WO2019168125A1 - Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors - Google Patents

Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors Download PDF

Info

Publication number
WO2019168125A1
WO2019168125A1 PCT/JP2019/007942 JP2019007942W WO2019168125A1 WO 2019168125 A1 WO2019168125 A1 WO 2019168125A1 JP 2019007942 W JP2019007942 W JP 2019007942W WO 2019168125 A1 WO2019168125 A1 WO 2019168125A1
Authority
WO
WIPO (PCT)
Prior art keywords
labeling
biological sample
agent
compound
cell surface
Prior art date
Application number
PCT/JP2019/007942
Other languages
French (fr)
Japanese (ja)
Inventor
格 浜地
茂樹 清中
一真 天池
禎俊 山上
雄貴 西川
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2020503631A priority Critical patent/JPWO2019168125A1/en
Publication of WO2019168125A1 publication Critical patent/WO2019168125A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present specification discloses a labeling method for a biological sample, a labeled cell-containing biological sample, and a labeling agent.
  • Cell surface receptors are important for cell recognition, signal transduction, mass transport into and out of cells, and the action point of drugs, but they are hydrophobic proteins embedded in cell membranes and are difficult to separate and purify. Labeling with antibodies to surface receptors has been performed.
  • Patent Document 1 discloses a technique for labeling a neurotransmitter receptor with a compound having a ligand and a labeling group for the neurotransmitter receptor, and the labeling using the compound described above is the stability of the compound, There was room for improvement in terms of overall animal labeling.
  • a method for labeling a biological sample comprising: (A) applying a fixing agent to the cell-containing biological sample, and (b) applying a labeling agent to the cell-containing biological sample, (Step (a) and step (b) may be performed first, step (a) and step (b) may be performed simultaneously), here,
  • the labeling agent has at least one reactive group that reacts with a ligand for a cell surface receptor, a labeling substance, and an immobilizing agent;
  • Some cells contained in the cell-containing biological sample include the cell surface receptor, The cell surface receptor has at least one reactive group that reacts with the immobilizing agent and a ligand binding site, The immobilizing agent reacts with a reactive group of the labeling agent and a reactive group of the cell surface receptor to form a covalent bond, thereby linking the labeling agent and the cell surface receptor;
  • Item 2. The method for labeling a biological sample according to Item 1, wherein the number of reactive groups of the labeling agent involved in the covalent bond with the immobilizing agent is the same as the number of reactive groups of the cell surface receptor.
  • the reactive group of the cell surface receptor is selected from the group consisting of NH 2 , OH and SH, and the reactive group of the labeling agent is selected from the group consisting of NH 2 , NHNH 2 , CONHNH 2 , OH and SH.
  • Item 3. The method for labeling a biological sample according to any one of Items 1 to 2, which is selected.
  • Item 4. Item 4. The method for labeling a biological sample according to any one of Items 1 to 3, wherein the step (a) is performed simultaneously with the step (b).
  • Item 5 Either by providing a cell-containing biological sample pre-fixed with the immobilizing agent, or by further coexisting the immobilizing agent with a cell-containing biological sample pre-fixed with the immobilizing agent. (a) is achieved, Item 5. The method for labeling a biological sample according to any one of Items 1 to 4, wherein in the step (b), the biological sample immobilized with the immobilizing agent reacts with the labeling agent. Item 6. Item 6. The method for labeling a biological sample according to any one of Items 1 to 5, wherein the reaction between the reactive group of the cell surface receptor, the reactive group of the labeling agent, and the immobilizing agent is reversible. . Item 7. Item 7.
  • Item 8 The method for labeling a biological sample according to any one of Items 1 to 6, wherein the cell surface receptor is a receptor for a neurotransmitter.
  • Item 8 The biological sample label according to any one of Items 1 to 7, wherein the immobilizing agent is at least one selected from the group consisting of formaldehyde, paraformaldehyde, glutaraldehyde, glyoxal, methylglyoxal, and dimethyl suberimidate. Method. Item 9.
  • the cell-containing biological sample is brain, heart, liver, gallbladder, kidney, adrenal gland, pancreas, lung, thyroid, esophagus, stomach, duodenum, small intestine, large intestine, ureter, bladder, prostate, uterus, breast, bronchi, blood vessel Item 9.
  • the method for labeling a biological sample according to any one of Items 1 to 8, comprising at least one selected from the group consisting of lymphatic vessels, skin, bones, joints, muscles, oral mucosa, and nasal mucosa.
  • Item 10 A labeled cell-containing biological sample labeled with a labeling agent, wherein the labeling agent is covalently linked by a cell surface receptor of the biological sample and a fixing agent. .
  • Receptors that receive ligands such as neurotransmitters are important drug targets.
  • a deep part of a living body or an entire animal can be labeled.
  • cell surface receptors such as neurotransmitter receptors can be comprehensively labeled and visualized. it can.
  • a biological sample fixed with an immobilizing agent can be labeled, for example, an enormous amount of immobilized biological sample stock including an immobilized disease site is used. Leveraging and labeling in this embodiment can contribute to clarifying the relationship between disease and cell surface receptors.
  • a plurality of cell surface receptors can be labeled simultaneously, which can contribute to clarifying the mutual relationship between them. According to the method of the present disclosure, it is possible to visualize samples such as cultured nerve cells, brain slices, whole brains, whole animals, and calcium channels.
  • the labeling method of the present disclosure can be used in combination with a normal immunostaining method.
  • the labeling of a biological sample according to an embodiment can contribute to elucidation of cancer formation / metastasis mechanism, memory mechanism (brain connectome research), and the like.
  • FIG. 1 schematically shows Ligand-directed chemistry disclosed in Patent Document 1.
  • FIG. 2 shows a schematic diagram of labeling in one exemplary embodiment of the present disclosure.
  • the lower column (a) and (b) in FIG. 2 schematically shows the following in relation to the reaction equation in the upper column: (a) The labeling agent does not decompose ⁇ applicable to deep tissue, ( b) Labeling when immobilizing tissues and individuals.
  • FIG. 3 shows an example of labeling of AMPAR (AMPA glutamate receptor) in living cells.
  • the upper column of FIG. 3 schematically shows the process in Test Example 1.
  • the column in FIG. 3 shows the chemical structure of the labeling agent used in Test Example 1.
  • a labeling substance contained in the labeling agent is indicated by a circle.
  • FIG. 3 shows the result of confocal microscope observation for each of the labeling agents used in Test Example 1.
  • the lower column (a) of FIG. 3 shows an image obtained when Compound 1 (Fluorescein) was used as a labeling agent.
  • the juxtaposed image illustrates the result of visualizing the presence of AMPAR by displaying AMPAR in green and the inside of the cell in red.
  • the lower column (b) of FIG. 3 shows an image obtained when Compound 1 (Alexa 647) was used as a labeling agent.
  • the juxtaposed image illustrates the result of visualizing the presence of AMPAR by displaying AMPAR in red and displaying the inside of the cell in green.
  • FIG. 4 illustrates (a) labeling of live cells with mGlu1 (metabotropic glutamate receptor) and (b) labeling with GABA A R (GABA A receptor).
  • FIG. 4 (a) shows the chemical structure of the used labeling agent on the left side and an image obtained by visualization on the right side. In the image, mGlu1 visualized in red (the cell surface is colored) and mGlu1 expressing cells visualized in green (the whole cell is colored) are grasped.
  • FIG. 4 (b) also shows the chemical structure of the used labeling agent on the left side and an image obtained by visualization on the right side.
  • FIG. 5 is a schematic diagram illustrating an example of the timing of using a labeling agent (Labeling® Reagent) and a fixing agent. This figure illustrates protocols 1 and 2 and illustrates the flexibility of the procedure of the technology of the present disclosure.
  • FIG. 6 shows an example of visualization of mGlu1 in a cerebellar slice using the technique of the present disclosure.
  • FIG. 6 (a) shows the procedure for visualizing the cerebellar slice (thickness 300 ⁇ m) and the chemical structure of the labeling agent used.
  • FIG. 6 (b) shows an example of the visualized result in the cerebellar slice, FIG.
  • FIG. 6 (c) shows the cerebellar slice schematically shown
  • FIG. 6 (d) shows that mGlu1 is a molecule in the cerebellar slice. It indicates that the layer is localized (the arrow indicates the molecular layer).
  • FIG. 7 shows a schematic diagram of a cell recombination agent and a labeled recombination reaction according to one embodiment of the present disclosure.
  • FIG. 8 shows the protocol and results of the immobilization drive labeling method of the present disclosure in hippocampal neurons. Red indicates spines with Alexa647 bound, and green indicates MAP2 protein present in immunostained dendrites.
  • FIG. 9 shows an example of simultaneous staining of multiple receptors in a cerebellar slice. The upper column of FIG. 9 schematically shows the procedure of this test.
  • FIG. 9 shows the chemical structure of the labeling agent for mGlu1 and the labeling agent for AMPAR used in this test.
  • an image mGlu1 (FL), AMPAR (Alexa647), superposition of these (Merge) showing the staining result of the receptor together with a schematic diagram showing the functional position of the receptor described above.
  • FIG. 10 shows an example of labeling for a voltage-dependent calcium channel (VDCC: Voltage-dependent Ca2 + channel) in a cerebellar slice.
  • VDCC Voltage-dependent Ca2 + channel
  • FIG. 10 shows the three-dimensional structure and primary sequence of a VDCC peptide labeling agent (peptide-based labeling reagent for VDCC) as well as the subunit structure of VDCC.
  • the lower column of FIG. 10 shows the result of imaging in the presence of a competitive inhibitor in the same system as the result of visualization of the channel in the cerebellar slice (confocal microscope when using a labeling reagent).
  • Show FIG. 11 shows the protocol and results of labeling to mGlu1 in the whole cerebellum.
  • the upper column of FIG. 11 shows a photograph of the whole mouse cerebellum taken out after the treatment together with the protocol.
  • the lower column of FIG. 11 shows the relationship between the distance (unit: mm) from the injection point (injection point) of the labeling agent and the visualization result (image) of mGlu1 in the sliced tissue section.
  • the fixing agent used in one embodiment of the present disclosure can be the one used for tissue and organ fixation.
  • Specific examples include suberic acid dialkyl esters such as formaldehyde, paraformaldehyde, glutaraldehyde, glyoxal, methylglyoxal, and dimethyl suberimidate, and these may be used alone or in combination of two or more. Can do.
  • Known conditions can be applied as specific conditions (concentration of fixing agent, temperature, time, etc.) for immobilizing an organ, tissue, or whole animal (whole animal).
  • the cell surface receptor to be labeled is typically one in which part or all of the cell surface receptor is exposed on the outer surface of the cell membrane and can interact with substances outside the cell membrane. Does not contain receptors. These cell surface receptors can function as cell recognition, signal transduction, mass transport into and out of cells, and a site of action of drugs. As used herein, the term cell surface receptor includes ion channels.
  • VDCC Voltage-dependent Ca2 + channel
  • voltage-dependent potassium channels voltage-dependent sodium channels
  • calcium-activated potassium channels HCN (Hyperpolarization-activated cyclic nucleotide-gated) channels
  • CNG cyclic nucleotide-gated channel
  • ASIC acid-sensitive ion channel
  • ASIC acid-sensitive ion channel
  • ENaC epithelial sodium channel
  • chloride channel ligand-dependent channel
  • the cell surface receptor to be fluorescently labeled is any receptor, ion channel to be labeled, and is not particularly limited.
  • a neurotransmitter receptor G protein-coupled receptor Body (GPCR), tyrosine kinase receptor, voltage-dependent Ca2 + channel (VDCC) and the like, specifically, but not limited to the following receptors: GABA receptor, NMDAR1 receptor, NGF receptor, folate receptor, glycine receptor, selectin receptor, erythropoietin receptor, glucagon receptor, muscarinic acetylcholine receptor (M1, M2, M3, M4, M5), nicotine Sex acetylcholine receptor, adenosine receptor (A1, A2A, A2B, A3), adrenergic receptor ( ⁇ 1A, ⁇ 1B, ⁇ 1D, ⁇ 2A, ⁇ 2B, ⁇ 2C, ⁇ 1, ⁇ 2, ⁇ 3), angiotensin
  • the ligand examples include a ligand that binds to the ligand binding site of the cell surface receptor.
  • the ligand includes not only a full agonist (eg, acetylcholine with respect to the acetylcholine receptor) that is originally bound to the receptor, but also other agonists, partial agonists, antagonists and the like as long as it binds to the ligand binding site.
  • Full agonists include, but are not limited to: ⁇ Muscarinic acetylcholine receptor: acetylcholine, muscarinic / adenosine receptor: adenosine, caffeine / adrenergic receptor: adrenaline, noradrenaline / GABA receptor: GABA Angiotensin receptor: Angiotensin cannabinoid receptor: Cannabis component and anandamide Cholecystokinin receptor: Cholecystokinin dopamine receptor: Dopamine glucagon receptor: Glucagon histamine receptor: Histamine opioid receptor: Cocaine Opium components such as morphine and heroin and endogenous peptide ligands (enkephalins, endorphins, etc.) ⁇ Secretin receptor: Secretin ⁇ Serotonin receptor: Serotonin ⁇ Somatostatin receptor: Somatostatin ⁇ Gastrin receptor: Gastrin ⁇ Erythropoietin receptor: Erythropo
  • a cell-containing biological sample is an organism (single cell organism, multicellular organism) itself, or a unit constituting the organism (ie, a multicellular organism). Units that formally distinguish from the surroundings and bear the function of the unit as a whole, such as tissues (structural units composed of multiple cells), organs (multiple tissues) Is a structural unit composed of Examples of multicellular organisms include, but are not limited to, animals (generally multicellular organisms with motor skills and sensations) in one embodiment. Examples of animals include, but are not limited to, mammals. Such cell-containing biological samples derived from such animals include, but are not limited to, animals themselves, animal tissues, organs, and the like.
  • mammals include, but are not limited to, humans, mice, rats, rabbits, hamsters, goats, cows, horses, pigs, dogs, cats, monkeys, chimpanzees and the like. In certain embodiments, examples of such mammals include humans, mice, and rats, and humans may be more preferable.
  • systemic cell surface receptors can be labeled and when the labeling agent is administered locally to the living mammal. Can label around the local administration site.
  • the labeling substances of the two or more labeling agents when two or more labeling agents are applied to a biological sample, a plurality of cell surface receptors can be visualized simultaneously.
  • the labeling substances of the two or more labeling agents preferably have different wavelengths of fluorescence, and the difference in fluorescence wavelength between the two or more labeling substances is preferably 30 nm or more, more preferably 40 nm or more.
  • animal organs and tissues include parts of the central nervous system (cerebellum, cerebral cortex, amygdala, hippocampus, striatum, substantia nigra, thalamus, hypothalamus, midbrain, bridge, medulla, spinal cord, etc.) , Spinal cord, pituitary, stomach, pancreas, kidney, liver, thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, gastrointestinal tract, blood vessel, heart, thymus, spleen, submandibular gland, prostate, testis, testis, ovary , Placenta, uterus, breast, teeth, bones, joints, skeletal muscle, etc., or a portion thereof.
  • Tissues and organs include thin samples such as sliced slices, but even a thick biological sample may be labeled to a deeper depth using the method of the present disclosure.
  • labeling substance (Fl) examples include, but are not limited to, fluorescent substances.
  • labeling substances include, but are not limited to, biotin, 5-carboxyfluorescein or 6-carboxyfluorescein (FAM), VIC, NED, IRD-700 / 800, Alexa-350 , Alexa-405, Alexa-430, Alexa-488, Alexa-500, Alexa-514, Alexa-532, Alexa-546, Alexa-555, Alexa-568, Alexa-594, Alexa-610, Alexa-633, Alexa -647, Alexa-660, Alexa-680, Alexa-700, Alexa-750, Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, BODIPY 505/515, Atto390, Atto425, Atto465, Atto488, Atto495, Atto520, Atto532, Atto550, Atto565, Atto590, Atto594, Atto620, Atto633, Atto 647N, Atto655R
  • the at least one reactive group of the labeling agent which reacts with the immobilized agent, OH, SH, NH 2, NHNH 2, and CO-NHNH 2 include, but are not limited to.
  • the reactive group is NH 2 or CO—NHNH 2
  • the reactive group is NH 2 .
  • the reactive groups of the cell surface receptor that reacts with the immobilized agent OH, SH, and NH 2 and the like.
  • the labeling agent has at least one reactive group ( ⁇ ) that reacts with a ligand (Lg; ligand) for the cell surface receptor, a labeling substance (Fl), and an immobilizing agent.
  • the labeling agent usually has one ligand.
  • the ligand (Lg) and the labeling substance (Fl) are bound via a divalent linking group (Z), and a reactive group ( ⁇ ) is bound to the linking group. Further combined.
  • the number (n) of reactive groups (“ ⁇ ” in FIG. 2) of the cell surface receptor that reacts with the immobilizing agent may be 1 or more (for example, 2, 3, or 4). There may be.
  • the number of reactive groups ( ⁇ ) on the cell surface receptor and the number (n) of reactive groups ( ⁇ ) on the labeling agent are usually the same. This is because the immobilizing agent has a function of linking the reactive group ( ⁇ ) of the cell surface receptor and the reactive group ( ⁇ ) of the labeling agent in a one-to-one relationship (FIG. 2).
  • the labeling agent may be represented by, for example, the following formula (I).
  • Lg represents a ligand
  • Fl represents a labeling substance
  • represents a reactive group
  • Z represents a divalent linking group
  • n represents an integer of 1 to 4
  • Ya and Yb represent (The same or different, CONH or NHCO is indicated.)
  • the divalent linking group represented by Z is not particularly limited, and any divalent linking group can be used.
  • Examples of the divalent linking group represented by Z include, for example, a linear or branched alkylene group having 2 to 20 carbon atoms, an arylene group, an aralkylene group, an ether group, a group derived from an amino acid or an oligopeptide, or a group thereof. Combinations are mentioned, and these groups may be intervened by one or two or more divalent hetero groups (CONH, NHCO, O, S, CO, NH). Specific examples of the divalent linking group represented by Z are shown below.
  • R 1 , R 2 and R 3 are the same or different and are on the side of 20 natural amino acids constituting a protein. Indicates a chain.
  • Twenty natural amino acids constituting the protein include Glu, Asp, Gln, Asn, Gly, Ala, Ser, Thr, Cys, Met, Leu, Ile, Val, Phe, Tyr, Trp, His, Arg, Lys, Pro.
  • the arylene group and aralkylene group may have a substituent.
  • substituents alkyl, cycloalkyl, alkoxy, halogen atoms (F, Cl, Br, I), OH, CN, NO 2 , COOH, NH 2 , phenyl, benzyl, acetylamino, acetyl, acetyloxy, methoxycarbonyl , Ethoxycarbonyl, butoxycarbonyl, trifluoromethyl, and the like.
  • Alkyl includes linear or branched C 1-18 alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl and the like. .
  • Cycloalkyl includes C 3-10 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. A part of the ring may be substituted with a hetero element or may have a substituent.
  • Alkoxy includes linear or branched methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, isopentyloxy, hexyloxy, polyethylene glycol derivatives, etc. C 1-18 Alkoshi.
  • the labeling agent of the present disclosure can be synthesized according to the following Scheme A-Scheme F.
  • N1 is an integer of 0 or more.
  • Pro represents a protecting group, R represents OH, Cl, Br, methoxy, ethoxy, propoxy, butoxy, phenoxy, benzyloxy or cyanomethyloxy N3 is 1 when ⁇ is NH 2 , NHNH 2 , CO—NHNH 2 , and is 0 when ⁇ is OH or SH.
  • Protecting groups represented by Pro include Boc (tert-butoxycarbonyl), Cbz (benzyloxycarbonyl), Fmoc (9-fluorenylmethyloxycarbonyl), Alloc (allyloxycarbonyl), Troc (2,2, 2-trichloroethoxycarbonyl), TMS-ethylcarbonyl, cyan
  • the first reactions of Schemes A to F are all amide bond (CONH) formation reactions.
  • this reaction about 0.8 to 1.2 mol of the compound (2, 4, 6, 8, 10, or 12) is used per 1 mol of the compound (1, 3, 5, 7, 9, or 11).
  • the compound of the formula (Ia), (Ib) or (Id) proceeds advantageously by reacting in a solvent in the presence of a condensing agent, if necessary, from room temperature to the boiling temperature of the solvent for about 1 to 24 hours. Get.
  • Solvents include dimethylformamide, tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether and other ethers, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane and other halogenated hydrocarbons, benzene, toluene, xylene and other aromatics
  • Examples include hydrocarbons, aliphatic hydrocarbons such as hexane, acetonitrile, methanol, ethanol, and the like.
  • the condensing agent include DCC, water-soluble carbodiimide (WSC), DIC, carbonyldiimidazole (CDI), DMT-MM, etc.
  • the target compound of formula (I) can be obtained by deprotecting the compound of formula (Ia) obtained in Schemes B to D in the same manner as in scheme 1.
  • the deprotection reaction in Scheme A, E, F can be deprotected according to the well-known deprotection conditions of each protecting group.
  • the Boc group can be deprotected under strongly acidic conditions such as trifluoroacetic acid, HCl-ethyl acetate solution, HCl-dioxane solution, Cbz can be deprotected by hydrogenation reaction with Pd / C, Birch reduction, etc.
  • Fmoc It can be deprotected with a secondary amine such as piperidine
  • Troc can be deprotected with zinc powder-acetic acid, etc.
  • Alloc can be deprotected with the addition of an amine in the presence of a palladium catalyst.
  • Protecting groups other than these can also be deprotected according to conventional methods.
  • a biological sample can be labeled by allowing a labeling agent and an immobilizing agent to act on a biological sample containing cells expressing a receptor.
  • the biological sample labeling method includes the following steps (a) and (b). (A) applying a fixing agent to the cell-containing biological sample, and (b) applying a labeling agent to the cell-containing biological sample,
  • step (b) may be performed after step (a)
  • step (a) may be performed after step (b)
  • step (a) and step (b) are performed simultaneously. Also good.
  • the amount of the immobilizing agent used for 100 g of the biological sample is about 1 to 300 mg.
  • the amount of labeling agent used for 100 g of biological samples is about 1 to 10 mg.
  • An excessive amount of the fixing agent and the labeling agent may be used with respect to the biological sample.
  • Step (a) may be performed with an unfixed biological sample or may be performed with an immobilized biological sample.
  • a fixing agent is applied to the biological sample.
  • Application of the immobilizing agent to the biological sample can be performed according to a conventional method.
  • the step (a) can be performed by immersing the biological sample in the immobilizing agent solution.
  • the application temperature of the fixing agent is about 0 ° C. to 37 ° C., and the application time of the fixing agent is about 1 to 48 hours.
  • step (a) When using a biological sample that has already been immobilized, step (a) provides a cell-containing biological sample that has been immobilized in advance with an immobilizing agent, or the immobilization together with the biological sample that has been immobilized in advance with the immobilizing agent. It can be carried out either by further coexisting the agent.
  • Step (b) can be performed by dissolving the labeling agent in a solvent and applying it to the biological sample.
  • the biological sample is immersed in a solution containing a labeling agent and reacted at a temperature of about 0 ° C. to 37 ° C. for about 1 to 48 hours to label the biological sample.
  • the ligand of the agent can be bound to the ligand binding site of the cell surface receptor. Excess labeling agent is removed from the biological sample by washing.
  • step (b) When step (b) is performed before step (a), since there is no immobilizing agent, the labeling agent is not covalently bound to the cell surface receptor in step (b), but after step (b) By performing the step (a) of applying the immobilizing agent, the labeling agent can be covalently bound to the cell surface receptor.
  • Steps (a) and (b) are performed by immersing an unfixed biological sample in a solution containing both the immobilizing agent and the labeling agent and reacting at a temperature of about 0 ° C. to 37 ° C. for about 1 to 48 hours. ) Can be performed simultaneously.
  • immobilization of a biological sample with an immobilizing agent is a reversible equilibrium reaction
  • a labeling agent when allowed to act on an immobilized biological sample, a part of the immobilizing agent bound to the reactive group of the receptor. Is separated from the biological sample, and the newly exposed receptor reactive group and the reactive group of the labeling agent are covalently bonded to the immobilizing agent, whereby the receptor can be labeled with the labeling agent.
  • the labeling agent is strongly bound to the receptor (“Protein” in FIG. 7) by the ligand. This substitution or recombination reaction takes place ( Figure 7).
  • a buffer solution having a pH of about 4 to 7 can be used as a solution containing a labeling agent and, if necessary, a fixing agent.
  • the labeling agent is preferably used in excess relative to the receptor.
  • the labeling agent labels the receptor when the receptor and the ligand (Lg) are bound, but non-specific labeling is suppressed.
  • excess labeling agent can be removed by immersing the labeled biological sample in a solution containing no labeling agent. This washing operation can be repeated until the labeling agent is removed.
  • Solvents are solvents in which water or compound (I) can be dissolved, for example, lower alcohols such as methanol, ethanol, propanol, acetone, tetrahydrofuran (THF), dioxane, N-methylpyrrolidone, dimethylformamide (DMF), acetonitrile, dimethyl Water miscible solvents such as acetamide and dimethyl sulfoxide (DMSO) can be mentioned, but are not limited thereto.
  • the buffer include, but are not limited to, HEPES buffer, phosphate buffer, Tris buffer, and the like.
  • the crude compound (48.3 mg) was dissolved in 1.4 ml of THF, 0.42 ml (210 ⁇ mol) of 0.5 M lithium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 3 hours. Next, 0.42 ml (210 ⁇ mol) of 0.5 M lithium hydroxide aqueous solution was added to this solution, and the mixture was stirred at room temperature for 5 hours. After neutralizing with 1N hydrochloric acid, the mixture was dried under reduced pressure. The obtained solid was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain Compound 9 (9.8 mg, 16.2 ⁇ mol).
  • Compound 11 Compound 10 (393 mg, 0.82 mmol) was dissolved in THF 8.2 ml, 1 M aqueous sodium hydroxide solution 0.82 ml (0.82 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Next, 0.82 ml (0.82 mmol) of 1 M aqueous sodium hydroxide solution was added to this solution and stirred at room temperature for 1 hour. Next, 0.82 ml (0.82 mmol) of 1 M aqueous sodium hydroxide solution was added to this solution and stirred at room temperature for 1 hour. Next, 0.82 ml (0.82 mmol) of 1 M aqueous sodium hydroxide solution was added to this solution and stirred at room temperature for 1 hour.
  • Compound 20 Compound 19 (18.7 mg, 21 ⁇ mol) was dissolved in 0.5 ml of methanol. Under a nitrogen atmosphere, 10 mg of 10% Pd / C was added, and the mixture was stirred at room temperature for 4.5 hours under a hydrogen atmosphere. Subsequently, 1.5 ml of methanol was added, 10% Pd / C 10 mg was added under a nitrogen atmosphere, and the mixture was stirred at room temperature for 6.5 hours under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain 18.9 mg of a crude product. 18.9 mg of the crude product was dissolved in 2.0 ml of dry methanol.
  • the obtained compound was dissolved in 0.2 ml of methanol, 0.2 ml of 0.5 M lithium hydroxide aqueous solution was added and stirred overnight at room temperature. The mixture was neutralized with 1M hydrochloric acid and then dried under reduced pressure, and the obtained compound was used as it was in the next reaction.
  • N- (tert-butoxycarbonyl) -2,2 '-(ethylenedioxy) diethylamine 6.6 mg (32.1 ⁇ mol), HBTU 15.2 mg (40.1 ⁇ mol), DIEA 14 ⁇ l (80.2 ⁇ mol) were added, and the mixture was stirred at room temperature. . Saturated brine was added, and the mixture was extracted three times with ethyl acetate. The solvent in the organic layer was distilled off, and the residue was purified by preparative thin layer chromatography (silica gel, ethyl oxalate). 7.2 mg (12.9 ⁇ mol) Compound 35 was obtained.
  • HEK293T cells 10% FBS, penicillin (100 units / mL) and streptomycin (100 ⁇ g / mL) Dulbecco's Modified Eagle Medium supplemented with (DMEM, glucose 4.5 g / L) medium, in 5% CO 2
  • DMEM Dulbecco's Modified Eagle Medium supplemented with (DMEM, glucose 4.5 g / L) medium, in 5% CO 2
  • HEK293T cells transfected with mGlu1 were prepared in the same manner as described above except that the metabotropic glutamate receptor (mGlu1) gene was used instead of the AMPA type glutamate receptor (GluR2) gene.
  • mGlu1 metabotropic glutamate receptor
  • GluR2 AMPA type glutamate receptor
  • HEK293T cells into which GABA A R was introduced were prepared in the same manner as described above except that the GABA A receptor (GABA A R) gene was used in place of the AMPA type glutamate receptor (GluR2) gene.
  • Test example 1 Labeling and visualization of AMPAR (AMPA glutamate receptor) in HEK293T cells ( Figure 3)
  • AMPAR AMPA glutamate receptor
  • Figure 3 The above-described HEK293T cells into which the GluR2 gene had been introduced were washed twice with PBS ( ⁇ ).
  • Compound 1 (1 ⁇ M) was added to PBS ( ⁇ ), added to the cells, and incubated at room temperature for 10 minutes.
  • a 10% volume of 4% PFA phosphate buffer solution of the above-mentioned Compound 1-added PBS (-) was added to the cells and incubated at room temperature for 30 minutes.
  • the plate was washed 3 times with PBS (-) and observed with confocal microscopy.
  • Test example 2 Labeling and visualization of mGlu1 in HEK293T cells
  • Figure 4a HEK293T cells into which mGlu1 gene had been introduced were washed twice with PBS ( ⁇ ).
  • Compound 5 (0.1 ⁇ M) was added to PBS ( ⁇ ), added to the cells, and incubated at room temperature for 10 minutes.
  • a 10% volume of 4% PFA phosphate buffer solution of the above-mentioned compound 5 added PBS ( ⁇ ) was added to the cells, and incubated at room temperature for 30 minutes.
  • the plate was washed 3 times with PBS (-) and observed with a confocal microscope.
  • Test example 3 Labeling and visualization of GABA A R in HEK293T cells
  • Figure 4b HEK293T cells into which GABA A R gene had been introduced were washed twice with PBS ( ⁇ ).
  • Compound 6 (1 ⁇ M) was added to PBS ( ⁇ ), added to the cells, and incubated at room temperature for 10 minutes.
  • a 10% volume of 4% PFA phosphate buffer solution of the above-described compound 6-added PBS ( ⁇ ) was added to the cells, and incubated at room temperature for 30 minutes.
  • the plate was washed 3 times with PBS (-) and observed with a confocal microscope.
  • Test example 4 Labeling and visualization of mGlu1 in brain slices ( Figure 6) ACSF solution (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgCl 2 , 1.25 mM NaH 2 PO 4 ) with compound 5 (0.1 ⁇ M) added to acute brain slices isolated from 3-week-old ICR mice , 26 mM NaHCO 3 , 10 mM D-glucose) and incubated in a 95% O 2 /5% CO 2 atmosphere at room temperature for 30 minutes. A 10% volume of 4% PFA phosphate buffer solution of the above-mentioned Compound 5 added ACSF solution was added to the cerebellar slice and incubated at room temperature for 1 hour. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
  • ACSF solution 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgCl
  • Protocol 1 ( Figure 5) The above-described HEK293T cells into which the GluR2 gene had been introduced were washed twice with PBS ( ⁇ ). Labeling agent (1 ⁇ M) was added to 1% PFA phosphate buffer solution, added to the cells and incubated for 1 hour at room temperature. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
  • Protocol 2 ( Figure 5) The above-described HEK293T cells into which the GluR2 gene had been introduced were washed twice with PBS ( ⁇ ). 1% PFA phosphate buffer solution was added to the cells and incubated at room temperature for 30 minutes. The cells were washed 3 times with PBS ( ⁇ ), 1% PFA phosphate buffer solution containing a labeling agent (1 ⁇ M) added to the cells, and incubated at room temperature for 1 hour. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
  • Test Example 5 Immobilization drive labeling in hippocampal neurons (Fig. 8) Experimental method Conventional method (Wakayama, S .; Kiyonaka, S .; Arai, I .; Kakegawa, W .; Matsuda, S .; Ibata, K .; Nemoto, YL; Kusumi, A .; Yuzaki, M .; Hamachi , I. Nat. Commun. 2017, 8, 14850.), cultured hippocampal neurons were washed twice with PBS ( ⁇ ). Compound (1) (Alexa647) (2 ⁇ M), the labeling agent obtained in Scheme 2, was added to PBS ( ⁇ ), added to the cells, and incubated at room temperature for 5 minutes.
  • Inhibitors 4-Fluoro-N- [4- [6- (isopropylamino) pyrimidin-4-yl] -1,3-thiazol-2-yl] -N-methylbenzamide (4 ⁇ M) and NBQX: 2 , 3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo [f] quinoxaline-7-sulfonamide (40 ⁇ M)), compound 1 (Alexa647) (2 ⁇ M), and compound 5 (Fluorescein) (0.2 When combined with ⁇ M), it was revealed that the binding of fluorescein (Fl) to mGlu1 and the binding of Alexa647 to AMPAR were inhibited (see the image in the lower column of FIG. 7).
  • VDCC Voltage-dependent Ca 2+ channel
  • AgTX ⁇ -agatoxin IVA from Funnel Web Spider, Agelenopsis aperta
  • 2-chlorotrityl chloride resin (1.51 mmol / g, 750 mg, 1.13 mmol) was added to 5% H 2 NNH 2 / NMP (v / v) (4 m
  • Cys-AgTx [26-48] Using NovaSyn (registered trademark) TGA resin, the corresponding peptide fragment was synthesized by solid phase synthesis and purified by reverse phase HPLC to obtain Cys-AgTx [26-48]. Cys-AgTx [26-48] shown in SEQ ID NO: 3 is the 25th to 48th peptides of SEQ ID NO: 1.
  • N 3 -AgTx [1-48] Add N 3 -AgTx [1-24] -CONHNH 2 (11.2 mg, 3 ⁇ mol) to 0.2 M phosphate buffer / 6 M guanidinium chloride (pH 3.15) (500 ⁇ L), and cool to -20 ° C. 0.5 M NaNO 2 aqueous solution (60 ⁇ L, 30 ⁇ mol, 10 eq.) was added, and the mixture was stirred at ⁇ 20 ° C. for 30 minutes.
  • N 3 -AgTx [1-48] linear (2.0 mg, 0.375 ⁇ mol), reduced glutathione (11.5 mg, 37.5 ⁇ mol, 100 eq.), Oxidized glutathione (2.3 mg, 3.75 ⁇ mol, 10 eq.) was dissolved in 1 M ammonium acetate buffer (pH 7.9) / 20 v / v% glycerol / 0.1 M EDTA (37.5 mL) and stirred at 4 ° C. overnight. Thereafter, purification was performed by reverse phase HPLC to obtain N 3 -AgTx [1-48].
  • the amino acid sequence of AgTx [1-48] is shown in SEQ ID NO: 1.
  • Fluorophore-AgTx [1-48] 106.8 ⁇ M N 3 -AgTx [1-48] (50 mM HEPES buffer (pH 7.4)) solution with 1.5 eq.
  • Click-iT TM Alexa Fluor TM 555 sDIBO alkyne (Thermo Fisher Scientific) or Click- iT TM Alexa Fluor TM 647 DIBO alkyne (Thermo Fisher Scientific) was added and stirred at room temperature for 3 hours. Thereafter, acetic acid was added to prepare a 30% acetic acid solution, followed by purification by reverse phase HPLC to obtain Fluorophore-AgTx [1-48].
  • ACSF (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgCl 2 , 1.25 mM NaH 2 PO 4 , 26 mM NaHCO 3 , 10 mM D-glucose) labeling agent
  • Fluorophore-AgTx [1-48] (0.2 ⁇ M) was added and added to mouse cerebellar slices and incubated for 30 minutes at room temperature in a 95% O 2 /5% CO 2 atmosphere.
  • the same amount of 2% PFA phosphate buffer solution as ACSF containing the labeling agent described above was added to the cells and incubated at room temperature for 60 minutes. Washed 3 times with PBS (-) and observed with confocal microscope.
  • a peptide such as the present disclosure is used as a ligand
  • a nucleophilic amino acid residue such as lysine
  • a target receptor can be labeled at the timing of reflux fixation by applying a labeling agent in an animal in a live state.

