WO2019167708A1 - Fluid pump for ship and method for controlling same - Google Patents

Fluid pump for ship and method for controlling same Download PDF

Info

Publication number
WO2019167708A1
WO2019167708A1 PCT/JP2019/005958 JP2019005958W WO2019167708A1 WO 2019167708 A1 WO2019167708 A1 WO 2019167708A1 JP 2019005958 W JP2019005958 W JP 2019005958W WO 2019167708 A1 WO2019167708 A1 WO 2019167708A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
valve
piston
fluid
movement amount
Prior art date
Application number
PCT/JP2019/005958
Other languages
French (fr)
Japanese (ja)
Inventor
泰 柿元
基輝 和泉
Original Assignee
株式会社ジャパンエンジンコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンエンジンコーポレーション filed Critical 株式会社ジャパンエンジンコーポレーション
Priority to KR1020207024036A priority Critical patent/KR102316904B1/en
Priority to CN201980016089.1A priority patent/CN111788381B/en
Publication of WO2019167708A1 publication Critical patent/WO2019167708A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/025Hydraulically actuated valves draining the chamber to release the closing pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/12Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with non-fuel substances or with anti-knock agents, e.g. with anti-knock fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber

Definitions

  • the present invention relates to a marine fluid pump and a control method thereof.
  • a marine fluid pump for discharging a fluid such as fuel or water is applied to a marine diesel engine mounted on a marine vessel.
  • a fuel injection pump that pumps fuel to be injected into a cylinder to a fuel injection valve, and water is injected into a fuel flow passage from a discharge port of the fuel injection pump to a fuel injection valve injection port through a pipe.
  • Examples include water injection pumps.
  • Patent Document 1 describes a fuel injection pump that is driven and controlled by hydraulic fluid supplied via an electromagnetic valve.
  • a marine fluid pump in general, includes a piston in a state where the piston can reciprocate in the longitudinal direction, and pressurizes the fluid by moving the piston using the pressure of hydraulic oil supplied through a control valve. To discharge.
  • the amount of fluid discharged by such a marine fluid pump changes in accordance with the amount of movement of the piston when the fluid is pressurized and discharged. For this reason, in a marine fluid pump, the movement amount of the piston is accurately controlled from the viewpoint of ensuring the accuracy required for the fluid discharge amount (for example, the fuel injection amount or water injection amount in a marine diesel engine). Is desired.
  • an opening adjustment type electromagnetic valve such as a servo valve or a proportional valve that can control the amount of hydraulic oil supplied with high accuracy by adjusting the opening.
  • a control valve for a marine fluid pump Is used as a control valve for a marine fluid pump.
  • an opening adjustment type electromagnetic valve is used as a control valve, generally, an actual measurement value of the piston movement amount is frequently measured during the fluid discharge period, and each time an actual measurement value of the piston movement amount is obtained. Since it is necessary to reflect the deviation from the target value in the adjustment of the opening degree of the control valve, the device configuration for accurately controlling the movement amount of the piston may be complicated, and the cost of the device may be expensive.
  • the opening adjustment type solenoid valve is often vulnerable to foreign matter, and foreign matter is likely to be mixed in the environment where marine diesel engines operate. Solenoid valves may not be suitable.
  • the present invention has been made in view of the above circumstances, and is a marine fluid pump capable of accurately controlling the movement amount of a piston when pressurizing and discharging a fluid while suppressing an increase in cost.
  • An object is to provide a control method thereof.
  • a marine fluid pump includes a pump body that pressurizes and discharges fluid by moving a piston using the pressure of hydraulic oil, A detection unit that detects the maximum movement amount of the piston in one discharge of the fluid, and an on state in which the hydraulic oil is supplied to the pump body and an off state in which the supply of the hydraulic oil is stopped are alternatively switched.
  • the target movement amount of the piston is derived according to the control valve and the discharge amount of the fluid required for one discharge of the fluid, and the target movement amount derived at the time of the current discharge of the fluid and the previous time Based on the difference from the maximum amount of movement detected at the time of discharge, a time correction value of a valve on time, which is a time for turning on the control valve, is calculated, and the calculated time correction value is calculated.
  • the valve on-time is corrected at the time of output, characterized in that it comprises a control unit for controlling the control valve so as to continue said valve on-time after correction becomes the ON state.
  • the control unit derives a valve on basic time that is a valve on time of the control valve set according to the target movement amount of the piston.
  • the valve on time during the current discharge of the fluid is corrected so as to be the sum of the valve on basic time and the time correction value.
  • the marine fluid pump according to the present invention is the marine fluid pump according to the above invention, wherein the control unit has a data table indicating a correlation between the target movement amount of the piston and the valve on basic time of the control valve, The basic valve-on time correlated with the target movement amount derived at the time of fluid discharge is derived based on the data table.
  • the marine fluid pump control method includes the pump body via a control valve that selectively switches between an on state in which hydraulic oil is supplied to the pump body and an off state in which the supply of the hydraulic oil is stopped.
  • a target movement amount deriving step for deriving a target movement amount of the piston in accordance with a discharge amount of the fluid required by the discharge of the piston, and the target movement amount of the piston by the target movement amount deriving step and the previous time of the fluid
  • a time correction value calculation step for calculating a time correction value of a valve on time that is a time for which the control valve is in the on state.
  • a correction step for correcting the valve on time at the time of the current discharge of the fluid taking into account the time correction value by the time correction value calculation step, and the valve on time after correction is continued.
  • a control step of controlling the control valve so as to be in an on state.
  • the marine fluid pump control method is the above-described invention, wherein the correction step is a valve on basic time which is a valve on time of the control valve set according to the target movement amount of the piston. And the valve on time at the time of the current discharge of the fluid is corrected so as to be the sum of the valve on basic time and the time correction value.
  • the correction step is based on a data table indicating a correlation between the target movement amount of the piston and the valve-on basic time of the control valve. Then, the valve-on basic time correlated with the target movement amount in the target movement amount derivation step is derived.
  • FIG. 1 is a schematic diagram showing a configuration example of a marine fluid pump according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an on state and an off state of the control valve in the embodiment of the present invention.
  • FIG. 3 is a flowchart showing an example of a control method for the marine fluid pump according to the embodiment of the present invention.
  • FIG. 4 is a diagram for specifically explaining a marine fluid pump control method according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration example of a marine fluid pump according to an embodiment of the present invention.
  • this marine fluid pump 10 is a water injection pump which inject
  • the fuel flow passage of the marine diesel engine is a fuel flow passage from the discharge port of the fuel injection pump to the injection port of the fuel injection valve through the pipe, although not particularly shown.
  • a fuel injection pump is a device that injects fuel through piping or the like to a fuel injection valve for injecting fuel into a cylinder of a marine diesel engine.
  • a marine fluid pump 10 includes a pump body 1 that discharges water as an example of a fluid, a detection unit 6 that detects a maximum lift amount L m (n) of a piston 2 of the pump body 1, A control valve 7 for supplying and discharging hydraulic oil to and from the pump body 1 and a control unit 11 for controlling the control valve 7 are provided.
  • solid arrows indicate the flow of fluid such as hydraulic oil, and alternate long and short dash arrows indicate electrical signal lines.
  • the pump body 1 is a hydraulically driven pump device that discharges a fluid (water in the present embodiment) using the pressure of hydraulic oil. As shown in FIG. 1, the pump main body 1 includes a piston 2, a discharge chamber 3, a hydraulic oil chamber 4, and a water inlet 5.
