WO2019168170A1 - Chromone derivative and composition for diagnosis of amyloid-related disease - Google Patents

Chromone derivative and composition for diagnosis of amyloid-related disease Download PDF

Info

Publication number
WO2019168170A1
WO2019168170A1 PCT/JP2019/008168 JP2019008168W WO2019168170A1 WO 2019168170 A1 WO2019168170 A1 WO 2019168170A1 JP 2019008168 W JP2019008168 W JP 2019008168W WO 2019168170 A1 WO2019168170 A1 WO 2019168170A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amyloid
compound
pharmaceutically acceptable
acceptable salt
Prior art date
Application number
PCT/JP2019/008168
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 淵上
守雄 中山
さくら 吉田
史博 片山
真理 中家
Original Assignee
国立大学法人 長崎大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 長崎大学 filed Critical 国立大学法人 長崎大学
Priority to JP2020503654A priority Critical patent/JPWO2019168170A1/en
Publication of WO2019168170A1 publication Critical patent/WO2019168170A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to a chromone derivative useful for diagnosis of amyloid-related diseases such as Creutzfeldt-Jakob disease, a composition for diagnosing amyloid-related diseases containing the same, and a method for screening a therapeutic or prophylactic agent for amyloid-related diseases using the same And a method for evaluating a therapeutic or prophylactic agent for amyloid-related diseases using the same.
  • Prion disease represented by Creutzfeldt-Jakob disease (CJD)
  • CJD Creutzfeldt-Jakob disease
  • prion disease is a fatal neurodegenerative disease classified as sporadic, acquired, or hereditary, and effective diagnosis and treatment methods are still established.
  • the incidence of prion disease in Japan is about 1 in 1 million per year, although the incidence is low, but the incidence rate is such as BSE infection due to the increase in imported beef in the future and hospital infection accidents from surgical instruments due to the increase in the elderly There is concern about the danger of the increase.
  • PrP C normal prion protein
  • PrP Sc abnormal prion protein aggregate
  • Non-patent Document 1 As imaging drugs for diagnosis of amyloid-related diseases such as Alzheimer's disease, flavone derivatives and styrylchromone (SC) derivatives have been reported (Patent Document 1). Recent studies show that SC derivatives show good binding to prion deposition in PrP Sc aggregates and mouse-adapted BSE (mBSE) infected mice, and SPECT / CT also clearly differs between mBSE infected and uninfected mice It has been found that non-patent literature 1 shows the accumulation. However, when aiming at practical application, all of the SC derivatives are prone to photoisomerization (cis-trans photoisomerization), and it is difficult to obtain a single component. There is a problem that it is difficult to obtain, which has been an obstacle to imaging not only prions but also other amyloids.
  • the present invention has been made based on the technical background as described above, and aims to develop a molecular probe for nuclear medicine diagnosis that can non-invasively visualize PrP Sc for early diagnosis of prion disease.
  • Properties required for such molecular probes include 1) permeability of the blood-brain barrier, 2) selective binding of PrP Sc , and 3) rapid disappearance of unbound body from the brain.
  • the molecular probe that achieves the above conditions binds to PrP Sc , and the radiation emitted from the target site is detected using PET or SPECT, so that PrP Sc in vivo can be tracked over time. Be expected.
  • the present invention provides the following [1] to [15].
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen atom; halogen atom; hydroxy group; carboxy group; sulfo group; nitro group; amino group; C 1-6 alkyl group; An optionally substituted C 1-6 alkoxy group; a mono (C 1-6 alkyl) amino group; or a di (C 1-6 alkyl) amino group, and R 5 , R 6 , R 7 and R 8 are , each independently, a hydrogen atom; a halogen atom; hydroxy group; a carboxy group; a sulfo group; a nitro group; an amino group; C 1-6 alkyl group; a halogen atom or a hydroxy which may be substituted by a group C 1-6 An alkoxy group; a mono (C 1-6 alkyl) amino group; or a di (C 1-6 alkyl) amino group.
  • X 1 in the formula (I) is O
  • X 2 is CH
  • R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms
  • R 3 is An iodine atom and R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy group optionally substituted by a hydroxy group; a mono (C 1-4 alkyl) amino group; or a di (C 1-4 alkyl) amino group
  • R 7 is hydroxy group; C 1-4 alkoxy group optionally substituted by hydroxy group; amino group; mono (C 1-4 alkyl) amino group; or di
  • [6] The compound or a pharmaceutically acceptable salt thereof according to any one of [1] to [5], which is labeled with a radionuclide.
  • a composition for diagnosing amyloid-related diseases comprising the compound according to any one of [6] to [9] or a pharmaceutically acceptable salt thereof.
  • Amyloid-related diseases are Creutzfeldt-Jakob disease, Alzheimer's disease, Lewy body dementia, Mediterranean fever, Maccle-Wells syndrome, idiopathic myeloma, amyloid polyneuropathy, amyloid cardiomyopathy, systemic senile Amyloidosis, hereditary cerebral hemorrhage with amyloidosis, Down's syndrome, scrapie, kuru disease, Gerstman-Stroisler-Scheinker syndrome, medullary thyroid cancer, isolated atrial amyloid, ⁇ 2 -microglobulin amyloid in dialysis patients, inclusion body myositis,
  • the composition according to [10] which is selected from the group consisting of ⁇ 2 -amyloid deposition in muscle wasting disease and Langerhans type II diabetes insulinoma.
  • An imaging agent for amyloid deposition comprising the compound according to any one of [6] to [9] or a pharmaceutically acceptable salt thereof.
  • a mammal into which a detectable amount of the compound according to any one of [6] to [9] or a pharmaceutically acceptable salt thereof is introduced is computed tomography (SPECT) or positron tomography
  • SPECT computed tomography
  • PET positron tomography
  • a step of administering a test substance to a model animal of amyloid-related disease a step of administering the amyloid-related disease composition described in [10] or [11] to the model animal, and in the brain of the model animal
  • a method for screening a therapeutic or prophylactic agent for amyloid-related diseases which comprises the step of examining the distribution or amount of the compound represented by formula (I) contained in.
  • a step of administering a therapeutic or prophylactic agent for amyloid-related disease to a model animal of amyloid-related disease a step of administering to the model animal the composition for diagnosing amyloid-related disease according to [10] or [11], and a method for evaluating a therapeutic or prophylactic agent for amyloid-related diseases, which comprises the step of examining the distribution or amount of the compound represented by formula (I) contained in the brain of the model animal.
  • the compound represented by the formula (I) exhibits a high binding affinity for PrP Sc, a high permeability of the blood brain barrier, and a property of rapidly disappearing from a normal tissue, so that it can be used as an amyloid imaging probe. Shows ideal brain behavior. It is useful for diagnosis of amyloid-related diseases such as Creutzfeldt-Jakob disease.
  • the cis and trans isomers derived from photoisomerism observed in SC derivatives are not confirmed in the compound represented by the formula (I). As a result, there is an advantage that the structure is stabilized by changing the styryl group of the SC skeleton to a 5-membered ring.
  • prion protein aggregates PrP Sc
  • a ⁇ amyloid- ⁇
  • ⁇ -Syn ⁇ -synuclein aggregates.
  • AD Alzheimer's disease
  • Parkinson's disease (PD) and Lewy body dementia (DLB) are thought to be caused by the accumulation and aggregation of ⁇ -synuclein ( ⁇ -Syn), a protein localized in neurons. ing.
  • the compound of the present invention has a high affinity for PrP Sc , but does not have a high affinity for other A ⁇ aggregates or ⁇ -Syn aggregates.
  • the compounds of the invention can be useful as imaging probes selective for PrP Sc .
  • some of the compounds of the present invention (for example, Compound 30 in Examples) have an affinity for ⁇ -Syn aggregates and are useful as imaging agents (imaging probes) for ⁇ -Syn aggregates. obtain.
  • the figure which shows the synthesis method (1) of a chromone derivative (the number in a figure shows the number of a compound).
  • the figure which shows the synthesis method (2) of a chromone derivative (the number in a figure shows the number of a compound).
  • the figure which shows the synthesis method (3) of a chromone derivative (the number in a figure shows the number of a compound).
  • the figure which shows the labeling method by the radioactive iodine of a chromone derivative The figure which shows the labeling method by the radioactive iodine of a chromone derivative.
  • the figure which shows the adsorption rate (%) of the [ 125I ] BFC derivative with respect to (alpha) -Syn aggregate (250 nM). Values are mean ⁇ SE, n 3.
  • the “halogen atom” is, for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • C 1-6 alkyl group means, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group Etc.
  • it is “C 1-4 alkyl group”, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group.
  • the “C 1-6 alkoxy group” means, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, Such as a hexyloxy group.
  • the “C 1-6 alkoxy group” is preferably a “C 1-4 alkoxy group”, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, tert-Butoxy group.
  • the “mono (C 1-6 alkyl) amino group” is an amino group substituted with one C 1-6 alkyl group, for example, a methylamino group, an ethylamino group, a propylamino group. Isopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, tert-butylamino group, pentylamino group, hexylamino group, and the like.
  • the “mono (C 1-6 alkyl) amino group” is preferably a “mono (C 1-4 alkyl) amino group”, for example, a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, A butylamino group, an isobutylamino group, a sec-butylamino group, and a tert-butylamino group;
  • the “di (C 1-6 alkyl) amino group” is an amino group substituted by two C 1-6 alkyl groups, and the two C 1-6 alkyl groups are the same as or May be different.
  • the “di (C 1-6 alkyl) amino group” is preferably a “di (C 1-4 alkyl) amino group”, for example, a dimethylamino group, a diethylamino group, a dipropylamino group, a diisopropylamino group, And dibutylamino group, diisobutylamino group, di-sec-butylamino group, di-tert-butylamino group, N-ethyl-N-methylamino group, and N-methyl-N-propylamino group.
  • “optionally substituted with a halogen atom” means that it may be substituted with at least one (preferably 1 to 5, more preferably 1 to 3) halogen atoms. To do.
  • “optionally substituted by a hydroxy group” means that it may be substituted by at least one (preferably 1 to 5, more preferably 1 to 3) hydroxy group. To do.
  • halogen atom or a hydroxy group means that it is substituted by at least one (preferably 1 to 5, more preferably 1 to 3) halogen atom or hydroxy group. It means you may.
  • the “C 1-6 alkoxy group optionally substituted by a halogen atom” includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a trifluoromethoxy group, and a 2-fluoroethoxy group. , 3-fluoropropoxy group, 4-fluorobutoxy group, 5-fluoropentyloxy group and the like.
  • the “C 1-4 alkoxy group optionally substituted by a hydroxy group” includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2-hydroxyethoxy group, a 3-hydroxypropoxy group, 4- Examples thereof include a hydroxybutoxy group.
  • X 1 is preferably O.
  • X 2 is preferably CH.
  • X 2 is N.
  • X 1 is more preferably O and X 2 is CH.
  • X 1 is O and X 2 is N.
  • any one of R 1 , R 2 , R 3 and R 4 is a halogen atom, and more preferably any one of R 1 , R 2 , R 3 and R 4 .
  • R 5 and R 8 are preferably a hydrogen atom, and R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy optionally substituted by a hydroxy group A mono (C 1-4 alkyl) amino group; or a di (C 1-4 alkyl) amino group, and R 7 is a hydroxy group; a C 1-4 alkoxy group optionally substituted by a hydroxy group Amino group; mono (C 1-4 alkyl) amino group; or di (C 1-4 alkyl) amino group;
  • Preferable examples of the compound represented by the formula (I) include the following compounds.
  • X 1 is O
  • X 2 is CH
  • R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms
  • R 3 is an iodine atom
  • R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy group optionally substituted by a hydroxy group; a mono (C 1-4 alkyl) amino group; or a di (C 1-4) Alkyl) amino group
  • R 7 is hydroxy group; C 1-4 alkoxy group optionally substituted by hydroxy group; amino group; mono (C 1-4 alkyl) amino group; or di (C 1 -4 alkyl) compound or a pharmaceutically acceptable salt thereof is an amino group.
  • X 1 is O
  • X 2 is CH
  • R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms
  • R 3 is an iodine atom
  • R 6 is a hydrogen atom
  • R 7 is a C 1-4 alkoxy group (eg, methoxy group); an amino group; a mono (C 1-4 alkyl) amino group (eg, a methylamino group); Or a compound which is a di (C 1-4 alkyl) amino group (eg, dimethylamino group) or a pharmaceutically acceptable salt thereof.
  • More preferable examples include compounds 30, 33, 36, or 39 described in Examples described later, or pharmaceutically acceptable salts thereof.
  • the compound represented by the formula (I) can be synthesized according to the description in the examples described later.
  • compound (I) -1 in which X 1 is O and X 2 is CH can be produced by the method shown in the following scheme.
  • Process 1 Compound (IV) can be produced by subjecting compound (II) and compound (III) to cyclization and dehydration reaction in a solvent in the presence of a base.
  • the base include potassium carbonate.
  • the solvent include N, N-dimethylformamide (DMF).
  • Process 2 Compound (V) can be produced by hydrolyzing compound (IV) in the presence of a base in a solvent.
  • the base include sodium hydroxide and potassium hydroxide.
  • Examples of the solvent include methanol and ethanol.
  • Process 3 Compound (VII) can be produced by subjecting compound (V) and compound (VI) to an esterification reaction in the presence of a halogenating agent and a base.
  • a halogenating agent include chlorinating agents such as phosphoryl chloride and thionyl chloride.
  • Examples of the base include pyridine.
  • Process 4 Compound (VIII) can be produced by subjecting compound (VII) to a rearrangement reaction in the presence of a base in a solvent. Examples of the base include potassium hydroxide and sodium hydroxide. Examples of the solvent include pyridine.
  • Process 5 Compound (I) -1 can be produced by subjecting compound (VIII) to a dehydration cyclization reaction in a solvent in the presence of an acid. Examples of the acid include concentrated sulfuric acid. Examples of the solvent include acetic acid.
  • compound (I) -2 in which X 1 is O and X 2 is N can be produced by the method shown in the following scheme.
  • Step 6 Compound (X) can be produced by subjecting compound (IX) to an addition reaction with ethyl glyoxylate in a solvent, followed by an oxidation reaction using ammonium cerium nitrate (CAN) or the like.
  • the solvent include dioxane.
  • Step 7 Compound (XI) can be produced by hydrolyzing compound (X) in a solvent in the presence of a base. Examples of the base include sodium hydroxide and potassium hydroxide. Examples of the solvent include methanol and ethanol.
  • Process 8 Compound (XII) can be produced by subjecting compound (XI) and compound (VI) to an esterification reaction in the presence of a halogenating agent and a base.
  • halogenating agent examples include chlorinating agents such as phosphoryl chloride and thionyl chloride.
  • Examples of the base include pyridine.
  • Step 9 Compound (XIII) can be produced by subjecting compound (XII) to a rearrangement reaction in the presence of a base in a solvent. Examples of the base include potassium hydroxide and sodium hydroxide. Examples of the solvent include pyridine.
  • Step 10 Compound (I) -2 can be produced by subjecting compound (XIII) to a dehydration cyclization reaction in a solvent in the presence of an acid. Examples of the acid include concentrated sulfuric acid. Examples of the solvent include acetic acid.
  • the compound represented by formula (I) is preferably labeled with a labeling substance.
  • a labeling substance a fluorescent substance, an affinity substance or the like may be used, but it is preferable to use a radionuclide.
  • the kind of radionuclide used for labeling is not particularly limited, and can be appropriately determined depending on the mode of use.
  • the radionuclide is 99m Tc, 111 In, 67 Ga, 201 Tl, 123 I, 133 Xe (preferably , 99m Tc, 123 I) can be used.
  • 11 C, 13 N, 15 O, 18 F, 62 Cu, 68 Ga, 76 Br preferably 11 C, 13 N, 15 Positron emitting nuclides such as O, 18 F
  • a radionuclide having a longer half-life such as 125 I
  • the radionuclide may be included in the molecule of the compound represented by formula (I) or may be bonded to the compound represented by formula (I).
  • a pharmaceutically acceptable salt instead of the compound represented by the formula (I).
  • pharmaceutically acceptable salts include alkali metal salts (sodium salt, potassium salt, lithium salt), alkaline earth metal salts (calcium salt, magnesium salt), sulfate, hydrochloride, nitrate, phosphate, etc. it can.
  • amyloid-related disease means a disease in which the presence of an amyloid protein aggregate is observed. Since the compound of the present invention binds to a protein having a ⁇ sheet structure, the “amyloid-related diseases” in the present invention include amyloid having a ⁇ sheet structure such as tau, ⁇ -synuclein, prion, etc. in addition to ⁇ -amyloid. Diseases in which the presence of protein aggregates are observed are included.
  • the “amyloid-related disease” in the present invention includes Creutzfeldt-Jakob disease, Alzheimer's disease, Lewy body dementia, Mediterranean fever, Maccle-Wells syndrome, idiopathic myeloma, amyloid polyneuropathy, Amyloid cardiomyopathy, systemic senile amyloidosis, hereditary cerebral hemorrhage with amyloidosis (including hereditary cerebral hemorrhage with Dutch or Icelandic amyloidosis), Down's syndrome, scrapie, Kourou disease, Gerstmann-Stroisler-Scheinker syndrome, Examples include medullary thyroid cancer, isolated atrial amyloid, ⁇ 2 -microglobulin amyloid in dialysis patients, inclusion body myositis, ⁇ 2 -amyloid deposition in muscle wasting disease, and Langerhans type II diabetes insulinoma.
  • the diagnostic composition of the present invention is particularly suitable for diagnosis of Creutzfeldt-Jakob disease, Alzheimer's disease, and Lewy body dementia.
  • precursor symptoms of diseases that are generally not recognized as “diseases” are also included in “amyloid-related diseases” in the present invention. Examples of prodromal symptoms of such diseases include mild cognitive impairment (MCI) seen before the onset of Alzheimer's disease.
  • Diagnosis of amyloid-related diseases with the composition of the present invention is usually performed by administering the composition of the present invention to a subject to be diagnosed or a laboratory animal, and then taking a brain image, which is represented by the formula (I) in the image. This is based on the state of the compound (amount, distribution, etc.).
  • the administration method of the composition of the present invention is not particularly limited and can be appropriately determined according to the type of compound, the type of labeling substance, etc., but is usually intradermal, intraperitoneal, intravenous, arterial, or spinal fluid. It is administered by injection or infusion.
  • the dose of the composition of the present invention is not particularly limited and can be determined appropriately according to the type of compound, the type of labeling substance, etc. In the case of an adult, the compound represented by formula (I) is 10 per day. -10 to 10 -3 mg is preferably administered, more preferably 10 -8 to 10 -5 mg.
  • the composition of the present invention since the composition of the present invention is usually administered by injection or infusion, it may contain components usually contained in an injection solution or an infusion solution.
  • Such components include liquid carriers (for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.), antibacterial agents And local anesthetics (eg, procaine hydrochloride, dibucaine hydrochloride, etc.), buffer solutions (eg, Tris-HCl buffer solution, Hepes buffer solution, etc.), osmotic pressure regulators (eg, glucose, sorbitol, sodium chloride, etc.) .
  • liquid carriers for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.
  • the present invention also relates to an imaging agent for amyloid deposition, which comprises a compound represented by formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide.
  • “Amyloid deposition” is formed by aggregation of amyloid proteins having a ⁇ -sheet structure. Examples of amyloid protein include prion, ⁇ -amyloid, tau and ⁇ -synuclein.
  • the imaging agent of the present invention is suitable for imaging amyloid deposits formed by prion, ⁇ -amyloid and ⁇ -synuclein. .
  • the imaging agent of the present invention is particularly suitable for imaging abnormal prion protein aggregates (PrP Sc ) (amyloid deposits formed by prions).
  • the imaging agent for amyloid deposition of the present invention can be prepared and used in the same manner as the composition for diagnosing amyloid-related diseases.
  • the present invention also provides a. Introducing a detectable amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide into a mammal; b. Leaving the compound for a time sufficient to bind to the amyloid deposit; and c. Detecting a compound bound to one or more amyloid deposits; To a method for imaging amyloid deposits.
  • the present invention also provides A mammal introduced with a detectable amount of a compound represented by formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide is subjected to computed tomography (SPECT) or positron emission tomography (
  • SPECT computed tomography
  • positron emission tomography The present invention relates to a method for imaging amyloid deposits, comprising the step of imaging by PET.
  • “Mammals” include, but are not limited to, humans, mice, rats, rabbits, dogs, monkeys. Preferably, the “mammal” is a human.
  • the labeling with the radionuclide and the detection of the labeled compound may be performed as described above. That is, SPECT and PET can be used for detection, and the radionuclide may be selected according to the detection method. Moreover, introduction into mammals may be performed as described for the composition for diagnosing amyloid-related diseases.
  • Detectable amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide and “a sufficient time for the compound to bind to amyloid deposits”
  • a person skilled in the art can determine appropriately depending on the mammal to be used, the compound used and the detection method. For example, the amount and time of these can be determined by introducing various concentrations of the labeled compound into the mammal of interest, and detecting this labeled compound with the selected detection method at various times after introduction. .
  • the composition for diagnosing amyloid-related diseases of the present invention can also be used for screening for therapeutic or prophylactic agents for amyloid-related diseases.
  • a test substance such as Creutzfeldt-Jakob disease or Alzheimer's disease
  • the model animal is administered with the amyloid-related disease diagnostic composition of the present invention, and then The distribution or amount of the compound represented by formula (I) contained in the brain is examined, and as a result, a significant difference from the control (model animal not administered with the test substance) (for example, reduction of the distribution site) If a decrease in the amount is detected, the test substance can be a candidate for a therapeutic drug for amyloid-related diseases.
  • the composition for amyloid-related disease diagnosis of the present invention is administered to the model animal, and then the brain of the model animal
  • the distribution or amount of the compound represented by the formula (I) contained in is investigated, and as a result, there is a significant difference from the control (for example, the distribution site is reduced or enlarged, the amount is decreased or increased, etc.) ) Is detected, the test substance can be a candidate for a prophylactic agent for amyloid-related diseases.
  • the composition for diagnosing amyloid-related diseases of the present invention can also be used for evaluation of therapeutic and preventive drugs for amyloid-related diseases whose effects have already been confirmed. That is, after the therapeutic or prophylactic agent for the disease is administered to a model animal for amyloid-related disease, the composition for diagnosing amyloid-related disease of the present invention is administered to the model animal, and then contained in the brain of the model animal. Thus, the distribution or amount of the compound represented by the formula (I) is examined, and thereby the therapeutic agent and the prophylactic agent are evaluated (specifically, effective dose, effective administration method, etc.).
  • Radioiodine-125 is produced by MP Biomedicals, Inc. Iodine-125 (Na 125 I, 100 mCi / ml, pH10 NaOH solution) and Muromachi Yakuhin Iodine-125 (Na 125 I, 3.7 GBq / mL, 0.01 M NaOH solution) ) was used.
  • 1 H-NMR measurement was performed using Varian Gemini 300 or JOEL JNM-AL 400 and tetramethylsilane as an internal standard substance. Mass spectrometry used JOEL JMS-T100TD. For measurement of radioactivity, a Wizard Autowell gamma counter manufactured by PerkinElmer Japan was used. For separation of bound and unbound molecules in binding experiments, Brandel M-24R cell harvester and Whatman GF / B filter (pore size 1 ⁇ m) were used. Leica cryostat CM1900 was used for the preparation of BSE-infected mouse brain sections, and Nikon ECLIPSE 80i was used for the fluorescence microscope.
  • the extract was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • Example 10 Using Synthesis Compound 41 of 6-bromo-2- (6-nitrobenzo [d] oxazol-2-yl) -4H-chromen-4-one , the same as in Production Example 7, Production Example 9 and Example 2 By the method, the title compound is obtained.
  • Radioactive iodine-labeled precursor tributyltin (1 mg / mL) in methanol solution (50 ⁇ L), Na 125 I (0.1-0.2 mCi, specific activity 2200 Ci / mmol), 1.0 M HCl (50 ⁇ L), 3 W / v% hydrogen peroxide solution (50 ⁇ L) was sequentially added, and the mixture was allowed to stand at room temperature for 10 minutes, or stirred for 10 seconds and then left for 15-20 minutes to react.
  • FIG. 7 shows the binding rate of SC, VPC and BFC derivatives to rMoPrP aggregates (250 nM).
  • [ 125 I] 2 which showed the highest binding rate to rMoPrP aggregates among the flavonoid analogues, showed high binding properties of about 10%.
  • [ 125 I] 10 introduced with an ethanolamino group at the 4′-position of the SC skeleton showed a binding rate equivalent to [ 125 I] 2, indicating that it has a high binding property to rMoPrP aggregates.
  • [ 125I ] 30, [ 125I ] 33 in which a methoxy group, an amino group, a monomethylamino group, and a dimethylamino group were introduced at the 4 ′ position of the BFC skeleton obtained by structural conversion of the styryl group of the SC skeleton into a 5-membered ring,
  • the binding rates of [ 125 I] 36 and [ 125 I] 39 were 14.2%, 7.2%, 10.6%, and 18.0%, respectively.
  • [ 125 I] 30 and [ 125 I] 39 were found to have a binding rate to rMoPrPG aggregates equal to or higher than that of the SC derivative.
  • mice Mouse-adapted BSE (mBSE) -infected mice were prepared by inoculating the brain of 20% of 1% brain emulsion of mBSE-infected brain into the right temporal region of 4-week-old ddY male mice. did. Further, 20 ⁇ L of PBS solution as non-infected mice was inoculated in the brain on the right temporal region of 4-week-old ddY male mice. Each group was bred for 20-25 weeks and then used to prepare mouse brain slices.
  • mBSE Mouse-adapted BSE
  • [ 125 I] 30, [ 125 I] 33, and [ 125 I] 39 in which a methoxy group, an amino group, and a dimethylamino group were introduced into the BFC skeleton, exhibited a brain migration property that exceeded the previously reported SC derivatives.
  • the ratio of radioactivity in the brain 2 minutes after administration of [ 125 I] 30, [ 125 I] 33 or 180 minutes after administration of [ 125 I] 39 was calculated as 6.1, 6.7, and 8.9%, respectively. As a result, these compounds were shown to have very high disappearance from the brain.
  • [ 125 I] 30, [ 125 I] 33 and [ 125 I] 39 were compared, it was shown that the lower the lipid solubility, the better the brain migration and disappearance.
  • the ratio of brain accumulation has been reported to be 3.8 (reference 5) and 4.8 (reference 6), respectively. Therefore, it is considered that the compound [ 125 I] 33 of the present invention has a brain behavior useful as a prion imaging agent.
  • radioactive iodine-125 sodium iodide (Na 125 I, 3.7 GBq / mL, 0.01 N NaOH solution) manufactured by PerkinElmer Japan was used. M-24 cell harvester (Brandel, Gaithersburg, MD) and GF / B filter (Whatman, Kent, UK) were used for separation of bound and unbound molecules to amyloid aggregates in adsorption and binding saturation experiments. . 1 H NMR was measured using JEOL JNM-AL 400 using tetramethylsilane (TMS) as an internal standard substance and deuterated chloroform (CDCl 3 ) or deuterated methanol (CD 3 OD) as a solvent.
  • TMS tetramethylsilane
  • CDCl 3 deuterated chloroform
  • CD 3 OD deuterated methanol
  • DART Direct Analysis in Real Time mass spectrometry was measured using JMS-T100TD manufactured by JEOL Ltd.
  • a Wizard autowell gamma counter manufactured by PerkinElmer Japan was used.
  • Cytation 3 manufactured by Bio Tek was used for measurement of fluorescence intensity.
  • ⁇ 1-42 manufactured by Peptide Institute was used.
  • ⁇ -Syn used was transferred from Nagasaki University School of Medicine.
  • a centrifuge manufactured by Kubota Corporation was used for the centrifugation in the binding saturation experiment for ⁇ -Syn aggregates.
  • the fluorescence image of the compound accumulated in the brain section was observed using a fluorescence microscope (BZ-8100) manufactured by Keyence or a fluorescence microscope (ECLIPSE 80i) manufactured by Nikon.
  • a ⁇ 1-42 aggregates A ⁇ 1-42 is dissolved in 10 mM phosphate buffer (1 mM EDTA, pH 7.4), adjusted to a concentration of 0.25 mg / mL (55.4 ⁇ M), and adjusted to 60 ° C. And shaken for about 30 minutes. Thereafter, A ⁇ 1-42 aggregates were prepared by incubating at 37 ° C. for 42 hours, and stored at ⁇ 80 ° C. until used for experiments.
  • ⁇ -Syn is dissolved in 30 mM Tris-HCl buffer (200 mM NaCl, pH 6.0, 7.0, 8.0) and adjusted to 1.67 mg / mL (115 ⁇ M) at 37 ° C. The mixture was stirred for 72 hours and stored at -80 ° C until used in the experiment. The ⁇ -Syn aggregate is diluted to 1.2 ⁇ M with PBS, then 20 ⁇ M of ThT is added, and the fluorescence intensity at excitation wavelength 440 nm and fluorescence wavelength 485 nm is measured to form a ⁇ -sheet structure. It was confirmed.
  • the fluorescence intensity of ThT when PBS was used instead of the ⁇ -Syn aggregate was measured.
  • dilute the ⁇ -Syn aggregate to a concentration of 0.5 ⁇ M, then centrifuge at 20,000 g for 15 minutes at 20 ° C.
  • Pre-centrifuge ⁇ -Syn precipitated ⁇ -Syn and 20 ⁇ M
  • the fluorescence intensity at an excitation wavelength of 440 nm and a fluorescence wavelength of 485 nm was measured.
  • the fluorescence intensity of ThT when PBS was used instead of the ⁇ -Syn aggregate was measured.
  • Binding saturation experiment for ⁇ -Syn aggregates [ 125I ] BFC derivative and corresponding non-radioactive compound mixed solution (2000 nM) were sequentially diluted with 20% EtOH to prepare final concentration of 24.7-2000 nM did.
  • 400 ⁇ L of the mixed solution of various concentrations and 400 ⁇ L of ⁇ -Syn aggregate (200 nM) were mixed in a polypropylene tube and shaken at 50 rpm at room temperature for 2 hours. After shaking, 200 ⁇ L was collected before centrifugation. The remaining 600 ⁇ L was centrifuged at 20 ° C. and 20,000 g for 15 minutes.
  • Binding saturation experiment on A ⁇ 1-42 aggregate [ 125 I] BFC derivative and the corresponding non-radioactive compound mixed solution (2000 nM) were sequentially diluted with 20% EtOH to a final concentration of 24.7-2000 nM. .
  • a mixture of 100 ⁇ L of various concentrations and 100 ⁇ L of A ⁇ 1-42 aggregate (200 nM) were mixed in a borosilicate glass tube ( ⁇ 12 ⁇ 75 mm) and shaken at 50 rpm for 2 hours at room temperature.
  • Nonspecific binding was calculated by adding 100 ⁇ L of a phosphate buffer not containing A ⁇ 1-42 aggregates. After shaking, the reaction solution was permeated through a GF / B filter using an M-24R cell harvester.
  • Tg2576 mouse brain sections Frozen brain sections of Tg2576 mice (24 months old) overexpressing amyloid precursor protein (APP) were dissolved in 50% EtOH in each compound (100 ⁇ M). Soaked for 1 hour. After washing with 50% EtOH for 2 minutes ⁇ 2 times, observation was performed using a fluorescence microscope. Further, the adjacent sections were soaked in ThT (100 ⁇ M) dissolved in 50% EtOH for 10 minutes, and washed with 50% EtOH for 1 minute ⁇ 2 times to confirm A ⁇ aggregates in the brain sections.
  • ThT 100 ⁇ M
  • the fluorescence intensity when mixed with the prepared ⁇ -Syn aggregates is pH 6.0, 7.0, 8.0 of the buffer used.
  • the increase by 186, 134, and 47-fold showed that the produced ⁇ -Syn aggregate had an amyloid structure.
  • the binding affinity evaluation with a compound it is necessary to separate a compound that is bound to an aggregate and a compound that is not bound by filtration using a filter or centrifugation. For this reason, it is necessary to produce an aggregate that cannot pass through a filter or precipitates by centrifugation. Therefore, the content ratio of the fraction precipitated by centrifugation of the aggregates prepared by the above three methods was examined, and the aggregates more suitable for the binding experiment were selected. First, the ⁇ -Syn aggregate was centrifuged at 20 ° C. and 20,000 ⁇ g for 15 minutes.
  • BFC derivatives have lower binding properties to amyloid other than PrP Sc compared to existing compounds. Furthermore, since these compounds are excellent in brain migration for deployment as an in vivo imaging probe, the possibility of clinical application as a PrP Sc selective imaging probe was shown.
  • the compound of the present invention exhibits high binding specificity for amyloid protein, high blood brain barrier permeability, and rapid disappearance from normal tissues, and is useful for diagnosis of amyloid-related diseases.
  • the compounds of the present invention can be useful as imaging probes that are selective for abnormal prion protein aggregates (PrP Sc ).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Neurology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Neurosurgery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The purpose of the present invention is to provide a compound having high binding specificity for amyloid proteins and high blood-brain barrier permeability, and featuring rapid elimination from normal tissues. The present invention relates to: a radionuclide-labeled compound represented by formula (I) (the symbols in the formula are as defined in the description) or a pharmaceutically acceptable salt thereof; and a composition for the diagnosis of amyloid-related disease comprising the same.