Abstract

The present disclosure provides a labeling method for biological samples, the method comprising: (a) a step in which an immobilizing agent is applied to a cell-containing biological sample; and (b) a step in which a labeling reagent is applied to the cell-containing biological sample (either one among step (a) or step (b) can be performed first, or step (a) and step (b) can be performed simultaneously). The labeling reagent contains: a ligand for a cell surface receptor; a labeling substance; and at least one reactive group that reacts with the immobilizing agent. Some of the cells contained in the cell-containing biological sample include said cell surface receptor. The cell surface receptor comprises a ligand binding site and at least one reactive group that reacts with the immobilizing agent. The immobilizing agent reacts with the reactive group of the labeling reagent and the reactive group of the cell surface receptor to form a covalent bond, whereby the labeling reagent and the cell surface receptor are connected to each other.

Description

化学クロスリンク法に基づく新たな生体内受容体可視化技術の開発Development of new in vivo receptor visualization technology based on chemical cross-linking method
 本明細書は、生体サンプルのラベル化方法、ラベル化された細胞含有生体サンプル及びラベル化剤を開示する。 The present specification discloses a labeling method for a biological sample, a labeled cell-containing biological sample, and a labeling agent.
 細胞表面受容体は、細胞認識、シグナル伝達、細胞内外への物質輸送、薬物の作用点として重要であるが、細胞膜に埋め込まれた疎水性のタンパク質であるために分離精製が困難であり、細胞表面受容体に対する抗体を用いて標識することが行われている。 Cell surface receptors are important for cell recognition, signal transduction, mass transport into and out of cells, and the action point of drugs, but they are hydrophobic proteins embedded in cell membranes and are difficult to separate and purify. Labeling with antibodies to surface receptors has been performed.
 生体サンプルの表面に露出した細胞の標識の場合には、抗体を用いた細胞の標識が可能であるが、細胞層が厚い場合、抗体のような大きな分子は深部まで浸透させ難いために、深部の標識は難しかった。 In the case of labeling cells exposed on the surface of a biological sample, it is possible to label cells using antibodies, but when the cell layer is thick, large molecules such as antibodies are difficult to penetrate deeply, so The sign was difficult.
 特許文献1は、神経伝達物質受容体に対するリガンドと標識基を有する化合物により神経伝達物質受容体を標識する技術を開示しているが、前記化合物を用いた標識は化合物の安定性、組織深部や動物全体の標識の点で改良の余地があった。 Patent Document 1 discloses a technique for labeling a neurotransmitter receptor with a compound having a ligand and a labeling group for the neurotransmitter receptor, and the labeling using the compound described above is the stability of the compound, There was room for improvement in terms of overall animal labeling.
再表2015/125851Table 2015/125851
 従来技術には上記で例示された課題があるが、組織の深部又は動物全体をラベル化可能であり、長期間保存しても安定な生体内受容体可視化技術を提供することが、本開示により解決され得る課題の一つである。 Although the prior art has the problems exemplified above, it is possible to label the deep part of the tissue or the whole animal, and to provide a stable in vivo receptor visualization technique even when stored for a long time according to the present disclosure. This is one of the problems that can be solved.
 本開示の一側面としては、以下の生体サンプルのラベル化方法、ラベル化された細胞含有生体サンプル及びラベル化剤(Labeling reagent)が提供される。
項1. 生体サンプルのラベル化方法であって、当該方法は、
 (a)細胞含有生体サンプルに固定化剤を適用する工程、および
 (b)前記細胞含有生体サンプルにラベル化剤を適用する工程、
(工程(a)と工程(b)は、いずれを先に行ってもよく、工程(a)と工程(b)を同時に行ってもよい。)を含み、
 ここで、
 前記ラベル化剤は、細胞表面受容体に対するリガンド、標識物質及び固定化剤と反応する少なくとも1種の反応性基を有し、
 前記細胞含有生体サンプルに含まれる一部の細胞は、前記細胞表面受容体を含み、
 前記細胞表面受容体は、前記固定化剤と反応する少なくとも1種の反応性基とリガンド結合部位を有し、
 前記固定化剤は、前記ラベル化剤の反応性基及び前記細胞表面受容体の反応性基と反応して共有結合を形成し、それにより前記ラベル化剤と前記細胞表面受容体を連結する、生体サンプルのラベル化方法。
項2. 前記固定化剤との共有結合に関与するラベル化剤の反応性基の数と前記細胞表面受容体の反応性基の数は同じである、項1に記載の生体サンプルのラベル化方法。
項3. 前記細胞表面受容体の反応性基が、NH2、OH及びSHからなる群から選ばれ、前記ラベル化剤の反応性基が、NH2、NHNH2、CONHNH2、OH及びSHからなる群から選ばれる、項1~2のいずれか1項に記載の生体サンプルのラベル化方法。
項4. 前記工程(a)が、前記工程(b)と同時に行なわれる、項1~3のいずれか1項に記載の生体サンプルのラベル化方法。
項5. 前記固定化剤で予め固定された細胞含有生体サンプルを提供すること、または、当該固定化剤で予め固定された細胞含有生体サンプルとともに前記固定化剤をさらに共存させることのいずれかによって、前記工程(a)が達成され、
前記工程(b)において、前記固定化剤で固定された生体サンプルと前記ラベル化剤が反応する、項1~4のいずれか1項に記載の生体サンプルのラベル化方法。
項6. 前記細胞表面受容体の反応性基、前記ラベル化剤の反応性基と前記固定化剤の反応が、可逆的である、項1~5のいずれか1項に記載の生体サンプルのラベル化方法。
項7. 細胞表面受容体が、神経伝達物質の受容体である、項1~6のいずれか1項に記載の生体サンプルのラベル化方法。
項8. 前記固定化剤が、ホルムアルデヒド、パラホルムアルデヒド、グルタルアルデヒド、グリオキサール、メチルグリオキサール及びスベリイミド酸ジメチルからなる群から選ばれる少なくとも1種である、項1~7のいずれか1項に記載の生体サンプルのラベル化方法。
項9. 前記細胞含有生体サンプルが、脳、心臓、肝臓、胆嚢、腎臓、副腎、膵臓、肺、甲状腺、食道、胃、十二指腸、小腸、大腸、尿管、膀胱、前立腺、子宮、乳房、気管支、血管、リンパ管、皮膚、骨、関節、筋肉、口腔粘膜、鼻粘膜からなる群から選ばれる少なくとも1種を含む、項1~8のいずれか1項に記載の生体サンプルのラベル化方法。
項10. ラベル化剤でラベル化された細胞含有生体サンプルであって、前記ラベル化剤は、生体サンプルの細胞表面受容体と固定化剤により共有結合で連結されている、ラベル化された細胞含有生体サンプル。
項11. 細胞表面受容体に対するリガンド、標識物質及び固定化剤と反応する少なくとも1種の反応性基を有し、前記固定化剤により細胞含有生体サンプルの細胞表面受容体と連結するために使用される、ラベル化剤。
As one aspect of the present disclosure, the following labeling method for a biological sample, labeled cell-containing biological sample, and labeling reagent are provided.
Item 1. A method for labeling a biological sample, the method comprising:
(A) applying a fixing agent to the cell-containing biological sample, and (b) applying a labeling agent to the cell-containing biological sample,
(Step (a) and step (b) may be performed first, step (a) and step (b) may be performed simultaneously),
here,
The labeling agent has at least one reactive group that reacts with a ligand for a cell surface receptor, a labeling substance, and an immobilizing agent;
Some cells contained in the cell-containing biological sample include the cell surface receptor,
The cell surface receptor has at least one reactive group that reacts with the immobilizing agent and a ligand binding site,
The immobilizing agent reacts with a reactive group of the labeling agent and a reactive group of the cell surface receptor to form a covalent bond, thereby linking the labeling agent and the cell surface receptor; A method for labeling biological samples.
Item 2. Item 2. The method for labeling a biological sample according to Item 1, wherein the number of reactive groups of the labeling agent involved in the covalent bond with the immobilizing agent is the same as the number of reactive groups of the cell surface receptor.
Item 3. The reactive group of the cell surface receptor is selected from the group consisting of NH 2 , OH and SH, and the reactive group of the labeling agent is selected from the group consisting of NH 2 , NHNH 2 , CONHNH 2 , OH and SH. Item 3. The method for labeling a biological sample according to any one of Items 1 to 2, which is selected.
Item 4. Item 4. The method for labeling a biological sample according to any one of Items 1 to 3, wherein the step (a) is performed simultaneously with the step (b).
Item 5. Either by providing a cell-containing biological sample pre-fixed with the immobilizing agent, or by further coexisting the immobilizing agent with a cell-containing biological sample pre-fixed with the immobilizing agent. (a) is achieved,
Item 5. The method for labeling a biological sample according to any one of Items 1 to 4, wherein in the step (b), the biological sample immobilized with the immobilizing agent reacts with the labeling agent.
Item 6. Item 6. The method for labeling a biological sample according to any one of Items 1 to 5, wherein the reaction between the reactive group of the cell surface receptor, the reactive group of the labeling agent, and the immobilizing agent is reversible. .
Item 7. Item 7. The method for labeling a biological sample according to any one of Items 1 to 6, wherein the cell surface receptor is a receptor for a neurotransmitter.
Item 8. Item 8. The biological sample label according to any one of Items 1 to 7, wherein the immobilizing agent is at least one selected from the group consisting of formaldehyde, paraformaldehyde, glutaraldehyde, glyoxal, methylglyoxal, and dimethyl suberimidate. Method.
Item 9. The cell-containing biological sample is brain, heart, liver, gallbladder, kidney, adrenal gland, pancreas, lung, thyroid, esophagus, stomach, duodenum, small intestine, large intestine, ureter, bladder, prostate, uterus, breast, bronchi, blood vessel Item 9. The method for labeling a biological sample according to any one of Items 1 to 8, comprising at least one selected from the group consisting of lymphatic vessels, skin, bones, joints, muscles, oral mucosa, and nasal mucosa.
Item 10. A labeled cell-containing biological sample labeled with a labeling agent, wherein the labeling agent is covalently linked by a cell surface receptor of the biological sample and a fixing agent. .
Item 11. Having at least one reactive group that reacts with a ligand for a cell surface receptor, a labeling substance, and an immobilizing agent, and is used for linking to the cell surface receptor of a cell-containing biological sample by the immobilizing agent. Labeling agent.
 神経伝達物質などのリガンドを受け取る受容体は、重要な薬剤標的である。 Receptors that receive ligands such as neurotransmitters are important drug targets.
 本開示の一側面によれば、生体の深部或いは動物全体をラベル化することができるので、例えば、神経伝達物質の受容体のような細胞表面受容体を網羅的にラベル化及び可視化することができる。 According to one aspect of the present disclosure, a deep part of a living body or an entire animal can be labeled. For example, cell surface receptors such as neurotransmitter receptors can be comprehensively labeled and visualized. it can.
 また、本開示の別の側面によれば、固定化剤で固定された生体サンプルについてラベル化を行うことができるため、例えば、固定化された疾患部位を含む膨大な固定化生体サンプルのストックを活用してこの実施態様でラベル化することにより、疾患と細胞表面受容体との関係を明らかにすることに貢献し得る。 According to another aspect of the present disclosure, since a biological sample fixed with an immobilizing agent can be labeled, for example, an enormous amount of immobilized biological sample stock including an immobilized disease site is used. Leveraging and labeling in this embodiment can contribute to clarifying the relationship between disease and cell surface receptors.
 また、本開示のさらに別の側面によれば、複数の細胞表面受容体を同時にラベル化できるので、これらの相互の関係を明らかにすることに貢献し得る。本開示の方法によれば、培養神経細胞、脳スライス(brain slice)、脳全体(whole brain)、動物全体(whole animal)などのサンプルの可視化、カルシウムチャネルの可視化などを行うことができる。 Further, according to still another aspect of the present disclosure, a plurality of cell surface receptors can be labeled simultaneously, which can contribute to clarifying the mutual relationship between them. According to the method of the present disclosure, it is possible to visualize samples such as cultured nerve cells, brain slices, whole brains, whole animals, and calcium channels.
 さらに、本開示のラベル化方法は、通常の免疫染色法と併用可能である。 Furthermore, the labeling method of the present disclosure can be used in combination with a normal immunostaining method.
 一実施形態による生体サンプルのラベル化は、例えば、がんの形成・転移メカニズムの解明、記憶のメカニズムの解明(脳コネクトーム研究)などに貢献し得る。 The labeling of a biological sample according to an embodiment can contribute to elucidation of cancer formation / metastasis mechanism, memory mechanism (brain connectome research), and the like.
図1は、特許文献1に開示されたリガンド指向型化学(Ligand-directed chemistry)を模式的に示す。FIG. 1 schematically shows Ligand-directed chemistry disclosed in Patent Document 1. 図2は、本開示の1つの例示的な実施形態におけるラベル化の模式図を示す。図2の下欄(a)および(b)は、上欄の反応式との関係で、次のことを模式的に示す:(a)ラベル化剤が分解しない→組織深部に適用可、(b) 組織及び個体の固定化時にラベル化。FIG. 2 shows a schematic diagram of labeling in one exemplary embodiment of the present disclosure. The lower column (a) and (b) in FIG. 2 schematically shows the following in relation to the reaction equation in the upper column: (a) The labeling agent does not decompose → applicable to deep tissue, ( b) Labeling when immobilizing tissues and individuals. 図3は、生細胞のAMPAR (AMPA型グルタミン酸受容体)のラベル化の一例を示す。図3上欄は、試験例1における過程を模式的に示した。図3中欄は、試験例1で使用したラベル化剤の化学構造を示す。丸印で、当該ラベル化剤に含まれる、標識物質を示す。図3下欄は、試験例1で使用したラベル化剤のそれぞれについて、共焦点顕微鏡観察の結果を示す。具体的には、図3下欄(a)は、化合物1(Fluorescein)をラベル化剤として用いた際に得た画像を示す。並置された画像は、AMPARが緑色表示され、その細胞の内側が赤色表示されることでAMPARの存在が可視化された結果を例示している。他方、図3下欄(b)は、化合物1(Alexa 647)をラベル化剤として用いた際に得た画像を示す。並置された画像は、AMPARが赤色表示され、その細胞の内側が緑色表示されることでAMPARの存在が可視化された結果を例示している。FIG. 3 shows an example of labeling of AMPAR (AMPA glutamate receptor) in living cells. The upper column of FIG. 3 schematically shows the process in Test Example 1. The column in FIG. 3 shows the chemical structure of the labeling agent used in Test Example 1. A labeling substance contained in the labeling agent is indicated by a circle. The lower column of FIG. 3 shows the result of confocal microscope observation for each of the labeling agents used in Test Example 1. Specifically, the lower column (a) of FIG. 3 shows an image obtained when Compound 1 (Fluorescein) was used as a labeling agent. The juxtaposed image illustrates the result of visualizing the presence of AMPAR by displaying AMPAR in green and the inside of the cell in red. On the other hand, the lower column (b) of FIG. 3 shows an image obtained when Compound 1 (Alexa 647) was used as a labeling agent. The juxtaposed image illustrates the result of visualizing the presence of AMPAR by displaying AMPAR in red and displaying the inside of the cell in green. 図4は、(a)生細胞のmGlu1 (代謝型グルタミン酸受容体)のラベル化、(b)GABAAR(GABAA受容体)のラベル化を例示したものである。図4(a)は、その左側に、使用したラベル化剤の化学構造を示し、右側に可視化により得られた画像を示す。当該画像において、赤色で可視化されたmGlu1(細胞表面が着色)、緑色で可視化されたmGlu1発現細胞(細胞全体が着色)が把握される。他方、図4(b)も、その左側に、使用したラベル化剤の化学構造を示し、右側に可視化により得られた画像を示す。当該画像において、赤色で可視化されたGABAAR(細胞表面が着色)、緑色で可視化されたGABAAR発現細胞(細胞全体が着色)が把握される。FIG. 4 illustrates (a) labeling of live cells with mGlu1 (metabotropic glutamate receptor) and (b) labeling with GABA A R (GABA A receptor). FIG. 4 (a) shows the chemical structure of the used labeling agent on the left side and an image obtained by visualization on the right side. In the image, mGlu1 visualized in red (the cell surface is colored) and mGlu1 expressing cells visualized in green (the whole cell is colored) are grasped. On the other hand, FIG. 4 (b) also shows the chemical structure of the used labeling agent on the left side and an image obtained by visualization on the right side. In the image, GABA A R visualized in red (cell surface is colored) and GABA A R expressing cells visualized in green (the whole cell is colored) are grasped. 図5は、ラベル化剤(Labeling Reagent)と固定化剤を使用するタイミングの一例を示す模式図である。この図は、プロトコル1および2を例示しており、本開示の技術の手順の柔軟性が示されている。FIG. 5 is a schematic diagram illustrating an example of the timing of using a labeling agent (Labeling® Reagent) and a fixing agent. This figure illustrates protocols 1 and 2 and illustrates the flexibility of the procedure of the technology of the present disclosure. 図6は、本開示の手法を使用した、小脳スライスにおけるmGlu1の可視化の一例を示す。 図6(a)小脳スライス(厚さ300μm) の可視化の手順と、用いたラベル化剤の化学構造を示す。図6(b)は、小脳スライスにおける可視化した結果の一例を示し、図6(c)は、模式的に示した小脳スライスを示し、図6(d)は、その小脳スライスにおいて、mGlu1は分子層に局在している(矢印は分子層を示す)ことを示している。FIG. 6 shows an example of visualization of mGlu1 in a cerebellar slice using the technique of the present disclosure. FIG. 6 (a) shows the procedure for visualizing the cerebellar slice (thickness 300 μm) and the chemical structure of the labeling agent used. FIG. 6 (b) shows an example of the visualized result in the cerebellar slice, FIG. 6 (c) shows the cerebellar slice schematically shown, and FIG. 6 (d) shows that mGlu1 is a molecule in the cerebellar slice. It indicates that the layer is localized (the arrow indicates the molecular layer). 図7は、細胞固定化剤と本開示の一実施形態に係るラベル化の組み換え反応の模式図を示す。FIG. 7 shows a schematic diagram of a cell recombination agent and a labeled recombination reaction according to one embodiment of the present disclosure. 図8は、海馬神経細胞における本開示の固定化駆動ラベル化方法のプロトコルと結果を示す。赤色はAlexa647が結合したスパインを示し、緑色は免疫染色された樹状突起に存在するMAP2タンパク質を示す。FIG. 8 shows the protocol and results of the immobilization drive labeling method of the present disclosure in hippocampal neurons. Red indicates spines with Alexa647 bound, and green indicates MAP2 protein present in immunostained dendrites. 図9は、小脳スライスにおける複数の受容体の同時染色の一例を示す。図9上欄は本試験の手順を模式的に示す。図9中欄は、本試験で用いたmGlu1用ラベル化剤およびAMPAR用ラベル化剤の化学構造を示す。図9下欄には、上述の受容体の機能上の位置づけを示す模式図とともに、当該受容体の染色結果を示した画像(mGlu1(FL)、AMPAR(Alexa647)、これらの重ね合わせ(Merge))と、ラベル化剤にインヒビターを併用した場合の画像(+FITM、+NBQX、これらの重ね合わせ(Merge)))を示す。FIG. 9 shows an example of simultaneous staining of multiple receptors in a cerebellar slice. The upper column of FIG. 9 schematically shows the procedure of this test. The column in FIG. 9 shows the chemical structure of the labeling agent for mGlu1 and the labeling agent for AMPAR used in this test. In the lower column of FIG. 9, an image (mGlu1 (FL), AMPAR (Alexa647), superposition of these (Merge) showing the staining result of the receptor together with a schematic diagram showing the functional position of the receptor described above. ) And an image (+ FITM, + NBQX, superposition of these (Merge)) when an inhibitor is used in combination with the labeling agent. 図10は、小脳スライスにおける電位依存性カルシウムチャネル(VDCC: Voltage-dependent Ca2+ channel)に対するラベル化の一例を示す。図10上欄には、VDCCのサブユニット構成とともに、VDCC用のペプチドによるラベル化剤(peptide-based labeling reagent for VDCC)の立体構造および一次配列を示している。また、図10下欄には、小脳スライスにおける当該チャネルの可視化した結果(ラベル化剤(Labeling reagent)用いた場合の共焦点顕微鏡)と同様の系で競合阻害剤の存在下で撮像した結果を示すFIG. 10 shows an example of labeling for a voltage-dependent calcium channel (VDCC: Voltage-dependent Ca2 + channel) in a cerebellar slice. The upper column of FIG. 10 shows the three-dimensional structure and primary sequence of a VDCC peptide labeling agent (peptide-based labeling reagent for VDCC) as well as the subunit structure of VDCC. The lower column of FIG. 10 shows the result of imaging in the presence of a competitive inhibitor in the same system as the result of visualization of the channel in the cerebellar slice (confocal microscope when using a labeling reagent). Show 図11は、全小脳におけるmGlu1へのラベル化のプロトコルと結果を示す。図11上欄に、当該プロコトルとともに、その処置後に取り出したマウス全小脳の写真を示す。また、図11下欄には、ラベル化剤の注入点(injection point)から距離(単位mm)と、スライスした組織切片におけるmGlu1の可視化した結果(画像)との関係性を示した。FIG. 11 shows the protocol and results of labeling to mGlu1 in the whole cerebellum. The upper column of FIG. 11 shows a photograph of the whole mouse cerebellum taken out after the treatment together with the protocol. The lower column of FIG. 11 shows the relationship between the distance (unit: mm) from the injection point (injection point) of the labeling agent and the visualization result (image) of mGlu1 in the sliced tissue section.
 本開示の一態様で使用する固定化剤は、組織、臓器の固定に用いられているものを使用することができる。具体的には、例えば、ホルムアルデヒド、パラホルムアルデヒド、グルタルアルデヒド、グリオキサール、メチルグリオキサール、スベリイミド酸ジメチルなどのスベリイミド酸ジアルキルエステルが挙げられ、これらを1種単独で或いは2種以上を併用して使用することができる。臓器又は組織、動物全体(whole animal)の固定化の具体的な条件(固定化剤の濃度、温度、時間など)は、公知の条件を適用できる。 The fixing agent used in one embodiment of the present disclosure can be the one used for tissue and organ fixation. Specific examples include suberic acid dialkyl esters such as formaldehyde, paraformaldehyde, glutaraldehyde, glyoxal, methylglyoxal, and dimethyl suberimidate, and these may be used alone or in combination of two or more. Can do. Known conditions can be applied as specific conditions (concentration of fixing agent, temperature, time, etc.) for immobilizing an organ, tissue, or whole animal (whole animal).
 ラベル化の対象となる細胞表面受容体は、代表的には、細胞膜の外表面にその一部又は全部が露出し、細胞膜外の物質と相互作用し得るものであり、細胞内部例えば核内の受容体は含まない。これらの細胞表面受容体は、細胞認識、シグナル伝達、細胞内外への物質輸送、薬物の作用点として機能し得る。本明細書で使用される場合、細胞表面受容体との用語は、イオンチャネルを含む。イオンチャネルとしては、電位依存性カルシウムチャネル(VDCC: Voltage-dependent Ca2+ channel)、電位依存性カリウムチャネル、電位依存性ナトリウムチャネル、カルシウム活性化型カリウムチャネル、HCN(Hyperpolarization-activated cyclic nucleotide-gated)チャネル、CNG(cyclic nucleotide-gated)チャネル、電位依存性プロトンチャネル、Two-poreチャネル、内向き整流性カリウムチャネル、酸感受性イオンチャネル(Acid-sensing ion channel; ASIC)、上皮型ナトリウムチャネル(epithelial Na+channel; ENaC)、塩素チャネル、リガンド依存性チャネル(Cys-loopチャネル、グルタミン酸受容体、P2X受容体)などが挙げられる。 The cell surface receptor to be labeled is typically one in which part or all of the cell surface receptor is exposed on the outer surface of the cell membrane and can interact with substances outside the cell membrane. Does not contain receptors. These cell surface receptors can function as cell recognition, signal transduction, mass transport into and out of cells, and a site of action of drugs. As used herein, the term cell surface receptor includes ion channels. As ion channels, voltage-dependent calcium channels (VDCC: Voltage-dependent Ca2 + channel), voltage-dependent potassium channels, voltage-dependent sodium channels, calcium-activated potassium channels, HCN (Hyperpolarization-activated cyclic nucleotide-gated) channels , CNG (cyclic nucleotide-gated) channel, voltage-gated proton channel, two-pore channel, inward rectifier potassium channel, acid-sensitive ion channel (Acid-sensing channel; ASIC), epithelial sodium channel (epithelial Na + channel; ENaC), chloride channel, ligand-dependent channel (Cys-loop channel, glutamate receptor, P2X receptor) and the like.
 本開示における一態様において、蛍光標識される細胞表面受容体としては、任意の受容体、イオンチャネルが標識の対象となり、特に限定されないが、例えば、神経伝達物質の受容体、Gタンパク質共役型受容体(GPCR)、チロシンキナーゼ受容体、電位依存性カルシウムチャネル(VDCC: Voltage-dependent Ca2+ channel)などが挙げられ、具体的には、以下の受容体が挙げられるが、これらに限定されない:
GABA受容体、NMDAR1受容体、NGF受容体、葉酸受容体、グリシン受容体、セレクチン受容体、エリスロポエチン受容体、グルカゴン受容体、ムスカリン性アセチルコリン受容体(M1、M2、M3、M4、M5)、ニコチン性アセチルコリン受容体、アデノシン受容体(A1、A2A、A2B、A3)、アドレナリン受容体(α1A、α1B、α1D、α2A、α2B、α2C、β1、β2、β3)、アンギオテンシン受容体(AT1、AT2)、ボンベシン受容体(BB1、BB2、BB3)、ブラジキニン受容体(B1、B2)、カルシトニン・アイニリン・CGRP及びアドレノメズリン受容体、カンナビノイド受容体(CB1、CB2)、ケモカイン受容体(CCR1、CCR2、CCR3、CCR4、CCR5、CCR6、CCR7、CCR8、CCR9、CCR10、CXCR1、CXCR2、CXCR3、CXCR4、CXCR5、CX3CR1、XCR1)、ケニオタクチックペプチド受容体(C3a、C5a、fMLP)、コレシストキニン及びガストリン受容体(CCK1、CCK2)、コルチコトロピン放出因子受容体(CRF1、CRF2)、ドーパミン受容体(D1、D2、D3、D4、D5)、エンドセリン受容体(TA、ETB)、ガラニン受容体(GAL1、GAL2、GAL3)、グルタミン酸受容体(mGlu1、mGlu2、mGlu3、mGlu4、mGlu5、mGlu6、mGlu7、mGlu8)、グリコプロテインホルモン受容体(FSH、LSH、TSH)、ヒスタミン受容体(H1、H2、H3、H4)、5-HT(セロトニン)受容体(5-HT1A、5-HT1B、5-HT1D、5-ht1B、5-ht1F、5-HT2A、5-HT2F、5-HT2C、5-HT3、5-HT4、5-ht5A、5-ht5B、5-HT6、5-HT7)、ロイコトリエン受容体(BLT、CysLT1、CysLT2)、リソフォスフォリピッド受容体(edg1、edg2、edg3、edg4)、メラノコルチン受容体(MC1、MC2、MC3、MC4、MC5)、メラトニン受容体(MT1、MT2、MT3)、ニューロペプチドY受容体:Y1、Y2、Y4、Y5、Y6)、ニューロテンシン受容体(NTS1、NTS2)、オピオイド受容体(DOP、KOP、MOP、NOP)、P2Y 受容体(P2Y1、P2Y2、P2Y4、P2Y6、P2Y11、P2Y12)、プロスタノイド受容体(DP、FP、IP、TP、EP1、EP2、EP3、EP4)、プロテアーゼ活性化受容体(PAR1、PAR2、PAR3、PAR4)、ソマトスタチン受容体(sst1、sst2、sst3、sst4、sst5)、タヒキニン受容体(NK1、NK2、NK3)、チロトロピン放出ホルモン受容体(TRH1、TRH2)、ウロテンシン-II受容体、バソプレシン及びオキシトシン受容体(V1a、V1b、V2、OT)、チロシンリン酸化酵素受容体、インスリン受容体、電位依存性カルシウムチャネル(VDCC: Voltage-dependent Ca2+ channel)及びEGF受容体。
In one embodiment of the present disclosure, the cell surface receptor to be fluorescently labeled is any receptor, ion channel to be labeled, and is not particularly limited. For example, a neurotransmitter receptor, G protein-coupled receptor Body (GPCR), tyrosine kinase receptor, voltage-dependent Ca2 + channel (VDCC) and the like, specifically, but not limited to the following receptors:
GABA receptor, NMDAR1 receptor, NGF receptor, folate receptor, glycine receptor, selectin receptor, erythropoietin receptor, glucagon receptor, muscarinic acetylcholine receptor (M1, M2, M3, M4, M5), nicotine Sex acetylcholine receptor, adenosine receptor (A1, A2A, A2B, A3), adrenergic receptor (α1A, α1B, α1D, α2A, α2B, α2C, β1, β2, β3), angiotensin receptor (AT1, AT2), Bombesin receptors (BB1, BB2, BB3), bradykinin receptors (B1, B2), calcitonin / iniline / CGRP and adrenomedrin receptors, cannabinoid receptors (CB1, CB2), chemokine receptors (CCR1, CCR2, CCR3, CCR4) , CCR5, CCR6, CR7, CCR8, CCR9, CCR10, CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CX3CR1, XCR1), keniotactic peptide receptors (C3a, C5a, fMLP), cholecystokinin and gastrin receptors (CCK1, CCK2), Corticotropin releasing factor receptor (CRF1, CRF2), dopamine receptor (D1, D2, D3, D4, D5), endothelin receptor (TA, ETB), galanin receptor (GAL1, GAL2, GAL3), glutamate receptor ( mGlu1, mGlu2, mGlu3, mGlu4, mGlu5, mGlu6, mGlu7, mGlu8), glycoprotein hormone receptors (FSH, LSH, TSH), histamine receptors (H1, H2, H3, H4), 5-HT ( Rotonin) receptor (5-HT1A, 5-HT1B, 5-HT1D, 5-ht1B, 5-ht1F, 5-HT2A, 5-HT2F, 5-HT2C, 5-HT3, 5-HT4, 5-ht5A, 5 -Ht5B, 5-HT6, 5-HT7), leukotriene receptors (BLT, CysLT1, CysLT2), lysophospholipid receptors (edg1, edg2, edg3, edg4), melanocortin receptors (MC1, MC2, MC3, MC4) MC5), melatonin receptors (MT1, MT2, MT3), neuropeptide Y receptors: Y1, Y2, Y4, Y5, Y6), neurotensin receptors (NTS1, NTS2), opioid receptors (DOP, KOP, MOP, NOP), P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y) 1, P2Y12), prostanoid receptor (DP, FP, IP, TP, EP1, EP2, EP3, EP4), protease activated receptor (PAR1, PAR2, PAR3, PAR4), somatostatin receptor (sst1, sst2, sst3, sst4, sst5), tahikinin receptors (NK1, NK2, NK3), thyrotropin releasing hormone receptors (TRH1, TRH2), urotensin-II receptors, vasopressin and oxytocin receptors (V1a, V1b, V2, OT), Tyrosine kinase receptor, insulin receptor, voltage-dependent calcium channel (VDCC) and EGF receptor.
 リガンドとしては、上記の細胞表面受容体のリガンド結合部位に結合するリガンドが挙げられる。リガンドは受容体の本来の結合対象である完全アゴニスト(例えばアセチルコリン受容体に対するアセチルコリン)だけでなく、リガンド結合部位に結合する限り、他のアゴニスト、部分アゴニスト、アンタゴニストなども含まれる。完全アゴニストとしては、以下が挙げられるが、これらに限定されない:
・ムスカリン性アセチルコリン受容体:アセチルコリン、ムスカリン
・アデノシン受容体:アデノシン、カフェイン
・アドレナリン受容体:アドレナリン、ノルアドレナリン
・GABA受容体:GABA
・アンギオテンシン受容体:アンギオテンシン
・カンナビノイド受容体:大麻成分およびアナンダミド
・コレシストキニン受容体:コレシストキニン
・ドーパミン受容体:ドーパミン
・グルカゴン受容体:グルカゴン
・ヒスタミン受容体:ヒスタミン