  • the piston 2 is provided in the internal space of the pump body 1 so that it can reciprocate along its longitudinal direction.
  • the piston 2 includes a front portion 2a which is a piston portion on the water discharge side, a rear portion 2b which is a piston portion on the hydraulic oil receiving side, and a tapered portion 2c which is a portion between the front portion 2a and the rear portion 2b.
  • the piston 2 is formed in a rod shape so that the piston diameter of the front part 2a is smaller than the piston diameter of the rear part 2b.
  • the tapered portion 2c is formed such that the piston diameter increases or decreases (decreases in FIG. 1) from the front portion 2a side toward the rear portion 2b side.
  • the taper part 2c is used for detection of the maximum lift amount L m (n) of the piston 2 by the detection part 6 described later.
  • the discharge chamber 3 is a space for temporarily storing water discharged from the pump body 1.
  • the discharge chamber 3 is configured to be a space that faces the end surface of the front portion 2 a of the piston 2 in the internal space of the pump body 1.
  • the hydraulic oil chamber 4 is a space that receives hydraulic oil for operating the pump body 1.
  • the hydraulic oil chamber 4 is configured to be a space facing the end surface of the rear portion 2 b of the piston 2 in the internal space of the pump body 1.
  • the water injection port 5 is for filling the discharge chamber 3 with water, and is provided in the pump body 1 so as to communicate with the discharge chamber 3. Water to be injected is supplied from the water injection port 5 to the discharge chamber 3 through piping of a water tank (not shown). Water is supplied (supplied) to the discharge chamber 3 through the water inlet 5 every time water is discharged by the pump body 1.
  • a water injection pipe 18 leading to the discharge chamber 3 is connected to the discharge port side of the pump body 1.
  • the water injection pipe 18 is a pipe that guides the water discharged from the discharge chamber 3 of the pump body 1 to the fuel flow passage described above.
  • a hydraulic oil flow passage 17 communicating with the hydraulic oil chamber 4 is connected to the hydraulic oil receiving side of the pump body 1.
  • the pump main body 1 having such a configuration pressurizes and discharges water to be discharged by moving the piston 2 using the pressure of the hydraulic oil supplied via the control valve 7. At this time, the pump main body 1 receives the hydraulic oil from the hydraulic oil flow passage 17 to the hydraulic oil chamber 4 via the control valve 7 when the control valve 7 is in an ON state in which the hydraulic oil is supplied to the pump main body 1.
  • the pump body 1 moves (advances) the piston 2 so as to compress the discharge chamber 3 using the pressure of the received hydraulic oil. Thereby, the pump body 1 pressurizes the water in the discharge chamber 3 while blocking the communication between the discharge chamber 3 and the water injection port 5 with the piston 2.
  • the pressurized water is discharged from the discharge chamber 3 into the water injection pipe 18.
  • the pump main body 1 is the hydraulic oil after being used for the above-described water discharge (movement of the piston 2) (hereinafter, (Referred to as drain appropriately) is discharged from the hydraulic oil chamber 4 to the control valve 7 through the hydraulic oil flow passage 17.
  • the piston 2 allows the drain in the hydraulic oil chamber 4 to flow through the hydraulic oil flow passage 17 and the control valve 7 by the repulsive force of an urging portion (not shown) such as a spring provided in the internal space of the pump body 1. Push to the side. As a result, the piston 2 is returned to the position before water discharge.
  • the pump body 1 releases the compression (water pressurization) of the discharge chamber 3 by the piston 2.
  • the detection unit 6 detects the maximum lift amount L m (n) of the piston 2 in one discharge of water by the pump body 1. As shown in FIG. 1, the detection unit 6 includes a detection processing unit 6a and an arithmetic processing unit 6b.
  • the maximum lift amount L m (n) is an example of the maximum movement amount of the piston 2 that moves in the direction in which the fluid is pressurized (upward in the present embodiment) in one discharge of the fluid by the pump body 1.
  • the detection processing unit 6a performs a detection process for detecting the maximum lift amount L m (n). Specifically, as shown in FIG. 1, the detection processing unit 6 a is provided in the pump main body 1 so as to face the tapered portion 2 c of the piston 2. In the present embodiment, the pair of detection processing parts 6a are arranged so as to face each other with the taper part 2c interposed therebetween. The detection processing unit 6a detects (measures) the distance from the tapered portion 2c that changes due to the movement (lift) of the piston 2. The detection processing unit 6a performs such distance detection processing continuously or intermittently in time series, and each time, a signal indicating the obtained distance (hereinafter referred to as a distance detection signal as appropriate) is arithmetically processed. To the unit 6b.
  • the arithmetic processing unit 6b performs arithmetic processing for detecting the maximum lift amount L m (n). Specifically, the arithmetic processing unit 6b sequentially receives the distance detection signals from the detection processing unit 6a in chronological order. The arithmetic processing unit 6b selects the distance detection signal that maximizes the distance and the distance detection signal that minimizes the distance from the plurality of distance detection signals received from the detection processing unit 6a. For example, the arithmetic processing unit 6b generates a distance detection signal at which the voltage reaches a peak when the distance between the detection processing unit 6a and the taper portion 2c becomes maximum and minimum during one discharge period of water by the pump body 1. Each distance detection signal is selected.
  • the arithmetic processing unit 6b uses the distances between the selected distance detection signals (the distance between the detection processing unit 6a and the taper portion 2c) and the inclination angle of the taper portion 2c to generate water from the pump body 1.
  • the maximum lift amount L m (n) of the piston 2 in one discharge is calculated.
  • the arithmetic processing unit 6 b transmits a signal indicating the obtained maximum lift amount L m (n) (hereinafter, appropriately referred to as a lift amount detection signal) to the control unit 11.
  • the control valve 7 is a valve that switches between an ON state in which hydraulic oil for operating the pump body 1 is supplied to the pump body 1 and an OFF state in which the supply of hydraulic oil to the pump body 1 is stopped.
  • the control valve 7 is configured by an open / close electromagnetic valve that switches between opening and closing of the hydraulic oil flow passage.
  • the control valve 7 includes a supply flow path unit 7a, a discharge flow path unit 7b, and a drive unit 7c.
  • control valve 7 includes a hydraulic oil pipe 15 leading to a pressure accumulating facility (not shown) for accumulating the hydraulic oil pressure, a drain pipe 16 leading to a tank (not shown) for collecting the hydraulic oil (drain), A hydraulic oil flow passage 17 communicating with the hydraulic oil chamber 4 of the pump body 1 is connected.
  • FIG. 1 illustrates a state in which the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17 are connected to the supply flow path unit 7 a of the control valve 7.
  • the supply flow path unit 7 a has a supply flow path 8 a for supplying hydraulic oil to the pump body 1 and a closed path 8 b for closing the drain pipe 16.
  • the discharge flow path unit 7 b includes a discharge flow path 9 a for discharging drain from the pump body 1 and a closed path 9 b for closing the hydraulic oil pipe 15.
  • the supply flow path unit 7a and the discharge flow path unit 7b are arranged so as to be adjacent to each other in a predetermined direction (lateral direction in FIG. 1), for example, as shown in FIG.
  • the drive unit 7c is configured using an electromagnetic coil (solenoid coil) or the like.