Description

クロモン誘導体及びアミロイド関連疾患診断用組成物Chromone derivative and amyloid-related disease diagnostic composition
 本発明は、クロイツフェルト・ヤコブ病などのアミロイド関連疾患の診断に有用なクロモン誘導体、それを含有するアミロイド関連疾患診断用組成物、それを利用したアミロイド関連疾患の治療薬又は予防薬のスクリーニング方法、及びそれを利用したアミロイド関連疾患の治療薬又は予防薬の評価方法に関する。 The present invention relates to a chromone derivative useful for diagnosis of amyloid-related diseases such as Creutzfeldt-Jakob disease, a composition for diagnosing amyloid-related diseases containing the same, and a method for screening a therapeutic or prophylactic agent for amyloid-related diseases using the same And a method for evaluating a therapeutic or prophylactic agent for amyloid-related diseases using the same.
 クロイツフェルト・ヤコブ病(CJD)に代表されるプリオン病は、孤発性、獲得性、遺伝性に分類される致死性の神経変性疾患であり、有効な診断法や治療法は現在も確立されていない。国内のプリオン病発症者は年間100万人に約1人と、発現頻度は低いものの、今後の輸入牛肉の増加によるBSE感染や高齢者増加に伴う手術器具等からの院内感染事故等、罹患率増大の危険性が懸念されている。プリオン病発症はタンパク質性の感染性粒子であるプリオンが関与するというプリオン仮説が現在最も有力とされている。この仮説では、脳内に存在する正常型プリオンタンパク質(PrPC)が何らかの原因で異常型プリオンタンパク質凝集体(PrPSc)へと変化し、このPrPScが鋳型となることで、他のPrPCを次々とPrPScへと変化させ、結果的にPrPScが蓄積することでプリオン病が発症すると考えられている。そして、このような自己触媒的なプロセスはアルツハイマー病やパーキンソン病のような一般的な神経変成疾患の病因と関連していると考えられている。 Prion disease, represented by Creutzfeldt-Jakob disease (CJD), is a fatal neurodegenerative disease classified as sporadic, acquired, or hereditary, and effective diagnosis and treatment methods are still established. Not. The incidence of prion disease in Japan is about 1 in 1 million per year, although the incidence is low, but the incidence rate is such as BSE infection due to the increase in imported beef in the future and hospital infection accidents from surgical instruments due to the increase in the elderly There is concern about the danger of the increase. The prion hypothesis that prion disease is associated with prion, which is a proteinaceous infectious particle, is currently the most promising. In this hypothesis, normal prion protein (PrP C ) present in the brain is changed to abnormal prion protein aggregate (PrP Sc ) for some reason, and this PrP Sc becomes a template, and other PrP C It is thought that prion disease develops by changing PrP Sc to PrP Sc one after another and accumulating PrP Sc as a result. Such autocatalytic processes are thought to be associated with the pathogenesis of common neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
 そこで、PrPCのPrPScへの変換を阻止するキナクリン等の化合物がプリオン病治療薬として臨床試験が行われたが、早期診断法が未開発であり、ほとんどの治験では末期の患者しか対象とできておらず、治療成績も良好ではない。従って、今後のプリオン病治療法確立のためには早期診断法の開発が不可欠である。SPECT (single photon emission computed tomography)やPET(positron emission tomography)等の核医学診断は、脳内の標的分子を生きたまま可視化できる画像診断法であり、特異的なイメージングプローブを用いることで、関連する病態の早期診断や治療効果判定などに有効であると考えられる。 Thus, quinacrine and other compounds that block the conversion of PrP C to PrP Sc have been clinically tested as a treatment for prion diseases, but early diagnostic methods have not been developed, and most trials only target patients at the end. It is not done, and treatment results are not good. Therefore, the development of an early diagnosis method is indispensable for establishing a future prion disease treatment method. Nuclear medicine diagnosis such as SPECT (single photon emission computed tomography) and PET (positron emission tomography) is a diagnostic imaging method that can visualize target molecules in the brain alive. This is thought to be effective for early diagnosis of disease states and judgment of therapeutic effects.
 アルツハイマー病などのアミロイド関連疾患の診断用イメージング薬剤としては、フラボン誘導体、スチリルクロモン(SC)誘導体が報告されている(特許文献1)。最近の研究にて、SC誘導体がPrPSc凝集体やmouse-adapted BSE(mBSE)感染マウスのプリオン沈着に良好な結合性を示し、SPECT/CTにおいてもmBSE感染マウスと非感染マウスにおいて明確に異なった集積を示すことが見出された(非特許文献1)。しかしながら、実用化を目指す上では、SC誘導体の全てにおいて、光異性化(cis-trans光異性化)が起こりやすく単一成分が得にくいこと、投与初期の脳移行性が低く、良質の画像が得にくいという問題点があり、プリオンのみならず、他のアミロイドのイメージングを行う上での障害となっていた。 As imaging drugs for diagnosis of amyloid-related diseases such as Alzheimer's disease, flavone derivatives and styrylchromone (SC) derivatives have been reported (Patent Document 1). Recent studies show that SC derivatives show good binding to prion deposition in PrP Sc aggregates and mouse-adapted BSE (mBSE) infected mice, and SPECT / CT also clearly differs between mBSE infected and uninfected mice It has been found that non-patent literature 1 shows the accumulation. However, when aiming at practical application, all of the SC derivatives are prone to photoisomerization (cis-trans photoisomerization), and it is difficult to obtain a single component. There is a problem that it is difficult to obtain, which has been an obstacle to imaging not only prions but also other amyloids.
WO2006/057323WO2006 / 057323
 本発明は、以上のような技術的背景のもとになされたものであり、プリオン病早期診断のためのPrPScを非侵襲的に可視化できる核医学診断用分子プローブの開発を目的とする。このような分子プローブに求められる性質としては、1) 血液脳関門の透過性、2) PrPScの選択的結合性、3) 非結合体の脳からの速やかな消失性が挙げられる。上記の条件を達成した分子プローブがPrPScに結合し、標的部位から放出される放射線をPETあるいはSPECTを用いて検出することで、生体内のPrPScの経時的な追跡が可能になるものと期待される。 The present invention has been made based on the technical background as described above, and aims to develop a molecular probe for nuclear medicine diagnosis that can non-invasively visualize PrP Sc for early diagnosis of prion disease. Properties required for such molecular probes include 1) permeability of the blood-brain barrier, 2) selective binding of PrP Sc , and 3) rapid disappearance of unbound body from the brain. The molecular probe that achieves the above conditions binds to PrP Sc , and the radiation emitted from the target site is detected using PET or SPECT, so that PrP Sc in vivo can be tracked over time. Be expected.
 本発明者らは、上記課題を解決するため鋭意検討を重ねた結果、SC骨格における光異性化の原因と考えられるSC骨格のスチリル基を5員環に変換することで光異性化が起こることなく安定化したクロモン誘導体を合成した。そして、かかるクロモン誘導体が、PrPScに対する高い結合親和性、高い血液脳関門の透過性、及び正常細胞からの速やかな消失性を示し、アミロイドイメージングプローブとして理想的な脳内挙動を示すことを見出し、本発明を完成するに至った。 As a result of intensive investigations to solve the above problems, the present inventors have found that photoisomerization occurs by converting the styryl group of the SC skeleton, which is considered to be the cause of photoisomerization in the SC skeleton, to a 5-membered ring. A stabilized chromone derivative was synthesized. It was also found that such chromone derivatives show high binding affinity for PrP Sc , high blood-brain barrier permeability, and rapid disappearance from normal cells, and show ideal brain behavior as amyloid imaging probes. The present invention has been completed.
 即ち、本発明は、以下の[1]~[15]を提供するものである。 That is, the present invention provides the following [1] to [15].
[1] 式(I): [1] Formula (I):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、
1は、O、S、又はNHを示し、
2は、CH又はNを示し、
1、R2、R3及びR4は、それぞれ独立して、水素原子;ハロゲン原子;ヒドロキシ基;カルボキシ基;スルホ基;ニトロ基;アミノ基;C1-6アルキル基;ハロゲン原子により置換されていてもよいC1-6アルコキシ基;モノ(C1-6アルキル)アミノ基;又はジ(C1-6アルキル)アミノ基を示し、並びに
5、R6、R7及びR8は、それぞれ独立して、水素原子;ハロゲン原子;ヒドロキシ基;カルボキシ基;スルホ基;ニトロ基;アミノ基;C1-6アルキル基;ハロゲン原子若しくはヒドロキシ基により置換されていてもよいC1-6アルコキシ基;モノ(C1-6アルキル)アミノ基;又はジ(C1-6アルキル)アミノ基を示す。)
で表される化合物又はその医薬上許容される塩。
[2] 式(I)中のX1が、Oであり、X2が、CHである[1]記載の化合物又はその医薬上許容される塩。
[3] 式(I)中のR1、R2、R3及びR4のいずれかが、ハロゲン原子である[1]記載の化合物又はその医薬上許容される塩。
[4] 式(I)中のR1、R2、R3及びR4のいずれかが、ヨウ素原子である[1]記載の化合物又はその医薬上許容される塩。
[5] 式(I)中のX1が、Oであり、X2が、CHであり、R1、R2、R4、R5及びR8が、水素原子であり、R3が、ヨウ素原子であり、R6が、水素原子;C1-4アルキル基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基であり、且つR7が、ヒドロキシ基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;アミノ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基である[1]記載の化合物又はその医薬上許容される塩。
[6] 放射性核種で標識されている、[1]~[5]のいずれか一項に記載の化合物又はその医薬上許容される塩。
[7] 放射性核種が、陽電子放出核種である[6]記載の化合物又はその医薬上許容される塩。
[8] 放射性核種が、γ線放出核種である[6]記載の化合物又はその医薬上許容される塩。
[9] 放射性核種が、125Iである[6]記載の化合物又はその医薬上許容される塩。
[10] [6]~[9]のいずれか一項に記載の化合物又はその医薬上許容される塩を含有するアミロイド関連疾患診断用組成物。
[11] アミロイド関連疾患が、クロイツフェルト・ヤコブ病、アルツハイマー病、レビー小体型認知症、地中海熱、マックル-ウェルズ症候群、突発性骨髄腫、アミロイド多発性神経障害、アミロイド心筋症、全身性老年性アミロイドーシス、アミロイドーシスを伴う遺伝性脳出血、ダウン症候群、スクラピー、クールー病、ゲルストマン-シュトロイスラー-シャインカー症候群、甲状腺髄様癌、孤立心房性アミロイド、透析患者におけるβ2-ミクログロブリンアミロイド、封入体筋炎、筋消耗病におけるβ2-アミロイド沈着、及びランゲルハンス島II型糖尿病インスリノーマからなる群から選択される、[10]記載の組成物。
[12] [6]~[9]のいずれか一項に記載の化合物又はその医薬上許容される塩を含有するアミロイド沈着の画像化剤。
[13] [6]~[9]のいずれか一項に記載の化合物又はその医薬上許容される塩の検出可能な量を導入された哺乳動物を、コンピューター断層撮影法(SPECT)又は陽電子断層撮影法(PET)により撮影する工程を包含する、アミロイド沈着を画像化するための方法。
[14] アミロイド関連疾患のモデル動物に被験物質を投与する工程、前記モデル動物に[10]又は[11]に記載のアミロイド関連疾患診断用組成物を投与する工程、及び前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べる工程を含むアミロイド関連疾患の治療薬又は予防薬のスクリーニング方法。
[15] アミロイド関連疾患のモデル動物にアミロイド関連疾患の治療薬又は予防薬を投与する工程、前記モデル動物に[10]又は[11]に記載のアミロイド関連疾患診断用組成物を投与する工程、及び前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べる工程を含むアミロイド関連疾患の治療薬又は予防薬の評価方法。
(Where
X 1 represents O, S, or NH;
X 2 represents CH or N;
R 1 , R 2 , R 3 and R 4 are each independently hydrogen atom; halogen atom; hydroxy group; carboxy group; sulfo group; nitro group; amino group; C 1-6 alkyl group; An optionally substituted C 1-6 alkoxy group; a mono (C 1-6 alkyl) amino group; or a di (C 1-6 alkyl) amino group, and R 5 , R 6 , R 7 and R 8 are , each independently, a hydrogen atom; a halogen atom; hydroxy group; a carboxy group; a sulfo group; a nitro group; an amino group; C 1-6 alkyl group; a halogen atom or a hydroxy which may be substituted by a group C 1-6 An alkoxy group; a mono (C 1-6 alkyl) amino group; or a di (C 1-6 alkyl) amino group. )
Or a pharmaceutically acceptable salt thereof.
[2] The compound according to [1] or a pharmaceutically acceptable salt thereof, wherein X 1 in the formula (I) is O and X 2 is CH.
[3] The compound or a pharmaceutically acceptable salt thereof according to [1], wherein any of R 1 , R 2 , R 3 and R 4 in formula (I) is a halogen atom.
[4] The compound according to [1] or a pharmaceutically acceptable salt thereof, wherein any of R 1 , R 2 , R 3 and R 4 in formula (I) is an iodine atom.
[5] X 1 in the formula (I) is O, X 2 is CH, R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms, R 3 is An iodine atom and R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy group optionally substituted by a hydroxy group; a mono (C 1-4 alkyl) amino group; or a di (C 1-4 alkyl) amino group and R 7 is hydroxy group; C 1-4 alkoxy group optionally substituted by hydroxy group; amino group; mono (C 1-4 alkyl) amino group; or di The compound or a pharmaceutically acceptable salt thereof according to [1], which is a (C 1-4 alkyl) amino group.
[6] The compound or a pharmaceutically acceptable salt thereof according to any one of [1] to [5], which is labeled with a radionuclide.
[7] The compound according to [6] or a pharmaceutically acceptable salt thereof, wherein the radionuclide is a positron emitting nuclide.
[8] The compound according to [6] or a pharmaceutically acceptable salt thereof, wherein the radionuclide is a γ-ray emitting nuclide.
[9] The compound according to [6] or a pharmaceutically acceptable salt thereof, wherein the radionuclide is 125 I.
[10] A composition for diagnosing amyloid-related diseases, comprising the compound according to any one of [6] to [9] or a pharmaceutically acceptable salt thereof.
[11] Amyloid-related diseases are Creutzfeldt-Jakob disease, Alzheimer's disease, Lewy body dementia, Mediterranean fever, Maccle-Wells syndrome, idiopathic myeloma, amyloid polyneuropathy, amyloid cardiomyopathy, systemic senile Amyloidosis, hereditary cerebral hemorrhage with amyloidosis, Down's syndrome, scrapie, kuru disease, Gerstman-Stroisler-Scheinker syndrome, medullary thyroid cancer, isolated atrial amyloid, β 2 -microglobulin amyloid in dialysis patients, inclusion body myositis, The composition according to [10], which is selected from the group consisting of β 2 -amyloid deposition in muscle wasting disease and Langerhans type II diabetes insulinoma.
[12] An imaging agent for amyloid deposition, comprising the compound according to any one of [6] to [9] or a pharmaceutically acceptable salt thereof.
[13] A mammal into which a detectable amount of the compound according to any one of [6] to [9] or a pharmaceutically acceptable salt thereof is introduced is computed tomography (SPECT) or positron tomography A method for imaging amyloid deposits, comprising a step of photographing by a photographing method (PET).
[14] A step of administering a test substance to a model animal of amyloid-related disease, a step of administering the amyloid-related disease composition described in [10] or [11] to the model animal, and in the brain of the model animal A method for screening a therapeutic or prophylactic agent for amyloid-related diseases, which comprises the step of examining the distribution or amount of the compound represented by formula (I) contained in.
[15] A step of administering a therapeutic or prophylactic agent for amyloid-related disease to a model animal of amyloid-related disease, a step of administering to the model animal the composition for diagnosing amyloid-related disease according to [10] or [11], And a method for evaluating a therapeutic or prophylactic agent for amyloid-related diseases, which comprises the step of examining the distribution or amount of the compound represented by formula (I) contained in the brain of the model animal.
 式(I)で表される化合物は、PrPScに対する高い結合親和性を示し、また、血液脳関門の透過性も高く、更に、正常組織から速やかに消失する性質を示すので、アミロイドイメージングプローブとして理想的な脳内挙動を示す。クロイツフェルト・ヤコブ病などのアミロイド関連疾患の診断に有用である。SC誘導体で見られていた光異性由来のcis, trans体は、式(I)で表される化合物では確認されない。その結果、SC骨格のスチリル基を5員環に変更することで構造が安定化されるという利点がある。 The compound represented by the formula (I) exhibits a high binding affinity for PrP Sc, a high permeability of the blood brain barrier, and a property of rapidly disappearing from a normal tissue, so that it can be used as an amyloid imaging probe. Shows ideal brain behavior. It is useful for diagnosis of amyloid-related diseases such as Creutzfeldt-Jakob disease. The cis and trans isomers derived from photoisomerism observed in SC derivatives are not confirmed in the compound represented by the formula (I). As a result, there is an advantage that the structure is stabilized by changing the styryl group of the SC skeleton to a 5-membered ring.
 アミロイド関連疾患に関与するペプチドやタンパク質から構成される凝集体として、異常型プリオンタンパク質凝集体(PrPSc)、アミロイド-β(Aβ)凝集体、α-シヌクレイン(α-Syn)凝集体などが知られている。アルツハイマー病(AD)は、患者の脳内でセクレターゼによってニューロンから切り出されたアミロイド-β(Aβ)が蓄積して凝集体となることが、発症と密接に関係していると考えられている。プリオン病は、脳組織内の正常な細胞性プリオンタンパク質(PrPC)がなんらかの原因で異常型プリオンタンパク質(PrPSc)へと構造変化し、PrPScが蓄積することが原因で発症するというプリオン仮説が現在最も有力である。パーキンソン病(PD)やレビー小体型認知症(DLB)は、神経細胞内に局在するタンパク質であるα-シヌクレイン(α-Syn)が蓄積して凝集することが原因となって起こると考えられている。 Known aggregates composed of peptides and proteins involved in amyloid-related diseases include abnormal prion protein aggregates (PrP Sc ), amyloid-β (Aβ) aggregates, and α-synuclein (α-Syn) aggregates. It has been. Alzheimer's disease (AD) is thought to be closely related to the onset of amyloid-β (Aβ), which is excised from neurons by secretase in the patient's brain and becomes aggregates. Prion hypothesis that prion disease is caused by normal cellular prion protein (PrP C ) in brain tissue that changes to abnormal prion protein (PrP Sc ) due to some cause, and PrP Sc accumulates Is currently the most influential. Parkinson's disease (PD) and Lewy body dementia (DLB) are thought to be caused by the accumulation and aggregation of α-synuclein (α-Syn), a protein localized in neurons. ing.
本発明の化合物は、PrPScに高い親和性を有する一方、他のAβ凝集体やα-Syn凝集体には高い親和性を有していない。したがって、本発明の化合物は、PrPScに対して選択的なイメージングプローブとして有用となり得る。また、本発明の化合物の一部(例えば、実施例の化合物30)は、α-Syn凝集体に対して親和性を有し、α-Syn凝集体の画像化剤(イメージングプローブ)として有用となり得る。 The compound of the present invention has a high affinity for PrP Sc , but does not have a high affinity for other Aβ aggregates or α-Syn aggregates. Thus, the compounds of the invention can be useful as imaging probes selective for PrP Sc . In addition, some of the compounds of the present invention (for example, Compound 30 in Examples) have an affinity for α-Syn aggregates and are useful as imaging agents (imaging probes) for α-Syn aggregates. obtain.
クロモン誘導体の合成法(1)を示す図(図中の番号は化合物の番号を示す)。The figure which shows the synthesis method (1) of a chromone derivative (the number in a figure shows the number of a compound). クロモン誘導体の合成法(2)を示す図(図中の番号は化合物の番号を示す)。The figure which shows the synthesis method (2) of a chromone derivative (the number in a figure shows the number of a compound). クロモン誘導体の合成法(3)を示す図(図中の番号は化合物の番号を示す)。The figure which shows the synthesis method (3) of a chromone derivative (the number in a figure shows the number of a compound). スチリルクロモン誘導体及びビニルピリジルクロモン誘導体の放射性ヨウ素による標識法を示す図。The figure which shows the labeling method by the radioactive iodine of a styryl chromone derivative and a vinyl pyridyl chromone derivative. クロモン誘導体の放射性ヨウ素による標識法を示す図。The figure which shows the labeling method by the radioactive iodine of a chromone derivative. 125Iで標識されたクロモン誘導体のHPLCクロマトグラムを示す図。 The figure which shows the HPLC chromatogram of the chromone derivative labeled with 125 I. [125I]2、[125I]10、[125I]16、[125I]17、[125I]30、[125I]33、[125I]36及び[125I]39のリコンビナントマウスプリオンタンパク質(rMoPrP)凝集体に対する結合率を示す図。[ 125I ] 2, [ 125I ] 10, [ 125I ] 16, [ 125I ] 17, [ 125I ] 30, [ 125I ] 33, [ 125I ] 36 and [ 125I ] 39 recombinant mice The figure which shows the binding rate with respect to a prion protein (rMoPrP) aggregate. [125I]30、[125I]33、[125I]36及び[125I]39のrMoPrP凝集体に対する結合パラメータ(Kd及びBmax)を示す図。Kd(nM)及びBmax(nmol/mol protein)は平均±SD(n=3)で示す。 [125 I] 30, [125 I] 33, shows the [125 I] 36 and [125 I] 39 binding parameters for rMoPrP aggregates (K d and B max). K d (nM) and B max (nmol / mol protein) are shown as mean ± SD (n = 3). 非感染マウスの脳切片(a、d及びg)又はmBSE感染マウスの脳切片(b、e及びh)における化合物30、33及び39の蛍光染色を示す写真。標識されたPrPScのアミロイド沈着は、抗PrP抗体を使用する各切片の免疫染色により確認された(c、f及びi)。スケールバー = 50 μm。Photograph showing fluorescence staining of compounds 30, 33, and 39 in brain sections of uninfected mice (a, d and g) or mBSE infected mice (b, e and h). The amyloid deposition of labeled PrP Sc was confirmed by immunostaining of each section using anti-PrP antibody (c, f and i). Scale bar = 50 μm. [125I]1、[125I]2、[125I]10、[125I]30、[125I]33、[125I]36及び[125I]39の静脈内投与後の正常マウスの脳における放射能分布を示す図。データは平均±SD (n=3-6)で示す。[125I]1及び[125I]2のデータは、参考文献1による。[ 125I ] 1, [ 125I ] 2, [ 125I ] 10, [ 125I ] 30, [ 125I ] 33, [ 125I ] 36 and [ 125I ] 39 in normal mice after intravenous administration The figure which shows the radioactive distribution in a brain. Data are shown as mean ± SD (n = 3-6). Data for [ 125 I] 1 and [ 125 I] 2 are from reference 1. [125I]1、[125I]2、[125I]10、[125I]30、[125I]33及び[125I]39の静脈内投与後の正常マウスの脳における放射能分布を示す図。データは平均±SD (n=3-6)で示す。[125I]1及び[125I]2のデータは、参考文献1による。Radioactivity distribution in the brain of normal mice after intravenous administration of [ 125I ] 1, [ 125I ] 2, [ 125I ] 10, [ 125I ] 30, [ 125I ] 33 and [ 125I ] 39 FIG. Data are shown as mean ± SD (n = 3-6). Data for [ 125 I] 1 and [ 125 I] 2 are from reference 1. 比較化合物として使用した[125I]1及び[125I]2の構造を示す図。Shows the [125 I] 1 and [125 I] 2 structure was used as a comparative compound. 1-42凝集体(Aβ1-42aggregates)(0.554 μM)に結合したチオフラビンT(ThT)の蛍光強度を示す図。値は平均±SE, n= 3である。Ex: 450 nm, Em: 485 nm。A [beta] 1-42 aggregates shows the fluorescence intensity of the (Aβ 1-42 aggregates) (0.554 μM ) Thioflavin bound to T (ThT). Values are mean ± SE, n = 3. Ex: 450 nm, Em: 485 nm. α-Syn凝集体(α-Syn aggregates)(1.2 μM)に結合したThTの蛍光強度を示す図。値は平均±SE, n= 3である。Ex: 440 nm, Em: 485 nm。The figure which shows the fluorescence intensity of ThT couple | bonded with the alpha-Syn aggregate ((alpha) -Syn (aggregate) (1.2 (micro | micron | mu) M). Values are mean ± SE, n = 3. Ex: 440 nm, Em: 485 nm. 遠心分離後のα-Syn凝集体(0.5 μM)の沈殿物の含有割合(%)を示す図。値は平均±SE, n= 3である。The figure which shows the content rate (%) of the deposit of the alpha-Syn aggregate (0.5 micromicrometer) after centrifugation. Values are mean ± SE, n = 3. α-Syn凝集体(250 nM)に対する[125I]BFC誘導体の吸着率(%)を示す図。値は平均±SE, n= 3である。The figure which shows the adsorption rate (%) of the [ 125I ] BFC derivative with respect to (alpha) -Syn aggregate (250 nM). Values are mean ± SE, n = 3. α-Syn凝集体に結合した[125I]30の飽和曲線及びScatchardプロットを示す図。Kd値及びBmax値は、[125I]30の濃度を増加させる(8-200 nM)飽和実験により決定した。The figure which shows the saturation curve and Scatchard plot of [ 125I ] 30 couple | bonded with the alpha-Syn aggregate. K d and B max values were determined by saturation experiments with increasing concentrations of [ 125 I] 30 (8-200 nM). 非感染マウスの脳切片(a、e、i、m)又はmBSE感染マウスの脳切片(c、g、k、o)における化合物30、33、36及び39の蛍光像を示す写真。非感染マウス脳切片の隣接切片の免疫染色(b、f、j、n)。標識されたPrPScのアミロイド沈着は、抗PrP抗体を使用する各切片の免疫染色により確認された(d、h、l、p)。The photograph which shows the fluorescence image of the compound 30, 33, 36, and 39 in the brain section (a, e, i, m) of an uninfected mouse | mouth, or the brain section (c, g, k, o) of an mBSE infection mouse | mouth. Immunostaining of adjacent sections of uninfected mouse brain sections (b, f, j, n). The amyloid deposition of labeled PrP Sc was confirmed by immunostaining of each section using anti-PrP antibody (d, h, l, p). Tg2576マウスの脳切片における化合物30、33、36及び39の蛍光像を示す写真(a-d)。Tg2576マウス脳切片の隣接切片におけるThTの蛍光像を示す写真(e-h)。Photographs (ad) showing fluorescence images of compounds 30, 33, 36 and 39 in brain sections of Tg2576 mice. A photograph (eh) showing a fluorescent image of ThT in an adjacent section of a Tg2576 mouse brain section.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明において、「ハロゲン原子」とは、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子である。 In the present invention, the “halogen atom” is, for example, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
 本発明において、「C1-6アルキル基」とは、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などである。好ましくは、「C1-4アルキル基」であり、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基である。 In the present invention, “C 1-6 alkyl group” means, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group Etc. Preferably, it is “C 1-4 alkyl group”, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group.
 本発明において、「C1-6アルコキシ基」とは、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基などである。「C1-6アルコキシ基」として、好ましくは、「C1-4アルコキシ基」であり、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基である。 In the present invention, the “C 1-6 alkoxy group” means, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, a pentyloxy group, Such as a hexyloxy group. The “C 1-6 alkoxy group” is preferably a “C 1-4 alkoxy group”, for example, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, an isobutoxy group, a sec-butoxy group, tert-Butoxy group.
 本発明において、「モノ(C1-6アルキル)アミノ基」とは、1個のC1-6アルキル基で置換されたアミノ基であり、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基などである。「モノ(C1-6アルキル)アミノ基」として、好ましくは、「モノ(C1-4アルキル)アミノ基」であり、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、sec-ブチルアミノ基、tert-ブチルアミノ基である。 In the present invention, the “mono (C 1-6 alkyl) amino group” is an amino group substituted with one C 1-6 alkyl group, for example, a methylamino group, an ethylamino group, a propylamino group. Isopropylamino group, butylamino group, isobutylamino group, sec-butylamino group, tert-butylamino group, pentylamino group, hexylamino group, and the like. The “mono (C 1-6 alkyl) amino group” is preferably a “mono (C 1-4 alkyl) amino group”, for example, a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, A butylamino group, an isobutylamino group, a sec-butylamino group, and a tert-butylamino group;
 本発明において、「ジ(C1-6アルキル)アミノ基」とは、2個のC1-6アルキル基で置換されたアミノ基であり、2個のC1-6アルキル基は互いに同一又は異なっていてもよい。例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、ジペンチルアミノ基、ジヘキシルアミノ基、N-エチル-N-メチルアミノ基、N-メチル-N-プロピルアミノ基などである。「ジ(C1-6アルキル)アミノ基」として、好ましくは、「ジ(C1-4アルキル)アミノ基」であり、例えば、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、ジイソブチルアミノ基、ジ-sec-ブチルアミノ基、ジ-tert-ブチルアミノ基、N-エチル-N-メチルアミノ基、N-メチル-N-プロピルアミノ基などである。 In the present invention, the “di (C 1-6 alkyl) amino group” is an amino group substituted by two C 1-6 alkyl groups, and the two C 1-6 alkyl groups are the same as or May be different. For example, dimethylamino group, diethylamino group, dipropylamino group, diisopropylamino group, dibutylamino group, diisobutylamino group, di-sec-butylamino group, di-tert-butylamino group, dipentylamino group, dihexylamino group, N-ethyl-N-methylamino group, N-methyl-N-propylamino group and the like. The “di (C 1-6 alkyl) amino group” is preferably a “di (C 1-4 alkyl) amino group”, for example, a dimethylamino group, a diethylamino group, a dipropylamino group, a diisopropylamino group, And dibutylamino group, diisobutylamino group, di-sec-butylamino group, di-tert-butylamino group, N-ethyl-N-methylamino group, and N-methyl-N-propylamino group.
 本発明において、「ハロゲン原子により置換されていてもよい」とは、少なくとも1個(好ましくは1~5個、より好ましくは1~3個)のハロゲン原子により置換されていてもよいことを意味する。 In the present invention, “optionally substituted with a halogen atom” means that it may be substituted with at least one (preferably 1 to 5, more preferably 1 to 3) halogen atoms. To do.
 本発明において、「ヒドロキシ基により置換されていてもよい」とは、少なくとも1個(好ましくは1~5個、より好ましくは1~3個)のヒドロキシ基により置換されていてもよいことを意味する。 In the present invention, “optionally substituted by a hydroxy group” means that it may be substituted by at least one (preferably 1 to 5, more preferably 1 to 3) hydroxy group. To do.
 本発明において、「ハロゲン原子若しくはヒドロキシ基により置換されていてもよい」とは、少なくとも1個(好ましくは1~5個、より好ましくは1~3個)のハロゲン原子若しくはヒドロキシ基により置換されていてもよいことを意味する。 In the present invention, “optionally substituted by a halogen atom or a hydroxy group” means that it is substituted by at least one (preferably 1 to 5, more preferably 1 to 3) halogen atom or hydroxy group. It means you may.
 本発明において、「ハロゲン原子により置換されていてもよいC1-6アルコキシ基」としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、トリフルオロメトキシ基、2-フルオロエトキシ基、3-フルオロプロポキシ基、4-フルオロブトキシ基、5-フルオロペンチルオキシ基などが挙げられる。 In the present invention, the “C 1-6 alkoxy group optionally substituted by a halogen atom” includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a trifluoromethoxy group, and a 2-fluoroethoxy group. , 3-fluoropropoxy group, 4-fluorobutoxy group, 5-fluoropentyloxy group and the like.
 本発明において、「ヒドロキシ基により置換されていてもよいC1-4アルコキシ基」としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、2-ヒドロキシエトキシ基、3-ヒドロキシプロポキシ基、4-ヒドロキシブトキシ基などが挙げられる。 In the present invention, the “C 1-4 alkoxy group optionally substituted by a hydroxy group” includes a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a 2-hydroxyethoxy group, a 3-hydroxypropoxy group, 4- Examples thereof include a hydroxybutoxy group.
 式(I)において、好適には、X1が、Oである。
 式(I)において、好適には、X2が、CHである。別の好適な態様において、X2が、Nである。
 式(I)において、より好適には、X1が、Oであり、X2が、CHである。別の好適な態様において、X1が、Oであり、X2が、Nである。
In the formula (I), X 1 is preferably O.
In the formula (I), X 2 is preferably CH. In another preferred embodiment, X 2 is N.
In formula (I), X 1 is more preferably O and X 2 is CH. In another preferred embodiment, X 1 is O and X 2 is N.
 式(I)において、好適には、R1、R2、R3及びR4のいずれかが、ハロゲン原子であり、より好適には、R1、R2、R3及びR4のいずれかが、ヨウ素原子である。さらに好適には、R1、R2及びR4が、水素原子であり、R3がヨウ素原子である。 In formula (I), preferably any one of R 1 , R 2 , R 3 and R 4 is a halogen atom, and more preferably any one of R 1 , R 2 , R 3 and R 4 . Is an iodine atom. More preferably, R 1 , R 2 and R 4 are hydrogen atoms and R 3 is an iodine atom.
 式(I)において、好適には、R5及びR8が、水素原子であり、R6が、水素原子;C1-4アルキル基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基であり、且つR7が、ヒドロキシ基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;アミノ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基である。 In the formula (I), R 5 and R 8 are preferably a hydrogen atom, and R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy optionally substituted by a hydroxy group A mono (C 1-4 alkyl) amino group; or a di (C 1-4 alkyl) amino group, and R 7 is a hydroxy group; a C 1-4 alkoxy group optionally substituted by a hydroxy group Amino group; mono (C 1-4 alkyl) amino group; or di (C 1-4 alkyl) amino group;
 式(I)で表される化合物の好適な例としては、以下の化合物が挙げられる。 Preferable examples of the compound represented by the formula (I) include the following compounds.
