WO2019167740A1 - Method for producing electrochemical device, and electrochemical device - Google Patents

Method for producing electrochemical device, and electrochemical device Download PDF

Info

Publication number
WO2019167740A1
WO2019167740A1 PCT/JP2019/006252 JP2019006252W WO2019167740A1 WO 2019167740 A1 WO2019167740 A1 WO 2019167740A1 JP 2019006252 W JP2019006252 W JP 2019006252W WO 2019167740 A1 WO2019167740 A1 WO 2019167740A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium
laminate
lithium electrode
electrochemical device
Prior art date
Application number
PCT/JP2019/006252
Other languages
French (fr)
Japanese (ja)
Inventor
寛実 佐藤
克典 横島
大輔 ▲高▼田
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2019167740A1 publication Critical patent/WO2019167740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrochemical device using lithium ions as a charge carrier and an electrochemical device.
  • lithium ions are pre-doped into the negative electrode.
  • a lithium electrode containing lithium metal is arranged outside an electrode stack, which is a stack of positive and negative electrodes.
  • the positive electrode and the negative electrode are formed by laminating an electrode active material on a current collector plate provided with a through hole, and lithium ions are supplied from the lithium metal to the negative electrode through the through hole and doped into the negative electrode.
  • Increasing the number of positive and negative electrode stacks to increase the capacity of the cell requires a long time for doping. Therefore, a cell composed of multiple electrode stacks and a lithium electrode between the electrode stacks is proposed. (For example, Patent Document 1).
  • Such a stacked lithium ion capacitor includes an electrode stacking process in which a positive electrode and a negative electrode are alternately stacked via a separator to form an electrode stack, a tape applying process in which a separator is taped on the outer periphery of the electrode stack, It can manufacture through the lithium electrode arrangement
  • the manufacturing method as described above has a complicated manufacturing process, and there is a concern about electrode displacement in the electrode stack during handling between processes. Moreover, since a tape is affixed on the outer side of an electrode laminated body, a partial area
  • the tape Although it is possible to make the tape an ion-permeable material, it is difficult to make the adhesive material ion-permeable, so the selection of the tape is not easy.
  • an object of the present invention is to provide an electrochemical device manufacturing method and an electrochemical device capable of preventing the occurrence of electrode misalignment and uniformly doping lithium ions.
  • a method for manufacturing an electrochemical device includes a first lithium electrode including metallic lithium, a second lithium electrode including metallic lithium, and a positive electrode including a positive electrode active material. And a negative electrode containing a negative electrode active material, and a first electrode laminate in which one or more positive electrodes and one or more negative electrodes are alternately laminated on the first lithium electrode via interelectrode separators. And laminating the second lithium electrode on the first electrode laminate to form an electrode lithium electrode laminate, and winding the interelectrode separator around the electrode lithium electrode laminate one or more times.
  • the first lithium electrode, the first electrode laminate, and the second lithium electrode are laminated and wound, so that the first electrode laminate is laminated for the lamination of the first lithium electrode and the second lithium electrode. There is no need to handle the electrode, and electrode displacement due to handling does not occur. Moreover, since the tape for fixing the interelectrode separator is not disposed between the first electrode laminate and each lithium electrode, the movement of lithium ions is not hindered by the tape, and pre-doping can be performed uniformly. .
  • the interelectrode separator is a single continuous separator, and may be folded over the first lithium electrode, the second lithium electrode, the positive electrode, and the negative electrode.
  • the first lithium electrode and the first electrode laminate are laminated via an interelectrode separator, and the first electrode laminate and the second lithium electrode are laminated. May be laminated via an interelectrode separator.
  • the first lithium electrode and the first electrode laminate are laminated via a plurality of interelectrode separators, and the first electrode laminate and the first electrode laminate are laminated.
  • Two lithium electrodes may be laminated via a plurality of interelectrode separators.
  • the first lithium electrode is formed by laminating metal lithium on one surface of a metal foil and laminating a lithium electrode separator thereon.
  • the second lithium electrode is formed by laminating metal lithium on one surface of a metal foil and laminating a lithium electrode separator thereon.
  • the first lithium electrode and the second lithium electrode may be arranged such that the lithium electrode separator is on the first electrode laminate side.
  • a third lithium electrode containing metallic lithium and a fourth lithium electrode containing metallic lithium are further prepared,
  • the first electrode laminate is laminated on the first lithium electrode
  • the second lithium electrode is laminated on the first electrode laminate
  • the third lithium electrode is stacked on the second lithium electrode, and one or more positive electrodes and one or more negative electrodes are alternately stacked on the third lithium electrode via the interelectrode separator.
  • a second electrode laminate may be laminated
  • the fourth lithium electrode may be laminated on the second electrode laminate to form the electrode lithium electrode laminate.
  • an electrochemical device includes a first lithium electrode, a first electrode laminate, a second lithium electrode, and an interelectrode separator.
  • the first electrode stack is stacked on the first lithium electrode, and a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are alternately stacked via an interelectrode separator.
  • the second lithium electrode is stacked on the first electrode stack.
  • the interelectrode separator is wound around the electrode lithium electrode laminate in which the first lithium electrode, the first electrode laminate, and the second lithium electrode are laminated one or more times.
  • FIG. 1 is a perspective view of an electrochemical device according to an embodiment of the present invention. It is sectional drawing of the same electrochemical device. It is sectional drawing of the electrical storage element with which the same electrochemical device is provided. It is a schematic diagram which shows the manufacturing apparatus of the electrical storage element with which the same electrochemical device is equipped. It is sectional drawing of the electrical storage element with which the same electrochemical device is provided. It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided. It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided. It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided. It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided.
  • FIG. 1 is a perspective view of an electrochemical device 100 according to this embodiment
  • FIG. 2 is a cross-sectional view of the electrochemical device 100.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG.
  • Electrochemical device 100 is an electrochemical device that requires lithium ion pre-doping and can be a lithium ion capacitor.
  • the electrochemical device 100 may be another electrochemical device that requires lithium ion pre-doping, such as a lithium ion battery. In the following description, it is assumed that the electrochemical device 100 is a lithium ion capacitor.
  • the electrochemical device 100 includes a power storage element 101, an exterior body 102, a positive electrode terminal 103, and a negative electrode terminal 104.
  • FIG. 3 is a cross-sectional view of the power storage element 101.
  • the power storage device 101 includes an electrode stack 110, a first lithium electrode 140, a second lithium electrode 145, and an interelectrode separator 160. These are laminated in the order of the first lithium electrode 140, the electrode laminate 110, and the second lithium electrode 145.
  • the electrode laminate 110 is obtained by alternately laminating positive electrodes 120 and negative electrodes 130 with interelectrode separators 160 interposed therebetween.
  • the positive electrode 120 includes a positive electrode current collector 121 and a positive electrode active material layer 122.
  • the positive electrode current collector 121 is a porous metal foil in which a large number of through holes are formed, for example, an aluminum foil.
  • the thickness of the positive electrode current collector 121 is, for example, 0.03 mm.
  • the positive electrode current collector 121 is electrically connected to the positive electrode terminal 103 via a wiring (not shown).
  • the positive electrode active material layer 122 is formed on both the front and back surfaces of the positive electrode current collector 121.
  • the positive electrode active material layer 122 may be a mixture of a positive electrode active material and a binder resin, and may further include a conductive additive.
  • the positive electrode active material is a material that can adsorb lithium ions and anions in the electrolytic solution, such as activated carbon or polyacene carbide.
  • the binder resin is a synthetic resin that joins the positive electrode active material.
  • styrene butadiene rubber polyethylene, polypropylene, aromatic polyamide, carboxymethyl cellulose, fluorine rubber, polyvinylidene fluoride, isoprene rubber, butadiene rubber, and ethylene propylene rubber. Etc. may be used.
  • the conductive assistant is particles made of a conductive material, and improves the conductivity between the positive electrode active materials.
  • Examples of the conductive assistant include carbon materials such as graphite and carbon black. These may be single and multiple types may be mixed.
  • the conductive auxiliary agent may be a metal material or a conductive polymer as long as it is a conductive material.
  • the negative electrode 130 includes a negative electrode current collector 131 and a negative electrode active material layer 132.
  • the negative electrode current collector 131 is a porous metal foil in which a large number of through holes are formed, for example, a copper foil.
  • the thickness of the negative electrode current collector 131 is, for example, 0.015 mm.
  • the negative electrode current collector 131 is electrically connected to the negative electrode terminal 104 by a wiring or the like (not shown).
  • the negative electrode active material layer 132 is formed on both the front and back surfaces of the negative electrode current collector 131.
  • the negative electrode active material layer 132 may be a mixture of a negative electrode active material and a binder resin, and may further include a conductive additive.
  • the negative electrode active material is a material that can occlude lithium ions in the electrolyte, such as non-graphitizable carbon (hard carbon), carbon-based materials such as graphite and soft carbon, alloy-based materials such as Si and SiO, or those These composite materials can be used.
  • the binder resin is a synthetic resin that joins the negative electrode active material.
  • styrene butadiene rubber polyethylene, polypropylene, aromatic polyamide, carboxymethyl cellulose, fluorine rubber, polyvinylidene fluoride, isoprene rubber, butadiene rubber, and ethylene propylene rubber. Etc. may be used.
  • the conductive assistant is a particle made of a conductive material, and improves the conductivity between the negative electrode active materials.
  • Examples of the conductive assistant include carbon materials such as graphite and carbon black. These may be single and multiple types may be mixed.
  • the conductive auxiliary agent may be a metal material or a conductive polymer as long as it is a conductive material.
  • the number of stacked layers of the positive electrode 120 and the negative electrode 130 is not particularly limited, and can be one or more. It is preferable that the electrode laminate 110 be disposed on the first lithium electrode 140 and second lithium electrode 145 side (the uppermost layer and the lowermost layer) to be the negative electrode 130.
  • the first lithium electrode 140 and the second lithium electrode 145 include a lithium electrode current collector 141, a metal lithium 142, and a lithium electrode separator 143, respectively.
  • the lithium electrode current collector 141 is a metal foil, such as a copper foil.
  • the lithium electrode current collector 141 is electrically connected to the negative electrode current collector 131 directly or via the negative electrode terminal 104.
  • the metal lithium 142 is affixed to the lithium electrode current collector 141 by pressure bonding or the like. It is preferable that the metal lithium 142 has a uniform thickness over the entire surface of the lithium electrode current collector 141.
  • the lithium electrode separator 143 is a separator disposed on the first lithium electrode 140 and the second lithium electrode 145, and is attached to the opposite side of the metal lithium 142 from the lithium electrode current collector 141, and is an ion contained in the electrolytic solution. Transparent.
  • the lithium electrode separator 143 can be a woven fabric, a nonwoven fabric, a synthetic resin microporous film, or the like, and can be made of, for example, an olefin resin as a main material.
