 45 to 84 mol%, still more preferably 50 to 82 mol%, particularly preferably. 60 to 82 mol%, most preferably 68 to 82 mol%.
  • the acetalization degree can be adjusted within the above range.
  • the degree of acetalization is within the above range, the mechanical strength of the sheet (A) in the present invention is likely to be sufficient, and the compatibility between the polyvinyl acetal (1) and the polyvinyl acetal (2) and the plasticizer is hardly lowered.
  • the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the average acetalization degree of the polyvinyl acetal (1) or the average acetalization degree of the polyvinyl acetal (2) is It is preferable to be within the above range.
  • the absolute value is more preferably less than 3 mol%, particularly preferably less than 1 mol%, most preferably 0 mol%. When the absolute value is less than the above upper limit value or 0 mol%, the transparency of the sheet (A) is easily obtained.
  • the amount of hydroxyl groups in the polyvinyl acetal (1) and the polyvinyl acetal (2) is preferably 16 to 34 mol%, more preferably 18 to 34 mol%, more preferably 22 to 34, based on the ethylene unit of the polyvinyl acetal main chain.
  • Mol%, particularly preferably 26 to 34 mol%, and more preferably 9 to 29 mol%, more preferably 12 to 26 mol%, still more preferably 15 to 23 mol%, particularly for providing sound insulation performance together Preferably, it is 16 to 20 mol%.
  • the amount of hydroxyl groups is within the above range, the difference in refractive index between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) becomes small, and it is easy to obtain a laminated glass with little optical unevenness.
  • the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the average hydroxyl group amount of the polyvinyl acetal (1) or the average hydroxyl group amount of the polyvinyl acetal (2) is within the above range, respectively. It is preferable to be within.
  • the absolute value of the difference between H 1 and H 2 when the amount of hydroxyl group of polyvinyl acetal (1) is 1 mol% and the amount of hydroxyl group of polyvinyl acetal (2) is 2 mol% is 5 Less than mol%.
  • the absolute value is more preferably less than 3 mol%, particularly preferably less than 1 mol%, most preferably 0 mol%. When the absolute value is less than the above upper limit value or 0 mol%, the transparency of the sheet (A) is easily obtained.
  • the sheet (A) is used as an interlayer film for laminated glass by making a difference between H 1 and H 2
  • the amount of plasticizer in the polyvinyl acetal layer (1) in the equilibrium state after the plasticizer has migrated It is also possible to obtain a laminated glass excellent in sound insulation performance by making a difference in the amount of plasticizer in the polyvinyl acetal layer (2).
  • the difference between H 1 and H 2 is preferably 5 mol% or more, more preferably 8 mol% or more.
  • the polyvinyl acetal (1) and the polyvinyl acetal (2) are usually composed of an acetal group unit, a hydroxyl group unit, and an acetyl group unit, and the amount of each unit is JIS K 6728 “Testing method for polyvinyl butyral” or nuclear magnetic field. Measured by resonance method (NMR).
  • the viscosity of the solution is preferably 200 mPa ⁇ s or more, more preferably 240 mPa ⁇ s or more, and particularly preferably 265 mPa ⁇ s or more.
  • a polyvinyl alcohol resin having a high viscosity average degree of polymerization as at least a part of the raw material, the viscosity can be adjusted to the lower limit value or more.
  • the viscosity of the mixture is preferably equal to or higher than the lower limit value.
  • the viscosity is equal to or higher than the lower limit, deformation and disconnection of the conductive structure are easily suppressed during the production of the laminated glass, and the phenomenon that the glass is displaced due to heat in the obtained laminated glass is easily prevented.
  • the upper limit of the viscosity is usually 1000 mPa ⁇ s, preferably 800 mPa ⁇ s, more preferably 500 mPa ⁇ s, still more preferably 450 mPa ⁇ s, particularly preferably 400 mPa ⁇ s, from the viewpoint of easily obtaining good film forming properties. It is.
  • the peak top molecular weight of the polyvinyl acetal (1) and the polyvinyl acetal (2) is preferably 115,000 to 200,000, more preferably 120,000 to 160,000, particularly preferably 130,000 to 150,000. .
  • the peak top molecular weight can be adjusted within the above range.
  • suitable film-forming properties and suitable film properties for example, laminate suitability, creep resistance, and breaking strength.
  • the molecular weight distribution of the polyvinyl acetal (1) and the polyvinyl acetal (2) that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 2.7 or more, more preferably 2 .8 or more, particularly preferably 2.9 or more.
  • the molecular weight distribution can be adjusted to the lower limit value or more by acetalizing a mixture of polyvinyl alcohol resins having different viscosity average polymerization degrees or by mixing polyvinyl acetal resins having different polymerization degrees.
  • the upper limit of the molecular weight distribution is not particularly limited, but is usually 10 and preferably 5 from the viewpoint of ease of film formation.
  • the peak top molecular weight and molecular weight distribution of at least one polyvinyl acetal resin are preferably within the above ranges.
  • the peak top molecular weight and molecular weight distribution are determined using gel permeation chromatography (GPC) and polystyrene having a known molecular weight as a standard.
  • the polyvinyl acetal (1) has the formula (1):
  • the polyvinyl acetal (2) has the structure represented by the formula (2): Wherein R1 and R2 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and R1 and R2 have the same carbon number, More preferably, R1 and R2 are the same group.
  • the ratio of the structure represented by the formula (1) contained in the polyvinyl acetal (1) to the acetal ring structure contained in the polyvinyl acetal (1), and the formula (2) contained in the polyvinyl acetal (2) is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol. % Or more.
  • the ratio of the structure of formula (1) contained in polyvinyl acetal (1) and the structure of formula (2) contained in polyvinyl acetal (2) can be adjusted to the above lower limit or more. It is easy to obtain the sheet
  • the upper limit of the ratio is 100 mol%.
  • the said ratio is calculated
  • R1 and R2 are aliphatic hydrocarbon groups (for example, methyl group, ethyl group, n-propyl group and isopropyl group), aromatic hydrocarbon groups (for example, phenyl group) or hydrogen atoms (0 carbon atoms).
  • the group includes a group in which an arbitrary hydrogen atom of an aliphatic hydrocarbon group is replaced with another group, and a group in which an arbitrary hydrogen atom of an aromatic hydrocarbon group is replaced with another group.
  • an aliphatic hydrocarbon group is preferable, an aliphatic hydrocarbon group having 1 to 7 carbon atoms is more preferable, and an aliphatic hydrocarbon group is more preferable from the viewpoint of easily obtaining high compatibility with a plasticizer, appropriate processability, and mechanical strength.
  • An aliphatic hydrocarbon group of 2 to 4 is more preferable, and an n-propyl group (the chemical structure of the formula (1) or the formula (2) is a butyral ring structure) is particularly preferable.
  • the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) preferably contain an uncrosslinked polyvinyl acetal resin from the viewpoint of easily obtaining good film forming properties, but may contain a crosslinked polyvinyl acetal.
  • Methods for crosslinking polyvinyl acetal are, for example, EP 1527107B1 and WO 2004/062311 A1 (thermal self-crosslinking of carboxyl group-containing polyvinyl acetal), EP 1606325 A1 (polyvinyl acetal crosslinked with polyaldehyde), and WO 2003 / 020776 A1 (polyvinyl acetal crosslinked with glyoxylic acid). It is also a useful method to control the amount of intermolecular acetal bonds produced and to control the degree of blocking of residual hydroxyl groups by appropriately adjusting the acetalization reaction conditions.
  • the amount of plasticizer contained in the polyvinyl acetal layer (1) is 0 to 200 parts by mass with respect to 100 parts by mass of the polyvinyl acetal (1), and the amount of plasticizer contained in the polyvinyl acetal layer (2) is When the total content of the polyvinyl acetal (1) and the polyvinyl acetal (2) contained in the sheet (A) is 100 parts by mass with respect to 100 parts by mass of the acetal (2), the sheet ( The total content of plasticizers contained in A) is 10 to 80 parts by mass.
  • the plasticizer content does not satisfy the above conditions, defects such as breakage, peeling and disconnection in the conductive structure are extremely likely to occur during the production of the laminated glass, and a laminated glass having the safety required for the safety laminated glass is provided. I can't. Further, when the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) do not contain a specific resin and a specific amount of plasticizer, good transparency, difficulty in generating defects in the above-described conductive structure, and matching It is not possible to obtain a sheet having both excellent workability during glass production and the ability to impart safety to the laminated glass described above.
  • a polyvinyl acetal layer (1 ) Is preferably 0 to 80 parts by weight, more preferably 0 to 60 parts by weight, and still more preferably 0 to 50 parts by weight with respect to 100 parts by weight of the polyvinyl acetal (1).
  • the amount of the plasticizer in the polyvinyl acetal layer (2) is preferably 0 to 80 parts by mass, more preferably 0 to 60 parts by mass, and further preferably 0 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl acetal (2).
  • the total content of the polyvinyl acetal (1) and the polyvinyl acetal (2) contained in the sheet (A) is 100 parts by mass
  • the total content of the plasticizer contained in the sheet (A) is preferably 15 to 80
  • the mass is more preferably 15 to 70 parts by mass, still more preferably 20 to 60 parts by mass.
  • At least one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 10 parts by mass or more, more preferably 20 It is at least 30 parts by mass, particularly preferably at least 30 parts by mass.
  • fills the said conditions when using the sheet
  • one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 to 10 parts by mass. And the other is 10 parts by mass or more and 80 parts by mass or less. Particularly preferably, one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 part by mass or more and 5 parts by mass or less. One is 20 parts by mass or more and 60 parts by mass or less.
  • content of the plasticizer in a polyvinyl acetal layer (1) is smaller than content of the plasticizer in a polyvinyl acetal layer (2), and the polymerization degree of polyvinyl acetal (1) is polyvinyl acetal. It is smaller than the degree of polymerization of (2).
  • One or more compounds from the following group are preferably used as plasticizers.
  • -Esters of polyvalent aliphatic or aromatic acids For example, dialkyl adipates (eg, dihexyl adipate, di-2-ethylbutyl adipate, dioctyl adipate, di-2-ethylhexyl adipate, hexyl cyclohexyl adipate, heptyl adipate, nonyl adipate, diisononyl adipate, heptyl nonyl adipate); adipic acid and alcohol Or esters with alcohols containing ether compounds (eg di (butoxyethyl) adipate, di (butoxyethoxyethyl) adipate); dialkyl sebacates (eg dibutyl sebacate); including sebacic acid and alicyclic or ether compounds Esters with alcohols; esters of phthalic acid
  • Polyhydric aliphatic or aromatic alcohols or oligoether glycol esters or ethers having one or more aliphatic or aromatic substituents examples thereof include esters of glycerin, diglycol, triglycol, tetraglycol and the like with a linear or branched aliphatic or alicyclic carboxylic acid.
  • TOP (2-ethylhexyl) phosphate
  • TOP tris (2-ethylhexyl) phosphate
  • TOP triethyl phosphate
  • diphenyl-2-ethylhexyl phosphate examples include triresyl phosphate.
  • polyesters or oligoesters composed of polyhydric alcohol and polycarboxylic acid, terminal esterified products or etherified products thereof, polyesters or oligoesters composed of lactone or hydroxycarboxylic acid, or terminal esterified products or etherified products thereof. It may be used as a plasticizer.
  • the polyvinyl acetal layer (1) are the same as those in the polyvinyl acetal layer (2) or the physical properties of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) (for example, heat resistance, light resistance, transparent It is preferable to use a plasticizer that does not impair the properties and plasticization efficiency.
  • ether ester compounds are preferred as plasticizers, and include triethylene glycol-bis- (2-ethylhexanoate), triethylene glycol-bis (2-ethylbutanoate), tetraethylene glycol- Bis- (2-ethylhexanoate) and tetraethylene glycol-bisheptanoate are more preferred, and triethylene glycol-bis- (2-ethylhexanoate) is particularly preferred.
  • the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) may further contain another additive.
  • additives include, for example, water, UV absorbers, antioxidants, adhesion modifiers, brighteners or fluorescent brighteners, stabilizers, dyes, processing aids, organic or inorganic nanoparticles, fired silica. Examples include acids and surfactants.
  • the sheet (A) contains a corrosion inhibitor in order to suppress corrosion of the conductive structure contained in the sheet (A).
  • the corrosion inhibitor is preferably contained in the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2).
  • the amount of the corrosion inhibitor contained in the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is preferably 0.005 to 5 based on the mass of the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2). % By mass.
  • corrosion inhibitors include substituted or unsubstituted benzotriazole.
  • composition constituting the polyvinyl acetal layer (1) and the composition constituting the polyvinyl acetal layer (2) may have the same composition or different compositions.
  • the manufacturing method of a polyvinyl acetal layer (1) and a polyvinyl acetal layer (2) is not specifically limited. After blending the polyvinyl acetal resin, optionally a predetermined amount of plasticizer, and other additives as necessary, and uniformly kneading this, extrusion method, calendar method, press method, casting method, inflation method, etc. A sheet (layer) is produced by a known film forming method, and this can be used as the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2).
  • a method of producing a sheet (layer) using an extruder is particularly preferably employed.
  • the resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C.
  • the resin temperature becomes too high, the polyvinyl acetal resin is decomposed and the content of volatile substances is increased.
  • the temperature is too low, the content of volatile substances increases.
  • the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) may be melt-extruded on the metal foil as described later. Good.
  • the thickness of the polyvinyl acetal layer (1) is preferably 8 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 30 ⁇ m or more. When the thickness of the polyvinyl acetal layer (1) is equal to or more than the above value, a problem that distortion or the like occurs in the conductive structure due to contraction or deformation of the sheet (A) hardly occurs.
  • the thickness of the polyvinyl acetal layer (1) is preferably 800 ⁇ m or less, more preferably 700 ⁇ m or less, and particularly preferably 600 ⁇ m or less.
  • the polyvinyl acetal layer (1) is not more than the above value, when the sheet (A) is wound around the core to form a roll, defects such as wrinkles are formed on the surface of the sheet (A) near the core. It is difficult to occur or a defect such as a crack is generated on the surface of the sheet (A) far from the core.
  • the thickness of the polyvinyl acetal layer (1) is measured using a thickness meter or a laser microscope.
  • the thickness of the polyvinyl acetal layer (2) is preferably 100 ⁇ m or more, more preferably 200 ⁇ m or more, and further preferably 300 ⁇ m or more. When the thickness of the polyvinyl acetal layer (2) is equal to or more than the above value, it is easier to obtain a laminated glass having the safety required for a safety laminated glass.
  • the thickness of the polyvinyl acetal layer (2) is preferably 1100 ⁇ m or less, more preferably 1000 ⁇ m or less, and particularly preferably 900 ⁇ m or less.
  • the thickness of the polyvinyl acetal layer (2) is equal to or less than the above value, when the sheet (A) is wound around the core to form a roll, the surface of the sheet (A) near the core is wrinkled. And defects such as cracks are unlikely to occur on the surface of the sheet (A) far from the core.
  • the thickness of the polyvinyl acetal layer (2) is measured using a thickness meter or a laser microscope.
  • the degree of polymerization of the polyvinyl acetal (1) is smaller than the degree of polymerization of the polyvinyl acetal (2), and the thickness of the polyvinyl acetal layer (1) is smaller than the thickness of the polyvinyl acetal layer (2).
  • the sheet (A) in the present invention is used as an interlayer film for laminated glass, it is preferable because the transition of the plasticizer between layers easily proceeds when producing the laminated glass.
  • the temperature at which tan ⁇ of the composition constituting the polyvinyl acetal layer (1) takes a maximum value is Tg 1
  • the temperature at which tan ⁇ of the composition constituting the polyvinyl acetal layer (2) takes a maximum value is Tg 2.
  • at least one of Tg 1 and Tg 2 is 5 ° C. or higher.
  • At least one of Tg 1 and Tg 2 is more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher.
  • Tg 1 and Tg 2 can be adjusted by the kind of resin and the kind and amount of the plasticizer contained in the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2).
  • Tg 1 and Tg 2 are obtained from the peak temperature of tan ⁇ in the dynamic viscoelasticity measurement.
  • the average surface roughness Rz value is preferably 20 ⁇ m or less, more preferably 5 ⁇ m or less. Particularly preferably, it is 3 ⁇ m or less, and the average length RSm value of the roughness curve element is preferably 500 ⁇ m or more, more preferably 1000 ⁇ m or more, and particularly preferably 1300 ⁇ m or more.
  • the Rz value is equal to or less than the above value and the RSm value is equal to or greater than the above value, uniform printing or coating is possible, and bonding with ink or metal foil or another functional layer, which is a material constituting the conductive structure.
  • the Rz value and the RSm value are measured according to JIS B0601-1994 using a surface roughness meter or a laser microscope.
  • a melt extrusion method for example, a method using a T die, a method for performing inflation molding, or the like
  • a solvent casting method or the like is employed.
  • a metal elastic roll it is more preferable to use a metal elastic roll.
  • seat (A) in this invention is equipped with the electrically conductive structure arrange
  • the thickness of the conductive structure is preferably 1 to 30 ⁇ m, more preferably 2 to 15 ⁇ m, and particularly preferably 3 to 10 ⁇ m from the viewpoints of electrical resistance and ease of manufacture.
  • the thickness of the conductive structure is measured using a thickness meter or a laser microscope.
  • the conductive structure preferably has a linear shape, a lattice shape, or a net shape from the viewpoints of electrical resistance, heat generation performance, electromagnetic wave absorption, optical characteristics, and the like.
  • the line shape include a straight line shape, a wavy line shape, and a zigzag shape.
  • the shape may be single, or a plurality of shapes may be mixed.
  • the conductive structure is a heat generating conductive structure.
  • the conductive structure is preferably composed of a plurality of linear conductive materials having a line width of 0.01 to 5 mm. That is, the line width of the linear conductive material (wiring) constituting the above-described linear, grid or net shape is preferably 0.01 to 5 mm.
  • the line width is more preferably 0.02 to 2 mm, particularly preferably 0.03 to 1 mm.
  • the conductive structure has a plurality of linear conductors having a line width of 1 to 30 ⁇ m from the viewpoint of easily ensuring both a sufficient calorific value and good forward visibility. It is preferable that it is comprised with the property material. That is, the line width of the linear conductive material constituting the above-described linear, grid or net shape is preferably 1 to 30 ⁇ m. The line width is more preferably 2 to 15 ⁇ m, particularly preferably 3 to 12 ⁇ m.
  • the conductive material forming the conductive structure is preferably silver or copper from the viewpoints of ensuring electrical resistance or heat generation and ease of manufacture, and more preferably copper from an economic viewpoint.
  • low reflectance treatment means that the visible light reflectance measured according to JIS R 3106 is 30% or less. From the viewpoint of forward visibility, it is more preferable that the visible light reflectance is 10% or less.
  • the visible light reflectance is less than or equal to the above upper limit value, when a laminated glass is produced by laminating a polyvinyl acetal layer (1) having a conductive structure and a polyvinyl acetal layer (2) as described later, a desired glass is produced. Visible light reflectance is easy to obtain, and when laminated glass is produced, the forward visibility tends to be excellent.
  • the low reflectance treatment method examples include blackening treatment (darkening treatment), browning treatment, and plating treatment.
  • the low reflectance treatment is preferably a blackening treatment. Therefore, from the viewpoint of good forward visibility, it is particularly preferable that one surface, both surfaces, or the entire surface of the conductive structure is blackened so that the visible light reflectance is 10% or less.
  • the blackening treatment is performed using an alkaline blackening solution or the like.
  • the sheet (A) in the present invention may have one or more other functional layers in addition to the conductive structure between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2).
  • the other functional layer is between the polyvinyl acetal layer (1) and the conductive structure and / or between the polyvinyl acetal layer (2) and the conductive structure.
  • an infrared reflection layer for example, an infrared reflection layer, an ultraviolet reflection layer, a color correction layer, an infrared absorption layer, an ultraviolet absorption layer, a fluorescent / light emitting layer, a sound insulation layer, an electrochromic layer, a thermochromic layer, a photochromic layer, a design An elastic layer or a high elastic modulus layer.
  • the thickness of the other functional layer is not particularly limited, and may be set as appropriate according to the desired function.
  • the sheet (A) for example, imparts a conductive structure to the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), and optionally another functional layer and the remaining polyvinyl acetal layer are provided on the conductive structure side. It can be manufactured by bonding.
  • the method for coating, printing or laminating the material is not particularly limited.
  • a method of coating the material for example, a method of coating a conductive structure with a melt of a resin composition constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) (for example, the method described above on a conductive structure)
  • a method for providing a conductive structure for example, a method of coating a conductive structure with a melt of a resin composition constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) (for example, the method described above on a conductive structure)
  • an ink that is dried or cured by heat or light is used before laminating the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) having a conductive structure.
  • a method of laminating the material for example, a method in which a conductive structure and a polyvinyl acetal layer (1) or a polyvinyl acetal layer (2) are stacked and thermocompression bonded; a solvent, a polyvinyl acetal layer (1) or a polyvinyl acetal layer (2) A resin composition solution containing a resin and a solvent is applied to one or both of the conductive structure and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), or the conductive structure and polyvinyl.
  • the multilayer structure of the present invention has an adhesive layer between at least one of the polyvinyl acetal layer (1) and the conductive structure and between the polyvinyl acetal layer (2) and the conductive structure. You may have.
  • the adhesive to be used must be one that does not hinder the transparency of the sheet (A) to be obtained.
  • the sheet (A) in the present invention is formed between the polyvinyl acetal layer (1) and the conductive structure, and the polyvinyl acetal layer ( It is preferable not to have an adhesive layer between 2) and the conductive structure. In this aspect, it is easy to obtain better transparency of the sheet (A) in the present invention, and it is easier to obtain better transparency when a laminated glass is produced using the sheet (A).
  • the ink used in the printing method includes conductive particles and / or conductive fibers.
  • the conductive particles or conductive fibers are not particularly limited, for example, metal particles (for example, gold, silver, copper, zinc, iron or aluminum particles); metal-coated particles or fibers (for example, silver-plated glass fibers or Glass spheres); or particles or fibers of conductive carbon black, carbon nanotubes, graphite or graphene; and the like.
  • the conductive particles may be semiconductor particles such as conductive metal oxide particles, such as particles of indium doped tin oxide, indium doped zinc oxide or antimony doped tin oxide.
  • the ink preferably contains silver particles, copper particles and / or carbon nanotubes from the viewpoint of conductivity, more preferably contains silver particles or copper particles, and particularly contains copper particles from an economic viewpoint. preferable.
  • the conductive structure is preferably a metal foil etching structure.
  • the method of joining the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is performed by, for example, the following methods (I) to (III).
  • the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) may be bonded with an adhesive, but as described above, the adhesive inhibits the transparency of the obtained sheet (A). Must not be. Moreover, as described above, from the viewpoint that haze derived from an adhesive cannot be generated, the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) can be joined without using an adhesive. preferable.
  • the bonding temperature when thermocompression bonding the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) in the method (I) is a resin constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2).
  • the temperature is usually 90 to 170 ° C., preferably 100 to 160 ° C., more preferably 110 to 155 ° C., and still more preferably 110 to 150 ° C.
  • the bonding temperature is within the above range, it is easy to obtain good bonding strength.
  • the resin temperature at the time of extrusion in the above method (II) is preferably 150 to 250 ° C. from the viewpoint of reducing the content of volatile substances in the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), and is preferably 170 to 230 ° C is more preferred.
  • plasticizer usually used for polyvinyl acetal resins.
  • plasticizer those described in the paragraph of ⁇ Plasticizer> above are used.
  • the step of forming a desired shape of the conductive structure from the obtained polyvinyl acetal layer with metal foil (1) or the polyvinyl acetal layer with metal foil (2) is carried out using a known photolithography technique.
  • a dry film resist is first laminated on the metal foil of the polyvinyl acetal layer (1) with metal foil, and then an etching resistance pattern is formed using a photolithography technique.
  • the remaining photoresist layer is removed by a known method.
  • At least one surface of the conductive structure is subjected to a low reflectance treatment.
  • a low reflectance treatment may be performed after the shape of the conductive structure is formed by the photolithography method described above.
  • the low reflectance treatment of the metal foil and the conductive structure can be performed using an alkaline blackening solution or the like as described above.
  • the metal foil preferably contains silver or copper, and more preferably contains copper from an economical viewpoint, from the viewpoints of ensuring electrical resistance or heat generation and manufacturing ease.
  • the metal foil is a copper foil.
  • the sheet (A) in the present invention has another functional layer in addition to the conductive structure between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2)
  • the method for applying the acetal layer (1), the polyvinyl acetal layer (2), the polyvinyl acetal layer with a conductive structure (1) or the polyvinyl acetal layer with a conductive structure (2) is the same as that described above.
  • the same method as that applied to the acetal layer (1) or the polyvinyl acetal layer (2) may be used.
  • another functional layer consists of a resin composition
  • a functional layer different from the resin composition constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is constituted.
  • the method of extruding simultaneously with a resin composition; Or the method of dipping a polyvinyl acetal layer (1) or a polyvinyl acetal layer (2) in the solution of the resin composition which comprises another functional layer is mentioned.
  • the thickness of the sheet (A) is preferably 20 ⁇ m or more, more preferably 80 ⁇ m or more, further preferably 150 ⁇ m or more, still more preferably 350 ⁇ m or more, and particularly preferably 700 ⁇ m or more.
  • the thickness of the sheet (A) is equal to or greater than the above value, the problem that the conductive structure is distorted due to the contraction or deformation of the sheet (A) hardly occurs.
  • the thickness of the sheet (A) is preferably 1700 ⁇ m or less, more preferably 1200 ⁇ m or less, and particularly preferably 900 ⁇ m or less.
  • the thickness of the sheet (A) is not more than the above value, when the amount of plasticizer contained in the polyvinyl acetal layer (1) and the amount of plasticizer contained in the polyvinyl acetal layer (2) are different, more plasticizers The amount of plasticizer transferred from the polyvinyl acetal layer containing the amount of plasticizer to the polyvinyl acetal layer containing less plasticizer amount is reduced, and the decrease in the amount of plasticizer in the polyvinyl acetal layer containing more plasticizer amount is suppressed, Problems such as a large head impact at the time of collision of a vehicle on which the vehicle glass using the sheet (A) is mounted are unlikely to occur.
  • the thickness of the sheet (A) is measured using a thickness meter or a laser microscope.
  • the sheet (A) has a concavo-convex structure on at least one surface thereof.
  • the surface having the concavo-convex structure of the sheet (A) may be any surface on the polyvinyl acetal layer (1) side and the polyvinyl acetal layer (2) side.
  • the average surface roughness Rz value of the surface having the concavo-convex structure is preferably 15 to 70 ⁇ m, more preferably 20 to 50 ⁇ m, and the average length RSm value of the roughness curve element is preferably 100 to 1000 ⁇ m, more preferably 300 to 700 ⁇ m.
  • the multilayer structure of the present invention Sheets (A) are less likely to adhere to each other, and defects such as breakage, peeling, and disconnection in the conductive structure are less likely to occur during laminated glass production.
  • the Rz value and the RSm value are measured according to JIS B0601-1994 using a surface roughness meter or a laser microscope.
  • the concavo-convex structure can be imparted, for example, by embossing the sheet (A) or the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) before imparting the conductive structure between at least one roll pair.
  • the desired average surface roughness Rz value and the average length RSm value of the roughness curve element can be adjusted.
  • two sheets (A) are stacked such that the surface on the polyvinyl acetal layer (1) side and the surface on the polyvinyl acetal layer (2) side are in contact with each other, and perpendicular to the surface at 23 ° C. and 50% RH.
  • the peeling force showing the blocking resistance after applying a pressure of 0.02 MPa for 48 hours in any direction is 30 N / 30 mm or less.
  • the peeling force is more preferably 15 N / 30 mm or less, and particularly preferably 10 N / 30 mm or less.
  • the sheets (A) are more difficult to adhere to each other in the multilayer structure of the present invention, and defects such as breakage, peeling and disconnection in the conductive structure are less likely to occur during laminated glass production.
  • the said peeling force can be adjusted with the uneven
  • the lower limit of the peeling force is 0 N / 30 mm.
  • the multilayer structure of the present invention is a multilayer structure in which two or more sheets (A) overlap each other, and can be used when producing laminated glass.
  • the multilayer structure of the present invention is suitable for storage or transportation because it is in a state in which two or more sheets are rolled and overlapped, or is cut out to a certain size and stacked in two or more.
  • a sheet (A) for example, when unwinding a sheet (A) from a roll, when taking out two or more sheets (A) one by one, and for producing laminated glass
  • the workability is excellent, and defects such as breakage, peeling or disconnection of the conductive structure are extremely unlikely to occur.
  • a laminated glass having both transparency and performance (safety) as a safety laminated glass is produced.
  • a sheet that is easy to adhere between sheets it is possible to prevent the sheet from adhering by interposing a protective film between the sheets so that the above defects do not occur. This causes a problem of increasing waste.
  • the above defects in the conductive structure are very unlikely to occur even if a protective film is not interposed between the sheets (A).
  • the sheet (A) is wound on a winding core in the multilayer structure formed in a roll shape of the present invention.
  • the wound sheet (A) either the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) may be inside.
  • the diameter of the winding core is usually 20 mm or more, preferably 50 mm or more.
  • the diameter of the winding core is usually 500 mm or less.
  • a method for winding the sheet (A) on the core is not particularly limited, and a method usually used as a method for winding the sheet on the core can be adopted.
  • seat (A) between several transparent base materials can be manufactured using the sheet
  • Each wiring of the conductive structure in the laminated glass is connected to the bus bar.
  • a bus bar usually used in the art is used, and examples thereof include a metal foil tape, a metal foil tape with a conductive adhesive, and a conductive paste.
  • the bus bar may be formed by printing the bus bar at the same time when forming the conductive structure or leaving a part of the metal foil as the bus bar.
  • a power supply line is connected to each bus bar, and each power supply line is connected to a power source, so that a current is supplied to the conductive structure.
  • the sheet (A) has a terminal for receiving electric power or an electric signal arranged so as to protrude outward.
  • a terminal normally used in this technical field is used as the terminal.
  • the transparent substrate is preferably an inorganic glass (hereinafter sometimes simply referred to as glass), a methacrylic resin sheet, a polycarbonate resin sheet, a polystyrene resin sheet, or a polyester resin.
  • An organic glass such as a resin sheet or a polycycloolefin-based resin sheet, more preferably an inorganic glass, a methacrylic resin sheet, or a polycarbonate resin sheet, and particularly preferably an inorganic glass.
  • the inorganic glass is not particularly limited, and examples thereof include float glass, tempered glass, semi-tempered glass, chemically tempered glass, green glass, and quartz glass.
  • the surface of the conductive structure subjected to the low reflectance treatment comes to the passenger side from the viewpoint of forward visibility. It is preferable to arrange the sheet (A). Moreover, since there exists a possibility that a water
  • the laminated glass manufactured using the sheet (A) in the present invention has safety required for safety laminated glass.
  • the laminated glass may further include one or more interlayer films for laminated glass (C) between a plurality of transparent substrates, but the production efficiency. From the viewpoint of lowering, it is preferable not to have the interlayer film for laminated glass (C).
  • the interlayer film for laminated glass (C) may be in contact with the polyvinyl acetal layer (1) or may be in contact with the polyvinyl acetal layer (2). Good.
  • the interlayer film for laminated glass (C) is not particularly limited, and a conventionally used interlayer film for laminated glass can be used.
  • a plasticized polyvinyl acetal resin layer comprising a polyvinyl acetal resin and a plasticizer Is mentioned.
  • the polyvinyl acetal resin may be, for example, the polyvinyl acetal resin described in the paragraph of ⁇ Polyvinyl Acetal (1) and Polyvinyl Acetal (2)> and can be produced by the same method as that described in the same paragraph.
  • the plasticizer content in the interlayer film for laminated glass (C) is preferably relative to 100 parts by mass of the resin in the resin composition constituting the interlayer film for laminated glass (C) in the initial state before lamination of the layers. 19 parts by mass or more, more preferably 19 to 56 parts by mass, still more preferably 28 to 47 parts by mass, and particularly preferably 35 to 43 parts by mass.
  • the content of the plasticizer is within the above range, it is easy to obtain a laminated glass excellent in impact resistance.
  • the plasticized polyvinyl acetal resin layer which has a sound-insulation function can also be used as an intermediate film (C) for laminated glass.
  • the content of the plasticizer is preferably 42 parts by mass or more with respect to 100 parts by mass of the resin in the resin composition constituting the interlayer film for laminated glass (C) in the initial state before the layers are laminated.
  • the amount is preferably 42 to 100 parts by mass, more preferably 45 to 67 parts by mass, and particularly preferably 47 to 54 parts by mass.
  • the plasticizers described in the preceding ⁇ Plasticizer> paragraph can be used.
  • the interlayer film for laminated glass (C) may contain the additive described in the previous ⁇ Additive> paragraph, if necessary.
  • the interlayer film for laminated glass (C) can be produced by the method described in the above paragraph ⁇ Method for producing polyvinyl acetal layer (1) and polyvinyl acetal layer (2)>.
  • the thickness of the interlayer film for laminated glass (C) is preferably 100 to 1600 ⁇ m, more preferably 350 to 1200 ⁇ m, and still more preferably 700 to 900 ⁇ m. It is easy to obtain excellent penetration resistance when the thickness of the interlayer film for laminated glass (C) is not less than the above value. The thickness is measured using a thickness meter or a laser microscope.
  • the amount of hydroxyl groups of the polyvinyl acetal resin constituting the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) and the interlayer film for laminated glass (C) are configured.
  • the difference from the amount of hydroxyl groups in the polyvinyl acetal resin is preferably 5 mol% or less, more preferably 3 mol% or less, and particularly preferably 1 mol% or less.
  • the polyvinyl acetal resin constituting the polyvinyl acetal (1), the polyvinyl acetal (2), or the interlayer film for laminated glass (C) is composed of a mixture of a plurality of resins, the average hydroxyl amount of the polyvinyl acetal (1), the polyvinyl acetal ( It is preferable that the average hydroxyl group content of 2) or the average hydroxyl group content of the polyvinyl acetal resin constituting the interlayer film for laminated glass (C) satisfies the above relationship.
  • the refractive index of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) and the interlayer film for laminated glass (C) in an equilibrium state after the plasticizer is transferred in the laminated glass Since the difference is small, when the interlayer film for laminated glass (C), the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) having different dimensions are used, the boundary is difficult to visually recognize, or the sheet (A) And the interface with the interlayer film for laminated glass (C) is difficult to visually recognize.
  • the plasticizer migrated by making a difference between the amount of hydroxyl groups of the polyvinyl acetal (1) and / or polyvinyl acetal (2) and the amount of hydroxyl groups of the polyvinyl acetal resin constituting the interlayer film for laminated glass (C).
  • the amount of plasticizer in the polyvinyl acetal layer (1) and the amount of plasticizer in the interlayer film for laminated glass (C) in the equilibrium state and / or the amount of plasticizer in the polyvinyl acetal layer (2) and the intermediate for laminated glass It is also possible to obtain a laminated glass having excellent sound insulation performance by making a difference with the amount of plasticizer in the film (C).
  • the difference in the amount of the hydroxyl group is preferably 5 mol% or more, more preferably 8 mol% or more.
  • the laminated glass has the functional layer described in ⁇ Other functional layer> in addition to the sheet (A) and optionally the interlayer film for laminated glass (C) between a plurality of transparent substrates.
  • the other functional layer may be in contact with any of the polyvinyl acetal layer (1), the polyvinyl acetal layer (2), and, if present, the interlayer film for laminated glass (C).
  • Laminated glass can be produced by methods known to those skilled in the art. For example, an arbitrary number of sheets (A) and optionally an interlayer film for laminated glass (C) and / or another functional layer are arranged in any order on a transparent substrate, and another transparent group As a pre-compression process, the laminated material is heated to increase the temperature of the sheet (A) and optionally the laminated glass interlayer film (C) and / or another functional layer on the transparent substrate entirely or locally. Laminated glass can be produced by applying it and then processing in an autoclave.
  • the sheet (A) and optionally the interlayer film for laminated glass (C) and / or another functional layer are preliminarily pressure-bonded and placed between two transparent substrates to be fused to each other at a high temperature.
  • laminated glass may be manufactured.
  • a method of degassing under reduced pressure by a method such as a vacuum bag, a vacuum ring, or a vacuum laminator
  • a method of deaeration using a nip roll and a method of compression molding at a high temperature.
  • the vacuum bag method or the vacuum ring method described in EP 1235683 B1 is carried out at about 2 ⁇ 10 4 Pa and 130 to 145 ° C., for example.
  • a vacuum laminator consists of a heatable and vacuumable chamber in which laminated glass is formed within a time period of about 20 minutes to about 60 minutes.
  • a reduced pressure of 1 Pa to 3 ⁇ 10 4 Pa and a temperature of 100 ° C. to 200 ° C., particularly 130 ° C. to 160 ° C. are effective.
  • the treatment in the autoclave may not be performed depending on the temperature and pressure.
  • the treatment in the autoclave is performed, for example, at a pressure of about 1 ⁇ 10 6 Pa to about 1.5 ⁇ 10 6 Pa and a temperature of about 100 ° C. to about 145 ° C. for about 20 minutes to 2 hours.
  • the method of disposing the sheet (A) and optionally the interlayer film for laminated glass (C) and / or another functional layer on the first transparent substrate is not particularly limited, and various methods are applied.
  • the sheet (A) and, optionally, the interlayer film for laminated glass (C) and / or another functional layer may be supplied from a roll having a suitable width and then cut to a desired size. And you may arrange
  • a sheet (A) supplied from a roll and optionally an interlayer film for laminated glass (C) may be joined, heated / stretched, cut and processed into a fan shape.
  • the upper part of the glass may have a so-called color shade region. Therefore, the sheet (A) and / or the interlayer film for laminated glass (C) are extruded together with the correspondingly colored polymer melt, or the sheet (A) and the interlayer film for laminated glass (C). At least one of them may have a partially different coloration. Therefore, the sheet (A) and / or the interlayer film for laminated glass (C) may have a color gradation adapted to the shape of the windshield.
  • the interlayer film for laminated glass (C) may have a wedge-shaped thickness profile.
  • the laminated glass can have a wedge-shaped thickness profile even when the thickness profile of the sheet (A) is a parallel plane, and can be used for a head-up display (HUD) in an automobile windshield.
  • HUD head-up display
  • the interlayer film for laminated glass (C) may be a commercially available plasticized polyvinyl butyral sheet, the interlayer film for laminated glass (C) in which nanoparticles having infrared absorbing ability or reflectivity are dispersed, and colored laminated glass
  • the interlayer film for laminated glass (C) or the interlayer film for laminated glass (C) having a sound insulating function may be used.
  • Laminated glass can be used as laminated glass in buildings or vehicles.
  • Laminated glass in a vehicle means a windshield, a rear glass, a roof glass, a side glass, or the like for a vehicle such as a train, a train, an automobile, a ship, or an aircraft.
  • the haze when light is irradiated from the low-reflectance-treated surface (for example, blackened surface) side of the laminated glass produced using the sheet (A) in the present invention is usually 2.0 or less, preferably 1. It is 8 or less, more preferably 1.5 or less.
  • the haze when light is irradiated from the metallic gloss surface side of the laminated glass produced using the sheet (A) in the present invention is usually 3.0 or less, preferably 2.8 or less, more preferably 2.5. It is as follows. The haze is measured according to JIS R 3106.
  • the haze is reduced by reducing the line width of the conductive structure. It can be adjusted below the upper limit.
  • the plasticizer contained in the polyvinyl acetal layer (1), the plasticizer contained in the polyvinyl acetal layer (2), and / or the laminated glass optionally present.
  • the plasticizer contained in the interlayer film (C) for use moves to other layers as time passes, and the amount of plasticizer contained in the interlayer film for laminated glass (C) when present in each layer and in the equilibrium state is The same level.
  • the amount of plasticizer (average plasticizer amount) at this time is preferably 18 to 35% by mass, more preferably 20 to 30% by mass, and particularly preferably 25 to 29% by mass.
  • the average plasticizer amount is calculated by the following method.
  • A By adjusting the value of ⁇ C, the average plasticizer amount can be adjusted within the above range.
  • the laminated glass produced using the sheet (A) in the present invention is also excellent in transparency. Further, when the sheet (A) is used for producing a laminated glass, defects such as breakage, peeling and disconnection in the conductive structure are extremely difficult to be produced, and the workability is excellent. In addition to the sheet (A), an interlayer film for laminated glass Even if it is not used, the laminated glass provided with the safety
  • Example 1 Polyvinyl butyral resin PVB-1 shown in Table 1 was melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T die, and a 50 ⁇ m thick polyvinyl acetal layer (1) was obtained using a metal elastic roll.
  • polyvinyl butyral resin PVB-2 (100 parts by mass) shown in Table 1, triethylene glycol-bis- (2-ethylhexanoate) (hereinafter referred to as “3G8”) and di (butoxyethyl) adipate 40 parts by mass of a mixture (hereinafter referred to as “DBEA”) (mass ratio 10/1) is melt-kneaded to produce a sheet having a thickness of 800 ⁇ m in the same manner as the polyvinyl acetal layer (1).
  • a concave-convex structure was formed so that the ten-point average surface roughness Rz was 35 ⁇ m to obtain a polyvinyl acetal layer (2).
  • the visible light reflectance of the blackened surface measured according to JIS R 3106 was 5.2%.
  • the upper and lower sides of the laminate in which the polyvinyl acetal resin layer (1) and the copper foil are stacked are sandwiched between PET films having a thickness of 50 ⁇ m and passed between thermocompression-bonding rolls set at 120 ° C. (pressure: 0.2 MPa, After a speed of 0.5 m / min), the PET film was peeled off.
  • the conductive structure has a copper mesh structure in which copper wires having a line width of 10 ⁇ m are arranged in a lattice pattern at intervals of 500 ⁇ m, and the upper and lower sides thereof are connected to a copper wire structure having a width of 5 mm corresponding to a bus bar. It was.
  • the polyvinyl acetal layer (2) was laminated on the obtained conductive structure so that the surface on which the uneven structure was not formed was in contact with the conductive structure, and was laminated to obtain a sheet (A).
  • the following evaluation was performed on the sheet (A). The results are shown in Table 2.
  • Tg 1 , Tg 2 The composition constituting the polyvinyl acetal layer (1) and the composition constituting the polyvinyl acetal layer (2) were respectively press-molded at 150 ° C. and 100 kg / cm 2 for 30 minutes to obtain a sheet having a thickness of 0.8 mm. . The obtained sheet was cut into a width of 3 mm to obtain a dynamic viscoelasticity measurement sample.
  • a dynamic viscoelasticity device (Rheogel-E4000 manufactured by UBM Co., Ltd.) was used and the temperature was increased from ⁇ 50 to 100 ° C. at 3 ° C./min.
  • the analysis was performed in 3 Hz, displacement 75.9 ⁇ m, automatic static load 26 g, and tensile mode.
  • the temperatures at which tan ⁇ of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) were maximized were defined as Tg 1 and Tg 2 , respectively.
  • (Iii) Self-adhesiveness The presence or absence of self-adhesiveness was evaluated, and evaluated according to the following criteria. A: Self-adhesion was not seen. B: Self-attached, but peelable without deformation of the sheet (A). C: Self-attached, and the sheet (A) was deformed when peeled. D: Self-attached, and sheet (A) was significantly deformed or damaged when peeled.
  • the glass and the PET film were removed to obtain a sheet.
  • the obtained sheet was cut into a width of 3 mm to obtain a dynamic viscoelasticity measurement sample.
  • a dynamic viscoelasticity device (Rheogel-E4000 manufactured by UBM Co., Ltd.) was used and the temperature was increased from ⁇ 50 to 100 ° C. at 3 ° C./min. Analysis was performed at 3 Hz, displacement 75.9 ⁇ m, automatic static load 26 g, and tensile mode, and the temperature at which tan ⁇ was maximized was measured and evaluated according to the following criteria. From the viewpoint of safety expression when the sheet (A) is used as an interlayer film for laminated glass, A and B are preferable in this order, and C is not preferable.
  • tan ⁇ peak temperature is 20 ° C. or more and less than 35 ° C.
  • B: tan ⁇ peak temperature is 5 ° C. or more and less than 20 ° C., or 35 ° C. or more and less than 50 ° C.
  • Example 2 Polyvinyl butyral resin PVB-1 (100 parts by mass) and 3G8 (10 parts by mass) shown in Table 1 were melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T die, and a 50 ⁇ m thick polyvinyl acetal layer (1) was obtained using a metal elastic roll. A sheet (A) was obtained in the same manner as in Example 1 except that the obtained polyvinyl acetal layer (1) was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 3 A polyvinyl acetal layer (2) was obtained using 55 parts by mass of di (butoxyethoxyethyl) adipate (hereinafter referred to as “DBEEA”) instead of 40 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1). Except for this, a sheet (A) was obtained in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • DBEEA di (butoxyethoxyethyl) adipate
  • Example 4 A sheet (A) was obtained in the same manner as in Example 1 except that the thickness of the polyvinyl acetal layer (1) was 10 ⁇ m, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 5 A sheet (A) was obtained in the same manner as in Example 1 except that the thickness of the polyvinyl acetal layer (1) was 100 ⁇ m, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 6 A compound in which an average of 3 molecules of propylene oxide is added to 3G8 and 1 molecule of bisphenol A instead of 40 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) (hereinafter referred to as “BP-3P”) A sheet (A) was obtained in the same manner as in Example 1 except that 60 parts by mass of the mixture (mass ratio 3/2) was used to obtain the polyvinyl acetal layer (2), and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 2.
  • Example 7 Polyvinyl butyral resin PVB-2 (100 parts by mass) listed in Table 1 and 40 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) were melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape. And pelletized. The obtained pellets were melt-extruded using a single-screw extruder and a T die, a sheet having a thickness of 400 ⁇ m was produced using a metal elastic roll, and the 10-point average surface roughness Rz on one side was 35 ⁇ m. A concavo-convex structure was formed on to obtain a polyvinyl acetal layer (1).
  • Example 2 A sheet (A) was obtained in the same manner as in Example 1 except that the obtained polyvinyl acetal layer (1) and polyvinyl acetal layer (2) were used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 8 In the production of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2), a sheet (A) was obtained in the same manner as in Example 7 except that the step of forming the concavo-convex structure was not performed. Evaluation was performed. The results are shown in Table 2.
  • Example 9 Polyvinyl butyral resin PVB-2 shown in Table 1 (100 parts by mass) and 30 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) were melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape. And pelletized. The obtained pellets were melt-extruded using a single-screw extruder and a T die, a sheet having a thickness of 400 ⁇ m was produced using a metal elastic roll, and the 10-point average surface roughness Rz on one side was 35 ⁇ m. A concavo-convex structure was formed on to obtain a polyvinyl acetal layer (1).
  • polyvinyl butyral resin PVB-2 100 parts by mass shown in Table 1 and 50 parts by mass of DBEEA were melt-kneaded to prepare a sheet having a thickness of 400 ⁇ m in the same manner as the polyvinyl acetal layer (1), Further, a concavo-convex structure was formed on one side so that the ten-point average surface roughness Rz was 35 ⁇ m, and a polyvinyl acetal layer (2) was obtained.
  • a sheet (A) was obtained in the same manner as in Example 1 except that the obtained polyvinyl acetal layer (1) and polyvinyl acetal layer (2) were used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 10 A sheet (A) was obtained in the same manner as in Example 7 except that the thickness of the polyvinyl acetal layer (1) was 200 ⁇ m and the thickness of the polyvinyl acetal layer (2) was 800 ⁇ m, and the same evaluation as in Example 1 was performed. went. The results are shown in Table 2.
  • Example 11 Sheet (A) in the same manner as in Example 7 except that DBEEA was used in place of the mixture of 3G8 and DBEA (mass ratio 10/1) in preparation of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2). And the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 12 In the production of the polyvinyl acetal layer (1), instead of 3G8 (10 parts by mass), 20 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) was used, and in the production of the polyvinyl acetal layer (2), 3G8 and DBEA The amount of the mixture used (mass ratio 10/1) was 20 parts by mass, and the sheet (A) was prepared in the same manner as in Example 2 except that the treatment for forming irregularities on the surface of the polyvinyl acetal layer (2) was not performed. And the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 13 In the production of the polyvinyl acetal layer (2), a sheet (A) was obtained in the same manner as in Example 1 except that the polyvinyl butyral resin PVB-3 shown in Table 1 was used instead of PVB-2. The same evaluation was performed. The results are shown in Table 2.
  • Example 14 In the production of the polyvinyl acetal layer (2), a sheet (A) was obtained in the same manner as in Example 1 except that the polyvinyl butyral resin PVB-4 shown in Table 1 was used instead of PVB-2. The same evaluation was performed. The results are shown in Table 2.
  • Example 1 A sheet was obtained in the same manner as in Example 1 except that a sheet prepared in the same manner as the polyvinyl acetal layer (1) was used as the polyvinyl acetal layer (2), and the same evaluation as in Example 1 was performed. The results are shown in Table 2. As described later, in Comparative Example 1, in order to impart penetration resistance, it was necessary to use an interlayer film for laminated glass (C) when producing laminated glass. On the other hand, in Comparative Example 2, since the interlayer film for laminated glass (C) was not used, the penetration resistance was poor.
  • Example 4 A sheet was obtained in the same manner as in Example 1 except that the polyvinyl acetal layer (2) was not used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • Example 5 A sheet was obtained in the same manner as in Example 1 except that a PET film having a thickness of 50 ⁇ m was used instead of the polyvinyl acetal layer (1), and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
  • a laminated glass interlayer (C) was placed on the PET film side of the sheet, and then placed between the two glasses.
  • the interlayer film for laminated glass (C) polyvinyl butyral resin PVB-2 (100 parts by mass) shown in Table 1, 3G8 (36.4 parts by mass), DBEEA (3.6 parts by mass) are melt-kneaded, the obtained melt-kneaded product is extruded into a strand shape, pelletized, melt-extruded using a single-screw extruder and a T-die, and a metal elastic roll is used to form a sheet having a thickness of 800 ⁇ m. What was done was used.
  • the obtained laminated glass was cut into a size of 5 cm ⁇ 5 cm, the haze was measured according to JIS R 3106 using a haze meter, and evaluated according to the following criteria. The results are shown in Table 2.
  • a haze value of the laminated glass of 1.0 or less indicates that the transparency of the sheet is high, and a value of 0.6 or less indicates that the transparency of the sheet is very high.
  • C Haze value is more than 0.8 to 1.0 or less
  • D Haze value is more than 1.0