  • the drive unit 7c moves the supply flow path unit 7a and the discharge flow path unit 7b in the adjacent direction based on the valve control signal from the control unit 11, and thereby the supply flow path unit 7a and the discharge flow path unit 7b. Either of them is connected to the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17.
  • the control valve 7 selectively switches between the on state and the off state by the action of the drive unit 7c.
  • FIG. 2 is a diagram illustrating an on state and an off state of the control valve in the embodiment of the present invention.
  • the control valve 7 is switched from the OFF state to the ON state by connecting the supply flow path unit 7 a to the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17.
  • the supply flow path unit 7 a connects the supply flow path 8 a to the hydraulic oil pipe 15 and the hydraulic oil flow path 17 and connects the closed path 8 b and the drain pipe 16.
  • the hydraulic oil pipe 15 and the hydraulic oil flow passage 17 are in communication with each other via the supply flow path 8a.
  • the drain pipe 16 is closed by the closed path 8b.
  • the hydraulic oil is supplied to the hydraulic oil chamber 4 of the pump body 1 through the hydraulic oil pipe 15, the supply flow path 8 a, and the hydraulic oil flow passage 17 that are in communication with each other.
  • the hydraulic oil supplied to the hydraulic oil chamber 4 presses the piston 2 of the pump body 1 from the rear portion 2b side.
  • the pump body 1 uses the pressure of the hydraulic oil to move the piston 2 to pressurize the water in the discharge chamber 3 at the front portion 2 a of the piston 2 and discharge the water into the water injection pipe 18.
  • the supply of the hydraulic oil is continuously performed while the control valve 7 is on.
  • the control valve 7 is switched from the on state to the off state by connecting the discharge flow path unit 7b, the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17.
  • the discharge flow path unit 7b connects the discharge flow path 9a with the drain pipe 16 and the hydraulic oil flow path 17, and connects the closed path 9b with the hydraulic oil pipe 15.
  • the drain pipe 16 and the hydraulic oil flow passage 17 are in communication with each other via the discharge flow path 9a.
  • the hydraulic oil pipe 15 is closed by the closed path 9b. As a result, the supply of hydraulic oil in the on state is stopped.
  • the piston 2 is used for operating the hydraulic oil in the hydraulic oil chamber 4 (that is, for operating the pump main body 1) by a repulsive force of an urging portion (not shown) such as a spring provided in the internal space of the pump main body 1.
  • the subsequent hydraulic oil is pressed toward the control valve 7 side.
  • the pressed hydraulic oil is discharged as drainage from the hydraulic oil chamber 4 through the hydraulic oil flow passage 17, the discharge flow passage 9a, and the drain pipe 16 that are in communication with each other as described above, and a predetermined tank (not shown). It is collected in As a result, the piston 2 is returned to the position before water discharge.
  • the pump body 1 releases the compression (water pressurization) of the discharge chamber 3 by the front portion 2 a of the piston 2 and stops the discharge of water into the water injection pipe 18.
  • the control unit 11 shown in FIG. 1 controls switching of the control valve 7 between an on state and an off state.
  • the control unit 11 includes a CPU for executing various programs, a memory, a solenoid driving unit, and the like.
  • the control unit 11 determines the target lift amount L t (n) of the piston 2 of the pump body 1 according to the water discharge amount (water injection amount into the fuel flow passage) required for one discharge of water by the pump body 1. ) Is derived.
  • the target lift amount L t (n) is an example of the movement amount (target movement amount) of the piston 2 that is a target for the pump main body 1 to discharge the required discharge amount of fluid by one discharge.
  • the target lift amount L t (n) is required for one discharge of the fluid by the pump body 1 because the equipment specifications such as the discharge capacity of the pump body 1 that discharges the fluid are known. It can be derived based on the discharge amount of the fluid.
  • the control unit 11 uses the target lift amount L t (n) derived during the current discharge of water by the pump body 1 and the maximum lift amount L m (n ⁇ 1) detected by the detection unit 6 during the previous discharge. Based on the difference, a time correction value of the valve ON time of the control valve 7 is calculated.
  • the valve on time is a time for which the control valve 7 is turned on as described above.
  • the time correction value is a value (correction time) for correcting the valve ON time.
  • the control unit 11 corrects the valve on time during the current discharge of water by the pump main body 1 so that the corrected valve on time continues and remains on.
  • the control valve 7 is controlled.
  • the control unit 11 has a data table 11a as shown in FIG.
  • the data table 11 a shows the correlation between the target lift amount L t (n) of the piston 2 and the basic valve-on time of the control valve 7.
  • the valve on basic time is the valve on time (theoretical valve on time in terms of equipment specifications) of the control valve 7 set according to the target lift amount L t (n) of the piston 2.
  • the data table 11 a includes a plurality of combinations of the target lift amount L t (n) of the piston 2 and the valve on basic time of the control valve 7 that are correlated with each other.
  • the control unit 11 derives the valve on basic time correlated with the target lift amount L t (n) derived during the current discharge of water by the pump body 1 based on the data table 11a.
  • the control unit 11 corrects the valve-on time during the current discharge of water by the pump body 1 so as to approach the sum of the derived valve-on basic time and the above-described time correction value.
  • FIG. 3 is a flowchart showing an example of a control method for the marine fluid pump according to the embodiment of the present invention.
  • FIG. 4 is a diagram for specifically explaining a marine fluid pump control method according to an embodiment of the present invention.
  • the control method of the marine fluid pump 10 see FIG. 1
  • each process of steps S101 to S104 shown in FIG. 3 is performed.
  • switching of the control valve 7 between the on state and the off state is controlled based on the valve control signal S1 from the control unit 11, and the pump body 1 discharges water through this control.
  • the lift amount of the piston 2 at that time is controlled.
  • nth cycle water discharge the current water discharge by the pump body 1
  • n ⁇ 1 cycle water discharge the previous water discharge by the pump body 1
  • n + 1 cycle water discharge The next water discharge is referred to as “n + 1 cycle water discharge”.
  • the control method of the marine fluid pump 10 will be described by exemplifying each process of steps S101 to S104 when the nth cycle of water discharge is performed.
  • the control valve 7 switches from the OFF state to the ON state at the time T1 based on the valve control signal S1, and then the timing at the time T2. Switch from on to off.
  • the time from time T1 to time T2 is the valve ON time ⁇ T3 of the control valve 7 in the water discharge of the (n-1) th cycle.
  • the valve on time ⁇ T3 is the basic valve on time of the control valve 7 set according to the target lift amount L t (n ⁇ 1) of the piston 2 in the water discharge of the (n ⁇ 1) th cycle. This corresponds to the sum of ⁇ T1 and the time correction value ⁇ T2 calculated by the control unit 11 when the water is discharged in the (n-1) th cycle.
  • the pump body 1 moves the piston 2 using the pressure of the supplied hydraulic oil, thereby pressurizing and discharging water.
  • the lift amount of the piston 2 increases with the passage of time from the time T1 when the control valve 7 is turned on, and the time from the time T2 when the control valve 7 is turned off. Decreases with progress.
  • the maximum lift amount L m (n ⁇ 1) of the piston 2 in the water discharge of the (n ⁇ 1) th cycle is the lift amount of the piston 2 at the timing of time T2, as shown in FIG.
  • Detector 6 transmits a lift detection signal indicating the maximum lift L m (n-1) detecting a maximum resultant lift L m (n-1) to the control unit 11.