  • the first lithium electrode 140 and the second lithium electrode 145 are arranged such that the lithium electrode separator 143 is on the electrode laminate 110 side, as shown in FIG.
  • the interelectrode separator 160 is a separator disposed between the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145, and the electrode stack 110 and the first lithium electrode 140 are separated from each other. And the second lithium electrode 145 is wound around a laminate (hereinafter referred to as an electrode lithium electrode laminate).
  • the interelectrode separator 160 can transmit ions contained in the electrolytic solution, and can be a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like.
  • an olefin-based resin can be used as a main material.
  • the interelectrode separator 160 is a single continuous separator, and is folded while being separated between the first lithium electrode 140, the positive electrode 120, the negative electrode 130, and the second lithium electrode 145. It can be wound around the pole stack.
  • the number of windings is not particularly limited and may be one or more.
  • the exterior body 102 forms a storage space for storing the power storage element 101 and the electrolytic solution.
  • the exterior body 102 is a laminated film in which a metal foil such as an aluminum foil and a resin are laminated, and is fused and sealed around the power storage element 101.
  • the exterior body 102 is not limited to a laminate film, and may be a can-like member that can seal the accommodation space.
  • the electrolytic solution accommodated in the accommodation space together with the power storage element 101 is not particularly limited, for example, a solution containing LiPF 6 or the like as a solute can be used.
  • the positive electrode terminal 103 is an external terminal of the positive electrode 120 that is electrically connected to the positive electrode 120. As shown in FIG. 1, the positive terminal 103 is pulled out from between the exterior bodies 102.
  • the positive electrode terminal 103 may be a foil or a wire made of a conductive material.
  • the negative electrode terminal 104 is an external terminal of the negative electrode 130 that is electrically connected to the negative electrode 130. As shown in FIG. 1, the negative electrode terminal 104 is pulled out from between the exterior bodies 102.
  • the negative electrode terminal 104 may be a foil or a wire made of a conductive material.
  • Electrochemical device 100 has the above configuration. As shown in FIG. 3, the first lithium electrode 140 and the second lithium electrode 145 are encased by the interelectrode separator 160 together with the electrode stack 110, and between the first lithium electrode 140 and the electrode stack 110 and the second lithium. There is no end of the interelectrode separator 160 between the electrode 145 and the electrode stack 110.
  • the tape for fixing the end of the interelectrode separator 160 does not exist between the first lithium electrode 140 and the electrode stack 110 and between the second lithium electrode 145 and the electrode stack 110, and the tape lithium Ion movement is not hindered. Therefore, non-uniform lithium ion doping is prevented.
  • the power storage element 101 can be manufactured by preparing the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145, and laminating them together with the interelectrode separator 160.
  • the first lithium electrode 140 is laminated on the interelectrode separator 160, and the interelectrode separator 160 is further laminated on the first lithium electrode 140.
  • negative electrodes 130 and positive electrodes 120 are alternately stacked via interelectrode separators 160, and are stacked up to the required number.
  • the 2nd lithium electrode 145 is laminated
  • the interelectrode separator 160 is wound around the electrode lithium electrode laminate one or more times.
  • the power storage element 101 is manufactured.
  • the produced power storage element 101 is housed in the exterior body 102, and the positive electrode 120 is electrically connected to the positive electrode terminal 103 and the negative electrode 130 is electrically connected to the negative electrode terminal 104. Further, the first lithium electrode 140 and the second lithium electrode 145 are electrically connected to the negative electrode 130.
  • the metal lithium 142 When the storage element 101 is immersed in the electrolytic solution, the metal lithium 142 is dissolved and lithium ions are released into the electrolytic solution. Lithium ions move through the electrolytic solution and are doped (pre-doped) into the negative electrode active material layer 132 of each negative electrode 130.
  • the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 are stacked and simultaneously wound by the interelectrode separator 160, and their positions are fixed.
  • a positive electrode and a negative electrode are laminated to form an electrode laminate, and the electrode laminate is handled and a lithium electrode is separately laminated.
  • electrode misalignment may occur in the electrode laminate by handling.
  • the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 are stacked together with the interelectrode separator 160, so that handling is performed. There is no need to do. Thereby, it is possible to prevent electrode displacement in the electrode stack.
  • FIG. 4 is a schematic diagram showing a manufacturing apparatus 200 for the electrochemical device 100.
  • the manufacturing apparatus 200 includes a positive electrode magazine 211, a negative electrode magazine 213, a first lithium electrode magazine 215, a second lithium electrode magazine 216, a positive electrode positioning mechanism 217, a negative electrode positioning mechanism 218, a stacking stage 219, and a separator supply unit. 220.
  • the positive electrode magazine 211 stores the positive electrode 120
  • the negative electrode magazine 213 stores the negative electrode 130
  • the first lithium electrode magazine 215 contains the first lithium electrode 140
  • the second lithium electrode magazine 216 contains the second lithium electrode 145.
  • a reel-shaped interelectrode separator 160 is set in the separator supply unit 220.
  • the positive electrode 120 is supplied from the positive electrode magazine 211 to the positive electrode positioning mechanism 217, positioned by the positive electrode positioning mechanism 217, and supplied to the stacking stage 219.
  • the negative electrode 130 is supplied from the negative electrode magazine 213 to the negative electrode positioning mechanism 218, positioned by the negative electrode positioning mechanism 218, and supplied to the stacking stage 219.
  • the first lithium electrode 140 is supplied from the first lithium electrode magazine 215 and the second lithium electrode 145 is supplied from the second lithium electrode magazine 216 to the negative electrode positioning mechanism 218, and is positioned by the negative electrode positioning mechanism 218. Supplied.
  • the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 can be positioned by the negative electrode positioning mechanism 218. Is possible.
  • the manufacturing apparatus 200 supplies the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 to the stacking stage 219 in the above-described order, stacked via the interelectrode separator 160, and the interelectrode separator 160
  • the power storage element 101 is manufactured by being wound.
  • the electrochemical device according to the present embodiment may include a plurality of electrode laminates.
  • FIG. 5 is a schematic diagram showing an electricity storage element 301 of an electrochemical device including a plurality of electrode laminates.
  • the power storage element 301 can be housed in the exterior body 102 similarly to the power storage element 101, and the positive electrode terminal 103 and the negative electrode terminal 104 can be connected to the power storage element 301.
  • the same reference numeral is given to the same configuration as the storage element 101.
  • the power storage element 301 includes a first electrode stack 310, a second electrode stack 320, a first lithium electrode 330, a second lithium electrode 340, a third lithium electrode 350, a fourth lithium electrode 360, An interelectrode separator 370 is provided. These are laminated in the order of the first lithium electrode 330, the first electrode laminated body 310, the second lithium electrode 340, the third lithium electrode 350, the second electrode laminated body 320, and the fourth lithium electrode 360.
  • the first electrode laminate 310 and the second electrode laminate 320 are obtained by alternately laminating positive electrodes 120 and negative electrodes 130 via interelectrode separators 370, respectively.
  • the number of stacked positive electrodes 120 and negative electrodes 130 is not limited to that shown in FIG.
  • the first lithium electrode 330, the second lithium electrode 340, the third lithium electrode 350, and the fourth lithium electrode 360 include a lithium electrode current collector 141, a metal lithium 142, and a lithium electrode separator 143, respectively.
  • the first lithium electrode 330 and the second lithium electrode 340 are arranged so that the lithium electrode separator 143 is on the first electrode laminate 310 side.
  • the third lithium electrode 350 and the fourth lithium electrode 360 are arranged so that the lithium electrode separator 143 is on the second electrode laminate 320 side.
  • the interelectrode separator 370 is a separator disposed between the positive electrode 120, the negative electrode 130, the first lithium electrode 330, the second lithium electrode 340, the third lithium electrode 350, and the fourth lithium electrode 360, with a space therebetween.
  • a first electrode laminate 310, a second electrode laminate 320, a first lithium electrode 330, a second lithium electrode 340, a third lithium electrode 350, and a fourth lithium electrode 360 (electrode lithium electrode laminate). It is wound around.
  • the interelectrode separator 370 can transmit ions contained in the electrolytic solution, and can be a woven fabric, a nonwoven fabric, a synthetic resin microporous film, or the like.
  • the main material can be an olefin resin.
  • the interelectrode separator 370 is a single continuous separator, is folded while being separated between the positive electrode 120 and the negative electrode 130, and is wound around the electrode lithium electrode laminate. Can be.
  • the electricity storage element 301 has the above configuration. Note that the power storage element 301 may have three or more electrode stacks.
  • the power storage element 301 can be manufactured as follows. That is, the first lithium electrode 330 is stacked on the interelectrode separator 370, and the interelectrode separator 370 is further stacked on the first lithium electrode 330. On top of that, negative electrodes 130 and positive electrodes 120 are alternately stacked up to the required number via interelectrode separators 370. Further, the second lithium electrode 340 is laminated via the interelectrode separator 370, and the third lithium electrode 340 is laminated thereon.
  • the interelectrode separator 370 is stacked on the third lithium electrode 340, and the negative electrode 130 and the positive electrode 120 are alternately stacked on the third lithium electrode 340 through the interelectrode separator 370 to the required number. Furthermore, the 4th lithium electrode 360 is laminated
  • the interelectrode separator 370 is wound around the electrode lithium electrode laminate one or more times.
  • the power storage element 301 is manufactured.
  • the produced power storage element 301 is housed in the exterior body 102, and the positive electrode 120 is electrically connected to the positive electrode terminal 103 and the negative electrode 130 is electrically connected to the negative electrode terminal 104.
  • the first lithium electrode 330, the second lithium electrode 340, the third lithium electrode 350, and the fourth lithium electrode 360 are electrically connected to the negative electrode 130.
  • the tape that holds the interelectrode separator 370 does not face each lithium electrode, and lithium ions can be uniformly doped.
  • the electrode lithium electrode laminate is fixed by the interelectrode separator 370 together with the lamination of each electrode laminate and each lithium electrode, it is possible to prevent the occurrence of electrode misalignment.
  • the interelectrode separator 160 may not be disposed between the first lithium electrode 140 and the electrode stack 110 and between the second lithium electrode 145 and the electrode stack 110. This is because the lithium electrode separator 143 is provided on the first lithium electrode 140 and the second lithium electrode 145.
  • a plurality of interelectrode separators 160 may be laminated between the first lithium electrode 140 and the electrode laminate 110 and between the second lithium electrode 145 and the electrode laminate 110. Thereby, the liquid retention property of electrolyte solution is ensured and dope of lithium ion is promoted.
  • the interelectrode separator 160 may not be a continuous separator. As shown in the figure, the interelectrode separator 160 includes a plurality of interelectrode separators 160a disposed between the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145, and an electrode lithium electrode laminate. It may include an inter-electrode separator 160b wound around.
  • Electrochemical device 101 Power storage element 102 ... Exterior body 103 ... Positive electrode terminal 104 ... Negative electrode terminal 110 ... Electrode laminated body 120 . Positive electrode 130 . Negative electrode 140 ... First lithium electrode 145 ... Second lithium electrode 160 ... Interelectrode separator

