WO2019167833A1 - Communication system, space-side transmission station device, terrestrial-side reception station device, and program - Google Patents

Communication system, space-side transmission station device, terrestrial-side reception station device, and program Download PDF

Info

Publication number
WO2019167833A1
WO2019167833A1 PCT/JP2019/006798 JP2019006798W WO2019167833A1 WO 2019167833 A1 WO2019167833 A1 WO 2019167833A1 JP 2019006798 W JP2019006798 W JP 2019006798W WO 2019167833 A1 WO2019167833 A1 WO 2019167833A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
partial data
identification information
encoded
partial
Prior art date
Application number
PCT/JP2019/006798
Other languages
French (fr)
Japanese (ja)
Inventor
友也 深見
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Publication of WO2019167833A1 publication Critical patent/WO2019167833A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Definitions

  • the present invention relates to a communication system, a space-side transmitting station device, a ground-side receiving station device, and a program used for communication between an artificial satellite and the like and a ground station.
  • a method of performing relatively high-speed data communication using a single modulated wave (single carrier method) and a plurality of modulated waves there is a method (multi-carrier method) for performing relatively low-speed data communication.
  • communication from an artificial satellite or the like to a ground station is preferably performed by a single carrier method from the aspect of frequency utilization efficiency. Since no processing is performed, the signal transmitted by the modulated wave must be demodulated at high speed, and the data included in the signal must be decoded at high speed, which significantly increases the cost of the receiver. .
  • Non-Patent Document 1 discloses a technique for transmitting signals to a plurality of ground stations in a time division manner by a single carrier method.
  • the present invention has been made in view of the above circumstances, and includes a communication system, a space-side transmitting station apparatus, a ground-side receiving station apparatus, and a program that can realize communication by a single carrier method while using a relatively inexpensive receiver.
  • One of its purposes is to provide it.
  • the present invention that solves the problems of the above conventional example is a space-side transmitting station device that transmits a single carrier signal to one ground-side receiving station device, and transmits data to be transmitted to one ground-side receiving station device.
  • signals corresponding to each partial data can be processed in a time division manner using different receivers on the ground station side, and a relatively inexpensive receiver. Communication using a single carrier method can be realized.
  • a communication system 1 includes a space-side transmitting station device 10 mounted on an artificial satellite 2 and a ground-side receiving station device disposed in a ground-side facility 3. 20.
  • the artificial satellite 2 has, for example, at least one sensor that observes ground conditions and the like, and transmits data detected by the sensor to one ground-side receiving station device 20. Further, the artificial satellite 2 sends status information indicating the state of the artificial satellite such as the attitude to the ground-side receiving station device 20 together with the data detected by the sensor.
  • the space-side transmitting station apparatus 10 includes a control unit 11, a storage unit 12, a data input unit 13, and a radio unit 14. Further, as illustrated in FIG. 3, the ground-side receiving station device 20 includes a radio receiving unit 21, a distributor 22, a plurality of receivers 23 a, b,... N and an output unit 24. Yes.
  • control unit 11 of the space-side transmitting station apparatus 10 is a program control device such as a CPU, and executes a program stored in the storage unit 12. In the present embodiment, the control unit 11 performs processing for transmitting a single carrier signal to one ground side receiving station device 20.
  • the control unit 11 accepts data to be transmitted to one terrestrial receiving station apparatus, and divides the accepted data to be transmitted into a plurality of partial data having a smaller size than the data. Then, the control unit 11 encodes each partial data obtained by the division including unique partial data identification information, attaches predetermined encoded data identification information to each of the encoded partial data, and connects them to each other. Then, it is transmitted as a single carrier signal via the radio unit 14. The operation of the control unit 11 will be described in detail later.
  • the storage unit 12 includes a disk device, a memory device, and the like, and stores a program executed by the control unit 11.
  • the storage unit 12 also operates as a work memory for the control unit 11.
  • the data input unit 13 accepts input of data to be transmitted to one ground side receiving station device.
  • the data input unit 13 accepts the outputs and status information of various sensors mounted on the artificial satellite 2 and outputs them to the control unit 11.
  • the sensor is an optical camera, a radar, or the like, and each sensor outputs observation data.
  • the radio unit 14 modulates the encoded data output from the control unit 11 with a single carrier wave, and transmits the modulated data to the ground-side receiving station device 20 as a single carrier signal.
  • control unit 11 of the space-side transmitting station apparatus 10 executes the program stored in the storage unit 12, thereby allowing the receiving unit 31, the dividing unit 32, the encoding unit 33, and the communication control unit 34. Implement the configuration including.
  • the accepting unit 31 accepts data to be transmitted to one ground side receiving station device from a sensor or the like.
  • the data to be transmitted may include a plurality of types of data (data output from a plurality of sensors, status information, etc.).
  • the receiving unit 31 outputs the transmission target data to the dividing unit 32 as integrated data (for example, combined with the integrated data by a widely known archiver).
  • the dividing unit 32 divides the input data to be transmitted into a plurality of pieces of partial data having a smaller size than the data to be transmitted. Specifically, as illustrated in FIG. 5, the dividing unit 32 has a length determined by the performance of the receiving side in order from the head side of the data to be transmitted (specifically, the receiver 23 described later is The data is divided into acceptable data lengths (for example, a length corresponding to the size of one packet of the DVB-S2X standard), and each of them is defined as partial data Pd1, Pd2,. Since this length is affected by the coding rate of the coding unit 33, it becomes a unit of data that the coding unit 33 accepts at a time.
  • acceptable data lengths for example, a length corresponding to the size of one packet of the DVB-S2X standard
  • the coding rate is dynamically set based on the distance information between the artificial satellite 2 and the receiving station on the ground side, the unit of data that the coding unit 33 accepts at a time changes with time. Therefore, the size of the partial data here is not always constant (fixed length).
  • the encoding unit 33 includes unique partial data identification information in each of the partial data obtained by the division.
  • the partial data identification information is information for specifying the combination order of the divided partial data and reconstructing the transmission target data.
  • this partial data identification information may be a serial number that indicates what partial data each partial data corresponds to from the beginning of the data to be transmitted (original data before division).
  • the partial data identification information for the partial data Pd1 corresponding to the first part of the data to be transmitted is “1”
  • the partial data identification information for the next partial data Pd2 is “2”. Go.
  • This partial data identification information can be extracted separately from the partial data obtained by division.
  • this partial data identification information is represented by a predetermined number of bits, and is padded with “0” if necessary. Further, the partial data identification information is included in a predetermined portion of the partial data (for example, as a header at the front or as a trailer at the rear).
  • the encoding unit 33 further encodes each of the partial data including the unique partial data identification information by a predetermined encoding method.
  • the coding here is coding that adds an error correction code.
  • the communication control unit 34 adds predetermined encoded data identification information to each encoded partial data.
  • the encoded data identification information is information (demodulation / decoding) indicating which receiver 23 is responsible for decoding among n (n is an integer of 2 or more) receivers 23 provided in the ground-side receiving station device 20. (Information for allocating the receivers 23).
  • the serial number of the partial data identification information included in the encoded partial data is divided by the number n of the receivers 23 included in the ground-side receiving station device 20 to obtain “1”. It is the added value. In this way, serial numbers from “1” to “n” are repeated and set as encoded data identification information.
  • this encoded data identification information can also be extracted and distinguished from the main part of the encoded partial data.
  • this encoded data identification information is represented by a predetermined number of bits, and padded with “0” if necessary.
  • the encoded data identification information is included in a predetermined portion of the encoded partial data (for example, as a header at the front or as a trailer at the rear).
  • the communication control unit 34 wirelessly transmits the encoded partial data so as to form a series of single carrier signals (in a state where signals corresponding to the encoded partial data are connected to each other).
  • the unit 14 is controlled.
  • the communication control unit 34 concatenates the encoded partial data to each other and then outputs the data to the radio unit 14.
  • the data after the concatenation by the radio unit 14 is modulated at a radio frequency and transmitted.
  • the communication control unit 34 sequentially outputs the encoded partial data to the radio unit 14, causes the radio unit 14 to modulate the data corresponding to each encoded partial data at a radio frequency, and outputs the modulated signal. Continue to transmit (as a connected state).
  • FIG. 6 shows an outline of the content of the signal transmitted by the wireless unit 14 by this processing.
  • the single carrier signal transmitted by the space-side transmitting station apparatus 10 includes the encoded data identification information (H) and the encoded partial data (B) repeatedly.
  • the radio receiving unit 21 of the ground side receiving station apparatus 20 receives the single carrier signal transmitted from the space side transmitting station apparatus 10 and outputs it to the distributor 22. At this time, the radio reception unit 21 may convert the single carrier signal into an intermediate frequency signal and output the signal to the distributor 22.
  • the distributor 22 duplicates the single carrier signal output from the wireless reception unit 21 and outputs it to each receiver 23.
  • each receiver 23 has predetermined encoded data identification information.
  • the receiver 23 decodes the encoded partial data to which the assigned encoded data identification information is assigned, and outputs partial data including the partial data identification information obtained by decoding.
  • the receiver 23 refers to a portion in which the encoded data identification information is included in the single carrier signal output from the distributor 22, and a predetermined code that is assigned to the referenced portion by the receiver 23. If it is determined that the encoded data identification information is included, the body part of the encoded partial data is demodulated (assuming that the encoded data identification information is transmitted prior to the encoded partial data body). The encoded partial data obtained by demodulation is decoded.
  • each receiver 23 performs demodulation and decoding by relatively slow processing over a period until the next encoded data identification information determined to be handled by the receiver 23 arrives. And there is no need to use expensive high speed receivers.
  • each receiver 23 decodes and outputs the partial data (including the partial data identification information) associated with the encoded data identification information that it is responsible for.
  • the output unit 24 receives partial data output from at least a part of the plurality of receivers 23, determines a combining method with reference to partial data identification information included in the received partial data, and uses the determined method to The partial data from which the data identification information has been deleted is combined to reproduce and output the data. At this time, the output unit 24 deletes and combines the partial data identification information.
  • the output unit 24 can be realized by a computer device including a program control device such as a CPU or a DSP (Digital Signal Processor) and a storage unit for storing the program.
  • the output unit 24 receives the partial data output from each receiver 23, refers to the partial data identification information included in each partial data, and converts the partial data into the original data (space side transmitting station before division). Data to be transmitted by the device 10) are combined in order to reproduce. Specifically, when the partial data identification information is a serial number indicating the order in which the original data is included, the output unit 24 combines the partial data output by the receiver 23 in the order of the serial number. Play and output data.
  • the artificial satellite 2 includes status information indicating the state of the artificial satellite such as the attitude, optical observation data obtained by optically imaging the ground, and radar observation data observed by the radar as one ground station. Shall be sent to the side.
  • the space-side transmitting station device 10 mounted on the artificial satellite 2 accepts data to be transmitted to the one ground-side receiving station device as illustrated in FIG. Then, the space-side transmitting station apparatus 10 divides the received data into partial data for each predetermined length in order from the head side, and obtains a plurality of partial data Pd1, Pd2,... (S1).
  • the space-side transmitting station apparatus 10 includes unique partial data identification information in each partial data obtained by division (S2).
  • the partial data identification information is a serial number that indicates what number of partial data from the beginning of the data to be transmitted (original data before division) is.
  • the space-side transmitting station apparatus 10 sets “1” as the partial data identification information for the partial data Pd1 corresponding to the head portion of the data to be transmitted, “2” as the partial data identification information for the next partial data Pd2. Included in the header of the partial data.
  • the space-side transmitting station apparatus 10 adds predetermined encoded data identification information to each partial data (data after encoding) Ci that has been subjected to error correction encoding (S4).
  • the encoded data Ci corresponding to the partial data Pdi corresponding to the i-th portion of the data to be transmitted includes “(i mod n) as encoded data identification information. +1 ”is set.
  • i mod n means a remainder obtained by dividing i by n.
  • the space-side transmitting station apparatus 10 includes the encoded data identification information as a header of the encoded data.
  • the space-side transmitting station device 10 modulates the encoded data at a predetermined radio frequency after concatenating the encoded data in the order of the partial data identification information included in the partial data before encoding, and transmits the data to the ground station side ( S5).
  • the signal transmitted from the space-side transmitting station apparatus 10 includes the encoded data identification information (H) and the encoded partial data (B) repeatedly as illustrated in FIG. .
  • encoded data identification information which is information indicating which receiver 23 is responsible for decoding, is included in the partial data before encoding.
  • the partial data identification information i to be determined is determined based on the remainder when n is divided by n.
  • each receiver 23 of the ground side receiving station apparatus 20 accepts the signal that it is responsible for only once every n times. Become. Therefore, it is sufficient that each receiver 23 of the ground side receiving station apparatus 20 operates at a bit rate n times slower than the bit rate r of data transmitted from the space side transmitting station apparatus 10. That is, each receiver 23 is not limited as long as it operates at a speed higher than the bit rate r / n, and is an extremely expensive receiver operating at a high speed (currently, the above bit rate r / n). Compared to the receiver (which is more expensive than n receivers), the ground-side receiving station device 20 can be realized by a relatively inexpensive receiver.