Abstract

Provided is a multilayer structure of sheets having an electroconductive structure, the multilayer structure having exceptional transparency and being usable during production of laminated glass, wherein defects do not readily form in the electroconductive structure during production of laminated glass, and the multilayer structure creates laminated glass that has exceptional workability and is provided with a level of safety required for safe laminated glass. This multilayer structure is obtained by stacking two or more sheets (A) provided with a polyvinyl acetal layer (1) that includes 100 parts by mass of polyvinyl acetal (1) and 0-200 parts by mass of a plasticizer, a polyvinyl acetal layer (2) that includes 100 parts by mass of polyvinyl acetal (2) and 0-200 parts by mass of a plasticizer, and an electroconductive structure that is disposed between the layer (1) and the layer (2), wherein the total plasticizer content included in the sheet (A) is 10-80 parts by mass, where the total polyvinyl acetal (1) and (2) content included in the sheet (A) is 100 parts by mass.

Description

可塑剤含有シートが重なってなる多層構造体Multilayer structure in which plasticizer-containing sheets overlap
 本発明は、導電構造体を有する可塑剤含有シートが2枚以上重なってなる多層構造体に関する。 The present invention relates to a multilayer structure in which two or more plasticizer-containing sheets having a conductive structure are stacked.
 建物または乗物におけるガラス、例えば自動車用途においてはフロントガラス等の着氷や曇りを除去する方法が必要とされており、従来、この方法としてガラスに熱風を当てる方法が知られている。しかし、この方法では、十分な前方視認性を得るのに時間がかかる等の問題がある。特に着氷や曇りの除去にガソリン燃料の燃焼熱を利用できない電気自動車においては、電気で空気を加熱し、ガラスに熱風を当てる方法では効率が悪く、航続距離の低下に直結するといった問題がある。 A method for removing icing and fogging of windshields or the like is required for glass in buildings or vehicles, such as automobiles, and conventionally, a method of applying hot air to glass is known as this method. However, this method has a problem that it takes time to obtain sufficient forward visibility. Especially in electric vehicles that cannot use the combustion heat of gasoline fuel to remove icing and fogging, there is a problem that the method of heating air with electricity and applying hot air to glass is inefficient and directly leads to a decrease in cruising distance. .
 そこで、ガラスに導電構造体を設置し通電することで、着氷や曇りを除去する方法が提案されている。例えば特許文献1には、透明基材、前記透明基材の少なくとも一面に備えられた接着剤層、前記接着剤層上に備えられた導電性発熱線、前記導電性発熱線および前記発熱線によって覆われていない接着剤層の上面をカプセル化するコーティング膜、前記導電性発熱線と電気的に連結したバスバー、および前記バスバーと連結した電源部を含む発熱体が記載されており、具体的には、透明基材としてPET(ポリエチレンテレフタレート)フィルムを使用した例が記載されている。また、例えば特許文献2には、2枚の透明なプレートの間に少なくとも1枚のシートAと少なくとも1枚のシートBとを配置し接着して、導電構造体を有する合わせガラスを製造する方法であって、シートAはポリビニルアセタールPAと可塑剤WAとを含有し、かつ不連続の導電構造体を有しており、シートBはポリビニルアセタールPBと可塑剤WBとを含有する方法が記載されている。 Therefore, there has been proposed a method of removing icing and fogging by installing a conductive structure on glass and energizing it. For example, Patent Document 1 includes a transparent base material, an adhesive layer provided on at least one surface of the transparent base material, a conductive heating wire provided on the adhesive layer, the conductive heating wire, and the heating wire. A heating film including a coating film that encapsulates an upper surface of an uncovered adhesive layer, a bus bar electrically connected to the conductive heating wire, and a power supply unit connected to the bus bar is described. Describes an example using a PET (polyethylene terephthalate) film as a transparent substrate. For example, Patent Document 2 discloses a method of manufacturing a laminated glass having a conductive structure by disposing and bonding at least one sheet A and at least one sheet B between two transparent plates. The sheet A contains a polyvinyl acetal PA and a plasticizer WA, and has a discontinuous conductive structure, and the sheet B describes a method containing a polyvinyl acetal PB and a plasticizer WB. ing.
特開2000-119047号公報JP 2000-119047 A 特表2016-539905号公報Special table 2016-539905 gazette
 ところで、導電構造体を有する合わせガラスを作製する場合、導電構造体を有する樹脂シートを用いることがある。かかる導電構造体を有する樹脂シートは、任意の導電構造体を有することができ、経済的な方法で製造できるが、運搬時または保管時のより良好な取扱い性が求められることがあった。導電構造体を有する樹脂シートは、生産現場から使用現場まで運搬する際、および生産現場または使用現場で保管する際に、ロール状に巻き取ったり切り出して2枚以上重ねたりして、コンパクトな状態にしておくことが取扱い性の観点から好ましい。しかしながらそのような形態で運搬または保管した場合、樹脂シート同士が重ね合わさった部分で導電構造体が破断したり、樹脂シートから剥離したりすることがあり、さらには導電構造体が重なった樹脂シートに接着し、樹脂シートをロールから引出す際に導電構造体が断線することがあった。このような導電構造体の破断、剥離または断線は、最終的に得られる合わせガラスにおいて外観を損なう原因、並びに通電性および加熱性能が低減する原因となる。また、従来の導電構造体を有する樹脂シートのみでは安全合わせガラスとしての性能(安全性)は不十分な場合があり、その場合は一般的に使用される合わせガラス用中間膜を併用する必要があるが、合わせガラス用中間膜を併用する場合、合わせガラスを作製する工程において樹脂シートと合わせガラス用中間膜の両方をガラスの大きさに切り出し、それらをガラスの間に挟む、といった多くの工程が必要となり、作業性の点で好ましくない。特に近年の自動化された合わせガラス用中間膜の製造工程において、合わせガラス用中間膜に加えて別の樹脂シートを用いる場合には製造工程の大幅な変更を行う必要があり、そのような変更は困難であった。 By the way, when producing a laminated glass having a conductive structure, a resin sheet having a conductive structure may be used. A resin sheet having such a conductive structure can have any conductive structure and can be produced by an economical method, but better handling during transportation or storage may be required. When transporting from production site to use site and when storing at production site or use site, the resin sheet with conductive structure is rolled up or cut into two or more sheets and stacked in a compact state. It is preferable from the viewpoint of handleability. However, when transported or stored in such a form, the conductive structure may break or peel from the resin sheet at the part where the resin sheets overlap each other, and further the resin sheet on which the conductive structure overlaps When the resin sheet is pulled out from the roll, the conductive structure may be disconnected. Such breakage, peeling, or disconnection of the conductive structure is a cause of deteriorating the appearance of the finally obtained laminated glass and a cause of reducing the conductivity and heating performance. Moreover, the performance (safety) as a safety laminated glass may be insufficient only with a resin sheet having a conventional conductive structure, and in that case, it is necessary to use a commonly used interlayer film for laminated glass. However, when using an interlayer film for laminated glass together, many processes such as cutting out both the resin sheet and the interlayer film for laminated glass into a glass size in the process of producing the laminated glass and sandwiching them between the glass Is necessary, which is not preferable in terms of workability. In particular, in the process of manufacturing an automated interlayer film for laminated glass in recent years, if another resin sheet is used in addition to the interlayer film for laminated glass, it is necessary to make a significant change in the manufacturing process. It was difficult.
 本発明は前記課題を解決するものである。即ち、本発明は、透明性に優れ、合わせガラス作製時に使用できる、導電構造体を有するシートの多層構造体であって、合わせガラス作製時に、導電構造体における破断、剥離および断線等の欠陥が生じにくく、また作業性に優れ、安全合わせガラスに求められる安全性を備えた合わせガラスをもたらす、多層構造体を提供することを目的とする。 The present invention solves the above problems. That is, the present invention is a multi-layer structure of a sheet having a conductive structure that has excellent transparency and can be used in the production of laminated glass, and has defects such as breakage, peeling and disconnection in the conductive structure during the production of laminated glass. An object of the present invention is to provide a multilayer structure that is less likely to occur, has excellent workability, and provides a laminated glass having safety required for a laminated safety glass.
 本発明者らは、前記課題を解決するために、2つのポリビニルアセタール層の間に配置された導電構造体を備えるシートが重なってなる多層構造体について詳細に検討を重ね、本発明を完成させるに至った。 In order to solve the above problems, the present inventors have studied in detail a multilayer structure in which sheets having a conductive structure disposed between two polyvinyl acetal layers are overlapped to complete the present invention. It came to.
 即ち、本発明は、以下の好適な態様を包含する。
〔1〕ポリビニルアセタール(1)100質量部および可塑剤0~200質量部を含むポリビニルアセタール層(1)と、ポリビニルアセタール(2)100質量部および可塑剤0~200質量部を含むポリビニルアセタール層(2)と、前記ポリビニルアセタール層(1)および前記ポリビニルアセタール層(2)の間に配置された導電構造体とを備えるシート(A)が2枚以上重なってなる多層構造体であって、シート(A)に含まれるポリビニルアセタール(1)およびポリビニルアセタール(2)の合計含有量を100質量部とした場合、シート(A)に含まれる可塑剤の合計含有量が10~80質量部である多層構造体。
〔2〕前記ポリビニルアセタール層(1)に含まれる可塑剤の含有量、および前記ポリビニルアセタール層(2)に含まれる可塑剤の含有量の少なくとも一方が10質量部以上である、前記〔1〕の多層構造体。
〔3〕前記ポリビニルアセタール層(1)に含まれる可塑剤の含有量、および前記ポリビニルアセタール層(2)に含まれる可塑剤の含有量の一方が0質量部以上10質量部以下であり、もう一方が10質量部以上80質量部以下である、前記〔1〕または〔2〕の多層構造体。
〔4〕前記シート(A)がその少なくとも一方の表面に凹凸構造を有する、前記〔1〕~〔3〕のいずれかの多層構造体。
〔5〕前記シート(A)の少なくとも一方の表面の平均表面粗さが15~70μmである、前記〔4〕の多層構造体。
〔6〕ロール状に重なってなる多層構造体において、前記シート(A)が巻芯上に巻回されている、前記〔1〕~〔5〕のいずれかの多層構造体。
〔7〕前記導電構造体が発熱用導電構造体である、前記〔1〕~〔6〕のいずれかの多層構造体。
〔8〕前記導電構造体が金属箔のエッチング構造体である、前記〔1〕~〔7〕のいずれかの多層構造体。
〔9〕前記金属箔が銅を含む、前記〔8〕の多層構造体。
〔10〕前記多層構造体が、前記ポリビニルアセタール層(1)と前記導電構造体との間、および前記ポリビニルアセタール層(2)と前記導電構造体との間の少なくとも一方に、接着剤層を有する、前記〔1〕~〔9〕のいずれかの多層構造体。
〔11〕前記多層構造体が、前記ポリビニルアセタール層(1)と前記導電構造体との間、および前記ポリビニルアセタール層(2)と前記導電構造体との間に、接着剤層を有さない、前記〔1〕~〔9〕のいずれかの多層構造体。
〔12〕前記ポリビニルアセタール(1)および前記ポリビニルアセタール(2)の少なくとも一方の重合度が800以上である、前記〔1〕~〔11〕のいずれかの多層構造体。
〔13〕前記ポリビニルアセタール(1)の重合度が1500未満であり、前記ポリビニルアセタール(2)の重合度が1500以上である、前記〔1〕~〔12〕のいずれかの多層構造体。
〔14〕前記ポリビニルアセタール(1)が式(1):
Figure JPOXMLDOC01-appb-C000003
で表される構造を有し、前記ポリビニルアセタール(2)が式(2):
Figure JPOXMLDOC01-appb-C000004
で表される構造を有し、式中、R1およびR2は、それぞれ独立して、水素原子、脂肪族炭化水素基または芳香族炭化水素基であり、R1とR2の炭素数は同一である、前記〔1〕~〔13〕のいずれかの多層構造体。
〔15〕前記ポリビニルアセタール(1)のアセタール化度をAモル%とし、前記ポリビニルアセタール(2)のアセタール化度をAモル%とした場合、AとAの差の絶対値が5モル%未満である、前記〔1〕~〔14〕のいずれかの多層構造体。
〔16〕前記ポリビニルアセタール(1)の水酸基量をHモル%とし、前記ポリビニルアセタール(2)の水酸基量をHモル%とした場合、HとHの差の絶対値が5モル%未満である、前記〔1〕~〔15〕のいずれかの多層構造体。
〔17〕前記ポリビニルアセタール層(1)における可塑剤の含有量が、前記ポリビニルアセタール層(2)における可塑剤の含有量より小さく、前記ポリビニルアセタール(1)の重合度がポリビニルアセタール(2)の重合度より小さい、前記〔1〕~〔16〕のいずれかの多層構造体。
〔18〕前記可塑剤がエーテルエステル系化合物を含む、前記〔1〕~〔17〕のいずれかの多層構造体。
〔19〕前記シート(A)2枚を、ポリビニルアセタール層(1)側の表面とポリビニルアセタール層(2)側の表面とが接するように重ね、23℃、50%RH下、表面に垂直な向きに0.02MPaの圧力を48時間加えた後の耐ブロッキング性を示す剥離力が30N/30mm以下である、前記〔1〕~〔18〕のいずれかの多層構造体。
〔20〕前記ポリビニルアセタール(1)の重合度が前記ポリビニルアセタール(2)の重合度より小さく、前記ポリビニルアセタール層(1)の厚さが前記ポリビニルアセタール層(2)の厚さより小さい、前記〔1〕~〔19〕のいずれかの多層構造体。
〔21〕前記ポリビニルアセタール層(1)を構成する組成物のtanδが極大値をとる温度をTg、前記ポリビニルアセタール層(2)を構成する組成物のtanδが極大値をとる温度をTgとした場合、TgおよびTgの少なくとも一方が5℃以上である、前記〔1〕~〔20〕のいずれかの多層構造体。
〔22〕前記シート(A)が、その外側に突出して配置された電力または電気信号受給用の端子を有する、前記〔1〕~〔21〕のいずれかの多層構造体。
That is, the present invention includes the following preferred embodiments.
[1] Polyvinyl acetal layer (1) containing 100 parts by mass of polyvinyl acetal (1) and 0 to 200 parts by mass of plasticizer, and polyvinyl acetal layer containing 100 parts by mass of polyvinyl acetal (2) and 0 to 200 parts by mass of plasticizer (2) and a multilayer structure in which two or more sheets (A) comprising the polyvinyl acetal layer (1) and the conductive structure disposed between the polyvinyl acetal layer (2) are overlapped, When the total content of the polyvinyl acetal (1) and the polyvinyl acetal (2) contained in the sheet (A) is 100 parts by mass, the total content of the plasticizer contained in the sheet (A) is 10 to 80 parts by mass. A multilayer structure.
[2] At least one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 10 parts by mass or more. Multilayer structure.
[3] One of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 to 10 parts by mass, and The multilayer structure according to [1] or [2], wherein one is 10 parts by mass or more and 80 parts by mass or less.
[4] The multilayer structure according to any one of [1] to [3], wherein the sheet (A) has an uneven structure on at least one surface thereof.
[5] The multilayer structure according to [4], wherein the average surface roughness of at least one surface of the sheet (A) is 15 to 70 μm.
[6] The multilayer structure according to any one of [1] to [5], wherein the sheet (A) is wound on a winding core in a multilayer structure formed in a roll shape.
[7] The multilayer structure according to any one of [1] to [6], wherein the conductive structure is a heat generating conductive structure.
[8] The multilayer structure according to any one of [1] to [7], wherein the conductive structure is an etching structure of a metal foil.
[9] The multilayer structure according to [8], wherein the metal foil contains copper.
[10] The multilayer structure includes an adhesive layer between at least one of the polyvinyl acetal layer (1) and the conductive structure and between the polyvinyl acetal layer (2) and the conductive structure. A multilayer structure according to any one of the above [1] to [9].
[11] The multilayer structure does not have an adhesive layer between the polyvinyl acetal layer (1) and the conductive structure, and between the polyvinyl acetal layer (2) and the conductive structure. The multilayer structure according to any one of [1] to [9].
[12] The multilayer structure according to any one of [1] to [11], wherein the degree of polymerization of at least one of the polyvinyl acetal (1) and the polyvinyl acetal (2) is 800 or more.
[13] The multilayer structure according to any one of [1] to [12], wherein the degree of polymerization of the polyvinyl acetal (1) is less than 1500 and the degree of polymerization of the polyvinyl acetal (2) is 1500 or more.
[14] The polyvinyl acetal (1) is represented by the formula (1):
Figure JPOXMLDOC01-appb-C000003
The polyvinyl acetal (2) has the structure represented by formula (2):
Figure JPOXMLDOC01-appb-C000004
Wherein R1 and R2 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and R1 and R2 have the same carbon number. The multilayer structure according to any one of [1] to [13].
[15] When the degree of acetalization of the polyvinyl acetal (1) is A 1 mol% and the degree of acetalization of the polyvinyl acetal (2) is A 2 mol%, the absolute value of the difference between A 1 and A 2 is The multilayer structure according to any one of [1] to [14], which is less than 5 mol%.
[16] When the amount of hydroxyl group of the polyvinyl acetal (1) is 1 mol% and the amount of hydroxyl group of the polyvinyl acetal (2) is 2 mol%, the absolute value of the difference between H 1 and H 2 is 5 mol. % Of the multilayer structure according to any one of [1] to [15].
[17] The plasticizer content in the polyvinyl acetal layer (1) is smaller than the plasticizer content in the polyvinyl acetal layer (2), and the degree of polymerization of the polyvinyl acetal (1) is that of the polyvinyl acetal (2). The multilayer structure according to any one of [1] to [16], which has a degree of polymerization smaller than that.
[18] The multilayer structure according to any one of [1] to [17], wherein the plasticizer includes an ether ester compound.
[19] Two sheets (A) are stacked so that the surface on the polyvinyl acetal layer (1) side and the surface on the polyvinyl acetal layer (2) side are in contact with each other, and are perpendicular to the surface at 23 ° C. and 50% RH. The multilayer structure according to any one of the above [1] to [18], wherein the peeling force showing blocking resistance after applying a pressure of 0.02 MPa for 48 hours in the direction is 30 N / 30 mm or less.
[20] The degree of polymerization of the polyvinyl acetal (1) is smaller than the degree of polymerization of the polyvinyl acetal (2), and the thickness of the polyvinyl acetal layer (1) is smaller than the thickness of the polyvinyl acetal layer (2). [1] A multilayer structure according to any one of [19].
[21] Tg 1 is a temperature at which tan δ of the composition constituting the polyvinyl acetal layer (1) takes a maximum value, and Tg 2 is a temperature at which tan δ of the composition constituting the polyvinyl acetal layer (2) takes a maximum value. The multilayer structure according to any one of [1] to [20], wherein at least one of Tg 1 and Tg 2 is 5 ° C. or higher.
[22] The multilayer structure according to any one of [1] to [21], wherein the sheet (A) has a terminal for receiving an electric power or an electric signal disposed so as to protrude outward.
 本発明により、透明性に優れ、合わせガラス作製時に使用できる、導電構造体を有するシートの多層構造体であって、合わせガラスの作製時に、導電構造体における破断、剥離および断線等の欠陥が生じにくく、また作業性に優れ、安全合わせガラスに求められる安全性を備えた合わせガラスをもたらす多層構造体が提供される。 According to the present invention, it is a multilayer structure of a sheet having a conductive structure that has excellent transparency and can be used in the production of laminated glass, and when the laminated glass is produced, defects such as breakage, peeling and disconnection occur in the conductive structure. A multilayer structure that provides a laminated glass that is difficult and has excellent workability and has the safety required for a laminated safety glass is provided.
 本発明の多層構造体は、シート(A)が2枚以上重なってなる多層構造体である。本発明において、「シート(A)が2枚以上重なってなる多層構造体」とは、シート(A)をある程度のサイズに切り出して2枚以上重ねた状態のもの、またはロール状に巻かれることによりシート(A)が2枚以上重なっている状態(すなわち、ロール状に重なってなる状態)のものを意味する。前記シート(A)は、ポリビニルアセタール(1)100質量部および可塑剤0~200質量部を含むポリビニルアセタール層(1)と、ポリビニルアセタール(2)100質量部および可塑剤0~200質量部を含むポリビニルアセタール層(2)と、前記ポリビニルアセタール層(1)および前記ポリビニルアセタール層(2)の間に配置された導電構造体とを備えており、シート(A)に含まれるポリビニルアセタール(1)およびポリビニルアセタール(2)の合計含有量を100質量部とした場合、シート(A)に含まれる可塑剤の合計含有量は10~80質量部である。 The multilayer structure of the present invention is a multilayer structure in which two or more sheets (A) are overlapped. In the present invention, the “multilayer structure in which two or more sheets (A) are overlapped” means that the sheet (A) is cut into a certain size and two or more sheets are stacked or wound in a roll shape. Means a state in which two or more sheets (A) are overlapped (that is, a state in which they are overlapped in a roll shape). The sheet (A) comprises 100 parts by weight of polyvinyl acetal (1) and a polyvinyl acetal layer (1) containing 0 to 200 parts by weight of a plasticizer, 100 parts by weight of polyvinyl acetal (2) and 0 to 200 parts by weight of a plasticizer. A polyvinyl acetal layer (2), a polyvinyl acetal layer (1), and a conductive structure disposed between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2). ) And polyvinyl acetal (2) in a total content of 100 parts by mass, the total content of the plasticizer contained in the sheet (A) is 10 to 80 parts by mass.
<ポリビニルアセタール(1)およびポリビニルアセタール(2)>
 ポリビニルアセタール(1)およびポリビニルアセタール(2)としては、ポリビニルアルコールまたはエチレンビニルアルコールコポリマー等のポリビニルアルコール系樹脂のアセタール化によって製造されるポリビニルアセタール樹脂を使用できる。ポリビニルアセタール(1)を構成するポリビニルアセタール樹脂およびポリビニルアセタール(2)を構成するポリビニルアセタール樹脂は、同一であっても異なっていてもよい。
<Polyvinyl acetal (1) and polyvinyl acetal (2)>
As the polyvinyl acetal (1) and the polyvinyl acetal (2), a polyvinyl acetal resin produced by acetalization of a polyvinyl alcohol resin such as polyvinyl alcohol or an ethylene vinyl alcohol copolymer can be used. The polyvinyl acetal resin constituting the polyvinyl acetal (1) and the polyvinyl acetal resin constituting the polyvinyl acetal (2) may be the same or different.
 ポリビニルアセタール(1)は、1つのポリビニルアセタール樹脂から構成されていてもよく、重合度、アセタール化度、アセチル基量、水酸基量、エチレン含有量、アセタール化に用いられるアルデヒドの分子量、および鎖長のうちいずれか1つ以上がそれぞれ異なる2つ以上のポリビニルアセタール樹脂から構成されていてもよい。ポリビニルアセタール(1)が異なる2つ以上のポリビニルアセタール樹脂から構成される場合、溶融成形の容易性の観点、並びに合わせガラス作製時の導電構造体の変形、および合わせガラス使用時のガラスのずれ等を防ぐ観点から、ポリビニルアセタール(1)は、重合度の異なる2つ以上のポリビニルアセタール樹脂の混合物であるか、または粘度平均重合度の異なる少なくとも2つのポリビニルアルコール系樹脂の混合物のアセタール化物であることが好ましい。本段落で述べた事項は、ポリビニルアセタール(2)についても同様である。 The polyvinyl acetal (1) may be composed of a single polyvinyl acetal resin. The degree of polymerization, the degree of acetalization, the amount of acetyl groups, the amount of hydroxyl groups, the ethylene content, the molecular weight of the aldehyde used for acetalization, and the chain length Any one or more of them may be composed of two or more different polyvinyl acetal resins. When the polyvinyl acetal (1) is composed of two or more polyvinyl acetal resins different from each other, from the viewpoint of ease of melt molding, deformation of the conductive structure during the production of laminated glass, deviation of the glass when using the laminated glass, etc. From the viewpoint of preventing the above, the polyvinyl acetal (1) is a mixture of two or more polyvinyl acetal resins having different polymerization degrees or an acetalization product of a mixture of at least two polyvinyl alcohol resins having different viscosity average polymerization degrees. It is preferable. The matters described in this paragraph are the same for the polyvinyl acetal (2).
 ポリビニルアセタール(1)およびポリビニルアセタール(2)は、例えば次のような方法によって製造できるが、これに限定されない。まず、濃度3~30質量%のポリビニルアルコールまたはエチレンビニルアルコールコポリマーの水溶液を、80~100℃の温度範囲で保持した後、10~60分かけて徐々に冷却する。温度が-10~30℃まで低下したところで、アルデヒドおよび酸触媒を添加し、温度を一定に保ちながら30~300分間アセタール化反応を行う。次に、反応液を30~200分かけて20~80℃の温度まで昇温し、30~300分保持する。その後、反応液を必要に応じて濾過した後、アルカリ等の中和剤を添加して中和し、樹脂を濾過、水洗および乾燥することで、ポリビニルアセタール樹脂を得る。 Polyvinyl acetal (1) and polyvinyl acetal (2) can be produced, for example, by the following method, but are not limited thereto. First, an aqueous solution of polyvinyl alcohol or ethylene vinyl alcohol copolymer having a concentration of 3 to 30% by mass is maintained in a temperature range of 80 to 100 ° C. and then gradually cooled over 10 to 60 minutes. When the temperature drops to −10 to 30 ° C., an aldehyde and an acid catalyst are added, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant. Next, the temperature of the reaction solution is raised to a temperature of 20 to 80 ° C. over 30 to 200 minutes and held for 30 to 300 minutes. Then, after filtering a reaction liquid as needed, neutralizing agents, such as an alkali, are added and neutralized, and a polyvinyl acetal resin is obtained by filtering resin, washing with water, and drying.
 アセタール化反応に用いる酸触媒は特に限定されず、酢酸、パラトルエンスルホン酸、硝酸、硫酸および塩酸等の有機酸および無機酸を使用できる。中でも、酸の強度および洗浄時の除去のしやすさの観点から、塩酸、硫酸および硝酸が好ましい。 The acid catalyst used in the acetalization reaction is not particularly limited, and organic acids and inorganic acids such as acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid and hydrochloric acid can be used. Among these, hydrochloric acid, sulfuric acid, and nitric acid are preferable from the viewpoint of acid strength and ease of removal during washing.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)は、少なくとも1つのポリビニルアルコール系樹脂が、2~10個の炭素原子を有する1つ以上のアルデヒドまたはケト化合物によりアセタール化されたものであることが好ましい。上記ポリビニルアルコール系樹脂としては、ポリビニルアルコールおよびエチレンビニルアルコールコポリマー等が挙げられ、ポリビニルアルコールが好ましい。また、上記アルデヒドまたはケト化合物は、直鎖状、分岐状および環状のいずれでもよく、直鎖状または分岐状であることが好ましく、直鎖状の脂肪族アルデヒドであることがより好ましく、n-ブチルアルデヒドであることが特に好ましい。上記態様であるとき、ポリビニルアセタール(1)およびポリビニルアセタール(2)は、好適な破断エネルギーを有する傾向にある。また、ポリビニルアセタール(1)およびポリビニルアセタール(2)は、複数のアルデヒドまたはケト化合物の混合物によるアセタール化物であってもよく、該混合物におけるn-ブチルアルデヒドの含有量は50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上が特に好ましく、100質量%であってもよい。 The polyvinyl acetal (1) and the polyvinyl acetal (2) are preferably those obtained by acetalizing at least one polyvinyl alcohol-based resin with one or more aldehydes or keto compounds having 2 to 10 carbon atoms. . Examples of the polyvinyl alcohol-based resin include polyvinyl alcohol and ethylene vinyl alcohol copolymer, and polyvinyl alcohol is preferable. The aldehyde or keto compound may be linear, branched or cyclic, preferably linear or branched, more preferably a linear aliphatic aldehyde, n- Particularly preferred is butyraldehyde. When it is the said aspect, polyvinyl acetal (1) and polyvinyl acetal (2) tend to have suitable breaking energy. Further, the polyvinyl acetal (1) and the polyvinyl acetal (2) may be an acetalized product of a mixture of a plurality of aldehydes or keto compounds, and the content of n-butyraldehyde in the mixture is preferably 50% by mass or more, 80 mass% or more is more preferable, 95 mass% or more is further more preferable, 99 mass% or more is especially preferable, and 100 mass% may be sufficient.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)の製造に使用されるポリビニルアルコール系樹脂は、単独であってもよく、粘度平均重合度若しくは加水分解度等が異なる2つ以上のポリビニルアルコール系樹脂の混合物であってもよい。上記ポリビニルアルコール系樹脂の粘度平均重合度は、好ましくは400以上、より好ましくは800以上、さらに好ましくは1000以上、特に好ましくは1300以上、最も好ましくは1500以上である。上記粘度平均重合度が上記下限値以上であると、合わせガラス作製時に導電構造体の変形および断線が抑制されやすく、得られる合わせガラスにおいて熱によりガラスがずれる現象が防止されやすい。また、上記粘度平均重合度は、好ましくは5000以下、より好ましくは3000以下、さらに好ましくは2500以下、特に好ましくは2300以下、最も好ましくは2000以下である。上記粘度平均重合度が上記上限値以下であると良好な製膜性を得やすい。上記粘度平均重合度は、JIS K 6726「ポリビニルアルコール試験方法」に基づいて測定される。上記ポリビニルアルコール系樹脂が異なる2つ以上のポリビニルアルコール樹脂から構成される場合、少なくとも1つのポリビニルアルコール系樹脂の粘度平均重合度が、前記下限値以上かつ前記上限値以下であることが好ましい。 The polyvinyl alcohol resin used in the production of the polyvinyl acetal (1) and the polyvinyl acetal (2) may be a single resin, or two or more polyvinyl alcohol resins having different viscosity average polymerization degrees or hydrolysis degrees. It may be a mixture. The viscosity average polymerization degree of the polyvinyl alcohol resin is preferably 400 or more, more preferably 800 or more, further preferably 1000 or more, particularly preferably 1300 or more, and most preferably 1500 or more. When the viscosity average polymerization degree is equal to or higher than the lower limit, deformation and disconnection of the conductive structure are easily suppressed during the production of the laminated glass, and the phenomenon that the glass is displaced due to heat in the obtained laminated glass is easily prevented. The viscosity average degree of polymerization is preferably 5000 or less, more preferably 3000 or less, further preferably 2500 or less, particularly preferably 2300 or less, and most preferably 2000 or less. When the viscosity average polymerization degree is not more than the above upper limit value, it is easy to obtain good film forming properties. The viscosity average degree of polymerization is measured based on JIS K 6726 “Testing method for polyvinyl alcohol”. When the polyvinyl alcohol resin is composed of two or more different polyvinyl alcohol resins, the viscosity average polymerization degree of at least one polyvinyl alcohol resin is preferably not less than the lower limit and not more than the upper limit.
 好ましい一態様では、ポリビニルアセタール(1)およびポリビニルアセタール(2)の少なくとも一方の重合度は800以上であり、より好ましくは900以上、さらに好ましくは1000以上、特に好ましくは1300以上、最も好ましくは1500以上である。この態様における重合度の好ましい上限値は、上記したポリビニルアルコール系樹脂の粘度平均重合度の好ましい上限値と同じである。ポリビニルアセタール(1)およびポリビニルアセタール(2)の少なくとも一方の重合度が上記下限値以上であると、合わせガラス作製時に導電構造体の変形および断線が抑制されやすく、得られる合わせガラスにおいて熱によりガラスがずれる現象が防止されやすい。本発明において、ポリビニルアセタール樹脂の重合度は、JIS K6728(1977)に基づき測定した値を意味する。 In a preferred embodiment, the degree of polymerization of at least one of the polyvinyl acetal (1) and the polyvinyl acetal (2) is 800 or more, more preferably 900 or more, still more preferably 1000 or more, particularly preferably 1300 or more, and most preferably 1500. That's it. The preferable upper limit value of the polymerization degree in this embodiment is the same as the preferable upper limit value of the viscosity average polymerization degree of the polyvinyl alcohol resin. When the degree of polymerization of at least one of the polyvinyl acetal (1) and the polyvinyl acetal (2) is equal to or higher than the lower limit, deformation and disconnection of the conductive structure are easily suppressed during the production of the laminated glass, and the resulting laminated glass is heated by heat. The phenomenon of slippage is easily prevented. In the present invention, the degree of polymerization of the polyvinyl acetal resin means a value measured based on JIS K6728 (1977).