 式(I)において、X1が、Oであり、X2が、CHであり、R1、R2、R4、R5及びR8が、水素原子であり、R3が、ヨウ素原子であり、R6が、水素原子;C1-4アルキル基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基であり、且つR7が、ヒドロキシ基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;アミノ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基である化合物又はその医薬上許容される塩。 In the formula (I), X 1 is O, X 2 is CH, R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms, R 3 is an iodine atom R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy group optionally substituted by a hydroxy group; a mono (C 1-4 alkyl) amino group; or a di (C 1-4) Alkyl) amino group and R 7 is hydroxy group; C 1-4 alkoxy group optionally substituted by hydroxy group; amino group; mono (C 1-4 alkyl) amino group; or di (C 1 -4 alkyl) compound or a pharmaceutically acceptable salt thereof is an amino group.
 式(I)において、X1が、Oであり、X2が、CHであり、R1、R2、R4、R5及びR8が、水素原子であり、R3が、ヨウ素原子であり、R6が、水素原子であり、且つR7が、C1-4アルコキシ基(例、メトキシ基);アミノ基;モノ(C1-4アルキル)アミノ基(例、メチルアミノ基);又はジ(C1-4アルキル)アミノ基(例、ジメチルアミノ基)である化合物又はその医薬上許容される塩。 In the formula (I), X 1 is O, X 2 is CH, R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms, R 3 is an iodine atom R 6 is a hydrogen atom, and R 7 is a C 1-4 alkoxy group (eg, methoxy group); an amino group; a mono (C 1-4 alkyl) amino group (eg, a methylamino group); Or a compound which is a di (C 1-4 alkyl) amino group (eg, dimethylamino group) or a pharmaceutically acceptable salt thereof.
 後述する実施例に記載の化合物27、28、30、31、33、34、36、37、若しくは39又はその医薬上許容される塩。 Compound 27, 28, 30, 31, 33, 34, 36, 37, or 39 or a pharmaceutically acceptable salt thereof described in Examples described later.
 より好適な例としては、後述する実施例に記載の化合物30、33、36、若しくは39又はその医薬上許容される塩を挙げることができる。 More preferable examples include compounds 30, 33, 36, or 39 described in Examples described later, or pharmaceutically acceptable salts thereof.
 式(I)で表される化合物は、後述する実施例の記載に従って合成することができる。 The compound represented by the formula (I) can be synthesized according to the description in the examples described later.
 例えば、式(I)において、X1がOであり、X2がCHである化合物(I)-1は、下記スキームに示す方法によって製造することができる。 For example, in formula (I), compound (I) -1 in which X 1 is O and X 2 is CH can be produced by the method shown in the following scheme.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R9は、C1-6アルキル基を示し、Halは、臭素原子、塩素原子などのハロゲン原子を示し、その他の各記号は前記で定義したとおりである)
工程1
 化合物(II)及び化合物(III)を、溶媒中、塩基の存在下で環化、脱水反応に付すことにより、化合物(IV)を製造することができる。塩基としては、炭酸カリウムなどが挙げられる。溶媒としては、N,N-ジメチルホルムアミド(DMF)などが挙げられる。
工程2
 化合物(IV)を、溶媒中、塩基の存在下で加水分解することにより、化合物(V)を製造することができる。塩基としては、水酸化ナトリウム、水酸化カリウムなどが挙げられる。溶媒としては、メタノール、エタノールなどが挙げられる。
工程3
 化合物(V)及び化合物(VI)を、ハロゲン化剤及び塩基の存在下でエステル化反応に付すことにより、化合物(VII)を製造することができる。ハロゲン化剤としては、塩化ホスホリル、塩化チオニルなどの塩素化剤が挙げられる。塩基としては、ピリジンなどが挙げられる。
工程4
 化合物(VII)を、溶媒中、塩基の存在下で転位反応に付すことにより、化合物(VIII)を製造することができる。塩基としては、水酸化カリウム、水酸化ナトリウムなどが挙げられる。溶媒としては、ピリジンなどが挙げられる。
工程5
 化合物(VIII)を、溶媒中、酸の存在下で脱水環化反応に付すことにより、化合物(I)-1を製造することができる。酸としては、濃硫酸などが挙げられる。溶媒としては、酢酸などが挙げられる。
(Wherein R 9 represents a C 1-6 alkyl group, Hal represents a halogen atom such as a bromine atom or a chlorine atom, and other symbols are as defined above).
Process 1
Compound (IV) can be produced by subjecting compound (II) and compound (III) to cyclization and dehydration reaction in a solvent in the presence of a base. Examples of the base include potassium carbonate. Examples of the solvent include N, N-dimethylformamide (DMF).
Process 2
Compound (V) can be produced by hydrolyzing compound (IV) in the presence of a base in a solvent. Examples of the base include sodium hydroxide and potassium hydroxide. Examples of the solvent include methanol and ethanol.
Process 3
Compound (VII) can be produced by subjecting compound (V) and compound (VI) to an esterification reaction in the presence of a halogenating agent and a base. Examples of the halogenating agent include chlorinating agents such as phosphoryl chloride and thionyl chloride. Examples of the base include pyridine.
Process 4
Compound (VIII) can be produced by subjecting compound (VII) to a rearrangement reaction in the presence of a base in a solvent. Examples of the base include potassium hydroxide and sodium hydroxide. Examples of the solvent include pyridine.
Process 5
Compound (I) -1 can be produced by subjecting compound (VIII) to a dehydration cyclization reaction in a solvent in the presence of an acid. Examples of the acid include concentrated sulfuric acid. Examples of the solvent include acetic acid.
 例えば、式(I)において、X1がOであり、X2がNである化合物(I)-2は、下記スキームに示す方法によって製造することができる。 For example, in formula (I), compound (I) -2 in which X 1 is O and X 2 is N can be produced by the method shown in the following scheme.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、各記号は前記で定義したとおりである)
工程6
 化合物(IX)を、溶媒中、グリオキシル酸エチルで付加反応に付した後、硝酸アンモニウムセリウム(CAN)などを用いた酸化反応に付すことにより、化合物(X)を製造することができる。溶媒としては、ジオキサンなどが挙げられる。
工程7
 化合物(X)を、溶媒中、塩基の存在下で加水分解することにより、化合物(XI)を製造することができる。塩基としては、水酸化ナトリウム、水酸化カリウムなどが挙げられる。溶媒としては、メタノール、エタノールなどが挙げられる。
工程8
 化合物(XI)及び化合物(VI)を、ハロゲン化剤及び塩基の存在下でエステル化反応に付すことにより、化合物(XII)を製造することができる。ハロゲン化剤としては、塩化ホスホリル、塩化チオニルなどの塩素化剤が挙げられる。塩基としては、ピリジンなどが挙げられる。
工程9
 化合物(XII)を、溶媒中、塩基の存在下で転位反応に付すことにより、化合物(XIII)を製造することができる。塩基としては、水酸化カリウム、水酸化ナトリウムなどが挙げられる。溶媒としては、ピリジンなどが挙げられる。
工程10
 化合物(XIII)を、溶媒中、酸の存在下で脱水環化反応に付すことにより、化合物(I)-2を製造することができる。酸としては、濃硫酸などが挙げられる。溶媒としては、酢酸などが挙げられる。
(Wherein each symbol is as defined above)
Step 6
Compound (X) can be produced by subjecting compound (IX) to an addition reaction with ethyl glyoxylate in a solvent, followed by an oxidation reaction using ammonium cerium nitrate (CAN) or the like. Examples of the solvent include dioxane.
Step 7
Compound (XI) can be produced by hydrolyzing compound (X) in a solvent in the presence of a base. Examples of the base include sodium hydroxide and potassium hydroxide. Examples of the solvent include methanol and ethanol.
Process 8
Compound (XII) can be produced by subjecting compound (XI) and compound (VI) to an esterification reaction in the presence of a halogenating agent and a base. Examples of the halogenating agent include chlorinating agents such as phosphoryl chloride and thionyl chloride. Examples of the base include pyridine.
Step 9
Compound (XIII) can be produced by subjecting compound (XII) to a rearrangement reaction in the presence of a base in a solvent. Examples of the base include potassium hydroxide and sodium hydroxide. Examples of the solvent include pyridine.
Step 10
Compound (I) -2 can be produced by subjecting compound (XIII) to a dehydration cyclization reaction in a solvent in the presence of an acid. Examples of the acid include concentrated sulfuric acid. Examples of the solvent include acetic acid.
 式(I)で表される化合物は、標識物質によって標識されていることが好ましい。標識物質としては、蛍光物質、アフィニティー物質などを使用してもよいが、放射性核種を使用するのが好ましい。標識に用いる放射性核種の種類は特に限定されず、使用の態様によって適宜決めることができる。例えば、式(I)で表される化合物をコンピューター断層撮影法(SPECT)による診断に使用する場合、放射性核種は99mTc、111In、67Ga、201Tl、123I、133Xe(好適には、99mTc、123I)などのγ線放出核種を使用することができる。また、陽電子断層撮影法(PET)による診断に使用する場合には、11C、13N、15O、18F、62Cu、68Ga、76Br(好適には、11C、13N、15O、18F)などの陽電子放出核種を使用することができる。また、式(I)で表される化合物をヒト以外の動物に投与する場合には、より半減期の長い放射性核種、例えば、125Iなどを使用してもよい。放射性核種は、式(I)で表される化合物の分子中に含まれる形でもよく、また、式(I)で表される化合物に結合する形であってもよい。 The compound represented by formula (I) is preferably labeled with a labeling substance. As the labeling substance, a fluorescent substance, an affinity substance or the like may be used, but it is preferable to use a radionuclide. The kind of radionuclide used for labeling is not particularly limited, and can be appropriately determined depending on the mode of use. For example, when the compound represented by the formula (I) is used for diagnosis by computed tomography (SPECT), the radionuclide is 99m Tc, 111 In, 67 Ga, 201 Tl, 123 I, 133 Xe (preferably , 99m Tc, 123 I) can be used. When used for diagnosis by positron emission tomography (PET), 11 C, 13 N, 15 O, 18 F, 62 Cu, 68 Ga, 76 Br (preferably 11 C, 13 N, 15 Positron emitting nuclides such as O, 18 F) can be used. In addition, when the compound represented by the formula (I) is administered to an animal other than a human, a radionuclide having a longer half-life, such as 125 I, may be used. The radionuclide may be included in the molecule of the compound represented by formula (I) or may be bonded to the compound represented by formula (I).
 式(I)で表される化合物の代わりに、医薬上許容される塩を使用することも可能である。医薬上許容される塩としては、アルカリ金属塩(ナトリウム塩、カリウム塩、リチウム塩)、アルカリ土類金属塩(カルシウム塩、マグネシウム塩)、硫酸塩、塩酸塩、硝酸塩、リン酸塩などを例示できる。 It is also possible to use a pharmaceutically acceptable salt instead of the compound represented by the formula (I). Examples of pharmaceutically acceptable salts include alkali metal salts (sodium salt, potassium salt, lithium salt), alkaline earth metal salts (calcium salt, magnesium salt), sulfate, hydrochloride, nitrate, phosphate, etc. it can.
 本発明の組成物はアミロイド関連疾患の診断に用いられる。ここで、「アミロイド関連疾患」とは、アミロイドタンパク質凝集体の存在が観察される疾患を意味する。本発明の化合物はβシート構造をとるタンパク質に結合することから、本発明における「アミロイド関連疾患」には、β-アミロイドの他、タウ、α-シヌクレイン、プリオンなどの、βシート構造をとるアミロイドタンパク質の凝集体の存在が観察される疾患が含まれる。具体的には、本発明における「アミロイド関連疾患」としては、クロイツフェルト・ヤコブ病、アルツハイマー病、レビー小体型認知症、地中海熱、マックル-ウェルズ症候群、突発性骨髄腫、アミロイド多発性神経障害、アミロイド心筋症、全身性老年性アミロイドーシス、アミロイドーシスを伴う遺伝性脳出血(オランダ型またはアイスランド型アミロイドーシスを伴う遺伝性脳出血を含む)、ダウン症候群、スクラピー、クールー病、ゲルストマン-シュトロイスラー-シャインカー症候群、甲状腺髄様癌、孤立心房性アミロイド、透析患者におけるβ2-ミクログロブリンアミロイド、封入体筋炎、筋消耗病におけるβ2-アミロイド沈着、及びランゲルハンス島II型糖尿病インスリノーマが挙げられる。中でも、本発明の診断用組成物は、クロイツフェルト・ヤコブ病、アルツハイマー病、レビー小体型認知症の診断に特に好適である。また、一般には「疾患」と認識されない疾患の前駆症状も、本発明における「アミロイド関連疾患」に含まれる。このような疾患の前駆症状としては、アルツハイマー病の発症前にみられる軽度認知障害(MCI)などを例示できる。 The composition of the present invention is used for diagnosis of amyloid-related diseases. Here, “amyloid-related disease” means a disease in which the presence of an amyloid protein aggregate is observed. Since the compound of the present invention binds to a protein having a β sheet structure, the “amyloid-related diseases” in the present invention include amyloid having a β sheet structure such as tau, α-synuclein, prion, etc. in addition to β-amyloid. Diseases in which the presence of protein aggregates are observed are included. Specifically, the “amyloid-related disease” in the present invention includes Creutzfeldt-Jakob disease, Alzheimer's disease, Lewy body dementia, Mediterranean fever, Maccle-Wells syndrome, idiopathic myeloma, amyloid polyneuropathy, Amyloid cardiomyopathy, systemic senile amyloidosis, hereditary cerebral hemorrhage with amyloidosis (including hereditary cerebral hemorrhage with Dutch or Icelandic amyloidosis), Down's syndrome, scrapie, Kourou disease, Gerstmann-Stroisler-Scheinker syndrome, Examples include medullary thyroid cancer, isolated atrial amyloid, β 2 -microglobulin amyloid in dialysis patients, inclusion body myositis, β 2 -amyloid deposition in muscle wasting disease, and Langerhans type II diabetes insulinoma. Among these, the diagnostic composition of the present invention is particularly suitable for diagnosis of Creutzfeldt-Jakob disease, Alzheimer's disease, and Lewy body dementia. In addition, precursor symptoms of diseases that are generally not recognized as “diseases” are also included in “amyloid-related diseases” in the present invention. Examples of prodromal symptoms of such diseases include mild cognitive impairment (MCI) seen before the onset of Alzheimer's disease.
 本発明の組成物によるアミロイド関連疾患の診断は、通常、本発明の組成物を診断対象者又は実験動物などに投与し、その後、脳の画像を撮影し、画像における式(I)で表される化合物の状態(量、分布等)に基づいて行う。本発明の組成物の投与方法は特に限定されず、化合物の種類、標識物質の種類などに応じて適宜決めることができるが、通常は、皮内、腹腔内、静脈、動脈、又は脊髄液への注射又は点滴等によって投与する。本発明の組成物の投与量は特に限定されず、化合物の種類、標識物質の種類などに応じて適宜決めることができるが、成人の場合、式(I)で表される化合物を1日当たり10-10~10-3 mg投与するのが好ましく、10-8~10-5 mg投与するのが更に好ましい。 Diagnosis of amyloid-related diseases with the composition of the present invention is usually performed by administering the composition of the present invention to a subject to be diagnosed or a laboratory animal, and then taking a brain image, which is represented by the formula (I) in the image. This is based on the state of the compound (amount, distribution, etc.). The administration method of the composition of the present invention is not particularly limited and can be appropriately determined according to the type of compound, the type of labeling substance, etc., but is usually intradermal, intraperitoneal, intravenous, arterial, or spinal fluid. It is administered by injection or infusion. The dose of the composition of the present invention is not particularly limited and can be determined appropriately according to the type of compound, the type of labeling substance, etc. In the case of an adult, the compound represented by formula (I) is 10 per day. -10 to 10 -3 mg is preferably administered, more preferably 10 -8 to 10 -5 mg.
 上記のように本発明の組成物は、通常、注射又は点滴によって投与するので、注射液や点滴液に通常含まれる成分を含んでいてもよい。このような成分としては、液体担体(例えば、リン酸カリウム緩衝液、生理食塩水、リンゲル液、蒸留水、ポリエチレングリコール、植物性油脂、エタノール、グリセリン、ジメチルスルホキサイド、プロピレングリコールなど)、抗菌剤、局所麻酔剤(例えば、塩酸プロカイン、塩酸ジブカインなど)、緩衝液(例えば、トリス-塩酸緩衝液、ヘペス緩衝液など)、浸透圧調節剤(例えば、グルコース、ソルビトール、塩化ナトリウムなど)を例示できる。 As described above, since the composition of the present invention is usually administered by injection or infusion, it may contain components usually contained in an injection solution or an infusion solution. Such components include liquid carriers (for example, potassium phosphate buffer, physiological saline, Ringer's solution, distilled water, polyethylene glycol, vegetable oils, ethanol, glycerin, dimethyl sulfoxide, propylene glycol, etc.), antibacterial agents And local anesthetics (eg, procaine hydrochloride, dibucaine hydrochloride, etc.), buffer solutions (eg, Tris-HCl buffer solution, Hepes buffer solution, etc.), osmotic pressure regulators (eg, glucose, sorbitol, sodium chloride, etc.) .
 本発明はまた、放射性核種で標識されている式(I)で表される化合物又はその医薬上許容される塩を含有する、アミロイド沈着の画像化剤に関する。「アミロイド沈着」は、βシート構造をとるアミロイドタンパク質が凝集して形成される。アミロイドタンパク質としては、プリオン、β-アミロイド、タウ、α-シヌクレインが挙げられるが、本発明の画像化剤はプリオン、β-アミロイド、α-シヌクレインにより形成されるアミロイド沈着の画像化に好適である。本発明の画像化剤は、異常型プリオンタンパク質凝集体(PrPSc)(プリオンにより形成されるアミロイド沈着)の画像化に特に好適である。本発明のアミロイド沈着の画像化剤は、アミロイド関連疾患診断用組成物と同様に調製し、使用することができる。 The present invention also relates to an imaging agent for amyloid deposition, which comprises a compound represented by formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide. “Amyloid deposition” is formed by aggregation of amyloid proteins having a β-sheet structure. Examples of amyloid protein include prion, β-amyloid, tau and α-synuclein. The imaging agent of the present invention is suitable for imaging amyloid deposits formed by prion, β-amyloid and α-synuclein. . The imaging agent of the present invention is particularly suitable for imaging abnormal prion protein aggregates (PrP Sc ) (amyloid deposits formed by prions). The imaging agent for amyloid deposition of the present invention can be prepared and used in the same manner as the composition for diagnosing amyloid-related diseases.
 本発明はまた、
a.放射性核種で標識されている式(I)で表される化合物又はその医薬上許容される塩の検出可能な量を哺乳動物に導入する工程;
b.該化合物がアミロイド沈着に結合するのに十分な時間放置する工程;および
c.1つ以上のアミロイド沈着に結合した化合物を検出する工程、
を包含する、アミロイド沈着を画像化するための方法に関する。
The present invention also provides
a. Introducing a detectable amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide into a mammal;
b. Leaving the compound for a time sufficient to bind to the amyloid deposit; and c. Detecting a compound bound to one or more amyloid deposits;
To a method for imaging amyloid deposits.
 本発明はまた、
 放射性核種で標識されている式(I)で表される化合物又はその医薬上許容される塩の検出可能な量を導入された哺乳動物を、コンピューター断層撮影法(SPECT)又は陽電子断層撮影法(PET)により撮影する工程を包含する、アミロイド沈着を画像化するための方法に関する。
The present invention also provides
A mammal introduced with a detectable amount of a compound represented by formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide is subjected to computed tomography (SPECT) or positron emission tomography ( The present invention relates to a method for imaging amyloid deposits, comprising the step of imaging by PET.
 「哺乳動物」としては、ヒト、マウス、ラット、ウサギ、イヌ、サルが挙げられるが、これらに限定されない。好ましくは、「哺乳動物」はヒトである。 “Mammals” include, but are not limited to, humans, mice, rats, rabbits, dogs, monkeys. Preferably, the “mammal” is a human.
 放射性核種による標識および標識化合物の検出は、前述のとおり行えばよい。すなわち、検出にはSPECTおよびPETを利用することができ、放射性核種は検出方法に応じて選択すればよい。また、哺乳動物への導入も、アミロイド関連疾患診断用組成物について記載のとおり行えばよい。 The labeling with the radionuclide and the detection of the labeled compound may be performed as described above. That is, SPECT and PET can be used for detection, and the radionuclide may be selected according to the detection method. Moreover, introduction into mammals may be performed as described for the composition for diagnosing amyloid-related diseases.
 「放射性核種で標識されている式(I)で表される化合物又はその医薬上許容される塩の検出可能な量」および「該化合物がアミロイド沈着に結合するのに十分な時間」は、対象とする哺乳動物、並びに使用する化合物および検出方法に応じて当業者が適宜決定可能である。例えば、対象とする哺乳動物に様々な濃度の標識化合物を導入し、導入後の様々な時点でこの標識化合物を選択した検出方法で検出することによって、これらの量および時間を決定することができる。 “Detectable amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof labeled with a radionuclide” and “a sufficient time for the compound to bind to amyloid deposits” A person skilled in the art can determine appropriately depending on the mammal to be used, the compound used and the detection method. For example, the amount and time of these can be determined by introducing various concentrations of the labeled compound into the mammal of interest, and detecting this labeled compound with the selected detection method at various times after introduction. .
 本発明のアミロイド関連疾患診断用組成物は、アミロイド関連疾患の治療薬や予防薬のスクリーニングにも利用できる。例えば、クロイツフェルト・ヤコブ病、アルツハイマー病などの「疾患」のモデル動物に被験物質を投与した後、前記モデル動物に本発明のアミロイド関連疾患診断用組成物を投与し、その後、前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べ、その結果、コントロール(被験物質を投与していないモデル動物)との間に有意な差異(例えば、分布部位の縮小、量の減少など)が検出されれば、被験物質はアミロイド関連疾患の治療薬の候補となり得る。また、軽度認知障害などの「疾患の前駆症状」のモデル動物に被験物質を投与した後、前記モデル動物に本発明のアミロイド関連疾患診断用組成物を投与し、その後、前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べ、その結果、コントロールとの間に有意な差異(例えば、分布部位の縮小又は拡大の鈍化、量の減少又は増大の鈍化など)が検出されれば、被験物質はアミロイド関連疾患の予防薬の候補となり得る。 The composition for diagnosing amyloid-related diseases of the present invention can also be used for screening for therapeutic or prophylactic agents for amyloid-related diseases. For example, after administering a test substance to a model animal of “disease” such as Creutzfeldt-Jakob disease or Alzheimer's disease, the model animal is administered with the amyloid-related disease diagnostic composition of the present invention, and then The distribution or amount of the compound represented by formula (I) contained in the brain is examined, and as a result, a significant difference from the control (model animal not administered with the test substance) (for example, reduction of the distribution site) If a decrease in the amount is detected, the test substance can be a candidate for a therapeutic drug for amyloid-related diseases. Further, after administering a test substance to a model animal of “disease symptoms” such as mild cognitive impairment, the composition for amyloid-related disease diagnosis of the present invention is administered to the model animal, and then the brain of the model animal The distribution or amount of the compound represented by the formula (I) contained in is investigated, and as a result, there is a significant difference from the control (for example, the distribution site is reduced or enlarged, the amount is decreased or increased, etc.) ) Is detected, the test substance can be a candidate for a prophylactic agent for amyloid-related diseases.
 また、本発明のアミロイド関連疾患診断用組成物は、既に効果が確認されているアミロイド関連疾患の治療薬や予防薬の評価にも利用できる。即ち、アミロイド関連疾患のモデル動物に前記疾患の治療薬又は予防薬を投与した後、前記モデル動物に本発明のアミロイド関連疾患診断用組成物を投与し、その後、前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べ、これにより、前記治療薬や予防薬の評価(具体的には、有効な投与量、有効な投与方法など)を行う。 The composition for diagnosing amyloid-related diseases of the present invention can also be used for evaluation of therapeutic and preventive drugs for amyloid-related diseases whose effects have already been confirmed. That is, after the therapeutic or prophylactic agent for the disease is administered to a model animal for amyloid-related disease, the composition for diagnosing amyloid-related disease of the present invention is administered to the model animal, and then contained in the brain of the model animal. Thus, the distribution or amount of the compound represented by the formula (I) is examined, and thereby the therapeutic agent and the prophylactic agent are evaluated (specifically, effective dose, effective administration method, etc.).
 以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
〔実験方法〕
試薬・機器
 試薬は、特に記載のない限り市販の一級試薬あるいは特級試薬を特別な精製を行わずに用いた。放射性ヨウ素-125はMP Biomedicals, Inc社製 Iodine-125 (Na125I, 100 mCi/ml, pH10 NaOH溶液)及び室町薬品社製 Iodine-125 (Na125I, 3.7 GBq/mL, 0.01 M NaOH溶液)を用いた。
 中圧分取液体クロマトグラフィーには、山善株式会社のPUMP-560、UV-DETECTOR prep-UV254、ULTRA PACK(SiOH, 11×300 mm および26×300 mm)及びADVANTEC社のCHF122SSC FRACTION COLLECTORを用いた。
 高速液体クロマトグラフィー(HPLC)には、島津製作所のC-R8A CHROMATOPAC、SPD-10A VP UV-VIS DETECTOR、LC-10AT VP LIQUID CHROMATOGRAPHを用いた。カラムにはナカライテスク社のCOSMOSIL Packed column 5C18-AR-II (4.6×150 mm, 20×250 mm)を用いた。
 1H-NMR測定はVarian Gemini 300又はJOEL JNM-AL 400を用い、テトラメチルシランを内標準物質として行った。質量分析はJOEL JMS-T100TDを用いた。放射能測定にはパーキンエルマージャパン社のWizardオートウェルガンマカウンターを用いた。
 結合実験における結合分子と非結合分子の分離には、Brandel社製M-24R cell harvesterおよびWhatman社製GF/B filter(孔径1 μm)を用いた。BSE感染マウス脳切片の作製にはLeica社製クライオスタットCM1900を用い、蛍光顕微鏡にはNikon社製ECLIPSE 80iを用いた。
〔experimental method〕
As reagents and instrument reagents, commercially available first-class reagents or special-grade reagents were used without special purification unless otherwise specified. Radioiodine-125 is produced by MP Biomedicals, Inc. Iodine-125 (Na 125 I, 100 mCi / ml, pH10 NaOH solution) and Muromachi Yakuhin Iodine-125 (Na 125 I, 3.7 GBq / mL, 0.01 M NaOH solution) ) Was used.
For medium pressure preparative liquid chromatography, Yamazen PUMP-560, UV-DETECTOR prep-UV254, ULTRA PACK (SiOH, 11 × 300 mm and 26 × 300 mm) and ADVANTEC CHF122SSC FRACTION COLLECTOR were used. .
Shimadzu C-R8A CHROMATOPAC, SPD-10A VP UV-VIS DETECTOR, and LC-10AT VP LIQUID CHROMATOGRAPH were used for high performance liquid chromatography (HPLC). As the column, COSMOSIL Packed column 5C 18 -AR-II (4.6 × 150 mm, 20 × 250 mm) manufactured by Nacalai Tesque was used.
1 H-NMR measurement was performed using Varian Gemini 300 or JOEL JNM-AL 400 and tetramethylsilane as an internal standard substance. Mass spectrometry used JOEL JMS-T100TD. For measurement of radioactivity, a Wizard Autowell gamma counter manufactured by PerkinElmer Japan was used.
For separation of bound and unbound molecules in binding experiments, Brandel M-24R cell harvester and Whatman GF / B filter (pore size 1 μm) were used. Leica cryostat CM1900 was used for the preparation of BSE-infected mouse brain sections, and Nikon ECLIPSE 80i was used for the fluorescence microscope.
製造例1
2-ヒドロキシ-4-ニトロベンズアルデヒド(18)の合成
 2-メトキシ-4-ニトロベンズアルデヒド(500 mg, 2.76 mmol)をジクロロメタン(4 mL)に溶解させた。氷冷下で三臭化ホウ素(4 mL)を加え、室温で4時間攪拌した。その後、精製水を加え反応を止めた。クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; クロロホルム : ヘキサン = 1 : 1)で精製し、標題化合物を黄色結晶として得た(365 mg, 収率 79%)。1H NMR (400MHz, CDCl3) δ 7.84-7.87 (m, 3H), 10.06 (s, 1H), 11.15 (s, 1H). MS (DART) m/z: 167 (M+H+).
Production Example 1
Synthesis of 2- hydroxy-4-nitrobenzaldehyde (18) 2-Methoxy-4-nitrobenzaldehyde (500 mg, 2.76 mmol) was dissolved in dichloromethane (4 mL). Boron tribromide (4 mL) was added under ice cooling, and the mixture was stirred at room temperature for 4 hours. Thereafter, purified water was added to stop the reaction. The organic layer was separated and extracted with chloroform and purified water, and washed with a saturated aqueous sodium chloride solution. The extract was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; chloroform: hexane = 1: 1) to obtain the title compound as yellow crystals (365 mg, yield 79%). 1 H NMR (400MHz, CDCl 3 ) δ 7.84-7.87 (m, 3H), 10.06 (s, 1H), 11.15 (s, 1H). MS (DART) m / z: 167 (M + H + ).
製造例2
エチル 6-メトキシベンゾフラン-2-カルボキシラート(19)の合成
 2-ヒドロキシ-4-メトキシベンズアルデヒド(200 mg, 1.31 mmol)とエチル ブロモアセタート(435 μL, 3.93 mmol)をN,N-ジメチルホルミアミド(DMF)(2 mL)に溶かし、K2CO3を加え、80℃で6時間加熱攪拌した。その後、1,4-ジオキサンを加えDMFを共沸させ除媒した。クロロホルムと精製水で有機層を分液抽出した。飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; クロロホルム : ヘキサン = 1 : 1)で精製し、標題化合物を得た(43 mg, 収率 15%)。1H NMR (400MHz, CDCl3) δ 1.42 (t, J = 14.4 Hz, 3H), 3.86 (s, 3H), 4.42 (q, J = 21.6 Hz, 2H), 6.99 (dd, J = 2.8 Hz, 8.4 Hz, 1H), 7.06 (d, J = 2 Hz, 1H), 7.46 (s, 1H), 7.53 (d, J = 8.8 Hz, 1H). MS (DART) m/z: 221 (M+H+).
Production Example 2
Synthesis of ethyl 6-methoxybenzofuran-2-carboxylate (19) 2-hydroxy-4-methoxybenzaldehyde (200 mg, 1.31 mmol) and ethyl bromoacetate (435 μL, 3.93 mmol) were combined with N, N-dimethylformamide ( DMF) (2 mL), K 2 CO 3 was added, and the mixture was stirred with heating at 80 ° C. for 6 hr. Thereafter, 1,4-dioxane was added to remove the solvent by azeotropic distillation of DMF. The organic layer was separated and extracted with chloroform and purified water. The extract was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; chloroform: hexane = 1: 1) to obtain the title compound (43 mg, yield 15%). 1 H NMR (400MHz, CDCl 3 ) δ 1.42 (t, J = 14.4 Hz, 3H), 3.86 (s, 3H), 4.42 (q, J = 21.6 Hz, 2H), 6.99 (dd, J = 2.8 Hz, 8.4 Hz, 1H), 7.06 (d, J = 2 Hz, 1H), 7.46 (s, 1H), 7.53 (d, J = 8.8 Hz, 1H). MS (DART) m / z: 221 (M + H + ).
製造例3
エチル 6-ニトロベンゾフラン-2-カルボキシラート(20)の合成
 化合物18(341 mg, 2.04 mmol)とエチル ブロモアセタート(639.3 μL, 8.16 mmol)をDMF(3 mL)に溶かし、K2CO3(554 mg, 4.08 mmol)を加え、90℃で18時間加熱攪拌した。その後、1,4-ジオキサンを加えDMFを共沸させ除媒した。クロロホルムと精製水で有機層を分液抽出した。飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; クロロホルム : ヘキサン = 1 : 1)で精製し、標題化合物を得た(75 mg, 収率 16%)。1H NMR (400MHz, CDCl3) δ 1.46 (t, J = 14 Hz, 3H), 4.49 (q, J = 21.6 Hz, 2H), 7.60 (d, J = 0.8 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 8.24 (dd, J = 2 Hz, 8.8 Hz, 1H), 8.49 (s, 1H). MS (DART) m/z: 236 (M+H+).
Production Example 3
Synthesis of ethyl 6-nitrobenzofuran-2-carboxylate (20) Compound 18 (341 mg, 2.04 mmol) and ethyl bromoacetate (639.3 μL, 8.16 mmol) were dissolved in DMF (3 mL) and K 2 CO 3 (554 mg , 4.08 mmol), and stirred with heating at 90 ° C. for 18 hours. Thereafter, 1,4-dioxane was added to remove the solvent by azeotropic distillation of DMF. The organic layer was separated and extracted with chloroform and purified water. The extract was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; chloroform: hexane = 1: 1) to obtain the title compound (75 mg, yield 16%). 1 H NMR (400MHz, CDCl 3 ) δ 1.46 (t, J = 14 Hz, 3H), 4.49 (q, J = 21.6 Hz, 2H), 7.60 (d, J = 0.8 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 8.24 (dd, J = 2 Hz, 8.8 Hz, 1H), 8.49 (s, 1H). MS (DART) m / z: 236 (M + H + ).
製造例4
6-メトキシベンゾフラン-2-カルボン酸(21)の合成
 化合物19(166 mg, 0.75 mmol)をメタノール(5 mL)に溶解させ、1M NaOHを加え室温で2時間攪拌した。その後、氷冷下で1M HClを加えた。クロロホルムと精製水で有機層を分液抽出した。飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去し、標題化合物を得た(100 mg, 収率 69.0%)。1H NMR (400MHz, CDCl3) δ 3.89 (s, 3H), 6.97 (dd, J = 2 Hz, 8.8 Hz, 1H), 7.08 (s, 1H), 7.57 (d, J = 8.8 Hz, 1H), 7.63 (s, 1H). MS (DART) m/z: 193 (M+H+).
Production Example 4
Synthetic compound 19 (166 mg, 0.75 mmol) of 6-methoxybenzofuran-2-carboxylic acid (21) was dissolved in methanol (5 mL), 1M NaOH was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, 1M HCl was added under ice cooling. The organic layer was separated and extracted with chloroform and purified water. The extract was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain the title compound (100 mg, yield 69.0%). 1 H NMR (400MHz, CDCl 3 ) δ 3.89 (s, 3H), 6.97 (dd, J = 2 Hz, 8.8 Hz, 1H), 7.08 (s, 1H), 7.57 (d, J = 8.8 Hz, 1H) , 7.63 (s, 1H). MS (DART) m / z: 193 (M + H + ).
製造例5
6-ニトロベンゾフラン-2-カルボン酸(22)の合成
 化合物20(180 mg, 0.77 mmol)をメタノール(5 mL)に溶解させ、1M NaOHを加え室温で2時間攪拌した。その後、メタノールを減圧留去し、氷冷下で1M HClを加えた。クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 7 : 3, 2% 酢酸)で精製し、標題化合物を得た(71 mg, 収率 45%)。1H NMR (400MHz, CDCl3) δ 7.70 (s, 1H), 7.86 (d, J = 8.8 Hz, 1H), 8.26 (dd, J = 1.6Hz, 8.6 Hz, 1H), 8.52 (s, 1H). MS (DART) m/z: 208 (M+H+).
Production Example 5