Abstract

[Problem] To provide: a method for producing an electrochemical device, which enables uniform doping of lithium ions, while preventing the occurrence of electrode displacement; and an electrochemical device. [Solution] A method for producing an electrochemical device according to the present invention comprises: a step for preparing a first lithium electrode that contains lithium metal, a second lithium electrode that contains lithium metal, a positive electrode that contains a positive electrode active material, and a negative electrode that contains a negative electrode active material; a step for forming a first electrode laminate wherein one or more positive electrodes and one or more negative electrodes are stacked, with inter-electrode separators being interposed therebetween, on the first lithium electrode; a step for forming an electrode-lithium electrode laminate by superposing the second lithium electrode on the first electrode laminate; and a step for winding an inter-electrode separator around the electrode-lithium electrode laminate one or more times.

Description

電気化学デバイスの製造方法品及び電気化学デバイスMethod for producing electrochemical device and electrochemical device
 本発明は、リチウムイオンを電荷キャリアとして利用する電気化学デバイスの製造方法及び電気化学デバイスに関する。 The present invention relates to a method for manufacturing an electrochemical device using lithium ions as a charge carrier and an electrochemical device.
 リチウムイオンキャパシタ等のリチウムイオンを電荷キャリアとして利用する電気化学デバイスでは、負極へのリチウムイオンのプレドープが行われる。正極と負極をセパレータを介して交互に積層した積層型リチウムイオンキャパシタでは、正極と負極の積層体である電極積層体の外側にリチウム金属を含むリチウム極が配置されて構成されている。 In electrochemical devices that use lithium ions as charge carriers, such as lithium ion capacitors, lithium ions are pre-doped into the negative electrode. In a stacked lithium ion capacitor in which positive electrodes and negative electrodes are alternately stacked via separators, a lithium electrode containing lithium metal is arranged outside an electrode stack, which is a stack of positive and negative electrodes.
 正極と負極は貫通孔が設けられた集電板に電極活物質が積層されて形成され、リチウム金属からこの貫通孔を介して負極にリチウムイオンが供給され、負極にドープされる。セルの高容量化のために正極及び負極の積層数を増やすと、ドープに長時間を要するため、セルを複数の電極積層体で構成し、電極積層体間にリチウム極を配置したものが提案されている(例えば、特許文献1)。 The positive electrode and the negative electrode are formed by laminating an electrode active material on a current collector plate provided with a through hole, and lithium ions are supplied from the lithium metal to the negative electrode through the through hole and doped into the negative electrode. Increasing the number of positive and negative electrode stacks to increase the capacity of the cell requires a long time for doping. Therefore, a cell composed of multiple electrode stacks and a lithium electrode between the electrode stacks is proposed. (For example, Patent Document 1).
 このような積層型リチウムイオンキャパシタは、正極と負極をセパレータを介して交互に積層して電極積層体を形成する電極積層工程、この電極積層体の外周においてセパレータをテープで留めるテープ貼り工程、複数の電極積層体の間にリチウム極を配置するリチウム極配置工程を経て製造することができる。 Such a stacked lithium ion capacitor includes an electrode stacking process in which a positive electrode and a negative electrode are alternately stacked via a separator to form an electrode stack, a tape applying process in which a separator is taped on the outer periphery of the electrode stack, It can manufacture through the lithium electrode arrangement | positioning process which arrange | positions a lithium electrode between these electrode laminated bodies.
国際公開第2006/112068号International Publication No. 2006/111068
 しかしながら、上述のような製造方法は製造工程が複雑であり、工程間のハンドリング時に電極積層体内の電極ズレが懸念される。また、電極積層体の外側にテープが貼られるため、リチウム金属の一部領域はテープと対向する。テープによってリチウムイオンの移動が抑制されるため、リチウムイオンの均一なドープが妨げられる。 However, the manufacturing method as described above has a complicated manufacturing process, and there is a concern about electrode displacement in the electrode stack during handling between processes. Moreover, since a tape is affixed on the outer side of an electrode laminated body, a partial area | region of lithium metal opposes a tape. Since the movement of lithium ions is suppressed by the tape, uniform doping of lithium ions is prevented.
 テープをイオン透過性の材料とすることも可能であるが、粘着材をイオン透過性とすることは困難であるため、テープの選択は容易ではない。 Although it is possible to make the tape an ion-permeable material, it is difficult to make the adhesive material ion-permeable, so the selection of the tape is not easy.
 以上のような事情に鑑み、本発明の目的は、電極ズレの発生を防止し、リチウムイオンを均一にドープさせることが可能な電気化学デバイスの製造方法及び電気化学デバイスを提供することにある In view of the circumstances as described above, an object of the present invention is to provide an electrochemical device manufacturing method and an electrochemical device capable of preventing the occurrence of electrode misalignment and uniformly doping lithium ions.
 上記目的を達成するため、本発明の一形態に係る電気化学デバイスの製造方法は、金属リチウムを含む第1のリチウム極と、金属リチウムを含む第2のリチウム極と、正極活物質を含む正極と、負極活物質を含む負極を準備し、上記第1のリチウム極上に、1つ以上の上記正極と1つ以上の上記負極を電極間セパレータを介して交互に積層した第1の電極積層体を積層し、上記第1の電極積層体上に上記第2のリチウム極を積層して電極リチウム極積層体を形成し、上記電極リチウム極積層体の周囲に上記電極間セパレータを一周以上巻回させる。 In order to achieve the above object, a method for manufacturing an electrochemical device according to an embodiment of the present invention includes a first lithium electrode including metallic lithium, a second lithium electrode including metallic lithium, and a positive electrode including a positive electrode active material. And a negative electrode containing a negative electrode active material, and a first electrode laminate in which one or more positive electrodes and one or more negative electrodes are alternately laminated on the first lithium electrode via interelectrode separators. And laminating the second lithium electrode on the first electrode laminate to form an electrode lithium electrode laminate, and winding the interelectrode separator around the electrode lithium electrode laminate one or more times. Let
 上記製造方法では、第1リチウム極、第1の電極積層体及び第2リチウム極を積層すると共に巻回するため、第1リチウム極及び第2リチウム極の積層のために第1の電極積層体をハンドリングする必要がなく、ハンドリングによる電極ズレが生じない。また、電極間セパレータを固定するためのテープが第1の電極積層体と各リチウム極の間に配置されないため、リチウムイオンの移動がテープによって妨げられず、プレドープを均一に行うことが可能である。 In the manufacturing method, the first lithium electrode, the first electrode laminate, and the second lithium electrode are laminated and wound, so that the first electrode laminate is laminated for the lamination of the first lithium electrode and the second lithium electrode. There is no need to handle the electrode, and electrode displacement due to handling does not occur. Moreover, since the tape for fixing the interelectrode separator is not disposed between the first electrode laminate and each lithium electrode, the movement of lithium ions is not hindered by the tape, and pre-doping can be performed uniformly. .
 上記電極間セパレータは、連続する一つのセパレータであり、上記第1のリチウム極、上記第2のリチウム極、上記正極及び上記負極を挟んで折り重ねられていてもよい。 The interelectrode separator is a single continuous separator, and may be folded over the first lithium electrode, the second lithium electrode, the positive electrode, and the negative electrode.
 上記電極リチウム極積層体を形成する工程では、上記第1のリチウム極と上記第1の電極積層体を電極間セパレータを介して積層し、上記第1の電極積層体と上記第2のリチウム極を電極間セパレータを介して積層してもよい。 In the step of forming the electrode lithium electrode laminate, the first lithium electrode and the first electrode laminate are laminated via an interelectrode separator, and the first electrode laminate and the second lithium electrode are laminated. May be laminated via an interelectrode separator.
 上記電極リチウム極積層体を形成する工程では、上記第1のリチウム極と上記第1の電極積層体を複数層の上記電極間セパレータを介して積層し、上記第1の電極積層体と上記第2のリチウム極を複数層の上記電極間セパレータを介して積層してもよい。 In the step of forming the electrode lithium electrode laminate, the first lithium electrode and the first electrode laminate are laminated via a plurality of interelectrode separators, and the first electrode laminate and the first electrode laminate are laminated. Two lithium electrodes may be laminated via a plurality of interelectrode separators.
 上記第1のリチウム極は、金属箔の一方の面に金属リチウムを積層し、その上にリチウム極セパレータを積層して形成され、
 上記第2のリチウム極は、金属箔の一方の面に金属リチウムを積層し、その上にリチウム極セパレータを積層して形成され、
 上記電極リチウム極積層体を形成する工程では、上記第1のリチウム極及び上記第2のリチウム極を、上記リチウム極セパレータが上記第1の電極積層体側となるように配置してもよい。
The first lithium electrode is formed by laminating metal lithium on one surface of a metal foil and laminating a lithium electrode separator thereon.
The second lithium electrode is formed by laminating metal lithium on one surface of a metal foil and laminating a lithium electrode separator thereon.
In the step of forming the electrode lithium electrode laminate, the first lithium electrode and the second lithium electrode may be arranged such that the lithium electrode separator is on the first electrode laminate side.
 上記第1のリチウム極、上記第2のリチウム極、上記正極及び上記負極を準備する工程では、金属リチウムを含む第3のリチウム極と、金属リチウムを含む第4のリチウム極をさらに準備し、
 上記電極リチウム極積層体を形成する工程では、上記第1のリチウム極上に、上記第1の電極積層体を積層し、上記第1の電極積層体上に上記第2のリチウム極を積層し、上記第2のリチウム極上に、上記第3のリチウム極を積層し、上記第3のリチウム極上に1つ以上の上記正極と1つ以上の上記負極を上記電極間セパレータを介して交互に積層した第2の電極積層体を積層し、上記第2の電極積層体上に上記第4のリチウム極を積層して上記電極リチウム極積層体を形成してもよい。
In the step of preparing the first lithium electrode, the second lithium electrode, the positive electrode and the negative electrode, a third lithium electrode containing metallic lithium and a fourth lithium electrode containing metallic lithium are further prepared,
In the step of forming the electrode lithium electrode laminate, the first electrode laminate is laminated on the first lithium electrode, the second lithium electrode is laminated on the first electrode laminate, The third lithium electrode is stacked on the second lithium electrode, and one or more positive electrodes and one or more negative electrodes are alternately stacked on the third lithium electrode via the interelectrode separator. A second electrode laminate may be laminated, and the fourth lithium electrode may be laminated on the second electrode laminate to form the electrode lithium electrode laminate.
 上記目的を達成するため、本発明の一形態に係る電気化学デバイスは、第1のリチウム極と、第1の電極積層体と、第2のリチウム極と、電極間セパレータとを具備する。
 上記第1の電極積層体は、上記第1のリチウム極に積層され、正極活物質を含む正極と、負極活物質を含む負極を電極間セパレータを介して交互に積層されている。
 上記第2のリチウム極は、上記第1の電極積層体に積層されている。
 上記電極間セパレータは、上記第1のリチウム極、上記第1の電極積層体及び上記第2のリチウム極が積層された電極リチウム極積層体の周囲に一周以上巻回されている。
In order to achieve the above object, an electrochemical device according to an embodiment of the present invention includes a first lithium electrode, a first electrode laminate, a second lithium electrode, and an interelectrode separator.
The first electrode stack is stacked on the first lithium electrode, and a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are alternately stacked via an interelectrode separator.
The second lithium electrode is stacked on the first electrode stack.
The interelectrode separator is wound around the electrode lithium electrode laminate in which the first lithium electrode, the first electrode laminate, and the second lithium electrode are laminated one or more times.