  • the ground-side receiving station apparatus 20 receives the single carrier signal transmitted from the space-side transmitting station apparatus 10, duplicates the received single carrier signal by the number n of the receivers 23, and outputs the signal to each receiver 23. .
  • the terrestrial receiving station device 20 may convert the received single carrier signal into an intermediate frequency signal, copy it, and output it to each receiver 23.
  • the receiver 23 confirms that the portion of the signal including the encoded data identification information included in the duplicated input single carrier signal includes the encoded data identification information determined in advance by the receiver 23. It is checked with a sliding correlator or the like whether or not the signal is represented.
  • each receiver 23 detects from the single carrier signal the encoded data identification information that is determined in advance as one that it is responsible for, each receiver 23 takes in a signal for a predetermined time from the time of detection and demodulates it. Further, the data (corresponding to the encoded data) obtained by demodulation is decoded, and the partial data (including the partial data identification information) is reproduced and output.
  • the receiver 23a demodulates and decodes the signal corresponding to the encoded data whose encoded data identification information is “1”, and the receiver 23b encodes the encoded data identification information “2”. It is assumed that a signal corresponding to post-data is demodulated / decoded. In this case, the receiver 23a outputs partial data Pd1 obtained by decoding the encoded data C1, the receiver 23b outputs partial data Pd2 obtained by decoding the encoded data C2, and so on. Thus, each receiver 23 outputs partial data one after another.
  • the receiver 23b also receives the time when encoded data whose encoded data identification information is “2” is input again (time obtained by multiplying the time t for one encoded data by the number n of the receiver 23).
  • the partial data obtained by the division is sequentially assigned to the plurality of receivers 23 of the ground-side receiving station apparatus 20 to perform demodulation and decoding. It is not limited to examples.
  • the receiver 23 (or the set of receivers 23) of the ground-side receiving station device 20 that performs signal demodulation and data decoding may be different for each type of original data.
  • the artificial satellite 2 transmits status information indicating the situation such as its own attitude, optical observation data obtained by optically imaging the ground, and radar observation data observed by a radar to one ground station side.
  • the status information may be assigned to a specific receiver 23x.
  • the space-side transmitting station apparatus 10 uses “1”, “2”, “n ⁇ 1”, “1”, etc. as encoded data identification information in the encoded data C1, C2,.
  • the repeated information is combined with a predetermined position such as a position corresponding to the header of the encoded data.
  • the space-side transmitting station apparatus 10 divides the status information into partial status information having the same size as the partial data, and encodes each partial status information to obtain post-coding status information.
  • the space-side transmitting station apparatus 10 uses, as the encoded status information, encoded data identification information (eg, number “n”) indicating that the receiver 23 x is in charge of a predetermined position such as a position corresponding to the header. To join.
  • encoded data identification information eg, number “n”
  • the space-side transmitting station apparatus 10 generates an information sequence including the encoded data related to the observation data and the encoded status information by concatenating the encoded data and the encoded status information, Modulate with a predetermined radio frequency and transmit to the ground station side. Since the status information is generated irregularly, the space-side transmitting station apparatus 10 normally performs the encoded data related to the observation data (the encoded data identification information is “1”, “2”..., “N ⁇ 1), “1”... Are transmitted, and when the status information is generated, the encoded status information whose encoded data identification information is “n” is transmitted. It becomes. In this case, each receiver 23 of the ground side receiving station apparatus 20 is n-1 times slower than the bit rate r of the data transmitted from the space side transmitting station apparatus 10 and faster than the bit rate r / (n-1). Anything that works can be used.
  • the encoded data C1, C2,... Cn-1 (“1”, “2”,.
  • Is encoded status information SC1 (“n” is combined as encoded data identification information) is modulated and transmitted, and subsequently encoded data Cn, Cn + 1, ... C2n-2
  • a single carrier signal is transmitted such that the encoded data C2n-1, C2n,... Are modulated and transmitted.
  • the ground-side receiving station device 20 that receives this single carrier signal duplicates the received single carrier signal by the number n of the receivers 23 and outputs the duplicated signal to each receiver 23.
  • the single carrier signal may be replicated after being converted to an intermediate frequency and output to each receiver 23.
  • Each receiver 23 includes the encoded data identification information that is determined in advance so that the signal of the portion including the encoded data identification information of the single carrier signal that is copied and input is included in the receiver 23.
  • a signal for a predetermined time (a signal obtained by modulating the encoded data or the encoded status information corresponding to the encoded data identification information) is taken in from the signal representing the signal and demodulated.
  • the receivers 23a, 23b,... 23 (n-1) are in charge of demodulation and decoding of the encoded data corresponding to the encoded data identification information "1", "2", and "n-1", respectively. Further, the receiver 23x is set to be in charge of demodulation and decoding of the encoded status information corresponding to the encoded data identification information “n”.
  • the receivers 23a to 23 (n-1) sequentially output partial data related to the observation data.
  • the receiver 23x outputs partial status information related to status information one after another.
  • the terrestrial receiving station apparatus 20 reproduces and outputs the status information by combining only the partial status information in order of output time with respect to the partial status information output by the receiver 23x.
  • the status information indicating the situation such as the attitude of the artificial satellite 2 and the ground are optically imaged.
  • the status information is assigned to a specific receiver 23x, and the optical observation data is received by the receivers 23a, b, c, and the radar observation data may be assigned to the receivers 23d, e, and so on.
  • This setting can be performed in consideration of the data amount of each type of data, for example.
  • the number of receivers 23 that are k times higher than the number of receivers 23 in charge of the first type of data may be assigned.
  • the space-side transmitting station apparatus 10 concatenates each type of data into a series of data for each type of data for which the set of receivers 23 to be handled is different. Each is divided and encoded into partial data of a predetermined size (depending on the input unit of the encoding unit 33 as described above) to obtain post-encoding data corresponding to each partial data.
  • each partial data is set with unique partial data identification information for each series of data and for each partial data.
  • This partial data identification information may be, for example, a serial number for each series of data.
  • the space-side transmitting station apparatus 10 Serial numbers “1”, “2”,... Are set as partial data identification information for partial data PId1, PId2,... Obtained by dividing optical observation data, and the partial data identification information is set to corresponding partial data PId1. , PId2...
  • the space-side transmitting station apparatus 10 also sets serial numbers “1”, “2”... As partial data identification information for the partial data PLd1, PLd2,.
  • the data identification information is included as a header or the like in the corresponding partial data PLd1, PLd2,.
  • the space-side transmitting station apparatus 10 divides the status information into partial status information as in the case of the partial data, and encodes each partial status information to obtain post-coding status information.
  • the space-side transmitting station apparatus 10 performs predetermined encoding (error correction code) on partial data PId1, PId2,... Obtained by dividing optical observation data, and partial data PLd1, PLd2,. To generate post-encoding data.
  • predetermined encoding error correction code
  • the space-side transmitting station apparatus 10 also encodes the encoded data so that the receiver 23 included in the set sequentially performs demodulation and decoding for each set of the receivers 23 in charge of demodulation and decoding.
  • Set identification information
  • the setting of the encoded data identification information is set as an example in which the optical observation data is assigned to the receivers 23a, b, c and the radar observation data is assigned to the receivers 23d, e.
  • An example will be described as follows.
  • the receiver 23a is in charge of demodulation / decoding of the encoded data whose encoded data identification information is “a”, and the receiver 23b has the encoded data identification information “b”. It is assumed that the post-encoding data is demodulated / decoded in advance, and so on.
  • the space-side transmitting station apparatus 10 encodes the partial data PId1, PId2,... Obtained by dividing the optical observation data, and generates CI1, CI2,. Further, the space-side transmitting station apparatus 10 encodes the partial data PLd1, PLd2,... Obtained by dividing the radar observation data to generate CL1, CL2,. Then, the space-side transmitting station apparatus 10 adds the encoded data identification information “a”, “b”, “c”, “a”... To each of the partial data PId1, PId2, PId3, PId4,. The encoded data identification information for specifying the receiver 23 in charge of the optical observation data in order and repeatedly is set.
  • the space-side transmitting station apparatus 10 uses the encoded data identification information “d”, “e”, “d”,... For the partial data PLd1, PLd2, PLd3,.
  • the encoded data identification information for designating the receiver 23 in charge of demodulation / decoding of the partial data related to the radar observation data in order and repeatedly is set.
  • the space-side transmitting station apparatus 10 includes, in the encoded status information, encoded data identification information (for example, “f”) indicating that a specific receiver 23f is in charge, a position corresponding to the header, etc. , And set in a predetermined position.
  • encoded data identification information for example, “f”
  • the space-side transmitting station apparatus 10 arranges the encoded data in the order in which the receivers 23 in charge are sequentially changed and connects them.
  • the encoded data string is arranged including the encoded status information and connected to each other.
  • the space-side transmitting station apparatus 10 follows the partial data PId1, PId2, and PId3 in which the encoded data identification information “a”, “b”, and “c” is attached to the header, If the pieces of information “d” and “e” are connected to the partial data PLd1 and PLd2 and then status information is generated, the encoded data identification information “f” is encoded here.
  • the post status information SC1 is linked.
  • the space-side transmitting station apparatus 10 receives partial data PId4, PId5, and PId6 different from the above-described partial data in which the encoded data identification information “a”, “b”, and “c” is attached to the header. As shown in the figure, the encoded data and the encoded status information are repeatedly connected.
  • the space-side transmitting station device 10 modulates the information sequence obtained by the connection with a predetermined radio frequency and transmits the modulated information sequence to the ground station side.
  • the ground-side receiving station device 20 that receives this single carrier signal duplicates the received single carrier signal by the number n of the receivers 23 and outputs the duplicated signal to each receiver 23.
  • the single carrier signal may be replicated after being converted to an intermediate frequency and output to each receiver 23.
  • Each receiver 23 includes the encoded data identification information that is determined in advance so that the signal of the portion including the encoded data identification information of the single carrier signal that is copied and input is included in the receiver 23.
  • a signal for a predetermined time (a signal obtained by modulating the encoded data or the encoded status information corresponding to the encoded data identification information) is taken in from the signal representing the signal and demodulated.
  • the receivers 23a, 23b, and 23c are set to be in charge of demodulation and decoding of the encoded data corresponding to the encoded data identification information “a”, “b”, and “c”, respectively.
  • 23e is set to be in charge of demodulation and decoding of the encoded data corresponding to the encoded data identification information "d” and "e”, respectively, and the receiver 23f is a code corresponding to the encoded data identification information "f" Since it is set to be in charge of demodulation and decoding of the status information after conversion, the ground side receiving station apparatus 20 operates as follows.
  • the receivers 23a to 23c output partial data related to the optical observation data one after another
  • the receivers 23d and 23e output partial data related to the radar observation data one after another
  • the receiver 23f displays the status information.
  • the partial status information is output one after another.
  • the bit rate R of the single carrier signal is R / (n-1) or more (status information is Since it occurs irregularly, it only needs to be demodulated and decoded at a bit rate (divided by n-1), so it can be demodulated and decoded by a relatively slow process, and it is extremely expensive and high-speed reception. There is no need to use a vessel.
  • the terrestrial receiving station apparatus 20 reproduces and outputs the status information by combining only the partial status information in order of output time with respect to the partial status information output by the receiver 23f.
  • the required bit error rate differs depending on the type of data.
  • the required BER differs significantly between radar observation data and optical observation data, and is less than 10 ⁇ 4 for radar observation data and less than 10 ⁇ 10 for compressed optical observation data. Therefore, for example, if the communication quality is determined in accordance with the strictest BER (less than 10 ⁇ 10 in the above two examples) in order to secure the necessary BER, the quality of some types of data becomes excessive, and the data The problem arises that the communication time and bandwidth cannot be used effectively.
  • the type of encoding method and the method of modulation may be different for each type of data.
  • the encoded data is modulated by different modulation methods such as a common carrier wave.
  • encoded data related to optical observation data may be modulated by 32APSK (AmplitudemplPhase-Shift Keying), and encoded data related to radar observation data may be modulated by 64APSK.
  • the receivers 23a, 23b, 23c which are in charge of demodulation of the encoded data for the optical observation data, demodulate the 32APSK signal to obtain the encoded data for the optical observation data, and decode it.
  • the receivers 23d and e in charge of demodulating the encoded data of the radar observation data demodulate the 64APSK signal to obtain the encoded data of the radar observation data and decode it.
  • the receiver 23 of the terrestrial receiving station device 20 that is in charge of demodulation and decoding of the signal related to the type of data is set to a value less than the bit rate R of the single carrier signal.
  • the ground side in charge of the demodulation and decoding of the signals related to each type of data by making the signal of a bit rate equal to or higher than the average bit rate R ′ of the type of data high enough to be demodulated and decoded.
  • One receiver 23 of the receiving station apparatus 20 can be provided.
  • the outputs of the respective receivers 23 are concatenated in order of decoding time series, they can be taken out as they are as the reproduction results of the respective types of data, so it is necessary to combine the outputs of the plurality of receivers 23 Absent.
  • the ground station side by dividing the data to be transmitted on the artificial satellite side, individually encoding and modulating each, and sequentially transmitting as a single carrier signal, the ground station side A signal corresponding to each partial data can be processed in a time-sharing manner using a plurality of receivers, and communication using a single carrier method can be realized while using a relatively low-speed and inexpensive receiver.