Synthesis compound 6-nitrobenzofuran-2-carboxylic acid (22) 20 (180 mg, 0.77 mmol) was dissolved in methanol (5 mL), 1M NaOH was added, and the mixture was stirred at room temperature for 2 hours. Thereafter, methanol was distilled off under reduced pressure, and 1M HCl was added under ice cooling. The organic layer was separated and extracted with chloroform and purified water, washed with a saturated aqueous sodium chloride solution, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by an open column (elution solvent; ethyl acetate: hexane = 7: 3, 2% acetic acid) to obtain the title compound (71 mg, yield 45%). 1 H NMR (400MHz, CDCl 3 ) δ 7.70 (s, 1H), 7.86 (d, J = 8.8 Hz, 1H), 8.26 (dd, J = 1.6Hz, 8.6 Hz, 1H), 8.52 (s, 1H) MS (DART) m / z: 208 (M + H + ).
製造例6
2-アセチル-4-ブロモフェニル 6-メトキシベンゾフラン-2-カルボキシラート(23)の合成
 氷冷下でピリジン(5 mL)に塩化ホスホリル(77.8 μL, 1.623 g/mL, 0.825 mmol)を加え、攪拌した。化合物21(53 mg, 0.275 mmol)と1-(5-ブロモ-2-ヒドロキシフェニル)エタノン(59 mg, 0.275 mmol)を加え、室温で2時間攪拌した。その後、氷冷下で氷を加え、攪拌を続けた。反応液を濾取濾過し、析出物を回収した。その際、飽和炭酸水素ナトリウム水溶液で洗浄した。室温で乾燥させ、標題化合物を得た(76 mg, 収率 71%)。1H NMR (400MHz, CDCl3) δ 2.58 (s, 3H), 3.89 (s, 3H), 6.99 (dd, J = 2.4 Hz, 8.6 Hz, 1H), 7.09 (s, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.70 (dd, J = 3.6 Hz, 8.8 Hz, 1H), 7.72 (s, 1H), 7.97 (d, J = 2.4 Hz, 1H).
Production Example 6
Synthesis of 2-acetyl-4-bromophenyl 6-methoxybenzofuran-2-carboxylate (23) Phosphoryl chloride (77.8 μL, 1.623 g / mL, 0.825 mmol) was added to pyridine (5 mL) under ice cooling and stirring. did. Compound 21 (53 mg, 0.275 mmol) and 1- (5-bromo-2-hydroxyphenyl) ethanone (59 mg, 0.275 mmol) were added, and the mixture was stirred at room temperature for 2 hours. Thereafter, ice was added under ice cooling, and stirring was continued. The reaction solution was collected by filtration, and the precipitate was collected. At that time, it was washed with a saturated aqueous solution of sodium bicarbonate. Drying at room temperature gave the title compound (76 mg, 71% yield). 1 H NMR (400MHz, CDCl 3 ) δ 2.58 (s, 3H), 3.89 (s, 3H), 6.99 (dd, J = 2.4 Hz, 8.6 Hz, 1H), 7.09 (s, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.70 (dd, J = 3.6 Hz, 8.8 Hz, 1H), 7.72 (s, 1H), 7.97 (d, J = 2.4 Hz , 1H).
製造例7
2-アセチル-4-ブロモフェニル 6-ニトロベンゾフラン-2-カルボキシラート(24)の合成
 氷冷下でピリジン(5 mL)に塩化ホスホリル(77.8 μL, 1.623 g/mL, 0.825 mmol)を加え、攪拌した。化合物22(71 mg, 0.343 mmol)と1-(5-ブロモ-2-ヒドロキシフェニル)エタノン(73 mg, 0.343 mmol)を加え、室温で12時間攪拌した。その後、氷冷下で氷を加え、攪拌を続けた。反応液を濾取濾過し、析出物を回収した。その際、飽和炭酸水素ナトリウム水溶液で洗浄した。室温で乾燥させ、標題化合物を得た(138 mg, 収率 99%)。1H NMR (400MHz, CDCl3) δ 2.59 (s, 3H), 7.21 (d, J = 8.8 Hz, 1H), 7.75 (dd, J = 2.4 Hz, 8 Hz, 1H), 7.83 (s, 1H), 7.90 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 2 Hz, 1H), 8.29 (dd, J = 2 Hz, 8.8 Hz, 1H), 8.54 (s, 1H).
Production Example 7
Synthesis of 2-acetyl-4-bromophenyl 6-nitrobenzofuran-2-carboxylate (24) Phosphoryl chloride (77.8 μL, 1.623 g / mL, 0.825 mmol) was added to pyridine (5 mL) under ice cooling and stirring. did. Compound 22 (71 mg, 0.343 mmol) and 1- (5-bromo-2-hydroxyphenyl) ethanone (73 mg, 0.343 mmol) were added, and the mixture was stirred at room temperature for 12 hours. Thereafter, ice was added under ice cooling, and stirring was continued. The reaction solution was collected by filtration, and the precipitate was collected. At that time, it was washed with a saturated aqueous solution of sodium bicarbonate. Drying at room temperature gave the title compound (138 mg, 99% yield). 1 H NMR (400MHz, CDCl 3 ) δ 2.59 (s, 3H), 7.21 (d, J = 8.8 Hz, 1H), 7.75 (dd, J = 2.4 Hz, 8 Hz, 1H), 7.83 (s, 1H) , 7.90 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 2 Hz, 1H), 8.29 (dd, J = 2 Hz, 8.8 Hz, 1H), 8.54 (s, 1H).
製造例8
1-(5-ブロモ-2-ヒドロキシフェニル)-3-(6-メトキシベンゾフラン-2-イル)プロパン-1,3-ジオン(25)の合成
 化合物23(214 mg, 0.55 mmol)をピリジン(7 mL)に溶解させ、氷冷下で攪拌しながら粉末状のKOH(131 mg, 2.37 mmol)を加えた。室温で2時間攪拌し、氷冷下で10% 酢酸水溶液を加え、反応を止めた。反応液を濾取濾過し、析出物を回収し、室温で乾燥させた。その後、残渣をオープンカラム(溶出溶媒; クロロホルム : ヘキサン = 1 : 1)で精製し、標題化合物を得た(36 mg, 収率 16.8%)。1H NMR (400MHz, CDCl3) δ 3.91 (s, 3H), 6.85 (s, 1H), 6.92 (d, J = 8.8 Hz, 1H), 6.96 (dd, J = 2 Hz, 8.8 Hz, 1H), 7.11 (d, J = 1.6 Hz, 1H), 7.50 (s, 1H), 7.54 (dd, J = 3.6 Hz, 8.2 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 2.4 Hz, 1H). MS (DART) m/z: 389, 391 (M+H+).
Production Example 8
Synthesis of 1- (5-bromo-2-hydroxyphenyl) -3- (6-methoxybenzofuran-2-yl) propane-1,3-dione (25) Compound 23 (214 mg, 0.55 mmol) was converted to pyridine (7 In addition, powdered KOH (131 mg, 2.37 mmol) was added with stirring under ice cooling. The mixture was stirred at room temperature for 2 hours, and a 10% aqueous acetic acid solution was added under ice cooling to stop the reaction. The reaction solution was collected by filtration, and the precipitate was collected and dried at room temperature. Thereafter, the residue was purified by an open column (elution solvent; chloroform: hexane = 1: 1) to obtain the title compound (36 mg, yield 16.8%). 1 H NMR (400MHz, CDCl 3 ) δ 3.91 (s, 3H), 6.85 (s, 1H), 6.92 (d, J = 8.8 Hz, 1H), 6.96 (dd, J = 2 Hz, 8.8 Hz, 1H) , 7.11 (d, J = 1.6 Hz, 1H), 7.50 (s, 1H), 7.54 (dd, J = 3.6 Hz, 8.2 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.93 (d , J = 2.4 Hz, 1H) .MS (DART) m / z: 389, 391 (M + H + ).
製造例9
1-(5-ブロモ-2-ヒドロキシフェニル)-3-(6-ニトロベンゾフラン-2-イル)プロパン-1,3-ジオン(26)の合成
 化合物24(138 mg, 0.34 mmol)をピリジン(8 mL)に溶解させ、氷冷下で攪拌しながら粉末状のKOH(38.14 mg, 0.68 mmol)を加えた。室温で2時間攪拌し、氷冷下で10% 酢酸水溶液を加え、反応を止めた。反応液を濾取濾過し、析出物を回収し、室温で乾燥させた。その後、残渣をオープンカラム(溶出溶媒; クロロホルム : ヘキサン = 3 : 1)で精製し、標題化合物を得た(56 mg, 収率 41%)。1H NMR (400MHz, CDCl3) δ 7.21 (d, J = 8.8 Hz, 1H), 7.75 (dd, J = 2.4 Hz, 8 Hz, 1H), 7.83 (s, 1H), 7.90 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 2 Hz, 1H), 8.29 (dd, J = 2 Hz, 8.8 Hz, 1H), 8.54 (s, 1H). MS (DART) m/z: 404, 406 (M+H+).
Production Example 9
Synthesis of 1- (5-bromo-2-hydroxyphenyl) -3- (6-nitrobenzofuran-2-yl) propane-1,3-dione (26) 24 (138 mg, 0.34 mmol) was converted to pyridine (8 The solution was dissolved in mL) and powdered KOH (38.14 mg, 0.68 mmol) was added with stirring under ice cooling. The mixture was stirred at room temperature for 2 hours, and a 10% aqueous acetic acid solution was added under ice cooling to stop the reaction. The reaction solution was collected by filtration, and the precipitate was collected and dried at room temperature. Thereafter, the residue was purified by an open column (elution solvent; chloroform: hexane = 3: 1) to obtain the title compound (56 mg, yield 41%). 1 H NMR (400MHz, CDCl 3 ) δ 7.21 (d, J = 8.8 Hz, 1H), 7.75 (dd, J = 2.4 Hz, 8 Hz, 1H), 7.83 (s, 1H), 7.90 (d, J = 8.8 Hz, 1H), 8.01 (d, J = 2 Hz, 1H), 8.29 (dd, J = 2 Hz, 8.8 Hz, 1H), 8.54 (s, 1H). MS (DART) m / z: 404, 406 (M + H + ).
実施例1
6-ブロモ-2-(6-メトキシベンゾフラン-2-イル)-4H-クロメン-4-オン(27)の合成
 化合物25(29 mg, 0.075 mmol)を酢酸(10 mL)に懸濁させ室温で攪拌した。濃硫酸(0.5 mL)を加え100℃で2時間加熱攪拌した。その後、室温で冷却し反応液に氷を加え攪拌した。反応液を濾取濾過し、析出物を回収した。その後、回収した析出物をオープンカラム(溶出溶媒; クロロホルム : ヘキサン = 1 : 1)で精製し、標題化合物を得た(20 mg, 収率 72%)。1H NMR (400MHz, CDCl3) δ 3.93 (s, 3H), 6.87 (s, 1H), 6.95 (dd, J = 2.8 Hz, 8.4 Hz 1H), 7.06 (d, J = 2 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 7.43 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.77 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 8.34 (d, J = 2.4 Hz, 1H). MS (DART) m/z: 371, 373 (M+H+).
Example 1
Synthesis of 6-bromo-2- (6-methoxybenzofuran-2-yl) -4H-chromen-4-one (27) Compound 25 (29 mg, 0.075 mmol) was suspended in acetic acid (10 mL) at room temperature. Stir. Concentrated sulfuric acid (0.5 mL) was added, and the mixture was stirred with heating at 100 ° C. for 2 hr. Then, it cooled at room temperature and added ice to the reaction liquid, and stirred. The reaction solution was collected by filtration, and the precipitate was collected. Thereafter, the collected precipitate was purified with an open column (elution solvent; chloroform: hexane = 1: 1) to obtain the title compound (20 mg, yield 72%). 1 H NMR (400MHz, CDCl 3 ) δ 3.93 (s, 3H), 6.87 (s, 1H), 6.95 (dd, J = 2.8 Hz, 8.4 Hz 1H), 7.06 (d, J = 2 Hz, 1H), 7.41 (d, J = 8.8 Hz, 1H), 7.43 (s, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.77 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 8.34 (d, J = 2.4 Hz, 1H) .MS (DART) m / z: 371, 373 (M + H + ).
実施例2
6-ブロモ-2-(6-ニトロベンゾフラン-2-イル)-4H-クロメン-4-オン(28)の合成
 化合物26(580 mg, 1.44 mmol)を酢酸(15 mL)に懸濁させ室温で攪拌した。濃硫酸(1 mL)を加え100℃で2時間加熱攪拌した。その後、室温で冷却し反応液に氷を加え攪拌した。反応液を濾取濾過し、析出物を回収し標題化合物を得た(284 mg, 収率 51%)。 MS (DART) m/z: 386, 388 (M+H+).
Example 2
Synthesis of 6-bromo-2- (6-nitrobenzofuran-2-yl) -4H-chromen-4-one (28) Compound 26 (580 mg, 1.44 mmol) was suspended in acetic acid (15 mL) at room temperature. Stir. Concentrated sulfuric acid (1 mL) was added, and the mixture was stirred with heating at 100 ° C. for 2 hr. Then, it cooled at room temperature and added ice to the reaction liquid, and stirred. The reaction mixture was collected by filtration, and the precipitate was collected to give the title compound (284 mg, yield 51%). MS (DART) m / z: 386, 388 (M + H + ).
製造例10
2-(6-メトキシベンゾフラン-2-イル)-6-(トリブチルスタンニル)-4H-クロメン-4-オン(29)の合成
 化合物27(46 mg, 0.12 mmol)を1,4-ジオキサン : トリエチルアミン = 3 : 2 の混合溶媒(5 mL)に溶解させ、ビス(トリブチルスズ) (1.15 g/ml) (417.28 μL, 1.00 mmol)及び(PPh3)4Pd (58 mg, 0.05 mmol)を加え、90℃で14時間加熱攪拌した。その後、室温まで冷却し、セライトを用いて濾過し、溶液の溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒;酢酸エチル : ヘキサン = 1:6)にて精製し、標題化合物を得た(11 mg, 収率 15%)。1H NMR (400MHz, CDCl3) δ 0.89-1.61 (m, 27H), 3.90 (s, 3H), 6.90 (s, 1H), 6.95 (dd, J = 1.6Hz, 8.6 Hz, 1H), 7.08 (d, J = 9.2 Hz, 1H), 7.43 (s, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H) , 8.31 (s, 1H). MS (DART) m/z: 581 (M+H+).
Production Example 10
2- (6-Methoxybenzofuran-2-yl) -6- (tributylstannyl) -4H-chromen-4-one (29) Compound 27 (46 mg, 0.12 mmol) was converted to 1,4-dioxane: triethylamine = 3: Dissolved in a mixed solvent of 5 (5 mL), bis (tributyltin) (1.15 g / ml) (417.28 μL, 1.00 mmol) and (PPh 3 ) 4 Pd (58 mg, 0.05 mmol) were added, and 90 The mixture was stirred at 14 ° C. for 14 hours. Then, it cooled to room temperature and filtered using celite, and the solvent of the solution was depressurizingly distilled. The residue was purified with an open column (elution solvent; ethyl acetate: hexane = 1: 6) to obtain the title compound (11 mg, yield 15%). 1 H NMR (400MHz, CDCl 3 ) δ 0.89-1.61 (m, 27H), 3.90 (s, 3H), 6.90 (s, 1H), 6.95 (dd, J = 1.6Hz, 8.6 Hz, 1H), 7.08 ( d, J = 9.2 Hz, 1H), 7.43 (s, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 8.31 (s, 1H) .MS (DART) m / z: 581 (M + H + ).
実施例3
6-ヨード-2-(6-メトキシベンゾフラン-2-イル)-4H-クロメン-4-オン(30)の合成
 化合物29(30 mg, 0.05 mmol)をクロロホルム(4 mL)に溶解させ、0.2 M ヨウ素液(クロロホルム溶液)を反応液が紫色になるまで加え、室温で2時間攪拌した。飽和亜硫酸水素ナトリウム水溶液を反応液の色が紫色から黄褐色に変わるまで加えた後、クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。その後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 3)で精製し、標題化合物を得た(19 mg, 収率 88%)。1H NMR (400MHz, CDCl3) δ 3.90 (s, 3H), 6.88 (s, 1H), 6.95 (dd, J = 2.4 Hz, 8.6 Hz, 1H), 7.07 (d, J = 2 Hz, 1H), 7.43 (s, 1H), 7.41 (d, J = 2 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 8.22 (dd, J = 2 Hz, 8 Hz, 1H), 8.53 (d, J = 2 Hz, 1H). MS (DART) m/z: 419 (M+H+).
Example 3
Synthesis of 6-iodo-2- (6-methoxybenzofuran-2-yl) -4H-chromen-4-one (30) 29 (30 mg, 0.05 mmol) was dissolved in chloroform (4 mL) and 0.2 M Iodine solution (chloroform solution) was added until the reaction solution turned purple, and the mixture was stirred at room temperature for 2 hours. A saturated aqueous sodium hydrogen sulfite solution was added until the color of the reaction solution changed from purple to tan, and the organic layer was separated and extracted with chloroform and purified water, and washed with a saturated aqueous sodium chloride solution. Thereafter, it was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (19 mg, yield 88%). 1 H NMR (400MHz, CDCl 3 ) δ 3.90 (s, 3H), 6.88 (s, 1H), 6.95 (dd, J = 2.4 Hz, 8.6 Hz, 1H), 7.07 (d, J = 2 Hz, 1H) , 7.43 (s, 1H), 7.41 (d, J = 2 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), 8.22 (dd, J = 2 Hz, 8 Hz, 1H), 8.53 (d , J = 2 Hz, 1H). MS (DART) m / z: 419 (M + H + ).
実施例4
2-(6-アミノベンゾフラン-2-イル)-6-ブロモ-4H-クロメン-4-オン(31)の合成
 化合物28(406 mg, 1.05 mmol)をエタノール(10 mL)に懸濁させ、100℃で加熱還流した。加熱還流を行いながら塩化スズ(1319 mg, 5.25 mmol)を加え、3時間加熱還流を行った。その後、室温で冷却まで冷却し溶媒を減圧留去した。1M NaOH と酢酸エチルを残渣に加え、懸濁液を濾取濾過した。濾液を精製水と酢酸エチルで分液し、有機層を抽出した。飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 3)で精製し、標題化合物を得た(334 mg, 収率 89%)。1H NMR (400MHz, CDCl3) δ 6.69 (dd, J = 1.2 Hz, 8.2 Hz, 1H), 6.84 (s, 1H), 6.87 (s, 1H), 7.40 (d, J = 14.8 Hz, 2H), 7.42 (d, J = 21.2 Hz, 1H), 7.76 (dd, J = 2.4 Hz, 9.4 Hz, 1H), 8.34 (d, J = 2.8 Hz, 1H). MS (DART) m/z: 356, 358 (M+H+).
Example 4
Synthesis of 2- (6-aminobenzofuran-2-yl) -6-bromo-4H-chromen-4-one (31) Compound 28 (406 mg, 1.05 mmol) was suspended in ethanol (10 mL). Heated to reflux at ° C. While heating under reflux, tin chloride (1319 mg, 5.25 mmol) was added, and the mixture was heated under reflux for 3 hours. Then, it cooled to cooling at room temperature and distilled the solvent off under reduced pressure. 1M NaOH and ethyl acetate were added to the residue, and the suspension was filtered and filtered. The filtrate was partitioned between purified water and ethyl acetate, and the organic layer was extracted. The extract was washed with a saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (334 mg, yield 89%). 1 H NMR (400MHz, CDCl 3 ) δ 6.69 (dd, J = 1.2 Hz, 8.2 Hz, 1H), 6.84 (s, 1H), 6.87 (s, 1H), 7.40 (d, J = 14.8 Hz, 2H) , 7.42 (d, J = 21.2 Hz, 1H), 7.76 (dd, J = 2.4 Hz, 9.4 Hz, 1H), 8.34 (d, J = 2.8 Hz, 1H). MS (DART) m / z: 356, 358 (M + H + ).
製造例11
2-(6-アミノベンゾフラン-2-イル)-6-(トリブチルスタンニル)-4H-クロメン-4-オン(32)の合成
 化合物31(50 mg, 0.14 mmol)を1,4-ジオキサン : トリエチルアミン = 3 : 2 の混合溶媒(5 mL)に溶解させ、ビス(トリブチルスズ) (1.15 g/ml) (417.28 μL, 1.00 mmol)及び(PPh3)4Pd (58 mg, 0.05 mmol)を加え、90℃で14時間加熱攪拌した。その後、室温まで冷却し、セライトを用いて濾過し、溶液の溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒;酢酸エチル : ヘキサン = 1:3)にて精製し、標題化合物を得た(7 mg, 収率 9%)。1H NMR (400MHz, CDCl3) δ 0.87-1.613 (m, 27H), 6.66 (dd, J = 2 Hz, 10 Hz, 1H), 6.83 (s, 1H), 6.86 (s, 1H), 7.37 (s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.76 (dd, J = 0.8 Hz, 8 Hz, 1H), 8.30 (d, J = 1.2 Hz, 1H). MS (DART) m/z: 566 (M+H+).
Production Example 11
Synthesis of 2- (6-aminobenzofuran-2-yl) -6- (tributylstannyl) -4H-chromen-4-one (32) compound 31 (50 mg, 0.14 mmol) in 1,4-dioxane: triethylamine = 3: Dissolved in a mixed solvent of 5 (5 mL), bis (tributyltin) (1.15 g / ml) (417.28 μL, 1.00 mmol) and (PPh 3 ) 4 Pd (58 mg, 0.05 mmol) were added, and 90 The mixture was stirred at 14 ° C. for 14 hours. Then, it cooled to room temperature and filtered using celite, and the solvent of the solution was depressurizingly distilled. The residue was purified with an open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (7 mg, yield 9%). 1 H NMR (400MHz, CDCl 3 ) δ 0.87-1.613 (m, 27H), 6.66 (dd, J = 2 Hz, 10 Hz, 1H), 6.83 (s, 1H), 6.86 (s, 1H), 7.37 ( s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.76 (dd, J = 0.8 Hz, 8 Hz, 1H), 8.30 (d, J = 1.2 Hz, 1H). MS (DART) m / z: 566 (M + H + ).
実施例5
2-(6-アミノベンゾフラン-2-イル)-6-ヨード-4H-クロメン-4-オン(33)の合成
 化合物32(8 mg, 0.014 mmol)をクロロホルム(3 mL)に溶解させ、0.2 M ヨウ素液(クロロホルム溶液)を反応液が紫色になるまで加え、室温で2時間攪拌した。飽和亜硫酸水素ナトリウム水溶液を反応液の色が紫色から黄褐色に変わるまで加えた後、クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。その後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 3)で精製し、標題化合物を得た(5 mg, 収率 88%)。1H NMR (400MHz, CDCl3) δ 3.99 (s, 2H), 6.69 (dd, J = 2 Hz, 8 Hz 1H), 6.82 (s, 1H), 6.84 (s, 1H), 7.29 (s, 1H), 7.38 (s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.94 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 8.54 (d, J = 2 Hz, 1H). MS (DART) m/z: 403 (M+H+).
Example 5
Synthesis of 2- (6-aminobenzofuran-2-yl) -6-iodo-4H-chromen-4-one (33) Compound 32 (8 mg, 0.014 mmol) was dissolved in chloroform (3 mL) and 0.2 M Iodine solution (chloroform solution) was added until the reaction solution turned purple, and the mixture was stirred at room temperature for 2 hours. A saturated aqueous sodium hydrogen sulfite solution was added until the color of the reaction solution changed from purple to tan, and the organic layer was separated and extracted with chloroform and purified water, and washed with a saturated aqueous sodium chloride solution. Thereafter, it was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (5 mg, yield 88%). 1 H NMR (400MHz, CDCl 3 ) δ 3.99 (s, 2H), 6.69 (dd, J = 2 Hz, 8 Hz 1H), 6.82 (s, 1H), 6.84 (s, 1H), 7.29 (s, 1H ), 7.38 (s, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.94 (dd, J = 1.6 Hz, 8.4 Hz, 1H), 8.54 (d, J = 2 Hz, 1H). MS ( DART) m / z: 403 (M + H + ).
実施例6
6-ブロモ-2-(6-(メチルアミノ)ベンゾフラン-2-イル)-4H-クロメン-4-オン(34)の合成
 化合物31(40 mg, 0.112 mmol)をメタノール(20 mL)に溶解させ、パラホルムアルデヒド(18 mg, 0.599 mmol)とナトリウムメトキシド(30 μL, 27.0-29.7 w/w %, 0.224 mmol)を加え、1時間加熱還流を行った。その後、水素化ホウ素ナトリウム(25 mg, 0.66 mmol)を加え、3時間加熱還流を行った。室温まで冷却し、氷冷下で1M NaOHを加えた。クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。その後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : クロロホルム = 1 : 9)で精製し、標題化合物を得た(9 mg, 収率 22%)。1H NMR (400MHz, CDCl3) δ 2.93 (s, 3H), 6.63 (dd, J = 2 Hz, 8 Hz 1H), 6.69 (s, 1H), 6.83 (s, 1H), 7.38-7.42 (m, 3H), 7.76 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 8.34 (d, J = 2.4 Hz, 1H). MS (DART) m/z: 370 (M+H+).
Example 6
Synthesis of 6-bromo-2- (6- (methylamino) benzofuran-2-yl) -4H-chromen-4-one (34) Compound 31 (40 mg, 0.112 mmol) was dissolved in methanol (20 mL). Paraformaldehyde (18 mg, 0.599 mmol) and sodium methoxide (30 μL, 27.0-29.7 w / w%, 0.224 mmol) were added, and the mixture was heated to reflux for 1 hour. Thereafter, sodium borohydride (25 mg, 0.66 mmol) was added, and the mixture was heated to reflux for 3 hours. The mixture was cooled to room temperature, and 1M NaOH was added under ice cooling. The organic layer was separated and extracted with chloroform and purified water, and washed with a saturated aqueous sodium chloride solution. Thereafter, it was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: chloroform = 1: 9) to obtain the title compound (9 mg, yield 22%). 1 H NMR (400MHz, CDCl 3 ) δ 2.93 (s, 3H), 6.63 (dd, J = 2 Hz, 8 Hz 1H), 6.69 (s, 1H), 6.83 (s, 1H), 7.38-7.42 (m , 3H), 7.76 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 8.34 (d, J = 2.4 Hz, 1H). MS (DART) m / z: 370 (M + H + ).
製造例12
2-(6-(メチルアミノ)ベンゾフラン-2-イル)-6-(トリブチルスタンニル)-4H-クロメン-4-オン(35)の合成
 化合物34(14 mg, 0.038 mmol)を1,4-ジオキサン : トリエチルアミン = 3 : 4 の混合溶媒(7 mL)に溶解させ、ビス(トリブチルスズ) (1.15 g/ml) (121.89 μL, 0.015 mmol)及び(PPh3)4Pd (17 mg, 0.015 mmol)を加え、80℃で14時間加熱攪拌した。その後、室温まで冷却し、セライトを用いて濾過し、溶液の溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒;酢酸エチル : ヘキサン = 1:3)にて精製し、標題化合物を得た(9 mg, 収率 41%)。1H NMR (400MHz, CDCl3) δ 0.87-1.61 (m, 27H), 2.93 (s, 3H), 6.62 (dd, J = 2 Hz, 8.8 Hz, 1H), 6.71 (s, 1H), 6.85 (s, 1H), 7.38 (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 8.30 (s, 1H). MS (DART) m/z: 582 (M+H+).
Production Example 12
Synthesis of 2- (6- (methylamino) benzofuran-2-yl) -6- (tributylstannyl) -4H-chromen-4-one (35) 34 (14 mg, 0.038 mmol) was converted to 1,4- Dissolve in a mixed solvent of dioxane: triethylamine = 3: 4 (7 mL), and add bis (tributyltin) (1.15 g / ml) (121.89 μL, 0.015 mmol) and (PPh 3 ) 4 Pd (17 mg, 0.015 mmol). In addition, the mixture was heated and stirred at 80 ° C. for 14 hours. Then, it cooled to room temperature and filtered using celite, and the solvent of the solution was depressurizingly distilled. The residue was purified with an open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (9 mg, yield 41%). 1 H NMR (400MHz, CDCl 3 ) δ 0.87-1.61 (m, 27H), 2.93 (s, 3H), 6.62 (dd, J = 2 Hz, 8.8 Hz, 1H), 6.71 (s, 1H), 6.85 ( s, 1H), 7.38 (s, 1H), 7.41 (d, J = 8.4 Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 7.6 Hz, 1H), 8.30 ( s, 1H). MS (DART) m / z: 582 (M + H + ).
実施例7
6-ヨード-2-(6-(メチルアミノ)ベンゾフラン-2-イル)-4H-クロメン-4-オン(36)の合成
 化合物35(8 mg, 0.014 mmol)をクロロホルム(10 mL)に溶解させ、0.2 M ヨウ素液(クロロホルム溶液)を反応液が紫色になるまで加え、室温で3時間攪拌した。飽和亜硫酸水素ナトリウム水溶液を反応液の色が紫色から黄褐色に変わるまで加えた後、クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。その後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 3)で精製し、標題化合物を得た(5 mg, 収率 87%)。1H NMR (400MHz, CDCl3) δ 2.92 (s, 3H), 6.63 (dd, J = 2 Hz, 8.2 Hz, 1H), 6.70 (s, 1H), 6.83 (s, 1H), 7.39-7.42 (m, 3H), 7.68 (d, J = 1.6 Hz, 1H), 8.22 (dd, J = 2 Hz, 8.2 Hz, 1H). MS (DART) m/z: 418 (M+H+).
Example 7
Synthesis of 6-iodo-2- (6- (methylamino) benzofuran-2-yl) -4H-chromen-4-one (36) 35 (8 mg, 0.014 mmol) was dissolved in chloroform (10 mL). 0.2 M iodine solution (chloroform solution) was added until the reaction solution turned purple, and the mixture was stirred at room temperature for 3 hours. A saturated aqueous sodium hydrogen sulfite solution was added until the color of the reaction solution changed from purple to tan, and the organic layer was separated and extracted with chloroform and purified water, and washed with a saturated aqueous sodium chloride solution. Thereafter, it was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (5 mg, yield 87%). 1 H NMR (400MHz, CDCl 3 ) δ 2.92 (s, 3H), 6.63 (dd, J = 2 Hz, 8.2 Hz, 1H), 6.70 (s, 1H), 6.83 (s, 1H), 7.39-7.42 ( m, 3H), 7.68 (d, J = 1.6 Hz, 1H), 8.22 (dd, J = 2 Hz, 8.2 Hz, 1H). MS (DART) m / z: 418 (M + H + ).
実施例8
6-ブロモ-2-(6-(ジメチルアミノ)ベンゾフラン-2-イル)-4H-クロメン-4-オン(37)の合成
 化合物31(65 mg, 0.18 mmol)を酢酸(12 mL)に溶解させ、パラホルムアルデヒド (54 mg, 1.80 mmol)とシアノ水素化ホウ素ナトリウム(68 mg, 1.08 mmol)を加えた。その後、室温で4時間攪拌した。その後、1M NaOHを加え、反応を止めた。精製水とクロロホルムで有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。その後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 3)で精製し、標題化合物を得た(50 mg, 収率 71%)。1H NMR (400MHz, CDCl3) δ 3.04 (s, 6H), 6.77-6.819 (m, 3H), 7.38 (s, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.74 (dd, J = 2.4 Hz, 9.2 Hz, 1H), 8.33 (d, J = 2.4 Hz, 1H). MS (DART) m/z: 384, 386 (M+H+).
Example 8
Synthesis of 6-bromo-2- (6- (dimethylamino) benzofuran-2-yl) -4H-chromen-4-one (37) Compound 31 (65 mg, 0.18 mmol) was dissolved in acetic acid (12 mL). Paraformaldehyde (54 mg, 1.80 mmol) and sodium cyanoborohydride (68 mg, 1.08 mmol) were added. Then, it stirred at room temperature for 4 hours. Thereafter, 1M NaOH was added to stop the reaction. The organic layer was separated and extracted with purified water and chloroform, and washed with a saturated aqueous sodium chloride solution. Thereafter, it was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (50 mg, yield 71%). 1 H NMR (400MHz, CDCl 3 ) δ 3.04 (s, 6H), 6.77-6.819 (m, 3H), 7.38 (s, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.74 (dd, J = 2.4 Hz, 9.2 Hz, 1H), 8.33 (d, J = 2.4 Hz, 1H) .MS (DART) m / z: 384, 386 (M + H + ).
製造例13
2-(6-(ジメチルアミノ)ベンゾフラン-2-イル)-6-(トリブチルスタンニル)-4H-クロメン-4-オン(38)の合成
 化合物37(50 mg, 0.13 mmol)を1,4-ジオキサン : トリエチルアミン = 3 : 2 の混合溶媒(5 mL)に溶解させ、ビス(トリブチルスズ) (1.15 g/ml) (417.28 μL, 1.00 mmol)及び(PPh3)4Pd (58 mg, 0.05 mmol)を加え、90℃で14時間加熱攪拌した。その後、室温まで冷却し、セライトを用いて濾過し、溶液の溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒;酢酸エチル : ヘキサン = 1:4)にて精製し、標題化合物を得た(21 mg, 収率 27%)。1H NMR (400MHz, CDCl3) δ 0.87-1.613 (m, 27H), 3.06 (s, 6H), 6.78 (d, J = 2.4 Hz, 1H), 6.80 (s, 1H), 6.85 (s, 1H), 7.38 (s, 1H), 7.44-7.49 (m, 2H), 7.75 (dd, J = 1.6 Hz, 12 Hz, 1H), 8.30 (d, J = 1.6 Hz, 1H). MS (DART) m/z: 594 (M+H+).
Production Example 13
Synthesis of 2- (6- (dimethylamino) benzofuran-2-yl) -6- (tributylstannyl) -4H-chromen-4-one (38) 37 (50 mg, 0.13 mmol) Dissolve in a mixed solvent (5 mL) of dioxane: triethylamine = 3: 2 and add bis (tributyltin) (1.15 g / ml) (417.28 μL, 1.00 mmol) and (PPh 3 ) 4 Pd (58 mg, 0.05 mmol). In addition, the mixture was heated and stirred at 90 ° C. for 14 hours. Then, it cooled to room temperature and filtered using celite, and the solvent of the solution was depressurizingly distilled. The residue was purified with an open column (elution solvent; ethyl acetate: hexane = 1: 4) to obtain the title compound (21 mg, yield 27%). 1 H NMR (400MHz, CDCl 3 ) δ 0.87-1.613 (m, 27H), 3.06 (s, 6H), 6.78 (d, J = 2.4 Hz, 1H), 6.80 (s, 1H), 6.85 (s, 1H ), 7.38 (s, 1H), 7.44-7.49 (m, 2H), 7.75 (dd, J = 1.6 Hz, 12 Hz, 1H), 8.30 (d, J = 1.6 Hz, 1H). MS (DART) m / z: 594 (M + H + ).
実施例9
2-(6-(ジメチルアミノ)ベンゾフラン-2-イル)-6-ヨード-4H-クロメン-4-オン(39)の合成
 化合物38(12 mg, 0.020 mmol)をクロロホルム(3 mL)に溶解させ、0.2 M ヨウ素液(クロロホルム溶液)を反応液が紫色になるまで加え、室温で2時間攪拌した。飽和亜硫酸水素ナトリウム水溶液を反応液の色が紫色から黄褐色に変わるまで加えた後、クロロホルムと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄した。その後、無水硫酸ナトリウムで乾燥させ、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 3)で精製し、標題化合物を得た(8 mg, 収率 91.9%)。1H NMR (400MHz, CDCl3) δ 3.10 (s, 6H), 6.78 (s, 1H), 6.82 (s, 1H), 7.25 (s, 1H), 7.28 (s, 1H), 7.38 (s, 1H), 7.48 (d, J = 9.2 Hz, 1H), 7.92 (dd, J = 2 Hz, 8.6 Hz, 1H), 8.53 (d, J = 2.4 Hz, 1H). MS (DART) m/z: 432 (M+H+).
Example 9
Synthesis of 2- (6- (dimethylamino) benzofuran-2-yl) -6-iodo-4H-chromen-4-one (39) Compound 38 (12 mg, 0.020 mmol) was dissolved in chloroform (3 mL). 0.2 M iodine solution (chloroform solution) was added until the reaction solution turned purple, and the mixture was stirred at room temperature for 2 hours. A saturated aqueous sodium hydrogen sulfite solution was added until the color of the reaction solution changed from purple to tan, and the organic layer was separated and extracted with chloroform and purified water, and washed with a saturated aqueous sodium chloride solution. Thereafter, it was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 3) to obtain the title compound (8 mg, yield 91.9%). 1 H NMR (400MHz, CDCl 3 ) δ 3.10 (s, 6H), 6.78 (s, 1H), 6.82 (s, 1H), 7.25 (s, 1H), 7.28 (s, 1H), 7.38 (s, 1H ), 7.48 (d, J = 9.2 Hz, 1H), 7.92 (dd, J = 2 Hz, 8.6 Hz, 1H), 8.53 (d, J = 2.4 Hz, 1H). MS (DART) m / z: 432 (M + H + ).
製造例14
エチル 6-ニトロベンゾ[d]オキサゾール-2-カルボキシレート(40)の合成
 2-アミノ-5-ニトロフェノール (200 mg, 1.30 mmol)をジオキサン (5.0 mL)に溶解させ、グリオキシル酸エチル (664 mg, 3.25 mmol)を加えて、50℃にて2時間撹拌した。続いて、硝酸アンモニウムセリウム(CAN) (1.07 g, 1.95 mmol)を加えて9時間加熱還流した。その後、セライトろ過し、酢酸エチルにて洗浄後、溶媒を減圧留去した。残渣をオープンカラム(溶出溶媒; 酢酸エチル : ヘキサン = 1 : 5)で精製し、標題化合物を得た(20 mg, 収率 7%)。1H NMR (400MHz, CDCl3) δ 1.53 (d, J = 3.6 Hz, 3H), 4.60 (d, J = 3.6 Hz, 2H), 8.04 (d, J = 8.8 Hz, 1H), 8.41 (d, J = 9 Hz, 1H), 8.59 (s, 1H). MS (DART) m/z: 237(M+H+).
Production Example 14
Synthesis of ethyl 6-nitrobenzo [d] oxazole-2-carboxylate (40) 2-Amino-5-nitrophenol (200 mg, 1.30 mmol) was dissolved in dioxane (5.0 mL) and ethyl glyoxylate (664 mg, 3.25 mmol) was added and the mixture was stirred at 50 ° C. for 2 hours. Subsequently, ammonium cerium nitrate (CAN) (1.07 g, 1.95 mmol) was added and heated to reflux for 9 hours. Thereafter, the mixture was filtered through Celite and washed with ethyl acetate, and then the solvent was distilled off under reduced pressure. The residue was purified by open column (elution solvent; ethyl acetate: hexane = 1: 5) to obtain the title compound (20 mg, yield 7%). 1 H NMR (400MHz, CDCl 3 ) δ 1.53 (d, J = 3.6 Hz, 3H), 4.60 (d, J = 3.6 Hz, 2H), 8.04 (d, J = 8.8 Hz, 1H), 8.41 (d, J = 9 Hz, 1H), 8.59 (s, 1H). MS (DART) m / z: 237 (M + H + ).
製造例15
6-ニトロベンゾ[d]オキサゾール-2-カルボン酸(41)の合成
 化合物40 (21 mg, 0.091 mmol)をメタノール(5 mL)に溶解させ、1M NaOHを加え室温で10分間攪拌した。その後、メタノールを減圧留去し、氷冷下で1M HClを加えた。酢酸エチルと精製水で有機層を分液抽出し、飽和塩化ナトリウム水溶液で洗浄し、無水硫酸ナトリウムで乾燥させた。溶媒を減圧留去し、残渣をオープンカラム(溶出溶媒; クロロホルム: メタノール = 3 : 1, 1% 酢酸)で精製し、標題化合物を得た(6 mg, 収率 31.7%)。MS (DART) m/z: 207(M+H-).
Production Example 15