 以上のように本発明によれば、電極ズレの発生を防止し、リチウムイオンを均一にドープさせることが可能な電気化学デバイスの製造方法及び電気化学デバイスを提供することが可能である。 As described above, according to the present invention, it is possible to provide an electrochemical device manufacturing method and an electrochemical device capable of preventing the occurrence of electrode displacement and uniformly doping lithium ions.
本発明の実施形態に係る電気化学デバイスの斜視図である。1 is a perspective view of an electrochemical device according to an embodiment of the present invention. 同電気化学デバイスの断面図である。It is sectional drawing of the same electrochemical device. 同電気化学デバイスが備える蓄電素子の断面図である。It is sectional drawing of the electrical storage element with which the same electrochemical device is provided. 同電気化学デバイスが備える蓄電素子の製造装置を示す模式図である。It is a schematic diagram which shows the manufacturing apparatus of the electrical storage element with which the same electrochemical device is equipped. 同電気化学デバイスが備える蓄電素子の断面図である。It is sectional drawing of the electrical storage element with which the same electrochemical device is provided. 本発明の実施形態に係る電気化学デバイスが備える蓄電素子の断面図である。It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided. 本発明の実施形態に係る電気化学デバイスが備える蓄電素子の断面図である。It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided. 本発明の実施形態に係る電気化学デバイスが備える蓄電素子の断面図である。It is sectional drawing of the electrical storage element with which the electrochemical device which concerns on embodiment of this invention is provided.
 本実施形態に係る電気化学デバイスについて説明する。 The electrochemical device according to this embodiment will be described.
 [電気化学デバイスの構造]
 図1は本実施形態に係る電気化学デバイス100の斜視図であり、図2は電気化学デバイス100の断面図である。図2は図1のA-A線での断面図である。
[Structure of electrochemical device]
FIG. 1 is a perspective view of an electrochemical device 100 according to this embodiment, and FIG. 2 is a cross-sectional view of the electrochemical device 100. FIG. 2 is a cross-sectional view taken along line AA in FIG.
 電気化学デバイス100はリチウムイオンのプレドープが必要な電気化学デバイスであり、リチウムイオンキャパシタとすることができる。また電気化学デバイス100はリチウムイオン電池等のリチウムイオンのプレドープが必要な他の電気化学デバイスであってもよい。以下の説明では電気化学デバイス100はリチウムイオンキャパシタであるものとする。 Electrochemical device 100 is an electrochemical device that requires lithium ion pre-doping and can be a lithium ion capacitor. The electrochemical device 100 may be another electrochemical device that requires lithium ion pre-doping, such as a lithium ion battery. In the following description, it is assumed that the electrochemical device 100 is a lithium ion capacitor.
 図1及び図2に示すように、電気化学デバイス100は、蓄電素子101、外装体102、正極端子103及び負極端子104を備える。 As shown in FIGS. 1 and 2, the electrochemical device 100 includes a power storage element 101, an exterior body 102, a positive electrode terminal 103, and a negative electrode terminal 104.
 蓄電素子101は、電解液と共に外装体102内に封入され、充電及び放電を行う。図3は、蓄電素子101の断面図である。同図に示すように、蓄電素子101は、電極積層体110、第1リチウム極140、第2リチウム極145及び電極間セパレータ160を備える。これらは、第1リチウム極140、電極積層体110、第2リチウム極145の順で積層されている。 The electricity storage element 101 is enclosed in the exterior body 102 together with the electrolytic solution, and is charged and discharged. FIG. 3 is a cross-sectional view of the power storage element 101. As shown in the figure, the power storage device 101 includes an electrode stack 110, a first lithium electrode 140, a second lithium electrode 145, and an interelectrode separator 160. These are laminated in the order of the first lithium electrode 140, the electrode laminate 110, and the second lithium electrode 145.
 電極積層体110は、正極120及び負極130が、電極間セパレータ160を介して交互に積層されたものである。 The electrode laminate 110 is obtained by alternately laminating positive electrodes 120 and negative electrodes 130 with interelectrode separators 160 interposed therebetween.
 正極120は、正極集電体121及び正極活物質層122を備える。正極集電体121は多数の貫通孔が形成された多孔金属箔であり、例えばアルミニウム箔である。正極集電体121の厚みは例えば0.03mmである。正極集電体121は図示しない配線を介して正極端子103に電気的に接続されている。 The positive electrode 120 includes a positive electrode current collector 121 and a positive electrode active material layer 122. The positive electrode current collector 121 is a porous metal foil in which a large number of through holes are formed, for example, an aluminum foil. The thickness of the positive electrode current collector 121 is, for example, 0.03 mm. The positive electrode current collector 121 is electrically connected to the positive electrode terminal 103 via a wiring (not shown).
 正極活物質層122は、正極集電体121の表裏両面に形成されている。正極活物質層122は正極活物質とバインダ樹脂が混合されたものとすることができ、さらに導電助剤を含んでもよい。正極活物質は、電解液中のリチウムイオン及びアニオンが吸着可能な材料、例えば活性炭やポリアセン炭化物等である。 The positive electrode active material layer 122 is formed on both the front and back surfaces of the positive electrode current collector 121. The positive electrode active material layer 122 may be a mixture of a positive electrode active material and a binder resin, and may further include a conductive additive. The positive electrode active material is a material that can adsorb lithium ions and anions in the electrolytic solution, such as activated carbon or polyacene carbide.
 バインダ樹脂は、正極活物質を接合する合成樹脂であり、例えばスチレンブタジエンゴム、ポリエチレン、ポリプロピレン、芳香族ポリアミド、カルボキシメチルセルロース、フッ素系ゴム、ポリビニリデンフルオライド、イソプレンゴム、ブタジエンゴム及びエチレンプロピレン系ゴム等を用いてもよい。 The binder resin is a synthetic resin that joins the positive electrode active material. For example, styrene butadiene rubber, polyethylene, polypropylene, aromatic polyamide, carboxymethyl cellulose, fluorine rubber, polyvinylidene fluoride, isoprene rubber, butadiene rubber, and ethylene propylene rubber. Etc. may be used.
 導電助剤は、導電性材料からなる粒子であり、正極活物質の間での導電性を向上させる。導電助剤は、例えば、黒鉛やカーボンブラック等の炭素材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。なお、導電助剤は、導電性を有する材料であれば、金属材料あるいは導電性高分子等であってもよい。 The conductive assistant is particles made of a conductive material, and improves the conductivity between the positive electrode active materials. Examples of the conductive assistant include carbon materials such as graphite and carbon black. These may be single and multiple types may be mixed. The conductive auxiliary agent may be a metal material or a conductive polymer as long as it is a conductive material.
 負極130は、負極集電体131及び負極活物質層132を備える。負極集電体131は、多数の貫通孔が形成された多孔金属箔であり、例えば銅箔である。負極集電体131の厚みは例えば0.015mmである。負極集電体131は図示しない配線等によって負極端子104に電気的に接続されている。 The negative electrode 130 includes a negative electrode current collector 131 and a negative electrode active material layer 132. The negative electrode current collector 131 is a porous metal foil in which a large number of through holes are formed, for example, a copper foil. The thickness of the negative electrode current collector 131 is, for example, 0.015 mm. The negative electrode current collector 131 is electrically connected to the negative electrode terminal 104 by a wiring or the like (not shown).
 負極活物質層132は、負極集電体131の表裏両面に形成されている。負極活物質層132は負極活物質とバインダ樹脂が混合されたものとすることができ、さらに導電助剤を含んでもよい。負極活物質は、電解液中のリチウムイオンを吸蔵可能な材料、例えば難黒鉛化炭素(ハードカーボン)、グラファイトやソフトカーボン等の炭素系材料や、Si、SiOなどの合金系材料、または、それらの複合材料を用いることができる。 The negative electrode active material layer 132 is formed on both the front and back surfaces of the negative electrode current collector 131. The negative electrode active material layer 132 may be a mixture of a negative electrode active material and a binder resin, and may further include a conductive additive. The negative electrode active material is a material that can occlude lithium ions in the electrolyte, such as non-graphitizable carbon (hard carbon), carbon-based materials such as graphite and soft carbon, alloy-based materials such as Si and SiO, or those These composite materials can be used.
 バインダ樹脂は、負極活物質を接合する合成樹脂であり、例えばスチレンブタジエンゴム、ポリエチレン、ポリプロピレン、芳香族ポリアミド、カルボキシメチルセルロース、フッ素系ゴム、ポリビニリデンフルオライド、イソプレンゴム、ブタジエンゴム及びエチレンプロピレン系ゴム等を用いてもよい。 The binder resin is a synthetic resin that joins the negative electrode active material. For example, styrene butadiene rubber, polyethylene, polypropylene, aromatic polyamide, carboxymethyl cellulose, fluorine rubber, polyvinylidene fluoride, isoprene rubber, butadiene rubber, and ethylene propylene rubber. Etc. may be used.
 導電助剤は、導電性材料からなる粒子であり、負極活物質の間での導電性を向上させる。導電助剤は、例えば、黒鉛やカーボンブラック等の炭素材料が挙げられる。これらは単独でもよいし、複数種が混合されてもよい。なお、導電助剤は、導電性を有する材料であれば、金属材料あるいは導電性高分子等であってもよい。 The conductive assistant is a particle made of a conductive material, and improves the conductivity between the negative electrode active materials. Examples of the conductive assistant include carbon materials such as graphite and carbon black. These may be single and multiple types may be mixed. The conductive auxiliary agent may be a metal material or a conductive polymer as long as it is a conductive material.
 正極120と負極130の積層数は特に限定されず、それぞれ1つ以上とすることができる。なお、電極積層体110の第1リチウム極140及び第2リチウム極145側(最上層及び最下層)は負極130となる配置が好適である。 The number of stacked layers of the positive electrode 120 and the negative electrode 130 is not particularly limited, and can be one or more. It is preferable that the electrode laminate 110 be disposed on the first lithium electrode 140 and second lithium electrode 145 side (the uppermost layer and the lowermost layer) to be the negative electrode 130.
 第1リチウム極140及び第2リチウム極145はそれぞれ、リチウム極集電体141、金属リチウム142及びリチウム極セパレータ143を備える。リチウム極集電体141は金属箔であり、例えば銅箔である。リチウム極集電体141は、負極集電体131と直接又は負極端子104を介して電気的に接続されている。 The first lithium electrode 140 and the second lithium electrode 145 include a lithium electrode current collector 141, a metal lithium 142, and a lithium electrode separator 143, respectively. The lithium electrode current collector 141 is a metal foil, such as a copper foil. The lithium electrode current collector 141 is electrically connected to the negative electrode current collector 131 directly or via the negative electrode terminal 104.
 金属リチウム142は圧着等によってリチウム極集電体141に貼付されている。金属リチウム142はリチウム極集電体141の全面に渡って均等な厚さを有するものが好適である。 The metal lithium 142 is affixed to the lithium electrode current collector 141 by pressure bonding or the like. It is preferable that the metal lithium 142 has a uniform thickness over the entire surface of the lithium electrode current collector 141.
 リチウム極セパレータ143は、第1リチウム極140及び第2リチウム極145に配置されるセパレータであり、金属リチウム142のリチウム極集電体141とは反対側に貼付され、電解液中に含まれるイオンを透過する。リチウム極セパレータ143は、織布、不織布又は合成樹脂微多孔膜等とすることができ、例えばオレフィン系樹脂を主材料としたものとすることができる。 The lithium electrode separator 143 is a separator disposed on the first lithium electrode 140 and the second lithium electrode 145, and is attached to the opposite side of the metal lithium 142 from the lithium electrode current collector 141, and is an ion contained in the electrolytic solution. Transparent. The lithium electrode separator 143 can be a woven fabric, a nonwoven fabric, a synthetic resin microporous film, or the like, and can be made of, for example, an olefin resin as a main material.