  • the control unit 11 receives the lift amount detection signal from the detection unit 6 and holds the maximum lift amount L m (n ⁇ 1) indicated by the received lift amount detection signal as a parameter at the time of the subsequent n-th water discharge. To do.
  • control unit 11 sets the target of the piston 2 according to the discharge amount of the fluid required for one discharge of the fluid by the pump body 1.
  • a movement amount is derived (step S101).
  • step S101 the control unit 11 derives the target lift amount L t (n) of the piston 2 according to the water discharge amount required for the n-th water discharge.
  • control unit 11 determines the control valve 7 based on the difference between the target movement amount of the piston 2 in step S101 (target movement amount derivation step) and the maximum movement amount of the piston 2 at the previous discharge of fluid.
  • a time correction value for the valve ON time is calculated (step S102).
  • step S102 the control unit 11 acquires and holds the target lift amount L t (n) of the piston 2 derived in step S101 described above and the water discharge at the (n-1) th cycle.
  • the controller 11 calculates a time correction value ⁇ T12 in the nth cycle of water discharge.
  • the control unit 11 lifts the lift based on the equipment specifications of the pump body 1, for example, the lift amount per unit time of the piston 2 that moves using the pressure of the hydraulic oil (amount of change over time of the lift amount).
  • the quantity deviation ⁇ L (n) is converted into time (that is, converted into a time correction value ⁇ T12).
  • the control unit 11 updates the time correction value ⁇ T2 in the water discharge of the (n ⁇ 1) th cycle to the time correction value ⁇ T12 calculated in this way.
  • control unit 11 corrects the valve-on time of the control valve 7 during the current discharge of the fluid by the pump body 1 in consideration of the time correction value ⁇ T12 in step S102 (time correction value calculation step) (step S102). S103).
  • the control unit 11 derives the valve on basic time ⁇ T11 of the control valve 7 set according to the target lift amount Lt (n) of the piston 2. For example, the control unit 11 derives the valve-on basic time ⁇ T11 that correlates with the target lift amount Lt (n) in step S101 described above based on the data table 11a.
  • control unit 11 controls the control valve 7 so as to be continuously turned on during the valve on-time ⁇ T13 after the correction in step S103 (correction step) (step S104). After executing step S104 (correction step), the control unit 11 returns to step S101 described above and repeats the processing steps after step S101.
  • step S104 the control unit 11 transmits to the control valve 7 a valve control signal S1 (see FIG. 4) that instructs the valve ON time ⁇ T13 corrected as described above to continue to be in the ON state.
  • the control part 11 controls switching of the ON state of the control valve 7 in the water discharge of the nth cycle, and an OFF state.
  • the control valve 7 switches from the off state to the on state at the timing of time T3 based on the valve control signal S1, and then switches from the on state to the off state at the timing of time T4.
  • the time from time T3 to time T4 is the valve-on time ⁇ T13 of the control valve 7 in the water discharge of the nth cycle.
  • the pump body 1 moves the piston 2 using the pressure of the supplied hydraulic oil, thereby pressurizing and discharging water.
  • the lift amount of the piston 2 increases with the passage of time from the timing at time T3 when the control valve 7 is turned on, and the time from the timing at time T4 when the control valve 7 is turned off. Decreases with progress.
  • the maximum lift amount L m (n) of the piston 2 in the water discharge at the nth cycle is the lift amount of the piston 2 at time T4 as shown in FIG.
  • Detector 6 transmits a lift detection signal indicating the maximum detected the lift amount L m (n), the amount of the maximum resultant lift L m (n) to the controller 11.
  • the control unit 11 receives the lift amount detection signal from the detection unit 6 and holds the maximum lift amount L m (n) indicated by the received lift amount detection signal as a parameter at the time of the subsequent n + 1 cycle water discharge.
  • the control valve 7 switches from the off state to the on state at the time T5 based on the valve control signal S1, and then the timing at the time T6. Switch from on to off.
  • the time from time T5 to time T6 is the valve ON time ⁇ T23 of the control valve 7 in the water discharge of the (n + 1) th cycle.
  • the valve on time ⁇ T23 is equal to the basic valve on time ⁇ T21 of the control valve 7 set according to the target lift amount L t (n + 1) of the piston 2 in the water discharge of the (n + 1) th cycle, and n + 1 This corresponds to the sum of the time correction value ⁇ T22 calculated by the control unit 11 when the water is discharged in the cycle.
  • the hydraulic oil is continuously supplied to the hydraulic oil chamber 4 of the pump body 1 through the control valve 7 in the on state.
  • the pump body 1 moves the piston 2 using the pressure of the supplied hydraulic oil, thereby pressurizing and discharging water.
  • the lift amount of the piston 2 increases with the passage of time from the timing at time T5 when the control valve 7 is turned on, and the time from the timing at time T6 when the control valve 7 is turned off. Decreases with progress.
  • the maximum lift amount of the piston 2 in the water discharge of the (n + 1) th cycle is the lift amount of the piston 2 at the timing of time T6 as shown in FIG.
  • the detection unit 6 detects the maximum lift amount and transmits a lift amount detection signal indicating the obtained maximum lift amount to the control unit 11.
  • the control unit 11 holds this maximum lift amount as a parameter at the time of water discharge in the subsequent cycle, as in the case of each of the water discharges in the (n-1) th cycle and the nth cycle described above.
  • the error between the target lift amount L t (n) of the piston 2 and the maximum lift amount L m (n) in the water discharge of the nth cycle is the n ⁇ 1th cycle. It is reduced compared to the water discharge.
  • the error between the target lift amount L t (n + 1) of the piston 2 and the maximum lift amount in the water discharge of the (n + 1) th cycle is reduced compared to the water discharge of the nth cycle.
  • the control valve 7 for supplying the hydraulic oil for operating the pump body 1 is turned on to supply the hydraulic oil.
  • an open / close control valve that selectively switches off the supply of hydraulic oil, and the piston of the pump body 1 according to the fluid discharge amount required for one discharge of the fluid by the pump body 1 2 is derived, and the control valve 7 is turned on based on the difference between the target movement amount of the piston 2 during the current fluid discharge and the maximum movement amount of the piston 2 during the previous fluid discharge.
  • the time correction value of the valve on time is calculated, and the valve on time of the control valve 7 at the time of the current fluid discharge is corrected in consideration of the calculated time correction value, and the valve on time after correction is continued.
  • Control to turn on 7, and the piston 2 is moved using the pressure of the hydraulic oil supplied to the pump body 1 through the control valve 7, so that the piston 2 pressurizes the fluid and discharges it from the pump body 1.
  • control valve 7 is an opening / closing type electromagnetic valve that is relatively resistant to foreign matter mixing, rather than an opening adjustment type electromagnetic valve that is relatively weak against foreign matter mixing, the marine diesel engine operates.
  • the control valve 7 suitable for the marine fluid pump 10 installed in an environment, that is, an environment in which foreign matter is likely to be mixed, can be configured. As a result, it is possible to suppress failure and maintenance frequency due to foreign matter mixing into the control valve 7 of the marine fluid pump 10 in the marine vessel.
  • the water injection pump is exemplified as the marine fluid pump 10, but the present invention is not limited to this.
  • the marine fluid pump 10 may be a fuel injection pump that discharges (pressure feeds) fuel to the fuel injection valve, or may be a pump that discharges fluid other than fuel. That is, in the present invention, the type of fluid to be discharged is not particularly limited.