Synthesis of 6-nitrobenzo [d] oxazole-2-carboxylic acid (41) Compound 40 (21 mg, 0.091 mmol) was dissolved in methanol (5 mL), 1M NaOH was added, and the mixture was stirred at room temperature for 10 minutes. Thereafter, methanol was distilled off under reduced pressure, and 1M HCl was added under ice cooling. The organic layer was separated and extracted with ethyl acetate and purified water, washed with a saturated aqueous sodium chloride solution, and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by an open column (elution solvent; chloroform: methanol = 3: 1, 1% acetic acid) to obtain the title compound (6 mg, yield 31.7%). MS (DART) m / z: 207 (M + H -).
実施例10
6-ブロモ-2-(6-ニトロベンゾ[d]オキサゾール-2-イル)-4H-クロメン-4-オンの合成
 化合物41を使用して、製造例7、製造例9及び実施例2と同様の方法により、標題化合物を得る。
Example 10
Using Synthesis Compound 41 of 6-bromo-2- (6-nitrobenzo [d] oxazol-2-yl) -4H-chromen-4-one , the same as in Production Example 7, Production Example 9 and Example 2 By the method, the title compound is obtained.
 比較化合物として以下の化合物を使用した。化合物の構造を図4及び図11に示す。
(E)-6-(ヨード-125I)-2-(4-メトキシスチリル)-4H-クロメン-4-オン (1)
(E)-2-(4-(ジメチルアミノ)スチリル)-6-(ヨード-125I)-4H-クロメン-4-オン (2)
(E)-2-(4-((2-ヒドロキシエチル)アミノ)スチリル)-6-ヨード-4H-クロメン-4-オン (10)
(E)-6-ヨード-2-(2-(6-メトキシピリジン-3-イル)ビニル)-4H-クロメン-4-オン (16)
(E)-2-(2-(6-(ジメチルアミノ)ピリジン-3-イル)ビニル)-6-ヨード-4H-クロメン-4-オン (17)
 化合物1及び2は参考文献1及び2に記載の方法に従い合成した。
The following compounds were used as comparative compounds. The structure of the compound is shown in FIGS.
(E) -6- (Iodo-125I) -2- (4-methoxystyryl) -4H-chromen-4-one (1)
(E) -2- (4- (Dimethylamino) styryl) -6- (iodo-125I) -4H-chromen-4-one (2)
(E) -2- (4-((2-hydroxyethyl) amino) styryl) -6-iodo-4H-chromen-4-one (10)
(E) -6-Iodo-2- (2- (6-methoxypyridin-3-yl) vinyl) -4H-chromen-4-one (16)
(E) -2- (2- (6- (Dimethylamino) pyridin-3-yl) vinyl) -6-iodo-4H-chromen-4-one (17)
Compounds 1 and 2 were synthesized according to the methods described in References 1 and 2.
放射性ヨウ素標識
 標識前駆体のトリブチルスズ体(1 mg/mL)のメタノール溶液(50 μL)に、Na125I (0.1-0.2 mCi, specific activity 2200 Ci/mmol)、1.0 M HCl (50 μL)、3 w/v%過酸化水素水(50 μL)を順次加え、室温で10分間放置、または10秒間撹拌した後15-20分間放置して反応させた。反応終了後、飽和亜硫酸水素ナトリウム水溶液(100 μL)を加えて反応を停止させ、飽和炭酸水素ナトリウム水溶液(100 μL)を加えて反応液のpHを9-10とした。酢酸エチルで分液抽出し、無水硫酸ナトリウムにて脱水後、窒素ガスにより溶媒を留去した。残渣を逆相HPLCにて精製した。非放射性化合物を標品として254 nmにおける吸光度を HPLCで分析し、分取した放射性化合物と一致することを確認した。分取した溶液の溶媒を窒素ガスにて留去した後、種々の実験に用いるまで、エタノール溶液として4℃で保存した。
Radioactive iodine-labeled precursor tributyltin (1 mg / mL) in methanol solution (50 μL), Na 125 I (0.1-0.2 mCi, specific activity 2200 Ci / mmol), 1.0 M HCl (50 μL), 3 W / v% hydrogen peroxide solution (50 μL) was sequentially added, and the mixture was allowed to stand at room temperature for 10 minutes, or stirred for 10 seconds and then left for 15-20 minutes to react. After completion of the reaction, a saturated sodium hydrogen sulfite aqueous solution (100 μL) was added to stop the reaction, and a saturated sodium hydrogen carbonate aqueous solution (100 μL) was added to adjust the pH of the reaction solution to 9-10. Liquid separation extraction was performed with ethyl acetate, and after dehydration with anhydrous sodium sulfate, the solvent was distilled off with nitrogen gas. The residue was purified by reverse phase HPLC. Absorbance at 254 nm was analyzed by HPLC using a non-radioactive compound as a standard, and it was confirmed that it coincided with the separated radioactive compound. The solvent of the collected solution was distilled off with nitrogen gas, and then stored at 4 ° C. as an ethanol solution until used in various experiments.
[ 125 I]SC, BFC誘導体の逆相HPLCによる分析
 SC骨格に含まれるスチリル基が原因として起こっていたcis-trans 光異性化が、スチリル基の5員環への構造変化によりベンゾフラニルクロモン(BFC)誘導体から失われていることを確かめるため、逆相HPLCによる分析を行った。
 化合物2は、既報の方法により分析を行った(参考文献1及び2)。化合物30、33及び39の分析においては、逆相HPLCは流速1.0 mL/minに設定し、移動相にはアセトニトリル/水(7:3)を用いた。移動相を試料注入前に約1時間流し、コンディショニングを行った。また、前記の化合物の波長254 nmにおける吸光度を記録した。結果を図6に示す。
 SC誘導体である[125I]2の光異性化由来のcis体、trans体はHPLCへのインジェクション後、12minと18minにピークが現れることを確認した。
 一方、BFC誘導体である[125I]30、[125I]33及び[125I]39はHPLCへのインジェクション後、それぞれ10min, 5min, 15min にピークが現れることを確認した。この時、SC誘導体とは異なり、光異性化由来と考えられるcis, trans体は認められなかった。このことから、SC骨格のスチリル基を5員環へ構造変換することで形成されたBFC骨格は光異性化することなく、構造安定化において改善が見られた。
Analysis of [ 125 I] SC, BFC derivatives by reversed-phase HPLC The cis-trans photoisomerization that occurred due to the styryl group in the SC skeleton was caused by the structural change of the styryl group to a 5-membered ring. In order to confirm that it was lost from the (BFC) derivative, analysis by reverse phase HPLC was performed.
Compound 2 was analyzed by a previously reported method (References 1 and 2). In the analysis of compounds 30, 33 and 39, reverse phase HPLC was set at a flow rate of 1.0 mL / min and acetonitrile / water (7: 3) was used as the mobile phase. The mobile phase was conditioned for about 1 hour before sample injection. The absorbance of the above compound at a wavelength of 254 nm was recorded. The results are shown in FIG.
It was confirmed that the cis and trans isomers derived from the photoisomerization of [ 125 I] 2 which is an SC derivative showed peaks at 12 min and 18 min after injection into HPLC.
On the other hand, B 125 derivatives [ 125 I] 30, [ 125 I] 33 and [ 125 I] 39 were confirmed to have peaks at 10 min, 5 min and 15 min, respectively, after injection into HPLC. At this time, unlike the SC derivative, cis and trans isomers that were thought to be derived from photoisomerization were not observed. From this, the BFC skeleton formed by structural conversion of the styryl group of the SC skeleton to a 5-membered ring was improved in structure stabilization without photoisomerization.
[ 125 I]SC, VPC 及びBFC誘導体のリコンビナントマウスプリオンタンパク質(rMoPrP)凝集体に対する結合親和性の評価
 SC, ビニルピリジルクロモン(VPC)及びBFC誘導体のPrPScへの結合親和性を評価するために、rMoPrP凝集体をPrPScのモデルとして用い、[125I]SC, VPC 及びBFC誘導体([125I]2、[125I]10、[125I]16、[125I]17、[125I]30、[125I]33、[125I]36、[125I]39)のin vitro結合実験を行った。
Evaluation of binding affinity of [ 125I ] SC, VPC and BFC derivatives to recombinant mouse prion protein (rMoPrP) aggregates to evaluate the binding affinity of SC, vinylpyridylchromone (VPC) and BFC derivatives to PrP Sc , RMoPrP aggregates were used as models for PrP Sc and [ 125 I] SC, VPC and BFC derivatives ([ 125 I] 2, [ 125 I] 10, [ 125 I] 16, [ 125 I] 17, [ 125 I ], [ 125 I] 33, [ 125 I] 36, [ 125 I] 39) were subjected to in vitro binding experiments.
(1) rMoPrPの発現と精製
 既報の手法に従い、rMoPrPの発現と精製を行った(参考文献3)。まず、マウスプリオンタンパク質の23-231番目のDNA配列を導入したBL21大腸菌をアンピシリン含有LB培地にて培養した。その後、CalLytic B、リゾチーム、ベンゾナーゼで処理し、大腸菌を溶解させた。変性剤 (6.0 M Guanidine)により可溶化させたrMoPrPを、Ni-NTA (Nickel-NitriloTriacetic Acid)を用いたアフィニティクロマトグラフィーにより精製し、タンパク質をリフォールディングさせた。溶出後のrMoPrPを超純水中にて一晩透析し、凝集体の作製まで-80℃で保存した。
(1) Expression and purification of rMoPrP Expression and purification of rMoPrP were performed according to a previously reported technique (Reference 3). First, BL21 Escherichia coli into which the 23rd to 23rd DNA sequences of mouse prion protein were introduced was cultured in ampicillin-containing LB medium. Thereafter, it was treated with CalLytic B, lysozyme and benzonase to dissolve E. coli. RMoPrP solubilized with a denaturant (6.0 M Guanidine) was purified by affinity chromatography using Ni-NTA (Nickel-NitriloTriacetic Acid) to refold the protein. The eluted rMoPrP was dialyzed overnight in ultrapure water and stored at −80 ° C. until aggregate formation.
(2) rMoPrP凝集体の調製
 既報の手法に従い、rMoPrP凝集体を作成した(参考文献4)。rMoPrP (925 mg/L)を50 mM HEPES緩衝液 (300 mM NaCl含, pH = 7.5)にて2.8 μMの濃度に希釈後、96穴マイクロプレートに200 μLずつ分注した。プレートをTecan社製のinfinite F200に設置後、40℃の条件下で、30秒間の振盪と30秒間の静置を9 サイクル行った後15秒間の静置を72時間繰り返すことによりrMoPrP凝集体を調製した。実験に用いるまで-80℃で保存した。実験に用いる際は、室温で解凍し、50 mM HEPES緩衝液 (300 mM NaCl含, pH = 7.5)で希釈した2.0 μM, 200 nMのrMoPrP凝集体を調製した。
(2) Preparation of rMoPrP aggregate An rMoPrP aggregate was prepared according to a previously reported technique (Reference 4). After rMoPrP (925 mg / L) was diluted to a concentration of 2.8 μM with 50 mM HEPES buffer (containing 300 mM NaCl, pH = 7.5), 200 μL each was dispensed into a 96-well microplate. After placing the plate on Tecan's infinite F200, 9 cycles of shaking for 30 seconds and standing for 30 seconds at 40 ° C were performed, and then rMoPrP aggregates were repeated for 72 hours by standing for 15 seconds. Prepared. Stored at −80 ° C. until used for experiments. When used in the experiment, 2.0 μM, 200 nM rMoPrP aggregates were prepared by thawing at room temperature and diluting with 50 mM HEPES buffer (containing 300 mM NaCl, pH = 7.5).
(3) rMoPrP凝集体を用いた吸着実験
 125I標識SC, VPC, BFC 誘導体 130万 cpmとなるよう量り取り、窒素ガスにてエタノールを留去した後、50 mM HEPES緩衝液(1,300 μL, 40% DMSO, 300 mM NaCl含, pH = 7.5)に溶解させた。rMoPrP凝集体溶液について、最終濃度がそれぞれ0, 5, 10, 50, 100, 250 nMとなるように50 mM HEPES緩衝液で希釈した混合液をそれぞれ75, 90, 95 100 μLに調製し、ボロシリケイトガラスチューブ(12 mm×75 mm)内で125I標識SC, VPC, BFC 誘導体溶液(100 μL)と混合した後、2時間室温下で振盪した。振盪後、反応溶液をM-24R cell harvester を用いてGF/B filterに透過させ、50 mM HEPES緩衝液(20% DMSO, 300 mM NaCl 含, pH = 7.5)にて4 回洗浄した。フィルターに残存した放射能をγカウンターで計測し、得られた数値から125I標識SC, VPC, BFC 誘導体のrMoPrP凝集体溶液への吸着性を算出した。また、最近の検討において6-[125I]SC-NMe2である化合物[125I]2はrMoPrP凝集体に対してフラボノイド類縁体の中で最も高い結合親和性と結合量を示したので(参考文献1)、ポジティブコントロールとして用いた。
(3) Adsorption experiment using rMoPrP aggregates 125 I-labeled SC, VPC, BFC derivatives Weigh out to 1.3 million cpm, distill off ethanol with nitrogen gas, and then add 50 mM HEPES buffer (1,300 μL, 40 % DMSO, containing 300 mM NaCl, pH = 7.5). For the rMoPrP aggregate solution, prepare 75, 90, 95 100 μL of each mixture diluted with 50 mM HEPES buffer so that the final concentration is 0, 5, 10, 50, 100, 250 nM. After mixing with 125 I-labeled SC, VPC, and BFC derivative solution (100 μL) in a silicate glass tube (12 mm × 75 mm), the mixture was shaken at room temperature for 2 hours. After shaking, the reaction solution was permeated through a GF / B filter using an M-24R cell harvester and washed 4 times with 50 mM HEPES buffer (containing 20% DMSO, 300 mM NaCl, pH = 7.5). The radioactivity remaining on the filter was measured with a γ counter, and the adsorptivity of 125 I-labeled SC, VPC and BFC derivatives to the rMoPrP aggregate solution was calculated from the obtained values. In recent studies, 6- [ 125 I] SC-NMe 2 [ 125 I] 2 showed the highest binding affinity and binding amount of rflavopr aggregates among flavonoid analogues ( Reference 1), used as a positive control.
(4)結果
 図7にrMoPrP凝集体(250 nM)に対するSC, VPC及びBFC誘導体の結合率を示す。
 その結果、これまでの検討にてフラボノイド類縁体の中でもrMoPrP 凝集体に最も高い結合率を示した[125I]2が、10%程度の高い結合性を示すことを確認した。さらに、SC骨格の4'位にエタノールアミノ基を導入した[125I]10は[125I]2と同等の結合率を示し、rMoPrP凝集体に高い結合性を有することが示された。一方、VPC 骨格の4'位にメトキシ基、ジメチル基を導入した[125I]16と[125I]17では結合率はいずれも1%以下の結合率であり、SC誘導体と比較して結合率が大きく低下した。
(4) Results FIG. 7 shows the binding rate of SC, VPC and BFC derivatives to rMoPrP aggregates (250 nM).
As a result, it was confirmed that [ 125 I] 2, which showed the highest binding rate to rMoPrP aggregates among the flavonoid analogues, showed high binding properties of about 10%. Furthermore, [ 125 I] 10 introduced with an ethanolamino group at the 4′-position of the SC skeleton showed a binding rate equivalent to [ 125 I] 2, indicating that it has a high binding property to rMoPrP aggregates. On the other hand, in [ 125I ] 16 and [ 125I ] 17, in which a methoxy group and a dimethyl group are introduced at the 4'-position of the VPC skeleton, the bonding rate is 1% or less, which is lower than that of the SC derivative. The rate dropped significantly.
 また、SC骨格のスチリル基を5員環に構造変換したBFC骨格の4'位にメトキシ基、アミノ基、モノメチルアミノ基、ジメチルアミノ基を導入した[125I]30、[125I]33、[125I]36、[125I]39、それぞれの結合率は14.2%, 7.2%, 10.6%, 18.0% となった。特に[125I]30及び[125I]39はrMoPrPG凝集体に対して、SC誘導体と同等かそれより高い結合率を有することが明らかになった。SC骨格のスチリル基を5員環に変更し、ベンゾフランを骨格中に導入することはアミロイドβ(Aβ)と同様にアミロイドに分類されるrMoPrP凝集体への結合親和性の向上につながることが示唆された。また4'位にアミノ基を導入したベンゾフラニルクロモン誘導体[125I]33、[125I]36、[125I]39で比較すると、三級アミン誘導体[125I]39>二級アミン誘導体[125I]36>一級アミン誘導体[125I]33であった。BFC骨格の4'位に疎水性の電子供与性基を導入することはrMoPrP凝集体への親和性の向上につながることが示唆された。 In addition, [ 125I ] 30, [ 125I ] 33, in which a methoxy group, an amino group, a monomethylamino group, and a dimethylamino group were introduced at the 4 ′ position of the BFC skeleton obtained by structural conversion of the styryl group of the SC skeleton into a 5-membered ring, The binding rates of [ 125 I] 36 and [ 125 I] 39 were 14.2%, 7.2%, 10.6%, and 18.0%, respectively. In particular, [ 125 I] 30 and [ 125 I] 39 were found to have a binding rate to rMoPrPG aggregates equal to or higher than that of the SC derivative. It is suggested that changing the styryl group of the SC skeleton to a 5-membered ring and introducing benzofuran into the skeleton leads to improved binding affinity to rMoPrP aggregates classified as amyloid as well as amyloid β (Aβ) It was done. Compared with benzofuranyl chromone derivatives [ 125 I] 33, [ 125 I] 36, and [ 125 I] 39 with amino groups introduced at the 4 ′ position, tertiary amine derivatives [ 125 I] 39> secondary amine derivatives [ 125 I] 36> Primary amine derivative [ 125 I] 33. It was suggested that introduction of a hydrophobic electron-donating group at the 4 'position of the BFC skeleton leads to improved affinity for rMoPrP aggregates.
BFC誘導体のrMoPrP凝集体に対する結合飽和実験
 BFC誘導体のrMoPrP凝集体に対する結合性をより詳細に検討するために、[125I]30、[125I]33、[125I]36、及び[125I]39を用いてrMoPrP凝集体に対する結合飽和実験を行った。
 [125I]30、[125I]33、[125I]36、及び[125I]39と対応する非放射性化合物との混合溶液(200 nM)を順次50 mM HEPES緩衝液(20% DMSO, 300 mM NaCl含, pH = 7.5)にて希釈し、最終濃度3.125-200 nMとした。種々の濃度の混合液100 μLとrMoPrP凝集体溶液(100 nM)100 μLをボロシリケイトガラスチューブ(12 mm×75 mm)内で混合し、2時間室温下で振盪した。また、非特異的結合はrMoPrP凝集体溶液の代わりにHEPES緩衝液100 μLを加えて算出した。振盪後、反応溶液をM-24R cell harvesterを用いてGF/B filterに透過させた。フィルターに残存した放射能をオートウェルガンマカウンターで計測し、得られたデータより飽和曲線を作製した。GraphPad Prism (GraphPad Software, San Diego, CA)を用いて得られたデータより飽和曲線及びScatchard plotを作成し、解離定数Kd及び最大結合量Bmaxを算出した。
 結果を図8に示す。化合物[125I]30、[125I]33、[125I]36、及び[125I]39はrMoPrP凝集体に対してone binding siteモデルが適合し、Kd値は49.2 ± 7.6 nM、26.1 ± 2.6 nM、23.1 ± 1.1 nM、22.6 ± 2.0 nMとなり、Bmax値は25.7 ± 1.9 mmol/mol protein、12.6 ± 0.5 mmol/mol protein、23.0 ± 3.6 mmol/mol protein、27.6 ± 1.2 mmol/mol proteinと算出された。
Binding saturation experiments for BFC derivatives to rMoPrP aggregates To examine the binding properties of BFC derivatives to rMoPrP aggregates in more detail, [ 125 I] 30, [ 125 I] 33, [ 125 I] 36, and [ 125 I ] Was used to perform bond saturation experiments on rMoPrP aggregates.
A mixed solution (200 nM) of [ 125 I] 30, [ 125 I] 33, [ 125 I] 36, and [ 125 I] 39 and the corresponding non-radioactive compound was sequentially added to a 50 mM HEPES buffer (20% DMSO, It was diluted with 300 mM NaCl, pH = 7.5) to a final concentration of 3.125-200 nM. 100 μL of various concentrations of the mixture and 100 μL of rMoPrP aggregate solution (100 nM) were mixed in a borosilicate glass tube (12 mm × 75 mm) and shaken for 2 hours at room temperature. Nonspecific binding was calculated by adding 100 μL of HEPES buffer instead of rMoPrP aggregate solution. After shaking, the reaction solution was permeated through a GF / B filter using an M-24R cell harvester. The radioactivity remaining on the filter was measured with an autowell gamma counter, and a saturation curve was prepared from the obtained data. A saturation curve and a Scatchard plot were created from the data obtained using GraphPad Prism (GraphPad Software, San Diego, Calif.), And the dissociation constant Kd and the maximum binding amount Bmax were calculated.
The results are shown in FIG. Compounds [ 125I ] 30, [ 125I ] 33, [ 125I ] 36, and [ 125I ] 39 are fitted with a one binding site model for rMoPrP aggregates with Kd values of 49.2 ± 7.6 nM, 26.1 ± 2.6 nM, 23.1 ± 1.1 nM, 22.6 ± 2.0 nM, B max values are 25.7 ± 1.9 mmol / mol protein, 12.6 ± 0.5 mmol / mol protein, 23.0 ± 3.6 mmol / mol protein, 27.6 ± 1.2 mmol / mol protein And calculated.
BFC誘導体のmBSE感染マウス脳切片上のPrP Sc に対する結合親和性の評価
 マウス脳切片上に沈着したPrPScに対する結合親和性を評価するために、化合物30、33及び39のmBSE感染マウス(mBSE感染後約20-22 週)の脳切片を用いた蛍光染色を行った。対照群として、同週齢の非感染マウスの凍結脳ブロックより作製した脳切片を用いた蛍光染色も行った。
Evaluation of the binding affinity of BFC derivatives to PrP Sc on mBSE-infected mouse brain sections To evaluate the binding affinity to PrP Sc deposited on mouse brain sections, mBSE-infected mice of compounds 30, 33 and 39 (mBSE infection Fluorescence staining was performed using brain sections about 20-22 weeks later. As a control group, fluorescent staining was also performed using brain sections prepared from frozen brain blocks of uninfected mice of the same week.
(1) mBSE感染マウスの作製
 mouse-adapted BSE(mBSE)感染マウスは、mBSE感染発症脳の1% 脳乳剤20 μLを4週齢ddY系雄性マウスの右側頭部に脳内接種することにより作製した。また、非感染マウスとしてPBS溶液20 μLを4週齢ddY系雄性マウスの右側頭部に脳内接種した。それぞれの群を20-25週間飼育後、マウス脳切片作成に用いた。
(1) Preparation of mBSE-infected mice Mouse-adapted BSE (mBSE) -infected mice were prepared by inoculating the brain of 20% of 1% brain emulsion of mBSE-infected brain into the right temporal region of 4-week-old ddY male mice. did. Further, 20 μL of PBS solution as non-infected mice was inoculated in the brain on the right temporal region of 4-week-old ddY male mice. Each group was bred for 20-25 weeks and then used to prepare mouse brain slices.
(2) mBSE感染マウス脳切片の作製
 BSE感染マウス及び非感染マウスを生理食塩水にて灌流固定した後、脳を採取し、ただちに10%中性緩衝ホルマリン固定液に浸した。ホルマリン固定後、70%エタノール溶液に浸し、さらに80, 90, 100%エタノール溶液に順番に浸して脱水し、さらにキシレンを用いて脱アルコールした後、パラフィン包埋を行った。パラフィン包埋したブロックは氷冷後、ミクロトームで3.0 μmに薄切し、スライドガラスに張り付け、温めた1%酢酸溶液に浸した後、40±3℃の恒温槽内で一晩乾燥させた。
(2) Preparation of mBSE-infected mouse brain sections BSE-infected mice and non-infected mice were fixed by perfusion with physiological saline, and then the brains were collected and immediately immersed in 10% neutral buffered formalin fixative. After fixing with formalin, it was immersed in a 70% ethanol solution, further immersed in an 80, 90, 100% ethanol solution in order, dehydrated, further dealcoholized with xylene, and then embedded in paraffin. The block embedded in paraffin was ice-cooled, sliced to 3.0 μm with a microtome, attached to a slide glass, immersed in a warm 1% acetic acid solution, and then dried overnight in a constant temperature bath at 40 ± 3 ° C.
(3) BSE感染マウス脳切片を用いた染色実験
(3-1) 蛍光染色実験
 BSEプリオン感染モデルマウス脳切片は始めに脱パラフィン処理を行った。まず、キシレンに5分間×3回浸し、次に99.5%エタノールに5分間×3回浸した。脱パラフィン処理後、それらの切片は50%エタノールに溶解させた各化合物(100 μM)に1時間浸した。50%エタノールで2分間×2回洗浄した後、蛍光顕微鏡を用いて観察を行った。
(3) Staining experiment using BSE-infected mouse brain section
(3-1) Fluorescence staining experiment Brain sections of BSE prion-infected model mouse mice were first deparaffinized. First, it was immersed in xylene for 5 minutes × 3 times, and then immersed in 99.5% ethanol for 5 minutes × 3 times. After deparaffinization, the sections were immersed in each compound (100 μM) dissolved in 50% ethanol for 1 hour. After washing with 50% ethanol for 2 minutes × 2 times, observation was performed using a fluorescence microscope.
(3-2) 免疫染色実験
 上記の蛍光染色実験を行ったBSEプリオン感染モデルマウス脳切片を用いて、続けて免疫染色実験を行った。50%エタノールで10分間洗浄後、抗原賦活のために1.2 mM希塩酸溶液中でオートクレーブ処理(121℃, 12分間)した後、90%ギ酸に5分間浸した。続いてブロッキングのために0.3% H2O2/メタノール溶液中に30分間浸した後、20倍希釈した正常ヤギ血清に30分間浸した。PrPのN末端オクタリピート残基を認識する一次抗体SAF32(2.0 μg/mL)と室温で一晩反応させ、Tris buffer及びTween 20添加Tris bufferで洗浄した後、二次抗体を加えて90分間室温放置した。3,3'-ジアミノベンジジン四塩酸塩溶液を加えて発色を確認した後、脳切片をヘマトキシリン溶液に入れて1分間静置した。その後流水で洗浄し、脱水、脱アルコール、封入を行った後、光学顕微鏡を用いて観察を行った。
(3-2) Immunostaining experiment Using the BSE prion-infected model mouse brain section in which the above fluorescence staining experiment was performed, an immunostaining experiment was subsequently performed. After washing with 50% ethanol for 10 minutes, autoclaving (121 ° C., 12 minutes) in 1.2 mM dilute hydrochloric acid solution for antigen activation was followed by immersion in 90% formic acid for 5 minutes. Subsequently, the membrane was immersed in a 0.3% H 2 O 2 / methanol solution for 30 minutes for blocking, and then immersed in normal goat serum diluted 20 times for 30 minutes. React with the primary antibody SAF32 (2.0 μg / mL) that recognizes the N-terminal octarepeat residue of PrP overnight at room temperature. I left it. After adding 3,3′-diaminobenzidine tetrahydrochloride solution to confirm color development, the brain section was placed in a hematoxylin solution and allowed to stand for 1 minute. Thereafter, it was washed with running water, dehydrated, dealcoholized and sealed, and then observed using an optical microscope.
(4) 結果
 非感染マウス脳切片の蛍光染色実験では、各BFC誘導体の明瞭な蛍光像は観察されずバックグラウンドの蛍光のみが観察された(図9a、d及びg)。一方、感染マウス脳切片の蛍光染色実験では、BFC誘導体である化合物30、33及び39の明瞭な蛍光像が得られた(図9b、e及びh)。その結果、化合物30、33及び39による蛍光染色実験で用いたものと同一切片に対し、PrPScの存在部位を確認するため免疫染色を行ったところ、mBSE感染マウス脳切片では全てに明瞭な染色像が観察された(図9c、f及びi)。BFC誘導体由来の蛍光像がPrPSc陽性部位と一致することが確認されたことから、BFC誘導体が脳内PrPSc沈着部位を認識していることが示唆された。この結果より、BFC誘導体30、33及び39はマウス脳内に沈着したPrPScに対して結合性を有することが明らかになった。
(4) Results In the fluorescence staining experiment of non-infected mouse brain sections, clear fluorescence images of each BFC derivative were not observed, but only background fluorescence was observed (FIGS. 9a, d and g). On the other hand, in the fluorescence staining experiment of brain sections of infected mice, clear fluorescent images of compounds 30, 33 and 39, which are BFC derivatives, were obtained (FIGS. 9b, e and h). As a result, immunostaining was performed on the same section as that used in the fluorescence staining experiments with compounds 30, 33 and 39 to confirm the location of PrP Sc. Images were observed (FIGS. 9c, f and i). It was confirmed that the fluorescence image derived from the BFC derivative was coincident with the PrP Sc positive site, suggesting that the BFC derivative recognized the PrP Sc deposition site in the brain. From this result, it was revealed that BFC derivatives 30, 33 and 39 have binding properties to PrP Sc deposited in the mouse brain.
[ 125 I]SC及びBFC誘導体の正常マウスにおける体内放射能分布評価
 正常マウスを用いた体内放射能分布実験を行うことで、SC, BFC誘導体の脳移行性とその後のクリアランスについて検討した。
(1) 正常マウスにおける体内放射能分布実験
 標識体[125I]10, [125I]30, [125I]33, [125I]36及び[125I]39を20%DMSO含有生理食塩水にて希釈して注射液として用いた。1群5から7匹の5週齢ddY雄性マウス(20-25 g)に、それぞれの標識体[125I]10, [125I]30, [125I]33, [125I]36及び[125I]39を1匹あたり100 μL(6.2-22.8 kBq)尾静脈より投与した。投与後2、30、60、120、180分後に断頭、採血後、主要な臓器を摘出した。次いで速やかに血液及び臓器の重量を測定後、放射能を測定し、投与量に対する各臓器1 gあたりの放射能集積量の割合である%injected dose/g (%ID/g)にて表した。
Evaluation of in vivo radioactivity distribution in normal mice of [ 125 I] SC and BFC derivatives In vivo radioactivity distribution experiments using normal mice were conducted to examine the brain migration and subsequent clearance of SC and BFC derivatives.
(1) Radioactivity distribution experiments in normal mice Labeled [ 125 I] 10, [ 125 I] 30, [ 125 I] 33, [ 125 I] 36 and [ 125 I] 39 in 20% DMSO-containing saline Was diluted as above and used as an injection solution. One group of 5 to 7 5-week-old ddY male mice (20-25 g) was labeled with the respective labeled [ 125 I] 10, [ 125 I] 30, [ 125 I] 33, [ 125 I] 36 and [ 125 I] 39 was administered from the tail vein of 100 μL (6.2-22.8 kBq) per animal. After 2, 30, 60, 120, and 180 minutes after administration, decapitation and blood collection were performed, and then major organs were removed. Next, immediately after measuring the weight of blood and organs, the radioactivity was measured and expressed as% injected dose / g (% ID / g), which is the ratio of the amount of radioactivity accumulated per gram of each organ relative to the dose. .
(2) 結果
 [125I]10, [125I]30, [125I]33, [125I]36及び[125I]39の正常マウスにおける体内放射能分布を表1及び2に、[125I]1, [125I]2, [125I]10, [125I]30, [125I]33, [125I]36及び[125I]39の脳における放射能分布を図10-1に、[125I]1, [125I]2, [125I]10, [125I]30, [125I]33及び[125I]39の脳における放射能分布を図10-2に、また[125I]1, [125I]2, [125I]10, [125I]30, [125I]33, [125I]36及び[125I]39の脳における放射能分布のパラメータ値を各誘導体のcLogP値と共に表3に示す。
(2) Results [125 I] 10, [125 I] 30, the body distribution of radioactivity in Tables 1 and 2 in [125 I] 33, [125 I] 36 and [125 I] 39 normal mice, [125 Figure 10-1 shows the radioactivity distribution in the brain of [I] 1, [ 125I ] 2, [ 125I ] 10, [ 125I ] 30, [ 125I ] 33, [ 125I ] 36, and [ 125I ] 39. Fig. 10-2 shows the radioactivity distribution of [ 125 I] 1, [ 125 I] 2, [ 125 I] 10, [ 125 I] 30, [ 125 I] 33 and [ 125 I] 39 in the brain. In addition, [ 125 I] 1, [ 125 I] 2, [ 125 I] 10, [ 125 I] 30, [ 125 I] 33, [ 125 I] 36 and [ 125 I] 39 parameters of radioactivity distribution in the brain The values are shown in Table 3 along with the cLogP values for each derivative.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 SC, BFC誘導体である[125I]10, [125I]30, [125I]33, [125I]36, [125I]39の投与早期(2-30分)の脳内集積は、それぞれ最高で0.88, 4.22, 5.06, 3.08, 3.16 %ID/gであった。
 SC骨格にエタノールアミノ基を導入した[125I]10は、既報のSC誘導体で最も良好な脳移行性と消失性を有する[125I]1を上回る脳移行性や消失性は認められなかった。cLogP値は[125I]2, [125I]1, [125I]10の順に高い傾向となっているが、脳移行性や消失性について関連性は認められなかった。
SC, BFC derivatives [ 125I ] 10, [ 125I ] 30, [ 125I ] 33, [ 125I ] 36, [ 125I ] 39 in the early stage of administration (2-30 minutes) The maximum values were 0.88, 4.22, 5.06, 3.08, and 3.16% ID / g, respectively.
To introduce ethanol amino group SC skeleton [125 I] 10, the brain resistance and loss of greater than [125 I] 1 having the best brain-localizing the fugitive in previously reported SC derivative was observed . The cLogP values tended to be higher in the order of [ 125 I] 2, [ 125 I] 1, [ 125 I] 10, but no relationship was found for brain migration or disappearance.
 一方、BFC骨格にメトキシ基、アミノ基、ジメチルアミノ基を導入した[125I]30, [125I]33, [125I]39は既報のSC誘導体を上回る脳移行性を示した。[125I]30, [125I]33の投与2分後、または[125I]39の投与30分後に対する投与180分後の脳内放射能の割合がそれぞれ6.1, 6.7, 8.9%と算出されたため、これらの化合物は、脳からの消失性が非常に高いことが示された。[125I]30, [125I]33および[125I]39を比較すると、脂溶性が低い方が脳移行性や消失性が良好であることが示された。特に適度な脂溶性を有する[125I]33(cLogP= 4.15)は、2分後と180分後および2分後と60分後の脳内集積の比は、それぞれ14.9および2.6であった。臨床でAβのPETイメージング剤として用いられている[18F]Florbetapir([18F]AV-45)および[18F]Florbetaben([18F]BAY94-917218)の2分後と60分後の脳内集積の比は、それぞれ3.8(参考文献5)および4.8(参考文献6)であることが報告されている。従って、本発明の化合物[125I]33はプリオンイメージング剤として有用な脳内挙動を有していると考えられる。 On the other hand, [ 125 I] 30, [ 125 I] 33, and [ 125 I] 39, in which a methoxy group, an amino group, and a dimethylamino group were introduced into the BFC skeleton, exhibited a brain migration property that exceeded the previously reported SC derivatives. The ratio of radioactivity in the brain 2 minutes after administration of [ 125 I] 30, [ 125 I] 33 or 180 minutes after administration of [ 125 I] 39 was calculated as 6.1, 6.7, and 8.9%, respectively. As a result, these compounds were shown to have very high disappearance from the brain. When [ 125 I] 30, [ 125 I] 33 and [ 125 I] 39 were compared, it was shown that the lower the lipid solubility, the better the brain migration and disappearance. In particular, [ 125 I] 33 (cLogP = 4.15) having moderate fat solubility had a ratio of accumulation in the brain of 14.9 and 2.6 after 2 minutes, 180 minutes, 2 minutes and 60 minutes, respectively. 2 and 60 minutes after [ 18 F] Florbetapir ([ 18 F] AV-45) and [ 18 F] Florbetaben ([ 18 F] BAY94-917218), which are clinically used as PET imaging agents for Aβ The ratio of brain accumulation has been reported to be 3.8 (reference 5) and 4.8 (reference 6), respectively. Therefore, it is considered that the compound [ 125 I] 33 of the present invention has a brain behavior useful as a prion imaging agent.
BFC誘導体のPrP Sc 選択的イメージングプローブとしての評価
1. 実験方法
1.1. 試薬・機器
 試薬は市販の一級試薬または特級試薬を用いた。
 HPLCを用いた化合物の分析及び分取は、島津製作所製紫外可視蛍光検出器SPD-10AおよびクロマトパックC-R8Aを装着した液体クロマトグラフLC-10ATを使用した。逆相HPLCには、ナカライテスク社製Cosmosil 5C18-ARカラム (4.6 × 150 mm) を用いて、H2Oおよびacetonitrileの混合液を溶出溶媒とし、流速1.0 mL/minで分析した。放射性ヨウ素-125はパーキンエルマージャパン社製ヨウ化ナトリウム (Na125I, 3.7 GBq/mL, 0.01 N NaOH溶液) を用いた。吸着実験、結合飽和実験におけるアミロイド凝集体への結合分子と非結合分子の分離には、M-24 cell harvester (Brandel, Gaithersburg, MD)、GF/B filter (Whatman, Kent, UK) を用いた。1H NMRの測定は、JEOL JNM-AL 400を用い、tetramethylsilane (TMS) を内標準物質として、重クロロホルム (CDCl3) または重メタノール (CD3OD) を溶媒として用いて測定した。DART (Direct Analysis in Real Time) 質量分析は、日本電子株式会社製JMS-T100TDを用いて測定した。放射能測定には、パーキンエルマージャパン社製Wizardオートウェルガンマカウンターを用いた。蛍光強度の測定にはBio Tek社製Cytation3を用いた。
Evaluation of BFC derivatives as PrP Sc selective imaging probes
1. Experimental method
1.1. Reagent / Equipment A commercially available first grade reagent or special grade reagent was used.