・オピオイド受容体:コカイン、モルヒネ、ヘロインなどのアヘン成分および内在性ペプチド性リガンド(エンケファリン、エンドルフィン等)
・セクレチン受容体:セクレチン
・セロトニン受容体:セロトニン
・ソマトスタチン受容体:ソマトスタチン
・ガストリン受容体:ガストリン
・エリスロポエチン受容体:エリスロポエチン
・インスリン受容体
・ニコチン性アセチルコリン受容体:アセチルコリン、ニコチン
・グリシン受容体:神経伝達物質としてのグリシン、ストリキニン
・葉酸受容体(FR):葉酸
・EGF受容体(EGFR):上皮成長因子(EGF)
Examples of the ligand include a ligand that binds to the ligand binding site of the cell surface receptor. The ligand includes not only a full agonist (eg, acetylcholine with respect to the acetylcholine receptor) that is originally bound to the receptor, but also other agonists, partial agonists, antagonists and the like as long as it binds to the ligand binding site. Full agonists include, but are not limited to:
・ Muscarinic acetylcholine receptor: acetylcholine, muscarinic / adenosine receptor: adenosine, caffeine / adrenergic receptor: adrenaline, noradrenaline / GABA receptor: GABA
Angiotensin receptor: Angiotensin cannabinoid receptor: Cannabis component and anandamide Cholecystokinin receptor: Cholecystokinin dopamine receptor: Dopamine glucagon receptor: Glucagon histamine receptor: Histamine opioid receptor: Cocaine Opium components such as morphine and heroin and endogenous peptide ligands (enkephalins, endorphins, etc.)
・ Secretin receptor: Secretin ・ Serotonin receptor: Serotonin ・ Somatostatin receptor: Somatostatin ・ Gastrin receptor: Gastrin ・ Erythropoietin receptor: Erythropoietin ・ Insulin receptor ・ Nicotinic acetylcholine receptor: Acetylcholine, Nicotine glycine receptor: Nerve Glycine as a transmitter, strykinin / folate receptor (FR): folate / EGF receptor (EGFR): epidermal growth factor (EGF)
 細胞含有生体サンプル(以下、「生体サンプル」と略すことがある)は、生物体(単細胞生物、多細胞生物)自体、多細胞生物体にあってはそれを構成する単位(すなわち、多細胞生物の体を構成する単位であって、形態的に周囲と区別され、当該単位全体として機能を担うもの、例えば、組織(複数の細胞が集合して構成される構造単位)、器官(複数の組織が集合して構成される構造単位)をいう。)であり得る。多細胞生物の例としては、一実施形態において、動物(一般に運動能力と感覚を持つ多細胞生物)が挙げられるが、これらに限定されない。動物には、例えば、哺乳動物が挙げられるが、これらに限定されない。そのような動物に由来する細胞含有生体サンプルとしては、動物自体(whole animal)、動物の組織、器官などが挙げられるが、これらに限定されない。哺乳動物としては、例えば、ヒト、マウス、ラット、ウサギ、ハムスター、ヤギ、ウシ、ウマ、ブタ、イヌ、ネコ、サル、チンパンジーなどが挙げられるが、これらに限定されない。また、特定の実施形態において、そのような哺乳動物としては、ヒト、マウス、ラットが挙げられ、ヒトがさらに好ましい場合もあり得る。一態様において、ラベル化剤を生きた哺乳動物の全身に投与した場合には、全身の細胞表面受容体をラベル化することができ、ラベル化剤を生きた哺乳動物の局所に投与した場合には、その局所投与部位の周辺をラベル化することができる。 A cell-containing biological sample (hereinafter sometimes abbreviated as “biological sample”) is an organism (single cell organism, multicellular organism) itself, or a unit constituting the organism (ie, a multicellular organism). Units that formally distinguish from the surroundings and bear the function of the unit as a whole, such as tissues (structural units composed of multiple cells), organs (multiple tissues) Is a structural unit composed of Examples of multicellular organisms include, but are not limited to, animals (generally multicellular organisms with motor skills and sensations) in one embodiment. Examples of animals include, but are not limited to, mammals. Such cell-containing biological samples derived from such animals include, but are not limited to, animals themselves, animal tissues, organs, and the like. Examples of mammals include, but are not limited to, humans, mice, rats, rabbits, hamsters, goats, cows, horses, pigs, dogs, cats, monkeys, chimpanzees and the like. In certain embodiments, examples of such mammals include humans, mice, and rats, and humans may be more preferable. In one aspect, when the labeling agent is administered systemically to a living mammal, systemic cell surface receptors can be labeled and when the labeling agent is administered locally to the living mammal. Can label around the local administration site.
 本開示の一態様において、2種以上のラベル化剤を生体サンプルに適用した場合、複数の細胞表面受容体を同時に可視化できる。この場合、2種以上のラベル化剤の標識物質は異なる波長の蛍光を有するものが好ましく、2種以上の標識物質の蛍光波長の差は、30nm以上が好ましく、40nm以上がより好ましい。 In one embodiment of the present disclosure, when two or more labeling agents are applied to a biological sample, a plurality of cell surface receptors can be visualized simultaneously. In this case, the labeling substances of the two or more labeling agents preferably have different wavelengths of fluorescence, and the difference in fluorescence wavelength between the two or more labeling substances is preferably 30 nm or more, more preferably 40 nm or more.
 動物の器官、組織の一例としては、中枢神経系の各部位(小脳、大脳皮質、扁桃体、海馬、線条体、黒質、視床、視床下部、中脳、橋、延髄、脊髄など)、角膜、脊髄、下垂体、胃、膵臓、腎臓、肝臓、甲状腺、胆のう、骨髄、副腎、皮膚、筋肉、肺、消化管、血管、心臓、胸腺、脾臓、顎下腺、前立腺、睾丸、精巣、卵巣、胎盤、子宮、乳房、歯、骨、関節、骨格筋など、あるいはそれらの一部が挙げられるが、それらに限定されない。組織、器官は、スライスされた切片のような薄いサンプルも含まれるが、本開示の方法を用いれば、厚みのある生体サンプルであっても深部までラベル化することができる場合もある。 Examples of animal organs and tissues include parts of the central nervous system (cerebellum, cerebral cortex, amygdala, hippocampus, striatum, substantia nigra, thalamus, hypothalamus, midbrain, bridge, medulla, spinal cord, etc.) , Spinal cord, pituitary, stomach, pancreas, kidney, liver, thyroid, gall bladder, bone marrow, adrenal gland, skin, muscle, lung, gastrointestinal tract, blood vessel, heart, thymus, spleen, submandibular gland, prostate, testis, testis, ovary , Placenta, uterus, breast, teeth, bones, joints, skeletal muscle, etc., or a portion thereof. Tissues and organs include thin samples such as sliced slices, but even a thick biological sample may be labeled to a deeper depth using the method of the present disclosure.
 標識物質(Fl)としては、例えば、蛍光物質が挙げられるがこれらに限定されない。標識物質のさらなる具体例としては、次のものが挙げられるが、これらに限定されない:ビオチン、5-カルボキシフルオレセインまたは6-カルボキシフルオレセイン(FAM)、VIC、NED、IRD-700/800、Alexa-350、Alexa-405、Alexa-430、Alexa-488、Alexa-500、Alexa-514、Alexa-532、Alexa-546、Alexa-555、Alexa-568、Alexa-594、Alexa-610、Alexa-633、Alexa-647、Alexa-660、Alexa-680、Alexa-700、Alexa-750、Cy2、Cy3、Cy3.5、Cy5、Cy5.5、Cy7、BODIPY 505/515、Atto390、Atto425、Atto465、Atto488、Atto495、Atto520、Atto532、Atto550、Atto565、Atto590、Atto594、Atto620、Atto633、Atto  647N、Atto655、Atto  RhoG6、Atto  Rho11、Atto  Rho12、Atto  Rho101、BMN-5、BMN-6、CEQ8000  D2、CEQ8000  D3、CEQ8000  D4、DY-480XL、DY-485XL、DY-495、DY-505、DY-510XL、DY-521XL、DY-521XL、DY-530、DY-547、DY-550、DY-555、DY-610、DY-615、DY-630、DY-631、DY-633、DY-635、DY-647、DY-651、DY-675、DY-676、DY-680、DY-681、DY-700、DY-701、DY-730、DY-731、DY-732、DY-750、DY-751、DY-776、DY-780、DY-781、DY-782、臭化エチジウム、アクリジニウム色素、カルバゾール色素、フェノキサジン色素、ポルフィリン色素、ポリメチン色素、PET、フルオレセイン、インチオシアン酸フルオレセイン(FITC)、キサンテン、6-カルボキシ-2’,4’,7’,4,7-ヘキサクロロフルオレセイン(HEX)、6-カルボキシ-1,4-ジクロロ-2’,7’-ジクロロフルオレセイン(TET)、6-カルボキシ-4’,5’-ジクロロ-2’,7’-ジメトキシフルオレセイン(JOE)、N,N,N’,N’-テトラメチル-6-カルボキシローダミン(TAMRA)、6-カルボキシ-X-ローダミン(ROX)、5-カルボキシローダミン-6G(R6G5)、6-カルボキシローダミン-6G(RG6)、ローダミン、ローダミングリーン、ローダミンレッド、ローダミン110、Rhodamin  6G、Oregon green、ウンベリフェロン、イソチオシアン酸エオシン、PE、ATTO655、CypHer5E、Rhordamine B、BODIPY 580/605、Texas Red、California Red、Yakima Yellow、APC、TET、CAL  FluorOrange560、CAL FluorGold540、CAL Fluor RED590、CAL Fluor Red610、CAL Fluor Red635、IRDye700Dx、IRDye800CW、Marina Blue、Pacific Blue、LC Red610、LC Red640、LC Red670、LC Red705、インドシアニングリーン、ユウロピウムやサマリウムなどのランタノイド錯体など。特定の実施形態においては、その標識物質としては、Alexa-488、Oregon green、Alexa-546、Alexa-568、ATTO655、CypHer5Eが好ましい場合もあり得る。 Examples of the labeling substance (Fl) include, but are not limited to, fluorescent substances. Further specific examples of labeling substances include, but are not limited to, biotin, 5-carboxyfluorescein or 6-carboxyfluorescein (FAM), VIC, NED, IRD-700 / 800, Alexa-350 , Alexa-405, Alexa-430, Alexa-488, Alexa-500, Alexa-514, Alexa-532, Alexa-546, Alexa-555, Alexa-568, Alexa-594, Alexa-610, Alexa-633, Alexa -647, Alexa-660, Alexa-680, Alexa-700, Alexa-750, Cy2, Cy3, Cy3.5, Cy5, Cy5.5, Cy7, BODIPY 505/515, Atto390, Atto425, Atto465, Atto488, Atto495, Atto520, Atto532, Atto550, Atto565, Atto590, Atto594, Atto620, Atto633, Atto 647N, Atto655RhoG6, Atto Rho11, Atto Rho12, Atto Rho101, BMN-5, BMN-6, CEQ8000 D2, CEQ8000 D3, CEQ8000D DY-480XL, DY-485XL, DY-495, DY-505, DY-510XL, DY-521XL, DY-521XL, DY-530, DY-547, DY-550, DY-555, DY-610, DY- 615, DY-630, DY-631, DY-633, DY-635, DY-647, DY-651, DY-675 DY-676, DY-680, DY-681, DY-700, DY-701, DY-730, DY-731, DY-732, DY-750, DY-751, DY-776, DY-780, DY- 781, DY-782, ethidium bromide, acridinium dye, carbazole dye, phenoxazine dye, porphyrin dye, polymethine dye, PET, fluorescein, fluorescein inthiocyanate (FITC), xanthene, 6-carboxy-2 ', 4', 7 ', 4,7-hexachlorofluorescein (HEX), 6-carboxy-1,4-dichloro-2', 7'-dichlorofluorescein (TET), 6-carboxy-4 ', 5'-dichloro-2', 7'-dimethoxyfluorescein (JOE), N, N, N ', N'-tetramethyl-6-carboxyrhodamine (TAMRA), 6-carboxy-X-rhodamine (ROX), 5-carboxyrhodamine-6G (R6G5) , 6-carboxyrhodamine-6G (RG6), rhodamine, rhodamine green, rhodamine red, rhodamine 110, Rhodamin 6G, Oregon green, U Berylferon, eosin isothiocyanate, PE, ATTO655, CypHer5E, Rhodamine B, BODIPY 580/605, Texas Red, California Red, Yakima Yellow, APC, TET, CAL FluorOrange560, CAL FluorGRed590, CAL Fluor Red610CAL , IRDye700Dx, IRDye800CW, Marina Blue, Pacific Blue, LC Red610, LC Red640, LC Red670, LC Red705, indocyanine green, lanthanoid complexes such as europium and samarium. In certain embodiments, the labeling substance may be preferably Alexa-488, Oregon green, Alexa-546, Alexa-568, ATTO655, CypHer5E.
 固定化剤と反応するラベル化剤の少なくとも1種の反応性基としては、OH、SH、NH、NHNH、およびCO-NHNHが挙げられるが、これらに限定されない。一実施形態においては、その反応性基は、NH、またはCO-NHNHであり、別の実施形態では、その反応性基は、NHである。 The at least one reactive group of the labeling agent which reacts with the immobilized agent, OH, SH, NH 2, NHNH 2, and CO-NHNH 2 include, but are not limited to. In one embodiment, the reactive group is NH 2 or CO—NHNH 2 , and in another embodiment, the reactive group is NH 2 .
 固定化剤と反応する細胞表面受容体の反応性基としては、OH、SH、およびNHが挙げられる。 The reactive groups of the cell surface receptor that reacts with the immobilized agent, OH, SH, and NH 2 and the like.
 ラベル化剤は、細胞表面受容体に対するリガンド(Lg;ligand)、標識物質(Fl)及び固定化剤と反応する少なくとも1種の反応性基(●)を有する。ラベル化剤は通常1個のリガンドを有する。 The labeling agent has at least one reactive group (●) that reacts with a ligand (Lg; ligand) for the cell surface receptor, a labeling substance (Fl), and an immobilizing agent. The labeling agent usually has one ligand.
 本開示のラベル化剤の例示的実施形態において、リガンド(Lg)と標識物質(Fl)は2価の連結基(Z)を介して結合され、前記連結基には反応性基(●)がさらに結合される。 In an exemplary embodiment of the labeling agent of the present disclosure, the ligand (Lg) and the labeling substance (Fl) are bound via a divalent linking group (Z), and a reactive group (●) is bound to the linking group. Further combined.
 固定化剤と反応する細胞表面受容体の反応性基(図2の「●」)の数(n)は1個であってもよく2個以上(例えば2個、3個又は4個)であってもよい。細胞表面受容体の反応性基(●)の数とラベル化剤の反応性基(●)の数(n)は、通常同じである。これは、固定化剤は細胞表面受容体の反応性基(●)とラベル化剤の反応性基(●)を1対1で連結する機能を有するためである(図2)。 The number (n) of reactive groups (“●” in FIG. 2) of the cell surface receptor that reacts with the immobilizing agent may be 1 or more (for example, 2, 3, or 4). There may be. The number of reactive groups (●) on the cell surface receptor and the number (n) of reactive groups (●) on the labeling agent are usually the same. This is because the immobilizing agent has a function of linking the reactive group (●) of the cell surface receptor and the reactive group (●) of the labeling agent in a one-to-one relationship (FIG. 2).
 本開示の例示的な実施形態において、ラベル化剤は、例えば下記の式(I)で表されるものであってもよい。 In an exemplary embodiment of the present disclosure, the labeling agent may be represented by, for example, the following formula (I).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Lgはリガンドを示し、Flは標識物質を示す。●は反応性基を意味する。Zは2価の連結基を示す。nは1~4の整数を示す。Ya、Ybは同一又は異なって、CONH又はNHCOを示す。)
 Zで表される2価の連結基は特に限定されず任意の2価の連結基が使用可能である。
(In the formula, Lg represents a ligand, Fl represents a labeling substance, ● represents a reactive group, Z represents a divalent linking group, n represents an integer of 1 to 4, Ya and Yb represent (The same or different, CONH or NHCO is indicated.)
The divalent linking group represented by Z is not particularly limited, and any divalent linking group can be used.
 Zで表される2価の連結基としては、例えば、炭素数2~20の直鎖又は分岐を有するアルキレン基、アリーレン基、アラルキレン基、エーテル基、アミノ酸もしくはオリゴペプチドに由来する基又はこれらの組み合わせが挙げられ、これらの基は、1個又は2個以上の2価のヘテロ基(CONH、NHCO、O、S、CO、NH)で介在されていてもよい。Zで表される2価の連結基の具体例を以下に示す。 Examples of the divalent linking group represented by Z include, for example, a linear or branched alkylene group having 2 to 20 carbon atoms, an arylene group, an aralkylene group, an ether group, a group derived from an amino acid or an oligopeptide, or a group thereof. Combinations are mentioned, and these groups may be intervened by one or two or more divalent hetero groups (CONH, NHCO, O, S, CO, NH). Specific examples of the divalent linking group represented by Z are shown below.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、m1は1~20の整数を示し、m2は1~10の整数を示す。R、R、Rは、同一又は異なって、タンパク質を構成する20種の天然アミノ酸の側鎖を示す。)
 タンパク質を構成する20種の天然アミノ酸としては、Glu、Asp、Gln、Asn、Gly、Ala、Ser、Thr、Cys、Met、Leu、Ile、Val、Phe、Tyr、Trp、His、Arg、Lys、Proが挙げられる。
(In the formula, m1 represents an integer of 1 to 20, and m2 represents an integer of 1 to 10. R 1 , R 2 and R 3 are the same or different and are on the side of 20 natural amino acids constituting a protein. Indicates a chain.)
Twenty natural amino acids constituting the protein include Glu, Asp, Gln, Asn, Gly, Ala, Ser, Thr, Cys, Met, Leu, Ile, Val, Phe, Tyr, Trp, His, Arg, Lys, Pro.
 アリーレン基、アラルキレン基は置換基を有していてもよい。置換基としては、アルキル、シクロアルキル、アルコキシ、ハロゲン原子(F,Cl,Br,I)、OH、CN、NO、COOH、NH、フェニル、ベンジル、アセチルアミノ、アセチル、アセチルオキシ、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル、トリフルオロメチルなどが挙げられるが、これらに限定されない。 The arylene group and aralkylene group may have a substituent. As substituents, alkyl, cycloalkyl, alkoxy, halogen atoms (F, Cl, Br, I), OH, CN, NO 2 , COOH, NH 2 , phenyl, benzyl, acetylamino, acetyl, acetyloxy, methoxycarbonyl , Ethoxycarbonyl, butoxycarbonyl, trifluoromethyl, and the like.
 アルキルとしては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、tert-ブチル、n-ペンチル、イソペンチル、ヘキシルなどの直鎖状又は分枝鎖状のC1-18アルキルが挙げられる。 Alkyl includes linear or branched C 1-18 alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, hexyl and the like. .
 シクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル及びシクロヘプチルなどのC3-10シクロアルキルが挙げられる。環の一部がヘテロ元素で置換されていたり、置換基を持っていてもよい。 Cycloalkyl includes C 3-10 cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. A part of the ring may be substituted with a hetero element or may have a substituent.
 アルコキシとしては、メトキシ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブトキシ、イソブトキシ、tert-ブトキシ、n-ペンチルオキシ、イソペンチルオキシ、ヘキシルオキシ、ポリエチレングリコール誘導体などの直鎖状又は分枝鎖状のC1-18アルコシキが挙げられる。 Alkoxy includes linear or branched methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, n-pentyloxy, isopentyloxy, hexyloxy, polyethylene glycol derivatives, etc. C 1-18 Alkoshi.
 本開示のラベル化剤は、以下のScheme A~Scheme Fに従い合成することができる。 The labeling agent of the present disclosure can be synthesized according to the following Scheme A-Scheme F.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Lg、Fl、Z、Ya、Yb、●、nは前記の定義されるとおりである。Z1、Z2は、同一又は異なって2価の連結基を示す。n1は0以上の整数を示し、n2は0以上の整数を示し、n1+n2=nである。Proは保護基を示す。Rは、OH、Cl、Br、メトキシ、エトキシ、プロポキシ、ブトキシ、フェノキシ、ベンジルオキシ又はシアノメチルオキシを示す。n3は●がNH、NHNH、CO-NHNHの場合1であり、●がOH,SHの場合0である。)
 Proで表される保護基としては、Boc(tert-ブトキシカルボニル)、Cbz(ベンジルオキシカルボニル)、Fmoc(9-フルオレニルメチルオキシカルボニル)、Alloc(アリルオキシカルボニル)、Troc(2,2,2-トリクロロエトキシカルボニル)、TMS-エチルカルボニル、シアノエチルカルボニルなどが挙げられる。
(In the formula, Lg, Fl, Z, Ya, Yb, ●, and n are as defined above. Z1 and Z2 are the same or different and represent a divalent linking group. N1 is an integer of 0 or more. N2 represents an integer of 0 or more, and n1 + n2 = n, Pro represents a protecting group, R represents OH, Cl, Br, methoxy, ethoxy, propoxy, butoxy, phenoxy, benzyloxy or cyanomethyloxy N3 is 1 when ● is NH 2 , NHNH 2 , CO—NHNH 2 , and is 0 when ● is OH or SH.)
Protecting groups represented by Pro include Boc (tert-butoxycarbonyl), Cbz (benzyloxycarbonyl), Fmoc (9-fluorenylmethyloxycarbonyl), Alloc (allyloxycarbonyl), Troc (2,2, 2-trichloroethoxycarbonyl), TMS-ethylcarbonyl, cyanoethylcarbonyl and the like.
 Scheme A~Fの最初の反応は、いずれもアミド結合(CONH)の形成反応である。この反応は、化合物(1,3,5,7,9又は11)1モルに対し、化合物(2,4,6,8,10又は12)を0.8~1.2モル程度使用し、溶媒中、必要に応じて縮合剤の存在下に室温から溶媒の沸騰する温度において、1~24時間程度反応させることにより有利に進行し、式(Ia)、(Ib)又は(Id)の化合物を得る。溶媒としては、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、ジエチルエーテル、ジイソプロピルエーテルなどのエーテル類、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタンなどのハロゲン化炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、ヘキサンなどの脂肪族炭化水素、アセトニトリル、メタノール、エタノールなどが挙げられる。縮合剤としては、DCC、水溶性カルボジイミド(WSC)、DIC、カルボニルジイミダゾール(CDI)、DMT-MMなどが挙げられ、1-ヒドロキシベンゾトリアゾール(HOBt)、ヒドロキシスクシンイミド(HOSu)などを併用してもよい。縮合剤は、化合物(1,3,5,7,9又は11)1モルに対し、1モルから過剰量使用すればよい。 The first reactions of Schemes A to F are all amide bond (CONH) formation reactions. In this reaction, about 0.8 to 1.2 mol of the compound (2, 4, 6, 8, 10, or 12) is used per 1 mol of the compound (1, 3, 5, 7, 9, or 11). The compound of the formula (Ia), (Ib) or (Id) proceeds advantageously by reacting in a solvent in the presence of a condensing agent, if necessary, from room temperature to the boiling temperature of the solvent for about 1 to 24 hours. Get. Solvents include dimethylformamide, tetrahydrofuran, dioxane, diethyl ether, diisopropyl ether and other ethers, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane and other halogenated hydrocarbons, benzene, toluene, xylene and other aromatics Examples include hydrocarbons, aliphatic hydrocarbons such as hexane, acetonitrile, methanol, ethanol, and the like. Examples of the condensing agent include DCC, water-soluble carbodiimide (WSC), DIC, carbonyldiimidazole (CDI), DMT-MM, etc. In combination with 1-hydroxybenzotriazole (HOBt), hydroxysuccinimide (HOSu), etc. Also good. What is necessary is just to use a condensing agent 1 mol-excess amount with respect to 1 mol of compounds (1,3,5,7,9 or 11).
 Scheme B~Dで得られた式(Ia)の化合物は、スキーム1と同様に脱保護することで、目的とする式(I)の化合物を得ることができる。 The target compound of formula (I) can be obtained by deprotecting the compound of formula (Ia) obtained in Schemes B to D in the same manner as in scheme 1.
 Scheme A,E,Fにおける脱保護反応(Deprotection)は、各保護基の周知の脱保護条件にしたがい脱保護することができる。例えばBoc基は、トリフルオロ酢酸やHCl-酢酸エチル溶液、HCl-ジオキサン溶液などの強酸性条件下脱保護でき、Cbz は、Pd/Cによる水素添加反応、バーチ還元などで脱保護でき、Fmocは、ピペリジンなどの二級アミンによって脱保護でき、Trocは、亜鉛粉末-酢酸などにより脱保護でき、Allocは、パラジウム触媒存在下、アミンなどを加えて脱保護できる。これら以外の保護基も常法にしたがい脱保護できる。 The deprotection reaction in Scheme A, E, F can be deprotected according to the well-known deprotection conditions of each protecting group. For example, the Boc group can be deprotected under strongly acidic conditions such as trifluoroacetic acid, HCl-ethyl acetate solution, HCl-dioxane solution, Cbz can be deprotected by hydrogenation reaction with Pd / C, Birch reduction, etc. Fmoc It can be deprotected with a secondary amine such as piperidine, Troc can be deprotected with zinc powder-acetic acid, etc., and Alloc can be deprotected with the addition of an amine in the presence of a palladium catalyst. Protecting groups other than these can also be deprotected according to conventional methods.
・ラベル化剤による生体サンプルのラベル化方法
 受容体を発現した細胞を含む生体サンプルにラベル化剤と固定化剤を作用させることにより生体サンプルをラベル化することができる。
-Labeling method of biological sample with labeling agent A biological sample can be labeled by allowing a labeling agent and an immobilizing agent to act on a biological sample containing cells expressing a receptor.
 生体サンプルのラベル化方法は、以下の工程(a)、工程(b)を含む。
(a)細胞含有生体サンプルに固定化剤を適用する工程、および
(b)前記細胞含有生体サンプルにラベル化剤を適用する工程、
 ここで、工程(a)の次に工程(b)を行ってもよく、工程(b)の次に工程(a)を行ってもよく、工程(a)と工程(b)を同時に行ってもよい。
The biological sample labeling method includes the following steps (a) and (b).
(A) applying a fixing agent to the cell-containing biological sample, and (b) applying a labeling agent to the cell-containing biological sample,
Here, step (b) may be performed after step (a), step (a) may be performed after step (b), and step (a) and step (b) are performed simultaneously. Also good.
 生体含有サンプル100gに対する固定化剤の使用量は、1 mg~300 g程度である。 The amount of the immobilizing agent used for 100 g of the biological sample is about 1 to 300 mg.
 生体含有サンプル100gに対するラベル化剤の使用量は、1 ng~10 mg程度である。 The amount of labeling agent used for 100 g of biological samples is about 1 to 10 mg.
 生体含有サンプルに対し、固定化剤とラベル化剤は過剰量使用してもよい。 An excessive amount of the fixing agent and the labeling agent may be used with respect to the biological sample.
 工程(a)は、未固定の生体サンプルで行ってもよく、固定化された生体サンプルで行ってもよい。 Step (a) may be performed with an unfixed biological sample or may be performed with an immobilized biological sample.
 工程(a)で使用する細胞含有生体サンプルが未固定の場合、生体サンプルに固定化剤を適用する。生体サンプルへの固定化剤の適用は、常法に従い行うことができ、例えば、生体サンプルを固定化剤溶液に浸漬することで工程(a)を実施することができる。固定化剤の適用時の温度は0℃~37℃程度であり、固定化剤の適用時間は1~48時間程度である。 When the cell-containing biological sample used in step (a) is not fixed, a fixing agent is applied to the biological sample. Application of the immobilizing agent to the biological sample can be performed according to a conventional method. For example, the step (a) can be performed by immersing the biological sample in the immobilizing agent solution. The application temperature of the fixing agent is about 0 ° C. to 37 ° C., and the application time of the fixing agent is about 1 to 48 hours.
 既に固定化された生体サンプルを使用する場合、工程(a)は固定化剤で予め固定された細胞含有生体サンプルを提供すること、または、当該固定化剤で予め固定された生体サンプルとともに前記固定化剤をさらに共存させることのいずれかによって実施することができる。 When using a biological sample that has already been immobilized, step (a) provides a cell-containing biological sample that has been immobilized in advance with an immobilizing agent, or the immobilization together with the biological sample that has been immobilized in advance with the immobilizing agent. It can be carried out either by further coexisting the agent.
 工程(b)は、ラベル化剤を溶媒に溶解し、生体サンプルに適用することで実施することができる。固定化されていない生体サンプルについて工程(b)を行う場合、ラベル化剤を含む溶液に生体サンプルを浸漬し、0℃~37℃程度の温度下に1~48時間程度反応させることにより、ラベル化剤のリガンドを細胞表面受容体のリガンド結合部位に結合させることができる。過剰なラベル化剤は、生体サンプルから洗浄により除去される。工程(b)を工程(a)の前に行う場合、固定化剤がないので工程(b)の段階ではラベル化剤は細胞表面受容体に共有結合していないが、工程(b)の後に固定化剤を適用する工程(a)を行うことで、ラベル化剤を細胞表面受容体に共有結合できる。 Step (b) can be performed by dissolving the labeling agent in a solvent and applying it to the biological sample. When performing step (b) on a biological sample that has not been immobilized, the biological sample is immersed in a solution containing a labeling agent and reacted at a temperature of about 0 ° C. to 37 ° C. for about 1 to 48 hours to label the biological sample. The ligand of the agent can be bound to the ligand binding site of the cell surface receptor. Excess labeling agent is removed from the biological sample by washing. When step (b) is performed before step (a), since there is no immobilizing agent, the labeling agent is not covalently bound to the cell surface receptor in step (b), but after step (b) By performing the step (a) of applying the immobilizing agent, the labeling agent can be covalently bound to the cell surface receptor.
 未固定の生体サンプルを固定化剤とラベル化剤の両方を含む溶液に浸漬し、0℃~37℃程度の温度下に1~48時間程度反応させることにより、工程(a)と工程(b)を同時に行うことができる。 Steps (a) and (b) are performed by immersing an unfixed biological sample in a solution containing both the immobilizing agent and the labeling agent and reacting at a temperature of about 0 ° C. to 37 ° C. for about 1 to 48 hours. ) Can be performed simultaneously.
 固定化剤による生体サンプルの固定化は可逆的な平衡反応であるので、固定化された生体サンプルにラベル化剤を作用させた場合、受容体の反応性基と結合した固定化剤の一部が生体サンプルから分離し、新たに露出した受容体の反応性基とラベル化剤の反応性基が固定化剤と共有結合することで、ラベル化剤による受容体のラベル化が可能になる。なお、図7に示されるように、ラベル化剤は、リガンドにより受容体(図7中、“Protein”)と強く結合しているので、また、固定化剤はラベル化剤との反応がエネルギー的に有利であるので、このような置換又は組み換え反応が起こる(図7)。ラベル化剤と必要に応じて固定化剤を含む溶液は、pH4~7程度の緩衝液を使用することもできる。ラベル化剤は受容体に対し過剰量使用するのが好ましい。ラベル化剤は、受容体とリガンド(Lg)が結合した場合に受容体をラベル化するが、非特異的な標識化は抑制されている。ラベル化反応終了後は、ラベル化剤を含まない溶液にラベル化された生体サンプルを浸漬することにより過剰なラベル化剤を除去することができる。ラベル化剤が除去されるまで、この洗浄操作を繰り返すことができる。 Since immobilization of a biological sample with an immobilizing agent is a reversible equilibrium reaction, when a labeling agent is allowed to act on an immobilized biological sample, a part of the immobilizing agent bound to the reactive group of the receptor. Is separated from the biological sample, and the newly exposed receptor reactive group and the reactive group of the labeling agent are covalently bonded to the immobilizing agent, whereby the receptor can be labeled with the labeling agent. As shown in FIG. 7, the labeling agent is strongly bound to the receptor (“Protein” in FIG. 7) by the ligand. This substitution or recombination reaction takes place (Figure 7). As a solution containing a labeling agent and, if necessary, a fixing agent, a buffer solution having a pH of about 4 to 7 can be used. The labeling agent is preferably used in excess relative to the receptor. The labeling agent labels the receptor when the receptor and the ligand (Lg) are bound, but non-specific labeling is suppressed. After the labeling reaction is completed, excess labeling agent can be removed by immersing the labeled biological sample in a solution containing no labeling agent. This washing operation can be repeated until the labeling agent is removed.
 生体サンプルを透明化する手法については、数多くの文献が公開されており、例えば下記の文献を参照することができる。
文献名: Tainaka K et al, Cell. 2014;159:911-24、Chung K et al, Nature. 2013;497:332-7、Hama H et al, Nat Neurosci. 2011;14:1481-8、Renier N et al, Cell. 2014;159:896-910、Hama H et al, Nat Neurosci. 2015;18:1518-29.