 好ましい一態様では、ポリビニルアセタール(1)の重合度は1500未満であり、ポリビニルアセタール(2)の重合度は1500以上である。ポリビニルアセタール(1)の重合度は、より好ましくは1450未満、さらに好ましくは1400未満、特に好ましくは1350未満、最も好ましくは1300未満である。ポリビニルアセタール(2)の重合度は、より好ましくは1550以上、さらに好ましくは1580以上、特に好ましくは1600以上、最も好ましくは1620以上である。ポリビニルアセタール(1)の重合度が上記上限値未満であって、ポリビニルアセタール(2)の重合度が上記下限値以上であると、シート(A)を合わせガラス用中間膜として用いる場合、透明性に優れ、耐貫通性に優れるものを得やすい。この態様におけるポリビニルアセタール(1)の重合度の好ましい下限値は、上記したポリビニルアルコール系樹脂の粘度平均重合度の好ましい下限値と同じであり、ポリビニルアセタール(2)の重合度の好ましい上限値は、上記したポリビニルアルコール系樹脂の粘度平均重合度の好ましい上限値と同じである。 In a preferred embodiment, the degree of polymerization of polyvinyl acetal (1) is less than 1500, and the degree of polymerization of polyvinyl acetal (2) is 1500 or more. The degree of polymerization of the polyvinyl acetal (1) is more preferably less than 1450, even more preferably less than 1400, particularly preferably less than 1350, and most preferably less than 1300. The degree of polymerization of the polyvinyl acetal (2) is more preferably 1550 or more, further preferably 1580 or more, particularly preferably 1600 or more, and most preferably 1620 or more. When the polymerization degree of the polyvinyl acetal (1) is less than the above upper limit value and the polymerization degree of the polyvinyl acetal (2) is not less than the above lower limit value, when the sheet (A) is used as an interlayer film for laminated glass, the transparency Excellent in penetration resistance. The preferable lower limit of the degree of polymerization of the polyvinyl acetal (1) in this embodiment is the same as the preferable lower limit of the viscosity average degree of polymerization of the polyvinyl alcohol resin described above, and the preferable upper limit of the degree of polymerization of the polyvinyl acetal (2) is The upper limit value of the viscosity average polymerization degree of the polyvinyl alcohol resin is the same as that described above.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)中のアセチル基量は、ポリビニルアセタール主鎖のエチレンユニットを基準として、好ましくは0.1~20モル%、より好ましくは0.5~8モル%、さらに好ましくは0.5~3モル%または5~8モル%である。上記アセチル基量は、原料のポリビニルアルコール系樹脂のケン化度を適宜調整することで調整できる。上記アセチル基量が上記範囲内であると、ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の可塑剤相溶性および機械的強度が優れる傾向にあり、また、ポリビニルアセタール層(1)とポリビニルアセタール層(2)との良好な接合性および光学歪の低減等が達成されやすい。ポリビニルアセタール(1)またはポリビニルアセタール(2)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、ポリビニルアセタール(1)の平均のアセチル基量またはポリビニルアセタール(2)の平均のアセチル基量が、それぞれ上記範囲内であることが好ましい。 The amount of acetyl groups in the polyvinyl acetal (1) and the polyvinyl acetal (2) is preferably 0.1 to 20 mol%, more preferably 0.5 to 8 mol%, based on the ethylene unit of the polyvinyl acetal main chain. More preferably, it is 0.5 to 3 mol% or 5 to 8 mol%. The amount of the acetyl group can be adjusted by appropriately adjusting the degree of saponification of the raw material polyvinyl alcohol resin. When the amount of the acetyl group is within the above range, the plasticizer compatibility and mechanical strength of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) tend to be excellent, and the polyvinyl acetal layer (1) and the polyvinyl acetal layer (1) Good bondability with the acetal layer (2), reduction of optical distortion, and the like are easily achieved. When the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the average acetyl group amount of the polyvinyl acetal (1) or the average acetyl group amount of the polyvinyl acetal (2) is It is preferable to be within the above range.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)のアセタール化度は特に限定されないが、好ましくは40~86モル%、より好ましくは45~84モル%、さらに好ましくは50~82モル%、特に好ましくは60~82モル%、最も好ましくは68~82モル%である。アセタール化反応におけるアルデヒドの使用量を適宜調整することにより、上記アセタール化度は前記範囲内に調整できる。アセタール化度が前記範囲内であると、本発明におけるシート(A)の力学的強度が十分となりやすく、ポリビニルアセタール(1)およびポリビニルアセタール(2)と可塑剤との相溶性も低下しにくい。ポリビニルアセタール(1)またはポリビニルアセタール(2)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、ポリビニルアセタール(1)の平均のアセタール化度またはポリビニルアセタール(2)の平均のアセタール化度が、それぞれ上記範囲内であることが好ましい。 The degree of acetalization of the polyvinyl acetal (1) and the polyvinyl acetal (2) is not particularly limited, but is preferably 40 to 86 mol%, more preferably 45 to 84 mol%, still more preferably 50 to 82 mol%, particularly preferably. 60 to 82 mol%, most preferably 68 to 82 mol%. By appropriately adjusting the amount of aldehyde used in the acetalization reaction, the acetalization degree can be adjusted within the above range. When the degree of acetalization is within the above range, the mechanical strength of the sheet (A) in the present invention is likely to be sufficient, and the compatibility between the polyvinyl acetal (1) and the polyvinyl acetal (2) and the plasticizer is hardly lowered. When the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the average acetalization degree of the polyvinyl acetal (1) or the average acetalization degree of the polyvinyl acetal (2) is It is preferable to be within the above range.
 好ましい一態様では、ポリビニルアセタール(1)のアセタール化度をAモル%とし、ポリビニルアセタール(2)のアセタール化度をAモル%とした場合の、AとAの差の絶対値は5モル%未満である。前記絶対値は、より好ましくは3モル%未満、特に好ましくは1モル%未満、最も好ましくは0モル%である。前記絶対値が上記上限値未満または0モル%であると、シート(A)の透明性を得やすい。 In a preferred embodiment, the absolute value of the difference between A 1 and A 2 when the degree of acetalization of the polyvinyl acetal (1) is A 1 mol% and the degree of acetalization of the polyvinyl acetal (2) is A 2 mol%. Is less than 5 mol%. The absolute value is more preferably less than 3 mol%, particularly preferably less than 1 mol%, most preferably 0 mol%. When the absolute value is less than the above upper limit value or 0 mol%, the transparency of the sheet (A) is easily obtained.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)の水酸基量は、ポリビニルアセタール主鎖のエチレンユニットを基準として、好ましくは16~34モル%、より好ましくは18~34モル%、より好ましくは22~34モル%、特に好ましくは26~34モル%、さらに遮音性能を合わせて付与するために好ましい範囲は9~29モル%、より好ましくは12~26モル%、さらに好ましくは15~23モル%、特に好ましくは16~20モル%である。アセタール化反応におけるアルデヒドの使用量を調整することにより、水酸基量は前記範囲内に調整できる。水酸基量が前記範囲内であると、ポリビニルアセタール層(1)とポリビニルアセタール層(2)との屈折率差が小さくなり、光学むらの少ない合わせガラスを得やすい。ポリビニルアセタール(1)またはポリビニルアセタール(2)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、ポリビニルアセタール(1)の平均の水酸基量またはポリビニルアセタール(2)の平均の水酸基量が、それぞれ上記範囲内であることが好ましい。 The amount of hydroxyl groups in the polyvinyl acetal (1) and the polyvinyl acetal (2) is preferably 16 to 34 mol%, more preferably 18 to 34 mol%, more preferably 22 to 34, based on the ethylene unit of the polyvinyl acetal main chain. Mol%, particularly preferably 26 to 34 mol%, and more preferably 9 to 29 mol%, more preferably 12 to 26 mol%, still more preferably 15 to 23 mol%, particularly for providing sound insulation performance together Preferably, it is 16 to 20 mol%. By adjusting the amount of aldehyde used in the acetalization reaction, the amount of hydroxyl groups can be adjusted within the above range. When the amount of hydroxyl groups is within the above range, the difference in refractive index between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) becomes small, and it is easy to obtain a laminated glass with little optical unevenness. When the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the average hydroxyl group amount of the polyvinyl acetal (1) or the average hydroxyl group amount of the polyvinyl acetal (2) is within the above range, respectively. It is preferable to be within.
 好ましい一態様では、ポリビニルアセタール(1)の水酸基量をHモル%とし、ポリビニルアセタール(2)の水酸基量をHモル%とした場合の、HとHの差の絶対値は5モル%未満である。前記絶対値は、より好ましくは3モル%未満、特に好ましくは1モル%未満、最も好ましくは0モル%である。前記絶対値が上記上限値未満または0モル%であると、シート(A)の透明性を得やすい。一方、HとHに差をつけることで、シート(A)を合わせガラス用中間膜として使用した場合に、可塑剤が移行した後の平衡状態におけるポリビニルアセタール層(1)における可塑剤量とポリビニルアセタール層(2)における可塑剤量とに差をつけ、遮音性能に優れる合わせガラスを得ることも可能である。その場合、HとHの差は好ましくは5モル%以上、より好ましくは8モル%以上である。 In a preferred embodiment, the absolute value of the difference between H 1 and H 2 when the amount of hydroxyl group of polyvinyl acetal (1) is 1 mol% and the amount of hydroxyl group of polyvinyl acetal (2) is 2 mol% is 5 Less than mol%. The absolute value is more preferably less than 3 mol%, particularly preferably less than 1 mol%, most preferably 0 mol%. When the absolute value is less than the above upper limit value or 0 mol%, the transparency of the sheet (A) is easily obtained. On the other hand, when the sheet (A) is used as an interlayer film for laminated glass by making a difference between H 1 and H 2 , the amount of plasticizer in the polyvinyl acetal layer (1) in the equilibrium state after the plasticizer has migrated It is also possible to obtain a laminated glass excellent in sound insulation performance by making a difference in the amount of plasticizer in the polyvinyl acetal layer (2). In that case, the difference between H 1 and H 2 is preferably 5 mol% or more, more preferably 8 mol% or more.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)は、通常、アセタール基単位、水酸基単位およびアセチル基単位から構成されており、これらの各単位量は、JIS K 6728「ポリビニルブチラール試験方法」または核磁気共鳴法(NMR)によって測定される。 The polyvinyl acetal (1) and the polyvinyl acetal (2) are usually composed of an acetal group unit, a hydroxyl group unit, and an acetyl group unit, and the amount of each unit is JIS K 6728 “Testing method for polyvinyl butyral” or nuclear magnetic field. Measured by resonance method (NMR).
 ポリビニルアセタール(1)およびポリビニルアセタール(2)の、ブルックフィールド型(B型)粘度計を用いて20℃、30rpmで測定された、濃度10質量%のトルエン/エタノール=1/1(質量比)溶液の粘度は、好ましくは200mPa・s以上、より好ましくは240mPa・s以上、特に好ましくは265mPa・s以上である。粘度平均重合度の高いポリビニルアルコール系樹脂を原料の少なくとも一部として用いることにより、前記粘度は前記下限値以上に調整できる。ポリビニルアセタール(1)またはポリビニルアセタール(2)が異なる2つ以上のポリビニルアセタール樹脂の混合物である場合、かかる混合物の前記粘度が前記下限値以上であることが好ましい。前記粘度が前記下限値以上であると、合わせガラス作製時に導電構造体の変形および断線が抑制されやすく、得られる合わせガラスにおいて熱によりガラスがずれる現象が防止されやすい。前記粘度の上限値は、良好な製膜性を得やすい観点から、通常は1000mPa・s、好ましくは800mPa・s、より好ましくは500mPa・s、さらに好ましくは450mPa・s、特に好ましくは400mPa・sである。 Polyvinyl acetal (1) and polyvinyl acetal (2) measured at 20 ° C. and 30 rpm using a Brookfield type (B type) viscometer, 10% by weight toluene / ethanol = 1/1 (mass ratio) The viscosity of the solution is preferably 200 mPa · s or more, more preferably 240 mPa · s or more, and particularly preferably 265 mPa · s or more. By using a polyvinyl alcohol resin having a high viscosity average degree of polymerization as at least a part of the raw material, the viscosity can be adjusted to the lower limit value or more. When the polyvinyl acetal (1) or the polyvinyl acetal (2) is a mixture of two or more polyvinyl acetal resins different from each other, the viscosity of the mixture is preferably equal to or higher than the lower limit value. When the viscosity is equal to or higher than the lower limit, deformation and disconnection of the conductive structure are easily suppressed during the production of the laminated glass, and the phenomenon that the glass is displaced due to heat in the obtained laminated glass is easily prevented. The upper limit of the viscosity is usually 1000 mPa · s, preferably 800 mPa · s, more preferably 500 mPa · s, still more preferably 450 mPa · s, particularly preferably 400 mPa · s, from the viewpoint of easily obtaining good film forming properties. It is.
 ポリビニルアセタール(1)およびポリビニルアセタール(2)のピークトップ分子量は、好ましくは115,000~200,000、より好ましくは120,000~160,000、特に好ましくは130,000~150,000である。粘度平均重合度の高いポリビニルアルコール系樹脂を原料の少なくとも一部として用いることにより、上記ピークトップ分子量は前記範囲内に調整できる。上記ピークトップ分子量が前記範囲内であると、好適なフィルム製膜性および好適なフィルム物性(例えば、ラミネート適性、耐クリープ性および破断強度)を得やすい。
 ポリビニルアセタール(1)およびポリビニルアセタール(2)の分子量分布、即ち重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは2.7以上、より好ましくは2.8以上、特に好ましくは2.9以上である。粘度平均重合度の異なるポリビニルアルコール系樹脂の混合物をアセタール化したり、重合度の異なるポリビニルアセタール樹脂を混合したりすることにより、上記分子量分布は前記下限値以上に調整できる。上記分子量分布が前記下限値以上であると、製膜性および好適なフィルム物性(例えば、ラミネート適性、耐クリープ性および破断強度)を両立させやすい。分子量分布の上限値は特に限定されないが、製膜しやすさの観点から、通常は10、好ましくは5である。
 ポリビニルアセタール(1)またはポリビニルアセタール(2)が異なる2つ以上のポリビニルアセタール樹脂を含む場合、少なくとも1つのポリビニルアセタール樹脂のピークトップ分子量および分子量分布が、上記範囲内であることが好ましい。ピークトップ分子量および分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、分子量既知のポリスチレンを標準として求められる。
The peak top molecular weight of the polyvinyl acetal (1) and the polyvinyl acetal (2) is preferably 115,000 to 200,000, more preferably 120,000 to 160,000, particularly preferably 130,000 to 150,000. . By using a polyvinyl alcohol resin having a high viscosity average polymerization degree as at least a part of the raw material, the peak top molecular weight can be adjusted within the above range. When the peak top molecular weight is within the above range, it is easy to obtain suitable film-forming properties and suitable film properties (for example, laminate suitability, creep resistance, and breaking strength).
The molecular weight distribution of the polyvinyl acetal (1) and the polyvinyl acetal (2), that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 2.7 or more, more preferably 2 .8 or more, particularly preferably 2.9 or more. The molecular weight distribution can be adjusted to the lower limit value or more by acetalizing a mixture of polyvinyl alcohol resins having different viscosity average polymerization degrees or by mixing polyvinyl acetal resins having different polymerization degrees. When the molecular weight distribution is not less than the lower limit value, it is easy to achieve both film-forming properties and suitable film properties (for example, suitability for lamination, creep resistance, and breaking strength). The upper limit of the molecular weight distribution is not particularly limited, but is usually 10 and preferably 5 from the viewpoint of ease of film formation.
When the polyvinyl acetal (1) or the polyvinyl acetal (2) contains two or more different polyvinyl acetal resins, the peak top molecular weight and molecular weight distribution of at least one polyvinyl acetal resin are preferably within the above ranges. The peak top molecular weight and molecular weight distribution are determined using gel permeation chromatography (GPC) and polystyrene having a known molecular weight as a standard.
 好ましい一態様では、ポリビニルアセタール(1)は式(1):
Figure JPOXMLDOC01-appb-C000005
で表される構造を有し、ポリビニルアセタール(2)は式(2):
Figure JPOXMLDOC01-appb-C000006
で表される構造を有し、式中、R1およびR2は、それぞれ独立して、水素原子、脂肪族炭化水素基または芳香族炭化水素基であり、R1とR2の炭素数は同一であり、より好ましくはR1とR2は同一の基である。
In a preferred embodiment, the polyvinyl acetal (1) has the formula (1):
Figure JPOXMLDOC01-appb-C000005
The polyvinyl acetal (2) has the structure represented by the formula (2):
Figure JPOXMLDOC01-appb-C000006
Wherein R1 and R2 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and R1 and R2 have the same carbon number, More preferably, R1 and R2 are the same group.
 ポリビニルアセタール(1)に含まれる式(1)で表される構造のポリビニルアセタール(1)に含まれるアセタール環構造に占める割合、およびポリビニルアセタール(2)に含まれる式(2)で表される構造のポリビニルアセタール(2)に含まれるアセタール環構造に占める割合は特に限定されないが、好ましくは50モル%以上、より好ましくは70モル%以上、さらに好ましくは90モル%以上、特に好ましくは95モル%以上である。アセタール化反応において使用するアルデヒドの種類や量を適宜選択することで、ポリビニルアセタール(1)に含まれる式(1)の構造の割合、およびポリビニルアセタール(2)に含まれる式(2)の構造の割合を、上記下限値以上に調整できる。上記割合が上記下限値以上であると、透明性に優れるシート(A)を得やすい。上記割合の上限値は100モル%である。上記割合は、例えば核磁気共鳴法により求められる。 The ratio of the structure represented by the formula (1) contained in the polyvinyl acetal (1) to the acetal ring structure contained in the polyvinyl acetal (1), and the formula (2) contained in the polyvinyl acetal (2) The ratio of the structure to the acetal ring structure contained in the polyvinyl acetal (2) is not particularly limited, but is preferably 50 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, particularly preferably 95 mol. % Or more. By appropriately selecting the type and amount of aldehyde used in the acetalization reaction, the ratio of the structure of formula (1) contained in polyvinyl acetal (1) and the structure of formula (2) contained in polyvinyl acetal (2) Can be adjusted to the above lower limit or more. It is easy to obtain the sheet | seat (A) excellent in transparency as the said ratio is more than the said lower limit. The upper limit of the ratio is 100 mol%. The said ratio is calculated | required by the nuclear magnetic resonance method, for example.
 R1およびR2は、脂肪族炭化水素基(例えば、メチル基、エチル基、n-プロピル基およびイソプロピル基)、芳香族炭化水素基(例えばフェニル基)または水素原子(炭素数0個)であるが、前記基は脂肪族炭化水素基の任意の水素原子を別の基に置き換えたもの、および芳香族炭化水素基の任意の水素原子を別の基に置き換えたものも包含する。中でも、可塑剤との高い相溶性、適切な加工性、および力学的強度を得やすい観点から、脂肪族炭化水素基が好ましく、炭素数1~7の脂肪族炭化水素基がより好ましく、炭素数2~4の脂肪族炭化水素基がさらに好ましく、n-プロピル基〔式(1)、式(2)の化学構造がブチラール環構造〕が特に好ましい。 R1 and R2 are aliphatic hydrocarbon groups (for example, methyl group, ethyl group, n-propyl group and isopropyl group), aromatic hydrocarbon groups (for example, phenyl group) or hydrogen atoms (0 carbon atoms). The group includes a group in which an arbitrary hydrogen atom of an aliphatic hydrocarbon group is replaced with another group, and a group in which an arbitrary hydrogen atom of an aromatic hydrocarbon group is replaced with another group. Among these, an aliphatic hydrocarbon group is preferable, an aliphatic hydrocarbon group having 1 to 7 carbon atoms is more preferable, and an aliphatic hydrocarbon group is more preferable from the viewpoint of easily obtaining high compatibility with a plasticizer, appropriate processability, and mechanical strength. An aliphatic hydrocarbon group of 2 to 4 is more preferable, and an n-propyl group (the chemical structure of the formula (1) or the formula (2) is a butyral ring structure) is particularly preferable.
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)は、良好な製膜性を得やすい観点から、未架橋のポリビニルアセタール樹脂を含むことが好ましいが、架橋されたポリビニルアセタールを含んでいてもよい。ポリビニルアセタールを架橋するための方法は、例えば、EP 1527107B1およびWO 2004/063231 A1(カルボキシル基含有ポリビニルアセタールの熱自己架橋)、EP 1606325 A1(ポリアルデヒドにより架橋されたポリビニルアセタール)、およびWO 2003/020776 A1(グリオキシル酸により架橋されたポリビニルアセタール)に記載されている。また、アセタール化反応条件を適宜調整することで、生成する分子間アセタール結合量をコントロールしたり、残存水酸基のブロック化度をコントロールしたりすることも有用な方法である。 The polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) preferably contain an uncrosslinked polyvinyl acetal resin from the viewpoint of easily obtaining good film forming properties, but may contain a crosslinked polyvinyl acetal. . Methods for crosslinking polyvinyl acetal are, for example, EP 1527107B1 and WO 2004/062311 A1 (thermal self-crosslinking of carboxyl group-containing polyvinyl acetal), EP 1606325 A1 (polyvinyl acetal crosslinked with polyaldehyde), and WO 2003 / 020776 A1 (polyvinyl acetal crosslinked with glyoxylic acid). It is also a useful method to control the amount of intermolecular acetal bonds produced and to control the degree of blocking of residual hydroxyl groups by appropriately adjusting the acetalization reaction conditions.
<可塑剤>
 ポリビニルアセタール層(1)に含まれる可塑剤の量は、ポリビニルアセタール(1)100質量部に対して0~200質量部であり、ポリビニルアセタール層(2)に含まれる可塑剤の量は、ポリビニルアセタール(2)100質量部に対して0~200質量部であり、シート(A)に含まれるポリビニルアセタール(1)およびポリビニルアセタール(2)の合計含有量を100質量部とした場合、シート(A)に含まれる可塑剤の合計含有量は10~80質量部である。可塑剤含有量が前記条件を満たさない場合、合わせガラス作製時に、導電構造体における破断、剥離および断線等の欠陥が極めて生じやすく、安全合わせガラスに求められる安全性を備えた合わせガラスをもたらすことはできない。また、ポリビニルアセタール層(1)およびポリビニルアセタール層(2)が特定の樹脂と特定の量の可塑剤とを含まない場合、良好な透明性、上記した導電構造体における欠陥の生じにくさ、合わせガラス作製時の優れた作業性、および上記した合わせガラスに安全性を付与する能力を併せ持つシートを得ることはできない。
<Plasticizer>
The amount of plasticizer contained in the polyvinyl acetal layer (1) is 0 to 200 parts by mass with respect to 100 parts by mass of the polyvinyl acetal (1), and the amount of plasticizer contained in the polyvinyl acetal layer (2) is When the total content of the polyvinyl acetal (1) and the polyvinyl acetal (2) contained in the sheet (A) is 100 parts by mass with respect to 100 parts by mass of the acetal (2), the sheet ( The total content of plasticizers contained in A) is 10 to 80 parts by mass. When the plasticizer content does not satisfy the above conditions, defects such as breakage, peeling and disconnection in the conductive structure are extremely likely to occur during the production of the laminated glass, and a laminated glass having the safety required for the safety laminated glass is provided. I can't. Further, when the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) do not contain a specific resin and a specific amount of plasticizer, good transparency, difficulty in generating defects in the above-described conductive structure, and matching It is not possible to obtain a sheet having both excellent workability during glass production and the ability to impart safety to the laminated glass described above.
 良好な透明性、上記した導電構造体および合わせガラス作製時における優れた作業性、および上記した合わせガラスに安全性を付与する能力を併せ持つシート(A)を得やすい観点から、ポリビニルアセタール層(1)における可塑剤の量は、ポリビニルアセタール(1)100質量部に対して好ましくは0~80質量部、より好ましくは0~60質量部、さらに好ましくは0~50質量部である。またポリビニルアセタール層(2)における可塑剤の量は、ポリビニルアセタール(2)100質量部に対して好ましくは0~80質量部、より好ましくは0~60質量部、さらに好ましくは0~50質量部である。シート(A)に含まれるポリビニルアセタール(1)およびポリビニルアセタール(2)の合計含有量を100質量部とした場合、シート(A)に含まれる可塑剤の合計含有量は、好ましくは15~80質量部、より好ましくは15~70質量部、さらに好ましくは20~60質量部である。 From the viewpoint of easily obtaining a sheet (A) having good transparency, excellent workability at the time of producing the above-described conductive structure and laminated glass, and the ability to impart safety to the above-mentioned laminated glass, a polyvinyl acetal layer (1 ) Is preferably 0 to 80 parts by weight, more preferably 0 to 60 parts by weight, and still more preferably 0 to 50 parts by weight with respect to 100 parts by weight of the polyvinyl acetal (1). The amount of the plasticizer in the polyvinyl acetal layer (2) is preferably 0 to 80 parts by mass, more preferably 0 to 60 parts by mass, and further preferably 0 to 50 parts by mass with respect to 100 parts by mass of the polyvinyl acetal (2). It is. When the total content of the polyvinyl acetal (1) and the polyvinyl acetal (2) contained in the sheet (A) is 100 parts by mass, the total content of the plasticizer contained in the sheet (A) is preferably 15 to 80 The mass is more preferably 15 to 70 parts by mass, still more preferably 20 to 60 parts by mass.
 シート(A)を合わせガラス作製時に用いるような高温条件、例えば140℃で30分以上処理すると、ポリビニルアセタール層(1)および/またはポリビニルアセタール層(2)に含まれる可塑剤が相互に移行する。シート(A)が前記可塑剤量を含む場合、前記熱処理後のシートが適度な柔軟性および優れた力学強度を発現するため、特に合わせガラス用中間膜として使用するのに好適である。前記熱処理後のシートが適切な柔軟性および優れた力学強度を発現しやすく、従って、シート(A)を合わせガラス用中間膜として使用した場合に、より安全性に優れた合わせガラスを得やすい観点から、前記熱処理後のシートを動的粘弾性で評価した際、5~50℃未満にtanδのピーク温度が現れることが好ましく、20~35℃未満にtanδピーク温度が現れることがより好ましい。 When the sheet (A) is treated at a high temperature condition used at the time of producing laminated glass, for example, at 140 ° C. for 30 minutes or more, the plasticizers contained in the polyvinyl acetal layer (1) and / or the polyvinyl acetal layer (2) migrate to each other. . In the case where the sheet (A) contains the amount of the plasticizer, the sheet after the heat treatment exhibits suitable flexibility and excellent mechanical strength, and thus is particularly suitable for use as an interlayer film for laminated glass. The sheet after the heat treatment is likely to exhibit appropriate flexibility and excellent mechanical strength. Therefore, when the sheet (A) is used as an interlayer film for laminated glass, it is easy to obtain a laminated glass with better safety. Therefore, when the heat-treated sheet is evaluated by dynamic viscoelasticity, a tan δ peak temperature preferably appears below 5 to 50 ° C., and a tan δ peak temperature appears more preferably below 20 to 35 ° C.
 好ましい一態様では、ポリビニルアセタール層(1)に含まれる可塑剤の含有量、およびポリビニルアセタール層(2)に含まれる可塑剤の含有量の少なくとも一方は10質量部以上であり、より好ましくは20質量部以上であり、特に好ましくは30質量部以上である。可塑剤の含有量が前記条件を満たすと、本発明におけるシート(A)を合わせガラス用中間膜として使用する場合に優れた耐貫通性を得やすい。 In a preferred embodiment, at least one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 10 parts by mass or more, more preferably 20 It is at least 30 parts by mass, particularly preferably at least 30 parts by mass. When content of a plasticizer satisfy | fills the said conditions, when using the sheet | seat (A) in this invention as an intermediate film for laminated glasses, it is easy to obtain the penetration resistance excellent.
 また、別の好ましい一態様では、ポリビニルアセタール層(1)に含まれる可塑剤の含有量、およびポリビニルアセタール層(2)に含まれる可塑剤の含有量の一方は0質量部以上10質量部以下であり、もう一方は10質量部以上80質量部以下である。特に好ましくは、ポリビニルアセタール層(1)に含まれる可塑剤の含有量、および前記ポリビニルアセタール層(2)に含まれる可塑剤の含有量の一方は0質量部以上5質量部以下であり、もう一方は20質量部以上60質量部以下である。可塑剤含有量が前記条件を満たすと、本発明におけるシート(A)を合わせガラス用中間膜として使用する場合に、低い自着性と優れた耐貫通性を得やすい。 In another preferred embodiment, one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 to 10 parts by mass. And the other is 10 parts by mass or more and 80 parts by mass or less. Particularly preferably, one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 part by mass or more and 5 parts by mass or less. One is 20 parts by mass or more and 60 parts by mass or less. When the plasticizer content satisfies the above condition, when the sheet (A) in the present invention is used as an interlayer film for laminated glass, it is easy to obtain low self-adhesion and excellent penetration resistance.
 また、別の好ましい一態様では、ポリビニルアセタール層(1)における可塑剤の含有量は、ポリビニルアセタール層(2)における可塑剤の含有量より小さく、ポリビニルアセタール(1)の重合度は、ポリビニルアセタール(2)の重合度より小さい。前記可塑剤含有量および前記重合度が前記条件を満たすと、本発明におけるシート(A)を合わせガラス用中間膜として使用する場合に、優れた取扱い性と耐貫通性を得やすい。 Moreover, in another preferable one aspect | mode, content of the plasticizer in a polyvinyl acetal layer (1) is smaller than content of the plasticizer in a polyvinyl acetal layer (2), and the polymerization degree of polyvinyl acetal (1) is polyvinyl acetal. It is smaller than the degree of polymerization of (2). When the plasticizer content and the degree of polymerization satisfy the above conditions, when the sheet (A) in the present invention is used as an interlayer film for laminated glass, excellent handleability and penetration resistance are easily obtained.
 可塑剤として好ましくは下記群の1つまたは複数の化合物が使用される。
・多価の脂肪族または芳香族酸のエステル。例えば、ジアルキルアジペート(例えば、ジヘキシルアジペート、ジ-2-エチルブチルアジペート、ジオクチルアジペート、ジ-2-エチルヘキシルアジペート、ヘキシルシクロヘキシルアジペート、ヘプチルアジペート、ノニルアジペート、ジイソノニルアジペート、ヘプチルノニルアジペート);アジピン酸とアルコール若しくはエーテル化合物を含むアルコールとのエステル(例えば、ジ(ブトキシエチル)アジペート、ジ(ブトキシエトキシエチル)アジペート);ジアルキルセバケート(例えば、ジブチルセバケート);セバシン酸と脂環式若しくはエーテル化合物を含むアルコールとのエステル;フタル酸のエステル(例えば、ブチルベンジルフタレート、ビス-2-ブトキシエチルフタレート);および脂環式多価カルボン酸と脂肪族アルコールとのエステル(例えば、1,2-シクロヘキサンジカルボン酸ジイソノニルエステル)が挙げられる。
・多価の脂肪族若しくは芳香族アルコールまたは1つ以上の脂肪族若しくは芳香族置換基を有するオリゴエーテルグリコールのエステルまたはエーテル。例えば、グリセリン、ジグリコール、トリグリコール、テトラグリコール等と、直鎖状若しくは分岐状の脂肪族若しくは脂環式カルボン酸とのエステルが挙げられる。具体的には、ジエチレングリコール-ビス-(2-エチルヘキサノエート)、トリエチレングリコール-ビス-(2-エチルヘキサノエート)、トリエチレングリコール-ビス-(2-エチルブタノエート)、テトラエチレングリコール-ビス-(2-エチルヘキサノエート)、テトラエチレングリコール-ビス-n-ヘプタノエート、トリエチレングリコール-ビス-n-ヘプタノエート、トリエチレングリコール-ビス-n-ヘキサノエート、ジプロピレングリコールベンゾエート等のエーテルエステル系化合物、およびテトラエチレングリコールジメチルエーテルが挙げられる。
・脂肪族または芳香族のアルコールのリン酸エステル。例えば、トリス(2-エチルヘキシル)ホスフェート(TOP)、トリエチルホスフェート、ジフェニル-2-エチルヘキシルホスフェート、およびトリクレジルホスフェートが挙げられる。
・クエン酸、コハク酸および/またはフマル酸のエステル。
・ビスフェノールAのエチレンオキサイドおよび/またはプロピレンオキサイド付加物。
One or more compounds from the following group are preferably used as plasticizers.
-Esters of polyvalent aliphatic or aromatic acids. For example, dialkyl adipates (eg, dihexyl adipate, di-2-ethylbutyl adipate, dioctyl adipate, di-2-ethylhexyl adipate, hexyl cyclohexyl adipate, heptyl adipate, nonyl adipate, diisononyl adipate, heptyl nonyl adipate); adipic acid and alcohol Or esters with alcohols containing ether compounds (eg di (butoxyethyl) adipate, di (butoxyethoxyethyl) adipate); dialkyl sebacates (eg dibutyl sebacate); including sebacic acid and alicyclic or ether compounds Esters with alcohols; esters of phthalic acid (eg butylbenzyl phthalate, bis-2-butoxyethyl phthalate); and alicyclic polyvalent carboxylic acids And esters of aliphatic alcohols (e.g., 1,2-cyclohexane dicarboxylic acid diisononyl esters).
Polyhydric aliphatic or aromatic alcohols or oligoether glycol esters or ethers having one or more aliphatic or aromatic substituents. Examples thereof include esters of glycerin, diglycol, triglycol, tetraglycol and the like with a linear or branched aliphatic or alicyclic carboxylic acid. Specifically, diethylene glycol-bis- (2-ethylhexanoate), triethylene glycol-bis- (2-ethylhexanoate), triethylene glycol-bis- (2-ethylbutanoate), tetraethylene Ethers such as glycol-bis- (2-ethylhexanoate), tetraethylene glycol-bis-n-heptanoate, triethylene glycol-bis-n-heptanoate, triethylene glycol-bis-n-hexanoate, dipropylene glycol benzoate Examples thereof include ester compounds and tetraethylene glycol dimethyl ether.
-Phosphate esters of aliphatic or aromatic alcohols. Examples include tris (2-ethylhexyl) phosphate (TOP), triethyl phosphate, diphenyl-2-ethylhexyl phosphate, and tricresyl phosphate.
-Esters of citric acid, succinic acid and / or fumaric acid.
-Ethylene oxide and / or propylene oxide adduct of bisphenol A.
 また、多価アルコールと多価カルボン酸とからなるポリエステル若しくはオリゴエステル、これらの末端エステル化物若しくはエーテル化物、ラクトン若しくはヒドロキシカルボン酸からなるポリエステル若しくはオリゴエステル、またはこれらの末端エステル化物若しくはエーテル化物等を可塑剤として用いてもよい。 In addition, polyesters or oligoesters composed of polyhydric alcohol and polycarboxylic acid, terminal esterified products or etherified products thereof, polyesters or oligoesters composed of lactone or hydroxycarboxylic acid, or terminal esterified products or etherified products thereof. It may be used as a plasticizer.
 ポリビニルアセタール層(1)とポリビニルアセタール層(2)との間で可塑剤が移行することに伴う問題(例えば、経時的な物性変化等の問題)を抑制する観点から、ポリビニルアセタール層(1)に含まれる可塑剤とポリビニルアセタール層(2)に含まれる可塑剤とが同じであるか、またはポリビニルアセタール層(1)およびポリビニルアセタール層(2)の物性(例えば、耐熱性、耐光性、透明性および可塑化効率)を損なわない可塑剤を使用することが好ましい。このような観点から、可塑剤としてはエーテルエステル系化合物が好ましく、トリエチレングリコール-ビス-(2-エチルヘキサノエート)、トリエチレングリコール-ビス(2-エチルブタノエート)、テトラエチレングリコール-ビス-(2-エチルヘキサノエート)、テトラエチレングリコール-ビスヘプタノエートがより好ましく、トリエチレングリコール-ビス-(2-エチルヘキサノエート)が特に好ましい。 From the viewpoint of suppressing problems (for example, problems such as changes in physical properties over time) associated with the migration of the plasticizer between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2), the polyvinyl acetal layer (1) Are the same as those in the polyvinyl acetal layer (2) or the physical properties of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) (for example, heat resistance, light resistance, transparent It is preferable to use a plasticizer that does not impair the properties and plasticization efficiency. From this point of view, ether ester compounds are preferred as plasticizers, and include triethylene glycol-bis- (2-ethylhexanoate), triethylene glycol-bis (2-ethylbutanoate), tetraethylene glycol- Bis- (2-ethylhexanoate) and tetraethylene glycol-bisheptanoate are more preferred, and triethylene glycol-bis- (2-ethylhexanoate) is particularly preferred.
<添加剤>
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)は、さらに別の添加剤を含んでいてもよい。そのような添加剤としては、例えば、水、紫外線吸収剤、酸化防止剤、接着調整剤、増白剤若しくは蛍光増白剤、安定剤、色素、加工助剤、有機若しくは無機ナノ粒子、焼成ケイ酸および表面活性剤等が挙げられる。
<Additives>
The polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) may further contain another additive. Such additives include, for example, water, UV absorbers, antioxidants, adhesion modifiers, brighteners or fluorescent brighteners, stabilizers, dyes, processing aids, organic or inorganic nanoparticles, fired silica. Examples include acids and surfactants.
 ある態様では、シート(A)に含まれる導電構造体の腐食を抑制するために、シート(A)が腐食防止剤を含有することが好ましい。そのような場合、腐食防止剤がポリビニルアセタール層(1)またはポリビニルアセタール層(2)に含有されていることが好ましい。ポリビニルアセタール層(1)またはポリビニルアセタール層(2)に含有される腐食防止剤の量は、ポリビニルアセタール層(1)またはポリビニルアセタール層(2)の質量に基づいて、好ましくは0.005~5質量%である。腐食防止剤の例としては、置換された、または置換されていないベンゾトリアゾールが挙げられる。 In an embodiment, it is preferable that the sheet (A) contains a corrosion inhibitor in order to suppress corrosion of the conductive structure contained in the sheet (A). In such a case, the corrosion inhibitor is preferably contained in the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2). The amount of the corrosion inhibitor contained in the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is preferably 0.005 to 5 based on the mass of the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2). % By mass. Examples of corrosion inhibitors include substituted or unsubstituted benzotriazole.
 ポリビニルアセタール層(1)を構成する組成物と、ポリビニルアセタール層(2)を構成する組成物とは、同じ組成を有していてもよいし、異なる組成を有していてもよい。 The composition constituting the polyvinyl acetal layer (1) and the composition constituting the polyvinyl acetal layer (2) may have the same composition or different compositions.
<ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の製造方法>
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の製造方法は特に限定されない。前記ポリビニルアセタール樹脂、場合により所定量の可塑剤、および必要に応じて他の添加剤を配合し、これを均一に混練した後、押出法、カレンダー法、プレス法、キャスティング法、インフレーション法等、公知の製膜方法によりシート(層)を作製し、これをポリビニルアセタール層(1)またはポリビニルアセタール層(2)とすることができる。
<Method for Producing Polyvinyl Acetal Layer (1) and Polyvinyl Acetal Layer (2)>
The manufacturing method of a polyvinyl acetal layer (1) and a polyvinyl acetal layer (2) is not specifically limited. After blending the polyvinyl acetal resin, optionally a predetermined amount of plasticizer, and other additives as necessary, and uniformly kneading this, extrusion method, calendar method, press method, casting method, inflation method, etc. A sheet (layer) is produced by a known film forming method, and this can be used as the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2).
 公知の製膜方法の中でも特に押出機を用いてシート(層)を製造する方法が好適に採用される。押出時の樹脂温度は150~250℃が好ましく、170~230℃がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタール樹脂が分解を起こし、揮発性物質の含有量が多くなる。一方で温度が低すぎる場合にも、揮発性物質の含有量は多くなる。揮発性物質を効率的に除去するためには、押出機のベント口から、減圧により揮発性物質を除去することが好ましい。押出機を用いてポリビニルアセタール層(1)またはポリビニルアセタール層(2)を製造する場合、後述するように、金属箔上にポリビニルアセタール層(1)またはポリビニルアセタール層(2)を溶融押出してもよい。 Among known film forming methods, a method of producing a sheet (layer) using an extruder is particularly preferably employed. The resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C. When the resin temperature becomes too high, the polyvinyl acetal resin is decomposed and the content of volatile substances is increased. On the other hand, when the temperature is too low, the content of volatile substances increases. In order to efficiently remove the volatile substance, it is preferable to remove the volatile substance from the vent port of the extruder by reducing the pressure. When the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is produced using an extruder, the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) may be melt-extruded on the metal foil as described later. Good.
 ポリビニルアセタール層(1)の厚さは、好ましくは8μm以上、より好ましくは20μm以上、さらに好ましくは30μm以上である。ポリビニルアセタール層(1)の厚さが前記値以上であると、シート(A)の収縮または変形に起因して導電構造体に歪等が生じる問題が起こりにくい。また、ポリビニルアセタール層(1)の厚さは、好ましくは800μm以下、より好ましくは700μm以下、特に好ましくは600μm以下である。ポリビニルアセタール層(1)が前記値以下であると、シート(A)を巻芯に巻回してロール状にした場合に、シート(A)の巻芯に近い側の表面にしわ等の欠陥が生じたり、シート(A)の巻芯から遠い側の表面にひび等の欠陥が生じたりしにくい。ポリビニルアセタール層(1)の厚さは、厚み計またはレーザー顕微鏡等を用いて測定される。 The thickness of the polyvinyl acetal layer (1) is preferably 8 μm or more, more preferably 20 μm or more, and further preferably 30 μm or more. When the thickness of the polyvinyl acetal layer (1) is equal to or more than the above value, a problem that distortion or the like occurs in the conductive structure due to contraction or deformation of the sheet (A) hardly occurs. The thickness of the polyvinyl acetal layer (1) is preferably 800 μm or less, more preferably 700 μm or less, and particularly preferably 600 μm or less. When the polyvinyl acetal layer (1) is not more than the above value, when the sheet (A) is wound around the core to form a roll, defects such as wrinkles are formed on the surface of the sheet (A) near the core. It is difficult to occur or a defect such as a crack is generated on the surface of the sheet (A) far from the core. The thickness of the polyvinyl acetal layer (1) is measured using a thickness meter or a laser microscope.
 ポリビニルアセタール層(2)の厚さは、好ましくは100μm以上、より好ましくは200μm以上、さらに好ましくは300μm以上である。ポリビニルアセタール層(2)の厚さが前記値以上であると、安全合わせガラスに求められる安全性を備えた合わせガラスをより得やすい。また、ポリビニルアセタール層(2)の厚さは、好ましくは1100μm以下、より好ましくは1000μm以下、特に好ましくは900μm以下である。ポリビニルアセタール層(2)の厚さが前記値以下であると、シート(A)を巻芯に巻回してロール状にした場合に、シート(A)の巻芯に近い側の表面にしわ等の欠陥が生じたり、シート(A)の巻芯から遠い側の表面にひび等の欠陥が生じたりしにくい。ポリビニルアセタール層(2)の厚さは、厚み計またはレーザー顕微鏡等を用いて測定される。 The thickness of the polyvinyl acetal layer (2) is preferably 100 μm or more, more preferably 200 μm or more, and further preferably 300 μm or more. When the thickness of the polyvinyl acetal layer (2) is equal to or more than the above value, it is easier to obtain a laminated glass having the safety required for a safety laminated glass. The thickness of the polyvinyl acetal layer (2) is preferably 1100 μm or less, more preferably 1000 μm or less, and particularly preferably 900 μm or less. When the thickness of the polyvinyl acetal layer (2) is equal to or less than the above value, when the sheet (A) is wound around the core to form a roll, the surface of the sheet (A) near the core is wrinkled. And defects such as cracks are unlikely to occur on the surface of the sheet (A) far from the core. The thickness of the polyvinyl acetal layer (2) is measured using a thickness meter or a laser microscope.
 好ましい一態様において、ポリビニルアセタール(1)の重合度はポリビニルアセタール(2)の重合度より小さく、ポリビニルアセタール層(1)の厚さがポリビニルアセタール層(2)の厚さより小さい。この態様では、本発明におけるシート(A)を合わせガラス用中間膜として使用する場合、合わせガラスを作製する際に層間の可塑剤移行が進行しやすいため、好ましい。 In a preferred embodiment, the degree of polymerization of the polyvinyl acetal (1) is smaller than the degree of polymerization of the polyvinyl acetal (2), and the thickness of the polyvinyl acetal layer (1) is smaller than the thickness of the polyvinyl acetal layer (2). In this aspect, when the sheet (A) in the present invention is used as an interlayer film for laminated glass, it is preferable because the transition of the plasticizer between layers easily proceeds when producing the laminated glass.
 好ましい一態様において、ポリビニルアセタール層(1)を構成する組成物のtanδが極大値をとる温度をTg、ポリビニルアセタール層(2)を構成する組成物のtanδが極大値をとる温度をTgとした場合、TgおよびTgの少なくとも一方は5℃以上である。TgおよびTgの少なくとも一方は、より好ましくは15℃以上、特に好ましくは20℃以上である。TgおよびTgは、ポリビニルアセタール層(1)およびポリビニルアセタール層(2)に含まれる樹脂の種類並びに可塑剤の種類および量により調整できる。TgおよびTgの少なくとも一方が上記下限値以上であると、シート(A)同士が互いにより接着しにくく、合わせガラス作製時に導電構造体における破断、剥離および断線等の欠陥がより生じにくい。TgおよびTgは、動的粘弾性測定におけるtanδのピーク温度から求められる。 In a preferred embodiment, the temperature at which tan δ of the composition constituting the polyvinyl acetal layer (1) takes a maximum value is Tg 1 , and the temperature at which tan δ of the composition constituting the polyvinyl acetal layer (2) takes a maximum value is Tg 2. In this case, at least one of Tg 1 and Tg 2 is 5 ° C. or higher. At least one of Tg 1 and Tg 2 is more preferably 15 ° C. or higher, and particularly preferably 20 ° C. or higher. Tg 1 and Tg 2 can be adjusted by the kind of resin and the kind and amount of the plasticizer contained in the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2). When at least one of Tg 1 and Tg 2 is equal to or greater than the above lower limit, the sheets (A) are less likely to adhere to each other, and defects such as breakage, peeling, and disconnection in the conductive structure are less likely to occur during the production of laminated glass. Tg 1 and Tg 2 are obtained from the peak temperature of tan δ in the dynamic viscoelasticity measurement.
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の導電構造体または後述する別の機能性層との接合面について、平均表面粗さRz値は、好ましくは20μm以下、より好ましくは5μm以下、特に好ましくは3μm以下であり、粗さ曲線要素の平均長さRSm値は、好ましくは500μm以上、より好ましくは1000μm以上、特に好ましくは1300μm以上である。Rz値が前記値以下であり、RSm値が前記値以上であると、均一な印刷またはコーティングが可能となり、導電構造体を構成する材料であるインク若しくは金属箔または別の機能性層との接合性のむらが抑制されやすい。Rz値およびRSm値は、表面粗さ計またはレーザー顕微鏡を用いて、JIS B0601-1994に準拠して測定される。Rz値を前記値以下に、またRSm値を前記値以上に調整する方法としては、溶融押出法(例えば、Tダイを用いる方法、およびインフレーション成形する方法等)または溶媒キャスト法等が採用される。Tダイから押出した溶融物を平滑な冷却ロールにより製膜することが好ましい。また、より平滑な面を形成するために、金属弾性ロールを用いることがより好ましい。 For the bonding surface of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) with the conductive structure or another functional layer described later, the average surface roughness Rz value is preferably 20 μm or less, more preferably 5 μm or less. Particularly preferably, it is 3 μm or less, and the average length RSm value of the roughness curve element is preferably 500 μm or more, more preferably 1000 μm or more, and particularly preferably 1300 μm or more. When the Rz value is equal to or less than the above value and the RSm value is equal to or greater than the above value, uniform printing or coating is possible, and bonding with ink or metal foil or another functional layer, which is a material constituting the conductive structure. Sexual irregularities are easily suppressed. The Rz value and the RSm value are measured according to JIS B0601-1994 using a surface roughness meter or a laser microscope. As a method for adjusting the Rz value to be lower than the above value and the RSm value to be higher than the above value, a melt extrusion method (for example, a method using a T die, a method for performing inflation molding, or the like), a solvent casting method, or the like is employed. . It is preferable to form the melt extruded from the T-die with a smooth cooling roll. Moreover, in order to form a smoother surface, it is more preferable to use a metal elastic roll.
<導電構造体>
 本発明におけるシート(A)は、ポリビニルアセタール層(1)とポリビニルアセタール層(2)との間に配置された導電構造体を備える。
<Conductive structure>
The sheet | seat (A) in this invention is equipped with the electrically conductive structure arrange | positioned between a polyvinyl acetal layer (1) and a polyvinyl acetal layer (2).
 導電構造体の厚さは、電気抵抗および製造の容易性等の観点から、好ましくは1~30μm、より好ましくは2~15μm、特に好ましくは3~10μmである。導電構造体の厚さは、厚み計またはレーザー顕微鏡等を用いて測定される。 The thickness of the conductive structure is preferably 1 to 30 μm, more preferably 2 to 15 μm, and particularly preferably 3 to 10 μm from the viewpoints of electrical resistance and ease of manufacture. The thickness of the conductive structure is measured using a thickness meter or a laser microscope.
 導電構造体は、電気抵抗、発熱性能、電磁波吸収性および光学特性等の観点から、好ましくは、線状、格子状または網状の形状を有する。ここで、線状の例としては、直線状、波線状およびジグザグ状等が挙げられる。1つの導電構造体において、形状は単一であってもよいし、複数の形状が混在していてもよい。 The conductive structure preferably has a linear shape, a lattice shape, or a net shape from the viewpoints of electrical resistance, heat generation performance, electromagnetic wave absorption, optical characteristics, and the like. Here, examples of the line shape include a straight line shape, a wavy line shape, and a zigzag shape. In one conductive structure, the shape may be single, or a plurality of shapes may be mixed.
 一態様において、導電構造体は発熱用導電構造体である。 In one aspect, the conductive structure is a heat generating conductive structure.
 ある態様、例えば印刷法により導電構造体を形成し、例えば前方視認性の確保が重要でない領域で合わせガラスを部分的に加熱したり、センサーまたはアンテナとして使用したりする態様では、十分な発熱量またはセンサー若しくはアンテナとしての機能性の確保および製造容易性の観点から、導電構造体は線幅0.01~5mmの複数の線状導電性材料で構成されていることが好ましい。即ち、前記した線状、格子状または網状の形状を構成する線状導電性材料(配線)の線幅は、好ましくは0.01~5mmである。前記線幅は、より好ましくは0.02~2mm、特に好ましくは0.03~1mmである。 In some embodiments, for example, in which a conductive structure is formed by a printing method and, for example, the laminated glass is partially heated or used as a sensor or antenna in a region where it is not important to ensure forward visibility, a sufficient amount of heat is generated. Alternatively, from the viewpoint of ensuring functionality as a sensor or antenna and ease of manufacture, the conductive structure is preferably composed of a plurality of linear conductive materials having a line width of 0.01 to 5 mm. That is, the line width of the linear conductive material (wiring) constituting the above-described linear, grid or net shape is preferably 0.01 to 5 mm. The line width is more preferably 0.02 to 2 mm, particularly preferably 0.03 to 1 mm.
 別の態様、例えば合わせガラスを全面的に加熱する態様では、十分な発熱量および良好な前方視認性の両方を確保しやすい観点から、導電構造体は線幅1~30μmの複数の線状導電性材料で構成されていることが好ましい。即ち、前記した線状、格子状または網状の形状を構成する線状導電性材料の線幅は、好ましくは1~30μmである。前記線幅は、より好ましくは2~15μm、特に好ましくは3~12μmである。 In another embodiment, for example, an embodiment in which the laminated glass is entirely heated, the conductive structure has a plurality of linear conductors having a line width of 1 to 30 μm from the viewpoint of easily ensuring both a sufficient calorific value and good forward visibility. It is preferable that it is comprised with the property material. That is, the line width of the linear conductive material constituting the above-described linear, grid or net shape is preferably 1 to 30 μm. The line width is more preferably 2 to 15 μm, particularly preferably 3 to 12 μm.
 導電構造体を形成する導電性材料は、電気抵抗または発熱量の確保の容易性、および製造容易性の観点から、好ましくは銀または銅であり、経済的観点から、より好ましくは銅である。 The conductive material forming the conductive structure is preferably silver or copper from the viewpoints of ensuring electrical resistance or heat generation and ease of manufacture, and more preferably copper from an economic viewpoint.
 導電構造体の少なくとも一面が低反射率処理されていることが好ましく、導電構造体の全面が低反射率処理されていることがより好ましい。本発明において「低反射率処理されている」とは、JIS R 3106に準じて測定された可視光反射率が30%以下となるよう処理されていることを意味する。前方視認性の観点からは、可視光反射率が10%以下となるよう処理されていることがより好ましい。可視光反射率が前記上限値以下であると、後述するように導電構造体を有するポリビニルアセタール層(1)とポリビニルアセタール層(2)とを積層して合わせガラスを作製した際に、所望の可視光反射率を得やすく、合わせガラスを作製した場合に前方視認性に優れる傾向にある。 It is preferable that at least one surface of the conductive structure is processed with low reflectance, and it is more preferable that the entire surface of the conductive structure is processed with low reflectance. In the present invention, “low reflectance treatment” means that the visible light reflectance measured according to JIS R 3106 is 30% or less. From the viewpoint of forward visibility, it is more preferable that the visible light reflectance is 10% or less. When the visible light reflectance is less than or equal to the above upper limit value, when a laminated glass is produced by laminating a polyvinyl acetal layer (1) having a conductive structure and a polyvinyl acetal layer (2) as described later, a desired glass is produced. Visible light reflectance is easy to obtain, and when laminated glass is produced, the forward visibility tends to be excellent.
 低反射率処理の方法としては、例えば、黒化処理(暗色化処理)、褐色化処理およびめっき処理等が挙げられる。工程通過性の観点から、低反射率処理は黒化処理であることが好ましい。従って、良好な前方視認性の観点から、可視光反射率が10%以下となるよう、導電構造体の片面、両面または全面が黒化処理されていることが特に好ましい。黒化処理は、具体的には、アルカリ系黒化液等を用いて行われる。 Examples of the low reflectance treatment method include blackening treatment (darkening treatment), browning treatment, and plating treatment. From the viewpoint of process passability, the low reflectance treatment is preferably a blackening treatment. Therefore, from the viewpoint of good forward visibility, it is particularly preferable that one surface, both surfaces, or the entire surface of the conductive structure is blackened so that the visible light reflectance is 10% or less. Specifically, the blackening treatment is performed using an alkaline blackening solution or the like.
<別の機能性層>
 本発明におけるシート(A)は、ポリビニルアセタール層(1)とポリビニルアセタール層(2)との間に、導電構造体に加えて、一層以上の別の機能性層を有していてもよい。シート(A)が別の機能性層を有する場合、別の機能性層は、ポリビニルアセタール層(1)と導電構造体との間および/またはポリビニルアセタール層(2)と導電構造体との間に存在する。別の機能性層としては、例えば、赤外線反射層、紫外線反射層、色補正層、赤外線吸収層、紫外線吸収層、蛍光・発光層、遮音層、エレクトロクロミック層、サーモクロミック層、フォトクロミック層、意匠性層、または高弾性率層等が挙げられる。別の機能性層の厚さは特に限定されず、所望の機能に応じて適宜設定すればよい。
<Another functional layer>
The sheet (A) in the present invention may have one or more other functional layers in addition to the conductive structure between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2). When the sheet (A) has another functional layer, the other functional layer is between the polyvinyl acetal layer (1) and the conductive structure and / or between the polyvinyl acetal layer (2) and the conductive structure. Exists. As another functional layer, for example, an infrared reflection layer, an ultraviolet reflection layer, a color correction layer, an infrared absorption layer, an ultraviolet absorption layer, a fluorescent / light emitting layer, a sound insulation layer, an electrochromic layer, a thermochromic layer, a photochromic layer, a design An elastic layer or a high elastic modulus layer. The thickness of the other functional layer is not particularly limited, and may be set as appropriate according to the desired function.
<シート(A)の製造方法>
 シート(A)は、例えば、導電構造体をポリビニルアセタール層(1)またはポリビニルアセタール層(2)に付与し、導電構造体側に、任意に別の機能性層と、残りのポリビニルアセタール層とを接合することにより製造できる。
<Method for producing sheet (A)>
The sheet (A), for example, imparts a conductive structure to the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), and optionally another functional layer and the remaining polyvinyl acetal layer are provided on the conductive structure side. It can be manufactured by bonding.
 導電構造体をポリビニルアセタール層(1)またはポリビニルアセタール層(2)に付与する方法に特に制限はないが、例えば、ポリビニルアセタール層(1)またはポリビニルアセタール層(2)の片面に、導電構造体を構成する材料をコート、印刷またはラミネートする方法が挙げられる。 There is no particular limitation on the method for applying the conductive structure to the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2). And a method of coating, printing or laminating the material constituting the material.
 前記材料をコート、印刷またはラミネートする方法は特に限定されない。
 前記材料をコートする方法としては、例えば、ポリビニルアセタール層(1)またはポリビニルアセタール層(2)を構成する樹脂組成物の溶融物を導電構造体にコートする方法(例えば、導電構造体上に前記樹脂組成物を溶融押出する方法、若しくは導電構造体上に前記樹脂組成物をナイフ塗布等により塗布する方法);またはポリビニルアセタール層(1)またはポリビニルアセタール層(2)に蒸着、スパッタリングまたは電気蒸着により導電構造体を付与する方法;が挙げられる。
 前記材料を印刷する方法としては、例えば、スクリーン印刷、フレキソ印刷、またはグラビア印刷が挙げられる。上記印刷する方法では、導電構造体を有するポリビニルアセタール層(1)またはポリビニルアセタール層(2)を積層する前に、乾燥するかまたは熱若しくは光により硬化するインクが使用される。
 前記材料をラミネートする方法としては、例えば、導電構造体とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを重ねて熱圧着させる方法;溶媒、若しくはポリビニルアセタール層(1)またはポリビニルアセタール層(2)を構成する樹脂および溶媒を含む樹脂組成物の溶液を、導電構造体およびポリビニルアセタール層(1)またはポリビニルアセタール層(2)の一方若しくは両方に塗布するか、または導電構造体とポリビニルアセタール層(1)またはポリビニルアセタール層(2)との間に注入し、導電構造体とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させる方法;接着剤で導電構造体とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させる方法;が挙げられる。
The method for coating, printing or laminating the material is not particularly limited.
As a method of coating the material, for example, a method of coating a conductive structure with a melt of a resin composition constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) (for example, the method described above on a conductive structure) A method of melt-extruding the resin composition, or a method of applying the resin composition onto the conductive structure by knife coating or the like); or vapor deposition, sputtering or electro-deposition on the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) And a method for providing a conductive structure.
Examples of the method for printing the material include screen printing, flexographic printing, and gravure printing. In the printing method, an ink that is dried or cured by heat or light is used before laminating the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) having a conductive structure.
As a method of laminating the material, for example, a method in which a conductive structure and a polyvinyl acetal layer (1) or a polyvinyl acetal layer (2) are stacked and thermocompression bonded; a solvent, a polyvinyl acetal layer (1) or a polyvinyl acetal layer (2) A resin composition solution containing a resin and a solvent is applied to one or both of the conductive structure and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), or the conductive structure and polyvinyl. A method of injecting between the acetal layer (1) or the polyvinyl acetal layer (2) and joining the conductive structure and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2); the conductive structure and polyvinyl with an adhesive Bonded with acetal layer (1) or polyvinyl acetal layer (2) That method; and the like.
 従って、一態様において、本発明の多層構造体は、ポリビニルアセタール層(1)と導電構造体との間、およびポリビニルアセタール層(2)と導電構造体との間の少なくとも一方に、接着剤層を有していてもよい。使用する接着剤は、得られるシート(A)の透明性を阻害しないものでなければならず、例えば、低重合度のポリビニルアセタール、アクリルまたはウレタン等を使用することが好ましい。 Therefore, in one aspect, the multilayer structure of the present invention has an adhesive layer between at least one of the polyvinyl acetal layer (1) and the conductive structure and between the polyvinyl acetal layer (2) and the conductive structure. You may have. The adhesive to be used must be one that does not hinder the transparency of the sheet (A) to be obtained. For example, it is preferable to use polyvinyl acetal, acrylic or urethane having a low polymerization degree.
 導電構造体を接着するための接着剤に由来するヘイズが生じ得ない観点からは、本発明におけるシート(A)が、ポリビニルアセタール層(1)と導電構造体との間、およびポリビニルアセタール層(2)と導電構造体との間に、接着剤層を有さないことが好ましい。この態様では、本発明におけるシート(A)のより優れた透明性を得やすく、シート(A)を用いて合わせガラスを作製した場合により優れた透明性を得やすい。 From the viewpoint that haze derived from the adhesive for bonding the conductive structure cannot be generated, the sheet (A) in the present invention is formed between the polyvinyl acetal layer (1) and the conductive structure, and the polyvinyl acetal layer ( It is preferable not to have an adhesive layer between 2) and the conductive structure. In this aspect, it is easy to obtain better transparency of the sheet (A) in the present invention, and it is easier to obtain better transparency when a laminated glass is produced using the sheet (A).
 印刷法において使用されるインクは導電性粒子および/または導電性繊維を含む。導電性粒子または導電性繊維は特に限定されず、例えば金属粒子(例えば金、銀、銅、亜鉛、鉄若しくはアルミニウムの粒子);金属で被覆された粒子若しくは繊維(例えば銀めっきされたガラス繊維若しくはガラス小球);または導電性カーボンブラック、カーボンナノチューブ、グラファイト若しくはグラフェンの粒子若しくは繊維;等が挙げられる。さらに、導電性粒子は、導電性金属酸化物の粒子等の半導体の粒子、例えばインジウムドープ酸化スズ、インジウムドープ酸化亜鉛またはアンチモンドープ酸化スズの粒子であってよい。前記インクは、導電性の観点から、銀粒子、銅粒子および/またはカーボンナノチューブを含むことが好ましく、銀粒子または銅粒子を含むことがより好ましく、経済的観点からは銅粒子を含むことが特に好ましい。 The ink used in the printing method includes conductive particles and / or conductive fibers. The conductive particles or conductive fibers are not particularly limited, for example, metal particles (for example, gold, silver, copper, zinc, iron or aluminum particles); metal-coated particles or fibers (for example, silver-plated glass fibers or Glass spheres); or particles or fibers of conductive carbon black, carbon nanotubes, graphite or graphene; and the like. Further, the conductive particles may be semiconductor particles such as conductive metal oxide particles, such as particles of indium doped tin oxide, indium doped zinc oxide or antimony doped tin oxide. The ink preferably contains silver particles, copper particles and / or carbon nanotubes from the viewpoint of conductivity, more preferably contains silver particles or copper particles, and particularly contains copper particles from an economic viewpoint. preferable.
 導電構造体を付与する際の生産効率が高い観点および黒化処理がしやすい観点から、導電構造体は、金属箔のエッチング構造体であることが好ましい。金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させる方法は、例えば下記方法(I)~(III)により実施される。
(I)ポリビニルアセタール層(1)またはポリビニルアセタール層(2)と金属箔とを重ねて熱圧着させる方法、
(II)金属箔上にポリビニルアセタール層(1)またはポリビニルアセタール層(2)を構成する樹脂組成物の溶融物を被覆して接合する方法、例えば、金属箔上に前記樹脂組成物を溶融押出する方法、若しくは金属箔上に前記樹脂組成物をナイフ塗布等により塗布する方法、または
(III)溶媒、若しくはポリビニルアセタール層(1)またはポリビニルアセタール層(2)を構成する樹脂および溶媒を含む樹脂組成物の溶液または分散液を、金属箔およびポリビニルアセタール層(1)若しくはポリビニルアセタール層(2)の一方若しくは両方に塗布するか、または金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)との間に注入し、金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させる方法。
From the viewpoint of high production efficiency when applying the conductive structure and easy blackening treatment, the conductive structure is preferably a metal foil etching structure. The method of joining the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is performed by, for example, the following methods (I) to (III).
(I) A method in which the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) and a metal foil are laminated and thermocompression bonded,
(II) A method of coating and joining the melt of the resin composition constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) on the metal foil, for example, melt extrusion of the resin composition on the metal foil Or a method of applying the resin composition on a metal foil by knife coating or the like, or (III) a solvent, a resin constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) and a resin containing the solvent The solution or dispersion of the composition is applied to one or both of the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), or the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2 Between the metal foil and the polyvinyl acetal layer (1) or polyvinyl acetal. (2) a method for bonding.
 接着剤で金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させてもよいが、先に記載のとおり、接着剤としては、得られるシート(A)の透明性を阻害しないものでなければならない。また、先に記載のとおり、接着剤に由来するヘイズが生じ得ない観点からは、接着剤を用いずに金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させることが好ましい。 The metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) may be bonded with an adhesive, but as described above, the adhesive inhibits the transparency of the obtained sheet (A). Must not be. Moreover, as described above, from the viewpoint that haze derived from an adhesive cannot be generated, the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) can be joined without using an adhesive. preferable.
 上記方法(I)における金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを熱圧着する際の接合温度は、ポリビニルアセタール層(1)またはポリビニルアセタール層(2)を構成する樹脂の種類に依存するが、通常は90~170℃、好ましくは100~160℃、より好ましくは110~155℃、さらに好ましくは110~150℃である。接合温度が上記範囲内であると、良好な接合強度を得やすい。 The bonding temperature when thermocompression bonding the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) in the method (I) is a resin constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2). Depending on the type, the temperature is usually 90 to 170 ° C., preferably 100 to 160 ° C., more preferably 110 to 155 ° C., and still more preferably 110 to 150 ° C. When the bonding temperature is within the above range, it is easy to obtain good bonding strength.
 上記方法(II)における押出時の樹脂温度は、ポリビニルアセタール層(1)またはポリビニルアセタール層(2)中の揮発性物質の含有量を低下させる観点から、150~250℃が好ましく、170~230℃がより好ましい。 The resin temperature at the time of extrusion in the above method (II) is preferably 150 to 250 ° C. from the viewpoint of reducing the content of volatile substances in the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2), and is preferably 170 to 230 ° C is more preferred.
 上記方法(III)における溶媒としては、ポリビニルアセタール樹脂に通常使用される可塑剤を使用することが好ましい。そのような可塑剤としては、先の<可塑剤>の段落に記載されているものが使用される。 As the solvent in the above method (III), it is preferable to use a plasticizer usually used for polyvinyl acetal resins. As such a plasticizer, those described in the paragraph of <Plasticizer> above are used.
 得られた金属箔付ポリビニルアセタール層(1)または金属箔付ポリビニルアセタール層(2)から導電構造体の所望の形状を形成する工程は、公知のフォトリソグラフィの手法を用いて実施される。前記工程は、例えば後の実施例に記載のとおり、まず金属箔付ポリビニルアセタール層(1)の金属箔上にドライフィルムレジストをラミネートした後、フォトリソグラフィの手法を用いてエッチング抵抗パターンを形成し、次いで、エッチング抵抗パターンが付与されたポリビニルアセタール層(1)を銅エッチング液に浸漬して導電構造体の形状を形成した後、公知の方法により残存するフォトレジスト層を除去することによって実施される。 The step of forming a desired shape of the conductive structure from the obtained polyvinyl acetal layer with metal foil (1) or the polyvinyl acetal layer with metal foil (2) is carried out using a known photolithography technique. In the process, for example, as described in the following examples, a dry film resist is first laminated on the metal foil of the polyvinyl acetal layer (1) with metal foil, and then an etching resistance pattern is formed using a photolithography technique. Then, after the polyvinyl acetal layer (1) provided with the etching resistance pattern is immersed in a copper etching solution to form the shape of the conductive structure, the remaining photoresist layer is removed by a known method. The