Abstract

A communication system 1 includes a space-side transmission station device 10 that receives data which is to be transmitted, divides such data into a plurality of partial data items, encodes the same so that each partial data item obtained by division includes unique partial data item identification information, attaches prescribed encoded data identification information to each of the encoded partial data items respectively and mutually links such encoded partial data items, and transmits the same as a single carrier signal.

Description

通信システム、宇宙側送信局装置、地上側受信局装置、及びプログラムCommunication system, space side transmitting station apparatus, ground side receiving station apparatus, and program
 本発明は、人工衛星等と地上局との間の通信等に用いられる通信システム、宇宙側送信局装置、地上側受信局装置、及びプログラムに関する。 The present invention relates to a communication system, a space-side transmitting station device, a ground-side receiving station device, and a program used for communication between an artificial satellite and the like and a ground station.
 近年、地上の状況等を、人工衛星を用いて観測し、当該観測したデータを地上局へ送信するシステムが数多く開発されている。ここで人工衛星は、その軌道によっては地上局との間の通信可能時間が限られる場合がある。 In recent years, many systems have been developed for observing ground conditions using artificial satellites and transmitting the observed data to ground stations. Here, depending on the orbit of the artificial satellite, there is a case where the communicable time with the ground station is limited.
 また、人工衛星から地上局へのデータ通信では、一つの変調波を用いて、比較的高速なデータ通信を行う方法(シングルキャリア方式)と、複数の変調波を用いて、それぞれの変調波では比較的低速なデータ通信を行う方法(マルチキャリア方式)とが存在する。 In addition, in data communication from an artificial satellite to a ground station, a method of performing relatively high-speed data communication using a single modulated wave (single carrier method) and a plurality of modulated waves, There is a method (multi-carrier method) for performing relatively low-speed data communication.
 ここで、マルチキャリア方式でのデータ通信では、各変調波で変調された信号間の干渉を避けるため、各変調波により変調される信号の占有周波数帯域間に、信号のない周波数帯域(ガードバンド)を設けている。このため、マルチキャリア方式を採用する場合、シングルキャリア方式を採用した場合に比べると、周波数利用効率が低下する。 Here, in multi-carrier data communication, in order to avoid interference between signals modulated with each modulation wave, a frequency band (a guard band) with no signal between the occupied frequency bands of the signal modulated with each modulation wave. ). For this reason, when the multicarrier method is adopted, the frequency utilization efficiency is lower than when the single carrier method is adopted.
 このように、人工衛星等から地上局への通信は、シングルキャリア方式により行うことが周波数利用効率の面からは好適であるが、この場合は、従来、マルチキャリア方式のように並列的にデータ処理を行っていないため、当該変調波にて伝送される信号を高速に復調し、また当該信号に含まれるデータを高速に復号しなければならず、受信機のコストが著しく高価となってしまう。 As described above, communication from an artificial satellite or the like to a ground station is preferably performed by a single carrier method from the aspect of frequency utilization efficiency. Since no processing is performed, the signal transmitted by the modulated wave must be demodulated at high speed, and the data included in the signal must be decoded at high speed, which significantly increases the cost of the receiver. .
 なお、複数の地上局に対しての信号をシングルキャリア方式により時分割的に送出する技術が非特許文献1に開示されている。 Note that Non-Patent Document 1 discloses a technique for transmitting signals to a plurality of ground stations in a time division manner by a single carrier method.
 本発明は上記実情に鑑みて為されたもので、比較的安価な受信機を用いつつ、シングルキャリア方式による通信を実現できる通信システム、宇宙側送信局装置、地上側受信局装置、及びプログラムを提供することを、その目的の一つとする。 The present invention has been made in view of the above circumstances, and includes a communication system, a space-side transmitting station apparatus, a ground-side receiving station apparatus, and a program that can realize communication by a single carrier method while using a relatively inexpensive receiver. One of its purposes is to provide it.
 上記従来例の問題点を解決する本発明は、一つの地上側受信局装置へシングルキャリア信号を送出する宇宙側送信局装置であって、一つの地上側受信局装置に対する送信対象となるデータを受け入れる受入手段と、前記送信対象のデータを、当該データよりもサイズの小さい、複数の部分データに分割する分割手段と、前記分割して得られた各部分データに固有の部分データ識別情報を含め、符号化する符号化手段と、前記符号化した各部分データにそれぞれ所定の符号化データ識別情報を付して互いに連接し、シングルキャリア信号として送出する送信手段と、を有することとしたものである。 The present invention that solves the problems of the above conventional example is a space-side transmitting station device that transmits a single carrier signal to one ground-side receiving station device, and transmits data to be transmitted to one ground-side receiving station device. Including an accepting means for receiving, a dividing means for dividing the data to be transmitted into a plurality of partial data having a smaller size than the data, and partial data identification information unique to each partial data obtained by the division Encoding means for encoding, and transmission means for attaching each of the encoded partial data with predetermined encoded data identification information, connecting them to each other, and transmitting them as a single carrier signal. is there.
 このようにデータを分割しておくことにより、各部分データに相当する信号を地上局側にて、互いに異なる受信機を用いて時分割的に処理させることが可能となり、比較的安価な受信機を用いつつ、シングルキャリア方式による通信を実現できる。 By dividing the data in this way, signals corresponding to each partial data can be processed in a time division manner using different receivers on the ground station side, and a relatively inexpensive receiver. Communication using a single carrier method can be realized.
本発明の実施の形態に係る通信システムの例を表す概略図である。It is the schematic showing the example of the communication system which concerns on embodiment of this invention. 本発明の実施の形態に係る宇宙側送信局装置の例を表す構成ブロック図である。It is a block diagram showing an example of a space-side transmitting station apparatus according to an embodiment of the present invention. 本発明の実施の形態に係る地上側受信局装置の例を表す構成ブロック図である。It is a structure block diagram showing the example of the ground side receiving station apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る宇宙側送信局装置の例を表す機能ブロック図である。It is a functional block diagram showing the example of the space side transmission station apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る宇宙側送信局装置における送信対象データの分割態様の例を表す説明図である。It is explanatory drawing showing the example of the division | segmentation aspect of the transmission object data in the space side transmission station apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る宇宙側送信局装置が送出する信号の一例を表す説明図である。It is explanatory drawing showing an example of the signal which the space side transmission station apparatus which concerns on embodiment of this invention sends out. 本発明の実施の形態に係る宇宙側送信局装置の動作例を表すフローチャート図である。It is a flowchart figure showing the example of operation of the space side transmitting station apparatus concerning an embodiment of the invention. 本発明の実施の形態に係る宇宙側送信局装置が送出する信号のもう一つの例を表す説明図である。It is explanatory drawing showing another example of the signal which the space side transmission station apparatus which concerns on embodiment of this invention sends out.
 本発明の実施の形態について図面を参照しながら説明する。本発明の実施の形態に係る通信システム1は、図1に例示するように、人工衛星2に搭載された宇宙側送信局装置10と、地上側の施設3に配置された地上側受信局装置20とを含んで構成されている。 Embodiments of the present invention will be described with reference to the drawings. As illustrated in FIG. 1, a communication system 1 according to an embodiment of the present invention includes a space-side transmitting station device 10 mounted on an artificial satellite 2 and a ground-side receiving station device disposed in a ground-side facility 3. 20.
 この人工衛星2は、例えば地上の状況等を観測する少なくとも一つのセンサを有し、当該センサにて検出したデータを一つの地上側受信局装置20に対して送出する。またこの人工衛星2は、人工衛星の姿勢等の状況を表すステータス情報をセンサで検出したデータとともに地上側受信局装置20に対して送出する。 The artificial satellite 2 has, for example, at least one sensor that observes ground conditions and the like, and transmits data detected by the sensor to one ground-side receiving station device 20. Further, the artificial satellite 2 sends status information indicating the state of the artificial satellite such as the attitude to the ground-side receiving station device 20 together with the data detected by the sensor.
 宇宙側送信局装置10は、図2に例示するように、制御部11と、記憶部12と、データ入力部13と、無線部14とを含んで構成されている。また地上側受信局装置20は、図3に例示するように、無線受信部21と、分配器22と、複数の受信器23a,b,…nと、出力部24とを含んで構成されている。 As illustrated in FIG. 2, the space-side transmitting station apparatus 10 includes a control unit 11, a storage unit 12, a data input unit 13, and a radio unit 14. Further, as illustrated in FIG. 3, the ground-side receiving station device 20 includes a radio receiving unit 21, a distributor 22, a plurality of receivers 23 a, b,... N and an output unit 24. Yes.
 ここで宇宙側送信局装置10の制御部11は、CPU等のプログラム制御デバイスであり、記憶部12に格納されたプログラムを実行する。本実施の形態では、この制御部11は、一つの地上側受信局装置20に対してシングルキャリア信号を送出する処理を行うものである。 Here, the control unit 11 of the space-side transmitting station apparatus 10 is a program control device such as a CPU, and executes a program stored in the storage unit 12. In the present embodiment, the control unit 11 performs processing for transmitting a single carrier signal to one ground side receiving station device 20.
 この制御部11は、一つの地上側受信局装置に対する送信対象となるデータを受け入れ、当該受け入れた送信対象のデータを、当該データよりもサイズの小さい、複数の部分データに分割する。そして制御部11は、分割して得られた各部分データに固有の部分データ識別情報を含めて符号化し、当該符号化した各部分データにそれぞれ所定の符号化データ識別情報を付して互いに連接して、無線部14を介してシングルキャリア信号として送出する。この制御部11の動作については後に詳しく述べる。 The control unit 11 accepts data to be transmitted to one terrestrial receiving station apparatus, and divides the accepted data to be transmitted into a plurality of partial data having a smaller size than the data. Then, the control unit 11 encodes each partial data obtained by the division including unique partial data identification information, attaches predetermined encoded data identification information to each of the encoded partial data, and connects them to each other. Then, it is transmitted as a single carrier signal via the radio unit 14. The operation of the control unit 11 will be described in detail later.
 記憶部12は、ディスクデバイスやメモリデバイス等を含み、制御部11によって実行されるプログラムを格納している。この記憶部12は、また、制御部11のワークメモリとしても動作する。 The storage unit 12 includes a disk device, a memory device, and the like, and stores a program executed by the control unit 11. The storage unit 12 also operates as a work memory for the control unit 11.
 データ入力部13は、一つの地上側受信局装置に対する送信対象となるデータの入力を受け入れる。本実施の形態の一例では、このデータ入力部13は、人工衛星2に搭載された各種のセンサの出力やステータス情報を受け入れて制御部11に出力する。本実施の形態の一例では、センサは光学カメラや、レーダー等であり、それぞれのセンサは、観測データを出力する。 The data input unit 13 accepts input of data to be transmitted to one ground side receiving station device. In an example of the present embodiment, the data input unit 13 accepts the outputs and status information of various sensors mounted on the artificial satellite 2 and outputs them to the control unit 11. In an example of the present embodiment, the sensor is an optical camera, a radar, or the like, and each sensor outputs observation data.
 無線部14は、制御部11が出力する符号化データを単一の搬送波で変調し、シングルキャリア信号として地上側受信局装置20に対して送出する。 The radio unit 14 modulates the encoded data output from the control unit 11 with a single carrier wave, and transmits the modulated data to the ground-side receiving station device 20 as a single carrier signal.
 ここで具体的に、この宇宙側送信局装置10の制御部11の動作について説明する。この制御部11は、記憶部12に格納されたプログラムを実行することで、図4に例示するように、受入部31と、分割部32と、符号化部33と、通信制御部34とを含む構成を実現する。 Here, the operation of the control unit 11 of the space-side transmitting station apparatus 10 will be specifically described. As illustrated in FIG. 4, the control unit 11 executes the program stored in the storage unit 12, thereby allowing the receiving unit 31, the dividing unit 32, the encoding unit 33, and the communication control unit 34. Implement the configuration including.
 受入部31は、一つの地上側受信局装置に対する送信対象となるデータを、センサ等から受け入れる。ここで送信対象となるデータは、複数の種類のデータ(複数のセンサが出力するデータや、ステータス情報等)を含んでもよい。 The accepting unit 31 accepts data to be transmitted to one ground side receiving station device from a sensor or the like. Here, the data to be transmitted may include a plurality of types of data (data output from a plurality of sensors, status information, etc.).
 受入部31は、当該送信対象のデータを一体のデータとして(例えば広く知られているアーカイバによって一体のデータに結合して)、分割部32に出力する。 The receiving unit 31 outputs the transmission target data to the dividing unit 32 as integrated data (for example, combined with the integrated data by a widely known archiver).