For analysis and fractionation of the compound using HPLC, a liquid chromatograph LC-10AT equipped with Shimadzu UV-visible fluorescence detector SPD-10A and Chromatopack C-R8A was used. For reverse phase HPLC, a Cosmosil 5C 18 -AR column (4.6 × 150 mm) manufactured by Nacalai Tesque was used, and analysis was performed at a flow rate of 1.0 mL / min using a mixed solution of H 2 O and acetonitrile as an elution solvent. As radioactive iodine-125, sodium iodide (Na 125 I, 3.7 GBq / mL, 0.01 N NaOH solution) manufactured by PerkinElmer Japan was used. M-24 cell harvester (Brandel, Gaithersburg, MD) and GF / B filter (Whatman, Kent, UK) were used for separation of bound and unbound molecules to amyloid aggregates in adsorption and binding saturation experiments. . 1 H NMR was measured using JEOL JNM-AL 400 using tetramethylsilane (TMS) as an internal standard substance and deuterated chloroform (CDCl 3 ) or deuterated methanol (CD 3 OD) as a solvent. DART (Direct Analysis in Real Time) mass spectrometry was measured using JMS-T100TD manufactured by JEOL Ltd. For the radioactivity measurement, a Wizard autowell gamma counter manufactured by PerkinElmer Japan was used. Cytation 3 manufactured by Bio Tek was used for measurement of fluorescence intensity.
 Aβ1-42は、ペプチド研究所製のものを用いた。α-Synは、長崎大学 医学部 感染分子解析学研究室分野より譲受したものを用いた。α-Syn凝集体に対する結合飽和実験の遠心分離には久保田商事社製の遠心機を用いた。脳切片に集積した化合物の蛍光像の観察は、Keyence社製の蛍光顕微鏡 (BZ-8100) またはNikon社製の蛍光顕微鏡 (ECLIPSE 80i) を用いた。 1-42 manufactured by Peptide Institute was used. α-Syn used was transferred from Nagasaki University School of Medicine. A centrifuge manufactured by Kubota Corporation was used for the centrifugation in the binding saturation experiment for α-Syn aggregates. The fluorescence image of the compound accumulated in the brain section was observed using a fluorescence microscope (BZ-8100) manufactured by Keyence or a fluorescence microscope (ECLIPSE 80i) manufactured by Nikon.
1.2. Aβ1-42凝集体の作製
 Aβ1-42を10 mM リン酸緩衝液 (1 mM EDTA, pH 7.4) に溶解し、0.25 mg/mL (55.4 μM) の濃度に調整し、60℃にて約30分間振盪した。その後、37℃にて42時間インキュベートすることにより、Aβ1-42凝集体を調製し、実験に用いるまで-80℃で保管した。Aβ1-42凝集体を10 mM リン酸緩衝液 (1 mM EDTA, pH7.4) にて0.554 μMの濃度に希釈後、20 μMの濃度のアミロイド蛍光色素であるチオフラビンT (ThT)を加え、励起波長450 nm、蛍光波長485 nmにおける蛍光強度を測定することでβ-シート構造を形成していることを確認した。また、コントロールとして、Aβ1-42凝集体の代わりに10 mM リン酸緩衝液 (1 mM EDTA, pH 7.4) を用いた時のThTの蛍光強度を測定した。
1.2. Preparation of Aβ 1-42 aggregates Aβ 1-42 is dissolved in 10 mM phosphate buffer (1 mM EDTA, pH 7.4), adjusted to a concentration of 0.25 mg / mL (55.4 μM), and adjusted to 60 ° C. And shaken for about 30 minutes. Thereafter, Aβ 1-42 aggregates were prepared by incubating at 37 ° C. for 42 hours, and stored at −80 ° C. until used for experiments. After diluting the Aβ 1-42 aggregate to a concentration of 0.554 μM with 10 mM phosphate buffer (1 mM EDTA, pH 7.4), add thioflavin T (ThT), an amyloid fluorescent dye with a concentration of 20 μM, It was confirmed that a β-sheet structure was formed by measuring fluorescence intensity at an excitation wavelength of 450 nm and a fluorescence wavelength of 485 nm. As a control, the fluorescence intensity of ThT was measured when 10 mM phosphate buffer (1 mM EDTA, pH 7.4) was used instead of Aβ 1-42 aggregates.
1.3. α-Syn凝集体の作製
 α-Synを30 mM Tris-HCl buffer (200 mM NaCl, pH 6.0, 7.0, 8.0) に溶解させ、1.67 mg/mL (115 μM) に調製し、37℃にて72時間攪拌することで調製し、実験に用いるまで-80℃で保管した。α-Syn凝集体をPBSにて1.2 μMに希釈後、20 μMの濃度のThTを加え、励起波長440 nm、蛍光波長485 nmにおける蛍光強度を測定することでβ-シート構造を形成していることを確認した。また、コントロールとして、α-Syn凝集体の代わりにPBSを用いた時のThTの蛍光強度を測定した。凝集体の大きさを確かめるために、α-Syn凝集体を0.5 μMの濃度に希釈後、20℃、20,000 gで15分間遠心分離を行い、遠心前α-Syn、沈殿α-Synと20 μMの濃度のThTを加え、励起波長440 nm、蛍光波長485 nmにおける蛍光強度を測定した。また、コントロールとして、α-Syn凝集体の代わりにPBSを用いた時のThTの蛍光強度を測定した。
1.3.Preparation of α-Syn aggregates α-Syn is dissolved in 30 mM Tris-HCl buffer (200 mM NaCl, pH 6.0, 7.0, 8.0) and adjusted to 1.67 mg / mL (115 μM) at 37 ° C. The mixture was stirred for 72 hours and stored at -80 ° C until used in the experiment. The α-Syn aggregate is diluted to 1.2 μM with PBS, then 20 μM of ThT is added, and the fluorescence intensity at excitation wavelength 440 nm and fluorescence wavelength 485 nm is measured to form a β-sheet structure. It was confirmed. As a control, the fluorescence intensity of ThT when PBS was used instead of the α-Syn aggregate was measured. To confirm the size of the aggregate, dilute the α-Syn aggregate to a concentration of 0.5 μM, then centrifuge at 20,000 g for 15 minutes at 20 ° C. Pre-centrifuge α-Syn, precipitated α-Syn and 20 μM The fluorescence intensity at an excitation wavelength of 440 nm and a fluorescence wavelength of 485 nm was measured. As a control, the fluorescence intensity of ThT when PBS was used instead of the α-Syn aggregate was measured.
1.4. α-Syn凝集体に対する吸着実験
 ボロシリケイトガラスチューブ (φ12 × 75 mm) 中に、[125I]標識化合物 (150,000-170,000 cpm) の20% EtOH溶液 100 μLと、α-Syn凝集体 (500 nM) 100 μLを混合し (α-Syn最終濃度: 250 nM)、室温下50 rpmで2時間振盪した。振盪後、反応液をM-24 cell harvesterを用いてGF/B filterに透過させた。室温で10% EtOH にて4回洗浄し、filterに残存した放射能をオートウェルガンマカウンターで測定し、得られた計数値 (cpm) を用いて吸着率を算出した。なお、非特異的吸着はα-Syn凝集体の代わりにPBSを用いて、同様の実験を行って算出した。
1.4. Adsorption experiment for α-Syn aggregates In a borosilicate glass tube (φ12 × 75 mm), 100 μL of [ 125 I] -labeled compound (150,000-170,000 cpm) in 20% EtOH and α-Syn aggregates ( (500 nM) 100 μL was mixed (α-Syn final concentration: 250 nM) and shaken at 50 rpm at room temperature for 2 hours. After shaking, the reaction solution was passed through a GF / B filter using an M-24 cell harvester. After washing 4 times with 10% EtOH at room temperature, the radioactivity remaining in the filter was measured with an autowell gamma counter, and the adsorption rate was calculated using the obtained count value (cpm). Nonspecific adsorption was calculated by conducting the same experiment using PBS instead of α-Syn aggregates.
1.5. α-Syn凝集体に対する結合飽和実験
 [125I]BFC誘導体と対応する非放射性化合物との混合溶液 (2000 nM) を順次20% EtOHにて希釈し、最終濃度を24.7-2000 nMに調製した。種々の濃度の混合液 400 μLとα-Syn凝集体 (200 nM) 400 μLをポリプロピレンチューブ中で混合し、室温下50 rpmで2時間振盪した。振盪後、遠心分離前に、200 μLを分取した。残りの600 μLを20℃、20,000 gで15分間遠心分離を行った。遠心分離前のサンプルと上清のサンプル100 μLの放射能をオートウェルガンマカウンターで計測し、得られた計数値 (cpm) を用いて結合率を算出した。また、非特異的結合はα-Syn凝集体を含まないPBS 400 μLを加えて算出した。続いてGraphPad Prism (GraphPad Software, San Diego, CA) を用いてScatchard解析し、解離定数Kd値及び最大結合量Bmax値を算出した。
1.5. Binding saturation experiment for α-Syn aggregates [ 125I ] BFC derivative and corresponding non-radioactive compound mixed solution (2000 nM) were sequentially diluted with 20% EtOH to prepare final concentration of 24.7-2000 nM did. 400 μL of the mixed solution of various concentrations and 400 μL of α-Syn aggregate (200 nM) were mixed in a polypropylene tube and shaken at 50 rpm at room temperature for 2 hours. After shaking, 200 μL was collected before centrifugation. The remaining 600 μL was centrifuged at 20 ° C. and 20,000 g for 15 minutes. The radioactivity of 100 μL of the sample before centrifugation and the supernatant was measured with an autowell gamma counter, and the binding rate was calculated using the obtained count value (cpm). Nonspecific binding was calculated by adding 400 μL of PBS not containing α-Syn aggregates. Subsequently, Scatchard analysis was performed using GraphPad Prism (GraphPad Software, San Diego, Calif.), And the dissociation constant Kd value and the maximum binding amount Bmax value were calculated.
1.6. Aβ1-42凝集体に対する結合飽和実験
 [125I]BFC誘導体と対応する非放射性化合物との混合溶液 (2000 nM) を順次20% EtOHにて希釈し、最終濃度24.7-2000 nMとした。種々の濃度の混合液 100 μLとAβ1-42凝集体 (200 nM) 100 μLをボロシリケイトガラスチューブ (φ12 × 75  mm) 内で混合し、50 rpm、2時間室温下で振盪した。また、非特異的結合はAβ1-42凝集体を含まないリン酸緩衝液 100 μLを加えて算出した。振盪後、反応溶液をM-24R cell harvester を用いてGF/B filterに透過させた。室温で10% EtOH にて4回洗浄し、フィルターに残存した放射能をオートウェルガンマカウンターで計測し、得られた計数値 (cpm) を用いて飽和曲線を作製した。続いてGraphPad Prism (GraphPad Software, San Diego, CA) を用いてScatchard解析し、解離定数Kd値及び最大結合量Bmax値を算出した。
1.6. Binding saturation experiment on Aβ 1-42 aggregate [ 125 I] BFC derivative and the corresponding non-radioactive compound mixed solution (2000 nM) were sequentially diluted with 20% EtOH to a final concentration of 24.7-2000 nM. . A mixture of 100 μL of various concentrations and 100 μL of Aβ 1-42 aggregate (200 nM) were mixed in a borosilicate glass tube (φ12 × 75 mm) and shaken at 50 rpm for 2 hours at room temperature. Nonspecific binding was calculated by adding 100 μL of a phosphate buffer not containing Aβ 1-42 aggregates. After shaking, the reaction solution was permeated through a GF / B filter using an M-24R cell harvester. After washing 4 times with 10% EtOH at room temperature, the radioactivity remaining on the filter was measured with an autowell gamma counter, and a saturation curve was prepared using the obtained count value (cpm). Subsequently, Scatchard analysis was performed using GraphPad Prism (GraphPad Software, San Diego, Calif.), And the dissociation constant Kd value and the maximum binding amount Bmax value were calculated.
1.7. マウス脳切片の蛍光・免疫染色
1.7.1. mBSE感染マウス脳切片の蛍光染色
 パラフィン包埋したmBSE感染マウス脳切片をキシレンに浸し (5分間 × 3回)、続いて99.5% EtOHに浸す (5分間 × 3回) ことにより脱パラフィン処理を行った。その後、50% EtOHに溶解させた各化合物 (100 μM) に1時間浸した。50% EtOHで2分間 × 2回洗浄した後、蛍光顕微鏡を用いて観察を行った。
1.7. Fluorescence and immunostaining of mouse brain slices
1.7.1. Fluorescent staining of mBSE-infected mouse brain sections Paraffin-embedded mBSE-infected mouse brain sections were soaked in xylene (5 min x 3 times) followed by 99.5% EtOH (5 min x 3 times). Paraffin treatment was performed. Thereafter, it was immersed in each compound (100 μM) dissolved in 50% EtOH for 1 hour. After washing with 50% EtOH for 2 minutes × 2 times, observation was performed using a fluorescence microscope.
1.7.2. mBSE感染マウス脳切片の免疫染色
 上記の蛍光染色を行ったmBSE感染マウス脳切片の隣接切片を上記と同様に脱パラフィン処理を行い、PrPの免疫染色を行った。正常PrPタンパク質の除去および抗原賦活のために、1.2 mM 希塩酸溶液中でオートクレーブ処理 (121℃, 10分間) した後、90% ギ酸に5分間浸した。続いてブロッキングのために0.3% H2O2/MeOH 溶液中に30分間浸した後、20倍希釈した正常ヤギ血清に30分間浸した。PrPのN末端オクタリピート残基を認識する一次抗体 SAF32 (1 : 20) と室温で一晩反応させ、50 mM Tris-HCl buffer (150 mM NaCl, pH 7.6) およびTween 20添加 Tris-HCl bufferで洗浄した。その後、二次抗体を加えて 2時間室温放置し、一次抗体処理時と同様に洗浄した。3,3’-ジアミノベンジジン四塩酸塩溶液を加えて発色確認した後、Tris-HCl bufferおよび流水で洗浄した。その後、光学顕微鏡を用いて観察行った。
1.7.2. Immunostaining of mBSE-infected mouse brain sections Adjacent sections of mBSE-infected mouse brain sections that had undergone the above fluorescence staining were deparaffinized in the same manner as described above, and PrP immunostaining was performed. In order to remove the normal PrP protein and activate the antigen, it was autoclaved (121 ° C., 10 minutes) in 1.2 mM dilute hydrochloric acid solution, and then immersed in 90% formic acid for 5 minutes. Subsequently, it was immersed in a 0.3% H 2 O 2 / MeOH solution for 30 minutes for blocking, and then immersed in normal goat serum diluted 20 times for 30 minutes. React with the primary antibody SAF32 (1:20), which recognizes the N-terminal octarepeat residue of PrP, overnight at room temperature. Washed. Thereafter, the secondary antibody was added and left at room temperature for 2 hours, followed by washing in the same manner as in the treatment with the primary antibody. 3,3′-Diaminobenzidine tetrahydrochloride solution was added to confirm color development, and then washed with Tris-HCl buffer and running water. Then, it observed using the optical microscope.
1.7.3. Tg2576マウス脳切片の蛍光染色
 アミロイド前駆体タンパク質 (APP) が過剰発現しているTg2576マウス (24ヶ月齢) の凍結脳切片を50% EtOHに溶解させた各化合物 (100 μM) に1時間浸した。50% EtOHで2分間 × 2回洗浄した後、蛍光顕微鏡を用いて観察を行った。また、隣接切片を50% EtOHに溶解させたThT (100 μM) に10分間浸して、50% EtOHで1分間 × 2回洗浄することで脳切片中のAβ凝集体を確認した。
1.7.3. Fluorescence staining of Tg2576 mouse brain sections Frozen brain sections of Tg2576 mice (24 months old) overexpressing amyloid precursor protein (APP) were dissolved in 50% EtOH in each compound (100 μM). Soaked for 1 hour. After washing with 50% EtOH for 2 minutes × 2 times, observation was performed using a fluorescence microscope. Further, the adjacent sections were soaked in ThT (100 μM) dissolved in 50% EtOH for 10 minutes, and washed with 50% EtOH for 1 minute × 2 times to confirm Aβ aggregates in the brain sections.
2. 結果
2.1. ThTの蛍光強度測定によるAβ1-42凝集体の確認
 Aβ1-42を10 mM リン酸緩衝液 (1 mM EDTA, pH 7.4) を用いて、0.25 mg/mL (55.4 μM) に希釈後、60℃で約30分間インキュベートし、その後、37℃で42時間インキュベートすることによりAβ1-42凝集体を作製した。作製したAβ1-42凝集体がアミロイドを形成していることを確認するために、ThT混合時の蛍光強度を測定した(図12)。その結果、コントロールとしてAβ1-42凝集体の代わりに10 mM リン酸緩衝液 (1 mM EDTA, pH 7.4) を用いた時のThTの蛍光強度と比較して、作製したAβ1-42凝集体と混合した際の蛍光強度が約8.5倍増大したことから、作製したAβ1-42凝集体がアミロイド構造を有していることが示された。
2. Results
2.1. Check A [beta] 1-42 of A [beta] 1-42 aggregates by fluorescence intensity measurement of ThT with 10 mM phosphate buffer (1 mM EDTA, pH 7.4) using a diluted to 0.25 mg / mL (55.4 μM) Aβ 1-42 aggregates were made by incubating at 60 ° C. for about 30 minutes, followed by incubation at 37 ° C. for 42 hours. In order to confirm that the prepared Aβ 1-42 aggregates formed amyloid, the fluorescence intensity during ThT mixing was measured (FIG. 12). As a result, compared to the fluorescence intensity of ThT when using 10 mM phosphate buffer (1 mM EDTA, pH 7.4) instead of Aβ 1-42 aggregate as a control, the prepared Aβ 1-42 aggregate Fluorescence intensity when mixed with the mixture increased by about 8.5 times, indicating that the prepared Aβ 1-42 aggregate had an amyloid structure.
2.2. ThTの蛍光強度測定によるα-Syn凝集体の確認
 α-Synを3種類の30 mM Tris-HCl buffer (200 mM NaCl, pH6.0, 7.0, 8.0) を用いて、1.67 mg/mL (115 μM) に希釈後、37℃で72時間攪拌することで作製した。作製したα-Syn凝集体がアミロイドを形成していることを確認するために、ThT混合時の蛍光強度を測定した(図13)。その結果、α-Syn非存在下におけるThTの蛍光強度と比較して、作製したα-Syn凝集体と混合した際の蛍光強度は、用いたbufferのpHが6.0、7.0、8.0のそれぞれで、186、134、47倍増大したことから、作製したα-Syn凝集体がアミロイド構造を有していることが示された。
2.2. Confirmation of α-Syn Aggregate by ThT Fluorescence Intensity Measurement Using α-Syn in three types of 30 mM Tris-HCl buffer (200 mM NaCl, pH6.0, 7.0, 8.0), 1.67 mg / mL ( 115 μM) and then stirred at 37 ° C. for 72 hours. In order to confirm that the produced α-Syn aggregates formed amyloid, the fluorescence intensity during ThT mixing was measured (FIG. 13). As a result, compared with the fluorescence intensity of ThT in the absence of α-Syn, the fluorescence intensity when mixed with the prepared α-Syn aggregates is pH 6.0, 7.0, 8.0 of the buffer used, The increase by 186, 134, and 47-fold showed that the produced α-Syn aggregate had an amyloid structure.
 また、化合物との結合親和性評価では、フィルターを用いたろ過や遠心分離によって、凝集体に結合している化合物と結合していない化合物を分離する必要がある。このため、フィルターを通過できないあるいは遠心分離で沈殿する凝集体を作製する必要がある。そこで、上記3手法で作製した凝集体の遠心分離で沈殿する画分の含有割合を調べ、より結合実験に適した凝集体の選別を行うこととした。まず、α-Syn凝集体を20℃、20,000 gで15分間遠心分離を行った。続いて、遠心前α-Syn凝集体と遠心後の沈殿α-Syn凝集体のThT混合時における蛍光強度を測定して、沈殿物の含有割合を求めた(図14)。その結果、pH6.0で調製したα-Synが沈殿物の割合が多いことが示唆された。よって、その後の結合実験には、30 mM Tris-HCl buffer (200 mM NaCl, pH6.0) で調製したα-Syn凝集体を用いた。 In addition, in the binding affinity evaluation with a compound, it is necessary to separate a compound that is bound to an aggregate and a compound that is not bound by filtration using a filter or centrifugation. For this reason, it is necessary to produce an aggregate that cannot pass through a filter or precipitates by centrifugation. Therefore, the content ratio of the fraction precipitated by centrifugation of the aggregates prepared by the above three methods was examined, and the aggregates more suitable for the binding experiment were selected. First, the α-Syn aggregate was centrifuged at 20 ° C. and 20,000 μg for 15 minutes. Subsequently, the fluorescence intensity during ThT mixing of the α-Syn aggregate before centrifugation and the precipitated α-Syn aggregate after centrifugation was measured to determine the content ratio of the precipitate (FIG. 14). As a result, it was suggested that α-Syn prepared at pH 6.0 had a large proportion of precipitate. Therefore, in subsequent binding experiments, α-Syn aggregates prepared in 30 mM Tris-HCl buffer (200 mM NaCl, pH 6.0) were used.
2.3. α-Syn凝集体に対する結合親和性評価
 BFC誘導体のα-Syn凝集体 (250 nM) への結合親和性を評価するために、BFC誘導体の吸着実験を行った(図15)。その結果、BFC誘導体の中でも、[125I]30はα-Syn凝集体に対する吸着率が約10%となり、特にα-Syn凝集体に対する吸着性が高いことが示された。アミノ基を有するBFC誘導体に関しては、[125I]39が4%程度の吸着率を示したが、[125I]33および[125I]36は、ほとんど吸着性を示さなかった。
2.3. Evaluation of binding affinity for α-Syn aggregates To evaluate the binding affinity of BFC derivatives to α-Syn aggregates (250 nM), adsorption experiments of BFC derivatives were performed (Fig. 15). As a result, among the BFC derivatives, [ 125 I] 30 had an adsorption rate of about 10% with respect to the α-Syn aggregate, indicating that the adsorbability with respect to the α-Syn aggregate was particularly high. Regarding the BFC derivative having an amino group, [ 125 I] 39 showed an adsorption rate of about 4%, while [ 125 I] 33 and [ 125 I] 36 showed almost no adsorptivity.
 吸着実験の結果、今回評価したBFC誘導体の中でも、[125I]30はα-Syn凝集体に対して高い吸着性を有していることが明らかになった。そこで、α-Syn凝集体に対する[125I]30の結合親和性に関して、さらに詳細に検討するため、α-Syn凝集体に対する[125I]30の結合飽和実験を行った。各濃度においてα-Syn凝集体に結合した化合物の濃度から非特異的な結合を差し引いた値をプロットし、さらにScatchard解析を行うことで解離定数Kd値及び最大結合量Bmax値を算出した。その結果、[125I]30のα-Syn凝集体への結合は結合飽和曲線で表され、single-binding siteモデルに適合するScatchardプロットを示し、Kd= 141 nM、Bmax= 332 mmol/mol proteinと算出された(図16)。このことから、[125I]30はα-Syn凝集体に対して結合親和性を有することが示された。今回評価したBFC誘導体は、α-Synへの親和性は弱いことから、PrPSc選択的なアミロイドイメージングプローブとして利用し得ると考えられる。 As a result of the adsorption experiment, it was found that [ 125 I] 30 has high adsorptivity to α-Syn aggregates among the BFC derivatives evaluated this time. Therefore, alpha-Syn for aggregates with respect to binding affinity of [125 I] 30, in order to study in more detail, it was binding saturation experiments [125 I] 30 for alpha-Syn aggregates. The value obtained by subtracting non-specific binding from the concentration of the compound bound to the α-Syn aggregate at each concentration was plotted, and further the Scatchard analysis was performed to calculate the dissociation constant K d value and the maximum binding amount B max value. . As a result, the binding of [ 125 I] 30 to α-Syn aggregates is represented by a binding saturation curve, showing a Scatchard plot that fits the single-binding site model, K d = 141 nM, B max = 332 mmol / Calculated as mol protein (FIG. 16). This indicated that [ 125 I] 30 has binding affinity for α-Syn aggregates. The BFC derivative evaluated this time has a weak affinity for α-Syn, so it can be used as a PrP Sc selective amyloid imaging probe.
2.4. Aβ1-42凝集体に対する結合親和性評価
 BFC誘導体のAβ1-42凝集体に対する結合親和性を評価するために、結合飽和実験を行った。各濃度においてAβ1-42凝集体に結合した化合物の濃度から非特異的な結合を差し引いた値をプロットし、さらにScatchard解析を行うことで解離定数Kd値及び最大結合量Bmax値を算出した(表4)。その結果、BFC誘導体のAβ1-42凝集体への結合は結合飽和曲線となり、single-binding siteモデルに適合するScatchardプロットを示した。BFC誘導体のAβ1-42凝集体に対するKd値は102-238 nM、Bmax値は82.7-972 mmol/mol proteinと算出され、Aβ1-42凝集体に対して結合親和性を有することが示された。しかし、その結合親和性は、PET用薬剤としてFDAより認可されている、[18F]Florbetapir (Kd= 2.9 nM) と比べて遥かに低いことが示された。
2.4. Evaluation of binding affinity for Aβ 1-42 aggregates To evaluate the binding affinity of BFC derivatives to Aβ 1-42 aggregates, binding saturation experiments were performed. Plot the value obtained by subtracting non-specific binding from the concentration of the compound bound to the Aβ 1-42 aggregate at each concentration, and further calculate the dissociation constant K d value and maximum binding amount B max value by performing Scatchard analysis. (Table 4). As a result, the binding of the BFC derivative to the Aβ 1-42 aggregate was a binding saturation curve, which showed a Scatchard plot that fits the single-binding site model. The BFC derivative has a K d value of 102-238 nM for the Aβ 1-42 aggregate and a B max value of 82.7-972 mmol / mol protein, and has a binding affinity for the Aβ 1-42 aggregate. Indicated. However, its binding affinity was shown to be much lower than [ 18 F] Florbetapir (K d = 2.9 nM), which is approved by the FDA as a PET drug.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 ここで、BFC誘導体のrMoPrP凝集体、Aβ1-42凝集体およびα-Syn凝集体に対するKd値に関して、これまでの発明者らの検討と本研究にて得られた結果を表5にまとめた。全体的にBFC誘導体は、rMoPrP凝集体に高い親和性を有する一方、他のAβ凝集体やα-Syn凝集体に対しては高い親和性は有していないことが示唆される。BFC誘導体のKd (Aβ) /Kd(rMoPrP) を算出すると、化合物30, 33, 36および39はそれぞれ3.0、3.9、7.2、11と算出され、化合物39が最もrMoPrP凝集体への選択性が高いことが示された。 Here, regarding the K d values of the BFC derivatives for rMoPrP aggregates, Aβ 1-42 aggregates and α-Syn aggregates, the investigations of the present inventors and the results obtained in this study are summarized in Table 5. It was. Overall, it is suggested that BFC derivatives have a high affinity for rMoPrP aggregates, but do not have a high affinity for other Aβ aggregates or α-Syn aggregates. When K d (Aβ) / K d (rMoPrP) of the BFC derivative is calculated, compounds 30, 33, 36 and 39 are calculated as 3.0, 3.9, 7.2 and 11, respectively, and compound 39 is most selective for rMoPrP aggregates. Was shown to be high.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
2.5. マウス脳切片上のアミロイドに対する結合性評価
2.5.1. mBSE感染マウス脳切片上のPrPScに対する結合性評価
 マウス脳切片上に沈着したPrPScに対する結合性を評価するために、BFC誘導体を用いてmBSE感染マウス脳切片の蛍光染色を行った(図17)。対照群として、同週齢の非感染マウスより得た脳切片の蛍光染色を行った。その結果、非感染マウス脳切片の蛍光染色では、各BFC誘導体の明瞭な蛍光像は観察されずバックグラウンドの蛍光のみが観察され (図17a, e, i, m)、PrP抗体染色においても顕著なPrPSc沈着は確認されなかった (図17 b, f, j, n)。mBSE感染マウス脳切片において、各BFC誘導体で化合物由来の蛍光像が観察された(図17 c, g, k, o)。また、蛍光染色で用いた脳切片の隣接脳切片に対し、PrPScの存在部位を確認するため免疫染色を行ったところ、mBSE感染マウス脳切片では抗体による染色像が観察された(図17 d, h, l, p)。よって、BFC誘導体が脳内PrPSc沈着部位を認識していることが示唆された。
2.5. Evaluation of binding to amyloid on mouse brain slices
2.5.1. Evaluation of binding to PrP Sc on mBSE-infected mouse brain sections To evaluate the binding to PrP Sc deposited on mouse brain sections, we performed fluorescence staining of mBSE-infected mouse brain sections using BFC derivatives. (FIG. 17). As a control group, fluorescent staining of brain sections obtained from uninfected mice of the same week was performed. As a result, in the fluorescence staining of the non-infected mouse brain section, a clear fluorescence image of each BFC derivative was not observed, but only background fluorescence was observed (FIGS. 17a, e, i, m), and also in PrP antibody staining. No PrP Sc deposition was observed (Fig. 17b, f, j, n). In mBSE-infected mouse brain sections, compound-derived fluorescence images were observed for each BFC derivative (FIGS. 17c, g, k, o). Further, when immunostaining was performed on the brain section adjacent to the brain section used in the fluorescence staining to confirm the site where PrP Sc was present, a stained image with the antibody was observed in the mBSE-infected mouse brain section (FIG. 17d). , h, l, p). Therefore, it was suggested that the BFC derivative recognizes the PrP Sc deposition site in the brain.
2.5.2. Tg2576マウス脳切片上のAβ凝集体に対する結合性評価
 マウス脳切片上に沈着したAβ凝集体に対する結合性を評価するために、BFC誘導体を用いて、APPが過剰発現しているTg2576マウス脳切片の蛍光染色を行った(図18)。また、Tg2576マウス脳切片の隣接切片をアミロイドに対する蛍光染色試薬であるThTで染色した。その結果、BFC誘導体の中でも、化合物33および36は、Tg2576マウス脳切片のThT陽性部位と、化合物由来の染色部位が一致した。しかし、染色された化合物由来の蛍光は全体的に弱く、BFC誘導体のTg2576マウス脳切片上のAβ凝集体に対する結合親和性は低いことが示唆された。また、図9及び図17に示すように、mBSE感染マウス脳切片においては、PrPSc沈着部位への化合物由来の強い蛍光が観察された。したがって、BFC誘導体がPrPScに対する選択的なイメージングプローブとして機能する可能性が示唆された。
2.5.2. Evaluation of binding to Aβ aggregates on Tg2576 mouse brain slices To evaluate the binding to Aβ aggregates deposited on mouse brain slices, Tg2576 was overexpressed with APP using a BFC derivative. Mouse brain sections were fluorescently stained (FIG. 18). Further, adjacent sections of Tg2576 mouse brain sections were stained with ThT, which is a fluorescent staining reagent for amyloid. As a result, among the BFC derivatives, compounds 33 and 36 matched the ThT positive site of the Tg2576 mouse brain section with the compound-derived staining site. However, the fluorescence from the stained compound was weak overall, suggesting that the binding affinity of BFC derivatives to Aβ aggregates on Tg2576 mouse brain sections was low. Moreover, as shown in FIGS. 9 and 17, strong fluorescence derived from the compound at the PrP Sc deposition site was observed in mBSE-infected mouse brain sections. Therefore, it was suggested that the BFC derivative may function as a selective imaging probe for PrP Sc .
 以上の結果より、BFC誘導体は、PrPSc以外のアミロイドに対する結合性は既存化合物に比べて低いことが示唆された。さらに、これらの化合物はin vivoイメージングプローブとして展開するための脳移行性にも優れているため、PrPSc選択的なイメージングプローブとして臨床応用できる可能性が示された。 From the above results, it was suggested that BFC derivatives have lower binding properties to amyloid other than PrP Sc compared to existing compounds. Furthermore, since these compounds are excellent in brain migration for deployment as an in vivo imaging probe, the possibility of clinical application as a PrP Sc selective imaging probe was shown.
参考文献
1. Takeshi, Fuchigami. Yuki, Yamashita. Masao, Kawasaki. Ayaka, Ogawa. Mamoru, Haratake. Ryuichiro, Atarashi. Kazunori, Sano. Takehiro, Nakagaki. Kaori, Ubagai. Masahiro, Ono. Sakura, Yoshida. Noriyuki, Nishida. Morio, Nakayama. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits. Sci. Rep. 5, 2015, 18440.
2. Ono, M.; Maya, Y.; Haratake, M.; Nakayama, M. Synthesis and characterization of styrylchromone derivatives as β-amyloid imaging agents. Bioorg. Med. Chem. 2007, 15, 444-450.
3. Atarashi, R.; Moore, R. A.; Sim, V. L.; Hughson, A. G.; Dorward, D. W.; Onwubiko, H. A.; Priola S. A.; Caughey, B. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Nat. Methods. 2007, 4, 645-650.
4. Atarashi, R.; Satoh, K.; Sano, K.; Fuse, T.; Yamaguchi, N.; Ishibashi, D.; Matsubara, T.; Nakagaki, T.; Yamanaka, H.; Shirabe, S.; Yamada, M.; Mizusawa, H.; Kitamoto, T.; Klug, G.; McGlade, A.; Collins S. J.; Nishida, N. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 2011, 17, 175-178.
5. Zhang, W.; Oya, S.; Kung, M. P.; Hou, C.; Maier, D. L.; Kung, H. F. Nucl. Med. Biol. 2005, 32, 799.
6. Zhang, W.; Kung, M. P.; Oya, S.; Hou, C.; Kung, H. F. Nucl. Med. Biol. 2007, 34, 89.
References
1. Takeshi, Fuchigami. Yuki, Yamashita. Masao, Kawasaki. Ayaka, Ogawa. Mamoru, Haratake. Ryuichiro, Atarashi. Kazunori, Sano. Takehiro, Nakagaki. Kaori, Ubagai. Masahiro, Ono. Sakura, Yoshida. Noriyuki, Nishida. Morio, Nakayama. Characterization of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits. Sci. Rep. 5, 2015, 18440.
2. Ono, M .; Maya, Y .; Haratake, M .; Nakayama, M. Synthesis and characterization of styrylchromone derivatives as β-amyloid imaging agents. Bioorg. Med. Chem. 2007, 15, 444-450.
3. Atarashi, R .; Moore, RA; Sim, VL; Hughson, AG; Dorward, DW; Onwubiko, HA; Priola SA; Caughey, B. Ultrasensitive detection of scrapie prion protein using seeded conversion of recombinant prion protein. Methods. 2007, 4, 645-650.
4. Atarashi, R .; Satoh, K .; Sano, K .; Fuse, T .; Yamaguchi, N .; Ishibashi, D .; Matsubara, T .; Nakagaki, T .; Yamanaka, H .; Shirabe, S .; Yamada, M .; Mizusawa, H .; Kitamoto, T .; Klug, G .; McGlade, A .; Collins SJ; Nishida, N. Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion. Nat. Med. 2011, 17, 175-178.
5. Zhang, W .; Oya, S .; Kung, M. P .; Hou, C .; Maier, D. L .; Kung, H. F. Nucl. Med. Biol. 2005, 32, 799.
6. Zhang, W .; Kung, M. P .; Oya, S .; Hou, C .; Kung, H. F. Nucl. Med. Biol. 2007, 34, 89.
 本発明の化合物は、アミロイドタンパク質に対する高い結合特異性、高い血液脳関門の透過性、及び正常組織からの速やかな消失性を示し、アミロイド関連疾患の診断に有用である。また、本発明の化合物は、異常型プリオンタンパク質凝集体(PrPSc)に対して選択的なイメージングプローブとして有用となり得る。 The compound of the present invention exhibits high binding specificity for amyloid protein, high blood brain barrier permeability, and rapid disappearance from normal tissues, and is useful for diagnosis of amyloid-related diseases. In addition, the compounds of the present invention can be useful as imaging probes that are selective for abnormal prion protein aggregates (PrP Sc ).
 本出願は、日本で出願された特願2018-037948を基礎としており、その内容は参照により本明細書にすべて包含されるものである。 This application is based on Japanese Patent Application No. 2018-037948 filed in Japan, the contents of which are incorporated herein by reference in their entirety.