 生体サンプルを透明化することで、ラベル化の状況をより理解しやすくなる。また、波長などで別々に認識可能な標識物質により複数の受容体をラベル化することも可能である。生体サンプルの透明化は、ラベル化前に行ってもよく、ラベル化後に行ってもよい。
Numerous literatures have been published regarding the method of making a biological sample transparent, and for example, the following literature can be referred to.
Title: Tainaka K et al, Cell. 2014; 159: 911-24, Chung K et al, Nature. 2013; 497: 332-7, Hama H et al, Nat Neurosci. 2011; 14: 1481-8, Renier N et al, Cell. 2014; 159: 896-910, Hama H et al, Nat Neurosci. 2015; 18: 1518-29.
By making the biological sample transparent, it becomes easier to understand the labeling situation. It is also possible to label a plurality of receptors with labeling substances that can be recognized separately by wavelength or the like. The biological sample may be clarified before labeling or after labeling.
 溶媒は、水あるいは化合物(I)が溶解し得る溶媒、例えば、メタノール、エタノール、プロパノールなどの低級アルコール、アセトン、テトラヒドロフラン(THF)、ジオキサン、N-メチルピロリドン、ジメチルホルムアミド(DMF)、アセトニトリル、ジメチルアセトアミド、ジメチルスルホキシド(DMSO)などの水混和性溶媒が挙げられるが、これらに限定されない。緩衝液の一例としては、HEPES緩衝液、リン酸緩衝液、トリス緩衝液などが挙げられるが、これらに限定されない。 Solvents are solvents in which water or compound (I) can be dissolved, for example, lower alcohols such as methanol, ethanol, propanol, acetone, tetrahydrofuran (THF), dioxane, N-methylpyrrolidone, dimethylformamide (DMF), acetonitrile, dimethyl Water miscible solvents such as acetamide and dimethyl sulfoxide (DMSO) can be mentioned, but are not limited thereto. Examples of the buffer include, but are not limited to, HEPES buffer, phosphate buffer, Tris buffer, and the like.
 以下、実施例を用いて、本明細書において開示される事項をより詳細に説明する。
実施例1
Hereinafter, the items disclosed in the present specification will be described in more detail using examples.
Example 1
Figure JPOXMLDOC01-appb-C000005
スキーム1. 化合物1 (Fluorescein)の合成
Figure JPOXMLDOC01-appb-C000005
Scheme 1. Synthesis of Compound 1 (Fluorescein)
化合物7
 化合物 6 (30 mg, 67 μmol)(ref. 1)を乾燥DMF 1.5 mlに溶解させた。窒素雰囲気下で、WSC-HCl(166 mg, 870 μmol)、HOBt-H2O(120 mg, 870 μmol)、4-(tert-Butoxycarbonyl)aminobutyric acid 17.7 mg (87 μmol)、DIEA 221 μl (1.27 mmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =15/1)で精製を行い、3.4 mg (5.7 μmol)の化合物7を得た。核プロトン磁気共鳴分光法(1H NMR spectroscopy) (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.30 (s, 1H), 6.81-6.79 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s, 2H), 4,26-4.21 (m, 4H), 3.08-3.05 (m, 2H), 2.22 (t, J = 7.6 Hz, 2H), 1.76 (t, J= 7.2 Hz, 2H), 1.42 (s, 9H), 1.27 (t, J= 7.2 Hz, 3H).
Compound 7
Compound 6 (30 mg, 67 μmol) (ref. 1) was dissolved in 1.5 ml of dry DMF. Under nitrogen atmosphere, WSC-HCl (166 mg, 870 μmol), HOBt-H 2 O (120 mg, 870 μmol), 4- (tert-Butoxycarbonyl) aminobutyric acid 17.7 mg (87 μmol), DIEA 221 μl (1.27 mmol) was added and stirred at room temperature for 5 hours. After the solvent was distilled off, purification was performed by column chromatography (silica, CHCl 3 / MeOH = 15/1) to obtain 3.4 mg (5.7 μmol) of Compound 7. Nuclear proton magnetic resonance spectroscopy ( 1 H NMR spectroscopy) (400 MHz, CD 3 OD) δ 7.61 (s, 1H), 7.30 (s, 1H), 6.81-6.79 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s, 2H), 4,26-4.21 (m, 4H), 3.08-3.05 (m, 2H), 2.22 (t, J = 7.6 Hz, 2H), 1.76 (t, J = 7.2 Hz , 2H), 1.42 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H).
化合物8
 化合物 7(3.4mg, 5.7μmol)をジクロロメタン 1.2 mlに懸濁させた。TFA 0.24 mlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いて、化合物8(4.3 mg, 7.1μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.27 (s, 1H), 6.81-6.80 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s, 2H), 4,27-4.21 (m, 4H), 2.99-2.96 (m, 2H), 2.39-2.36 (m, 2H), 1.95-1.91 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H).
Compound 8
Compound 7 (3.4 mg, 5.7 μmol) was suspended in 1.2 ml of dichloromethane. 0.24 ml of TFA was added and stirred at room temperature for 1 hour. After distilling off the solvent, TFA was carefully removed by azeotropy with toluene to obtain Compound 8 (4.3 mg, 7.1 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.61 (s, 1H), 7.27 (s, 1H), 6.81-6.80 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s, 2H ), 4,27-4.21 (m, 4H), 2.99-2.96 (m, 2H), 2.39-2.36 (m, 2H), 1.95-1.91 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H ).
化合物9
 5-Carboxyfluorescein diacetate N-succinimidyl ester (50 mg, 90 μmol)(ref. 2)をジクロロメタン 2.7 mlに溶解させた。窒素雰囲気下で、N6-(tert-Butoxycarbonyl)-L-lysine (26.4 mg, 107 μmol)、TEA 37.8 μl (269 μmol)を加えて、室温で4時間撹拌した。次いで、N6-(tert-Butoxycarbonyl)-L-lysine (6.6 mg, 27 mmol) をこの溶液に加え、窒素雰囲気下、室温で2時間撹拌した。その後、ジクロロメタン (30 mL)を加え、有機層を0.01 M HCl及び10 mL 飽和食塩水で洗浄し、Na2SO4で乾燥し、減圧下に留去して、粗化合物を48.3 mg得た。得られた生成物は、そのまま次の反応に用いた。
Compound 9
5-Carboxyfluorescein diacetate N-succinimidyl ester (50 mg, 90 μmol) (ref. 2) was dissolved in 2.7 ml of dichloromethane. Under a nitrogen atmosphere, N 6- (tert-Butoxycarbonyl) -L-lysine (26.4 mg, 107 μmol) and TEA 37.8 μl (269 μmol) were added, and the mixture was stirred at room temperature for 4 hours. Next, N 6- (tert-Butoxycarbonyl) -L-lysine (6.6 mg, 27 mmol) was added to this solution, and the mixture was stirred at room temperature for 2 hours under a nitrogen atmosphere. Thereafter, dichloromethane (30 mL) was added, and the organic layer was washed with 0.01 M HCl and 10 mL saturated brine, dried over Na 2 SO 4 , and evaporated under reduced pressure to obtain 48.3 mg of a crude compound. The obtained product was directly used for the next reaction.
 粗化合物 (48.3 mg)をTHF 1.4 mlに溶解させ、0.5 M 水酸化リチウム水溶液 0.42 ml (210 μmol)を加えて室温で3時間撹拌した。次いで、0.5 M 水酸化リチウム水溶液 0.42 ml (210 μmol)をこの溶液に加え、室温で5時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固した。得られた固体をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、乾燥して、化合物9 (9.8 mg, 16.2 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 8.55 (s, 1H), 8.27-8.24 (m, 1H), 7.36 (d, J = 8.0 Hz, 1H), 6.80 (s, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 9.2 Hz, 2H), 4.64 (t, J = 4.8 Hz, 1H), 3.07-3.05 (m, 2H), 1.79-1.75 (m, 2H), 1.57-1.53 (m, 4H), 1.40 (s, 9H). The crude compound (48.3 mg) was dissolved in 1.4 ml of THF, 0.42 ml (210 μmol) of 0.5 M lithium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 3 hours. Next, 0.42 ml (210 μmol) of 0.5 M lithium hydroxide aqueous solution was added to this solution, and the mixture was stirred at room temperature for 5 hours. After neutralizing with 1N hydrochloric acid, the mixture was dried under reduced pressure. The obtained solid was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain Compound 9 (9.8 mg, 16.2 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 8.55 (s, 1H), 8.27-8.24 (m, 1H), 7.36 (d, J = 8.0 Hz, 1H), 6.80 (s, 2H), 6.75 ( d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 9.2 Hz, 2H), 4.64 (t, J = 4.8 Hz, 1H), 3.07-3.05 ( m, 2H), 1.79-1.75 (m, 2H), 1.57-1.53 (m, 4H), 1.40 (s, 9H).
化合物1 (Fluorescein)
 化合物 8 (4.3 mg, 7.1 μmol)を乾燥DMF 0.5 mlに溶解させた。HBTU 3.96 mg (10.6 μmol)、化合物9 (6.4 mg, 10.6 μmol)、DIEA 4.98 μl (28.4 μmol)を加えて、室温で10時間撹拌した。溶媒を留去して19.5 mgの粗化合物を得た。
Compound 1 (Fluorescein)
Compound 8 (4.3 mg, 7.1 μmol) was dissolved in 0.5 ml of dry DMF. HBTU 3.96 mg (10.6 μmol), Compound 9 (6.4 mg, 10.6 μmol) and DIEA 4.98 μl (28.4 μmol) were added, and the mixture was stirred at room temperature for 10 hours. The solvent was distilled off to obtain 19.5 mg of a crude compound.
 得られた粗化合物(19.5 mg)をTHF 0.14 mlに溶解させ、0.5 M 水酸化リチウム水溶液 0.14 ml (71μmol)を加えて室温で8.5時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固し、27.7 mgの粗化合物を得た。 The obtained crude compound (19.5 mg) was dissolved in 0.14 ml of THF, and 0.14 ml (71 μmol) of 0.5 M aqueous solution of lithium hydroxide was added and stirred at room temperature for 8.5 hours. The mixture was neutralized with 1N hydrochloric acid and then dried under reduced pressure to obtain 27.7 mg of crude compound.
 粗化合物(27.7 mg)をジクロロメタン1.5 mlに懸濁させた。TFA 0.3 mlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いた。得られた粗化合物をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、乾燥して、化合物1 (Fluorescein)(1.29 mg, 1.21 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 8.52 (d, J = 0.8 Hz, 1H), 8.26-8.23 (m, 1H), 7.59 (m, 1H), 7.31-7.29 (m, 1H), 7.23 (m, 1H), 6.70-6.69 (m, 2H), 6.59-6.56 (m, 2H), 6.52-6.50 (m, 2H), 6.21-6.20 (m, 1H), 5.01 (s, 1H), 4.57-4.53 (m, 1H), 4.22 (s, 2H), 2.96-2.94 (m, 2H), 2.86-2.85 (m, 2H), 2.28 (t, J =7.6 Hz, 2H), 1.93 (t, J = 7.6 Hz, 2H), 1.89-1.82 (m, 2H), 1.74-1.72 (m, 2H), 1.59-1.51 (m, 2H). The crude compound (27.7 mg) was suspended in 1.5 ml of dichloromethane. 0.3 ml of TFA was added and stirred at room temperature for 1 hour. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene. The obtained crude compound was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain Compound 1 (Fluorescein) (1.29 mg, 1.21 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 8.52 (d, J = 0.8 Hz, 1H), 8.26-8.23 (m, 1H), 7.59 (m, 1H), 7.31-7.29 (m, 1H), 7.23 (m, 1H), 6.70-6.69 (m, 2H), 6.59-6.56 (m, 2H), 6.52-6.50 (m, 2H), 6.21-6.20 (m, 1H), 5.01 (s, 1H), 4.57-4.53 (m, 1H), 4.22 (s, 2H), 2.96-2.94 (m, 2H), 2.86-2.85 (m, 2H), 2.28 (t, J = 7.6 Hz, 2H), 1.93 (t, J = 7.6 Hz, 2H), 1.89-1.82 (m, 2H), 1.74-1.72 (m, 2H), 1.59-1.51 (m, 2H).
Figure JPOXMLDOC01-appb-C000006
スキーム2. 化合物1 (Alexa647)の合成
Figure JPOXMLDOC01-appb-C000006
Scheme 2. Synthesis of Compound 1 (Alexa647)
化合物10
 N-α-Benzyloxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine (0.5 g, 1.31 μmol)を乾燥DMF 13 mlに溶解させた。WSC-HCl 330 mg ( 1.71 μmol)、HOBt-H2O 260 mg (1.71 μmol)、4-Aminobutyric acid methyl ester hydrochloride 240 mg (1.58 μmol)、DIEA 183 μl (5.26 μmol)を加えて、室温で10時間撹拌した。溶媒を留去した後に、AcOEt (60 mL)を粗化合物に加えた。有機層を0.01 M HCl (20 ml x2)、飽和NaHCO3水溶液 (20 mL x2)及び飽和食塩水(20ml)で洗浄し、Na2SO4 で乾燥して化合物 10 (546 mg, 1.14 μmol)を無色オイルとして得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.38-7.29 (m, 5H), 5.08 (s, 2H), 4.02-4.00 (m, 1H), 3.65 (s, 3H), 3.32-3.19 (m, 2H), 3.03-2.99 (m, 2H), 2.37-2.33 (m, 2H), 1.80-1.72 (m, 2H), 1.63-1.60 (m, 2H), 1.42 (s, 9H), 1.37-1.32 (m, 4H).
Compound 10
N-α-Benzyloxycarbonyl-N-ε-tert-butoxycarbonyl-L-lysine (0.5 g, 1.31 μmol) was dissolved in 13 ml of dry DMF. Add WSC-HCl 330 mg (1.71 μmol), HOBt-H 2 O 260 mg (1.71 μmol), 4-Aminobutyric acid methyl ester hydrochloride 240 mg (1.58 μmol), DIEA 183 μl (5.26 μmol), and add 10 at room temperature. Stir for hours. After the solvent was distilled off, AcOEt (60 mL) was added to the crude compound. The organic layer was washed with 0.01 M HCl (20 ml x 2), saturated aqueous NaHCO 3 solution (20 mL x 2) and saturated brine (20 ml), dried over Na 2 SO 4 and compound 10 (546 mg, 1.14 μmol) was added. Obtained as a colorless oil. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.38-7.29 (m, 5H), 5.08 (s, 2H), 4.02-4.00 (m, 1H), 3.65 (s, 3H), 3.32-3.19 (m , 2H), 3.03-2.99 (m, 2H), 2.37-2.33 (m, 2H), 1.80-1.72 (m, 2H), 1.63-1.60 (m, 2H), 1.42 (s, 9H), 1.37-1.32 (m, 4H).
化合物11
 化合物10 (393 mg, 0.82 mmol)をTHF 8.2 mlに溶解させ、1 M 水酸化ナトリウム水溶液 0.82 ml (0.82 mmol)を加えて室温で1時間撹拌した。次いで、1 M 水酸化ナトリウム水溶液 0.82 ml (0.82 mmol)をこの溶液に加え、室温で1時間撹拌した。次いで、1 M 水酸化ナトリウム水溶液 0.82 ml (0.82 mmol)をこの溶液に加え、室温で1時間撹拌した。次いで、1 M 水酸化ナトリウム水溶液 0.82 ml (0.82 mmol)をこの溶液に加え、室温で1時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固した。得られた固体にクロロホルム(60 ml)を加え生成物を有機層に抽出した。有機層を0.1 M HCl (20 ml x2)、飽和食塩水(20 mL)で洗浄し、Na2SO4で乾燥した。得られた粗化合物をカラムクロマトグラフィー(シリカ、CHCl3 / MeOH =30/1+1% AcOH)で精製を行い、化合物11(64mg, 0.13 mmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.38-7.27 (m, 5H), 5.08 (s, 2H), 4.04-4.01 (m, 1H), 3.24-3.21 (m, 2H), 3.03-2.98 (m, 2H), 2.34-2.30 (m, 2H), 1.82-1.71 (m, 3H), 1.65-1.62 (m, 1H), 1.42 (s, 9H), 1.37-1.32 (m, 4H).
Compound 11
Compound 10 (393 mg, 0.82 mmol) was dissolved in THF 8.2 ml, 1 M aqueous sodium hydroxide solution 0.82 ml (0.82 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Next, 0.82 ml (0.82 mmol) of 1 M aqueous sodium hydroxide solution was added to this solution and stirred at room temperature for 1 hour. Next, 0.82 ml (0.82 mmol) of 1 M aqueous sodium hydroxide solution was added to this solution and stirred at room temperature for 1 hour. Next, 0.82 ml (0.82 mmol) of 1 M aqueous sodium hydroxide solution was added to this solution and stirred at room temperature for 1 hour. After neutralizing with 1N hydrochloric acid, the mixture was dried under reduced pressure. Chloroform (60 ml) was added to the obtained solid, and the product was extracted into the organic layer. The organic layer was washed with 0.1 M HCl (20 ml × 2) and saturated brine (20 mL), and dried over Na 2 SO 4 . The obtained crude compound was purified by column chromatography (silica, CHCl 3 / MeOH = 30/1 + 1% AcOH) to obtain Compound 11 (64 mg, 0.13 mmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.38-7.27 (m, 5H), 5.08 (s, 2H), 4.04-4.01 (m, 1H), 3.24-3.21 (m, 2H), 3.03-2.98 (m, 2H), 2.34-2.30 (m, 2H), 1.82-1.71 (m, 3H), 1.65-1.62 (m, 1H), 1.42 (s, 9H), 1.37-1.32 (m, 4H).
化合物12
 化合物 6 (30 mg, 67 μmol)(ref. 1)を乾燥DMF 2.0 mlに溶解させた。窒素雰囲気下で、WSC-HCl 16.7 mg (87 μmol)、HOBt-H2O 13.4 mg (87 μmol)、化合物11 (42.5 mg , 87 μmol)、DIEA 94 μl (269 μmol)を加えて、室温で8時間撹拌した。次いで、化合物11 (6.75 mg, 13.4 μmol)をこの溶液に加え、室温で2時間撹拌した。溶媒を留去した後に、クロロホルム(60 mL)を粗化合物に加えた。有機層を0.01 M HCl (20 ml x2)、飽和NaHCO3水溶液 (20 mL x2)及び飽和食塩水(20ml)で洗浄し、Na2SO4 で乾燥し、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =12/1, 10/1)で精製を行い、28.6 mg (33 μmol)の化合物12を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.59 (s, 1H), 7.33-7.26 (m, 6H), 6.81-6.78 (m, 2H), 5.05-5.04 (m, 2H), 4.26 (s, 2H), 4.25-4.20 (m, 2H), 4.01-3.98 (m, 1H), 3.21-3.19 (m, 2H), 3.03-2.99 (m, 2H), 2.23-2.20 (m, 2H), 1.83-1.72 (m, 3H), 1.66-1.57 (m, 1H), 1.45 (s, 1H), 1.37-1.32 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H).
Compound 12
Compound 6 (30 mg, 67 μmol) (ref. 1) was dissolved in 2.0 ml of dry DMF. Under a nitrogen atmosphere, add WSC-HCl 16.7 mg (87 μmol), HOBt-H 2 O 13.4 mg (87 μmol), Compound 11 (42.5 mg, 87 μmol), DIEA 94 μl (269 μmol), and Stir for 8 hours. Compound 11 (6.75 mg, 13.4 μmol) was then added to this solution and stirred at room temperature for 2 hours. After the solvent was distilled off, chloroform (60 mL) was added to the crude compound. The organic layer was washed with 0.01 M HCl (20 ml x2), saturated aqueous NaHCO 3 solution (20 mL x2) and saturated brine (20 ml), dried over Na 2 SO 4 and column chromatography (silica, CHCl 3 / MeOH = 12/1, 10/1) to obtain 28.6 mg (33 μmol) of Compound 12. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.59 (s, 1H), 7.33-7.26 (m, 6H), 6.81-6.78 (m, 2H), 5.05-5.04 (m, 2H), 4.26 (s , 2H), 4.25-4.20 (m, 2H), 4.01-3.98 (m, 1H), 3.21-3.19 (m, 2H), 3.03-2.99 (m, 2H), 2.23-2.20 (m, 2H), 1.83 -1.72 (m, 3H), 1.66-1.57 (m, 1H), 1.45 (s, 1H), 1.37-1.32 (m, 4H), 1.24 (t, J = 7.2 Hz, 3H).
化合物13
 化合物12 (25.3 mg, 29.4 μmol)を乾燥メタノール1.0 mlに溶解させた。窒素雰囲気下で、10% Pd/C 10 mgを加えて、水素雰囲気下、室温で4時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、28.3 mg の化合物12を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.24 (s, 1H), 6.80-6.78 (m, 2H), 6.23-6.22 (m, 1H), 5.04 (s, 2H), 4.26-4.20 (m, 4H), 4.14-4.06 (m, 1H), 3.23-3.19 (m, 2H), 3.04-3.00 (m, 2H), 2.27-2.22 (m, 2H), 1.82-1.79 (m, 2H), 1.67-1.54 (m, 1H), 1.51-1.47 (m, 2H), 1.45 (s, 9H), 1.38-1.34 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H).
Compound 13
Compound 12 (25.3 mg, 29.4 μmol) was dissolved in 1.0 ml of dry methanol. Under a nitrogen atmosphere, 10 mg of 10% Pd / C was added, and the mixture was stirred at room temperature for 4 hours under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain 28.3 mg of Compound 12. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.61 (s, 1H), 7.24 (s, 1H), 6.80-6.78 (m, 2H), 6.23-6.22 (m, 1H), 5.04 (s, 2H ), 4.26-4.20 (m, 4H), 4.14-4.06 (m, 1H), 3.23-3.19 (m, 2H), 3.04-3.00 (m, 2H), 2.27-2.22 (m, 2H), 1.82-1.79 (m, 2H), 1.67-1.54 (m, 1H), 1.51-1.47 (m, 2H), 1.45 (s, 9H), 1.38-1.34 (m, 2H), 1.24 (t, J = 7.2 Hz, 3H ).
化合物14
 化合物 13(28.3 mg, 39 μmol)をTHF 1.1 mlに溶解させ、0.5 M 水酸化リチウム水溶液0.32 ml (117 μmol)を加えて室温で3.5時間撹拌した。1N 塩酸を加えて中和した後に減圧乾固した。得られた固体をCHCl3 / MeOH =2/1に溶解させ、濾過し溶媒を留去し32.8 mgの化合物14を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.62 (s, 1H), 7.06 (s, 1H), 6.81-6.77 (m, 2H), 6.19-6.18 (m, 1H), 4.76 (s, 2H), 3.28-3.27 (m, 1H), 3.25-3.21 (m, 2H), 3.04-3.00 (m, 2H), 2.28-2.22 (m, 2H), 1.84-1.81 (m, 2H), 1.64-1.49 (m, 2H), 1.45 (s, 9H), 1.37-1.28 (m, 4H). 
Compound 14
Compound 13 (28.3 mg, 39 μmol) was dissolved in 1.1 ml of THF, 0.32 ml (117 μmol) of 0.5 M lithium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 3.5 hours. After neutralizing with 1N hydrochloric acid, the mixture was dried under reduced pressure. The obtained solid was dissolved in CHCl 3 / MeOH = 2/1, filtered and the solvent was distilled off to obtain 32.8 mg of compound 14. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.62 (s, 1H), 7.06 (s, 1H), 6.81-6.77 (m, 2H), 6.19-6.18 (m, 1H), 4.76 (s, 2H ), 3.28-3.27 (m, 1H), 3.25-3.21 (m, 2H), 3.04-3.00 (m, 2H), 2.28-2.22 (m, 2H), 1.84-1.81 (m, 2H), 1.64-1.49 (m, 2H), 1.45 (s, 9H), 1.37-1.28 (m, 4H).
化合物1(Alexa647)
 化合物14(1.0 mg, 1.46 μmol)を乾燥DMF 0.1 mlに溶解させた。窒素雰囲気下で、Alexa647-NHS-ester (1 mg)、DIEA 1.09 μl (3.13 μmol)を加えて、室温で4時間撹拌した。次いで、DIEA 1.09 μl (3.13 μmol)をこの溶液に加え、室温で4.5時間撹拌した。溶媒を留去し、3.0 mgの粗化合物を得た。得られた生成物は、そのまま次の反応に用いた。
Compound 1 (Alexa647)
Compound 14 (1.0 mg, 1.46 μmol) was dissolved in 0.1 ml of dry DMF. Under a nitrogen atmosphere, Alexa647-NHS-ester (1 mg) and DIEA 1.09 μl (3.13 μmol) were added, and the mixture was stirred at room temperature for 4 hours. DIEA 1.09 μl (3.13 μmol) was then added to the solution and stirred at room temperature for 4.5 hours. The solvent was distilled off to obtain 3.0 mg of a crude compound. The obtained product was directly used for the next reaction.
 3.0 mgの粗化合物をジクロロメタン1.0 mlに懸濁させた。TFA 0.2 mlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いた。得られた生成物をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物1(Alexa647)を得た。ESI-Mass ([M-2H]=716.6962(obs.), 716.6977(calc.)) 3.0 mg of crude compound was suspended in 1.0 ml of dichloromethane. 0.2 ml TFA was added and stirred at room temperature for 1 hour. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene. The obtained product was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 1 (Alexa647). ESI-Mass ([M-2H] = 716.6962 (obs.), 716.6977 (calc.))
Figure JPOXMLDOC01-appb-C000007
スキーム3. 化合物2(Fluorescein)の合成
Figure JPOXMLDOC01-appb-C000007
Scheme 3. Synthesis of Compound 2 (Fluorescein)
化合物15
 3-(tert-Butoxycarbonylamino)propionic acid(0.5 g, 4.8 mmol)を乾燥DMF48.4 mLに溶解させた。窒素雰囲気下で、WSC-HCl 1.2 g (6.3 mmol)、HOBt-H2O 0.87 g (6.3 mmol)、β-Alanine methyl ester(0.6 g, 5.8 mmol)、DIEA 4.2 ml (24 mmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、AcOEt (100 mL)を粗化合物に加えた。有機層を10% クエン酸 (30 ml x2)、飽和NaHCO3水溶液 (20 mL x2)及び飽和食塩水(30 ml)で洗浄し、Na2SO4 で乾燥して化合物15(0.43 g, 1.57 mmol)を白色固体として得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 6.14 (s, 1H), 5.15 (s, 1H), 3.71 (s, 3H), 3.51 (q, J = 6.0 Hz, 2H), 3.39 (q, J= 6.0 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 2.37 (t, J = 6.0 Hz, 2H), 1.43 (s, 9H).
Compound 15
3- (tert-Butoxycarbonylamino) propionic acid (0.5 g, 4.8 mmol) was dissolved in 48.4 mL of dry DMF. Under nitrogen atmosphere, add WSC-HCl 1.2 g (6.3 mmol), HOBt-H 2 O 0.87 g (6.3 mmol), β-Alanine methyl ester (0.6 g, 5.8 mmol), DIEA 4.2 ml (24 mmol) And stirred at room temperature for 5 hours. After the solvent was distilled off, AcOEt (100 mL) was added to the crude compound. The organic layer was washed with 10% citric acid (30 ml x2), saturated aqueous NaHCO 3 solution (20 mL x2) and saturated brine (30 ml), dried over Na 2 SO 4 and compound 15 (0.43 g, 1.57 mmol). ) Was obtained as a white solid. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 6.14 (s, 1H), 5.15 (s, 1H), 3.71 (s, 3H), 3.51 (q, J = 6.0 Hz, 2H), 3.39 (q, J = 6.0 Hz, 2H), 2.55 (t, J = 6.0 Hz, 2H), 2.37 (t, J = 6.0 Hz, 2H), 1.43 (s, 9H).
化合物16
 化合物15(0.35 g, 1.3 mmol)をジクロロメタン 10 mlに懸濁させた。TFA 3.0 mlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いて、493 mgの粗化合物(1.3 mmolの化合物16を含む)を得た。得られた化合物をそのまま次の反応に用いた。1H NMR spectroscopy (400 MHz, CD3OD) δ 11.3 (s, 1H), 7.95-7.79 (m. 2H), 4.10 (s, 1H), 3.55 (t, J = 6.0 Hz, 2H), 3.35-3.26 (m, 2H), 2.67 (t, J = 5.6 Hz), 2.55 (t, J = 6.0 Hz, 2H).
Compound 16
Compound 15 (0.35 g, 1.3 mmol) was suspended in 10 ml of dichloromethane. TFA 3.0 ml was added and it stirred at room temperature for 1 hour. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene to obtain 493 mg of a crude compound (including 1.3 mmol of compound 16). The obtained compound was directly used in the next reaction. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 11.3 (s, 1H), 7.95-7.79 (m. 2H), 4.10 (s, 1H), 3.55 (t, J = 6.0 Hz, 2H), 3.35- 3.26 (m, 2H), 2.67 (t, J = 5.6 Hz), 2.55 (t, J = 6.0 Hz, 2H).
化合物17
 粗化合物473 mgを乾燥DMF 20 mLに溶解させた。窒素雰囲気下で、WSC-HCl 27 mg (0.14 mmol)、HOBt-H2O 20 mg (0.14 mmol)、 N4-[(Benzyloxy)carbonyl]-N2-[(tert-butyloxy)- carbonyl]-L-2,4-diaminobutyric acid(0.6 g, 5.8 mmol)、DIEA 189 μl (5.4 mmol)を加えて、室温で30分間撹拌した。次いで、窒素雰囲気下で、WSC-HCl 27 mg (0.14 mmol)、HOBt-H2O 20 mg (0.14 mmol)をこの溶液に加え、室温で13時間撹拌した。溶媒を留去した後に、AcOEt (90 mL)を粗化合物に加えた。有機層を10% クエン酸 (30 ml)、飽和NaHCO3水溶液 (30 mL)及び飽和食塩水(30 ml)で洗浄し、Na2SO4 で乾燥して化合物17(195 mg, 0.39 mmol)を白色固体として得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.35-7.28 (m. 5H), 5.07 (s, 1H), 4.01 (s, 1H), 3.67 (s, 3H), 3.44-3.38 (m, 4H), 3.24-3.14 (m, 2H), 2.53 (t, J = 6.8 Hz), 2.36 (t, J = 6.4 Hz, 2H), 1.94-1.69 (m, 2H), 1.44 (s, 9H).
Compound 17
473 mg of the crude compound was dissolved in 20 mL of dry DMF. Under nitrogen atmosphere, WSC-HCl 27 mg (0.14 mmol), HOBt-H 2 O 20 mg (0.14 mmol), N 4 -[(Benzyloxy) carbonyl] -N 2 -[(tert-butyloxy) -carbonyl]- L-2,4-diaminobutyric acid (0.6 g, 5.8 mmol) and DIEA 189 μl (5.4 mmol) were added, and the mixture was stirred at room temperature for 30 minutes. Next, under a nitrogen atmosphere, WSC-HCl 27 mg (0.14 mmol) and HOBt-H 2 O 20 mg (0.14 mmol) were added to this solution, and the mixture was stirred at room temperature for 13 hours. After evaporation of the solvent, AcOEt (90 mL) was added to the crude compound. The organic layer was washed with 10% citric acid (30 ml), saturated aqueous NaHCO 3 solution (30 mL) and saturated brine (30 ml), dried over Na 2 SO 4 and compound 17 (195 mg, 0.39 mmol) was obtained. Obtained as a white solid. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.35-7.28 (m. 5H), 5.07 (s, 1H), 4.01 (s, 1H), 3.67 (s, 3H), 3.44-3.38 (m, 4H ), 3.24-3.14 (m, 2H), 2.53 (t, J = 6.8 Hz), 2.36 (t, J = 6.4 Hz, 2H), 1.94-1.69 (m, 2H), 1.44 (s, 9H).
化合物18
 化合物17(51 mg, 0.1 mmol)をTHF 1.0 mlに溶解させ、1 M 水酸化ナトリウム水溶液 0.5 mlを加えて室温で5時間撹拌した。反応溶液にクロロホルム5.0 ml、純水5.0 ml、1 M HCl 0.5 ml加えた。次いで、クロロホルム10 ml、純水10 ml、飽和食塩水5.0 mlを加え有機層と水層に分けた。水層をクロロホルム(15 ml x2)で抽出し、有機層を回収した。Na2SO4 で乾燥して化合物18(44.9 mg, 0.09 mmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.35-7.30 (m. 5H), 5.07 (s, 1H), 4.03-3.99 (m, 1H), 3.45-3.39 (m, 4H), 3.23-3.14 (m, 2H), 2.50 (t, J = 6.8 Hz), 2.37 (t, J = 6.4 Hz, 2H), 1.92-1.69 (m, 2H), 1.44 (s, 9H).
Compound 18
Compound 17 (51 mg, 0.1 mmol) was dissolved in 1.0 ml of THF, 0.5 ml of 1 M aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 5 hours. Chloroform 5.0 ml, pure water 5.0 ml, and 1 M HCl 0.5 ml were added to the reaction solution. Next, 10 ml of chloroform, 10 ml of pure water and 5.0 ml of saturated saline were added to separate the organic layer and the aqueous layer. The aqueous layer was extracted with chloroform (15 ml × 2), and the organic layer was recovered. Drying with Na 2 SO 4 gave compound 18 (44.9 mg, 0.09 mmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.35-7.30 (m. 5H), 5.07 (s, 1H), 4.03-3.99 (m, 1H), 3.45-3.39 (m, 4H), 3.23-3.14 (m, 2H), 2.50 (t, J = 6.8 Hz), 2.37 (t, J = 6.4 Hz, 2H), 1.92-1.69 (m, 2H), 1.44 (s, 9H).
化合物19
 化合物18(40 mg, 72.6 μmol)を乾燥DMF 0.5 mlに溶解させた。窒素雰囲気下で、WSC-HCl 13.9 mg (72.6 μmol)、HOBt-H2O 11.1 mg (72.6 μmol)、化合物6(20 mg, 48.4 μmol)、DIEA 12.6 μl (0.36 mmol)を加えて、室温で3.5時間撹拌した。溶媒を留去した後に、残渣をカラムクロマトグラフィー(シリカ、CHCl3 / MeOH =8/1)で精製して、20.3mg (23 μmol)の化合物19を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.60 (s, 1H), 7.27-6.86 (m. 6H), 6.84-6.78 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s, 4H), 4.24 (q, J = 7.2 Hz, 4H), 4.02 (s, 1H), 3.44-3.41 (m, 4H), 3.21-3.13 (m, 2H), 2.40 (t, J = 6.8 Hz, 2H), 2.34 (t, J = 6.4 Hz, 2H), 1.92-1.70 (m, 2H), 1.43 (s, 9H), 1.26 (t, J = 6.8 Hz, 3H).
Compound 19