 第1リチウム極140及び第2リチウム極145は、図3に示すように、リチウム極セパレータ143が電極積層体110側となるように配置されている。 The first lithium electrode 140 and the second lithium electrode 145 are arranged such that the lithium electrode separator 143 is on the electrode laminate 110 side, as shown in FIG.
 電極間セパレータ160は、正極120、負極130、第1リチウム極140及び第2リチウム極145の間に配置されるセパレータであり、これらの間を隔て、かつ電極積層体110、第1リチウム極140及び第2リチウム極145の積層体(以下、電極リチウム極積層体)の周囲に巻回されている。 The interelectrode separator 160 is a separator disposed between the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145, and the electrode stack 110 and the first lithium electrode 140 are separated from each other. And the second lithium electrode 145 is wound around a laminate (hereinafter referred to as an electrode lithium electrode laminate).
 電極間セパレータ160は、電解液中に含まれるイオンを透過し、織布、不織布又は合成樹脂微多孔膜等とすることができ、例えばオレフィン系樹脂を主材料としたものとすることができる。 The interelectrode separator 160 can transmit ions contained in the electrolytic solution, and can be a woven fabric, a non-woven fabric, a synthetic resin microporous membrane, or the like. For example, an olefin-based resin can be used as a main material.
 電極間セパレータ160は、図3に示すように、連続した一枚のセパレータであり、第1リチウム極140、正極120、負極130及び第2リチウム極145の間を隔てながら折り重ねられ、電極リチウム極積層体の周囲に巻回されているものとすることができる。巻回数は特に限定されず、一周以上であればよい。 As illustrated in FIG. 3, the interelectrode separator 160 is a single continuous separator, and is folded while being separated between the first lithium electrode 140, the positive electrode 120, the negative electrode 130, and the second lithium electrode 145. It can be wound around the pole stack. The number of windings is not particularly limited and may be one or more.
 外装体102は、蓄電素子101及び電解液を収容する収容空間を形成する。外装体102はアルミニウム箔等の金属箔と樹脂を積層したラミネートフィルムであり、蓄電素子101の周囲で融着され、封止されている。また、外装体102はラミネートフィルムに限られず、収容空間を封止可能な缶状部材等であってもよい。 The exterior body 102 forms a storage space for storing the power storage element 101 and the electrolytic solution. The exterior body 102 is a laminated film in which a metal foil such as an aluminum foil and a resin are laminated, and is fused and sealed around the power storage element 101. Moreover, the exterior body 102 is not limited to a laminate film, and may be a can-like member that can seal the accommodation space.
 蓄電素子101と共に収容空間に収容される電解液は特に限定されないが、例えばLiPF等を溶質とする溶液を用いることができる。 Although the electrolytic solution accommodated in the accommodation space together with the power storage element 101 is not particularly limited, for example, a solution containing LiPF 6 or the like as a solute can be used.
 正極端子103は、正極120に電気的に接続された正極120の外部端子である。正極端子103は、図1に示すように外装体102の間から外部へ引き出されている。正極端子103は導電性材料からなる箔や線材であってもよい。 The positive electrode terminal 103 is an external terminal of the positive electrode 120 that is electrically connected to the positive electrode 120. As shown in FIG. 1, the positive terminal 103 is pulled out from between the exterior bodies 102. The positive electrode terminal 103 may be a foil or a wire made of a conductive material.
 負極端子104は、負極130に電気的に接続された負極130の外部端子である。負極端子104は図1に示すように外装体102の間から外部へ引き出されている。負極端子104は導電性材料からなる箔や線材であってもよい。 The negative electrode terminal 104 is an external terminal of the negative electrode 130 that is electrically connected to the negative electrode 130. As shown in FIG. 1, the negative electrode terminal 104 is pulled out from between the exterior bodies 102. The negative electrode terminal 104 may be a foil or a wire made of a conductive material.
 電気化学デバイス100は以上のような構成を有する。図3に示すように、第1リチウム極140及び第2リチウム極145は電極積層体110と共に電極間セパレータ160によって包まれており、第1リチウム極140と電極積層体110の間及び第2リチウム極145と電極積層体110の間には電極間セパレータ160の端が存在しない。 Electrochemical device 100 has the above configuration. As shown in FIG. 3, the first lithium electrode 140 and the second lithium electrode 145 are encased by the interelectrode separator 160 together with the electrode stack 110, and between the first lithium electrode 140 and the electrode stack 110 and the second lithium. There is no end of the interelectrode separator 160 between the electrode 145 and the electrode stack 110.
 このため、電極間セパレータ160の端を固定するためのテープが第1リチウム極140と電極積層体110の間及び第2リチウム極145と電極積層体110の間には存在せず、テープによるリチウムイオンの移動の妨げが生じない。したがって、リチウムイオンのドーピングが不均一となることが防止されている。 For this reason, the tape for fixing the end of the interelectrode separator 160 does not exist between the first lithium electrode 140 and the electrode stack 110 and between the second lithium electrode 145 and the electrode stack 110, and the tape lithium Ion movement is not hindered. Therefore, non-uniform lithium ion doping is prevented.
 [電気化学デバイスの製造方法]
 電気化学デバイス100の製造方法について説明する。蓄電素子101は、正極120、負極130、第1リチウム極140及び第2リチウム極145をそれぞれ作製し、それらを電極間セパレータ160と共に積層することによって製造することができる。
[Method of manufacturing electrochemical device]
A method for manufacturing the electrochemical device 100 will be described. The power storage element 101 can be manufactured by preparing the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145, and laminating them together with the interelectrode separator 160.
 まず、電極間セパレータ160上に第1リチウム極140を積層し、電極間セパレータ160を第1リチウム極140上にさらに積層する。その上に負極130と正極120を電極間セパレータ160を介して交互に積層し、必要数まで積層する。さらに電極間セパレータ160を介して第2リチウム極145を積層し、電極リチウム極積層体を作製する。 First, the first lithium electrode 140 is laminated on the interelectrode separator 160, and the interelectrode separator 160 is further laminated on the first lithium electrode 140. On top of that, negative electrodes 130 and positive electrodes 120 are alternately stacked via interelectrode separators 160, and are stacked up to the required number. Furthermore, the 2nd lithium electrode 145 is laminated | stacked through the interelectrode separator 160, and an electrode lithium electrode laminated body is produced.
 続いて電極間セパレータ160を電極リチウム極積層体の周囲に一周以上巻回させる。このようにして蓄電素子101を作製する。作製した蓄電素子101を外装体102に収容し、正極120を正極端子103に、負極130を負極端子104に電気的に接続させる。また、第1リチウム極140及び第2リチウム極145を負極130に電気的に接続させる。 Subsequently, the interelectrode separator 160 is wound around the electrode lithium electrode laminate one or more times. In this way, the power storage element 101 is manufactured. The produced power storage element 101 is housed in the exterior body 102, and the positive electrode 120 is electrically connected to the positive electrode terminal 103 and the negative electrode 130 is electrically connected to the negative electrode terminal 104. Further, the first lithium electrode 140 and the second lithium electrode 145 are electrically connected to the negative electrode 130.
 蓄電素子101を電解液に浸漬させると、金属リチウム142が溶解し、リチウムイオンが電解液中に放出される。リチウムイオンは電解液中を移動し、各負極130の負極活物質層132中にドープ(プレドープ)される。 When the storage element 101 is immersed in the electrolytic solution, the metal lithium 142 is dissolved and lithium ions are released into the electrolytic solution. Lithium ions move through the electrolytic solution and are doped (pre-doped) into the negative electrode active material layer 132 of each negative electrode 130.
 この製造方法によれば、正極120、負極130、第1リチウム極140及び第2リチウム極145は、積層されると同時に電極間セパレータ160によって巻回され、互いの位置が固定される。一般的な製造方法では正極と負極を積層して電極積層体を形成し、電極積層体をハンドリングして別途リチウム極を積層するが、ハンドリングにより電極積層体内において電極ズレが生じ得る。 According to this manufacturing method, the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 are stacked and simultaneously wound by the interelectrode separator 160, and their positions are fixed. In a general manufacturing method, a positive electrode and a negative electrode are laminated to form an electrode laminate, and the electrode laminate is handled and a lithium electrode is separately laminated. However, electrode misalignment may occur in the electrode laminate by handling.
 これに対して本実施形態に係る電気化学デバイス100の製造方法では正極120、負極130、第1リチウム極140及び第2リチウム極145の積層と共に電極間セパレータ160による巻回がなされるため、ハンドリングを行う必要がない。これにより、電極積層体内における電極ズレを防止することが可能である。 On the other hand, in the method for manufacturing the electrochemical device 100 according to the present embodiment, the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 are stacked together with the interelectrode separator 160, so that handling is performed. There is no need to do. Thereby, it is possible to prevent electrode displacement in the electrode stack.
 [電気化学デバイスの製造装置]
 電気化学デバイス100は、次に示す製造装置によって製造することも可能である。図4は、電気化学デバイス100の製造装置200を示す模式図である。同図に示すように製造装置200は、正極マガジン211、負極マガジン213、第1リチウム極マガジン215、第2リチウム極マガジン216、正極位置決め機構217、負極位置決め機構218、積層ステージ219及びセパレータ供給部220を備える。
[Electrochemical device manufacturing equipment]
The electrochemical device 100 can also be manufactured by the following manufacturing apparatus. FIG. 4 is a schematic diagram showing a manufacturing apparatus 200 for the electrochemical device 100. As shown in the figure, the manufacturing apparatus 200 includes a positive electrode magazine 211, a negative electrode magazine 213, a first lithium electrode magazine 215, a second lithium electrode magazine 216, a positive electrode positioning mechanism 217, a negative electrode positioning mechanism 218, a stacking stage 219, and a separator supply unit. 220.
 正極マガジン211には正極120が収容され、負極マガジン213には負極130が収容されている。第1リチウム極マガジン215には、第1リチウム極140が収容され、第2リチウム極マガジン216には第2リチウム極145が収容されている。セパレータ供給部220には、リール状の電極間セパレータ160がセットされている。 The positive electrode magazine 211 stores the positive electrode 120, and the negative electrode magazine 213 stores the negative electrode 130. The first lithium electrode magazine 215 contains the first lithium electrode 140, and the second lithium electrode magazine 216 contains the second lithium electrode 145. A reel-shaped interelectrode separator 160 is set in the separator supply unit 220.
 正極120は正極マガジン211から正極位置決め機構217に供給され、正極位置決め機構217によって位置決めがなされ、積層ステージ219に供給される。 The positive electrode 120 is supplied from the positive electrode magazine 211 to the positive electrode positioning mechanism 217, positioned by the positive electrode positioning mechanism 217, and supplied to the stacking stage 219.
 負極130は負極マガジン213から負極位置決め機構218に供給され、負極位置決め機構218によって位置決めがなされ、積層ステージ219に供給される。 The negative electrode 130 is supplied from the negative electrode magazine 213 to the negative electrode positioning mechanism 218, positioned by the negative electrode positioning mechanism 218, and supplied to the stacking stage 219.
 第1リチウム極140は第1リチウム極マガジン215から、第2リチウム極145は第2リチウム極マガジン216からそれぞれから負極位置決め機構218に供給され、負極位置決め機構218によって位置決めがなされ、積層ステージ219に供給される。 The first lithium electrode 140 is supplied from the first lithium electrode magazine 215 and the second lithium electrode 145 is supplied from the second lithium electrode magazine 216 to the negative electrode positioning mechanism 218, and is positioned by the negative electrode positioning mechanism 218. Supplied.