 好ましい一態様において、導電構造体の少なくとも一面は低反射率処理されているが、かかる態様は、例えば、少なくとも一方の面が低反射率処理された金属箔を使用することで達成される。また、上述のフォトリソグラフィの方法により導電構造体の形状を形成した後に低反射率処理してもよい。金属箔および導電構造体の低反射率処理は、先に記載したようにアルカリ系黒化液等を用いて実施できる。 In a preferred embodiment, at least one surface of the conductive structure is subjected to a low reflectance treatment. This embodiment is achieved, for example, by using a metal foil in which at least one surface is subjected to a low reflectance treatment. Further, the low reflectance treatment may be performed after the shape of the conductive structure is formed by the photolithography method described above. The low reflectance treatment of the metal foil and the conductive structure can be performed using an alkaline blackening solution or the like as described above.
 電気抵抗または発熱量の確保の容易性、および製造容易性の観点から、金属箔は銀または銅を含むことが好ましく、経済的観点からは、銅を含むことがより好ましい。特に好ましい態様では、金属箔は銅箔である。 The metal foil preferably contains silver or copper, and more preferably contains copper from an economical viewpoint, from the viewpoints of ensuring electrical resistance or heat generation and manufacturing ease. In a particularly preferred embodiment, the metal foil is a copper foil.
 次いで、得られた導電構造体付きポリビニルアセタール層(1)または導電構造体付きポリビニルアセタール層(2)の導電構造体を有する面上に、もう一方のポリビニルアセタール層〔即ち、導電構造体付きポリビニルアセタール層(1)の場合はポリビニルアセタール層(2)、導電構造体付きポリビニルアセタール層(2)の場合はポリビニルアセタール層(1)〕を接合することにより、シート(A)が製造される。この接合方法は、先に記載した、金属箔とポリビニルアセタール層(1)またはポリビニルアセタール層(2)とを接合させる方法と同じ方法であってよい。 Next, on the surface having the conductive structure of the obtained polyvinyl acetal layer with conductive structure (1) or polyvinyl acetal layer with conductive structure (2), another polyvinyl acetal layer [ie, polyvinyl with conductive structure] In the case of the acetal layer (1), the polyvinyl acetal layer (2), and in the case of the polyvinyl acetal layer with a conductive structure (2), the polyvinyl acetal layer (1)] is bonded to produce the sheet (A). This joining method may be the same method as the method for joining the metal foil and the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) described above.
 本発明におけるシート(A)が、ポリビニルアセタール層(1)とポリビニルアセタール層(2)との間に、導電構造体に加えて別の機能性層を有する場合、別の機能性層を、ポリビニルアセタール層(1)、ポリビニルアセタール層(2)、導電構造体付きポリビニルアセタール層(1)または導電構造体付きポリビニルアセタール層(2)に付与する方法は、先に記載した、導電構造体をポリビニルアセタール層(1)またはポリビニルアセタール層(2)に付与する方法と同じ方法であってよい。また、別の方法としては、別の機能性層が樹脂組成物からなる場合に、ポリビニルアセタール層(1)またはポリビニルアセタール層(2)を構成する樹脂組成物と別の機能性層を構成する樹脂組成物とを同時に押出する方法;或いは別の機能性層を構成する樹脂組成物の溶液中にポリビニルアセタール層(1)またはポリビニルアセタール層(2)をディップする方法が挙げられる。 When the sheet (A) in the present invention has another functional layer in addition to the conductive structure between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2), The method for applying the acetal layer (1), the polyvinyl acetal layer (2), the polyvinyl acetal layer with a conductive structure (1) or the polyvinyl acetal layer with a conductive structure (2) is the same as that described above. The same method as that applied to the acetal layer (1) or the polyvinyl acetal layer (2) may be used. Moreover, as another method, when another functional layer consists of a resin composition, a functional layer different from the resin composition constituting the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) is constituted. The method of extruding simultaneously with a resin composition; Or the method of dipping a polyvinyl acetal layer (1) or a polyvinyl acetal layer (2) in the solution of the resin composition which comprises another functional layer is mentioned.
 シート(A)の厚さは、好ましくは20μm以上、より好ましくは80μm以上、さらに好ましくは150μm以上、よりさらに好ましくは350μm以上、特に好ましくは700μm以上である。シート(A)の厚さが前記値以上であると、シート(A)の収縮または変形に起因して導電構造体に歪等が生じる問題が起こりにくく、またシート(A)を合わせガラス用中間膜として使用する場合に、優れた耐貫通性を発現しやすい。また、シート(A)の厚さは、好ましくは1700μm以下、より好ましくは1200μm以下、特に好ましくは900μm以下である。シート(A)の厚さが前記値以下であると、ポリビニルアセタール層(1)に含まれる可塑剤量とポリビニルアセタール層(2)に含まれる可塑剤量とが異なる場合に、より多い可塑剤量を含むポリビニルアセタール層からより少ない可塑剤量を含むポリビニルアセタール層への可塑剤移行量が少なくなり、より多い可塑剤量を含むポリビニルアセタール層中の可塑剤量の低下が抑制されるため、シート(A)を用いた乗物用ガラスを搭載した乗物の衝突時における頭部衝撃が大きくなる等の問題が起こりにくい。シート(A)の厚さは、厚み計またはレーザー顕微鏡等を用いて測定される。 The thickness of the sheet (A) is preferably 20 μm or more, more preferably 80 μm or more, further preferably 150 μm or more, still more preferably 350 μm or more, and particularly preferably 700 μm or more. When the thickness of the sheet (A) is equal to or greater than the above value, the problem that the conductive structure is distorted due to the contraction or deformation of the sheet (A) hardly occurs. When used as a membrane, excellent penetration resistance is easily exhibited. Further, the thickness of the sheet (A) is preferably 1700 μm or less, more preferably 1200 μm or less, and particularly preferably 900 μm or less. When the thickness of the sheet (A) is not more than the above value, when the amount of plasticizer contained in the polyvinyl acetal layer (1) and the amount of plasticizer contained in the polyvinyl acetal layer (2) are different, more plasticizers The amount of plasticizer transferred from the polyvinyl acetal layer containing the amount of plasticizer to the polyvinyl acetal layer containing less plasticizer amount is reduced, and the decrease in the amount of plasticizer in the polyvinyl acetal layer containing more plasticizer amount is suppressed, Problems such as a large head impact at the time of collision of a vehicle on which the vehicle glass using the sheet (A) is mounted are unlikely to occur. The thickness of the sheet (A) is measured using a thickness meter or a laser microscope.
 好ましい一態様において、シート(A)はその少なくとも一方の表面に凹凸構造を有する。シート(A)の凹凸構造を有する面は、ポリビニルアセタール層(1)側およびポリビニルアセタール層(2)側のいずれの表面であってもよい。凹凸構造を有する面の平均表面粗さRz値は、好ましくは15~70μm、より好ましくは20~50μmであり、粗さ曲線要素の平均長さRSm値は、好ましくは100~1000μm、より好ましくは300~700μmである。シート(A)がその少なくとも一方の表面に凹凸構造を有する場合(特に、シート(A)の少なくとも一方の表面の平均表面粗さRz値が上記範囲を満たす場合)、本発明の多層構造体においてシート(A)同士がより接着しにくく、合わせガラス作製時に導電構造体における破断、剥離および断線等の欠陥がより生じにくい。Rz値およびRSm値は、表面粗さ計またはレーザー顕微鏡を用いて、JIS B0601-1994に準拠して測定される。上記凹凸構造は、例えば、シート(A)、または導電構造体を付与する前のポリビニルアセタール層(1)若しくはポリビニルアセタール層(2)を少なくとも1つのロール対の間で型押しすることにより付与でき、所望の平均表面粗さRz値および粗さ曲線要素の平均長さRSm値に調整できる。 In a preferred embodiment, the sheet (A) has a concavo-convex structure on at least one surface thereof. The surface having the concavo-convex structure of the sheet (A) may be any surface on the polyvinyl acetal layer (1) side and the polyvinyl acetal layer (2) side. The average surface roughness Rz value of the surface having the concavo-convex structure is preferably 15 to 70 μm, more preferably 20 to 50 μm, and the average length RSm value of the roughness curve element is preferably 100 to 1000 μm, more preferably 300 to 700 μm. When the sheet (A) has a concavo-convex structure on at least one surface thereof (particularly, when the average surface roughness Rz value of at least one surface of the sheet (A) satisfies the above range), the multilayer structure of the present invention Sheets (A) are less likely to adhere to each other, and defects such as breakage, peeling, and disconnection in the conductive structure are less likely to occur during laminated glass production. The Rz value and the RSm value are measured according to JIS B0601-1994 using a surface roughness meter or a laser microscope. The concavo-convex structure can be imparted, for example, by embossing the sheet (A) or the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) before imparting the conductive structure between at least one roll pair. The desired average surface roughness Rz value and the average length RSm value of the roughness curve element can be adjusted.
 好ましい一態様において、シート(A)2枚を、ポリビニルアセタール層(1)側の表面とポリビニルアセタール層(2)側の表面とが接するように重ね、23℃、50%RH下、表面に垂直な向きに0.02MPaの圧力を48時間加えた後の耐ブロッキング性を示す剥離力は30N/30mm以下である。上記剥離力は、より好ましくは15N/30mm以下、特に好ましくは10N/30mm以下である。上記剥離力が上記上限値以下であると、本発明の多層構造体においてシート(A)同士がさらに接着しにくく、合わせガラス作製時に導電構造体における破断、剥離および断線等の欠陥がより生じにくい。上記剥離力は、ポリビニルアセタール層(1)およびポリビニルアセタール層(2)に含まれる樹脂の種類、可塑剤の種類および量、並びにシート(A)表面の凹凸構造により調整できる。上記剥離力の下限値は、0N/30mmである。 In a preferred embodiment, two sheets (A) are stacked such that the surface on the polyvinyl acetal layer (1) side and the surface on the polyvinyl acetal layer (2) side are in contact with each other, and perpendicular to the surface at 23 ° C. and 50% RH. The peeling force showing the blocking resistance after applying a pressure of 0.02 MPa for 48 hours in any direction is 30 N / 30 mm or less. The peeling force is more preferably 15 N / 30 mm or less, and particularly preferably 10 N / 30 mm or less. When the peeling force is less than or equal to the above upper limit value, the sheets (A) are more difficult to adhere to each other in the multilayer structure of the present invention, and defects such as breakage, peeling and disconnection in the conductive structure are less likely to occur during laminated glass production. . The said peeling force can be adjusted with the uneven | corrugated structure of the kind of resin contained in a polyvinyl acetal layer (1) and a polyvinyl acetal layer (2), the kind and quantity of a plasticizer, and a sheet | seat (A) surface. The lower limit of the peeling force is 0 N / 30 mm.
 本発明の多層構造体は、シート(A)が2枚以上重なってなる多層構造体であって、合わせガラス作製時に使用できる。本発明の多層構造体は、ロール状に巻かれて2枚以上重なった状態、またはある程度のサイズに切り出して2枚以上重ねた状態であるため、保管または輸送に適する。シート(A)を用いて合わせガラスを作製する際、例えば、シート(A)をロールから巻き出す際、2枚以上重ねたシート(A)を1枚ずつ取り出す際、および合わせガラスを作製するために透明基材と接合する際等に、作業性に優れ、導電構造体が破断、剥離または断線するといった欠陥が極めて生じにくい。また、本発明におけるシート(A)を用いて合わせガラスを作製すると、透明性および安全合わせガラスとしての性能(安全性)を併せ持つ合わせガラスが製造される。シート同士が接着しやすいシートでは、保護フィルムをシート間に介在させることによりシート同士が接着しないようにして上記欠陥が生じないようにすることはできるが、この場合は、保護フィルムをはがして使用するため廃棄物が増加する問題が生じる。本発明の多層構造体は、シート(A)間に保護フィルムを介在させなくても、導電構造体における上記欠陥は極めて生じにくい。 The multilayer structure of the present invention is a multilayer structure in which two or more sheets (A) overlap each other, and can be used when producing laminated glass. The multilayer structure of the present invention is suitable for storage or transportation because it is in a state in which two or more sheets are rolled and overlapped, or is cut out to a certain size and stacked in two or more. When producing laminated glass using a sheet (A), for example, when unwinding a sheet (A) from a roll, when taking out two or more sheets (A) one by one, and for producing laminated glass In addition, when joining to a transparent substrate, the workability is excellent, and defects such as breakage, peeling or disconnection of the conductive structure are extremely unlikely to occur. Moreover, when a laminated glass is produced using the sheet (A) in the present invention, a laminated glass having both transparency and performance (safety) as a safety laminated glass is produced. In a sheet that is easy to adhere between sheets, it is possible to prevent the sheet from adhering by interposing a protective film between the sheets so that the above defects do not occur. This causes a problem of increasing waste. In the multilayer structure of the present invention, the above defects in the conductive structure are very unlikely to occur even if a protective film is not interposed between the sheets (A).
 一態様では、本発明のロール状に重なってなる多層構造体において、シート(A)は巻芯上に巻回されている。巻回されているシート(A)において、ポリビニルアセタール層(1)およびポリビニルアセタール層(2)のいずれが内側であってもよい。巻芯の直径は、通常20mm以上、好ましくは50mm以上である。巻芯の直径は、通常500mm以下である。巻芯の直径が前記範囲内であると、シート(A)の変形に起因して導電構造体に歪等が生じたり、シート(A)の表面にしわやひび等が生じたりする問題が起こりにくく、良好な生産性を得やすい。シート(A)を巻芯上に巻回する方法は特に限定されず、シートを巻芯上に巻回する方法として通常用いられている方法を採用できる。 In one embodiment, the sheet (A) is wound on a winding core in the multilayer structure formed in a roll shape of the present invention. In the wound sheet (A), either the polyvinyl acetal layer (1) or the polyvinyl acetal layer (2) may be inside. The diameter of the winding core is usually 20 mm or more, preferably 50 mm or more. The diameter of the winding core is usually 500 mm or less. When the diameter of the winding core is within the above range, problems such as distortion of the conductive structure due to deformation of the sheet (A) and wrinkles and cracks on the surface of the sheet (A) occur. It is difficult to obtain good productivity. A method for winding the sheet (A) on the core is not particularly limited, and a method usually used as a method for winding the sheet on the core can be adopted.
<合わせガラス>
 本発明におけるシート(A)を用いて、複数の透明基材の間にシート(A)を有する合わせガラスを製造できる。
<Laminated glass>
The laminated glass which has a sheet | seat (A) between several transparent base materials can be manufactured using the sheet | seat (A) in this invention.
 合わせガラスにおける導電構造体の各配線は、バスバーと接続されている。バスバーとしては、当技術分野において通常使用されているバスバーが使用され、例えば、金属箔テープ、導電性粘着剤付き金属箔テープおよび導電性ペースト等が挙げられる。また、導電構造体を形成する際同時にバスバーも印刷したり、金属箔の一部をバスバーとして残したりすることによりバスバーを形成してもよい。バスバーにはそれぞれ給電線が接続され、各給電線が電源に接続されることから、電流が導電構造体に供給される。 Each wiring of the conductive structure in the laminated glass is connected to the bus bar. As the bus bar, a bus bar usually used in the art is used, and examples thereof include a metal foil tape, a metal foil tape with a conductive adhesive, and a conductive paste. Also, the bus bar may be formed by printing the bus bar at the same time when forming the conductive structure or leaving a part of the metal foil as the bus bar. A power supply line is connected to each bus bar, and each power supply line is connected to a power source, so that a current is supplied to the conductive structure.
 一態様では、本発明の多層構造体において、シート(A)は、その外側に突出して配置された電力または電気信号受給用の端子を有する。端子としては、当技術分野において通常使用されている端子が使用される。 In one aspect, in the multilayer structure of the present invention, the sheet (A) has a terminal for receiving electric power or an electric signal arranged so as to protrude outward. As the terminal, a terminal normally used in this technical field is used.
 透明基材は、透明性、耐候性および力学的強度の観点から、好ましくは無機ガラス(以下、単にガラスと称することもある)、またはメタクリル樹脂シート、ポリカーボネート樹脂シート、ポリスチレン系樹脂シート、ポリエステル系樹脂シート、若しくはポリシクロオレフィン系樹脂シート等の有機ガラスであり、より好ましくは無機ガラス、メタクリル樹脂シートまたはポリカーボネート樹脂シートであり、特に好ましくは無機ガラスである。無機ガラスとしては特に制限されないが、フロートガラス、強化ガラス、半強化ガラス、化学強化ガラス、グリーンガラスまたは石英ガラス等が挙げられる。 From the viewpoint of transparency, weather resistance and mechanical strength, the transparent substrate is preferably an inorganic glass (hereinafter sometimes simply referred to as glass), a methacrylic resin sheet, a polycarbonate resin sheet, a polystyrene resin sheet, or a polyester resin. An organic glass such as a resin sheet or a polycycloolefin-based resin sheet, more preferably an inorganic glass, a methacrylic resin sheet, or a polycarbonate resin sheet, and particularly preferably an inorganic glass. The inorganic glass is not particularly limited, and examples thereof include float glass, tempered glass, semi-tempered glass, chemically tempered glass, green glass, and quartz glass.
 特に乗物用ガラス、とりわけ乗物用フロントガラスにおいて、本発明のシート(A)を使用する場合は、前方視認性の観点から、導電構造体の低反射率処理されている面が乗車人物側にくるよう、シート(A)を配置することが好ましい。また、合わせガラス端部から水分が侵入して導電構造体の腐食を招く虞があるため、導電構造体は、合わせガラスの端部より1cm以上内側に配置されていることが好ましい。 In particular, when the seat (A) of the present invention is used in a vehicle glass, particularly a vehicle windshield, the surface of the conductive structure subjected to the low reflectance treatment comes to the passenger side from the viewpoint of forward visibility. It is preferable to arrange the sheet (A). Moreover, since there exists a possibility that a water | moisture content may penetrate | invade from a laminated glass edge part and cause a corrosion of a conductive structure, it is preferable that the conductive structure is arrange | positioned 1 cm or more inside from the edge part of a laminated glass.
<合わせガラス用中間膜(C)>
 本発明におけるシート(A)を用いて製造される合わせガラスは、安全合わせガラスに求められる安全性を備える。一方で、さらなる耐貫通性を付与する観点から、上記合わせガラスは、複数の透明基材の間に1つ以上の合わせガラス用中間膜(C)をさらに有していてもよいが、生産効率の低下の観点からは、上記合わせガラス用中間膜(C)を有さないことが好ましい。合わせガラスが合わせガラス用中間膜(C)を有する場合、合わせガラス用中間膜(C)は、ポリビニルアセタール層(1)と接していてもよいし、ポリビニルアセタール層(2)と接していてもよい。このような合わせガラス用中間膜(C)としては特に限定されず、通常使用される合わせガラス用中間膜を使用でき、例えば、ポリビニルアセタール樹脂と可塑剤とを含んでなる可塑化ポリビニルアセタール樹脂層が挙げられる。前記ポリビニルアセタール樹脂は、例えば、先の<ポリビニルアセタール(1)およびポリビニルアセタール(2)>の段落において記載したポリビニルアセタール樹脂であってよく、同段落に記載の方法と同様の方法によって製造できる。
<Interlayer film for laminated glass (C)>
The laminated glass manufactured using the sheet (A) in the present invention has safety required for safety laminated glass. On the other hand, from the viewpoint of imparting further penetration resistance, the laminated glass may further include one or more interlayer films for laminated glass (C) between a plurality of transparent substrates, but the production efficiency. From the viewpoint of lowering, it is preferable not to have the interlayer film for laminated glass (C). When the laminated glass has an interlayer film for laminated glass (C), the interlayer film for laminated glass (C) may be in contact with the polyvinyl acetal layer (1) or may be in contact with the polyvinyl acetal layer (2). Good. The interlayer film for laminated glass (C) is not particularly limited, and a conventionally used interlayer film for laminated glass can be used. For example, a plasticized polyvinyl acetal resin layer comprising a polyvinyl acetal resin and a plasticizer Is mentioned. The polyvinyl acetal resin may be, for example, the polyvinyl acetal resin described in the paragraph of <Polyvinyl Acetal (1) and Polyvinyl Acetal (2)> and can be produced by the same method as that described in the same paragraph.
 合わせガラス用中間膜(C)における可塑剤の含有量は、層の積層前の初期状態では、合わせガラス用中間膜(C)を構成する樹脂組成物における樹脂100質量部に対して、好ましくは19質量部以上、より好ましくは19~56質量部、さらに好ましくは28~47質量部、特に好ましくは35~43質量部である。前記可塑剤の含有量が前記範囲内であると、耐衝撃性に優れた合わせガラスを得やすい。また、合わせガラス用中間膜(C)として、遮音機能を有する可塑化ポリビニルアセタール樹脂層を用いることもできる。その場合、可塑剤の含有量は、層の積層前の初期状態では、合わせガラス用中間膜(C)を構成する樹脂組成物における樹脂100質量部に対して、好ましくは42質量部以上、より好ましくは42~100質量部、さらに好ましくは45~67質量部、特に好ましくは47~54質量部である。可塑剤としては、先の<可塑剤>の段落において記載した可塑剤を使用できる。 The plasticizer content in the interlayer film for laminated glass (C) is preferably relative to 100 parts by mass of the resin in the resin composition constituting the interlayer film for laminated glass (C) in the initial state before lamination of the layers. 19 parts by mass or more, more preferably 19 to 56 parts by mass, still more preferably 28 to 47 parts by mass, and particularly preferably 35 to 43 parts by mass. When the content of the plasticizer is within the above range, it is easy to obtain a laminated glass excellent in impact resistance. Moreover, the plasticized polyvinyl acetal resin layer which has a sound-insulation function can also be used as an intermediate film (C) for laminated glass. In that case, the content of the plasticizer is preferably 42 parts by mass or more with respect to 100 parts by mass of the resin in the resin composition constituting the interlayer film for laminated glass (C) in the initial state before the layers are laminated. The amount is preferably 42 to 100 parts by mass, more preferably 45 to 67 parts by mass, and particularly preferably 47 to 54 parts by mass. As the plasticizer, the plasticizers described in the preceding <Plasticizer> paragraph can be used.
 合わせガラス用中間膜(C)は、必要に応じて、先の<添加剤>の段落において記載した添加剤を含有してもよい。 The interlayer film for laminated glass (C) may contain the additive described in the previous <Additive> paragraph, if necessary.
 合わせガラス用中間膜(C)は、先の<ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の製造方法>の段落において記載した方法により製造できる。 The interlayer film for laminated glass (C) can be produced by the method described in the above paragraph <Method for producing polyvinyl acetal layer (1) and polyvinyl acetal layer (2)>.
 合わせガラス用中間膜(C)の厚さは、好ましくは100~1600μm、より好ましくは350~1200μm、さらに好ましくは700~900μmである。合わせガラス用中間膜(C)の厚さが前記値以上であると、優れた耐貫通性を得やすい。上記厚さは、厚み計またはレーザー顕微鏡等を用いて測定される。 The thickness of the interlayer film for laminated glass (C) is preferably 100 to 1600 μm, more preferably 350 to 1200 μm, and still more preferably 700 to 900 μm. It is easy to obtain excellent penetration resistance when the thickness of the interlayer film for laminated glass (C) is not less than the above value. The thickness is measured using a thickness meter or a laser microscope.
 合わせガラスが合わせガラス用中間膜(C)を有する場合、前記ポリビニルアセタール層(1)およびポリビニルアセタール層(2)を構成するポリビニルアセタール樹脂の水酸基量と、合わせガラス用中間膜(C)を構成するポリビニルアセタール樹脂の水酸基量との差は、好ましくは5モル%以下、より好ましくは3モル%以下、特に好ましくは1モル%以下である。ポリビニルアセタール(1)、ポリビニルアセタール(2)、または合わせガラス用中間膜(C)を構成するポリビニルアセタール樹脂が複数の樹脂の混合物からなる場合、ポリビニルアセタール(1)の平均水酸基量、ポリビニルアセタール(2)の平均水酸基量、または合わせガラス用中間膜(C)を構成するポリビニルアセタール樹脂の平均水酸基量が、前記関係を満たしていることが好ましい。前記差が前記上限値以下であると、合わせガラスにおいて可塑剤が移行した後の平衡状態においてポリビニルアセタール層(1)およびポリビニルアセタール層(2)と合わせガラス用中間膜(C)との屈折率差が小さくなることから、互いに寸法が異なる合わせガラス用中間膜(C)、ポリビニルアセタール層(1)およびポリビニルアセタール層(2)を使用した場合にその境界が視認しにくい、或いはシート(A)と合わせガラス用中間膜(C)との界面が視認しにくいため好ましい。
 一方、ポリビニルアセタール(1)および/またはポリビニルアセタール(2)の水酸基量と、合わせガラス用中間膜(C)を構成するポリビニルアセタール樹脂の水酸基量とに差をつけることで、可塑剤が移行した後の平衡状態におけるポリビニルアセタール層(1)における可塑剤量と合わせガラス用中間膜(C)における可塑剤量との間、および/またはポリビニルアセタール層(2)における可塑剤量と合わせガラス用中間膜(C)における可塑剤量との間に差をつけ、遮音性能に優れる合わせガラスを得ることも可能である。その場合、前記水酸基量の差は好ましくは5モル%以上、より好ましくは8モル%以上である。
When the laminated glass has an interlayer film for laminated glass (C), the amount of hydroxyl groups of the polyvinyl acetal resin constituting the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) and the interlayer film for laminated glass (C) are configured. The difference from the amount of hydroxyl groups in the polyvinyl acetal resin is preferably 5 mol% or less, more preferably 3 mol% or less, and particularly preferably 1 mol% or less. When the polyvinyl acetal resin constituting the polyvinyl acetal (1), the polyvinyl acetal (2), or the interlayer film for laminated glass (C) is composed of a mixture of a plurality of resins, the average hydroxyl amount of the polyvinyl acetal (1), the polyvinyl acetal ( It is preferable that the average hydroxyl group content of 2) or the average hydroxyl group content of the polyvinyl acetal resin constituting the interlayer film for laminated glass (C) satisfies the above relationship. When the difference is less than or equal to the upper limit, the refractive index of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) and the interlayer film for laminated glass (C) in an equilibrium state after the plasticizer is transferred in the laminated glass Since the difference is small, when the interlayer film for laminated glass (C), the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) having different dimensions are used, the boundary is difficult to visually recognize, or the sheet (A) And the interface with the interlayer film for laminated glass (C) is difficult to visually recognize.
On the other hand, the plasticizer migrated by making a difference between the amount of hydroxyl groups of the polyvinyl acetal (1) and / or polyvinyl acetal (2) and the amount of hydroxyl groups of the polyvinyl acetal resin constituting the interlayer film for laminated glass (C). Between the amount of plasticizer in the polyvinyl acetal layer (1) and the amount of plasticizer in the interlayer film for laminated glass (C) in the equilibrium state and / or the amount of plasticizer in the polyvinyl acetal layer (2) and the intermediate for laminated glass It is also possible to obtain a laminated glass having excellent sound insulation performance by making a difference with the amount of plasticizer in the film (C). In that case, the difference in the amount of the hydroxyl group is preferably 5 mol% or more, more preferably 8 mol% or more.
 合わせガラスは、複数の透明基材の間に、シート(A)および任意に合わせガラス用中間膜(C)に加えて、先の<別の機能性層>において記載した機能性層を有してもよく、その場合、別の機能性層は、ポリビニルアセタール層(1)、ポリビニルアセタール層(2)、存在する場合は合わせガラス用中間膜(C)のいずれと接していてもよい。 The laminated glass has the functional layer described in <Other functional layer> in addition to the sheet (A) and optionally the interlayer film for laminated glass (C) between a plurality of transparent substrates. In that case, the other functional layer may be in contact with any of the polyvinyl acetal layer (1), the polyvinyl acetal layer (2), and, if present, the interlayer film for laminated glass (C).
<合わせガラスの製造方法>
 合わせガラスは当業者に公知の方法で製造できる。例えば、透明基材の上にシート(A)並びに場合により合わせガラス用中間膜(C)および/または別の機能性層を任意の順で任意の枚数重ねて配置し、さらにもう一つの透明基材を重ねたものを、予備圧着工程として温度を高めることによってシート(A)並びに場合により合わせガラス用中間膜(C)および/または別の機能性層を透明基材に全面または局所的に融着させ、次いでオートクレーブで処理することで、合わせガラスを製造できる。
<Method for producing laminated glass>
Laminated glass can be produced by methods known to those skilled in the art. For example, an arbitrary number of sheets (A) and optionally an interlayer film for laminated glass (C) and / or another functional layer are arranged in any order on a transparent substrate, and another transparent group As a pre-compression process, the laminated material is heated to increase the temperature of the sheet (A) and optionally the laminated glass interlayer film (C) and / or another functional layer on the transparent substrate entirely or locally. Laminated glass can be produced by applying it and then processing in an autoclave.
 また、シート(A)、並びに場合により合わせガラス用中間膜(C)および/または別の機能性層をあらかじめ予備圧着した上で2つの透明基材の間に配置して高温で互いに融着させることにより、合わせガラスを製造してもよい。 In addition, the sheet (A) and optionally the interlayer film for laminated glass (C) and / or another functional layer are preliminarily pressure-bonded and placed between two transparent substrates to be fused to each other at a high temperature. By doing so, laminated glass may be manufactured.
 上記予備圧着工程としては、過剰の空気を除去したり隣接する層同士の軽い接合を実施したりする観点から、バキュームバッグ、バキュームリング、または真空ラミネーター等の方法により減圧下に脱気する方法、ニップロールを用いて脱気する方法、および高温下に圧縮成形する方法等が挙げられる。例えばEP 1235683 B1に記載のバキュームバッグ法またはバキュームリング法は、例えば約2×10Paおよび130~145℃で実施される。真空ラミネーターは、加熱可能かつ真空可能なチャンバーからなり、このチャンバーにおいて、約20分~約60分の時間内に合わせガラスが形成される。通常は1Pa~3×10Paの減圧および100℃~200℃、特に130℃~160℃の温度が有効である。真空ラミネーターを用いる場合、温度および圧力に応じて、オートクレーブでの処理を行わなくてもよい。 As the pre-pressing step, from the viewpoint of removing excess air or performing light joining between adjacent layers, a method of degassing under reduced pressure by a method such as a vacuum bag, a vacuum ring, or a vacuum laminator, Examples thereof include a method of deaeration using a nip roll and a method of compression molding at a high temperature. For example, the vacuum bag method or the vacuum ring method described in EP 1235683 B1 is carried out at about 2 × 10 4 Pa and 130 to 145 ° C., for example. A vacuum laminator consists of a heatable and vacuumable chamber in which laminated glass is formed within a time period of about 20 minutes to about 60 minutes. Usually, a reduced pressure of 1 Pa to 3 × 10 4 Pa and a temperature of 100 ° C. to 200 ° C., particularly 130 ° C. to 160 ° C. are effective. When using a vacuum laminator, the treatment in the autoclave may not be performed depending on the temperature and pressure.
 オートクレーブでの処理は、例えば約1×10Pa~約1.5×10Paの圧力および約100℃~約145℃の温度で20分~2時間程度実施される。 The treatment in the autoclave is performed, for example, at a pressure of about 1 × 10 6 Pa to about 1.5 × 10 6 Pa and a temperature of about 100 ° C. to about 145 ° C. for about 20 minutes to 2 hours.
 第1の透明基材上に、シート(A)および場合により合わせガラス用中間膜(C)および/または別の機能性層を配置する方法は特に限定されず、種々の方法が適用される。例えば、シート(A)並びに場合により合わせガラス用中間膜(C)および/または別の機能性層は、相応の幅のロールから供給して配置してから目的の大きさに切断してもよいし、あらかじめ目的の大きさに切断しておいたフィルムを配置してもよい。たとえば、自動車フロントガラスの場合、ロールから供給されたシート(A)並びに場合により合わせガラス用中間膜(C)を接合、加熱・延伸、切断し、扇型に加工したものを用いてもよい。 The method of disposing the sheet (A) and optionally the interlayer film for laminated glass (C) and / or another functional layer on the first transparent substrate is not particularly limited, and various methods are applied. For example, the sheet (A) and, optionally, the interlayer film for laminated glass (C) and / or another functional layer may be supplied from a roll having a suitable width and then cut to a desired size. And you may arrange | position the film cut | disconnected in the target magnitude | size beforehand. For example, in the case of an automobile windshield, a sheet (A) supplied from a roll and optionally an interlayer film for laminated glass (C) may be joined, heated / stretched, cut and processed into a fan shape.
 自動車分野では、特にフロントガラスを製造する際、ガラスの上部がいわゆるカラーシェード領域を有する場合もある。そのため、シート(A)および/または合わせガラス用中間膜(C)は、相応に着色されたポリマー溶融物と一緒に押出されるか、またはシート(A)および合わせガラス用中間膜(C)のうちの少なくとも1つが部分的に異なる着色を有していてよい。従って、シート(A)および/または合わせガラス用中間膜(C)は、フロントガラスの形状に適合されたカラーグラデーションを有してもよい。 In the automotive field, particularly when producing a windshield, the upper part of the glass may have a so-called color shade region. Therefore, the sheet (A) and / or the interlayer film for laminated glass (C) are extruded together with the correspondingly colored polymer melt, or the sheet (A) and the interlayer film for laminated glass (C). At least one of them may have a partially different coloration. Therefore, the sheet (A) and / or the interlayer film for laminated glass (C) may have a color gradation adapted to the shape of the windshield.
 合わせガラス用中間膜(C)は、くさび形の厚さプロファイルを有していてもよい。このとき合わせガラスは、シート(A)の厚さプロファイルが平行平面である場合でも、くさび形の厚さプロファイルを有することができ、自動車フロントガラスにおいてヘッドアップディスプレイ(HUD)に使用できる。 The interlayer film for laminated glass (C) may have a wedge-shaped thickness profile. At this time, the laminated glass can have a wedge-shaped thickness profile even when the thickness profile of the sheet (A) is a parallel plane, and can be used for a head-up display (HUD) in an automobile windshield.