  • control unit 11 in which the data table 11a indicating the correlation between the target movement amount of the piston 2 and the basic valve-on time of the control valve 7 is illustrated as an example. It is not limited.
  • the control unit 11 may be preliminarily set with an arithmetic expression, a calculation program, or the like that calculates the valve-on basic time of the control valve 7 based on the target movement amount of the piston 2.
  • the lift amount (the upward movement amount of the piston 2) is exemplified as the movement amount of the piston 2, but the present invention is not limited to this.
  • the movement amount of the piston 2 may be any movement amount in the direction in which the fluid to be discharged is pressurized, and this direction is not particularly limited.
  • the present invention is not limited by the above-described embodiment, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined.
  • other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.
  • the marine fluid pump and the control method thereof according to the present invention are useful for discharging fluids such as fuel and water in marine diesel engines, and in particular, the amount of movement of the piston when the fluid is pressurized and discharged. Is suitable for a marine fluid pump that can be controlled with high accuracy while suppressing an increase in cost, and a control method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Reciprocating Pumps (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

A fluid pump for a ship, which is one aspect of the present invention, comprises a pump body that pressurizes and discharges a fluid by moving a piston in which pressure of hydraulic oil is used, a detection unit that detects a maximum movement amount of the piston in one fluid discharge, a control valve that selectively switches between an ON state in which hydraulic oil is supplied to the pump body and an OFF state in which the supply of hydraulic oil is stopped, and a control unit. The control unit derives a target movement amount of the piston in accordance with a fluid discharge amount required in one fluid discharge. On the basis of the difference between the target movement amount in the current fluid discharge and the maximum movement amount in the previous fluid discharge, the control unit calculates a time correction value for a valve ON time of the control valve, adds this time correction value to correct the valve ON time during the current fluid discharge, and controls the control valve so that the valve continues to be in an ON state for the corrected valve ON time.

Description

舶用流体ポンプおよびその制御方法Marine fluid pump and control method thereof
 本発明は、舶用流体ポンプおよびその制御方法に関するものである。 The present invention relates to a marine fluid pump and a control method thereof.
 従来、船舶に搭載される舶用ディーゼルエンジンには、燃料や水等の流体を吐出する舶用流体ポンプが適用されている。例えば、舶用流体ポンプとして、シリンダ内に投入する燃料を燃料噴射弁に圧送する燃料噴射ポンプ、燃料噴射ポンプの吐出口から配管を通じて燃料噴射弁の噴射口に至る燃料流通路内に水を注入する注水ポンプ等が挙げられる。特許文献1には、電磁弁を介して供給される作動油によって駆動制御される燃料噴射ポンプが記載されている。 Conventionally, a marine fluid pump for discharging a fluid such as fuel or water is applied to a marine diesel engine mounted on a marine vessel. For example, as a marine fluid pump, a fuel injection pump that pumps fuel to be injected into a cylinder to a fuel injection valve, and water is injected into a fuel flow passage from a discharge port of the fuel injection pump to a fuel injection valve injection port through a pipe. Examples include water injection pumps. Patent Document 1 describes a fuel injection pump that is driven and controlled by hydraulic fluid supplied via an electromagnetic valve.
 一般に、舶用流体ポンプは、ピストンをその長手方向に往復移動可能な状態で内部に備え、制御弁を介して供給された作動油の圧力を利用してピストンを移動させることにより、流体を加圧して吐出する。このような舶用流体ポンプによる流体の吐出量は、流体を加圧して吐出する際のピストンの移動量に応じて増減変化する。このため、舶用流体ポンプにおいては、流体の吐出量(例えば舶用ディーゼルエンジンでの燃料噴射量や注水量)に要求される精度を担保するという観点から、上記ピストンの移動量を精度良く制御することが要望されている。 In general, a marine fluid pump includes a piston in a state where the piston can reciprocate in the longitudinal direction, and pressurizes the fluid by moving the piston using the pressure of hydraulic oil supplied through a control valve. To discharge. The amount of fluid discharged by such a marine fluid pump changes in accordance with the amount of movement of the piston when the fluid is pressurized and discharged. For this reason, in a marine fluid pump, the movement amount of the piston is accurately controlled from the viewpoint of ensuring the accuracy required for the fluid discharge amount (for example, the fuel injection amount or water injection amount in a marine diesel engine). Is desired.
特許第4176742号公報Japanese Patent No. 4176742
 上述したピストンの移動量を精度良く制御するためには、多くの場合、サーボ弁または比例弁等、開度の調整によって作動油の供給量を高精度に制御し得る開度調整型の電磁弁が舶用流体ポンプの制御弁として用いられる。しかしながら、開度調整型の電磁弁を制御弁として用いた場合、一般には、流体の吐出期間中にピストンの移動量の実測値を頻繁に計測し、その都度、ピストンの移動量の実測値と目標値との偏差を制御弁の開度の調整に反映させる必要があるため、ピストンの移動量を精度良く制御するための装置構成が複雑化して装置に掛かるコストが高価になる恐れがある。これに加え、開度調整型の電磁弁は異物の混入に弱いものが多く、舶用ディーゼルエンジンが動作する環境下では異物の混入が起こり易いため、舶用流体ポンプの制御弁として開度調整型の電磁弁は適さない恐れがある。 In order to accurately control the amount of movement of the above-described piston, in many cases, an opening adjustment type electromagnetic valve such as a servo valve or a proportional valve that can control the amount of hydraulic oil supplied with high accuracy by adjusting the opening. Is used as a control valve for a marine fluid pump. However, when an opening adjustment type electromagnetic valve is used as a control valve, generally, an actual measurement value of the piston movement amount is frequently measured during the fluid discharge period, and each time an actual measurement value of the piston movement amount is obtained. Since it is necessary to reflect the deviation from the target value in the adjustment of the opening degree of the control valve, the device configuration for accurately controlling the movement amount of the piston may be complicated, and the cost of the device may be expensive. In addition, the opening adjustment type solenoid valve is often vulnerable to foreign matter, and foreign matter is likely to be mixed in the environment where marine diesel engines operate. Solenoid valves may not be suitable.
 本発明は、上記の事情に鑑みてなされたものであって、流体を加圧して吐出する際のピストンの移動量を、コストの増大を抑制しながら精度良く制御することができる舶用流体ポンプおよびその制御方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a marine fluid pump capable of accurately controlling the movement amount of a piston when pressurizing and discharging a fluid while suppressing an increase in cost. An object is to provide a control method thereof.
 上述した課題を解決し、目的を達成するために、本発明に係る舶用流体ポンプは、作動油の圧力を利用してピストンを移動させることにより、流体を加圧して吐出するポンプ本体と、前記流体の1回の吐出における前記ピストンの最大移動量を検出する検出部と、前記ポンプ本体に前記作動油を供給するオン状態と前記作動油の供給を停止するオフ状態とを択一的に切り換える制御弁と、前記流体の1回の吐出で要求される前記流体の吐出量に応じて前記ピストンの目標移動量を導出し、前記流体の今回吐出の際に導出された前記目標移動量と前回吐出の際に検出された前記最大移動量との差をもとに、前記制御弁を前記オン状態とする時間である弁オン時間の時間補正値を算出し、算出された前記時間補正値を加味して、前記流体の今回吐出の際における前記弁オン時間を補正し、補正後の前記弁オン時間継続して前記オン状態となるように前記制御弁を制御する制御部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a marine fluid pump according to the present invention includes a pump body that pressurizes and discharges fluid by moving a piston using the pressure of hydraulic oil, A detection unit that detects the maximum movement amount of the piston in one discharge of the fluid, and an on state in which the hydraulic oil is supplied to the pump body and an off state in which the supply of the hydraulic oil is stopped are alternatively switched. The target movement amount of the piston is derived according to the control valve and the discharge amount of the fluid required for one discharge of the fluid, and the target movement amount derived at the time of the current discharge of the fluid and the previous time Based on the difference from the maximum amount of movement detected at the time of discharge, a time correction value of a valve on time, which is a time for turning on the control valve, is calculated, and the calculated time correction value is calculated. In consideration of this fluid The valve on-time is corrected at the time of output, characterized in that it comprises a control unit for controlling the control valve so as to continue said valve on-time after correction becomes the ON state.