Compound 18 (40 mg, 72.6 μmol) was dissolved in 0.5 ml of dry DMF. Under a nitrogen atmosphere, add WSC-HCl 13.9 mg (72.6 μmol), HOBt-H 2 O 11.1 mg (72.6 μmol), compound 6 (20 mg, 48.4 μmol), DIEA 12.6 μl (0.36 mmol), and Stir for 3.5 hours. After the solvent was distilled off, the residue was purified by column chromatography (silica, CHCl 3 / MeOH = 8/1) to give 20.3 mg (23 μmol) of compound 19. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.60 (s, 1H), 7.27-6.86 (m. 6H), 6.84-6.78 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s , 4H), 4.24 (q, J = 7.2 Hz, 4H), 4.02 (s, 1H), 3.44-3.41 (m, 4H), 3.21-3.13 (m, 2H), 2.40 (t, J = 6.8 Hz, 2H), 2.34 (t, J = 6.4 Hz, 2H), 1.92-1.70 (m, 2H), 1.43 (s, 9H), 1.26 (t, J = 6.8 Hz, 3H).
化合物20
 化合物19(18.7 mg, 21 μmol)をメタノール 0.5 mlに溶解させた。窒素雰囲気下で、10% Pd/C 10 mgを加えて、水素雰囲気下、室温で4.5時間撹拌した。次いで、メタノール1.5 mlを追加し、窒素雰囲気下で、10% Pd/C 10 mgを加えて、水素雰囲気下、室温で6.5時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、18.9 mg の粗生成物を得た。18.9 mgの粗生成物を乾燥メタノール2.0 mlに溶解させた。窒素雰囲気下で、10% Pd/C 10 mgを加えて、水素雰囲気下、室温で10時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、化合物20 (15.4 mg, 20.4 μmol) を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.29 (s. 1H), 6.81 (s, 2H), 6.24 (s, 1H), 5.05 (s, 2H), 4.28-4.21 (m, 4H), 4.13 (s, 1H), 3.48-3.42 (m, 4H), 3.14-3.13 (m, 2H), 2.44-2.35 (m, 4H), 2.08-1.92 (m, 2H), 1.49-1.45 (m, 9H), 1.27 (t, J = 7.2 Hz, 3H).
Compound 20
Compound 19 (18.7 mg, 21 μmol) was dissolved in 0.5 ml of methanol. Under a nitrogen atmosphere, 10 mg of 10% Pd / C was added, and the mixture was stirred at room temperature for 4.5 hours under a hydrogen atmosphere. Subsequently, 1.5 ml of methanol was added, 10% Pd / C 10 mg was added under a nitrogen atmosphere, and the mixture was stirred at room temperature for 6.5 hours under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain 18.9 mg of a crude product. 18.9 mg of the crude product was dissolved in 2.0 ml of dry methanol. Under a nitrogen atmosphere, 10 mg of 10% Pd / C was added, and the mixture was stirred at room temperature for 10 hours under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain Compound 20 (15.4 mg, 20.4 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.61 (s, 1H), 7.29 (s. 1H), 6.81 (s, 2H), 6.24 (s, 1H), 5.05 (s, 2H), 4.28- 4.21 (m, 4H), 4.13 (s, 1H), 3.48-3.42 (m, 4H), 3.14-3.13 (m, 2H), 2.44-2.35 (m, 4H), 2.08-1.92 (m, 2H), 1.49-1.45 (m, 9H), 1.27 (t, J = 7.2 Hz, 3H).
化合物2(Fluorescein)
 化合物20(15.4 mg, 20.4 μmol)を乾燥DMF 0.6 mlに溶解させた。窒素雰囲気下、5-Carboxyfluorescein diacetate N-succinimidyl ester (12.5 mg, 22.4 μmol)(ref. 2)、TEA (8.6 μL, 61 μmol)を加えて、室温で5時間撹拌した。次いで、窒素雰囲気下、5-Carboxyfluorescein diacetate N-succinimidyl ester (2.27 mg, 4.1 μmol)(ref. 2)、を加えて、室温で5時間撹拌した。溶媒を留去し、35.3 mg の粗生成物を得た。得られた化合物をそのまま次の反応に用いた。
Compound 2 (Fluorescein)
Compound 20 (15.4 mg, 20.4 μmol) was dissolved in 0.6 ml of dry DMF. Under a nitrogen atmosphere, 5-Carboxyfluorescein diacetate N-succinimidyl ester (12.5 mg, 22.4 μmol) (ref. 2) and TEA (8.6 μL, 61 μmol) were added, and the mixture was stirred at room temperature for 5 hours. Subsequently, 5-Carboxyfluorescein diacetate N-succinimidyl ester (2.27 mg, 4.1 μmol) (ref. 2) was added under a nitrogen atmosphere, and the mixture was stirred at room temperature for 5 hours. The solvent was distilled off to obtain 35.3 mg of a crude product. The obtained compound was directly used in the next reaction.
 35.3 mgの粗生成物をメタノール 0.5 mlに溶解させ、0.5 M水酸化リチウム水溶液 0.4 mlを加えて室温で8.5時間撹拌した。1 M 塩酸を加えて中和した後に減圧乾固し、37.5 mgの粗生成物を得た。得られた化合物をそのまま次の反応に用いた。 35.3 mg of the crude product was dissolved in 0.5 ml of methanol, 0.4 ml of 0.5 M lithium hydroxide aqueous solution was added and stirred at room temperature for 8.5 hours. The mixture was neutralized with 1M hydrochloric acid and then dried under reduced pressure to obtain 37.5 mg of a crude product. The obtained compound was directly used in the next reaction.
 37.5 mgの粗化合物をジクロロメタン 4.0 mlに懸濁させた。TFA 0.8 mlを加えて、室温で3時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いた。得られた粗化合物をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、乾燥して、化合物2(Fluorescein)(1.37 mg, 1.25 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 8.48 (s, 1H), 8.22-8.21 (m, 2H), 7.58 (s, 1H), 7.19 (s, 1H), 6.77-6.75 (m, 2H), 6.59-6.49 (m, 6H), 6.19-6.16 (m, 1H), 4.92 (s, 2H), 4.22 (s, 2H), 3.89 (t, J = 6.8 Hz, 1H),3.49-3.45 (m, 4H), 3.14-3.12 (m, 2H), 2.44-2.40 (m, 4H), 2.30-2.13 (m, 2H).  37.5 mg of the crude compound was suspended in 4.0 ml of dichloromethane. 0.8 ml of TFA was added and stirred at room temperature for 3 hours. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene. The obtained crude compound was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain Compound 2 (Fluorescein) (1.37 mg, 1.25 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 8.48 (s, 1H), 8.22-8.21 (m, 2H), 7.58 (s, 1H), 7.19 (s, 1H), 6.77-6.75 (m, 2H ), 6.59-6.49 (m, 6H), 6.19-6.16 (m, 1H), 4.92 (s, 2H), 4.22 (s, 2H), 3.89 (t, J = 6.8 Hz, 1H), 3.49-3.45 ( m, 4H), 3.14-3.12 (m, 2H), 2.44-2.40 (m, 4H), 2.30-2.13 (m, 2H).
Figure JPOXMLDOC01-appb-C000008
スキーム4. 化合物3(Fluorescein)の合成
Figure JPOXMLDOC01-appb-C000008
Scheme 4. Synthesis of Compound 3 (Fluorescein)
化合物21
 Methyl N-benzyloxycarbonyl-L-glutamate(0.5 g, 1.7 mmol)を乾燥DMF 17 mlに溶解させた。窒素雰囲気下で、WSC-HCl 0.42 g (2.2 mmol)、HOBt-H2O 0.34 g (2.2 mmol)、Boc-hydrazine(0.25 g, 2.0 mmol)、DIEA 236 μl (6.77 mmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、AcOEt (60 mL)を粗化合物に加えた。有機層を0.01 M HCl (20 ml x2)、飽和NaHCO3水溶液 (20 mL x2)及び飽和食塩水(20ml)で洗浄し、Na2SO4 で乾燥して、化合物21(635 mg, 1.55 mmol)を白色粉末として得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.36-7.29 (m, 5H), 5.09 (s, 2H), 4.22-4.20 (m, 1H), 3.72 (s, 3H), 2.32-2.30 (m, 2H), 2.19-2.16 (m, 1H), 1.98-1.92 (m, 1H), 1.46 (s, 9H).
Compound 21
Methyl N-benzyloxycarbonyl-L-glutamate (0.5 g, 1.7 mmol) was dissolved in 17 ml of dry DMF. Under a nitrogen atmosphere, add WSC-HCl 0.42 g (2.2 mmol), HOBt-H 2 O 0.34 g (2.2 mmol), Boc-hydrazine (0.25 g, 2.0 mmol), DIEA 236 μl (6.77 mmol) at room temperature. For 5 hours. After the solvent was distilled off, AcOEt (60 mL) was added to the crude compound. The organic layer was washed with 0.01 M HCl (20 ml x 2), saturated aqueous NaHCO 3 solution (20 mL x 2) and saturated brine (20 ml), dried over Na 2 SO 4 and compound 21 (635 mg, 1.55 mmol) Was obtained as a white powder. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.36-7.29 (m, 5H), 5.09 (s, 2H), 4.22-4.20 (m, 1H), 3.72 (s, 3H), 2.32-2.30 (m , 2H), 2.19-2.16 (m, 1H), 1.98-1.92 (m, 1H), 1.46 (s, 9H).
化合物22
 化合物21(635 mg, 1.55 mmol)をTHF 15.5 mlに溶解させ、1 M水酸化ナトリウム水溶液を7.7 ml加えて、室温で45分間撹拌した。1 M塩酸を加えて中和した後に減圧乾固した。得られた粗生成物をクロロホルム(60 ml)に溶解させた。有機層を0.1 M HCl(20 ml,x2)及び飽和食塩水(20 ml)で洗浄し、Na2SO4 で乾燥して化合物22(492 mg, 1.18 mmol)を白色粉末として得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.38-7.27 (m, 5H), 5.09 (s, 2H), 4.22-4.18 (m, 1H), 2.36-2.34 (m, 2H), 2.24-2.19 (m, 1H), 1.99-1.94 (m, 1H), 1.46 (s, 9H).
Compound 22
Compound 21 (635 mg, 1.55 mmol) was dissolved in 15.5 ml of THF, 7.7 ml of 1 M aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 45 minutes. After neutralizing with 1 M hydrochloric acid, the mixture was dried under reduced pressure. The obtained crude product was dissolved in chloroform (60 ml). The organic layer was washed with 0.1 M HCl (20 ml, x2) and saturated brine (20 ml) and dried over Na 2 SO 4 to obtain compound 22 (492 mg, 1.18 mmol) as a white powder. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.38-7.27 (m, 5H), 5.09 (s, 2H), 4.22-4.18 (m, 1H), 2.36-2.34 (m, 2H), 2.24-2.19 (m, 1H), 1.99-1.94 (m, 1H), 1.46 (s, 9H).
化合物23
 化合物22(492 mg, 1.18 mmol)を乾燥DMF 12 mlに溶解させた。窒素雰囲気下で、WSC-HCl 293 mg (1.53 mmol)、HOBt-H2O 234 mg (1.53 mmol)、4-Aminobutyric acid methyl ester hydrochloride(217 mg, 1.41 mmol)、DIEA 165 μl (4.72 mmol)を加えて、室温で6時間撹拌した。溶媒を留去した後に、AcOEt (60 mL)を粗化合物に加えた。有機層を0.01 M HCl (20 ml x2)、飽和NaHCO3水溶液 (20 mL x2)及び飽和食塩水(20ml)で洗浄し、Na2SO4 で乾燥して、化合物23(550 mg, 1.11 mmol)を白色結晶として得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.36-7.29 (m, 5H), 5.09 (s, 2H), 4.11-4.06 (m, 1H), 3.65 (s, 3H), 3.25-3.21 (m, 2H), 2.38-2.35 (m, 2H), 2.32-2.28 (m, 2H), 2.06-1.93 (m, 2H), 1.82-1.78 (m, 2H), 1.46 (s, 9H).
Compound 23
Compound 22 (492 mg, 1.18 mmol) was dissolved in 12 ml of dry DMF. Under nitrogen atmosphere, WSC-HCl 293 mg (1.53 mmol), HOBt-H 2 O 234 mg (1.53 mmol), 4-Aminobutyric acid methyl ester hydrochloride (217 mg, 1.41 mmol), DIEA 165 μl (4.72 mmol) In addition, the mixture was stirred at room temperature for 6 hours. After the solvent was distilled off, AcOEt (60 mL) was added to the crude compound. The organic layer was washed with 0.01 M HCl (20 ml x 2), saturated aqueous NaHCO 3 solution (20 mL x 2) and saturated brine (20 ml), dried over Na 2 SO 4 and compound 23 (550 mg, 1.11 mmol) Was obtained as white crystals. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.36-7.29 (m, 5H), 5.09 (s, 2H), 4.11-4.06 (m, 1H), 3.65 (s, 3H), 3.25-3.21 (m , 2H), 2.38-2.35 (m, 2H), 2.32-2.28 (m, 2H), 2.06-1.93 (m, 2H), 1.82-1.78 (m, 2H), 1.46 (s, 9H).
化合物24
 化合物23(550 mg, 1.11 mmol)をTHF 11 mlに溶解させ、1 M水酸化ナトリウム水溶液を1.1 ml加えて、室温で2時間撹拌した。次いで、1 M水酸化ナトリウム水溶液を1.1 ml加えて、室温で1.5時間撹拌した。1 M塩酸を加えて中和した後に減圧乾固した。得られた粗生成物をクロロホルム(60 ml)に溶解させた。有機層を0.01 M HCl(20 ml,x2)及び飽和食塩水(20 ml)で洗浄し、Na2SO4で乾燥した。得られた粗化合物をカラムクロマトグラフィー(シリカ、CHCl3 / MeOH =10/1+1% AcOH → CHCl3 / MeOH =8/1+1% AcOH→CHCl3 / MeOH =5/1+1% AcOH)で精製して、366 mg (0.73 mmol)の化合物24を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.35-7.28 (m, 5H), 5.08 (s, 2H), 4.13-4.11 (m, 1H), 3.25-3.22 (m, 2H), 2.35-2.30 (m, 4H), 2.15-2.00 (m, 1H), 1.95-1.94 (m, 1H), 1.83-1.77 (m, 2H), 1.45 (s, 9H).
Compound 24
Compound 23 (550 mg, 1.11 mmol) was dissolved in 11 ml of THF, 1.1 ml of 1 M aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 2 hours. Next, 1.1 ml of 1 M aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 1.5 hours. After neutralizing with 1 M hydrochloric acid, the mixture was dried under reduced pressure. The obtained crude product was dissolved in chloroform (60 ml). The organic layer was washed with 0.01 M HCl (20 ml, x2) and saturated brine (20 ml) and dried over Na 2 SO 4 . The resulting crude compound was subjected to column chromatography (silica, CHCl 3 / MeOH = 10/1 + 1% AcOH → CHCl 3 / MeOH = 8/1 + 1% AcOH → CHCl 3 / MeOH = 5/1 + 1% AcOH ) To give 366 mg (0.73 mmol) of compound 24. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.35-7.28 (m, 5H), 5.08 (s, 2H), 4.13-4.11 (m, 1H), 3.25-3.22 (m, 2H), 2.35-2.30 (m, 4H), 2.15-2.00 (m, 1H), 1.95-1.94 (m, 1H), 1.83-1.77 (m, 2H), 1.45 (s, 9H).
化合物25
 化合物24(43.7 mg, 87 μmol)を乾燥DMF 2.0 mlに溶解させた。窒素雰囲気下で、WSC-HCl 16.7 mg (87 μmol)、HOBt-H2O 13.3 mg (87 μmol)、化合物6(30 mg, 67 μmol)、DIEA 94 μl (269 μmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、クロロホルム(60 mL)を粗化合物に加えた。有機層を0.01 M HCl (20 ml x2)、飽和NaHCO3水溶液 (20 mL x2)及び飽和食塩水(20ml)で洗浄し、Na2SO4 で乾燥し、カラムクロマトグラフィー(シリカ、CHCl3 / MeOH =10/1)で精製を行い、16.1 mg (18.4 μmol)の化合物25を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.60 (s, 1H), 7.36-7.27 (m, 6H), 6.81-6.77 (m, 2H), 6.24-6.23 (m, 1H), 5.04-5.02 (m, 4H), 4.27-4.20 (m, 4H), 4.08-4.05 (m, 1H), 2.32-2.21 (m, 4H), 1.83-1.80 (m, 2H), 1.45 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H).
Compound 25
Compound 24 (43.7 mg, 87 μmol) was dissolved in 2.0 ml of dry DMF. Under a nitrogen atmosphere, add WSC-HCl 16.7 mg (87 μmol), HOBt-H 2 O 13.3 mg (87 μmol), Compound 6 (30 mg, 67 μmol), DIEA 94 μl (269 μmol), and Stir for 5 hours. After the solvent was distilled off, chloroform (60 mL) was added to the crude compound. The organic layer was washed with 0.01 M HCl (20 ml x2), saturated aqueous NaHCO 3 solution (20 mL x2) and saturated brine (20 ml), dried over Na 2 SO 4 and column chromatography (silica, CHCl 3 / MeOH = 10/1) to obtain 16.1 mg (18.4 μmol) of compound 25. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.60 (s, 1H), 7.36-7.27 (m, 6H), 6.81-6.77 (m, 2H), 6.24-6.23 (m, 1H), 5.04-5.02 (m, 4H), 4.27-4.20 (m, 4H), 4.08-4.05 (m, 1H), 2.32-2.21 (m, 4H), 1.83-1.80 (m, 2H), 1.45 (s, 9H), 1.23 (t, J = 7.2 Hz, 3H).
化合物26
 化合物25(16.1 mg,18.4 μmol)を乾燥メタノール1.0 mlに溶解させた。窒素雰囲気下で、10% Pd/C 10 mgを加えて、水素雰囲気下、室温で13時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、12.7mg の化合物26(17.2 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.60 (s, 1H), 7.11 (s, 1H), 6.79-6.77 (m, 2H), 6.21 (s, 1H), 5.05 (s, 2H), 4.27-4.18 (m, 4H), 4.00-3.98 (m, 1H), 3.27-3.22 (m, 2H), 2.26-2.23 (m, 4H), 1.83-1.82 (m, 2H), 1.46 (s, 9H), 1.24 (t, J= 7.2 Hz, 3H).
Compound 26
Compound 25 (16.1 mg, 18.4 μmol) was dissolved in 1.0 ml of dry methanol. Under a nitrogen atmosphere, 10 mg of 10% Pd / C was added, and the mixture was stirred at room temperature for 13 hours under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain 12.7 mg of compound 26 (17.2 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.60 (s, 1H), 7.11 (s, 1H), 6.79-6.77 (m, 2H), 6.21 (s, 1H), 5.05 (s, 2H), 4.27-4.18 (m, 4H), 4.00-3.98 (m, 1H), 3.27-3.22 (m, 2H), 2.26-2.23 (m, 4H), 1.83-1.82 (m, 2H), 1.46 (s, 9H ), 1.24 (t, J = 7.2 Hz, 3H).
化合物3(Fluorescein)
 化合物26(12.7 mg, 17.2 μmol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下、5-Carboxyfluorescein N-succinimidyl ester(10.6 mg, 22.3 μmol)、DIEA(23.9 μL, 68.8 μmol)を加えて、室温で19時間撹拌した。溶媒を留去し、29.6 mg の粗生成物を得た。得られた化合物をそのまま次の反応に用いた。
Compound 3 (Fluorescein)
Compound 26 (12.7 mg, 17.2 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, 5-Carboxyfluorescein N-succinimidyl ester (10.6 mg, 22.3 μmol) and DIEA (23.9 μL, 68.8 μmol) were added, and the mixture was stirred at room temperature for 19 hours. The solvent was distilled off to obtain 29.6 mg of a crude product. The obtained compound was directly used in the next reaction.
 29.6 mgの粗生成物をTHF 1.0 mlに溶解させ、0.5 M水酸化リチウム水溶液 235 μlを加えて室温で6時間撹拌した。1 M 塩酸を加えて中和した後に減圧乾固した。得られた粗生成物を再度THF 1.0 mlに溶解させ、0.5 M水酸化リチウム水溶液235 μlを加えて室温で4.5時間撹拌した。1 M 塩酸を加えて中和した後に減圧乾固し,41 mgの粗化合物を得た。得られた化合物をそのまま次の反応に用いた。 29.6 mg of the crude product was dissolved in 1.0 ml of THF, and 235 ml of 0.5 M lithium hydroxide aqueous solution was added and stirred at room temperature for 6 hours. The mixture was neutralized by adding 1M hydrochloric acid and then dried under reduced pressure. The obtained crude product was dissolved again in 1.0 ml of THF, 235 l of 0.5 M lithium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 4.5 hours. The mixture was neutralized with 1M hydrochloric acid and then dried under reduced pressure to obtain 41mg of crude compound. The obtained compound was directly used in the next reaction.
 41 mgの粗化合物をジクロロメタン2.0 mlに懸濁させた。TFA 0.4 mlを加えて、室温で40 分間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いた。得られた粗化合物をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、乾燥して、化合物3(Fluorescein)(1.91 mg, 1.76 μmol)を得た。ESI-MS ([M+H]=969.2640(obs.), 969.2661(calc.) ). 41 mg of crude compound was suspended in 2.0 ml of dichloromethane. 0.4 ml of TFA was added and stirred at room temperature for 40 minutes. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene. The obtained crude compound was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain Compound 3 (Fluorescein) (1.91 mg, 1.76 mol). ESI-MS ([M + H] = 969.2640 (obs.), 969.2661 (calc.)).
Figure JPOXMLDOC01-appb-C000009
スキーム5. 化合物4(Fluorescein)の合成
Figure JPOXMLDOC01-appb-C000009
Scheme 5. Synthesis of Compound 4 (Fluorescein)
化合物27
  Nε-[(tert-Butoxy)carbonyl]-Nα-[(benzyloxy)carbonyl]-L-lysine(12.6 mg, 33.6 μ mol)を乾燥DMF 1.0 mlに溶解させた。窒素雰囲気下で、HBTU(16.3 mg, 43 μmol)、化合物6(15 mg, 33.6 μmol)、DIEA 23.5 μl (134 μmol)を加えて、室温で2時間撹拌した。溶媒を留去した後に、残渣をカラムクロマトグラフィー(シリカ、CHCl3 / MeOH =25/1)で精製して、18.4 mg (24 μmol)の化合物27を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.60 (s, 1H), 7.38-7.25 (m, 6H), 6.80-6.78 (m, 2H), 6.22 (s, 1H), 5.09 (s, 2H), 5.02 (s, 2H), 4.85-4.25 (s, 2H), 4.22 (t, J = 7.2 Hz, 2H), 4.08-4.05 (m, 1H), 3.03-2.99 (m, 2H), 1.76-1.62 (m, 2H), 1.49-1.45 (m, 4H), 1.41 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H).
Compound 27
N ε -[(tert-Butoxy) carbonyl] -N α -[(benzyloxy) carbonyl] -L-lysine (12.6 mg, 33.6 μmol) was dissolved in 1.0 ml of dry DMF. Under a nitrogen atmosphere, HBTU (16.3 mg, 43 μmol), compound 6 (15 mg, 33.6 μmol) and DIEA 23.5 μl (134 μmol) were added, and the mixture was stirred at room temperature for 2 hours. After the solvent was distilled off, the residue was purified by column chromatography (silica, CHCl 3 / MeOH = 25/1) to obtain 18.4 mg (24 μmol) of Compound 27. 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.60 (s, 1H), 7.38-7.25 (m, 6H), 6.80-6.78 (m, 2H), 6.22 (s, 1H), 5.09 (s, 2H ), 5.02 (s, 2H), 4.85-4.25 (s, 2H), 4.22 (t, J = 7.2 Hz, 2H), 4.08-4.05 (m, 1H), 3.03-2.99 (m, 2H), 1.76- 1.62 (m, 2H), 1.49-1.45 (m, 4H), 1.41 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H).
化合物28
 化合物25(16.6 mg,20 μmol)をメタノール0.5 mlに溶解させた。窒素雰囲気下で、10% Pd/C 5 mgを加えて、水素雰囲気下、室温で2.5時間撹拌した。パラジウム炭素を濾別で除いた後に、溶媒を留去し、11 mg の化合物28(17 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.26-7.21 (m, 1H), 6.82-6.79 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s, 2H), 4.34-4.14 (m, 4H), 4.11-4.06 (m, 1H), 3.02-2.99 (m, 4H), 2.86-2.82 (m, 2H), 1.70-1.57 (m, 2H), 1.42 (s, 9H), 1.26 (t, J = 7.2 Hz, 3H).
Compound 28
Compound 25 (16.6 mg, 20 μmol) was dissolved in 0.5 ml of methanol. Under a nitrogen atmosphere, 10 mg of Pd / C 5 mg was added, and the mixture was stirred at room temperature for 2.5 hours under a hydrogen atmosphere. After removing palladium carbon by filtration, the solvent was distilled off to obtain 11 mg of compound 28 (17 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.61 (s, 1H), 7.26-7.21 (m, 1H), 6.82-6.79 (m, 2H), 6.24-6.23 (m, 1H), 5.04 (s , 2H), 4.34-4.14 (m, 4H), 4.11-4.06 (m, 1H), 3.02-2.99 (m, 4H), 2.86-2.82 (m, 2H), 1.70-1.57 (m, 2H), 1.42 (s, 9H), 1.26 (t, J = 7.2 Hz, 3H).
化合物4(Fluorescein)
 化合物28(6.6 mg, 10.3 μmol)を乾燥DMF 0.3 mlに溶解させた。窒素雰囲気下、5-Carboxyfluorescein diacetate N-succinimidyl ester (6.13 mg,11.3 μmol)、TEA(4.22 μL, 30.9 μmol)を加えて、室温で1.5時間撹拌した。溶媒を留去し、得られた化合物をそのまま次の反応に用いた。
Compound 4 (Fluorescein)
Compound 28 (6.6 mg, 10.3 μmol) was dissolved in 0.3 ml of dry DMF. Under a nitrogen atmosphere, 5-Carboxyfluorescein diacetate N-succinimidyl ester (6.13 mg, 11.3 μmol) and TEA (4.22 μL, 30.9 μmol) were added, and the mixture was stirred at room temperature for 1.5 hours. The solvent was distilled off and the obtained compound was used for the next reaction as it was.
 得られた化合物をメタノール0.2 mlに溶解させ、0.5 M水酸化リチウム水溶液0.2 mlを加えて室温で終夜撹拌した。1 M 塩酸を加えて中和した後に減圧乾固し,得られた化合物をそのまま次の反応に用いた。 The obtained compound was dissolved in 0.2 ml of methanol, 0.2 ml of 0.5 M lithium hydroxide aqueous solution was added and stirred overnight at room temperature. The mixture was neutralized with 1M hydrochloric acid and then dried under reduced pressure, and the obtained compound was used as it was in the next reaction.
 粗化合物をジクロロメタン1.0 mlに懸濁させた。TFA 0.2 mlを加えて、室温で2時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いた。得られた粗化合物をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、乾燥して、化合物4(Fluorescein)(1.32 mg, 1.34 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 8.78 (s, 1H), 8.24-8.22 (m, 1H), 7.72-7.66 (m, 1H), 7.60 (s, 1H), 7.25 (s, 1H), 6.85-6.75 (m, 2H), 6.57-6.52 (m, 6H), 6.26 (s, 1H), 5.06 (s, 2H), 4.75-4.68 (m, 2H), 4.34 (s, 1H), 2.97-2.89 (m, 2H), 1.81-1.51 (m, 2H), 1.36-1.31 (m, 4H). The crude compound was suspended in 1.0 ml dichloromethane. 0.2 ml of TFA was added and stirred at room temperature for 2 hours. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene. The obtained crude compound was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain Compound 4 (Fluorescein) (1.32 mg, 1.34 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 8.78 (s, 1H), 8.24-8.22 (m, 1H), 7.72-7.66 (m, 1H), 7.60 (s, 1H), 7.25 (s, 1H ), 6.85-6.75 (m, 2H), 6.57-6.52 (m, 6H), 6.26 (s, 1H), 5.06 (s, 2H), 4.75-4.68 (m, 2H), 4.34 (s, 1H), 2.97-2.89 (m, 2H), 1.81-1.51 (m, 2H), 1.36-1.31 (m, 4H).
Figure JPOXMLDOC01-appb-C000010
スキーム6. 化合物4(Alexa647)の合成
Figure JPOXMLDOC01-appb-C000010
Scheme 6. Synthesis of Compound 4 (Alexa647)
化合物29
 化合物28(14.7 mg, 23 mmol)をメタノール0.46 mlに溶解させ、0.5 M水酸化リチウム水溶液 0.46 mlを加えて室温で4.5時間撹拌した。1 M 塩酸を加えて中和した後に減圧乾固した。得られた化合物をHPLC(アセトニトリル(0.1% TFA)/水(0.1% TFA))で精製し、乾燥して、8.1 mgの化合物29(11.2 μmol)を得た。1H NMR spectroscopy (400 MHz, CD3OD) δ 7.61 (s, 1H), 7.23 (s, 1H), 6.86-6.82 (m, 2H), 6.27-6.26 (m, 1H), 5.00 (s, 2H), 4.40-4.28 (m, 2H), 3.81 (t, J = 6.8 Hz, 1H), 3.02 (t, J = 7.2 Hz, 2H), 1.86-1.82 (m, 2H), 1.52-1.46 (m, 2H), 1.42 (s, 9H), 1.41-1.37 (m, 2H).
Compound 29
Compound 28 (14.7 mg, 23 mmol) was dissolved in 0.46 ml of methanol, 0.46 ml of 0.5 M lithium hydroxide aqueous solution was added, and the mixture was stirred at room temperature for 4.5 hours. After neutralizing with 1 M hydrochloric acid, the mixture was dried under reduced pressure. The obtained compound was purified by HPLC (acetonitrile (0.1% TFA) / water (0.1% TFA)) and dried to obtain 8.1 mg of compound 29 (11.2 μmol). 1 H NMR spectroscopy (400 MHz, CD 3 OD) δ 7.61 (s, 1H), 7.23 (s, 1H), 6.86-6.82 (m, 2H), 6.27-6.26 (m, 1H), 5.00 (s, 2H ), 4.40-4.28 (m, 2H), 3.81 (t, J = 6.8 Hz, 1H), 3.02 (t, J = 7.2 Hz, 2H), 1.86-1.82 (m, 2H), 1.52-1.46 (m, 2H), 1.42 (s, 9H), 1.41-1.37 (m, 2H).
化合物4(Alexa647)
 化合物29(0.81 mg, 1.12 μmol)を乾燥DMF 0.1 mlに溶解させた。窒素雰囲気下で、Alexa647-NHS-ester (1 mg)、TEA 0.46 μl (3.3 μmol)を加えて、室温で10.5時間撹拌した。次いで、TEA 0.46 μl (3.3 μmol)をこの溶液に加え、室温で14時間撹拌した。溶媒を留去し、4.1 mgの粗化合物を得た。得られた生成物は、そのまま次の反応に用いた。
Compound 4 (Alexa647)
Compound 29 (0.81 mg, 1.12 μmol) was dissolved in 0.1 ml of dry DMF. Under a nitrogen atmosphere, Alexa647-NHS-ester (1 mg) and TEA 0.46 μl (3.3 μmol) were added, and the mixture was stirred at room temperature for 10.5 hours. TEA 0.46 μl (3.3 μmol) was then added to the solution and stirred at room temperature for 14 hours. The solvent was distilled off to obtain 4.1 mg of a crude compound. The obtained product was directly used for the next reaction.
 4.1 mgの粗化合物をジクロロメタン 0.2 mlに懸濁させた。TFA 40 μlを加えて、室温で1時間撹拌した。溶媒を留去した後に、トルエンとの共沸により念入りにTFAを除いた。得られた生成物をHPLC(アセトニトリル/10 mM 酢酸アンモニウム水溶液)で精製し、凍結乾燥して、目的化合物4(Alexa647)(0.39 mg, 0.27 μmol)を得た。ESI-MS ([M-3H]=449.4459 (obs.), 449.4475 (calc.)). 4.1 mg of crude compound was suspended in 0.2 ml of dichloromethane. 40 μl of TFA was added and stirred at room temperature for 1 hour. After the solvent was distilled off, TFA was carefully removed by azeotropy with toluene. The obtained product was purified by HPLC (acetonitrile / 10 mM ammonium acetate aqueous solution) and lyophilized to obtain the target compound 4 (Alexa647) (0.39 mg, 0.27 μmol). ESI-MS ([M-3H] = 449.4459 (obs.), 449.4475 (calc.)).
Figure JPOXMLDOC01-appb-C000011
スキーム7. 化合物5(Fluorescein)及び化合物5(Alexa647)の合成
Figure JPOXMLDOC01-appb-C000011
Scheme 7. Synthesis of Compound 5 (Fluorescein) and Compound 5 (Alexa647)
化合物 31
 化合物 30 (4.7 mg, 13.3 μmol) (ref. 3)を乾燥DMF 0.1 mlに溶解させた。N-(tert-ブトキシカルボニル)-2,2'-(エチレンジオキシ)ジエチルアミン 16.5 mg (66.7 μmol)、炭酸カリウム 5.5 mg (40.0 μmol)を加えて、50°Cで加熱撹拌した。溶媒を留去した後に、分取薄層クロマトグラフィー(シリカゲル、ヘキサン/醋酸エチル = 1/4)で精製を行い、6.2 mg (11.0 μmol)の化合物31を得た。
Compound 31
Compound 30 (4.7 mg, 13.3 μmol) (ref. 3) was dissolved in 0.1 ml of dry DMF. N- (tert-butoxycarbonyl) -2,2 ′-(ethylenedioxy) diethylamine 16.5 mg (66.7 μmol) and potassium carbonate 5.5 mg (40.0 μmol) were added, and the mixture was heated and stirred at 50 ° C. After the solvent was distilled off, purification was performed by preparative thin layer chromatography (silica gel, hexane / ethyl oxalate = ¼) to obtain 6.2 mg (11.0 μmol) of Compound 31.
化合物 32
 化合物 31 (2.8 mg, 5.0 μmol)をジクロロメタン 0.5 mlに溶解させ、トリフルオロ酢酸 0.5 mlを加え室温で15分間撹拌した。溶媒を留去した後に得られた粗生成物を乾燥DMF 0.1 mlに溶解させた。FmocHN-Lys(Boc)-COOH 3.5 mg (7.5 μmol)、HBTU 2.8 mg (7.5 μmol)、DIEA 2.6 μl (15 μmol)を加えて、室温で3時間撹拌した。ピペリジン 10 μlを加えて室温で10分間撹拌した後に溶媒を留去し、分取薄層クロマトグラフィー(シリカゲル、CHCl3 / MeOH =10/1(NH31%)))で精製を行い、3.4 mg (5.0 μmol)の化合物32を得た。
Compound 32
Compound 31 (2.8 mg, 5.0 μmol) was dissolved in 0.5 ml of dichloromethane, 0.5 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 15 minutes. The crude product obtained after distilling off the solvent was dissolved in 0.1 ml of dry DMF. FmocHN-Lys (Boc) -COOH 3.5 mg (7.5 μmol), HBTU 2.8 mg (7.5 μmol), and DIEA 2.6 μl (15 μmol) were added, and the mixture was stirred at room temperature for 3 hours. After adding 10 μl of piperidine and stirring at room temperature for 10 minutes, the solvent was distilled off and purification was performed by preparative thin layer chromatography (silica gel, CHCl 3 / MeOH = 10/1 (NH 3 1%)). mg (5.0 μmol) of compound 32 was obtained.
化合物 5(Fluorescein)
 化合物32 (7.2 mg, 1.0 μmol)を乾燥DMF 50 μlに溶解させた。Fluorescein-NHS 1.0 mg (2.0 μmol)、 DIEA 1.0 μl (6.3 μmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、ジクロロメタン 0.5 mlに溶解させ、トリフルオロ酢酸 0.5 mlを加え室温で15分間撹拌した。溶媒を留去した後、水に溶解させ、HPLC(アセトニトリル/水(0.1% TFA))で精製し、凍結乾燥して、目的化合物5(Fluorescein)を得た。 
Compound 5 (Fluorescein)