 第1リチウム極140と第2リチウム極145のサイズを負極130のサイズと同一とすることにより、負極位置決め機構218によって負極130、第1リチウム極140及び第2リチウム極145の位置決めを行うことが可能である。 By making the sizes of the first lithium electrode 140 and the second lithium electrode 145 the same as the size of the negative electrode 130, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 can be positioned by the negative electrode positioning mechanism 218. Is possible.
 製造装置200によって、正極120、負極130、第1リチウム極140及び第2リチウム極145がそれぞれ上記の順序で積層ステージ219に供給され、電極間セパレータ160を介して積層され、電極間セパレータ160によって巻回されて蓄電素子101が作製される。 The manufacturing apparatus 200 supplies the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145 to the stacking stage 219 in the above-described order, stacked via the interelectrode separator 160, and the interelectrode separator 160 The power storage element 101 is manufactured by being wound.
 [蓄電素子の構造2]
 本実施形態に係る電気化学デバイスは、複数の電極積層体を備えるものであってもよい。図5は、複数の電極積層体を備える電気化学デバイスの蓄電素子301を示す模式図である。蓄電素子301は、蓄電素子101と同様に外装体102に収容され、正極端子103及び負極端子104が接続されるものとすることができる。蓄電素子301の構成において、蓄電素子101と同一の構成については同一の符号を付す。
[Storage element structure 2]
The electrochemical device according to the present embodiment may include a plurality of electrode laminates. FIG. 5 is a schematic diagram showing an electricity storage element 301 of an electrochemical device including a plurality of electrode laminates. The power storage element 301 can be housed in the exterior body 102 similarly to the power storage element 101, and the positive electrode terminal 103 and the negative electrode terminal 104 can be connected to the power storage element 301. In the configuration of the storage element 301, the same reference numeral is given to the same configuration as the storage element 101.
 図5に示すように、蓄電素子301は、第1電極積層体310、第2電極積層体320、第1リチウム極330、第2リチウム極340、第3リチウム極350及び第4リチウム極360及び電極間セパレータ370を備える。これらは、第1リチウム極330、第1電極積層体310、第2リチウム極340、第3リチウム極350、第2電極積層体320、第4リチウム極360の順で積層されている。 As shown in FIG. 5, the power storage element 301 includes a first electrode stack 310, a second electrode stack 320, a first lithium electrode 330, a second lithium electrode 340, a third lithium electrode 350, a fourth lithium electrode 360, An interelectrode separator 370 is provided. These are laminated in the order of the first lithium electrode 330, the first electrode laminated body 310, the second lithium electrode 340, the third lithium electrode 350, the second electrode laminated body 320, and the fourth lithium electrode 360.
 第1電極積層体310及び第2電極積層体320は、それぞれ正極120及び負極130が、電極間セパレータ370を介して交互に積層されたものである。正極120及び負極130の積層数は図5に示すものに限られず、それぞれ一つ以上とすることができる。 The first electrode laminate 310 and the second electrode laminate 320 are obtained by alternately laminating positive electrodes 120 and negative electrodes 130 via interelectrode separators 370, respectively. The number of stacked positive electrodes 120 and negative electrodes 130 is not limited to that shown in FIG.
 第1リチウム極330、第2リチウム極340、第3リチウム極350及び第4リチウム極360はそれぞれリチウム極集電体141、金属リチウム142及びリチウム極セパレータ143を備える。 The first lithium electrode 330, the second lithium electrode 340, the third lithium electrode 350, and the fourth lithium electrode 360 include a lithium electrode current collector 141, a metal lithium 142, and a lithium electrode separator 143, respectively.
 第1リチウム極330及び第2リチウム極340は、リチウム極セパレータ143が第1電極積層体310側となるように配置されている。第3リチウム極350及び第4リチウム極360は、リチウム極セパレータ143が第2電極積層体320側となるように配置されている。 The first lithium electrode 330 and the second lithium electrode 340 are arranged so that the lithium electrode separator 143 is on the first electrode laminate 310 side. The third lithium electrode 350 and the fourth lithium electrode 360 are arranged so that the lithium electrode separator 143 is on the second electrode laminate 320 side.
 電極間セパレータ370は、正極120、負極130、第1リチウム極330、第2リチウム極340、第3リチウム極350及び第4リチウム極360の間に配置されるセパレータであり、これらの間を隔て、かつ第1電極積層体310、第2電極積層体320、第1リチウム極330、第2リチウム極340、第3リチウム極350及び第4リチウム極360の積層体(電極リチウム極積層体)の周囲に巻回されている。 The interelectrode separator 370 is a separator disposed between the positive electrode 120, the negative electrode 130, the first lithium electrode 330, the second lithium electrode 340, the third lithium electrode 350, and the fourth lithium electrode 360, with a space therebetween. , And a first electrode laminate 310, a second electrode laminate 320, a first lithium electrode 330, a second lithium electrode 340, a third lithium electrode 350, and a fourth lithium electrode 360 (electrode lithium electrode laminate). It is wound around.
 電極間セパレータ370は、電解液中に含まれるイオンを透過し、織布、不織布又は合成樹脂微多孔膜等とすることができ、例えばオレフィン系樹脂を主材料としたものとすることができる。電極間セパレータ370は、図5に示すように、連続した一枚のセパレータであり、正極120と負極130の間を隔てながら、折り重ねられ、電極リチウム極積層体の周囲に巻回されているものとすることができる。 The interelectrode separator 370 can transmit ions contained in the electrolytic solution, and can be a woven fabric, a nonwoven fabric, a synthetic resin microporous film, or the like. For example, the main material can be an olefin resin. As shown in FIG. 5, the interelectrode separator 370 is a single continuous separator, is folded while being separated between the positive electrode 120 and the negative electrode 130, and is wound around the electrode lithium electrode laminate. Can be.
 蓄電素子301は上記のような構成を有する。なお、蓄電素子301は3つ以上の電極積層体を有するものであってもよい。 The electricity storage element 301 has the above configuration. Note that the power storage element 301 may have three or more electrode stacks.
 蓄電素子301は次のようにして作製することが可能である。即ち、電極間セパレータ370上に第1リチウム極330を積層し、電極間セパレータ370を第1リチウム極330上にさらに積層する。その上に負極130及び正極120を電極間セパレータ370を介して交互に必要数まで積層する。さらに電極間セパレータ370を介して第2リチウム極340を積層し、その上に第3リチウム極340を積層する。 The power storage element 301 can be manufactured as follows. That is, the first lithium electrode 330 is stacked on the interelectrode separator 370, and the interelectrode separator 370 is further stacked on the first lithium electrode 330. On top of that, negative electrodes 130 and positive electrodes 120 are alternately stacked up to the required number via interelectrode separators 370. Further, the second lithium electrode 340 is laminated via the interelectrode separator 370, and the third lithium electrode 340 is laminated thereon.
 続いて、電極間セパレータ370を第3リチウム極340上積層し、その上に負極130及び正極120を電極間セパレータ370を介して交互に必要数まで積層する。さらに電極間セパレータ370を介して第4リチウム極360を積層し、電極リチウム極積層体を作製する。 Subsequently, the interelectrode separator 370 is stacked on the third lithium electrode 340, and the negative electrode 130 and the positive electrode 120 are alternately stacked on the third lithium electrode 340 through the interelectrode separator 370 to the required number. Furthermore, the 4th lithium electrode 360 is laminated | stacked via the interelectrode separator 370, and an electrode lithium electrode laminated body is produced.
 続いて電極間セパレータ370を電極リチウム極積層体の周囲に一周以上巻回させる。このようにして蓄電素子301を作製する。作製した蓄電素子301を外装体102に収容し、正極120を正極端子103に、負極130を負極端子104に電気的に接続させる。また、第1リチウム極330、第2リチウム極340、第3リチウム極350及び第4リチウム極360を負極130に電気的に接続させる。 Subsequently, the interelectrode separator 370 is wound around the electrode lithium electrode laminate one or more times. In this way, the power storage element 301 is manufactured. The produced power storage element 301 is housed in the exterior body 102, and the positive electrode 120 is electrically connected to the positive electrode terminal 103 and the negative electrode 130 is electrically connected to the negative electrode terminal 104. In addition, the first lithium electrode 330, the second lithium electrode 340, the third lithium electrode 350, and the fourth lithium electrode 360 are electrically connected to the negative electrode 130.
 蓄電素子301においても、電極間セパレータ370を留めるテープが各リチウム極と対向せず、リチウムイオンのドープを均一に行うことができる。また、各電極積層体及び各リチウム極の積層と共に電極間セパレータ370によって電極リチウム極積層体が固定されるため、電極ズレの発生を防止することが可能である。 Also in the electricity storage element 301, the tape that holds the interelectrode separator 370 does not face each lithium electrode, and lithium ions can be uniformly doped. In addition, since the electrode lithium electrode laminate is fixed by the interelectrode separator 370 together with the lamination of each electrode laminate and each lithium electrode, it is possible to prevent the occurrence of electrode misalignment.
 [変形例]
 本発明の変形例に係る電気化学デバイスについて説明する。図6乃至図8は変形例に係る電気化学デバイス100を示す模式図である。
[Modification]
An electrochemical device according to a modification of the present invention will be described. 6 to 8 are schematic views showing an electrochemical device 100 according to a modification.
 図6に示すように、第1リチウム極140と電極積層体110の間、第2リチウム極145と電極積層体110の間には電極間セパレータ160を配置しないものとしてもよい。第1リチウム極140と第2リチウム極145にはリチウム極セパレータ143が設けられているためである。 As shown in FIG. 6, the interelectrode separator 160 may not be disposed between the first lithium electrode 140 and the electrode stack 110 and between the second lithium electrode 145 and the electrode stack 110. This is because the lithium electrode separator 143 is provided on the first lithium electrode 140 and the second lithium electrode 145.
 また、図7に示すように、第1リチウム極140と電極積層体110の間、第2リチウム極145と電極積層体110の間において複数層の電極間セパレータ160を積層してもよい。これにより、電解液の保液性が確保され、リチウムイオンのドープが促進される。 Further, as shown in FIG. 7, a plurality of interelectrode separators 160 may be laminated between the first lithium electrode 140 and the electrode laminate 110 and between the second lithium electrode 145 and the electrode laminate 110. Thereby, the liquid retention property of electrolyte solution is ensured and dope of lithium ion is promoted.
 さらに図8に示すように、電極間セパレータ160は連続した一枚のセパレータでなくてもよい。同図に示すように、電極間セパレータ160は、正極120、負極130、第1リチウム極140及び第2リチウム極145の間にそれぞれ配置される複数の電極間セパレータ160aと、電極リチウム極積層体の周りに巻回される電極間セパレータ160bを含むものであってもよい。 Further, as shown in FIG. 8, the interelectrode separator 160 may not be a continuous separator. As shown in the figure, the interelectrode separator 160 includes a plurality of interelectrode separators 160a disposed between the positive electrode 120, the negative electrode 130, the first lithium electrode 140, and the second lithium electrode 145, and an electrode lithium electrode laminate. It may include an inter-electrode separator 160b wound around.
 これらの各変形例に係る構造は、図5に示すように複数の電極積層体を備える電気化学デバイスについて適用することも可能である。 These structures according to each modification can be applied to an electrochemical device including a plurality of electrode laminates as shown in FIG.
 100…電気化学デバイス
 101…蓄電素子
 102…外装体
 103…正極端子
 104…負極端子
 110…電極積層体
 120…正極
 130…負極
 140…第1リチウム極
 145…第2リチウム極
 160…電極間セパレータ
DESCRIPTION OF SYMBOLS 100 ... Electrochemical device 101 ... Power storage element 102 ... Exterior body 103 ... Positive electrode terminal 104 ... Negative electrode terminal 110 ... Electrode laminated body 120 ... Positive electrode 130 ... Negative electrode 140 ... First lithium electrode 145 ... Second lithium electrode 160 ... Interelectrode separator