 合わせガラス用中間膜(C)は市販の可塑化ポリビニルブチラールシートであってもよく、赤外線吸収能または反射能を持つナノ粒子が分散された合わせガラス用中間膜(C)、着色された合わせガラス用中間膜(C)、または遮音機能を有する合わせガラス用中間膜(C)であってもよい。 The interlayer film for laminated glass (C) may be a commercially available plasticized polyvinyl butyral sheet, the interlayer film for laminated glass (C) in which nanoparticles having infrared absorbing ability or reflectivity are dispersed, and colored laminated glass The interlayer film for laminated glass (C) or the interlayer film for laminated glass (C) having a sound insulating function may be used.
 合わせガラスは、建物または乗物における合わせガラスとして使用できる。乗物における合わせガラスとは、汽車、電車、自動車、船舶または航空機といった乗物のための、フロントガラス、リアガラス、ルーフガラスまたはサイドガラス等を意味する。 Laminated glass can be used as laminated glass in buildings or vehicles. Laminated glass in a vehicle means a windshield, a rear glass, a roof glass, a side glass, or the like for a vehicle such as a train, a train, an automobile, a ship, or an aircraft.
 本発明におけるシート(A)を用いて作製された合わせガラスの低反射率処理面(例えば黒化処理面)側から光を照射した場合のヘイズは通常2.0以下であり、好ましくは1.8以下、より好ましくは1.5以下である。本発明におけるシート(A)を用いて作製された合わせガラスの金属光沢面側から光を照射した場合のヘイズは通常3.0以下であり、好ましくは2.8以下、より好ましくは2.5以下である。前記ヘイズは、JIS R 3106に準じて測定される。ポリビニルアセタール層(1)およびポリビニルアセタール層(2)が特定の樹脂と特定の量の可塑剤とを含むシート(A)を用い、導電構造体の線幅を細くすることにより、前記ヘイズは前記上限値以下に調整できる。 The haze when light is irradiated from the low-reflectance-treated surface (for example, blackened surface) side of the laminated glass produced using the sheet (A) in the present invention is usually 2.0 or less, preferably 1. It is 8 or less, more preferably 1.5 or less. The haze when light is irradiated from the metallic gloss surface side of the laminated glass produced using the sheet (A) in the present invention is usually 3.0 or less, preferably 2.8 or less, more preferably 2.5. It is as follows. The haze is measured according to JIS R 3106. By using the sheet (A) in which the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) contain a specific resin and a specific amount of a plasticizer, the haze is reduced by reducing the line width of the conductive structure. It can be adjusted below the upper limit.
 本発明におけるシート(A)を用いて作製した合わせガラスにおいて、ポリビニルアセタール層(1)に含まれる可塑剤、ポリビニルアセタール層(2)に含まれる可塑剤および/または任意に存在してよい合わせガラス用中間膜(C)に含まれる可塑剤は、時間の経過に伴って他の層に移行し、平衡状態において各層および存在する場合は合わせガラス用中間膜(C)に含まれる可塑剤量は同程度となる。このときの可塑剤量(平均可塑剤量)は、好ましくは18~35質量%、より好ましくは20~30質量%、特に好ましくは25~29質量%である。平均可塑剤量が前記範囲内であると、例えば衝突時の乗車人物の頭部への衝撃が緩和される等、合わせガラスにおいて所望される特性を得やすい。平均可塑剤量は、下記方法によって計算される。
Figure JPOXMLDOC01-appb-M000007
  A(質量%):合わせガラス用中間膜(C)の可塑剤量
  a(mm):合わせガラス用中間膜(C)の厚さ
  B(質量%):ポリビニルアセタール層(1)の可塑剤量
  b(mm):ポリビニルアセタール層(1)の厚さ
  C(質量%):ポリビニルアセタール層(2)の可塑剤量
  c(mm):ポリビニルアセタール層(2)の厚さ
上記a~cおよびA~Cの値を調整することで、平均可塑剤量は前記範囲内に調整できる。
In the laminated glass produced using the sheet (A) in the present invention, the plasticizer contained in the polyvinyl acetal layer (1), the plasticizer contained in the polyvinyl acetal layer (2), and / or the laminated glass optionally present. The plasticizer contained in the interlayer film (C) for use moves to other layers as time passes, and the amount of plasticizer contained in the interlayer film for laminated glass (C) when present in each layer and in the equilibrium state is The same level. The amount of plasticizer (average plasticizer amount) at this time is preferably 18 to 35% by mass, more preferably 20 to 30% by mass, and particularly preferably 25 to 29% by mass. When the average plasticizer amount is within the above range, for example, it is easy to obtain the desired characteristics in the laminated glass, for example, the impact on the head of the rider at the time of collision is reduced. The average plasticizer amount is calculated by the following method.
Figure JPOXMLDOC01-appb-M000007
A (mass%): amount of plasticizer of interlayer film for laminated glass (C) a (mm): thickness of interlayer film for laminated glass (C) B (mass%): amount of plasticizer of polyvinyl acetal layer (1) b (mm): thickness of polyvinyl acetal layer (1) C (mass%): amount of plasticizer of polyvinyl acetal layer (2) c (mm): thickness of polyvinyl acetal layer (2) a to c and A By adjusting the value of ~ C, the average plasticizer amount can be adjusted within the above range.
 本発明におけるシート(A)は透明性に優れるため、本発明におけるシート(A)を用いて作製した合わせガラスも透明性に優れる。また、シート(A)は、合わせガラスを作製する際、導電構造体における破断、剥離および断線等の欠陥が極めて生じにくく、かつ作業性に優れ、シート(A)に加えて合わせガラス用中間膜を用いなくても安全合わせガラスに求められる安全性を備えた合わせガラスがもたらされる。そのため、本発明の多層構造体は合わせガラスの作製に好適である。 Since the sheet (A) in the present invention is excellent in transparency, the laminated glass produced using the sheet (A) in the present invention is also excellent in transparency. Further, when the sheet (A) is used for producing a laminated glass, defects such as breakage, peeling and disconnection in the conductive structure are extremely difficult to be produced, and the workability is excellent. In addition to the sheet (A), an interlayer film for laminated glass Even if it is not used, the laminated glass provided with the safety | security required for the safety laminated glass is brought about. Therefore, the multilayer structure of the present invention is suitable for producing laminated glass.
[実施例1]
 表1に記載のポリビニルブチラール樹脂PVB-1を溶融混練し、得られた溶融混練物をストランド状に押出し、ペレット化した。得られたペレットを単軸の押出機とTダイを用いて溶融押出し、金属弾性ロールを用いて、厚さ50μmのポリビニルアセタール層(1)を得た。また、表1に記載のポリビニルブチラール樹脂PVB-2(100質量部)と、トリエチレングリコール-ビス-(2-エチルヘキサノエート)(以下、「3G8」と称する)およびジ(ブトキシエチル)アジペート(以下、「DBEA」と称する)の混合物(質量比10/1)40質量部とを溶融混練し、前記ポリビニルアセタール層(1)と同様の方法で厚さ800μmのシートを作製し、さらに片面に十点平均表面粗さRzが35μmとなるように凹凸構造を形成させて、ポリビニルアセタール層(2)を得た。得られたポリビニルアセタール層(1)に、片面が黒化処理された厚さ7μmの銅箔を、黒化処理面とポリビニルアセタール層(1)とが接するような向きで重ねた。ここで、JIS R 3106に準じて測定された黒化処理面の可視光反射率は5.2%であった。次に、ポリビニルアセタール樹脂層(1)と銅箔とを重ねた積層体の上下を厚さ50μmのPETフィルムで挟み、120℃に設定した熱圧着ロールの間を通過(圧力:0.2MPa、速度0.5m/分)させた後、PETフィルムを剥離した。次いで、銅箔上にドライフィルムレジストをラミネートした後、フォトリソグラフィの手法を用いてエッチング抵抗パターンを形成した。次に、銅エッチング液に浸漬して導電構造体を形成した後、常法により、残存するフォトレジスト層を除去して、導電構造体を有するポリビニルアセタール層(1)を得た。導電構造体は、線幅10μmの銅線が500μm間隔で格子状に並んだ銅メッシュ構造を有し、その上辺および下辺がバスバーに相当する幅5mmの銅線構造と接続された構造を有していた。次いで、得られた導電構造体上に、前記ポリビニルアセタール層(2)を、凹凸構造が形成されていない面が導電構造体に接するように重ね、ラミネートしてシート(A)を得た。シート(A)に関して、下記評価を実施した。結果を表2に示す。
[Example 1]
Polyvinyl butyral resin PVB-1 shown in Table 1 was melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T die, and a 50 μm thick polyvinyl acetal layer (1) was obtained using a metal elastic roll. Further, polyvinyl butyral resin PVB-2 (100 parts by mass) shown in Table 1, triethylene glycol-bis- (2-ethylhexanoate) (hereinafter referred to as “3G8”) and di (butoxyethyl) adipate 40 parts by mass of a mixture (hereinafter referred to as “DBEA”) (mass ratio 10/1) is melt-kneaded to produce a sheet having a thickness of 800 μm in the same manner as the polyvinyl acetal layer (1). A concave-convex structure was formed so that the ten-point average surface roughness Rz was 35 μm to obtain a polyvinyl acetal layer (2). On the obtained polyvinyl acetal layer (1), a copper foil having a thickness of 7 μm, which was blackened on one side, was overlapped so that the blackened surface and the polyvinyl acetal layer (1) were in contact with each other. Here, the visible light reflectance of the blackened surface measured according to JIS R 3106 was 5.2%. Next, the upper and lower sides of the laminate in which the polyvinyl acetal resin layer (1) and the copper foil are stacked are sandwiched between PET films having a thickness of 50 μm and passed between thermocompression-bonding rolls set at 120 ° C. (pressure: 0.2 MPa, After a speed of 0.5 m / min), the PET film was peeled off. Next, after laminating a dry film resist on the copper foil, an etching resistance pattern was formed using a photolithography technique. Next, after immersing in a copper etching solution to form a conductive structure, the remaining photoresist layer was removed by a conventional method to obtain a polyvinyl acetal layer (1) having a conductive structure. The conductive structure has a copper mesh structure in which copper wires having a line width of 10 μm are arranged in a lattice pattern at intervals of 500 μm, and the upper and lower sides thereof are connected to a copper wire structure having a width of 5 mm corresponding to a bus bar. It was. Next, the polyvinyl acetal layer (2) was laminated on the obtained conductive structure so that the surface on which the uneven structure was not formed was in contact with the conductive structure, and was laminated to obtain a sheet (A). The following evaluation was performed on the sheet (A). The results are shown in Table 2.
〔十点平均表面粗さRz〕
 シート(A)のポリビニルアセタール層(1)側およびポリビニルアセタール層(2)側のそれぞれについて、表面粗さ計で表面粗さを測定し、十点平均表面粗さを求めた。表2では、十点平均粗さが5μm未満の場合は「無し」と記載し、5μm以上の場合はその数値を記載した。
[Ten point average surface roughness Rz]
About each of the polyvinyl acetal layer (1) side and the polyvinyl acetal layer (2) side of the sheet (A), the surface roughness was measured with a surface roughness meter, and the ten-point average surface roughness was determined. In Table 2, “None” is described when the ten-point average roughness is less than 5 μm, and the numerical value is described when it is 5 μm or more.
〔耐ブロッキング性を示す剥離力〕
 シート(A)から3cm×10cm寸法の試料を2枚切り出し、一方のシート(A)のポリビニルアセタール層(1)が他方のシート(A)のポリビニルアセタール層(2)と接するように重ねた。これを平らな机上に置き、その上に荷重を載せ、前記3cm×10cmの面と垂直な向きに0.02MPaの圧力がかかるようにして、23℃、50%RHで静置した。48時間後、23℃、50%RHにおけるシート(A)間の接着力をT字剥離試験により測定し(株式会社島津製作所製オートグラフSI使用、速度500mm/分)、得られた最大剥離力を、耐ブロッキング性を示す剥離力とした。同様の試験を5回行い、その平均値を求めた。
[Peeling force showing blocking resistance]
Two samples having a size of 3 cm × 10 cm were cut out from the sheet (A), and stacked so that the polyvinyl acetal layer (1) of one sheet (A) was in contact with the polyvinyl acetal layer (2) of the other sheet (A). This was placed on a flat desk, a load was placed on it, and it was allowed to stand at 23 ° C. and 50% RH so that a pressure of 0.02 MPa was applied in a direction perpendicular to the 3 cm × 10 cm surface. After 48 hours, the adhesive strength between the sheets (A) at 23 ° C. and 50% RH was measured by a T-shaped peel test (using Shimadzu Autograph SI, speed 500 mm / min), and the maximum peel force obtained. Was defined as a peeling force showing blocking resistance. The same test was performed 5 times, and the average value was obtained.
〔Tg、Tg
 ポリビニルアセタール層(1)を構成する組成物およびポリビニルアセタール層(2)を構成する組成物をそれぞれ150℃、100kg/cmで30分間プレス成形して、厚さ0.8mmのシートを得た。得られたシートを幅3mmに切断し、動的粘弾性測定試料とした。この測定試料について、動的粘弾性装置(株式会社ユービーエム製、Rheogel-E4000)を使用し、-50から100℃まで、3℃/分で昇温しながら、チャック間距離20mm、周波数0.3Hz、変位75.9μm、自動静荷重26g、引張モードで分析した。ポリビニルアセタール層(1)およびポリビニルアセタール層(2)のtanδが極大となる温度をそれぞれTgおよびTgとした。
[Tg 1 , Tg 2 ]
The composition constituting the polyvinyl acetal layer (1) and the composition constituting the polyvinyl acetal layer (2) were respectively press-molded at 150 ° C. and 100 kg / cm 2 for 30 minutes to obtain a sheet having a thickness of 0.8 mm. . The obtained sheet was cut into a width of 3 mm to obtain a dynamic viscoelasticity measurement sample. For this measurement sample, a dynamic viscoelasticity device (Rheogel-E4000 manufactured by UBM Co., Ltd.) was used and the temperature was increased from −50 to 100 ° C. at 3 ° C./min. The analysis was performed in 3 Hz, displacement 75.9 μm, automatic static load 26 g, and tensile mode. The temperatures at which tan δ of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) were maximized were defined as Tg 1 and Tg 2 , respectively.
〔ロール引出試験〕
 直径7.5cmの巻芯にシート(A)10mを巻きつけ、23℃、50%RHで2日間保管した。保管後のシート(A)を10cm/秒の速さで引出し、導電構造体を目視で確認して、下記の3つの項目について評価した。
(i)導電構造体の破損
 引出し後のシート(A)を目視で評価し、破断および剥離が全く確認されなかったものを「無し」、破断または剥離が確認されたものを「有り」とした。
(ii)しわの発生
 引出し後のシート(A)を目視で評価し、表面にしわが発生していないものを「無し」、表面にしわが発生しているものを「有り」とした。
(iii)自着性
 自着性の有無を評価し、下記基準に従ってA~Dで評価した。
A;自着がみられなかった。
B;自着しているが、シート(A)の変形無しに剥離可能であった。
C;自着しており、剥離した際にシート(A)が変形した。
D;自着しており、剥離した際にシート(A)が著しく変形または破損した。
[Roll pull-out test]
A sheet (A) 10 m was wound around a core having a diameter of 7.5 cm and stored at 23 ° C. and 50% RH for 2 days. The sheet (A) after storage was pulled out at a speed of 10 cm / second, the conductive structure was visually confirmed, and the following three items were evaluated.
(I) Damage to the conductive structure The sheet (A) after drawing was visually evaluated, and “no” was given when no breakage or peeling was confirmed, and “Yes” was given when breakage or peeling was confirmed. .
(Ii) Generation of wrinkle The sheet (A) after drawing was visually evaluated, and “no” was given when the surface did not have wrinkles, and “existed” when the surface was wrinkled.
(Iii) Self-adhesiveness The presence or absence of self-adhesiveness was evaluated, and evaluated according to the following criteria.
A: Self-adhesion was not seen.
B: Self-attached, but peelable without deformation of the sheet (A).
C: Self-attached, and the sheet (A) was deformed when peeled.
D: Self-attached, and sheet (A) was significantly deformed or damaged when peeled.
〔シート(A)高温処理後のtanδピーク温度測定〕
 シート(A)を、縦10cm×横10cmの寸法に切り出し、2枚のPETフィルム(縦10cm×横10cm×厚さ0.1mm)に挟み、さらに2枚の縦10cm、横10cm、厚さ3mmのガラスで挟んだ。続いて、これを真空バッグに入れ、真空ポンプを用いて室温で15分間減圧にした後、減圧したまま100℃まで昇温し、そのまま60分間加熱した。降温後、常圧に戻した。その後、これをオートクレーブに投入し、140℃、1.2MPaで30分間処理した。ガラス、PETフィルムを取り除き、シートを得た。得られたシートを幅3mmに切断し、動的粘弾性測定試料とした。この測定試料について、動的粘弾性装置(株式会社ユービーエム製、Rheogel-E4000)を使用し、-50から100℃まで、3℃/分で昇温しながら、チャック間距離20mm、周波数0.3Hz、変位75.9μm、自動静荷重26g、引張モードで分析し、tanδが極大となる温度を測定し、下記の基準で評価した。シート(A)を合わせガラス用中間膜として使用する場合の安全性発現の観点から、A、Bの順に好ましく、Cは好ましくない。
   A:tanδピーク温度が20℃以上35℃未満
   B:tanδピーク温度が5℃以上20℃未満、または35℃以上50℃未満
   C:tanδピーク温度が5℃未満、または50℃以上
[Sheet (A) tan δ peak temperature measurement after high temperature treatment]
The sheet (A) is cut into a size of 10 cm long × 10 cm wide, sandwiched between two PET films (vertical 10 cm × width 10 cm × thickness 0.1 mm), and further, two pieces of length 10 cm, width 10 cm, thickness 3 mm. Sandwiched between glasses. Subsequently, this was put in a vacuum bag and reduced in pressure for 15 minutes at room temperature using a vacuum pump. Then, the temperature was raised to 100 ° C. while reducing the pressure, and the mixture was heated as it was for 60 minutes. After cooling, the pressure was returned to normal pressure. Thereafter, this was put into an autoclave and treated at 140 ° C. and 1.2 MPa for 30 minutes. The glass and the PET film were removed to obtain a sheet. The obtained sheet was cut into a width of 3 mm to obtain a dynamic viscoelasticity measurement sample. For this measurement sample, a dynamic viscoelasticity device (Rheogel-E4000 manufactured by UBM Co., Ltd.) was used and the temperature was increased from −50 to 100 ° C. at 3 ° C./min. Analysis was performed at 3 Hz, displacement 75.9 μm, automatic static load 26 g, and tensile mode, and the temperature at which tan δ was maximized was measured and evaluated according to the following criteria. From the viewpoint of safety expression when the sheet (A) is used as an interlayer film for laminated glass, A and B are preferable in this order, and C is not preferable.
A: tan δ peak temperature is 20 ° C. or more and less than 35 ° C. B: tan δ peak temperature is 5 ° C. or more and less than 20 ° C., or 35 ° C. or more and less than 50 ° C. C: tan δ peak temperature is less than 5 ° C. or 50 ° C. or more.
[実施例2]
 表1に記載のポリビニルブチラール樹脂PVB-1(100質量部)および3G8(10質量部)を溶融混練し、得られた溶融混練物をストランド状に押出し、ペレット化した。得られたペレットを単軸の押出機とTダイを用いて溶融押出し、金属弾性ロールを用いて、厚さ50μmのポリビニルアセタール層(1)を得た。得られたポリビニルアセタール層(1)を用いたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 2]
Polyvinyl butyral resin PVB-1 (100 parts by mass) and 3G8 (10 parts by mass) shown in Table 1 were melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape and pelletized. The obtained pellet was melt-extruded using a single screw extruder and a T die, and a 50 μm thick polyvinyl acetal layer (1) was obtained using a metal elastic roll. A sheet (A) was obtained in the same manner as in Example 1 except that the obtained polyvinyl acetal layer (1) was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例3]
 3G8およびDBEAの混合物(質量比10/1)40質量部の代わりに、ジ(ブトキシエトキシエチル)アジペート(以下、「DBEEA」と称する)55質量部を用いてポリビニルアセタール層(2)を得たこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 3]
A polyvinyl acetal layer (2) was obtained using 55 parts by mass of di (butoxyethoxyethyl) adipate (hereinafter referred to as “DBEEA”) instead of 40 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1). Except for this, a sheet (A) was obtained in the same manner as in Example 1, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例4]
 ポリビニルアセタール層(1)の厚さを10μmとしたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 4]
A sheet (A) was obtained in the same manner as in Example 1 except that the thickness of the polyvinyl acetal layer (1) was 10 μm, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例5]
 ポリビニルアセタール層(1)の厚さを100μmとしたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 5]
A sheet (A) was obtained in the same manner as in Example 1 except that the thickness of the polyvinyl acetal layer (1) was 100 μm, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例6]
 3G8およびDBEAの混合物(質量比10/1)40質量部の代わりに、3G8および1分子のビスフェノールAに対して平均3分子のプロピレンオキシドが付加した化合物(以下、「BP-3P」と称する)の混合物(質量比3/2)60質量部を用いてポリビニルアセタール層(2)を得たこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 6]
A compound in which an average of 3 molecules of propylene oxide is added to 3G8 and 1 molecule of bisphenol A instead of 40 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) (hereinafter referred to as “BP-3P”) A sheet (A) was obtained in the same manner as in Example 1 except that 60 parts by mass of the mixture (mass ratio 3/2) was used to obtain the polyvinyl acetal layer (2), and the same evaluation as in Example 1 was performed. It was. The results are shown in Table 2.
[実施例7]
 表1に記載のポリビニルブチラール樹脂PVB-2(100質量部)と、3G8およびDBEA(質量比10/1)の混合物40質量部とを溶融混練し、得られた溶融混練物をストランド状に押出し、ペレット化した。得られたペレットを単軸の押出機とTダイを用いて溶融押出し、金属弾性ロールを用いて、厚さ400μmのシートを作製し、さらに片面の十点平均表面粗さRzが35μmとなるように凹凸構造を形成させて、ポリビニルアセタール層(1)を得た。また、同様にして作製したシートをポリビニルアセタール層(2)とした。得られたポリビニルアセタール層(1)およびポリビニルアセタール層(2)を用いたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 7]
Polyvinyl butyral resin PVB-2 (100 parts by mass) listed in Table 1 and 40 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) were melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape. And pelletized. The obtained pellets were melt-extruded using a single-screw extruder and a T die, a sheet having a thickness of 400 μm was produced using a metal elastic roll, and the 10-point average surface roughness Rz on one side was 35 μm. A concavo-convex structure was formed on to obtain a polyvinyl acetal layer (1). Moreover, the sheet | seat produced similarly was made into the polyvinyl acetal layer (2). A sheet (A) was obtained in the same manner as in Example 1 except that the obtained polyvinyl acetal layer (1) and polyvinyl acetal layer (2) were used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例8]
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の作製において、凹凸構造を形成させる工程を行わなかったこと以外は実施例7と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 8]
In the production of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2), a sheet (A) was obtained in the same manner as in Example 7 except that the step of forming the concavo-convex structure was not performed. Evaluation was performed. The results are shown in Table 2.
[実施例9]
 表1に記載のポリビニルブチラール樹脂PVB-2(100質量部)と、3G8およびDBEA(質量比10/1)の混合物30質量部とを溶融混練し、得られた溶融混練物をストランド状に押出し、ペレット化した。得られたペレットを単軸の押出機とTダイを用いて溶融押出し、金属弾性ロールを用いて、厚さ400μmのシートを作製し、さらに片面の十点平均表面粗さRzが35μmとなるように凹凸構造を形成させて、ポリビニルアセタール層(1)を得た。また、表1に記載のポリビニルブチラール樹脂PVB-2(100質量部)と、DBEEA50質量部とを溶融混練し、前記ポリビニルアセタール層(1)と同様の方法で厚さ400μmのシートを作製し、さらに片面に十点平均表面粗さRzが35μmとなるように凹凸構造を形成させて、ポリビニルアセタール層(2)を得た。得られたポリビニルアセタール層(1)およびポリビニルアセタール層(2)を用いたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 9]
Polyvinyl butyral resin PVB-2 shown in Table 1 (100 parts by mass) and 30 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) were melt-kneaded, and the resulting melt-kneaded product was extruded into a strand shape. And pelletized. The obtained pellets were melt-extruded using a single-screw extruder and a T die, a sheet having a thickness of 400 μm was produced using a metal elastic roll, and the 10-point average surface roughness Rz on one side was 35 μm. A concavo-convex structure was formed on to obtain a polyvinyl acetal layer (1). Further, the polyvinyl butyral resin PVB-2 (100 parts by mass) shown in Table 1 and 50 parts by mass of DBEEA were melt-kneaded to prepare a sheet having a thickness of 400 μm in the same manner as the polyvinyl acetal layer (1), Further, a concavo-convex structure was formed on one side so that the ten-point average surface roughness Rz was 35 μm, and a polyvinyl acetal layer (2) was obtained. A sheet (A) was obtained in the same manner as in Example 1 except that the obtained polyvinyl acetal layer (1) and polyvinyl acetal layer (2) were used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例10]
 ポリビニルアセタール層(1)の厚さを200μm、ポリビニルアセタール層(2)の厚さを800μmとしたこと以外は実施例7と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 10]
A sheet (A) was obtained in the same manner as in Example 7 except that the thickness of the polyvinyl acetal layer (1) was 200 μm and the thickness of the polyvinyl acetal layer (2) was 800 μm, and the same evaluation as in Example 1 was performed. went. The results are shown in Table 2.
[実施例11]
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の作製において、3G8およびDBEA(質量比10/1)の混合物の代わりにDBEEAを用いたこと以外は実施例7と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 11]
Sheet (A) in the same manner as in Example 7 except that DBEEA was used in place of the mixture of 3G8 and DBEA (mass ratio 10/1) in preparation of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2). And the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例12]
 ポリビニルアセタール層(1)の作製において、3G8(10質量部)の代わりに3G8およびDBEA(質量比10/1)の混合物20質量部を用い、ポリビニルアセタール層(2)の作製において、3G8およびDBEA(質量比10/1)の混合物の使用量を20質量部とし、ポリビニルアセタール層(2)の表面に凹凸を形成させる処理を行わなかったこと以外は実施例2と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 12]
In the production of the polyvinyl acetal layer (1), instead of 3G8 (10 parts by mass), 20 parts by mass of a mixture of 3G8 and DBEA (mass ratio 10/1) was used, and in the production of the polyvinyl acetal layer (2), 3G8 and DBEA The amount of the mixture used (mass ratio 10/1) was 20 parts by mass, and the sheet (A) was prepared in the same manner as in Example 2 except that the treatment for forming irregularities on the surface of the polyvinyl acetal layer (2) was not performed. And the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[実施例13]
 ポリビニルアセタール層(2)の作製において、PVB-2の代わりに表1に記載のポリビニルブチラール樹脂PVB-3を用いたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 13]
In the production of the polyvinyl acetal layer (2), a sheet (A) was obtained in the same manner as in Example 1 except that the polyvinyl butyral resin PVB-3 shown in Table 1 was used instead of PVB-2. The same evaluation was performed. The results are shown in Table 2.
[実施例14]
 ポリビニルアセタール層(2)の作製において、PVB-2の代わりに表1に記載のポリビニルブチラール樹脂PVB-4を用いたこと以外は実施例1と同様にしてシート(A)を得、実施例1と同様の評価を行った。結果を表2に示す。
[Example 14]
In the production of the polyvinyl acetal layer (2), a sheet (A) was obtained in the same manner as in Example 1 except that the polyvinyl butyral resin PVB-4 shown in Table 1 was used instead of PVB-2. The same evaluation was performed. The results are shown in Table 2.
[比較例1および2]
 ポリビニルアセタール層(2)として、ポリビニルアセタール層(1)と同様にして作製したシートを用いたこと以外は実施例1と同様にして、シートを得、実施例1と同様の評価を行った。結果を表2に示す。
 なお、後述の通り比較例1においては、耐貫通性を付与するために、合わせガラス作製時に合わせガラス用中間膜(C)を使用する必要があった。これに対して比較例2においては、合わせガラス用中間膜(C)を使用しなかったため、耐貫通性に劣っていた。
[Comparative Examples 1 and 2]
A sheet was obtained in the same manner as in Example 1 except that a sheet prepared in the same manner as the polyvinyl acetal layer (1) was used as the polyvinyl acetal layer (2), and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
As described later, in Comparative Example 1, in order to impart penetration resistance, it was necessary to use an interlayer film for laminated glass (C) when producing laminated glass. On the other hand, in Comparative Example 2, since the interlayer film for laminated glass (C) was not used, the penetration resistance was poor.
[比較例3]
 ポリビニルアセタール層(1)およびポリビニルアセタール層(2)の作製において、DBEEAの使用量をそれぞれ85質量部としたこと以外は実施例11と同様にしてシートを得、実施例1と同様の評価を行った。結果を表2に示す。
[Comparative Example 3]
In the production of the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2), a sheet was obtained in the same manner as in Example 11 except that the amount of DBEEA used was 85 parts by mass, and the same evaluation as in Example 1 was performed. went. The results are shown in Table 2.
[比較例4]
 ポリビニルアセタール層(2)を用いなかったこと以外は実施例1と同様にしてシートを得た、実施例1と同様の評価を行った。結果を表2に示す。
[Comparative Example 4]
A sheet was obtained in the same manner as in Example 1 except that the polyvinyl acetal layer (2) was not used, and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
[比較例5]
 ポリビニルアセタール層(1)の代わりに、厚さ50μmのPETフィルムを用いたこと以外は実施例1と同様にしてシートを得、実施例1と同様の評価を行った。結果を表2に示す。
[Comparative Example 5]
A sheet was obtained in the same manner as in Example 1 except that a PET film having a thickness of 50 μm was used instead of the polyvinyl acetal layer (1), and the same evaluation as in Example 1 was performed. The results are shown in Table 2.
〔合わせガラスの作製〕
 実施例および比較例で得られたシート(A)またはシートをそれぞれ、縦10cm×横10cmの寸法に切り出し、縦10cm、横10cm、厚さ3mmのガラスの上に配置した。その上に、縦10cm、横10cm、厚さ3mmのガラスを重ねて配置した。ただし、比較例1においてはシートのポリビニルアセタール層(1)側に合わせガラス用中間膜(C)を配置してから、比較例4においてはシートの導電構造体側に合わせガラス用中間膜(C)を配置してから、また比較例5においてはシートのPETフィルム側に合わせガラス用中間膜(C)を配置してから、2枚のガラスの間に配置した。ここで、合わせガラス用中間膜(C)としては、表1に記載のポリビニルブチラール樹脂PVB-2(100質量部)と、3G8(36.4質量部)と、DBEEA(3.6質量部)とを溶融混練し、得られた溶融混練物をストランド状に押出し、ペレット化した後、単軸の押出機とTダイを用いて溶融押出し、金属弾性ロールを用いて、厚さ800μmのシートとしたものを用いた。続いて、これを真空バッグに入れ、真空ポンプを用いて室温で15分間減圧にした後、減圧したまま100℃まで昇温し、そのまま60分間加熱した。降温後、常圧に戻し、プレラミネート後の合わせガラスを取り出した。その後、これをオートクレーブに投入し、140℃、1.2MPaで30分間処理し、合わせガラスを作製した。
[Production of laminated glass]
The sheets (A) or sheets obtained in Examples and Comparative Examples were cut into dimensions of 10 cm long × 10 cm wide and placed on a glass having a length of 10 cm, a width of 10 cm, and a thickness of 3 mm. On top of that, a glass having a length of 10 cm, a width of 10 cm, and a thickness of 3 mm was stacked. However, in Comparative Example 1, the laminated glass intermediate film (C) is disposed on the polyvinyl acetal layer (1) side of the sheet, and in Comparative Example 4, the laminated glass intermediate film (C) is disposed on the conductive structure side of the sheet. In Comparative Example 5, a laminated glass interlayer (C) was placed on the PET film side of the sheet, and then placed between the two glasses. Here, as the interlayer film for laminated glass (C), polyvinyl butyral resin PVB-2 (100 parts by mass) shown in Table 1, 3G8 (36.4 parts by mass), DBEEA (3.6 parts by mass) Are melt-kneaded, the obtained melt-kneaded product is extruded into a strand shape, pelletized, melt-extruded using a single-screw extruder and a T-die, and a metal elastic roll is used to form a sheet having a thickness of 800 μm. What was done was used. Subsequently, this was put in a vacuum bag and reduced in pressure for 15 minutes at room temperature using a vacuum pump. Then, the temperature was raised to 100 ° C. while reducing the pressure, and the mixture was heated as it was for 60 minutes. After the temperature was lowered, the pressure was returned to normal pressure, and the laminated glass after prelaminating was taken out. Thereafter, this was put into an autoclave and treated at 140 ° C. and 1.2 MPa for 30 minutes to produce a laminated glass.
 得られた合わせガラスを5cm×5cmの寸法に切り出し、ヘイズメーターを用いてJIS R 3106に準じてヘイズを測定し、下記基準で評価した。結果を表2に示す。合わせガラスのヘイズ値が1.0以下であることはシートの透明性が高いことを示し、0.6以下であることはシートの透明性が非常に高いことを示す。
   A:ヘイズ値が0.6以下
   B:ヘイズ値が0.6超~0.8以下
   C:ヘイズ値が0.8超~1.0以下
   D:ヘイズ値が1.0超
The obtained laminated glass was cut into a size of 5 cm × 5 cm, the haze was measured according to JIS R 3106 using a haze meter, and evaluated according to the following criteria. The results are shown in Table 2. A haze value of the laminated glass of 1.0 or less indicates that the transparency of the sheet is high, and a value of 0.6 or less indicates that the transparency of the sheet is very high.
A: Haze value is 0.6 or less B: Haze value is more than 0.6 to 0.8 or less C: Haze value is more than 0.8 to 1.0 or less D: Haze value is more than 1.0
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