 分割部32は、入力された送信対象となるデータを、複数の、送信対象となるデータよりもサイズの小さい、複数個の部分データに分割する。具体的にこの分割部32は、図5に例示するように、送信対象となるデータの先頭側から順に受信側の性能により定められる長さ(具体的には後に説明する受信器23が一度に受け入れられるデータの長さ、例えばDVB-S2X規格の1パケットのサイズに対応する長さ)に分割して、それぞれを部分データPd1,Pd2…とする。なお、この長さは、符号化部33の符号化率に影響されるため、符号化部33が一度に受け入れるデータの単位となる。一般に、人工衛星2と地上側の受信局との距離情報に基づいて符号化率が動的に設定されるので、符号化部33が一度に受け入れるデータの単位は時間によって変化している。従って、ここでの部分データのサイズは、常に一定(固定された長さ)となるものではない。 The dividing unit 32 divides the input data to be transmitted into a plurality of pieces of partial data having a smaller size than the data to be transmitted. Specifically, as illustrated in FIG. 5, the dividing unit 32 has a length determined by the performance of the receiving side in order from the head side of the data to be transmitted (specifically, the receiver 23 described later is The data is divided into acceptable data lengths (for example, a length corresponding to the size of one packet of the DVB-S2X standard), and each of them is defined as partial data Pd1, Pd2,. Since this length is affected by the coding rate of the coding unit 33, it becomes a unit of data that the coding unit 33 accepts at a time. In general, since the coding rate is dynamically set based on the distance information between the artificial satellite 2 and the receiving station on the ground side, the unit of data that the coding unit 33 accepts at a time changes with time. Therefore, the size of the partial data here is not always constant (fixed length).
 符号化部33は、分割して得た部分データのそれぞれに、固有の部分データ識別情報を含める。ここで部分データ識別情報は、分割された部分データの結合順を指定して、送信対象のデータを再構成するための情報である。一例としてこの部分データ識別情報は、各部分データが送信対象となるデータ(分割前の元データ)の先頭から何番目の部分データに対応するかを表すシリアル番号であってもよい。図5の例であれば、送信対象となるデータの最も先頭の部分に対応する部分データPd1に対する部分データ識別情報を「1」、次の部分データPd2に対する部分データ識別情報を「2」…としていく。なお、この部分データ識別情報は分割して得られた部分データとは区別して取り出せるようにしておく。一例としてこの部分データ識別情報は予め定めたビット数で表すものとし、必要があれば「0」をパディングする。また部分データ識別情報は部分データの予め定めた部分(例えば前方にヘッダとして、あるいは後方にトレイラとして、など)に含めるものとする。 The encoding unit 33 includes unique partial data identification information in each of the partial data obtained by the division. Here, the partial data identification information is information for specifying the combination order of the divided partial data and reconstructing the transmission target data. As an example, this partial data identification information may be a serial number that indicates what partial data each partial data corresponds to from the beginning of the data to be transmitted (original data before division). In the example of FIG. 5, the partial data identification information for the partial data Pd1 corresponding to the first part of the data to be transmitted is “1”, the partial data identification information for the next partial data Pd2 is “2”. Go. This partial data identification information can be extracted separately from the partial data obtained by division. As an example, this partial data identification information is represented by a predetermined number of bits, and is padded with “0” if necessary. Further, the partial data identification information is included in a predetermined portion of the partial data (for example, as a header at the front or as a trailer at the rear).
 符号化部33は、さらに、固有の部分データ識別情報を含めた部分データのそれぞれを、所定の符号化方法で符号化する。一例としてここでの符号化は誤り訂正符号を付加する符号化としておく。 The encoding unit 33 further encodes each of the partial data including the unique partial data identification information by a predetermined encoding method. As an example, the coding here is coding that adds an error correction code.
 通信制御部34は、符号化した各部分データに、それぞれ所定の符号化データ識別情報を付加する。ここで符号化データ識別情報は、地上側受信局装置20が備えるn個(nは2以上の整数)の受信器23の、どの受信器23が復号を担当するかを表す情報(復調・復号を行う受信器23を割り振る情報)である。この符号化データ識別情報の一例としては、符号化した部分データに含めた部分データ識別情報のシリアル番号を、地上側受信局装置20が備える受信器23の数nで除した余りに「1」を加えた値である。このようにすると、「1」から「n」までの連番が繰り返し、符号化データ識別情報として設定されることとなる。 The communication control unit 34 adds predetermined encoded data identification information to each encoded partial data. Here, the encoded data identification information is information (demodulation / decoding) indicating which receiver 23 is responsible for decoding among n (n is an integer of 2 or more) receivers 23 provided in the ground-side receiving station device 20. (Information for allocating the receivers 23). As an example of the encoded data identification information, the serial number of the partial data identification information included in the encoded partial data is divided by the number n of the receivers 23 included in the ground-side receiving station device 20 to obtain “1”. It is the added value. In this way, serial numbers from “1” to “n” are repeated and set as encoded data identification information.
 なお、この符号化データ識別情報も符号化した部分データの本体部分とは区別して取り出せるようにしておく。一例としてこの符号化データ識別情報は予め定めたビット数で表すものとし、必要があれば「0」をパディングする。また符号化データ識別情報は符号化した部分データの予め定めた部分(例えば前方にヘッダとして、あるいは後方にトレイラとして、など)に含めるものとする。 It should be noted that this encoded data identification information can also be extracted and distinguished from the main part of the encoded partial data. As an example, this encoded data identification information is represented by a predetermined number of bits, and padded with “0” if necessary. The encoded data identification information is included in a predetermined portion of the encoded partial data (for example, as a header at the front or as a trailer at the rear).
 通信制御部34は、このように符号化した部分データが一連のシングルキャリア信号となるようにして(各符号化した部分データに対応する信号が互いに連接された状態として)送出されるよう、無線部14を制御する。一例としてこの通信制御部34は、符号化した部分データを互いに連接してから無線部14に出力し、無線部14にて連接した後のデータを無線周波数で変調し、送信させる。あるいはこの通信制御部34は、符号化した部分データを逐次的に無線部14に出力し、無線部14に各符号化した部分データに対応するデータを無線周波数で変調させ、変調後の信号を続けて(連接した状態として)送信させる。 The communication control unit 34 wirelessly transmits the encoded partial data so as to form a series of single carrier signals (in a state where signals corresponding to the encoded partial data are connected to each other). The unit 14 is controlled. As an example, the communication control unit 34 concatenates the encoded partial data to each other and then outputs the data to the radio unit 14. The data after the concatenation by the radio unit 14 is modulated at a radio frequency and transmitted. Alternatively, the communication control unit 34 sequentially outputs the encoded partial data to the radio unit 14, causes the radio unit 14 to modulate the data corresponding to each encoded partial data at a radio frequency, and outputs the modulated signal. Continue to transmit (as a connected state).
 図6はこの処理により無線部14が送信する信号の内容の概略を示したものである。図6に例示するように、宇宙側送信局装置10が送出したシングルキャリア信号は、符号化データ識別情報(H)と符号化した部分データ(B)とが繰り返し含まれたものとなる。 FIG. 6 shows an outline of the content of the signal transmitted by the wireless unit 14 by this processing. As illustrated in FIG. 6, the single carrier signal transmitted by the space-side transmitting station apparatus 10 includes the encoded data identification information (H) and the encoded partial data (B) repeatedly.
 地上側受信局装置20の無線受信部21は、宇宙側送信局装置10が送出したシングルキャリア信号を受信して分配器22に出力する。このとき、無線受信部21は、シングルキャリア信号を中間周波の信号に変換してから分配器22に出力してもよい。分配器22は、無線受信部21が出力するシングルキャリア信号を複製して、各受信器23に出力する。 The radio receiving unit 21 of the ground side receiving station apparatus 20 receives the single carrier signal transmitted from the space side transmitting station apparatus 10 and outputs it to the distributor 22. At this time, the radio reception unit 21 may convert the single carrier signal into an intermediate frequency signal and output the signal to the distributor 22. The distributor 22 duplicates the single carrier signal output from the wireless reception unit 21 and outputs it to each receiver 23.
 本実施の形態の一例では、各受信器23は、担当する符号化データ識別情報が予め定められているものとする。受信器23は、担当する符号化データ識別情報が付された、符号化された部分データを復号し、復号して得られた、部分データ識別情報を含む部分データを出力する。 In an example of the present embodiment, it is assumed that each receiver 23 has predetermined encoded data identification information. The receiver 23 decodes the encoded partial data to which the assigned encoded data identification information is assigned, and outputs partial data including the partial data identification information obtained by decoding.
 具体的に受信器23は、分配器22が出力するシングルキャリア信号のうち、符号化データ識別情報が含まれる部分を参照し、当該参照した部分に、自己が担当するものとして予め定められた符号化データ識別情報が含まれると判断すると、それに引き続く(符号化データ識別情報が符号化した部分データの本体に先立って送信されているものとする)符号化した部分データの本体の部分を復調し、復調して得た、符号化された部分データを復号する。 Specifically, the receiver 23 refers to a portion in which the encoded data identification information is included in the single carrier signal output from the distributor 22, and a predetermined code that is assigned to the referenced portion by the receiver 23. If it is determined that the encoded data identification information is included, the body part of the encoded partial data is demodulated (assuming that the encoded data identification information is transmitted prior to the encoded partial data body). The encoded partial data obtained by demodulation is decoded.
 この復調及び復号の際、個々の受信器23は、次に自己が担当するものとして定められた符号化データ識別情報が到来するまでの期間をかけて、比較的遅い処理により復調・復号を行うことができ、高価な高速の受信器を利用する必要がない。 At the time of demodulation and decoding, each receiver 23 performs demodulation and decoding by relatively slow processing over a period until the next encoded data identification information determined to be handled by the receiver 23 arrives. And there is no need to use expensive high speed receivers.
 この復号の結果、各受信器23は、それぞれが担当する符号化データ識別情報に関連付けられた、部分データ(部分データ識別情報を含む)を復号して出力する。 As a result of this decoding, each receiver 23 decodes and outputs the partial data (including the partial data identification information) associated with the encoded data identification information that it is responsible for.
 またこのような、符号化データ識別情報との一致を調べて、引き続く部分を復調する動作は、スライディング相関器と、遅延線とを用いた、広く知られた方法を採用して実現できるので、ここでの詳しい説明を省略する。 In addition, such an operation of examining the coincidence with the encoded data identification information and demodulating the subsequent portion can be realized by adopting a widely known method using a sliding correlator and a delay line. Detailed explanation here is omitted.
 出力部24は、複数の受信器23の少なくとも一部が出力する部分データを受け入れ、受け入れた部分データに含まれる部分データ識別情報を参照して結合方法を決定し、当該決定した方法で、部分データ識別情報を削除した部分データを結合してデータを再生して出力する。このとき出力部24は、部分データ識別情報は削除して結合する。この出力部24は、CPUやDSP(Digital Signal Processer)等のプログラム制御デバイス、及びそのプログラムを格納する記憶部等を含む、コンピュータ装置によって実現できる。 The output unit 24 receives partial data output from at least a part of the plurality of receivers 23, determines a combining method with reference to partial data identification information included in the received partial data, and uses the determined method to The partial data from which the data identification information has been deleted is combined to reproduce and output the data. At this time, the output unit 24 deletes and combines the partial data identification information. The output unit 24 can be realized by a computer device including a program control device such as a CPU or a DSP (Digital Signal Processor) and a storage unit for storing the program.
 一例としてこの出力部24は、各受信器23が出力する部分データを受け入れ、各部分データに含まれる部分データ識別情報を参照して、部分データを、分割前の元のデータ(宇宙側送信局装置10で送信対象としたデータ)を再生するよう順番に結合する。具体的に部分データ識別情報が元のデータに含まれる順序を表すシリアル番号となっている場合、出力部24は、このシリアル番号の順に、受信器23が出力する部分データを結合して元のデータを再生し、出力する。 As an example, the output unit 24 receives the partial data output from each receiver 23, refers to the partial data identification information included in each partial data, and converts the partial data into the original data (space side transmitting station before division). Data to be transmitted by the device 10) are combined in order to reproduce. Specifically, when the partial data identification information is a serial number indicating the order in which the original data is included, the output unit 24 combines the partial data output by the receiver 23 in the order of the serial number. Play and output data.
[動作]
 本実施の形態は以上の構成を備えており、次のように動作する。なお、以下の例では、人工衛星2は、人工衛星の姿勢等の状況を表すステータス情報と、地上を光学的に撮像した光学観測データと、レーダで観測したレーダ観測データとを一つの地上局側へ送信するものとする。
[Operation]
This embodiment has the above-described configuration and operates as follows. In the following example, the artificial satellite 2 includes status information indicating the state of the artificial satellite such as the attitude, optical observation data obtained by optically imaging the ground, and radar observation data observed by the radar as one ground station. Shall be sent to the side.