Claims (7)

  1.  金属リチウムを含む第1のリチウム極と、金属リチウムを含む第2のリチウム極と、正極活物質を含む正極と、負極活物質を含む負極を準備し、
     前記第1のリチウム極上に、1つ以上の前記正極と1つ以上の前記負極を電極間に電極間セパレータを介して交互に積層した第1の電極積層体を積層し、前記第1の電極積層体上に前記第2のリチウム極を積層して電極リチウム極積層体を形成し、
     前記電極リチウム極積層体の周囲に前記電極間セパレータを一周以上巻回させる
     電気化学デバイスの製造方法。
    Preparing a first lithium electrode including metallic lithium, a second lithium electrode including metallic lithium, a positive electrode including a positive electrode active material, and a negative electrode including a negative electrode active material;
    On the first lithium electrode, a first electrode laminate in which one or more of the positive electrodes and one or more of the negative electrodes are alternately laminated via interelectrode separators between the electrodes is laminated, and the first electrode Laminating the second lithium electrode on the laminate to form an electrode lithium electrode laminate,
    A method for producing an electrochemical device, wherein the interelectrode separator is wound one or more times around the lithium electrode laminate.
  2.  請求項1に記載の電気化学デバイスの製造方法であって、
     前記電極間セパレータは、連続する一つのセパレータであり、前記第1のリチウム極、前記第2のリチウム極、前記正極及び前記負極を挟んで折り重ねられている
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 1,
    The method of manufacturing an electrochemical device, wherein the interelectrode separator is a continuous separator and is folded with the first lithium electrode, the second lithium electrode, the positive electrode, and the negative electrode interposed therebetween.
  3.  請求項1又2に記載の電気化学デバイスの製造方法であって、
     前記電極リチウム極積層体を形成する工程では、前記第1のリチウム極と前記第1の電極積層体を前記電極間セパレータを介して積層し、前記第1の電極積層体と前記第2のリチウム極を前記電極間セパレータを介して積層する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 1 or 2,
    In the step of forming the electrode lithium electrode laminate, the first lithium electrode and the first electrode laminate are laminated via the interelectrode separator, and the first electrode laminate and the second lithium are laminated. A method for producing an electrochemical device, wherein electrodes are stacked via the interelectrode separator.
  4.  請求項1又2に記載の電気化学デバイスの製造方法であって、
     前記電極リチウム極積層体を形成する工程では、前記第1のリチウム極と前記第1の電極積層体を複数層の前記電極間セパレータを介して積層し、前記第1の電極積層体と前記第2のリチウム極を複数層の前記電極間セパレータを介して積層する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 1 or 2,
    In the step of forming the electrode lithium electrode laminate, the first lithium electrode and the first electrode laminate are laminated via a plurality of interelectrode separators, and the first electrode laminate and the first electrode laminate are laminated. A method for producing an electrochemical device, comprising laminating two lithium electrodes via a plurality of interelectrode separators.
  5.  請求項1又2に記載の電気化学デバイスの製造方法であって、
     前記第1のリチウム極は、金属箔の一方の面に金属リチウムを積層し、その上にリチウム極セパレータを積層して形成され、
     前記第2のリチウム極は、金属箔の一方の面に金属リチウムを積層し、その上にリチウム極セパレータを積層して形成され、
     前記電極リチウム極積層体を形成する工程では、前記第1のリチウム極及び前記第2のリチウム極を、前記リチウム極セパレータが前記第1の電極積層体側となるように配置する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 1 or 2,
    The first lithium electrode is formed by laminating metal lithium on one surface of a metal foil and laminating a lithium electrode separator thereon.
    The second lithium electrode is formed by laminating metal lithium on one surface of a metal foil and laminating a lithium electrode separator thereon.
    In the step of forming the electrode lithium electrode laminate, the first lithium electrode and the second lithium electrode are disposed such that the lithium electrode separator is on the first electrode laminate side. Method.
  6.  請求項1に記載の電気化学デバイスの製造方法であって、
     前記第1のリチウム極、前記第2のリチウム極、前記正極及び前記負極を準備する工程では、金属リチウムを含む第3のリチウム極と、金属リチウムを含む第4のリチウム極をさらに準備し、
     前記電極リチウム極積層体を形成する工程では、前記第1のリチウム極上に、前記第1の電極積層体を積層し、前記第1の電極積層体上に前記第2のリチウム極を積層し、前記第2のリチウム極上に、前記第3のリチウム極を積層し、前記第3のリチウム極上に1つ以上の前記正極と1つ以上の前記負極を前記電極間セパレータを介して交互に積層した第2の電極積層体を積層し、前記第2の電極積層体上に前記第4のリチウム極を積層して前記電極リチウム極積層体を形成する
     電気化学デバイスの製造方法。
    A method for producing an electrochemical device according to claim 1,
    In the step of preparing the first lithium electrode, the second lithium electrode, the positive electrode and the negative electrode, further preparing a third lithium electrode containing metallic lithium and a fourth lithium electrode containing metallic lithium,
    In the step of forming the electrode lithium electrode laminate, the first electrode laminate is laminated on the first lithium electrode, the second lithium electrode is laminated on the first electrode laminate, The third lithium electrode is stacked on the second lithium electrode, and one or more positive electrodes and one or more negative electrodes are alternately stacked on the third lithium electrode via the interelectrode separator. A method for producing an electrochemical device, comprising: laminating a second electrode laminate, and laminating the fourth lithium electrode on the second electrode laminate to form the electrode lithium electrode laminate.
  7.  第1のリチウム極と、
     前記第1のリチウム極に積層され、正極活物質を含む正極と、負極活物質を含む負極を電極間セパレータを介して交互に積層した第1の電極積層体と、
     前記第1の電極積層体に積層された第2のリチウム極と、
     前記第1のリチウム極、前記第1の電極積層体及び前記第2のリチウム極が積層された電極リチウム極積層体の周囲に一周以上巻回された前記電極間セパレータと
     を具備する電気化学デバイス。
    A first lithium electrode;
    A first electrode laminate that is laminated on the first lithium electrode, and alternately comprises positive electrodes containing a positive electrode active material and negative electrodes containing a negative electrode active material via interelectrode separators;
    A second lithium electrode laminated on the first electrode laminate,
    An electrochemical device comprising: the first lithium electrode; the interelectrode separator wound around the electrode lithium electrode laminate in which the first electrode laminate and the second lithium electrode are laminated; .
PCT/JP2019/006252 2018-03-01 2019-02-20 Method for producing electrochemical device, and electrochemical device WO2019167740A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036193 2018-03-01
JP2018036193A JP2019153624A (en) 2018-03-01 2018-03-01 Method for manufacturing electrochemical device and electrochemical device