Claims (22)

  1.  ポリビニルアセタール(1)100質量部および可塑剤0~200質量部を含むポリビニルアセタール層(1)と、ポリビニルアセタール(2)100質量部および可塑剤0~200質量部を含むポリビニルアセタール層(2)と、前記ポリビニルアセタール層(1)および前記ポリビニルアセタール層(2)の間に配置された導電構造体とを備えるシート(A)が2枚以上重なってなる多層構造体であって、シート(A)に含まれるポリビニルアセタール(1)およびポリビニルアセタール(2)の合計含有量を100質量部とした場合、シート(A)に含まれる可塑剤の合計含有量が10~80質量部である多層構造体。 Polyvinyl acetal layer (1) containing 100 parts by mass of polyvinyl acetal (1) and 0 to 200 parts by mass of plasticizer, and polyvinyl acetal layer (2) containing 100 parts by mass of polyvinyl acetal (2) and 0 to 200 parts by mass of plasticizer And a multilayer structure in which two or more sheets (A) comprising a conductive structure disposed between the polyvinyl acetal layer (1) and the polyvinyl acetal layer (2) are overlapped, the sheet (A ) In which the total content of the plasticizer contained in the sheet (A) is 10 to 80 parts by mass, when the total content of the polyvinyl acetal (1) and the polyvinyl acetal (2) contained in body.
  2.  前記ポリビニルアセタール層(1)に含まれる可塑剤の含有量、および前記ポリビニルアセタール層(2)に含まれる可塑剤の含有量の少なくとも一方が10質量部以上である、請求項1に記載の多層構造体。 The multilayer according to claim 1, wherein at least one of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 10 parts by mass or more. Structure.
  3.  前記ポリビニルアセタール層(1)に含まれる可塑剤の含有量、および前記ポリビニルアセタール層(2)に含まれる可塑剤の含有量の一方が0質量部以上10質量部以下であり、もう一方が10質量部以上80質量部以下である、請求項1または2に記載の多層構造体。 One of the content of the plasticizer contained in the polyvinyl acetal layer (1) and the content of the plasticizer contained in the polyvinyl acetal layer (2) is 0 to 10 parts by mass, and the other is 10 The multilayer structure according to claim 1, wherein the multilayer structure is not less than 80 parts by mass.
  4.  前記シート(A)がその少なくとも一方の表面に凹凸構造を有する、請求項1~3のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 3, wherein the sheet (A) has an uneven structure on at least one surface thereof.
  5.  前記シート(A)の少なくとも一方の表面の平均表面粗さが15~70μmである、請求項4に記載の多層構造体。 The multilayer structure according to claim 4, wherein the average surface roughness of at least one surface of the sheet (A) is 15 to 70 µm.
  6.  ロール状に重なってなる多層構造体において、前記シート(A)が巻芯上に巻回されている、請求項1~5のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 5, wherein the sheet (A) is wound on a core in a multilayer structure that is overlapped in a roll shape.
  7.  前記導電構造体が発熱用導電構造体である、請求項1~6のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 6, wherein the conductive structure is a heat generating conductive structure.
  8.  前記導電構造体が金属箔のエッチング構造体である、請求項1~7のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 7, wherein the conductive structure is an etching structure of a metal foil.
  9.  前記金属箔が銅を含む、請求項8に記載の多層構造体。 The multilayer structure according to claim 8, wherein the metal foil contains copper.
  10.  前記多層構造体が、前記ポリビニルアセタール層(1)と前記導電構造体との間、および前記ポリビニルアセタール層(2)と前記導電構造体との間の少なくとも一方に、接着剤層を有する、請求項1~9のいずれかに記載の多層構造体。 The multilayer structure has an adhesive layer between at least one of the polyvinyl acetal layer (1) and the conductive structure and between the polyvinyl acetal layer (2) and the conductive structure. Item 10. The multilayer structure according to any one of Items 1 to 9.
  11.  前記多層構造体が、前記ポリビニルアセタール層(1)と前記導電構造体との間、および前記ポリビニルアセタール層(2)と前記導電構造体との間に、接着剤層を有さない、請求項1~9のいずれかに記載の多層構造体。 The multilayer structure does not have an adhesive layer between the polyvinyl acetal layer (1) and the conductive structure and between the polyvinyl acetal layer (2) and the conductive structure. The multilayer structure according to any one of 1 to 9.
  12.  前記ポリビニルアセタール(1)および前記ポリビニルアセタール(2)の少なくとも一方の重合度が800以上である、請求項1~11のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 11, wherein the degree of polymerization of at least one of the polyvinyl acetal (1) and the polyvinyl acetal (2) is 800 or more.
  13.  前記ポリビニルアセタール(1)の重合度が1500未満であり、前記ポリビニルアセタール(2)の重合度が1500以上である、請求項1~12のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 12, wherein the degree of polymerization of the polyvinyl acetal (1) is less than 1500, and the degree of polymerization of the polyvinyl acetal (2) is 1500 or more.
  14.  前記ポリビニルアセタール(1)が式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表される構造を有し、前記ポリビニルアセタール(2)が式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表される構造を有し、式中、R1およびR2は、それぞれ独立して、水素原子、脂肪族炭化水素基または芳香族炭化水素基であり、R1とR2の炭素数は同一である、請求項1~13のいずれかに記載の多層構造体。
    The polyvinyl acetal (1) is represented by the formula (1):
    Figure JPOXMLDOC01-appb-C000001
    The polyvinyl acetal (2) has the structure represented by formula (2):
    Figure JPOXMLDOC01-appb-C000002
    Wherein R1 and R2 are each independently a hydrogen atom, an aliphatic hydrocarbon group or an aromatic hydrocarbon group, and R1 and R2 have the same carbon number. The multilayer structure according to any one of claims 1 to 13.
  15.  前記ポリビニルアセタール(1)のアセタール化度をAモル%とし、前記ポリビニルアセタール(2)のアセタール化度をAモル%とした場合、AとAの差の絶対値が5モル%未満である、請求項1~14のいずれかに記載の多層構造体。 When the degree of acetalization of the polyvinyl acetal (1) is A 1 mol% and the degree of acetalization of the polyvinyl acetal (2) is A 2 mol%, the absolute value of the difference between A 1 and A 2 is 5 mol%. The multilayer structure according to any one of claims 1 to 14, wherein
  16.  前記ポリビニルアセタール(1)の水酸基量をHモル%とし、前記ポリビニルアセタール(2)の水酸基量をHモル%とした場合、HとHの差の絶対値が5モル%未満である、請求項1~15のいずれかに記載の多層構造体。 The amount of hydroxyl groups of the polyvinyl acetal (1) and H 1 mol%, the hydroxyl group content of the polyvinyl acetal (2) When with H 2 mol%, the absolute value of the difference of an H 1 and H 2 is less than 5 mol% The multilayer structure according to any one of claims 1 to 15, wherein
  17.  前記ポリビニルアセタール層(1)における可塑剤の含有量が、前記ポリビニルアセタール層(2)における可塑剤の含有量より小さく、前記ポリビニルアセタール(1)の重合度がポリビニルアセタール(2)の重合度より小さい、請求項1~16のいずれかに記載の多層構造体。 The plasticizer content in the polyvinyl acetal layer (1) is smaller than the plasticizer content in the polyvinyl acetal layer (2), and the polymerization degree of the polyvinyl acetal (1) is greater than the polymerization degree of the polyvinyl acetal (2). The multilayer structure according to any one of claims 1 to 16, which is small.
  18.  前記可塑剤がエーテルエステル系化合物を含む、請求項1~17のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 17, wherein the plasticizer contains an ether ester compound.
  19.  前記シート(A)2枚を、ポリビニルアセタール層(1)側の表面とポリビニルアセタール層(2)側の表面とが接するように重ね、23℃、50%RH下、表面に垂直な向きに0.02MPaの圧力を48時間加えた後の耐ブロッキング性を示す剥離力が30N/30mm以下である、請求項1~18のいずれかに記載の多層構造体。 Two sheets (A) are stacked so that the surface on the polyvinyl acetal layer (1) side and the surface on the polyvinyl acetal layer (2) side are in contact with each other, and 0 ° in a direction perpendicular to the surface at 23 ° C. and 50% RH. The multilayer structure according to any one of claims 1 to 18, wherein a peeling force showing blocking resistance after applying a pressure of 0.02 MPa for 48 hours is 30 N / 30 mm or less.
  20.  前記ポリビニルアセタール(1)の重合度が前記ポリビニルアセタール(2)の重合度より小さく、前記ポリビニルアセタール層(1)の厚さが前記ポリビニルアセタール層(2)の厚さより小さい、請求項1~19のいずれかに記載の多層構造体。 The polymerization degree of the polyvinyl acetal (1) is smaller than the polymerization degree of the polyvinyl acetal (2), and the thickness of the polyvinyl acetal layer (1) is smaller than the thickness of the polyvinyl acetal layer (2). A multilayer structure according to any one of the above.
  21.  前記ポリビニルアセタール層(1)を構成する組成物のtanδが極大値をとる温度をTg、前記ポリビニルアセタール層(2)を構成する組成物のtanδが極大値をとる温度をTgとした場合、TgおよびTgの少なくとも一方が5℃以上である、請求項1~20のいずれかに記載の多層構造体。 When the temperature at which tan δ of the composition constituting the polyvinyl acetal layer (1) takes a maximum value is Tg 1 , and the temperature at which the tan δ of the composition constituting the polyvinyl acetal layer (2) takes a maximum value is Tg 2 The multilayer structure according to any one of claims 1 to 20, wherein at least one of Tg 1 and Tg 2 is 5 ° C or higher.
  22.  前記シート(A)が、その外側に突出して配置された電力または電気信号受給用の端子を有する、請求項1~21のいずれかに記載の多層構造体。 The multilayer structure according to any one of claims 1 to 21, wherein the sheet (A) has a terminal for receiving electric power or an electric signal arranged so as to protrude outward.
PCT/JP2019/008177 2018-03-01 2019-03-01 Multilayer structure in which plasticizer-containing sheets are stacked WO2019168173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020503655A JPWO2019168173A1 (en) 2018-03-01 2019-03-01 Multi-layer structure with overlapping plasticizer-containing sheets
KR1020207024976A KR20200128013A (en) 2018-03-01 2019-03-01 Multilayer structure made by overlapping plasticizer-containing sheets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018036687 2018-03-01
JP2018-036687 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019168173A1 true WO2019168173A1 (en) 2019-09-06