 人工衛星2に搭載された宇宙側送信局装置10は、図7に例示するように、上記の一つの地上側受信局装置に対する送信対象となるデータを受け入れる。そして宇宙側送信局装置10は、当該受け入れたデータを先頭側から順に、所定の長さごとの部分データに分割して、複数個の部分データPd1,Pd2…を得る(S1)。 The space-side transmitting station device 10 mounted on the artificial satellite 2 accepts data to be transmitted to the one ground-side receiving station device as illustrated in FIG. Then, the space-side transmitting station apparatus 10 divides the received data into partial data for each predetermined length in order from the head side, and obtains a plurality of partial data Pd1, Pd2,... (S1).
 宇宙側送信局装置10は、分割して得た部分データのそれぞれに、固有の部分データ識別情報を含める(S2)。ここでの例では部分データ識別情報は、各部分データが送信対象となるデータ(分割前の元データ)の先頭から何番目の部分データに対応するかを表すシリアル番号であるものとする。 The space-side transmitting station apparatus 10 includes unique partial data identification information in each partial data obtained by division (S2). In this example, it is assumed that the partial data identification information is a serial number that indicates what number of partial data from the beginning of the data to be transmitted (original data before division) is.
 すなわち宇宙側送信局装置10は、送信対象となるデータの最も先頭の部分に対応する部分データPd1に対する部分データ識別情報を「1」、次の部分データPd2に対する部分データ識別情報を「2」…として、部分データのヘッダに含める。 That is, the space-side transmitting station apparatus 10 sets “1” as the partial data identification information for the partial data Pd1 corresponding to the head portion of the data to be transmitted, “2” as the partial data identification information for the next partial data Pd2. Included in the header of the partial data.
 宇宙側送信局装置10は、さらに、固有の部分データ識別情報を含めた部分データPdi(i=1,2,…)のそれぞれを、誤り訂正符号化して符号化後データCi(i=1,2,…)を生成する(S3)。宇宙側送信局装置10は、ここで誤り訂正符号化した各部分データ(符号化後データ)Ciに、それぞれ所定の符号化データ識別情報を付加する(S4)。ここでの例では、符号化後データの符号化前の部分データに含められた部分データ識別情報のシリアル番号i(i=1,2,…)を、地上側受信局装置20が備える受信器23の数nで除し、その余りに「1」を加えた値を、符号化データ識別情報とする。つまり、例えばn=10であれば、送信対象となるデータの先頭からi番目の部分に対応する部分データPdiに対応する符号化後データCiには符号化データ識別情報として「(i mod n)+1」を設定する。ここでi mod nは、iをnで除した余りを意味する。宇宙側送信局装置10は、符号化データ識別情報を符号化後データのヘッダとして含める。 The space-side transmitting station apparatus 10 further performs error correction coding on each of the partial data Pdi (i = 1, 2,...) Including the unique partial data identification information and performs the encoded data Ci (i = 1, 1). 2, ...) is generated (S3). The space-side transmitting station apparatus 10 adds predetermined encoded data identification information to each partial data (data after encoding) Ci that has been subjected to error correction encoding (S4). In this example, the receiver on the ground side receiving station apparatus 20 includes serial numbers i (i = 1, 2,...) Of partial data identification information included in the partial data before encoding of the encoded data. A value obtained by dividing by the number n of 23 and adding “1” to the remainder is used as encoded data identification information. In other words, for example, if n = 10, the encoded data Ci corresponding to the partial data Pdi corresponding to the i-th portion of the data to be transmitted includes “(i mod n) as encoded data identification information. +1 ”is set. Here, i mod n means a remainder obtained by dividing i by n. The space-side transmitting station apparatus 10 includes the encoded data identification information as a header of the encoded data.
 宇宙側送信局装置10は、符号化後データを、符号化前の部分データに含まれる部分データ識別情報の順で互いに連接してから所定の無線周波数で変調し、地上局側へ送信する(S5)。この処理により、宇宙側送信局装置10から送信される信号は図6に例示したように、符号化データ識別情報(H)と符号化した部分データ(B)とが繰り返し含まれたものとなる。なお、ここでは地上側受信局装置20が備えるn個の受信器23の、どの受信器23が復号を担当するかを表す情報である符号化データ識別情報が、符号化前の部分データに含まれる部分データ識別情報iをnで除したときの余りに基づいて決定される。そして、この部分データ識別情報の順に対応する符号化後データを連接しているので、地上側受信局装置20の各受信器23は、自己の担当する信号をn回に一回だけ受け入れることとなる。従って地上側受信局装置20の各受信器23は、宇宙側送信局装置10から送信されるデータのビットレートrよりn倍遅いビットレートで動作すれば十分であることとなる。つまり、各受信機23は、それぞれビットレートr/nより高速に動作するものであれば構わないこととなって、高速に動作する、著しく高価な受信器(現状、上記ビットレートr/nの受信器n個分より高価になる)に比べ、比較的安価な受信器により地上側受信局装置20を実現できることとなる。 The space-side transmitting station device 10 modulates the encoded data at a predetermined radio frequency after concatenating the encoded data in the order of the partial data identification information included in the partial data before encoding, and transmits the data to the ground station side ( S5). As a result of this processing, the signal transmitted from the space-side transmitting station apparatus 10 includes the encoded data identification information (H) and the encoded partial data (B) repeatedly as illustrated in FIG. . Here, of the n receivers 23 included in the ground-side receiving station device 20, encoded data identification information, which is information indicating which receiver 23 is responsible for decoding, is included in the partial data before encoding. The partial data identification information i to be determined is determined based on the remainder when n is divided by n. Since the encoded data corresponding to the order of the partial data identification information is concatenated, each receiver 23 of the ground side receiving station apparatus 20 accepts the signal that it is responsible for only once every n times. Become. Therefore, it is sufficient that each receiver 23 of the ground side receiving station apparatus 20 operates at a bit rate n times slower than the bit rate r of data transmitted from the space side transmitting station apparatus 10. That is, each receiver 23 is not limited as long as it operates at a speed higher than the bit rate r / n, and is an extremely expensive receiver operating at a high speed (currently, the above bit rate r / n). Compared to the receiver (which is more expensive than n receivers), the ground-side receiving station device 20 can be realized by a relatively inexpensive receiver.
 地上側受信局装置20は、宇宙側送信局装置10が送出したシングルキャリア信号を受信して、当該受信したシングルキャリア信号を受信器23の数nだけ複製して、各受信器23に出力する。なお、この地上側受信局装置20は、受信したシングルキャリア信号を中間周波の信号に変換してから複製し、各受信器23に出力してもよい。 The ground-side receiving station apparatus 20 receives the single carrier signal transmitted from the space-side transmitting station apparatus 10, duplicates the received single carrier signal by the number n of the receivers 23, and outputs the signal to each receiver 23. . The terrestrial receiving station device 20 may convert the received single carrier signal into an intermediate frequency signal, copy it, and output it to each receiver 23.
 受信器23は、複製されて入力されたシングルキャリア信号のうち、符号化データ識別情報が含まれる部分の信号が、自己が担当するものとして予め定められた符号化データ識別情報が含まれることを表す信号となっているか否かをスライディング相関器等で調べる。 The receiver 23 confirms that the portion of the signal including the encoded data identification information included in the duplicated input single carrier signal includes the encoded data identification information determined in advance by the receiver 23. It is checked with a sliding correlator or the like whether or not the signal is represented.
 そして各受信器23は、自己が担当するものとして予め定められた符号化データ識別情報をシングルキャリア信号から検出すると、検出した時点から所定の時間分の信号を取り込んで復調する。また復調して得たデータ(符号化後データに相当する)を復号して、部分データ(部分データ識別情報を含む)を再生して出力する。 Then, when each receiver 23 detects from the single carrier signal the encoded data identification information that is determined in advance as one that it is responsible for, each receiver 23 takes in a signal for a predetermined time from the time of detection and demodulates it. Further, the data (corresponding to the encoded data) obtained by demodulation is decoded, and the partial data (including the partial data identification information) is reproduced and output.
 ここで受信器23aは、符号化データ識別情報が「1」である符号化後データに相当する信号を復調・復号し、受信器23bは、符号化データ識別情報が「2」である符号化後データに相当する信号を復調・復号し…といったように設定されているものとする。この場合、受信器23aは、符号化後データC1を復号して得た部分データPd1を出力し、受信器23bは、符号化後データC2を復号して得た部分データPd2を出力し…といったように、各受信器23が部分データを次々に出力することとなる。 Here, the receiver 23a demodulates and decodes the signal corresponding to the encoded data whose encoded data identification information is “1”, and the receiver 23b encodes the encoded data identification information “2”. It is assumed that a signal corresponding to post-data is demodulated / decoded. In this case, the receiver 23a outputs partial data Pd1 obtained by decoding the encoded data C1, the receiver 23b outputs partial data Pd2 obtained by decoding the encoded data C2, and so on. Thus, each receiver 23 outputs partial data one after another.
 また受信器23aは、符号化データ識別情報が「1」である符号化後データが再び入力される時点(符号化後データ一つ分の時間tに受信器23の数nを乗じた時間ntだけ後)に再び、符号化後データCn+1(例えばn=10であれば、符号化後データC11)に相当する信号を復調・復号し、部分データPdn+1を出力する。 In addition, the receiver 23a receives the time when the encoded data whose encoded data identification information is “1” is input again (the time nt obtained by multiplying the time t for one encoded data by the number n of the receivers 23). After that, the signal corresponding to the post-encoding data Cn + 1 (for example, the post-encoding data C11 if n = 10) is demodulated and decoded, and the partial data Pdn + 1 is output.
 受信器23bも同様に、符号化データ識別情報が「2」である符号化後データが再び入力される時点(符号化後データ一つ分の時間tに受信器23の数nを乗じた時間ntだけ後)に再び、符号化後データCn+2(例えばn=10であれば、符号化後データC12)に相当する信号を復調・復号し、部分データPdn+2を出力する。 Similarly, the receiver 23b also receives the time when encoded data whose encoded data identification information is “2” is input again (time obtained by multiplying the time t for one encoded data by the number n of the receiver 23). The signal corresponding to the post-encoding data Cn + 2 (for example, the post-encoding data C12 if n = 10) is demodulated and decoded again, and the partial data Pdn + 2 is output.
 地上側受信局装置20は、自己が備える複数の受信器23がそれぞれ出力する部分データPdi(i=1,2…)に含まれる部分データ識別情報を参照して、当該部分データ識別情報の小さい順に結合する。このとき地上側受信局装置20は、部分データ識別情報は削除する。地上側受信局装置20は、このように部分データを結合することで、宇宙側送信局装置10において送信対象となった元のデータを再生し、出力する。 The ground-side receiving station device 20 refers to the partial data identification information included in the partial data Pdi (i = 1, 2,...) Output from each of the plurality of receivers 23 included in the ground side receiving station device 20, and the partial data identification information is small. Join in order. At this time, the ground side receiving station apparatus 20 deletes the partial data identification information. The ground side receiving station apparatus 20 combines the partial data in this way, thereby reproducing and outputting the original data that is the transmission target in the space side transmitting station apparatus 10.
[データ種類ごとに受信器の割り当てを設定する例]
 ここまでの説明においては、分割して得た部分データを、地上側受信局装置20の複数の受信器23に順次担当させて復調・復号を行わせることとしていたが、本実施の形態はこの例だけに限られない。
[Example of setting receiver assignment for each data type]
In the description so far, the partial data obtained by the division is sequentially assigned to the plurality of receivers 23 of the ground-side receiving station apparatus 20 to perform demodulation and decoding. It is not limited to examples.
 例えば、元のデータの種類ごとに、信号の復調とデータの復号とを行う地上側受信局装置20の受信器23(または受信器23の組)を異ならせてもよい。 For example, the receiver 23 (or the set of receivers 23) of the ground-side receiving station device 20 that performs signal demodulation and data decoding may be different for each type of original data.
 一例として、人工衛星2が自身の姿勢等の状況を表すステータス情報と、地上を光学的に撮像した光学観測データと、レーダで観測したレーダ観測データとを一つの地上局側へ送信する場合に、ステータス情報については、特定の受信器23xに担当させることとしてもよい。 As an example, when the artificial satellite 2 transmits status information indicating the situation such as its own attitude, optical observation data obtained by optically imaging the ground, and radar observation data observed by a radar to one ground station side. The status information may be assigned to a specific receiver 23x.
 この場合宇宙側送信局装置10は、ステータス情報以外のデータ(以下、観測データと呼ぶ)については連接して一連のデータとしたうえで、当該一連のデータを、部分データに分割して符号化し、各部分データに対応する符号化後データを得る。また宇宙側送信局装置10は、符号化後データのそれぞれに、上記受信器23x以外の受信器23を担当とするよう符号化データ識別情報を設定する。一例として、符号化前の、対応する部分データに含められた部分データ識別情報のシリアル番号i(i=1,2,…)を、地上側受信局装置20が備える受信器23の数から1を引いた数(受信器23xを除いた数)n-1で除した余りに「1」を加えた値とする。つまり、例えばn=10であれば、送信対象となるデータの先頭からi番目の部分に対応する部分データPdiに対応する符号化後データCiには符号化データ識別情報として「(i mod (n-1))+1」を設定する。 In this case, the space-side transmitting station apparatus 10 concatenates data other than the status information (hereinafter referred to as observation data) into a series of data, and then divides and encodes the series of data into partial data. The encoded data corresponding to each partial data is obtained. Also, the space-side transmitting station apparatus 10 sets encoded data identification information for each of the encoded data so that the receivers 23 other than the receiver 23x are in charge. As an example, the serial number i (i = 1, 2,...) Of the partial data identification information included in the corresponding partial data before encoding is calculated from the number of receivers 23 included in the ground side receiving station device 20. The number obtained by subtracting (the number excluding the receiver 23x) divided by n−1 is a value obtained by adding “1” to the remainder. That is, for example, if n = 10, the encoded data identification information corresponding to the partial data Pdi corresponding to the partial data Pdi corresponding to the i-th portion of the data to be transmitted is “(i mod (n -1)) +1 "is set.