 また、本発明に係る舶用流体ポンプは、上記の発明において、前記制御部は、前記ピストンの前記目標移動量に応じて設定された前記制御弁の弁オン時間である弁オン基本時間を導出し、前記流体の今回吐出の際における前記弁オン時間を、前記弁オン基本時間と前記時間補正値とを合算した時間となるように補正することを特徴とする。 In the marine fluid pump according to the present invention, in the above invention, the control unit derives a valve on basic time that is a valve on time of the control valve set according to the target movement amount of the piston. The valve on time during the current discharge of the fluid is corrected so as to be the sum of the valve on basic time and the time correction value.
 また、本発明に係る舶用流体ポンプは、上記の発明において、前記制御部は、前記ピストンの前記目標移動量と前記制御弁の前記弁オン基本時間との相関を示すデータテーブルを有し、前記流体の今回吐出の際に導出された前記目標移動量と相関する前記弁オン基本時間を前記データテーブルに基づいて導出することを特徴とする。 Further, the marine fluid pump according to the present invention is the marine fluid pump according to the above invention, wherein the control unit has a data table indicating a correlation between the target movement amount of the piston and the valve on basic time of the control valve, The basic valve-on time correlated with the target movement amount derived at the time of fluid discharge is derived based on the data table.
 また、本発明に係る舶用流体ポンプの制御方法は、ポンプ本体に作動油を供給するオン状態と前記作動油の供給を停止するオフ状態とを択一的に切り換える制御弁を介して前記ポンプ本体に作動油を供給し、供給された前記作動油の圧力を利用して前記ポンプ本体のピストンを移動させることにより、流体を加圧して吐出する舶用流体ポンプの制御方法において、前記流体の1回の吐出で要求される前記流体の吐出量に応じて、前記ピストンの目標移動量を導出する目標移動量導出ステップと、前記目標移動量導出ステップによる前記ピストンの前記目標移動量と前記流体の前回吐出の際における前記ピストンの最大移動量との差をもとに、前記制御弁を前記オン状態とする時間である弁オン時間の時間補正値を算出する時間補正値算出ステップと、前記時間補正値算出ステップによる前記時間補正値を加味して、前記流体の今回吐出の際における前記弁オン時間を補正する補正ステップと、補正後の前記弁オン時間継続して前記オン状態となるように前記制御弁を制御する制御ステップと、を含むことを特徴とする。 Further, the marine fluid pump control method according to the present invention includes the pump body via a control valve that selectively switches between an on state in which hydraulic oil is supplied to the pump body and an off state in which the supply of the hydraulic oil is stopped. In a control method for a marine fluid pump that pressurizes and discharges fluid by moving the piston of the pump body by using the pressure of the supplied hydraulic oil and moving the piston, A target movement amount deriving step for deriving a target movement amount of the piston in accordance with a discharge amount of the fluid required by the discharge of the piston, and the target movement amount of the piston by the target movement amount deriving step and the previous time of the fluid Based on a difference from the maximum movement amount of the piston at the time of discharge, a time correction value calculation step for calculating a time correction value of a valve on time that is a time for which the control valve is in the on state. And a correction step for correcting the valve on time at the time of the current discharge of the fluid, taking into account the time correction value by the time correction value calculation step, and the valve on time after correction is continued. And a control step of controlling the control valve so as to be in an on state.
 また、本発明に係る舶用流体ポンプの制御方法は、上記の発明において、前記補正ステップは、前記ピストンの前記目標移動量に応じて設定された前記制御弁の弁オン時間である弁オン基本時間を導出し、前記流体の今回吐出の際における前記弁オン時間を、前記弁オン基本時間と前記時間補正値とを合算した時間となるように補正することを特徴とする。 Further, the marine fluid pump control method according to the present invention is the above-described invention, wherein the correction step is a valve on basic time which is a valve on time of the control valve set according to the target movement amount of the piston. And the valve on time at the time of the current discharge of the fluid is corrected so as to be the sum of the valve on basic time and the time correction value.
 また、本発明に係る舶用流体ポンプの制御方法は、上記の発明において、前記補正ステップは、前記ピストンの前記目標移動量と前記制御弁の前記弁オン基本時間との相関を示すデータテーブルに基づいて、前記目標移動量導出ステップによる前記目標移動量と相関する前記弁オン基本時間を導出することを特徴とする。 Moreover, in the control method for a marine fluid pump according to the present invention, in the above invention, the correction step is based on a data table indicating a correlation between the target movement amount of the piston and the valve-on basic time of the control valve. Then, the valve-on basic time correlated with the target movement amount in the target movement amount derivation step is derived.
 本発明によれば、流体を加圧して吐出する際における舶用流体ポンプのピストンの移動量を、コストの増大を抑制しながら精度良く制御することができるという効果を奏する。 According to the present invention, it is possible to accurately control the movement amount of the piston of the marine fluid pump when pressurizing and discharging the fluid while suppressing an increase in cost.
図1は、本発明の実施形態に係る舶用流体ポンプの一構成例を示す模式図である。FIG. 1 is a schematic diagram showing a configuration example of a marine fluid pump according to an embodiment of the present invention. 図2は、本発明の実施形態における制御弁のオン状態およびオフ状態を説明する図である。FIG. 2 is a diagram illustrating an on state and an off state of the control valve in the embodiment of the present invention. 図3は、本発明の実施形態に係る舶用流体ポンプの制御方法の一例を示すフロー図である。FIG. 3 is a flowchart showing an example of a control method for the marine fluid pump according to the embodiment of the present invention. 図4は、本発明の実施形態に係る舶用流体ポンプの制御方法を具体的に説明する図である。FIG. 4 is a diagram for specifically explaining a marine fluid pump control method according to an embodiment of the present invention.
 以下に、添付図面を参照して、本発明に係る舶用流体ポンプおよびその制御方法の好適な実施形態について詳細に説明する。なお、本実施形態により、本発明が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、各図面において、同一構成部分には同一符号が付されている。 Hereinafter, preferred embodiments of a marine fluid pump and a control method thereof according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment. Also, the drawings are schematic, and it should be noted that the relationship between the dimensions of each element, the ratio of each element, and the like may differ from the actual ones. Even between the drawings, there are cases in which portions having different dimensional relationships and ratios are included. Moreover, in each drawing, the same code | symbol is attached | subjected to the same component.