Claims (15)

  1.  式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、
    1は、O、S、又はNHを示し、
    2は、CH又はNを示し、
    1、R2、R3及びR4は、それぞれ独立して、水素原子;ハロゲン原子;ヒドロキシ基;カルボキシ基;スルホ基;ニトロ基;アミノ基;C1-6アルキル基;ハロゲン原子により置換されていてもよいC1-6アルコキシ基;モノ(C1-6アルキル)アミノ基;又はジ(C1-6アルキル)アミノ基を示し、並びに
    5、R6、R7及びR8は、それぞれ独立して、水素原子;ハロゲン原子;ヒドロキシ基;カルボキシ基;スルホ基;ニトロ基;アミノ基;C1-6アルキル基;ハロゲン原子若しくはヒドロキシ基により置換されていてもよいC1-6アルコキシ基;モノ(C1-6アルキル)アミノ基;又はジ(C1-6アルキル)アミノ基を示す。)
    で表される化合物又はその医薬上許容される塩。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000001
    (Where
    X 1 represents O, S, or NH;
    X 2 represents CH or N;
    R 1 , R 2 , R 3 and R 4 are each independently hydrogen atom; halogen atom; hydroxy group; carboxy group; sulfo group; nitro group; amino group; C 1-6 alkyl group; An optionally substituted C 1-6 alkoxy group; a mono (C 1-6 alkyl) amino group; or a di (C 1-6 alkyl) amino group, and R 5 , R 6 , R 7 and R 8 are , each independently, a hydrogen atom; a halogen atom; hydroxy group; a carboxy group; a sulfo group; a nitro group; an amino group; C 1-6 alkyl group; a halogen atom or a hydroxy which may be substituted by a group C 1-6 An alkoxy group; a mono (C 1-6 alkyl) amino group; or a di (C 1-6 alkyl) amino group. )
    Or a pharmaceutically acceptable salt thereof.
  2.  式(I)中のX1が、Oであり、X2が、CHである請求項1記載の化合物又はその医薬上許容される塩。 The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein X 1 in formula (I) is O and X 2 is CH.
  3.  式(I)中のR1、R2、R3及びR4のいずれかが、ハロゲン原子である請求項1記載の化合物又はその医薬上許容される塩。 The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein any one of R 1 , R 2 , R 3 and R 4 in formula (I) is a halogen atom.
  4.  式(I)中のR1、R2、R3及びR4のいずれかが、ヨウ素原子である請求項1記載の化合物又はその医薬上許容される塩。 The compound according to claim 1 or a pharmaceutically acceptable salt thereof, wherein any one of R 1 , R 2 , R 3 and R 4 in formula (I) is an iodine atom.
  5.  式(I)中のX1が、Oであり、X2が、CHであり、R1、R2、R4、R5及びR8が、水素原子であり、R3が、ヨウ素原子であり、R6が、水素原子;C1-4アルキル基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基であり、且つR7が、ヒドロキシ基;ヒドロキシ基により置換されていてもよいC1-4アルコキシ基;アミノ基;モノ(C1-4アルキル)アミノ基;又はジ(C1-4アルキル)アミノ基である請求項1記載の化合物又はその医薬上許容される塩。 X 1 in the formula (I) is O, X 2 is CH, R 1 , R 2 , R 4 , R 5 and R 8 are hydrogen atoms, R 3 is an iodine atom R 6 is a hydrogen atom; a C 1-4 alkyl group; a C 1-4 alkoxy group optionally substituted by a hydroxy group; a mono (C 1-4 alkyl) amino group; or a di (C 1-4) Alkyl) amino group and R 7 is hydroxy group; C 1-4 alkoxy group optionally substituted by hydroxy group; amino group; mono (C 1-4 alkyl) amino group; or di (C 1 The compound according to claim 1, which is a -4 alkyl) amino group, or a pharmaceutically acceptable salt thereof.
  6.  放射性核種で標識されている、請求項1~5のいずれか一項に記載の化合物又はその医薬上許容される塩。 The compound or a pharmaceutically acceptable salt thereof according to any one of claims 1 to 5, which is labeled with a radionuclide.
  7.  放射性核種が、陽電子放出核種である請求項6記載の化合物又はその医薬上許容される塩。 The compound according to claim 6 or a pharmaceutically acceptable salt thereof, wherein the radionuclide is a positron emitting nuclide.
  8.  放射性核種が、γ線放出核種である請求項6記載の化合物又はその医薬上許容される塩。 The compound according to claim 6 or a pharmaceutically acceptable salt thereof, wherein the radionuclide is a γ-ray emitting nuclide.
  9.  放射性核種が、125Iである請求項6記載の化合物又はその医薬上許容される塩。 The radionuclide is 125 I, or a compound or a pharmaceutically acceptable salt thereof according to claim 6.
  10.  請求項6~9のいずれか一項に記載の化合物又はその医薬上許容される塩を含有するアミロイド関連疾患診断用組成物。 A composition for diagnosing amyloid-related diseases, comprising the compound according to any one of claims 6 to 9 or a pharmaceutically acceptable salt thereof.
  11.  アミロイド関連疾患が、クロイツフェルト・ヤコブ病、アルツハイマー病、レビー小体型認知症、地中海熱、マックル-ウェルズ症候群、突発性骨髄腫、アミロイド多発性神経障害、アミロイド心筋症、全身性老年性アミロイドーシス、アミロイドーシスを伴う遺伝性脳出血、ダウン症候群、スクラピー、クールー病、ゲルストマン-シュトロイスラー-シャインカー症候群、甲状腺髄様癌、孤立心房性アミロイド、透析患者におけるβ2-ミクログロブリンアミロイド、封入体筋炎、筋消耗病におけるβ2-アミロイド沈着、及びランゲルハンス島II型糖尿病インスリノーマからなる群から選択される、請求項10記載の組成物。 Amyloid-related diseases include Creutzfeldt-Jakob disease, Alzheimer's disease, Lewy body dementia, Mediterranean fever, Maccle-Wells syndrome, idiopathic myeloma, amyloid polyneuropathy, amyloid cardiomyopathy, systemic senile amyloidosis, amyloidosis Hereditary cerebral hemorrhage, Down syndrome, scrapie, Kruo disease, Gerstman-Stroisler-Scheinker syndrome, medullary thyroid cancer, isolated atrial amyloid, β 2 -microglobulin amyloid in dialysis patients, inclusion body myositis, muscle wasting disease A composition according to claim 10, selected from the group consisting of β 2 -amyloid deposits in and Langerhans type II diabetes insulinoma.
  12.  請求項6~9のいずれか一項に記載の化合物又はその医薬上許容される塩を含有するアミロイド沈着の画像化剤。 An imaging agent for amyloid deposits comprising the compound according to any one of claims 6 to 9 or a pharmaceutically acceptable salt thereof.
  13.  請求項6~9のいずれか一項に記載の化合物又はその医薬上許容される塩の検出可能な量を導入された哺乳動物を、コンピューター断層撮影法(SPECT)又は陽電子断層撮影法(PET)により撮影する工程を包含する、アミロイド沈着を画像化するための方法。 A mammal into which a detectable amount of the compound according to any one of claims 6 to 9 or a pharmaceutically acceptable salt thereof is introduced is computed tomography (SPECT) or positron tomography (PET) A method for imaging amyloid deposits, comprising the step of imaging.
  14.  アミロイド関連疾患のモデル動物に被験物質を投与する工程、前記モデル動物に請求項10又は11に記載のアミロイド関連疾患診断用組成物を投与する工程、及び前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べる工程を含むアミロイド関連疾患の治療薬又は予防薬のスクリーニング方法。 A step of administering a test substance to a model animal of amyloid-related disease, a step of administering a composition for diagnosing amyloid-related disease according to claim 10 or 11 to the model animal, and a formula contained in the brain of the model animal ( A screening method for a therapeutic or prophylactic agent for amyloid-related diseases, which comprises the step of examining the distribution or amount of the compound represented by I).
  15.  アミロイド関連疾患のモデル動物にアミロイド関連疾患の治療薬又は予防薬を投与する工程、前記モデル動物に請求項10又は11に記載のアミロイド関連疾患診断用組成物を投与する工程、及び前記モデル動物の脳中に含まれる式(I)で表される化合物の分布又は量を調べる工程を含むアミロイド関連疾患の治療薬又は予防薬の評価方法。 A step of administering a therapeutic or prophylactic agent for amyloid-related disease to a model animal of amyloid-related disease, a step of administering to the model animal the composition for diagnosing amyloid-related disease according to claim 10 or 11, and A method for evaluating a therapeutic or prophylactic agent for amyloid-related diseases, comprising a step of examining the distribution or amount of a compound represented by formula (I) contained in the brain.
PCT/JP2019/008168 2018-03-02 2019-03-01 Chromone derivative and composition for diagnosis of amyloid-related disease WO2019168170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503654A JPWO2019168170A1 (en) 2018-03-02 2019-03-01 Composition for diagnosing chromone derivatives and amyloid-related diseases