 これにより宇宙側送信局装置10は、符号化後データC1,C2,…に、それぞれ符号化データ識別情報として「1」,「2」…,「n-1」,「1」…といったように繰り返す情報を、符号化後データのヘッダに相当する位置等、所定の位置に結合する。 As a result, the space-side transmitting station apparatus 10 uses “1”, “2”, “n−1”, “1”, etc. as encoded data identification information in the encoded data C1, C2,. The repeated information is combined with a predetermined position such as a position corresponding to the header of the encoded data.
 さらに宇宙側送信局装置10は、ステータス情報については、上記部分データと同じサイズの部分ステータス情報に分割し、各部分ステータス情報を符号化して符号化後ステータス情報を得る。 Further, the space-side transmitting station apparatus 10 divides the status information into partial status information having the same size as the partial data, and encodes each partial status information to obtain post-coding status information.
 宇宙側送信局装置10は、符号化後ステータス情報には、受信器23xに担当させることを表す符号化データ識別情報(例えば番号「n」)を、そのヘッダに相当する位置等、所定の位置に結合する。 The space-side transmitting station apparatus 10 uses, as the encoded status information, encoded data identification information (eg, number “n”) indicating that the receiver 23 x is in charge of a predetermined position such as a position corresponding to the header. To join.
 そして宇宙側送信局装置10は、観測データに係る符号化後データと、符号化後ステータス情報とを含む情報列を、各符号化後データと符号化後ステータス情報とを連接して生成し、所定の無線周波数で変調し、地上局側へ送信する。なお、ステータス情報は、不定期に発生するため、宇宙側送信局装置10は、通常は観測データに係る符号化後データ(符号化データ識別情報が「1」,「2」…,「n-1」,「1」…といったように繰り返されるデータ)を送信しており、ステータス情報が発生した時点で、符号化データ識別情報が「n」であるような符号化後ステータス情報を送出することとなる。この場合、地上側受信局装置20の各受信器23は、宇宙側送信局装置10から送信されるデータのビットレートrよりn-1倍遅い、ビットレートr/(n-1)より高速に動作するものであればよいこととなる。 Then, the space-side transmitting station apparatus 10 generates an information sequence including the encoded data related to the observation data and the encoded status information by concatenating the encoded data and the encoded status information, Modulate with a predetermined radio frequency and transmit to the ground station side. Since the status information is generated irregularly, the space-side transmitting station apparatus 10 normally performs the encoded data related to the observation data (the encoded data identification information is “1”, “2”..., “N− 1), “1”... Are transmitted, and when the status information is generated, the encoded status information whose encoded data identification information is “n” is transmitted. It becomes. In this case, each receiver 23 of the ground side receiving station apparatus 20 is n-1 times slower than the bit rate r of the data transmitted from the space side transmitting station apparatus 10 and faster than the bit rate r / (n-1). Anything that works can be used.
 これにより例えば、図8に例示するように、符号化後データC1,C2,…Cn-1(それぞれに符号化データ識別情報として「1」,「2」…,「n-1」が結合されている)の次に符号化後ステータス情報SC1(符号化データ識別情報として「n」が結合されている)が変調されて送信され、さらに続いて符号化後データCn,Cn+1,…C2n-2(n-1個分の符号化後データであり、それぞれに符号化データ識別情報として「1」,「2」…,「n-1」が結合されている)の次には観測データに係る符号化後データC2n-1,C2n,…が変調されて送信され…といったように、シングルキャリア信号が送信される。 Accordingly, for example, as illustrated in FIG. 8, the encoded data C1, C2,... Cn-1 (“1”, “2”,. Is encoded status information SC1 ("n" is combined as encoded data identification information) is modulated and transmitted, and subsequently encoded data Cn, Cn + 1, ... C2n-2 Next to (n-1 encoded data, each having “1”, “2”..., “N-1” as encoded data identification information combined) A single carrier signal is transmitted such that the encoded data C2n-1, C2n,... Are modulated and transmitted.
 このシングルキャリア信号を受信する地上側受信局装置20は、受信したシングルキャリア信号を受信器23の数nだけ複製して、各受信器23に出力する。ここでもシングルキャリア信号は中間周波数に変換されてから複製され、各受信器23に出力されてもよい。 The ground-side receiving station device 20 that receives this single carrier signal duplicates the received single carrier signal by the number n of the receivers 23 and outputs the duplicated signal to each receiver 23. Again, the single carrier signal may be replicated after being converted to an intermediate frequency and output to each receiver 23.
 各受信器23は、複製されて入力されたシングルキャリア信号のうち、符号化データ識別情報が含まれる部分の信号が、自己が担当するものとして予め定められた符号化データ識別情報が含まれることを表す信号から所定の時間分の信号(当該符号化データ識別情報に対応する符号化後データまたは符号化後ステータス情報を変調した信号)を取り込んで復調する。 Each receiver 23 includes the encoded data identification information that is determined in advance so that the signal of the portion including the encoded data identification information of the single carrier signal that is copied and input is included in the receiver 23. A signal for a predetermined time (a signal obtained by modulating the encoded data or the encoded status information corresponding to the encoded data identification information) is taken in from the signal representing the signal and demodulated.
 ここでは受信器23a,23b…23(n-1)がそれぞれ符号化データ識別情報「1」,「2」,「n-1」に対応する符号化後データの復調及び復号を担当するものとして設定され、また、受信器23xが符号化データ識別情報「n」に対応する符号化後ステータス情報の復調及び復号を担当するものとして設定されている。 Here, it is assumed that the receivers 23a, 23b,... 23 (n-1) are in charge of demodulation and decoding of the encoded data corresponding to the encoded data identification information "1", "2", and "n-1", respectively. Further, the receiver 23x is set to be in charge of demodulation and decoding of the encoded status information corresponding to the encoded data identification information “n”.
 そこで、受信器23aないし23(n-1)は、観測データに係る部分データを次々に出力する。また、受信器23xは、ステータス情報に係る部分ステータス情報を次々に出力する。 Therefore, the receivers 23a to 23 (n-1) sequentially output partial data related to the observation data. The receiver 23x outputs partial status information related to status information one after another.
 地上側受信局装置20は、受信器23aないし23(n-1)がそれぞれ出力する部分データPdi(i=1,2…)に含まれる部分データ識別情報を参照して、当該部分データ識別情報の小さい順に結合し、観測データを再生して出力する。 The terrestrial receiving station device 20 refers to the partial data identification information included in the partial data Pdi (i = 1, 2,...) Output from the receivers 23a to 23 (n−1), respectively. Are combined in ascending order, and the observation data is reproduced and output.
 また、地上側受信局装置20は、受信器23xが出力する部分ステータス情報については、この部分ステータス情報のみを、出力時間順に結合して、ステータス情報を再生して出力する。 The terrestrial receiving station apparatus 20 reproduces and outputs the status information by combining only the partial status information in order of output time with respect to the partial status information output by the receiver 23x.
 さらにここでは、ステータス情報のみを単独の受信器23xに担当させる例について説明したが、別の例として、人工衛星2が自身の姿勢等の状況を表すステータス情報と、地上を光学的に撮像した光学観測データと、レーダで観測したレーダ観測データとを一つの地上局側へ送信する場合に、ステータス情報については、特定の受信器23xに担当させ、光学観測データについては受信器23a,b,cに担当させ、レーダ観測データについては受信器23d,eに担当させ…というように設定してもよい。この設定は例えば各種類のデータのデータ量を勘案して行うことができる。 Furthermore, although the example in which only the status information is assigned to the single receiver 23x has been described here, as another example, the status information indicating the situation such as the attitude of the artificial satellite 2 and the ground are optically imaged. When transmitting the optical observation data and the radar observation data observed by the radar to one ground station side, the status information is assigned to a specific receiver 23x, and the optical observation data is received by the receivers 23a, b, c, and the radar observation data may be assigned to the receivers 23d, e, and so on. This setting can be performed in consideration of the data amount of each type of data, for example.
 例えば、第1の種類のデータよりも、第2の種類のデータのデータ量がk倍であるときには、第1の種類のデータを担当させる受信器23よりも、k倍多い受信器23に第2の種類のデータを担当させる、などというように設定してもよい。 For example, when the amount of data of the second type of data is k times that of the first type of data, the number of receivers 23 that are k times higher than the number of receivers 23 in charge of the first type of data. For example, two types of data may be assigned.
 この場合、宇宙側送信局装置10は、担当させる受信器23の組が異なっているデータの種類ごとに、それぞれの種類のデータを連接して一連のデータとしたうえで、当該一連のデータのそれぞれを、所定のサイズ(既に述べたように符号化部33の入力単位に依存する)の部分データに分割して符号化し、各部分データに対応する符号化後データを得る。 In this case, the space-side transmitting station apparatus 10 concatenates each type of data into a series of data for each type of data for which the set of receivers 23 to be handled is different. Each is divided and encoded into partial data of a predetermined size (depending on the input unit of the encoding unit 33 as described above) to obtain post-encoding data corresponding to each partial data.
 このとき、各部分データには、一連のデータごと、かつ、部分データごとに固有の部分データ識別情報を設定する。この部分データ識別情報は、例えば一連のデータごとのシリアル番号となっていてもよい。 At this time, each partial data is set with unique partial data identification information for each series of data and for each partial data. This partial data identification information may be, for example, a serial number for each series of data.
 例えば上述のように、光学観測データについては受信器23a,b,cに担当させ、レーダ観測データについては受信器23d,eに担当させるというように設定する場合、宇宙側送信局装置10は、光学観測データを分割して得た部分データPId1,PId2…にそれぞれシリアル番号「1」,「2」…を、部分データ識別情報として設定し、当該部分データ識別情報を、それぞれ対応する部分データPId1,PId2…に、ヘッダ等として含める。 For example, as described above, when the optical observation data is set to be in charge of the receivers 23a, b, and c, and the radar observation data is set to be in charge of the receivers 23d and e, the space-side transmitting station apparatus 10 Serial numbers “1”, “2”,... Are set as partial data identification information for partial data PId1, PId2,... Obtained by dividing optical observation data, and the partial data identification information is set to corresponding partial data PId1. , PId2...
 また宇宙側送信局装置10は、レーダ観測データを分割して得た部分データPLd1,PLd2…についても、それぞれシリアル番号「1」,「2」…を、部分データ識別情報として設定し、当該部分データ識別情報を、それぞれ対応する部分データPLd1,PLd2…に、ヘッダ等として含める。 The space-side transmitting station apparatus 10 also sets serial numbers “1”, “2”... As partial data identification information for the partial data PLd1, PLd2,. The data identification information is included as a header or the like in the corresponding partial data PLd1, PLd2,.
 さらにこの場合も、宇宙側送信局装置10は、ステータス情報については、上記部分データと同様に、部分ステータス情報に分割し、各部分ステータス情報を符号化して符号化後ステータス情報を得ておく。 In this case as well, the space-side transmitting station apparatus 10 divides the status information into partial status information as in the case of the partial data, and encodes each partial status information to obtain post-coding status information.
 宇宙側送信局装置10は、光学観測データを分割して得た部分データPId1,PId2…、レーダ観測データを分割して得た部分データPLd1,PLd2…、についてそれぞれ所定の符号化(誤り訂正符号化等)を行い、符号化後データを生成する。 The space-side transmitting station apparatus 10 performs predetermined encoding (error correction code) on partial data PId1, PId2,... Obtained by dividing optical observation data, and partial data PLd1, PLd2,. To generate post-encoding data.
 宇宙側送信局装置10は、符号化後データについても、復調・復号を担当する受信器23の組ごとに、当該組に含まれる受信器23に順次復調・復号を行わせるよう、符号化データ識別情報を設定する。 The space-side transmitting station apparatus 10 also encodes the encoded data so that the receiver 23 included in the set sequentially performs demodulation and decoding for each set of the receivers 23 in charge of demodulation and decoding. Set identification information.
 上述のように、光学観測データについては受信器23a,b,cに担当させ、レーダ観測データについては受信器23d,eに担当させるというように設定する場合を例として符号化データ識別情報の設定例について説明すると、この設定例は次のようになる。なお、以下の説明では例えば、受信器23aは符号化データ識別情報が「a」となっている符号化後データの復調・復号を担当し、受信器23bは符号化データ識別情報が「b」となっている符号化後データの復調・復号を担当し、…というように予め定めておくものとする。 As described above, the setting of the encoded data identification information is set as an example in which the optical observation data is assigned to the receivers 23a, b, c and the radar observation data is assigned to the receivers 23d, e. An example will be described as follows. In the following description, for example, the receiver 23a is in charge of demodulation / decoding of the encoded data whose encoded data identification information is “a”, and the receiver 23b has the encoded data identification information “b”. It is assumed that the post-encoding data is demodulated / decoded in advance, and so on.