Publications (1)

Publication Number Publication Date
WO2019167740A1 true WO2019167740A1 (en) 2019-09-06

Family

ID=67805354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006252 WO2019167740A1 (en) 2018-03-01 2019-02-20 Method for producing electrochemical device, and electrochemical device

Country Status (2)

Country Link
JP (1) JP2019153624A (en)
WO (1) WO2019167740A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205192A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157540A (en) * 2008-12-26 2010-07-15 Jm Energy Corp Wound-type accumulator
JP2010161249A (en) * 2009-01-09 2010-07-22 Fdk Corp Lithium ion capacitor
JP2010232265A (en) * 2009-03-26 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
JP2012156405A (en) * 2011-01-27 2012-08-16 Fdk Corp Electricity storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010157540A (en) * 2008-12-26 2010-07-15 Jm Energy Corp Wound-type accumulator
JP2010161249A (en) * 2009-01-09 2010-07-22 Fdk Corp Lithium ion capacitor
JP2010232265A (en) * 2009-03-26 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
JP2012156405A (en) * 2011-01-27 2012-08-16 Fdk Corp Electricity storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022205192A1 (en) * 2021-03-31 2022-10-06 宁德新能源科技有限公司 Electrochemical apparatus and electronic apparatus

Also Published As

Publication number Publication date
JP2019153624A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
CN108511199B (en) Electrochemical device
US11380939B2 (en) Hybrid lithium ion capacitor battery having a carbon coated separate layer and method of making the same
US11195668B2 (en) Electrochemical device
JP5096851B2 (en) Method for manufacturing power storage device
KR20110037781A (en) Electrode assembly for battery and manufacturing thereof
US10892108B2 (en) Electrochemical device
JP2017183539A (en) Electrochemical device
JP5308646B2 (en) Lithium ion capacitor
US10504663B2 (en) Electrochemical device
WO2019167740A1 (en) Method for producing electrochemical device, and electrochemical device
JP6188463B2 (en) Electrochemical device and method for producing electrochemical device
US20200313166A1 (en) Electrochemical device
JP2014212304A (en) Power storage device and method of manufacturing power storage module
WO2017010129A1 (en) Electrochemical device
JP6837868B2 (en) Electrochemical device
JP2018142605A (en) Electrochemical device
WO2017208509A1 (en) Power storage device and method for producing same
JP2018142607A (en) Electrochemical device
JP6519998B2 (en) Electrical device
JP2019145723A (en) Lithium ion capacitor and manufacturing method thereof
JP5868158B2 (en) Power storage device
KR101205846B1 (en) Lithium ion capacitor having current collector of plate type
JP6837898B2 (en) Electrochemical device
JP6405394B2 (en) Electrochemical devices
JP6869784B2 (en) Electrochemical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761145

Country of ref document: EP

Kind code of ref document: A1