Compound 32 (7.2 mg, 1.0 μmol) was dissolved in 50 μl of dry DMF. Fluorescein-NHS 1.0 mg (2.0 μmol) and DIEA 1.0 μl (6.3 μmol) were added and stirred at room temperature for 5 hours. After the solvent was distilled off, the residue was dissolved in 0.5 ml of dichloromethane, 0.5 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 15 minutes. After the solvent was distilled off, the residue was dissolved in water, purified by HPLC (acetonitrile / water (0.1% TFA)), and lyophilized to obtain the target compound 5 (Fluorescein).
化合物 5(Alexa647)
 化合物32 (7.2 mg, 1.0 μmol)を乾燥DMF 50 μlに溶解させた。Alexa647-NHS 1.0 mg (1.0 μmol)、 DIEA 1.0 μl (6.3 μmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、ジクロロメタン 0.5 mlに溶解させ、トリフルオロ酢酸 0.5 mlを加え室温で15分間撹拌した。溶媒を留去した後、水に溶解させ、HPLC(アセトニトリル/水(0.1% TFA))で精製し、凍結乾燥して、目的化合物5(Alexa647)を得た。 
Compound 5 (Alexa647)
Compound 32 (7.2 mg, 1.0 μmol) was dissolved in 50 μl of dry DMF. Alexa647-NHS 1.0 mg (1.0 μmol) and DIEA 1.0 μl (6.3 μmol) were added, and the mixture was stirred at room temperature for 5 hours. After the solvent was distilled off, the residue was dissolved in 0.5 ml of dichloromethane, 0.5 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 15 minutes. After the solvent was distilled off, the residue was dissolved in water, purified by HPLC (acetonitrile / water (0.1% TFA)), and lyophilized to obtain the target compound 5 (Alexa647).
Figure JPOXMLDOC01-appb-C000012
スキーム8. 化合物6(sulfoCy3)の合成
Figure JPOXMLDOC01-appb-C000012
Scheme 8. Synthesis of Compound 6 (sulfoCy3)
化合物 34
 化合物 33 (20.0 mg, 69.3 μmol) (ref. 4)を乾燥DMF 1.0 mlに溶解させた。氷冷下で水素化ナトリウム(40%ミネラルオイル含有) 5.5 mg (139 μmol)を加えて、氷冷下で30分撹拌した。4-ブロモ酪酸メチル10.5 μl (83.1 μmol)、ヨウ化ナトリウム10.4 mg (69.3 μmol)を加えて、50°Cで2時間加熱撹拌した。飽和食塩水を加え、酢酸エチルで3回抽出操作をおこなった後、有機層の溶媒を留去し、分取薄層クロマトグラフィー(シリカゲル、ヘキサン/醋酸エチル = 1/1)で精製を行い、10.4 mg (27.0 μmol)の化合物34を得た。
Compound 34
Compound 33 (20.0 mg, 69.3 μmol) (ref. 4) was dissolved in 1.0 ml of dry DMF. Under ice cooling, sodium hydride (containing 40% mineral oil) 5.5 mg (139 μmol) was added, and the mixture was stirred for 30 minutes under ice cooling. Methyl 4-bromobutyrate (10.5 μl, 83.1 μmol) and sodium iodide (10.4 mg, 69.3 μmol) were added, and the mixture was heated and stirred at 50 ° C. for 2 hours. Saturated saline was added, and extraction was performed three times with ethyl acetate. Then, the solvent of the organic layer was distilled off, and purification was performed by preparative thin layer chromatography (silica gel, hexane / ethyl oxalate = 1/1). 10.4 mg (27.0 μmol) of compound 34 was obtained.
化合物 35
 化合物 34 (10.4 mg, 26.8 μmol)をTHF 0.5 ml、水 0.5 mlに溶解させ、一水和水酸化リチウム 3.4 mg (80.3 μmol)を加え室温で終夜撹拌した。1N 塩酸を加えて中和した後、酢酸エチルで3回抽出操作をおこなった。有機層の溶媒を留去した後に得られた粗生成物を乾燥DMF 0.3 mlに溶解させた。N-(tert-ブトキシカルボニル)-2,2'-(エチレンジオキシ)ジエチルアミン 6.6 mg (32.1 μmol)、HBTU 15.2 mg (40.1 μmol)、DIEA 14 μl (80.2 μmol)を加えて、室温で撹拌した。飽和食塩水を加え、酢酸エチルで3回抽出操作をおこなった後、有機層の溶媒を留去し、分取薄層クロマトグラフィー(シリカゲル、醋酸エチル)で精製を行い、7.2 mg (12.9 μmol)の化合物35を得た。
Compound 35
Compound 34 (10.4 mg, 26.8 μmol) was dissolved in 0.5 ml of THF and 0.5 ml of water, 3.4 mg (80.3 μmol) of monohydrated lithium hydroxide was added, and the mixture was stirred at room temperature overnight. After neutralizing with 1N hydrochloric acid, extraction was performed three times with ethyl acetate. The crude product obtained after distilling off the solvent of the organic layer was dissolved in 0.3 ml of dry DMF. N- (tert-butoxycarbonyl) -2,2 '-(ethylenedioxy) diethylamine 6.6 mg (32.1 μmol), HBTU 15.2 mg (40.1 μmol), DIEA 14 μl (80.2 μmol) were added, and the mixture was stirred at room temperature. . Saturated brine was added, and the mixture was extracted three times with ethyl acetate. The solvent in the organic layer was distilled off, and the residue was purified by preparative thin layer chromatography (silica gel, ethyl oxalate). 7.2 mg (12.9 μmol) Compound 35 was obtained.
化合物 36
 化合物 35 (7.2 mg, 12.8 μmol)をジクロロメタン 0.5 mlに溶解させ、トリフルオロ酢酸 0.5 mlを加え室温で15分間撹拌した。溶媒を留去した後に得られた粗生成物を乾燥DMF 0.15 mlに溶解させた。FmocHN-Lys(Boc)-COOH 7.2 mg (15.4 μmol)、HBTU 7.3 mg (19.3 μmol)、DIEA 6.7 μl (38.5 μmol)を加えて、室温で3時間撹拌した。ピペリジン 15 μlを加えて室温で10分間撹拌した後に溶媒を留去し、分取薄層クロマトグラフィー(シリカゲル、CHCl3 / MeOH =10/1(NH31%)))で精製を行い、6.7 mg (9.7 μmol)の化合物36を得た。
Compound 36
Compound 35 (7.2 mg, 12.8 μmol) was dissolved in 0.5 ml of dichloromethane, 0.5 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 15 minutes. The crude product obtained after distilling off the solvent was dissolved in 0.15 ml of dry DMF. FmocHN-Lys (Boc) -COOH 7.2 mg (15.4 μmol), HBTU 7.3 mg (19.3 μmol), DIEA 6.7 μl (38.5 μmol) were added, and the mixture was stirred at room temperature for 3 hours. After adding 15 μl of piperidine and stirring at room temperature for 10 minutes, the solvent was distilled off, and purification was performed by preparative thin layer chromatography (silica gel, CHCl 3 / MeOH = 10/1 (NH 3 1%)) to obtain 6.7 mg (9.7 μmol) of compound 36 was obtained.
化合物6(sulfoCy3)
 化合物36 (1.0 mg, 1.5 μmol)を乾燥DMF 0.1 mlに溶解させた。sulfoCy3-NHS 1.0 mg (1.3 μmol)、 DIEA 0.8 μl (4.0 μmol)を加えて、室温で5時間撹拌した。溶媒を留去した後に、ジクロロメタン 0.5 mlに溶解させ、トリフルオロ酢酸 0.5 mlを加え室温で15分間撹拌した。溶媒を留去した後、水に溶解させ、HPLC(アセトニトリル/水(0.1% TFA))で精製し、凍結乾燥して、目的化合物6(sulfoCy3)を得た。 
Compound 6 (sulfoCy3)
Compound 36 (1.0 mg, 1.5 μmol) was dissolved in 0.1 ml of dry DMF. SulfoCy3-NHS 1.0 mg (1.3 μmol) and DIEA 0.8 μl (4.0 μmol) were added, and the mixture was stirred at room temperature for 5 hours. After the solvent was distilled off, the residue was dissolved in 0.5 ml of dichloromethane, 0.5 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 15 minutes. After the solvent was distilled off, the residue was dissolved in water, purified by HPLC (acetonitrile / water (0.1% TFA)), and lyophilized to obtain the target compound 6 (sulfoCy3).
参考文献(ref)
 1. Coleman, S. K. et al. J. Biol. Chem. 291, 8784-8794 (2016) 
 2. Brunet, A. et al. Bioorg. Med. Chem. Lett. 24, 3186-3188 (2014)
 3. Satoh, A. et al. Bioorg. Med. Chem. Lett. 19, 5464-5468 (2009)
 4. Yamaura. K. et al. Nat. Chem. Biol. 12, 822-830 (2016)
Reference (ref)
1. Coleman, S. K. et al. J. Biol. Chem. 291, 8784-8794 (2016)
2. Brunet, A. et al. Bioorg. Med. Chem. Lett. 24, 3186-3188 (2014)
3. Satoh, A. et al. Bioorg. Med. Chem. Lett. 19, 5464-5468 (2009)
4. Yamaura. K. et al. Nat. Chem. Biol. 12, 822-830 (2016)
生物化学実験:共焦点レーザー顕微鏡は、LSM800(カールツァイス社)を用いた。 Biochemical experiment: LSM800 (Carl Zeiss) was used as the confocal laser microscope.
細胞培養および遺伝子導入
(1)HEK293T細胞は10% FBS、ペニシリン (100 units/mL) 及び ストレプトマイシン(100 μg/mL)を添加したDulbecco’s Modified Eagle Medium (DMEM, グルコース4.5 g/L)培地中で、5% CO2の湿潤雰囲気下に培養した全ての実験について、細胞はサブコンフルエント(< 80%)からトリプシン-EDTA 溶液で回収し、新鮮な培地に再懸濁した。継代培養は2-3日毎に行った。AMPA型グルタミン酸受容体(GluR2)の遺伝子導入は、lipofectamine 2000(Invitrogen)を用い、添付のマニュアルに従って遺伝子導入した。ラベル化には、遺伝子導入36-48時間後の細胞を用いた。
(2)AMPA型グルタミン酸受容体(GluR2)遺伝子に代えて代謝型グルタミン酸受容体(mGlu1)遺伝子を用いた以外は上記と同様にしてmGlu1を遺伝子導入したHEK293T細胞を作製した。
(3)AMPA型グルタミン酸受容体(GluR2)遺伝子に代えてGABAA受容体(GABAAR)遺伝子を用いた以外は上記と同様にしてGABAARを遺伝子導入したHEK293T細胞を作製した。
Cell culture and gene transfer
(1) HEK293T cells 10% FBS, penicillin (100 units / mL) and streptomycin (100 μg / mL) Dulbecco's Modified Eagle Medium supplemented with (DMEM, glucose 4.5 g / L) medium, in 5% CO 2 For all experiments cultured in a humid atmosphere, cells were harvested from subconfluent (<80%) with trypsin-EDTA solution and resuspended in fresh medium. Subculture was performed every 2-3 days. The AMPA glutamate receptor (GluR2) was introduced using lipofectamine 2000 (Invitrogen) according to the attached manual. For labeling, cells 36 to 48 hours after gene introduction were used.
(2) HEK293T cells transfected with mGlu1 were prepared in the same manner as described above except that the metabotropic glutamate receptor (mGlu1) gene was used instead of the AMPA type glutamate receptor (GluR2) gene.
(3) HEK293T cells into which GABA A R was introduced were prepared in the same manner as described above except that the GABA A receptor (GABA A R) gene was used in place of the AMPA type glutamate receptor (GluR2) gene.
試験例1
HEK293T細胞におけるAMPAR(AMPA型グルタミン酸受容体)のラベル化および可視化(図3)
 前述したGluR2遺伝子導入済のHEK293T細胞をPBS(-)で2回洗浄した。PBS(-)に化合物1(1 μM)を添加し、細胞に加え、室温で10分間インキュベートした。前述した化合物1添加PBS(-)の10倍量の4%PFAリン酸緩衝溶液を細胞に加え、室温で30分間インキュベートした。PBS(-)で3回洗浄し、共焦点顕微鏡(confocal microscopy)観察を行った。
Test example 1
Labeling and visualization of AMPAR (AMPA glutamate receptor) in HEK293T cells (Figure 3)
The above-described HEK293T cells into which the GluR2 gene had been introduced were washed twice with PBS (−). Compound 1 (1 μM) was added to PBS (−), added to the cells, and incubated at room temperature for 10 minutes. A 10% volume of 4% PFA phosphate buffer solution of the above-mentioned Compound 1-added PBS (-) was added to the cells and incubated at room temperature for 30 minutes. The plate was washed 3 times with PBS (-) and observed with confocal microscopy.
試験例2
HEK293T細胞におけるmGlu1のラベル化および可視化(図4a)
 mGlu1遺伝子導入済のHEK293T細胞をPBS(-)で2回洗浄した。PBS(-)に化合物5(0.1 μM)を添加し、細胞に加え、室温で10分間インキュベートした。前述した化合物5添加PBS(-)の10倍量の4%PFAリン酸緩衝溶液を細胞に加え、室温で30分間インキュベートした。PBS(-)で3回洗浄し、共焦点顕微鏡観察を行った。
Test example 2
Labeling and visualization of mGlu1 in HEK293T cells (Figure 4a)
HEK293T cells into which mGlu1 gene had been introduced were washed twice with PBS (−). Compound 5 (0.1 μM) was added to PBS (−), added to the cells, and incubated at room temperature for 10 minutes. A 10% volume of 4% PFA phosphate buffer solution of the above-mentioned compound 5 added PBS (−) was added to the cells, and incubated at room temperature for 30 minutes. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
試験例3
HEK293T細胞におけるGABAARのラベル化および可視化(図4b)
 GABAAR遺伝子導入済のHEK293T細胞をPBS(-)で2回洗浄した。PBS(-)に化合物6(1 μM)を添加し、細胞に加え、室温で10分間インキュベートした。前述した化合物6添加PBS(-)の10倍量の4%PFAリン酸緩衝溶液を細胞に加え、室温で30分間インキュベートした。PBS(-)で3回洗浄し、共焦点顕微鏡観察を行った。
Test example 3
Labeling and visualization of GABA A R in HEK293T cells (Figure 4b)
HEK293T cells into which GABA A R gene had been introduced were washed twice with PBS (−). Compound 6 (1 μM) was added to PBS (−), added to the cells, and incubated at room temperature for 10 minutes. A 10% volume of 4% PFA phosphate buffer solution of the above-described compound 6-added PBS (−) was added to the cells, and incubated at room temperature for 30 minutes. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
試験例4
脳スライスにおけるmGlu1のラベル化および可視化(図6)
 三週齢のICR マウスから単離した急性脳スライスに化合物5(0.1 μM)を添加したACSF溶液(125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM D-glucose)を加え、95%O2/5%CO2雰囲気下、室温で30分間インキュベートした。前述した化合物5添加ACSF溶液の10倍量の4%PFAリン酸緩衝溶液を小脳スライスに加え、室温で1時間インキュベートした。PBS(-)で3回洗浄し、共焦点顕微鏡観察を行った。
Test example 4
Labeling and visualization of mGlu1 in brain slices (Figure 6)
ACSF solution (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgCl 2 , 1.25 mM NaH 2 PO 4 ) with compound 5 (0.1 μM) added to acute brain slices isolated from 3-week-old ICR mice , 26 mM NaHCO 3 , 10 mM D-glucose) and incubated in a 95% O 2 /5% CO 2 atmosphere at room temperature for 30 minutes. A 10% volume of 4% PFA phosphate buffer solution of the above-mentioned Compound 5 added ACSF solution was added to the cerebellar slice and incubated at room temperature for 1 hour. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
プロトコル1(図5)
 前述したGluR2遺伝子導入済のHEK293T細胞をPBS(-)で2回洗浄した。1%PFAリン酸緩衝溶液にラベル化剤(1 μM)を添加し、細胞に加え、室温で1時間インキュベートした。PBS(-)で3回洗浄し、共焦点顕微鏡観察を行った。
Protocol 1 (Figure 5)
The above-described HEK293T cells into which the GluR2 gene had been introduced were washed twice with PBS (−). Labeling agent (1 μM) was added to 1% PFA phosphate buffer solution, added to the cells and incubated for 1 hour at room temperature. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
プロトコル2(図5)
 前述したGluR2遺伝子導入済のHEK293T細胞をPBS(-)で2回洗浄した。1%PFAリン酸緩衝溶液を細胞に加え、室温で30分間インキュベートした。PBS(-)で3回洗浄し、1%PFAリン酸緩衝溶液にラベル化剤(1 μM)を添加したものを細胞に加え、室温で1時間インキュベートした。PBS(-)で3回洗浄し、共焦点顕微鏡観察を行った。
Protocol 2 (Figure 5)
The above-described HEK293T cells into which the GluR2 gene had been introduced were washed twice with PBS (−). 1% PFA phosphate buffer solution was added to the cells and incubated at room temperature for 30 minutes. The cells were washed 3 times with PBS (−), 1% PFA phosphate buffer solution containing a labeling agent (1 μM) added to the cells, and incubated at room temperature for 1 hour. The plate was washed 3 times with PBS (-) and observed with a confocal microscope.
試験例5
1.海馬神経細胞における固定化駆動ラベル化(図8)
実験方法
 従来法(Wakayama, S.; Kiyonaka, S.; Arai, I.; Kakegawa, W.; Matsuda, S.; Ibata, K.; Nemoto, Y. L.; Kusumi, A.; Yuzaki, M.; Hamachi, I. Nat. Commun. 2017, 8, 14850.)に従い調製した海馬の培養神経細胞をPBS(-)で2回洗浄した。PBS(-)に、スキーム2で得たラベル化剤である化合物1 (Alexa647)(2 μM)を添加し、細胞に加え、室温で5分間インキュベートした。前述したラベル化剤入りPBS(-)と同量の2%PFAリン酸緩衝溶液を細胞に加え、室温で30分インキュベートした。PBS(-)で3回洗浄した後、免疫染色を行い、共焦点顕微鏡観察を行った。結果を図8に示す。
Test Example 5
1. Immobilization drive labeling in hippocampal neurons (Fig. 8)
Experimental method Conventional method (Wakayama, S .; Kiyonaka, S .; Arai, I .; Kakegawa, W .; Matsuda, S .; Ibata, K .; Nemoto, YL; Kusumi, A .; Yuzaki, M .; Hamachi , I. Nat. Commun. 2017, 8, 14850.), cultured hippocampal neurons were washed twice with PBS (−). Compound (1) (Alexa647) (2 μM), the labeling agent obtained in Scheme 2, was added to PBS (−), added to the cells, and incubated at room temperature for 5 minutes. The same amount of 2% PFA phosphate buffer solution as PBS (−) containing the labeling agent described above was added to the cells and incubated at room temperature for 30 minutes. After washing 3 times with PBS (-), immunostaining was performed and confocal microscopy was performed. The results are shown in FIG.
 内在のAMPA型グルタミン酸受容体が存在するスパインを選択的に染色可能であること、通常の免疫染色法と併用可能であることが明らかになった。 It was clarified that the spine containing the endogenous AMPA-type glutamate receptor can be selectively stained and can be used in combination with a normal immunostaining method.
2.小脳スライスにおける複数同時染色(図9)
 従来法(Tamura, T.; Song, Z.; Amaike, K.; Lee, S.; Yin, S.; Kiyonaka, S.; Hamachi, I. J. Am. Chem. Soc. 2017, 139, 14181.)に従いマウス小脳スライスを調製した。ACSF (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM D-glucose)にスキーム2、7で各々得たラベル化剤である、化合物1 (Alexa647) (2 μM)、および化合物5 (Fluorescein) (0.2 μM)を添加し、それをマウス小脳スライスに対して加え、95%O2/5%CO2雰囲気下、室温で30分間インキュベートした。前述したラベル化剤入りACSFと同量の2%PFAリン酸緩衝溶液を細胞に加え、室温で60分間インキュベートした。PBS(-)で3回洗浄し,共焦点顕微鏡(confocal microscopy)観察を行った。結果を図9に示す。
2. Multiple simultaneous staining in cerebellar slices (Figure 9)
According to the conventional method (Tamura, T .; Song, Z .; Amaike, K .; Lee, S .; Yin, S .; Kiyonaka, S .; Hamachi, IJ Am. Chem. Soc. 2017, 139, 14181.) Mouse cerebellar slices were prepared. Labeling agents obtained in Schemes 2 and 7 on ACSF (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgCl 2 , 1.25 mM NaH 2 PO 4 , 26 mM NaHCO 3 , 10 mM D-glucose) Compound 1 (Alexa647) (2 μM) and Compound 5 (Fluorescein) (0.2 μM), which are added to the mouse cerebellar slice, at room temperature under 95% O 2 /5% CO 2 atmosphere Incubated for 30 minutes. The same amount of 2% PFA phosphate buffer solution as ACSF containing the labeling agent described above was added to the cells and incubated at room temperature for 60 minutes. Washed 3 times with PBS (-) and observed with confocal microscopy. The results are shown in FIG.
 小脳スライスに内在する複数の受容体(mGlu1およびAMPAR)を同時に可視化可能であることが明らかになった。また、インヒビター(FITM:4-Fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide (4 μM)およびNBQX : 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (40 μM))を化合物1 (Alexa647) (2 μM)、および化合物5 (Fluorescein) (0.2 μM)と併用した場合、フルオレセイン(Fl)のmGlu1への結合、Alexa647のAMPARへの結合は阻害されることが明らかになった(図7下欄の画像を参照)。 It became clear that multiple receptors (mGlu1 and AMPAR) in the cerebellar slice can be visualized simultaneously. Inhibitors (FITM: 4-Fluoro-N- [4- [6- (isopropylamino) pyrimidin-4-yl] -1,3-thiazol-2-yl] -N-methylbenzamide (4 μM) and NBQX: 2 , 3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo [f] quinoxaline-7-sulfonamide (40 μM)), compound 1 (Alexa647) (2 μM), and compound 5 (Fluorescein) (0.2 When combined with μM), it was revealed that the binding of fluorescein (Fl) to mGlu1 and the binding of Alexa647 to AMPAR were inhibited (see the image in the lower column of FIG. 7).
3.小脳スライスにおける電位依存性カルシウムチャネル(VDCC: Voltage-dependent Ca2+ channel)に対するラベル化(図10)
(1)VDCC可視化のためのラベル化剤合成
3. Voltage-dependent calcium channels in cerebellar slices (VDCC: Voltage-dependent Ca 2+ channel) for labeling (Fig. 10)
(1) Synthesis of labeling agent for VDCC visualization
Figure JPOXMLDOC01-appb-C000013
スキーム9. Fluorophore-AgTx[1-48]の合成
Figure JPOXMLDOC01-appb-C000013
Scheme 9. Synthesis of Fluorophore-AgTx [1-48]
N 3 -AgTx[1-24]-CONHNH 2  (AgTX:ω-agatoxin IVA from Funnel Web Spider, Agelenopsis aperta)
 2-クロロトリチルクロリド樹脂(1.51 mmol/g, 750 mg, 1.13 mmol)を5% H2NNH2/NMP (v/v) (4 mL)に加え、30分間撹拌した。溶液を除去し、NMPで樹脂を洗浄したのち、再び5% H2NNH2/NMP (v/v) (4 mL)を樹脂に30分間作用させた。溶液を除去し、NMPで樹脂を洗浄したのち、固相合成法にて、対応するペプチドフラグメントを合成し、逆相HPLCにより精製を行ないN3-AgTx[1-24]-CONHNH2を得た。AgTx[1-24]を配列番号2に示す。
N 3 -AgTx [1-24] -CONHNH 2 (AgTX: ω-agatoxin IVA from Funnel Web Spider, Agelenopsis aperta)
2-chlorotrityl chloride resin (1.51 mmol / g, 750 mg, 1.13 mmol) was added to 5% H 2 NNH 2 / NMP (v / v) (4 mL) and stirred for 30 minutes. After removing the solution and washing the resin with NMP, 5% H 2 NNH 2 / NMP (v / v) (4 mL) was allowed to act on the resin for 30 minutes. After removing the solution and washing the resin with NMP, the corresponding peptide fragment was synthesized by solid phase synthesis and purified by reverse phase HPLC to obtain N 3 -AgTx [1-24] -CONHNH 2 . AgTx [1-24] is shown in SEQ ID NO: 2.
Cys-AgTx[26-48]
 NovaSyn(登録商標)TGA resinを用いて、固相合成法にて、対応するペプチドフラグメントを合成し、逆相HPLCにより精製を行ないCys-AgTx[26-48]を得た。配列番号3に示されるCys-AgTx[26-48]は、配列番号1の25番目から48番目のペプチドである。
Cys-AgTx [26-48]
Using NovaSyn (registered trademark) TGA resin, the corresponding peptide fragment was synthesized by solid phase synthesis and purified by reverse phase HPLC to obtain Cys-AgTx [26-48]. Cys-AgTx [26-48] shown in SEQ ID NO: 3 is the 25th to 48th peptides of SEQ ID NO: 1.
N 3 -AgTx[1-48]
 N3-AgTx[1-24]-CONHNH2(11.2 mg, 3 μmol)を0.2 M リン酸緩衝液/6 M 塩化グアニジニウム (pH 3.15) (500 μL)に加え、-20 °Cに冷却する。0.5 M NaNO2水溶液(60 μL, 30 μmol, 10 eq.)を加え、-20 °Cで30分攪拌した。その後、4-メルカプトフェニル酢酸 (MPAA) (51 mg, 0.3 mmol, 100 eq.) の0.2 M リン酸緩衝液/6 M 塩化グアニジニウム (pH 6.90) (500 μL)溶液、及びCys-AgTx[26-48] (8.4 mg, 3 μmol, 1.0 eq.)の0.2 M リン酸緩衝液/6 M 塩化グアニジニウム (pH 6.90) (500 μL)溶液を加え、5 Mおよび1 Mの水酸化ナトリウム水溶液でpH6.8-7.0に合わせた。室温で5時間反応させた後、100 mM DTTの0.2 M リン酸緩衝液/6 M 塩化グアニジニウム (pH 6.90) (500 μL)溶液を加え30分間攪拌後、30%酢酸 (500 μL)を加え、逆相HPLCにより精製を行いN3-AgTx[1-48]linearを得た。
N 3 -AgTx [1-48]
Add N 3 -AgTx [1-24] -CONHNH 2 (11.2 mg, 3 μmol) to 0.2 M phosphate buffer / 6 M guanidinium chloride (pH 3.15) (500 μL), and cool to -20 ° C. 0.5 M NaNO 2 aqueous solution (60 μL, 30 μmol, 10 eq.) Was added, and the mixture was stirred at −20 ° C. for 30 minutes. Then, 4-mercaptophenylacetic acid (MPAA) (51 mg, 0.3 mmol, 100 eq.) In 0.2 M phosphate buffer / 6 M guanidinium chloride (pH 6.90) (500 μL), and Cys-AgTx [26- 48] (8.4 mg, 3 μmol, 1.0 eq.) In 0.2 M phosphate buffer / 6 M guanidinium chloride (pH 6.90) (500 μL) was added, and the pH was adjusted to 6 with 5 M and 1 M aqueous sodium hydroxide. Adjusted to 8-7.0. After reacting at room temperature for 5 hours, add 100 mM DTT in 0.2 M phosphate buffer / 6 M guanidinium chloride (pH 6.90) (500 μL) and stir for 30 minutes, then add 30% acetic acid (500 μL). Purification by reverse phase HPLC yielded N 3 -AgTx [1-48] linear .
 得られたN3-AgTx[1-48]linear(2.0 mg, 0.375 μmol)、還元型グルタチオン (11.5 mg, 37.5 μmol, 100 eq.)、酸化型グルタチオン (2.3 mg, 3.75 μmol, 10 eq.)を1 M酢酸アンモニウム緩衝液 (pH 7.9) / 20v/v%グリセロール / 0.1 M EDTA (37.5 mL)に溶解させ、4 °Cで終夜攪拌した。その後、逆相HPLCにより精製を行ないN3-AgTx[1-48]を得た。AgTx[1-48]のアミノ酸配列を配列番号1に示す。 Obtained N 3 -AgTx [1-48] linear (2.0 mg, 0.375 μmol), reduced glutathione (11.5 mg, 37.5 μmol, 100 eq.), Oxidized glutathione (2.3 mg, 3.75 μmol, 10 eq.) Was dissolved in 1 M ammonium acetate buffer (pH 7.9) / 20 v / v% glycerol / 0.1 M EDTA (37.5 mL) and stirred at 4 ° C. overnight. Thereafter, purification was performed by reverse phase HPLC to obtain N 3 -AgTx [1-48]. The amino acid sequence of AgTx [1-48] is shown in SEQ ID NO: 1.
Fluorophore-AgTx[1-48]
 106.8 μM N3-AgTx[1-48] (50 mM HEPES buffer (pH7.4))溶液に対して、1.5 eq.のClick-iTTM Alexa FluorTM 555 sDIBO alkyne (Thermo Fisher Scientific)、もしくはClick-iTTM Alexa FluorTM 647 DIBO alkyne (Thermo Fisher Scientific)を加えて、室温で3時間攪拌した。その後、酢酸を加え、30%酢酸溶液に調整後、逆相HPLCにより精製を行ないFluorophore-AgTx[1-48]を得た。
ESI-MS: Alexa Fluro 555-AgTx[1-48]: [M+2Na++2H+]4+ = 1705.24, Alexa Fluro 647-AgTx[1-48]: [M-3H+]3- = 1160.1
Fluorophore-AgTx [1-48]
106.8 μM N 3 -AgTx [1-48] (50 mM HEPES buffer (pH 7.4)) solution with 1.5 eq. Of Click-iT Alexa Fluor 555 sDIBO alkyne (Thermo Fisher Scientific) or Click- iT Alexa Fluor 647 DIBO alkyne (Thermo Fisher Scientific) was added and stirred at room temperature for 3 hours. Thereafter, acetic acid was added to prepare a 30% acetic acid solution, followed by purification by reverse phase HPLC to obtain Fluorophore-AgTx [1-48].
ESI-MS: Alexa Fluro 555-AgTx [1-48]: [M + 2Na + + 2H + ] 4+ = 1705.24, Alexa Fluro 647-AgTx [1-48]: [M-3H + ] 3- = 1160.1
(2)小脳スライスにおけるVDCC可視化
 従来法(Tamura, T.; Song, Z.; Amaike, K.; Lee, S.; Yin, S.; Kiyonaka, S.; Hamachi, I. J. Am. Chem. Soc. 2017, 139, 14181.)に従いマウス小脳スライスを調製した。ACSF (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM D-glucose)にラベル化剤Fluorophore-AgTx[1-48] (0.2 μM)を添加し、それをマウス小脳スライスに対して加え、95%O2/5%CO2雰囲気下、室温で30分間インキュベートした。前述したラベル化剤入りACSFと同量の2%PFAリン酸緩衝溶液を細胞に加え、室温で60分インキュベートした。PBS(-)で3回洗浄し,共焦点顕微鏡観察を行った。または、上述と同様の系において、上述ラベル化剤(0.2 μM)単独ではなく、競合阻害剤(ω―agatoxion(P/Q型電位依存性カルシウムチャネルCac2.1ブロッカー):濃度4 μM))を併用した系においても共焦点顕微鏡観察を行った。結果を図10に示す。
(2) VDCC visualization in cerebellar slices Conventional method (Tamura, T .; Song, Z .; Amaike, K .; Lee, S .; Yin, S .; Kiyonaka, S .; Hamachi, IJ Am. Chem. Soc. Mouse cerebellar slices were prepared according to 2017, 139, 14181.). ACSF (125 mM NaCl, 2.5 mM KCl, 2 mM CaCl 2 , 1 mM MgCl 2 , 1.25 mM NaH 2 PO 4 , 26 mM NaHCO 3 , 10 mM D-glucose) labeling agent Fluorophore-AgTx [1-48] (0.2 μM) was added and added to mouse cerebellar slices and incubated for 30 minutes at room temperature in a 95% O 2 /5% CO 2 atmosphere. The same amount of 2% PFA phosphate buffer solution as ACSF containing the labeling agent described above was added to the cells and incubated at room temperature for 60 minutes. Washed 3 times with PBS (-) and observed with confocal microscope. Alternatively, in the same system as described above, instead of the labeling agent (0.2 μM) alone, a competitive inhibitor (ω-agatoxion (P / Q type voltage-dependent calcium channel Cac2.1 blocker): concentration 4 μM)) The confocal microscope was also observed in the combined system. The results are shown in FIG.
 細胞表層の受容体だけでなく、イオンチャネルに対しても適用可能であること、小分子だけでなく中分子(ペプチド)をリガンドとして用いることも可能であることが明らかになった。 It became clear that it can be applied not only to cell surface receptors but also to ion channels, and not only small molecules but also middle molecules (peptides) can be used as ligands.
 本開示のようなペプチドをリガンドとして用いる際、そのペプチドにリジンなどの求核性アミノ酸残基が含まれていれば、ラベル化剤にクロスリンクのためのアミンを組み入れる必要はない。ペプチドリガンドに存在する求核性アミノ酸残基がかわりに受容体とのクロスリンクに利用されるためである。 When a peptide such as the present disclosure is used as a ligand, if the peptide contains a nucleophilic amino acid residue such as lysine, it is not necessary to incorporate an amine for cross-linking into the labeling agent. This is because the nucleophilic amino acid residue present in the peptide ligand is used instead for cross-linking with the receptor.
4.全小脳におけるmGlu1へのラベル化(図11)
 マウスを三種混合麻酔薬により昏睡させ、頭皮を切開し、大脳縦裂の延長線上の小脳部分の頭蓋骨に穴を開ける。その場所にラベル化剤として化合物5 (Alexa647)(10 μM)入りPBS(-)を6 μL、マイクロインジェクターを用いてインジェクトする。その後、頭皮を縫合し、拮抗薬を打ち込み、ケージにマウスを戻す。3時間後、4%PFAを用いて還流固定(4%PFA perfusion for fixation)をおこない、脳を取り出したのち、脳を4%PFA中で1時間浸した。脳はPBS(-)で洗浄後、凍結切片にし、共焦点顕微鏡観察を行った。結果を図11に示す。
4. Labeling to mGlu1 in the whole cerebellum (Figure 11)
Mice are comatose with a triple mixed anesthetic, the scalp is incised, and a hole is made in the skull of the cerebellum on the extension of the longitudinal cerebral fissure. Inject 6 μL of PBS (−) containing Compound 5 (Alexa647) (10 μM) as a labeling agent using a microinjector. The scalp is then sutured, the antagonist is driven, and the mouse is returned to the cage. Three hours later, 4% PFA was used to perform reflux fixation (4% PFA perfusion for fixation). After removing the brain, the brain was immersed in 4% PFA for 1 hour. The brain was washed with PBS (−), frozen into sections, and observed with a confocal microscope. The results are shown in FIG.
 生きた状態(live condition)にある動物個体中にてラベル化剤を作用させ、還流固定のタイミングで目的の受容体をラベル化可能であることが明らかになった。 It was revealed that a target receptor can be labeled at the timing of reflux fixation by applying a labeling agent in an animal in a live state.