Family

ID=67806243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008177 WO2019168173A1 (en) 2018-03-01 2019-03-01 Multilayer structure in which plasticizer-containing sheets are stacked

Country Status (3)

Country Link
JP (1) JPWO2019168173A1 (en)
KR (1) KR20200128013A (en)
WO (1) WO2019168173A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238423A (en) * 2020-01-22 2021-08-10 北京开阳亮微科技有限公司 Ion transmission nano composite film, electrochromic glass comprising composite film and preparation method of electrochromic glass
CN113238422A (en) * 2020-01-22 2021-08-10 北京开阳亮微科技有限公司 Ion transmission composite membrane, electrochromic glass comprising same and preparation method thereof
WO2021215455A1 (en) * 2020-04-21 2021-10-28 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
WO2022124293A1 (en) * 2020-12-09 2022-06-16 積水化学工業株式会社 Laminated glass
CN116133841A (en) * 2020-09-07 2023-05-16 株式会社力森诺科 Laminated structure and object detection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172878A (en) * 1993-12-22 1995-07-11 Sekisui Chem Co Ltd Intermediate film for laminated glass
JPH09241045A (en) * 1996-03-07 1997-09-16 Sekisui Chem Co Ltd Intermediate film for laminated glass
WO2015072428A1 (en) * 2013-11-12 2015-05-21 Jnc株式会社 Heat sink
JP2017095331A (en) * 2015-11-27 2017-06-01 積水化学工業株式会社 Interlayer for glass laminate, glass laminate, and manufacturing method of interlayer for glass laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119047A (en) 1998-10-08 2000-04-25 Nippon Sheet Glass Co Ltd Glass laminate and its production
EP2878443A1 (en) * 2013-11-29 2015-06-03 Kuraray Europe GmbH Composite glass laminates with embedded electrically conductive structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172878A (en) * 1993-12-22 1995-07-11 Sekisui Chem Co Ltd Intermediate film for laminated glass
JPH09241045A (en) * 1996-03-07 1997-09-16 Sekisui Chem Co Ltd Intermediate film for laminated glass
WO2015072428A1 (en) * 2013-11-12 2015-05-21 Jnc株式会社 Heat sink
JP2017095331A (en) * 2015-11-27 2017-06-01 積水化学工業株式会社 Interlayer for glass laminate, glass laminate, and manufacturing method of interlayer for glass laminate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113238423A (en) * 2020-01-22 2021-08-10 北京开阳亮微科技有限公司 Ion transmission nano composite film, electrochromic glass comprising composite film and preparation method of electrochromic glass
CN113238422A (en) * 2020-01-22 2021-08-10 北京开阳亮微科技有限公司 Ion transmission composite membrane, electrochromic glass comprising same and preparation method thereof
CN113238422B (en) * 2020-01-22 2022-12-02 青岛凯欧斯光电科技有限公司 Ion transmission composite membrane, electrochromic glass comprising same and preparation method thereof
CN113238423B (en) * 2020-01-22 2022-12-02 青岛凯欧斯光电科技有限公司 Ion transmission nano composite film, electrochromic glass comprising composite film and preparation method of electrochromic glass
WO2021215455A1 (en) * 2020-04-21 2021-10-28 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
CN116133841A (en) * 2020-09-07 2023-05-16 株式会社力森诺科 Laminated structure and object detection structure
WO2022124293A1 (en) * 2020-12-09 2022-06-16 積水化学工業株式会社 Laminated glass

Also Published As

Publication number Publication date
JPWO2019168173A1 (en) 2021-03-11
KR20200128013A (en) 2020-11-11

Similar Documents

Publication Publication Date Title
CN110494283B (en) Polyvinyl acetal resin film for laminated glass
WO2019168173A1 (en) Multilayer structure in which plasticizer-containing sheets are stacked
JP6487131B2 (en) Polyvinyl acetal resin film for laminated glass
US20230202148A1 (en) Polyvinyl acetal resin film
JP7196070B2 (en) METHOD FOR MANUFACTURING FILM CONTAINING CONDUCTIVE STRUCTURE WITH SUBSTRATE FILM
WO2019131928A1 (en) Composite film having electronic member attachment region
JP2018161889A (en) Polyvinyl acetal resin film having polyvinyl acetal resin layer and conductive structure based on metal foil, and laminate glass having the film
JP2019150992A (en) Multilayer structure of overlapping sheet
CN112789312B (en) Method for producing polyvinyl acetal resin film having plasticizer absorbed therein
JP7466454B2 (en) Polyvinyl acetal resin film and laminate containing same
KR20210068428A (en) Polyvinyl acetal resin film, film roll thereof, and laminate
CN111511546A (en) Laminate and laminated glass
JP2023027939A (en) Laminated film and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503655

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761066

Country of ref document: EP

Kind code of ref document: A1