 宇宙側送信局装置10は、光学観測データを分割して得た部分データPId1,PId2…のそれぞれを符号化して、CI1,CI2…を生成する。また宇宙側送信局装置10は、レーダ観測データを分割して得た部分データPLd1,PLd2…のそれぞれを符号化して、CL1,CL2…を生成する。そして、宇宙側送信局装置10は、部分データPId1,PId2,PId3,PId4,…のそれぞれに、符号化データ識別情報「a」,「b」,「c」,「a」…というように、光学観測データを担当させる受信器23を順番に、また繰り返して指定する符号化データ識別情報を設定する。 The space-side transmitting station apparatus 10 encodes the partial data PId1, PId2,... Obtained by dividing the optical observation data, and generates CI1, CI2,. Further, the space-side transmitting station apparatus 10 encodes the partial data PLd1, PLd2,... Obtained by dividing the radar observation data to generate CL1, CL2,. Then, the space-side transmitting station apparatus 10 adds the encoded data identification information “a”, “b”, “c”, “a”... To each of the partial data PId1, PId2, PId3, PId4,. The encoded data identification information for specifying the receiver 23 in charge of the optical observation data in order and repeatedly is set.
 宇宙側送信局装置10は、レーダ観測データを分割して得た部分データPLd1,PLd2,PLd3,…についても同様に、符号化データ識別情報「d」,「e」,「d」,…というように、レーダ観測データに係る部分データの復調・復号を担当させる受信器23を順番に、また繰り返して指定する符号化データ識別情報を設定する。 Similarly, the space-side transmitting station apparatus 10 uses the encoded data identification information “d”, “e”, “d”,... For the partial data PLd1, PLd2, PLd3,. As described above, the encoded data identification information for designating the receiver 23 in charge of demodulation / decoding of the partial data related to the radar observation data in order and repeatedly is set.
 さらに宇宙側送信局装置10は、符号化後ステータス情報には、特定の受信器23fに担当させることを表す符号化データ識別情報(例えば「f」とする)を、そのヘッダに相当する位置等、所定の位置に結合して設定する。 Furthermore, the space-side transmitting station apparatus 10 includes, in the encoded status information, encoded data identification information (for example, “f”) indicating that a specific receiver 23f is in charge, a position corresponding to the header, etc. , And set in a predetermined position.
 そして宇宙側送信局装置10は、担当する受信器23を順次変更する順序で符号化後データを配列して連接する。なお、ステータス情報が得られたときには、その時点で、当該符号化後データの列に符号化後ステータス情報を含めて配列し、互いに連接する。具体的な例として、宇宙側送信局装置10は、符号化データ識別情報「a」,「b」,「c」がヘッダに付された部分データPId1,PId2,PId3に続き、符号化データ識別情報「d」,「e」がヘッダに付された部分データPLd1,PLd2を連結し、続いてステータス情報が生じれば、ここで符号化データ識別情報「f」がヘッダに付された符号化後ステータス情報SC1を連結する。そして宇宙側送信局装置10は、次に、符号化データ識別情報「a」,「b」,「c」がヘッダに付された上述の部分データとは別の部分データPId4,PId5,PId6を連結し…というように、繰り返して符号化後データや符号化後ステータス情報を連結する。宇宙側送信局装置10は、連結して得た情報列を、所定の無線周波数で変調し、地上局側へ送信する。 Then, the space-side transmitting station apparatus 10 arranges the encoded data in the order in which the receivers 23 in charge are sequentially changed and connects them. When the status information is obtained, at that time, the encoded data string is arranged including the encoded status information and connected to each other. As a specific example, the space-side transmitting station apparatus 10 follows the partial data PId1, PId2, and PId3 in which the encoded data identification information “a”, “b”, and “c” is attached to the header, If the pieces of information “d” and “e” are connected to the partial data PLd1 and PLd2 and then status information is generated, the encoded data identification information “f” is encoded here. The post status information SC1 is linked. Then, the space-side transmitting station apparatus 10 then receives partial data PId4, PId5, and PId6 different from the above-described partial data in which the encoded data identification information “a”, “b”, and “c” is attached to the header. As shown in the figure, the encoded data and the encoded status information are repeatedly connected. The space-side transmitting station device 10 modulates the information sequence obtained by the connection with a predetermined radio frequency and transmits the modulated information sequence to the ground station side.
 このシングルキャリア信号を受信する地上側受信局装置20は、受信したシングルキャリア信号を受信器23の数nだけ複製して、各受信器23に出力する。ここでもシングルキャリア信号は中間周波数に変換されてから複製され、各受信器23に出力されてもよい。 The ground-side receiving station device 20 that receives this single carrier signal duplicates the received single carrier signal by the number n of the receivers 23 and outputs the duplicated signal to each receiver 23. Again, the single carrier signal may be replicated after being converted to an intermediate frequency and output to each receiver 23.
 各受信器23は、複製されて入力されたシングルキャリア信号のうち、符号化データ識別情報が含まれる部分の信号が、自己が担当するものとして予め定められた符号化データ識別情報が含まれることを表す信号から所定の時間分の信号(当該符号化データ識別情報に対応する符号化後データまたは符号化後ステータス情報を変調した信号)を取り込んで復調する。 Each receiver 23 includes the encoded data identification information that is determined in advance so that the signal of the portion including the encoded data identification information of the single carrier signal that is copied and input is included in the receiver 23. A signal for a predetermined time (a signal obtained by modulating the encoded data or the encoded status information corresponding to the encoded data identification information) is taken in from the signal representing the signal and demodulated.
 ここでは受信器23a,23b,23cがそれぞれ符号化データ識別情報「a」,「b」,「c」に対応する符号化後データの復調及び復号を担当するものとして設定され、受信器23d,23eがそれぞれ符号化データ識別情報「d」,「e」に対応する符号化後データの復調及び復号を担当するものとして設定され、受信器23fが符号化データ識別情報「f」に対応する符号化後ステータス情報の復調及び復号を担当するものとして設定されているものとしているので、地上側受信局装置20は、次のように動作することとなる。 Here, the receivers 23a, 23b, and 23c are set to be in charge of demodulation and decoding of the encoded data corresponding to the encoded data identification information “a”, “b”, and “c”, respectively. 23e is set to be in charge of demodulation and decoding of the encoded data corresponding to the encoded data identification information "d" and "e", respectively, and the receiver 23f is a code corresponding to the encoded data identification information "f" Since it is set to be in charge of demodulation and decoding of the status information after conversion, the ground side receiving station apparatus 20 operates as follows.
 すなわち、受信器23aないし23cは、光学観測データに係る部分データを次々に出力し、受信器23d,23eは、レーダ観測データに係る部分データを次々に出力し、受信器23fは、ステータス情報に係る部分ステータス情報を次々に出力する。なお、いずれの受信器23も、受信器23の数をn(ここではn=6)とするとき、シングルキャリア信号のビットレートRに対して、R/(n-1)以上(ステータス情報は不定期に発生するので、n-1で除している)のビットレートで復調及び復号を行えばよいので、比較的遅い処理により復調・復号を行うことができ、著しく高価な、高速の受信器を利用する必要がない。 That is, the receivers 23a to 23c output partial data related to the optical observation data one after another, the receivers 23d and 23e output partial data related to the radar observation data one after another, and the receiver 23f displays the status information. The partial status information is output one after another. In any receiver 23, when the number of receivers 23 is n (here, n = 6), the bit rate R of the single carrier signal is R / (n-1) or more (status information is Since it occurs irregularly, it only needs to be demodulated and decoded at a bit rate (divided by n-1), so it can be demodulated and decoded by a relatively slow process, and it is extremely expensive and high-speed reception. There is no need to use a vessel.
 地上側受信局装置20は、受信器23aないし23cがそれぞれ出力する部分データPIdi(i=1,2…)に含まれる部分データ識別情報を参照して、当該部分データ識別情報の小さい順に結合し、光学観測データを再生して出力する。同様に、地上側受信局装置20は、受信器23d,23eがそれぞれ出力する部分データPLdi(i=1,2…)に含まれる部分データ識別情報を参照して、当該部分データ識別情報の小さい順に結合し、レーダ観測データを再生して出力する。 The ground-side receiving station device 20 refers to the partial data identification information included in the partial data PIdi (i = 1, 2,...) Output from the receivers 23a to 23c, and combines them in ascending order of the partial data identification information. , Reproduce and output optical observation data. Similarly, the ground side receiving station apparatus 20 refers to the partial data identification information included in the partial data PLdi (i = 1, 2,...) Output from the receivers 23d and 23e, respectively, and the partial data identification information is small. Combine in order to reproduce and output radar observation data.
 また、地上側受信局装置20は、受信器23fが出力する部分ステータス情報については、この部分ステータス情報のみを、出力時間順に結合して、ステータス情報を再生して出力する。 The terrestrial receiving station apparatus 20 reproduces and outputs the status information by combining only the partial status information in order of output time with respect to the partial status information output by the receiver 23f.
[データ種類ごとに異なるビットエラーレートを異ならせる例]
 また上述の例において、データの種類によって要求されるビットエラーレート(BER)は異なる。例えばレーダ観測データと、光学観測データとでは、要求されるBERは、大きく異なっており、レーダ観測データでは、10-4未満、圧縮された光学観測データでは10-10未満となる。そこで例えば、必要なBERを確保するため最も厳しいBER(上記の2つの例では、10-10未満)に合わせて通信の品質を決定すると、一部の種類のデータについては品質が過剰となり、データの通信時間や帯域が有効に利用できないといった問題が生じる。
[Example of different bit error rate for each data type]
In the above example, the required bit error rate (BER) differs depending on the type of data. For example, the required BER differs significantly between radar observation data and optical observation data, and is less than 10 −4 for radar observation data and less than 10 −10 for compressed optical observation data. Therefore, for example, if the communication quality is determined in accordance with the strictest BER (less than 10 −10 in the above two examples) in order to secure the necessary BER, the quality of some types of data becomes excessive, and the data The problem arises that the communication time and bandwidth cannot be used effectively.
 そこで本実施の形態の一例では、データの種類ごとに、誤り訂正符号等、符号化方法の種類や変調の方法を異ならせてもよい。ここで変調の方法を異ならせる場合は、搬送波が共通であるような、互いに異なる変調方式により、符号化後データの変調を行う。例えば光学観測データに係る符号化後データは32APSK(Amplitude Phase-Shift Keying)にて変調し、レーダ観測データに係る符号化後データは64APSKにて変調してもよい。 Therefore, in an example of the present embodiment, the type of encoding method and the method of modulation, such as an error correction code, may be different for each type of data. In this case, when the modulation method is different, the encoded data is modulated by different modulation methods such as a common carrier wave. For example, encoded data related to optical observation data may be modulated by 32APSK (AmplitudemplPhase-Shift Keying), and encoded data related to radar observation data may be modulated by 64APSK.
 このときには、光学観測データについての符号化後データの復調を担当する受信器23a,b,cは、32APSKの信号を復調して光学観測データについての符号化後データを得て、これを復号する。また、レーダ観測データについての符号化後データの復調を担当する受信器23d,eは、64APSKの信号を復調してレーダ観測データについての符号化後データを得て、これを復号する。 At this time, the receivers 23a, 23b, 23c, which are in charge of demodulation of the encoded data for the optical observation data, demodulate the 32APSK signal to obtain the encoded data for the optical observation data, and decode it. . Also, the receivers 23d and e in charge of demodulating the encoded data of the radar observation data demodulate the 64APSK signal to obtain the encoded data of the radar observation data and decode it.
[担当する受信器をそれぞれ一つとする例]
 また本実施の形態の例では、データの種類ごとに、当該種類のデータに係る信号の復調・復号を担当する地上側受信局装置20の受信器23を、シングルキャリア信号のビットレートR未満、かつ、当該種類のデータの平均ビットレートR′以上のビットレートの信号を復調・復号可能な程度に高速なものとしておくことで、各種類のデータに係る信号の復調・復号を担当する地上側受信局装置20の受信器23を、それぞれ一つずつとすることが可能である。
[Example of one receiver in charge]
In the example of the present embodiment, for each data type, the receiver 23 of the terrestrial receiving station device 20 that is in charge of demodulation and decoding of the signal related to the type of data is set to a value less than the bit rate R of the single carrier signal. In addition, the ground side in charge of the demodulation and decoding of the signals related to each type of data by making the signal of a bit rate equal to or higher than the average bit rate R ′ of the type of data high enough to be demodulated and decoded. One receiver 23 of the receiving station apparatus 20 can be provided.
 このようにする場合、各受信器23の出力を復号の時系列順に連接すれば、そのままそれぞれの種類のデータの再生結果として取り出すことができるため、複数の受信器23の出力を結合する必要はない。 In this case, if the outputs of the respective receivers 23 are concatenated in order of decoding time series, they can be taken out as they are as the reproduction results of the respective types of data, so it is necessary to combine the outputs of the plurality of receivers 23 Absent.
[実施の形態の効果]
 本発明の実施の形態によると、人工衛星側で、送信の対象となるデータを分割し、それぞれを個別に符号化、変調して順次シングルキャリア方式の信号として送信することにより、地上局側では各部分データに相当する信号を、複数の受信機を用いて時分割的に処理させることが可能となり、比較的低速で安価な受信機を用いつつ、シングルキャリア方式による通信を実現できる。
[Effect of the embodiment]
According to the embodiment of the present invention, by dividing the data to be transmitted on the artificial satellite side, individually encoding and modulating each, and sequentially transmitting as a single carrier signal, the ground station side A signal corresponding to each partial data can be processed in a time-sharing manner using a plurality of receivers, and communication using a single carrier method can be realized while using a relatively low-speed and inexpensive receiver.
 1 通信システム、2 人工衛星、3 施設、10 宇宙側送信局装置、11 制御部、12 記憶部、13 データ入力部、14 無線部、20 地上側受信局装置、21 無線受信部、22 分配器、23 受信器、24 出力部、31 受入部、32 分割部、33 符号化部、34 通信制御部。