(舶用流体ポンプの構成)
 図1は、本発明の実施形態に係る舶用流体ポンプの一構成例を示す模式図である。本実施形態では、この舶用流体ポンプ10が舶用ディーゼルエンジン(図示せず)の燃料流通路内に水を注入する注水ポンプである場合を例示する。なお、舶用ディーゼルエンジンの燃料流通路は、特に図示しないが、燃料噴射ポンプの吐出口から配管を通じて燃料噴射弁の噴射口に至る燃料の流通路である。燃料噴射ポンプは、舶用ディーゼルエンジンのシリンダ内に燃料を噴射するための燃料噴射弁に対して、配管等を通じて燃料を噴射する装置である。
(Configuration of marine fluid pump)
FIG. 1 is a schematic diagram showing a configuration example of a marine fluid pump according to an embodiment of the present invention. In this embodiment, the case where this marine fluid pump 10 is a water injection pump which inject | pours water into the fuel flow path of a marine diesel engine (not shown) is illustrated. The fuel flow passage of the marine diesel engine is a fuel flow passage from the discharge port of the fuel injection pump to the injection port of the fuel injection valve through the pipe, although not particularly shown. A fuel injection pump is a device that injects fuel through piping or the like to a fuel injection valve for injecting fuel into a cylinder of a marine diesel engine.
 図1に示すように、舶用流体ポンプ10は、流体の一例である水を吐出するポンプ本体1と、ポンプ本体1のピストン2の最大リフト量L(n)を検出する検出部6と、ポンプ本体1に対する作動油の供給および排出を行うための制御弁7と、制御弁7を制御する制御部11とを備える。なお、図1において、実線矢印は作動油等の流体の流通を示し、一点鎖線矢印は電気信号線を示す。 As shown in FIG. 1, a marine fluid pump 10 includes a pump body 1 that discharges water as an example of a fluid, a detection unit 6 that detects a maximum lift amount L m (n) of a piston 2 of the pump body 1, A control valve 7 for supplying and discharging hydraulic oil to and from the pump body 1 and a control unit 11 for controlling the control valve 7 are provided. In FIG. 1, solid arrows indicate the flow of fluid such as hydraulic oil, and alternate long and short dash arrows indicate electrical signal lines.
 ポンプ本体1は、作動油の圧力を利用して流体(本実施形態では水)を吐出する油圧駆動式のポンプ装置である。図1に示すように、ポンプ本体1は、ピストン2と、吐出室3と、作動油室4と、注水口5とを有する。 The pump body 1 is a hydraulically driven pump device that discharges a fluid (water in the present embodiment) using the pressure of hydraulic oil. As shown in FIG. 1, the pump main body 1 includes a piston 2, a discharge chamber 3, a hydraulic oil chamber 4, and a water inlet 5.
 ピストン2は、その長手方向に沿って往復移動し得るように、ポンプ本体1の内部空間に設けられる。例えば、ピストン2は、水吐出側のピストン部分である前部2aと、作動油受け側のピストン部分である後部2bと、これら前部2aおよび後部2bの間の部分であるテーパ部2cとを有する。ピストン2は、前部2aのピストン径が後部2bのピストン径よりも小径となるように棒状に形成される。テーパ部2cは、前部2a側から後部2b側に向かってピストン径が増加または減少(図1では減少)変化するように形成される。テーパ部2cは、後述の検出部6によるピストン2の最大リフト量L(n)の検出に用いられる。 The piston 2 is provided in the internal space of the pump body 1 so that it can reciprocate along its longitudinal direction. For example, the piston 2 includes a front portion 2a which is a piston portion on the water discharge side, a rear portion 2b which is a piston portion on the hydraulic oil receiving side, and a tapered portion 2c which is a portion between the front portion 2a and the rear portion 2b. Have. The piston 2 is formed in a rod shape so that the piston diameter of the front part 2a is smaller than the piston diameter of the rear part 2b. The tapered portion 2c is formed such that the piston diameter increases or decreases (decreases in FIG. 1) from the front portion 2a side toward the rear portion 2b side. The taper part 2c is used for detection of the maximum lift amount L m (n) of the piston 2 by the detection part 6 described later.
 吐出室3は、ポンプ本体1から吐出される水を一時貯留する空間である。図1に示すように、吐出室3は、ポンプ本体1の内部空間のうちピストン2の前部2aの端面と面する空間となるように構成される。作動油室4は、ポンプ本体1を作動させる作動油を受け入れる空間である。図1に示すように、作動油室4は、ポンプ本体1の内部空間のうちピストン2の後部2bの端面と面する空間となるように構成される。注水口5は、吐出室3を水で満たすためのものであり、吐出室3に通じるようにポンプ本体1に設けられる。注水対象の水は、水タンク(図示せず)の配管等を通じて注水口5から吐出室3に供給される。吐出室3には、ポンプ本体1による水の吐出が行われる都度、注水口5を通じて水が供給(補給)される。 The discharge chamber 3 is a space for temporarily storing water discharged from the pump body 1. As shown in FIG. 1, the discharge chamber 3 is configured to be a space that faces the end surface of the front portion 2 a of the piston 2 in the internal space of the pump body 1. The hydraulic oil chamber 4 is a space that receives hydraulic oil for operating the pump body 1. As shown in FIG. 1, the hydraulic oil chamber 4 is configured to be a space facing the end surface of the rear portion 2 b of the piston 2 in the internal space of the pump body 1. The water injection port 5 is for filling the discharge chamber 3 with water, and is provided in the pump body 1 so as to communicate with the discharge chamber 3. Water to be injected is supplied from the water injection port 5 to the discharge chamber 3 through piping of a water tank (not shown). Water is supplied (supplied) to the discharge chamber 3 through the water inlet 5 every time water is discharged by the pump body 1.
 また、図1に示すように、ポンプ本体1の吐出口側には、吐出室3に通じる注水管18が接続されている。注水管18は、ポンプ本体1の吐出室3から吐出された水を上述した燃料流通路に導く配管である。一方、ポンプ本体1の作動油受け側には、作動油室4に通じる作動油流通路17が接続されている。 Further, as shown in FIG. 1, a water injection pipe 18 leading to the discharge chamber 3 is connected to the discharge port side of the pump body 1. The water injection pipe 18 is a pipe that guides the water discharged from the discharge chamber 3 of the pump body 1 to the fuel flow passage described above. On the other hand, a hydraulic oil flow passage 17 communicating with the hydraulic oil chamber 4 is connected to the hydraulic oil receiving side of the pump body 1.
 このような構成を有するポンプ本体1は、制御弁7を介して供給された作動油の圧力を利用してピストン2を移動させることにより、吐出対象の水を加圧して吐出する。この際、ポンプ本体1は、制御弁7がポンプ本体1に作動油を供給するオン状態である場合、制御弁7を介して作動油流通路17から作動油室4に作動油を受け入れる。ポンプ本体1は、受け入れた作動油の圧力を利用して、吐出室3を圧縮するようにピストン2を移動(前進)させる。これにより、ポンプ本体1は、吐出室3と注水口5との連通をピストン2で遮断しながら、吐出室3内の水を加圧する。加圧された水は、吐出室3から注水管18内に吐出される。 The pump main body 1 having such a configuration pressurizes and discharges water to be discharged by moving the piston 2 using the pressure of the hydraulic oil supplied via the control valve 7. At this time, the pump main body 1 receives the hydraulic oil from the hydraulic oil flow passage 17 to the hydraulic oil chamber 4 via the control valve 7 when the control valve 7 is in an ON state in which the hydraulic oil is supplied to the pump main body 1. The pump body 1 moves (advances) the piston 2 so as to compress the discharge chamber 3 using the pressure of the received hydraulic oil. Thereby, the pump body 1 pressurizes the water in the discharge chamber 3 while blocking the communication between the discharge chamber 3 and the water injection port 5 with the piston 2. The pressurized water is discharged from the discharge chamber 3 into the water injection pipe 18.