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037948 2018-03-02
JP2018-037948 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019168170A1 true WO2019168170A1 (en) 2019-09-06

Family

ID=67806235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008168 WO2019168170A1 (en) 2018-03-02 2019-03-01 Chromone derivative and composition for diagnosis of amyloid-related disease

Country Status (2)

Country Link
JP (1) JPWO2019168170A1 (en)
WO (1) WO2019168170A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361961A (en) * 2020-01-28 2022-11-18 斯坦福大学托管董事会 Method for preventing or treating pancreatic dysfunction or diabetes by up-regulating human cathepsin LL-37 to inhibit islet amyloid polypeptide (IAPP) self-assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155590C (en) * 2002-04-12 2004-06-30 中国药科大学 Chromone compounds with antineoplastic activity and its open-loop products and preparing process
WO2006057323A1 (en) * 2004-11-26 2006-06-01 Nagasaki University Composition for amyloid-associated disease diagnosis
WO2009102498A1 (en) * 2008-02-14 2009-08-20 Siemens Medical Solutions Usa, Inc. Novel imaging agents for detecting neurological dysfunction
WO2013142236A1 (en) * 2012-03-23 2013-09-26 Ptc Therapeutics, Inc. Compounds for treating spinal muscular atrophy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155590C (en) * 2002-04-12 2004-06-30 中国药科大学 Chromone compounds with antineoplastic activity and its open-loop products and preparing process
WO2006057323A1 (en) * 2004-11-26 2006-06-01 Nagasaki University Composition for amyloid-associated disease diagnosis
WO2009102498A1 (en) * 2008-02-14 2009-08-20 Siemens Medical Solutions Usa, Inc. Novel imaging agents for detecting neurological dysfunction
WO2013142236A1 (en) * 2012-03-23 2013-09-26 Ptc Therapeutics, Inc. Compounds for treating spinal muscular atrophy

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BANERJI, K. D. ET AL.: "Bromination of 2-hydroxyacetophenones and preparation of some benzofurylchromones", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 56, 1979, pages 62 - 65, ISSN: 0019-4522 *
BANERJI, K.D. ET AL.: "Synthesis of some benzofurylchromones", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 53, 1976, pages 1119 - 1121, ISSN: 0019-4522 *
CAUJOLLE,R. ET AL.: "Synthesis of 2-arylbenzothiazoles and research of antiparasitic properties", ANNALES PHARMACEUTIQUES FRANCAISES, vol. 47, 1989, pages 68 - 73, XP008166510, ISSN: 0003-4509 *
CHARVIN, D. ET AL.: "Discovery, Structure-Activity Relationship, and Antiparkinsonian Effect of a Potent and Brain-Penetrant Chemical Series of Positive Allosteric Modulators of Metabotropic Glutamate Receptor 4", JOURNAL OF MEDICINAL CHEMISTRY, vol. 60, 2017, pages 8515 - 8537 *
DATABASE Database REGISTRY [online] 2008, retrieved from STN Database accession no. 1027921-79-4 *
GRISHKO,L. ET AL.: "Synthesis and structure investigation of benzofuran analogs of chalcone, flavone, and isoflavone", ACTA CHIMICA HUNGARICA, vol. 112, 1983, pages 401 - 410, ISSN: 0231-3146 *
HE,X. ET AL.: "Syntheses of 2- or 6-substituted chromones and chromone ring-opening reaction in polyphosphoric acid", CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, vol. 20, no. 11, 2004, pages 299 - 304, ISSN: 1005-9040 *
MAHAJAN, P.S. ET AL.: "Synthesis and Antitubercular Activity of New Benzo[b]thiophenes", ACS MEDICINAL CHEMISTRY LETTERS, vol. 7, 2016, pages 751 - 756 *
REDDY, K. R. ET AL.: "Synthesis of 2-carbomethoxy- and 2-(2-benzimidazolyl)chromones", JOURNAL OF THE INDIAN CHEMICAL SOCIETY, vol. 63, 1986, pages 600 - 602, ISSN: 0019-4522 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361961A (en) * 2020-01-28 2022-11-18 斯坦福大学托管董事会 Method for preventing or treating pancreatic dysfunction or diabetes by up-regulating human cathepsin LL-37 to inhibit islet amyloid polypeptide (IAPP) self-assembly

Also Published As

Publication number Publication date
JPWO2019168170A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
Kroth et al. Discovery and preclinical characterization of [18 F] PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies
CN103739605B (en) For detecting the developer of neurological disorder
JP5684893B2 (en) Imaging agents for detection of neurological diseases
CN104974024B (en) Detection and the compound and composition for the treatment of Alzheimer disease and relevant disease
ES2763960T3 (en) Pyridine-3 (2H) -one derivatives as imaging agents for detection of myocardial perfusion
Liu et al. High-yield, automated radiosynthesis of 2-(1-{6-[(2-[18 F] fluoroethyl)(methyl) amino]-2-naphthyl} ethylidene) malononitrile ([18 F] FDDNP) ready for animal or human administration
EA023014B1 (en) Synthesis of 18f-radiolabeled styrylpyridines from tosylate precursors and stable pharmaceutical compositions thereof
WO2008118122A2 (en) Compounds and amyloid probes thereof for therapeutic and imaging uses
CN109475648B (en) Compounds for imaging TAU protein aggregates
EP2218464A1 (en) Compounds for non-invasive measurement of aggregates of amyloid peptides
JPWO2007074786A1 (en) Conformation disease diagnostic probe
CN107188900B (en) The ligand compound of alpha 7 nicotinic acetylcholine receptors and its application
RU2671506C2 (en) Imidazo[1,2-a]pyridin-7-amines as imaging tools
TW201247226A (en) Novel compound having affinity for amyloid
Neumaier et al. Synthesis and evaluation of 18F-fluoroethylated benzothiazole derivatives for in vivo imaging of amyloid plaques in Alzheimer's disease
JP2007223952A (en) DIAGNOSTIC IMAGING PROBE FOR DISEASE OF AMYLOID beta PROTEIN ACCUMULATION
WO2014030709A1 (en) Compound suitable for detection of mitochondrial complex-1
Fuchigami et al. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits
KR20200113241A (en) Diagnostic composition for PET imaging, manufacturing method of diagnostic composition and its use in diagnosis
WO2019168170A1 (en) Chromone derivative and composition for diagnosis of amyloid-related disease
WO2023104148A1 (en) SMALL MOLECULE PROBE BINDING TO α-SYNUCLEIN AGGREGATE AND APPLICATION THEREOF
KR20090087037A (en) Aurone derivative-containing composition for diagnosis
JP2013237655A (en) Molecular probe for conformational disease diagnosis
Kawasaki et al. Development of radioiodinated acridine derivatives for in vivo imaging of prion deposits in the brain
Singh et al. A homodimeric bivalent radioligand derived from 1-(2-methoxyphenyl) piperazine with high affinity for in vivo 5-HT1A receptor imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760468

Country of ref document: EP

Kind code of ref document: A1