Claims (11)

  1. 生体サンプルのラベル化方法であって、当該方法は、
     (a)細胞含有生体サンプルに固定化剤を適用する工程、および
     (b)前記細胞含有生体サンプルにラベル化剤を適用する工程、
    を含み、
     ここで、
     工程(a)と工程(b)は、いずれを先に行ってもよく、工程(a)と工程(b)を同時に行ってもよく、
     前記ラベル化剤は、細胞表面受容体に対するリガンド、標識物質及び固定化剤と反応する少なくとも1種の反応性基を有し、
     前記細胞含有生体サンプルに含まれる一部の細胞は、前記細胞表面受容体を含み、
     前記細胞表面受容体は、前記固定化剤と反応する少なくとも1種の反応性基とリガンド結合部位を有し、
     前記固定化剤は、前記ラベル化剤の反応性基及び前記細胞表面受容体の反応性基と反応して共有結合を形成し、それにより前記ラベル化剤と前記細胞表面受容体を連結する、生体サンプルのラベル化方法。
    A method for labeling a biological sample, the method comprising:
    (A) applying a fixing agent to the cell-containing biological sample, and (b) applying a labeling agent to the cell-containing biological sample,
    Including
    here,
    Either step (a) and step (b) may be performed first, step (a) and step (b) may be performed simultaneously,
    The labeling agent has at least one reactive group that reacts with a ligand for a cell surface receptor, a labeling substance, and an immobilizing agent;
    Some cells contained in the cell-containing biological sample include the cell surface receptor,
    The cell surface receptor has at least one reactive group that reacts with the immobilizing agent and a ligand binding site,
    The immobilizing agent reacts with a reactive group of the labeling agent and a reactive group of the cell surface receptor to form a covalent bond, thereby linking the labeling agent and the cell surface receptor; A method for labeling biological samples.
  2. 前記固定化剤との共有結合に関与するラベル化剤の反応性基の数と前記細胞表面受容体の反応性基の数は同じである、請求項1に記載の生体サンプルのラベル化方法。 The method for labeling a biological sample according to claim 1, wherein the number of reactive groups of the labeling agent involved in the covalent bond with the immobilizing agent is the same as the number of reactive groups of the cell surface receptor.
  3. 前記細胞表面受容体の反応性基が、NH2、OH及びSHからなる群から選ばれ、前記ラベル化剤の反応性基が、NH2、NHNH2、CONHNH2、OH及びSHからなる群から選ばれる、請求項1~2のいずれか1項に記載の生体サンプルのラベル化方法。 The reactive group of the cell surface receptor is selected from the group consisting of NH 2 , OH and SH, and the reactive group of the labeling agent is selected from the group consisting of NH 2 , NHNH 2 , CONHNH 2 , OH and SH. The method for labeling a biological sample according to any one of claims 1 to 2, which is selected.
  4. 前記工程(a)が、前記工程(b)と同時に行なわれる、請求項1~3のいずれか1項に記載の生体サンプルのラベル化方法。 The method for labeling a biological sample according to any one of claims 1 to 3, wherein the step (a) is performed simultaneously with the step (b).
  5. 前記固定化剤で予め固定された細胞含有生体サンプルを提供すること、または、当該固定化剤で予め固定された細胞含有生体サンプルとともに前記固定化剤をさらに共存させることのいずれかによって、前記工程(a)が達成され、
    前記工程(b)において、前記固定化剤で固定された生体サンプルと前記ラベル化剤が反応する、請求項1~4のいずれか1項に記載の生体サンプルのラベル化方法。
    Either by providing a cell-containing biological sample pre-fixed with the immobilizing agent, or by further coexisting the immobilizing agent with a cell-containing biological sample pre-fixed with the immobilizing agent. (a) is achieved,
    The method for labeling a biological sample according to any one of claims 1 to 4, wherein in the step (b), the biological sample immobilized with the immobilizing agent reacts with the labeling agent.
  6. 前記細胞表面受容体の反応性基、前記ラベル化剤の反応性基と前記固定化剤の反応が、可逆的である、請求項1~5のいずれか1項に記載の生体サンプルのラベル化方法。 The labeling of a biological sample according to any one of claims 1 to 5, wherein a reaction between the reactive group of the cell surface receptor, the reactive group of the labeling agent, and the immobilizing agent is reversible. Method.
  7. 細胞表面受容体が、神経伝達物質の受容体である、請求項1~6のいずれか1項に記載の生体サンプルのラベル化方法。 The method for labeling a biological sample according to any one of claims 1 to 6, wherein the cell surface receptor is a neurotransmitter receptor.
  8. 前記固定化剤が、ホルムアルデヒド、パラホルムアルデヒド、グルタルアルデヒド、グリオキサール、メチルグリオキサール及びスベリイミド酸ジメチルからなる群から選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の生体サンプルのラベル化方法。 The biological sample according to any one of claims 1 to 7, wherein the immobilizing agent is at least one selected from the group consisting of formaldehyde, paraformaldehyde, glutaraldehyde, glyoxal, methylglyoxal, and dimethyl suberimidate. Labeling method.
  9. 前記細胞含有生体サンプルが、脳、心臓、肝臓、胆嚢、腎臓、副腎、膵臓、肺、甲状腺、食道、胃、十二指腸、小腸、大腸、尿管、膀胱、前立腺、子宮、乳房、気管支、血管、リンパ管、皮膚、骨、関節、筋肉、口腔粘膜、鼻粘膜からなる群から選ばれる少なくとも1種を含む、請求項1~8のいずれか1項に記載の生体サンプルのラベル化方法。 The cell-containing biological sample is brain, heart, liver, gallbladder, kidney, adrenal gland, pancreas, lung, thyroid, esophagus, stomach, duodenum, small intestine, large intestine, ureter, bladder, prostate, uterus, breast, bronchi, blood vessel, The method for labeling a biological sample according to any one of claims 1 to 8, comprising at least one selected from the group consisting of lymphatic vessels, skin, bones, joints, muscles, oral mucosa and nasal mucosa.
  10. ラベル化剤でラベル化された細胞含有生体サンプルであって、前記ラベル化剤は、生体サンプルの細胞表面受容体と固定化剤により共有結合で連結されている、ラベル化された細胞含有生体サンプル。 A labeled cell-containing biological sample labeled with a labeling agent, wherein the labeling agent is covalently linked by a cell surface receptor of the biological sample and a fixing agent. .
  11. 細胞表面受容体に対するリガンド、標識物質及び固定化剤と反応する少なくとも1種の反応性基を有し、前記固定化剤により細胞含有生体サンプルの細胞表面受容体と連結するために使用される、ラベル化剤。 Having at least one reactive group that reacts with a ligand for a cell surface receptor, a labeling substance, and an immobilizing agent, and is used for linking to the cell surface receptor of a cell-containing biological sample by the immobilizing agent. Labeling agent.
PCT/JP2019/007942 2018-03-01 2019-02-28 Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors WO2019168125A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020503631A JPWO2019168125A1 (en) 2018-03-01 2019-02-28 Development of new in vivo receptor visualization technology based on the chemical cross-link method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036827 2018-03-01
JP2018036827 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019168125A1 true WO2019168125A1 (en) 2019-09-06