 
DESCRIPTION OF SYMBOLS 1 Communication system, 2 Artificial satellite, 3 facilities, 10 Space side transmission station apparatus, 11 Control part, 12 Memory | storage part, 13 Data input part, 14 Radio | wireless part, 20 Ground side receiving station apparatus, 21 Radio | wireless receiving part, 22 Divider , 23 receiver, 24 output unit, 31 receiving unit, 32 dividing unit, 33 encoding unit, 34 communication control unit.

Claims (9)

  1.  宇宙側送信局装置と、地上側受信局装置とを備える通信システムであって、
     前記宇宙側送信局装置は、一つの地上側受信局装置への送信対象となるデータを受け入れる手段と、
     前記送信対象のデータを、当該データよりもサイズの小さい、複数の部分データに分割する分割手段と、
     前記分割して得られた各部分データに固有の部分データ識別情報を含めて符号化する符号化手段と、
     前記符号化した各部分データにそれぞれ所定の符号化データ識別情報を付して互いに連接し、シングルキャリア信号として送出する送信手段と、
     を有し、
     前記地上側受信局装置は、
     前記送信されたシングルキャリア信号を複製して出力する分配手段と、
     前記分配手段により出力される複数のシングルキャリア信号のそれぞれの入力を受け入れる複数の受信器であって、各受信器が、予め定められた規則により、自己が担当する符号化データ識別情報が付された、符号化された部分データを復号し、復号して得られた、部分データ識別情報を含む部分データを出力する受信器と、
     前記複数の受信器の少なくとも一部が出力する部分データを受け入れて、受け入れた部分データに含まれる部分データ識別情報を参照して結合方法を決定し、当該決定した方法で、部分データ識別情報を削除した部分データを結合してデータを再生する結合手段と、
     を有する通信システム。
    A communication system comprising a space-side transmitting station device and a ground-side receiving station device,
    The space side transmitting station device accepts data to be transmitted to one ground side receiving station device;
    Dividing means for dividing the data to be transmitted into a plurality of partial data having a smaller size than the data;
    Encoding means for encoding including the partial data identification information unique to each partial data obtained by the division,
    Transmitting means for attaching each of the encoded partial data with predetermined encoded data identification information, connecting them to each other, and transmitting as a single carrier signal;
    Have
    The ground side receiving station device is
    Distribution means for replicating and outputting the transmitted single carrier signal;
    A plurality of receivers that accept respective inputs of a plurality of single carrier signals output by the distributing means, and each receiver is attached with encoded data identification information that it is in charge of according to a predetermined rule. A receiver that decodes the encoded partial data and outputs the partial data including the partial data identification information obtained by decoding;
    Accepting partial data output by at least a part of the plurality of receivers, determining a combining method with reference to partial data identification information included in the received partial data, and using the determined method, partial data identification information A combining means for combining the deleted partial data and reproducing the data;
    A communication system.
  2.  一つの地上側受信局装置へシングルキャリア信号を送出する宇宙側送信局装置であって、
     一つの地上側受信局装置に対する送信対象となるデータを受け入れる受入手段と、
     前記送信対象のデータを、当該データよりもサイズの小さい、複数の部分データに分割する分割手段と、
     前記分割して得られた各部分データに固有の部分データ識別情報を含め、符号化する符号化手段と、
     前記符号化した各部分データにそれぞれ所定の符号化データ識別情報を付して互いに連接し、シングルキャリア信号として送出する送信手段と、
     を有する宇宙側送信局装置。
    A space-side transmitting station device that transmits a single carrier signal to one ground-side receiving station device,
    Receiving means for receiving data to be transmitted to one ground-side receiving station device;
    Dividing means for dividing the data to be transmitted into a plurality of partial data having a smaller size than the data;
    Encoding means for encoding including the partial data identification information unique to each partial data obtained by the division,
    Transmitting means for attaching each of the encoded partial data with predetermined encoded data identification information, connecting them to each other, and transmitting as a single carrier signal;
    A space-side transmitting station apparatus.
  3.  宇宙側送信局装置から、送信対象のデータを分割して得た部分データにそれぞれ部分データ識別情報を含めて符号化し、符号化された部分データのそれぞれに所定の符号化データ識別情報を付して連接したデータを、シングルキャリア信号として受信する地上側受信局装置であって、
     前記受信したシングルキャリア信号を複製して出力する分配手段と、
     前記分配手段により出力される複数のシングルキャリア信号のそれぞれの入力を受け入れる複数の受信器であって、各受信器が、予め定められた規則により、自己が担当する符号化データ識別情報が付された、符号化された部分データを復号し、復号して得られた、部分データ識別情報を含む部分データを出力する受信器と、
     前記複数の受信器の少なくとも一部が出力する部分データを受け入れて、受け入れた部分データに含まれる部分データ識別情報を参照して結合方法を決定し、当該決定した方法で、部分データ識別情報を削除した部分データを結合してデータを再生する結合手段と、
     を有する地上側受信局装置。
    The partial data obtained by dividing the transmission target data from the space side transmitting station apparatus is encoded including the partial data identification information, and predetermined encoded data identification information is attached to each of the encoded partial data. Terrestrial receiving station device that receives the concatenated data as a single carrier signal,
    Distribution means for replicating and outputting the received single carrier signal;
    A plurality of receivers that accept respective inputs of a plurality of single carrier signals output by the distributing means, and each receiver is attached with encoded data identification information that it is in charge of according to a predetermined rule. A receiver that decodes the encoded partial data and outputs the partial data including the partial data identification information obtained by decoding;
    Accepting partial data output by at least a part of the plurality of receivers, determining a combining method with reference to partial data identification information included in the received partial data, and using the determined method, partial data identification information A combining means for combining the deleted partial data and reproducing the data;
    A terrestrial receiving station apparatus.
  4.  請求項2に記載の宇宙側送信局装置であって、
     前記受入手段は、複数の互いに異なる種類のデータを、送信対象となるデータとして受け入れ、
     前記分割手段は、送信対象データのうち、予め定めた種類のデータを他の種類のデータを含まない部分データに含めるよう部分データへの分割を行い、
     前記送信手段は、前記予め定めた種類のデータを含む部分データを符号化したデータには、所定の符号化データ識別情報を付して送出する宇宙側送信局装置。
    The space side transmitting station apparatus according to claim 2,
    The accepting means accepts a plurality of different types of data as data to be transmitted,
    The dividing means performs division into partial data so as to include predetermined types of data in the transmission target data in partial data not including other types of data,
    The transmission means is a space-side transmitting station apparatus that transmits predetermined encoded data identification information to data obtained by encoding partial data including the predetermined type of data.
  5.  請求項2に記載の宇宙側送信局装置であって、
     前記受入手段は、複数の互いに異なる種類のデータを、送信対象となるデータとして受け入れ、
     前記分割手段は、互いに異なる種類のデータを、それぞれ他の種類のデータを含まない部分データに含めるよう部分データへの分割を行い、
     前記送信手段は、前記互いに異なる種類のデータごとに固有の符号化データ識別情報を用い、前記部分データを符号化したデータに、当該部分データに含まれる種類のデータに対応する符号化データ識別情報を付して送出する宇宙側送信局装置。
    The space side transmitting station apparatus according to claim 2,
    The accepting means accepts a plurality of different types of data as data to be transmitted,
    The dividing means performs division into partial data so that different types of data are included in partial data not including other types of data, respectively.
    The transmitting means uses encoded data identification information unique to each of the different types of data, and the encoded data identification information corresponding to the type of data included in the partial data is obtained by encoding the partial data. Space side transmitting station equipment that sends out
  6.  請求項5に記載の宇宙側送信局装置であって、
     前記符号化手段は、前記部分データを、それぞれ当該部分データに含まれるデータの種類に応じて選択した符号化方式により符号化する宇宙側送信局装置。
    The space-side transmitting station apparatus according to claim 5,
    The space-side transmitting station apparatus, wherein the encoding means encodes the partial data using an encoding method selected according to the type of data included in the partial data.
  7.  請求項5または6に宇宙側送信局装置であって、
     前記送信手段は、前記符号化された部分データごとに、それぞれ当該部分データに含まれるデータの種類に応じて選択した変調方式により変調した信号を生成し、当該信号を時系列的に互いに連接して、シングルキャリア信号として送出する宇宙側送信局装置。
    A space side transmitting station apparatus according to claim 5 or 6,
    For each of the encoded partial data, the transmission means generates a signal modulated by a modulation scheme selected according to the type of data included in the partial data, and connects the signals to each other in time series. A space-side transmitter station that transmits as a single carrier signal.
  8.  請求項3に記載の地上側受信局装置であって、
     前記宇宙側送信局装置は、送信対象データのうち、予め定めた種類のデータを他の種類のデータを含まない部分データに含め、当該部分データに部分データ識別情報を含めて符号化し、他の種類のデータを含む部分データに部分データ識別情報を含めて符号化したデータとともに、それぞれ符号化された部分データに所定の符号化データ識別情報を付して連接したデータを、シングルキャリア信号として送出しており、
     地上側受信局装置は、当該シングルキャリア信号を受信し、
     前記受信器のうち、前記予め定めた種類のデータを含む部分データを符号化したデータに付された符号化データ識別情報を担当する受信器は、当該担当する符号化された部分データを復号し、復号して得られた、部分データ識別情報を含む部分データを、そのまま出力し、
     前記受信器のうち、前記予め定めた種類のデータを含まない部分データを符号化したデータに付された符号化データ識別情報を担当する受信器は、当該担当する符号化された部分データを復号し、復号して得られた、部分データ識別情報を含む部分データを、前記結合手段に出力して、
     前記結合手段が、前記複数の受信器の一部が出力する部分データを受け入れて、受け入れた部分データに含まれる部分データ識別情報を参照して結合方法を決定し、当該決定した方法で、部分データ識別情報を削除した部分データを結合してデータを再生する地上側受信局装置。
    It is the ground side receiving station apparatus of Claim 3, Comprising:
    The space-side transmitting station apparatus includes predetermined types of data included in transmission target data in partial data that does not include other types of data, encodes the partial data including partial data identification information, Along with data encoded with partial data identification information included in partial data including types of data, data that is connected with predetermined encoded data identification information attached to each encoded partial data is transmitted as a single carrier signal. And
    The ground side receiving station apparatus receives the single carrier signal,
    Among the receivers, a receiver in charge of encoded data identification information attached to data obtained by encoding partial data including the predetermined type of data decodes the encoded partial data in charge. The partial data including the partial data identification information obtained by decoding is output as it is,
    Among the receivers, a receiver in charge of encoded data identification information attached to data obtained by encoding partial data not including the predetermined type of data decodes the encoded partial data in charge. And outputting partial data including partial data identification information obtained by decoding to the combining means,
    The combining means receives partial data output by a part of the plurality of receivers, determines a combining method with reference to partial data identification information included in the received partial data, and uses the determined method to A terrestrial receiving station device that reproduces data by combining partial data from which data identification information has been deleted.
  9.  地上側受信局装置へシングルキャリア信号を送出する宇宙側送信局装置を、
     送信対象となるデータを受け入れる受入手段と、
     前記送信対象のデータを、当該データよりもサイズの小さい、複数の部分データに分割する分割手段と、
     前記分割して得られた各部分データに固有の部分データ識別情報を含め、符号化する符号化手段と、
     前記符号化した各部分データにそれぞれ所定の符号化データ識別情報を付して互いに連接し、シングルキャリア信号として送出する送信手段と、
     として機能させるプログラム。

     
    A space side transmitting station device that sends a single carrier signal to the ground side receiving station device,
    An acceptance means for accepting data to be transmitted;
    Dividing means for dividing the data to be transmitted into a plurality of partial data having a smaller size than the data;
    Encoding means for encoding including the partial data identification information unique to each partial data obtained by the division,
    Transmitting means for attaching each of the encoded partial data with predetermined encoded data identification information, connecting them to each other, and transmitting as a single carrier signal;
    Program to function as.

PCT/JP2019/006798 2018-02-28 2019-02-22 Communication system, space-side transmission station device, terrestrial-side reception station device, and program WO2019167833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-035139 2018-02-28
JP2018035139A JP7060232B2 (en) 2018-02-28 2018-02-28 Communication system, space-side transmitting station equipment, ground-side receiving station equipment, and programs

Publications (1)

Publication Number Publication Date
WO2019167833A1 true WO2019167833A1 (en) 2019-09-06

Family

ID=67805796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006798 WO2019167833A1 (en) 2018-02-28 2019-02-22 Communication system, space-side transmission station device, terrestrial-side reception station device, and program

Country Status (2)

Country Link
JP (1) JP7060232B2 (en)
WO (1) WO2019167833A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138181A1 (en) * 2020-12-23 2022-06-30 ソニーグループ株式会社 Terrestrial system and image processing method for same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964841A (en) * 1995-08-28 1997-03-07 Mitsubishi Electric Corp Sdh interface transmission circuit and sdh interface reception circuit
JPH11251988A (en) * 1998-03-05 1999-09-17 Matsushita Electric Ind Co Ltd Satellite data transmitter and receiver

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007019799A (en) * 2005-07-07 2007-01-25 Matsushita Electric Ind Co Ltd Base station apparatus, mobile station apparatus, and frame transmission method
US9686044B2 (en) * 2007-03-27 2017-06-20 Qualcomm Incorporated Rate matching with multiple code block sizes
KR101405952B1 (en) * 2007-12-05 2014-06-12 엘지전자 주식회사 Method of data block transmitting
JP2010093449A (en) * 2008-10-06 2010-04-22 Sharp Corp Transmission device, reception device, communication method, and communication system
EP3151433A1 (en) * 2015-10-01 2017-04-05 Mitsubishi Electric R&D Centre Europe B.V. Method for demodulating received symbols using a turbo-demodulation scheme comprising an iterative de-mapping and wherein an iterative channel decoder is used in the turbo-demodulation scheme
EP4224773A1 (en) * 2016-08-22 2023-08-09 Samsung Electronics Co., Ltd. Method and apparatus for insertion of code block index in wirelss cellular communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964841A (en) * 1995-08-28 1997-03-07 Mitsubishi Electric Corp Sdh interface transmission circuit and sdh interface reception circuit
JPH11251988A (en) * 1998-03-05 1999-09-17 Matsushita Electric Ind Co Ltd Satellite data transmitter and receiver

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IWAKIRI, NAOHIKO ET AL.: "SCCC turbo equalization with nonlinear satellite channel compensation techniques for nano/small satellite high-speed communication system", IEICE TECHNICAL REPORT, vol. 111, no. 7, 14 April 2011 (2011-04-14), pages 37 - 42 *
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION: "TM SYNCHRONIZATIONAND CHANNEL CODING", CCSDS 131.0-B- 3, September 2017 (2017-09-01), XP055635581, Retrieved from the Internet <URL:https://public.ccsds.org/Pubs/131x0b3e1.pdf> [retrieved on 20170900] *

Also Published As

Publication number Publication date
JP2019149782A (en) 2019-09-05
JP7060232B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
KR101633326B1 (en) Method of transmission
KR101639294B1 (en) Method and apparatus for transmitting data streams in a mimo system
KR970060945A (en) Digital signal receiver
JPH08288934A (en) High-speed fading packet diversity transmission method and system
WO2019167833A1 (en) Communication system, space-side transmission station device, terrestrial-side reception station device, and program
US9485042B2 (en) Transmitting and receiving apparatus and method for separating multiple broadcast signals in terrestrial cloud broadcast system
US20030016703A1 (en) Method, device and software for digital inverse multiplexing
US4613860A (en) Coder-decoder for purged binary block codes
RU2187889C2 (en) Compressed data transmission and storage system
CN101494514A (en) Method and system for coded null packet-aided synchronization
CN111565291B (en) Multi-base-station image transmission method for unmanned aerial vehicle
KR20100098215A (en) Common broadcast receiver and method for processing received signal thereof
KR101065478B1 (en) Apparatus and method for transmitting or receiving broadcast signal
CN110971276B (en) Communication method and device
US7751718B2 (en) Efficient transmission of digital return path data in cable television return path
US7117317B2 (en) Apparatus and method for efficient storage of data streams that each comprise separately transmitted data blocks
US20140362932A1 (en) Communication apparatus, communication system, communication method, and storage medium
JP6549943B2 (en) Transmission device, reception device, and transmission / reception system
JPH07143101A (en) Diversity system
KR102339244B1 (en) Satellite IoT terminal and effective and robust unidirectional data transmission methods therby
JPH03259635A (en) Digital radio communication equipment
US10491438B2 (en) Systems and methods for reinforcing signals on coupled channels during idle periods
JPS6041831A (en) Diversity system
CN104506473B (en) A kind of method for transmitting signals of LTE system based on automatic adjusument reference vector
JPH0284836A (en) Error correction method for multicarrier radio transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760947

Country of ref document: EP

Kind code of ref document: A1