Family

ID=67806357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007942 WO2019168125A1 (en) 2018-03-01 2019-02-28 Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors

Country Status (2)

Country Link
JP (1) JPWO2019168125A1 (en)
WO (1) WO2019168125A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279566A (en) * 2002-03-20 2003-10-02 Olympus Optical Co Ltd Method for screening agent capable of bonding to receptor
WO2015125851A1 (en) * 2014-02-19 2015-08-27 国立大学法人京都大学 Development of ligand screening system for neurotransmitter receptors
WO2015125892A1 (en) * 2014-02-19 2015-08-27 国立大学法人京都大学 Protein labeling compound
JP2016053485A (en) * 2014-09-03 2016-04-14 国立大学法人京都大学 Labeling method of membrane protein of cell, catalyst compound, and labelled cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003279566A (en) * 2002-03-20 2003-10-02 Olympus Optical Co Ltd Method for screening agent capable of bonding to receptor
WO2015125851A1 (en) * 2014-02-19 2015-08-27 国立大学法人京都大学 Development of ligand screening system for neurotransmitter receptors
WO2015125892A1 (en) * 2014-02-19 2015-08-27 国立大学法人京都大学 Protein labeling compound
JP2016053485A (en) * 2014-09-03 2016-04-14 国立大学法人京都大学 Labeling method of membrane protein of cell, catalyst compound, and labelled cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJISHIMA, S. ET AL.: "Ligand-Directed Acyl Imidazole Chemistry for Labeling of Membrane-Bound Proteins on Live Cells", J. AM. CHEM. SOC., vol. 134, 2012, pages 3961 - 3964, XP055221548, doi:10.1021/ja2108855 *

Also Published As

Publication number Publication date
JPWO2019168125A1 (en) 2021-02-12

Similar Documents

Publication Publication Date Title
ES2705068T3 (en) Chemical synthesis and screening of bicyclic peptide libraries
CN103596584B (en) Polysubstituted insulin
KR20010085743A (en) Lipid matrix-assisted chemical ligation and synthesis of membrane polypeptides
JP2023025022A (en) Di-sulfide containing cell membrane penetrating peptides and methods of making and using thereof
US9382306B2 (en) Octapeptide compounds derived from somatostatin and the therapeutic use thereof
EP0632722A1 (en) A dna transporter system and method of use
JP2002527358A5 (en)
CN112047996A (en) Method for selectively modifying cysteine through propargyl sulfonium salt
WO2012083872A1 (en) Photoaffinity labeling double function probe molecule, preparation method and application thereof
Bhargava et al. A complete substitutional analysis of VIP for better tumor imaging properties
CN104619693A (en) Indolecarbonitriles as selective androgen receptor modulators
ITMI20011708A1 (en) CONJUGATES OF PEPTIDES, THEIR DERIVATIVES WITH METALLIC COMPLEXES AND USE FOR DIAGNOSTIC INVESTIGATION THROUGH IMAGING FOR MAGNETIC RESONANCE (M
JP2021501201A (en) Polypeptide conjugate for intracellular delivery of staple peptides
JP2002003498A (en) Somatostatin antagonist and agonist acting on sst subtype 2 receptor
CN115286697A (en) Dual-targeting compound and preparation method and application thereof
Liu et al. Optically pure, structural, and fluorescent analogues of a dimeric Y4 receptor agonist derived by an olefin metathesis approach
Müller et al. Structure-based design of high-affinity fluorescent probes for the neuropeptide Y Y1 receptor
ES2229289T3 (en) FAMILY OF RECEPTORS OF SECRETAGOG OF THE HORMONE OF GROWTH.
WO2019168125A1 (en) Development of novel technique based on chemical crosslinking for visualization of in-vivo receptors
TW202116350A (en) Kv1.3 blockers
Gleixner et al. [3H] UR-JG102–A Radiolabeled Cyclic Peptide with High Affinity and Excellent Selectivity for the Neuropeptide Y Y4 Receptor
EP2004352B1 (en) Amino acid surrogates for peptidic constructs
WO2019072231A1 (en) Magnetic resonance imaging compound, magnetic resonance imaging agent and application thereof as well as magnetic resonance imaging method
JP5250849B2 (en) Brain-translocating polypeptide with multivalent bonds and improved metabolic stability
KR20090096716A (en) Radiolabelling via fluorination of aziridines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760966

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760966

Country of ref document: EP

Kind code of ref document: A1