 一方、ポンプ本体1は、制御弁7がポンプ本体1に対する作動油の供給を停止するオフ状態である場合、上述した水の吐出(ピストン2の移動)に利用された後の作動油(以下、ドレンと適宜いう)を作動油室4から作動油流通路17を通じて制御弁7へ排出する。この際、ピストン2は、ポンプ本体1の内部空間に設けられたバネ等の付勢部(図示せず)の反発力により、作動油室4内のドレンを作動油流通路17を通じて制御弁7側へ押し出す。この結果、ピストン2は、水吐出前の位置に戻される。ポンプ本体1は、ピストン2による吐出室3の圧縮(水の加圧)を解除する。 On the other hand, when the control valve 7 is in an off state in which the supply of the hydraulic oil to the pump main body 1 is stopped, the pump main body 1 is the hydraulic oil after being used for the above-described water discharge (movement of the piston 2) (hereinafter, (Referred to as drain appropriately) is discharged from the hydraulic oil chamber 4 to the control valve 7 through the hydraulic oil flow passage 17. At this time, the piston 2 allows the drain in the hydraulic oil chamber 4 to flow through the hydraulic oil flow passage 17 and the control valve 7 by the repulsive force of an urging portion (not shown) such as a spring provided in the internal space of the pump body 1. Push to the side. As a result, the piston 2 is returned to the position before water discharge. The pump body 1 releases the compression (water pressurization) of the discharge chamber 3 by the piston 2.
 検出部6は、ポンプ本体1による水の1回の吐出におけるピストン2の最大リフト量L(n)を検出するものである。図1に示すように、検出部6は、検出処理部6aと演算処理部6bとを有する。最大リフト量L(n)は、ポンプ本体1による流体の1回の吐出において流体を加圧する方向(本実施形態では上方向)に移動するピストン2の最大移動量の一例である。 The detection unit 6 detects the maximum lift amount L m (n) of the piston 2 in one discharge of water by the pump body 1. As shown in FIG. 1, the detection unit 6 includes a detection processing unit 6a and an arithmetic processing unit 6b. The maximum lift amount L m (n) is an example of the maximum movement amount of the piston 2 that moves in the direction in which the fluid is pressurized (upward in the present embodiment) in one discharge of the fluid by the pump body 1.
 検出処理部6aは、最大リフト量L(n)の検出のための検出処理を行う。詳細には、図1に示すように、検出処理部6aは、ピストン2のテーパ部2cと面するようにポンプ本体1に設けられている。本実施形態では、一対の検出処理部6aが、テーパ部2cを挟んで互いに対向するように配置されている。検出処理部6aは、ピストン2の移動(リフト)によって変化するテーパ部2cとの距離を検出(計測)する。検出処理部6aは、このような距離の検出処理を時系列に沿って連続的または断続的に行い、その都度、得られた距離を示す信号(以下、距離検出信号と適宜いう)を演算処理部6bに送信する。 The detection processing unit 6a performs a detection process for detecting the maximum lift amount L m (n). Specifically, as shown in FIG. 1, the detection processing unit 6 a is provided in the pump main body 1 so as to face the tapered portion 2 c of the piston 2. In the present embodiment, the pair of detection processing parts 6a are arranged so as to face each other with the taper part 2c interposed therebetween. The detection processing unit 6a detects (measures) the distance from the tapered portion 2c that changes due to the movement (lift) of the piston 2. The detection processing unit 6a performs such distance detection processing continuously or intermittently in time series, and each time, a signal indicating the obtained distance (hereinafter referred to as a distance detection signal as appropriate) is arithmetically processed. To the unit 6b.
 演算処理部6bは、最大リフト量L(n)の検出のための演算処理を行う。詳細には、演算処理部6bは、検出処理部6aからの距離検出信号を時系列順に順次受信する。演算処理部6bは、検出処理部6aから受信した複数の距離検出信号の中から、上記の距離が最大となる距離検出信号と最小となる距離検出信号とを選択する。例えば、演算処理部6bは、電圧がピークとなる距離検出信号を、ポンプ本体1による水の1回の吐出期間に検出処理部6aとテーパ部2cとの距離が最大および最小となった際の各距離検出信号として選択する。演算処理部6bは、これらの選択した距離検出信号によって示される各距離(検出処理部6aとテーパ部2cとの距離)とテーパ部2cの傾斜角度とをもとに、ポンプ本体1による水の1回の吐出におけるピストン2の最大リフト量L(n)を算出する。その都度、演算処理部6bは、得られた最大リフト量L(n)を示す信号(以下、リフト量検出信号と適宜いう)を制御部11に送信する。 The arithmetic processing unit 6b performs arithmetic processing for detecting the maximum lift amount L m (n). Specifically, the arithmetic processing unit 6b sequentially receives the distance detection signals from the detection processing unit 6a in chronological order. The arithmetic processing unit 6b selects the distance detection signal that maximizes the distance and the distance detection signal that minimizes the distance from the plurality of distance detection signals received from the detection processing unit 6a. For example, the arithmetic processing unit 6b generates a distance detection signal at which the voltage reaches a peak when the distance between the detection processing unit 6a and the taper portion 2c becomes maximum and minimum during one discharge period of water by the pump body 1. Each distance detection signal is selected. The arithmetic processing unit 6b uses the distances between the selected distance detection signals (the distance between the detection processing unit 6a and the taper portion 2c) and the inclination angle of the taper portion 2c to generate water from the pump body 1. The maximum lift amount L m (n) of the piston 2 in one discharge is calculated. Each time, the arithmetic processing unit 6 b transmits a signal indicating the obtained maximum lift amount L m (n) (hereinafter, appropriately referred to as a lift amount detection signal) to the control unit 11.
 制御弁7は、ポンプ本体1を作動させる作動油をポンプ本体1に供給するオン状態と、ポンプ本体1に対する作動油の供給を停止するオフ状態とを切り換える弁である。例えば、制御弁7は、作動油の流通路の開閉を切り換える開閉型の電磁弁によって構成される。本実施形態では、図1に示すように、制御弁7は、供給流路ユニット7aと、排出流路ユニット7bと、駆動部7cとを有する。また、制御弁7には、作動油の圧力を蓄積する蓄圧設備(図示せず)に通じる作動油管15と、作動油(ドレン)を回収するタンク(図示せず)に通じるドレン管16と、ポンプ本体1の作動油室4に通じる作動油流通路17とが接続されている。なお、一例として、図1には、制御弁7の供給流路ユニット7aに作動油管15とドレン管16と作動油流通路17とが接続された状態が図示されている。 The control valve 7 is a valve that switches between an ON state in which hydraulic oil for operating the pump body 1 is supplied to the pump body 1 and an OFF state in which the supply of hydraulic oil to the pump body 1 is stopped. For example, the control valve 7 is configured by an open / close electromagnetic valve that switches between opening and closing of the hydraulic oil flow passage. In the present embodiment, as shown in FIG. 1, the control valve 7 includes a supply flow path unit 7a, a discharge flow path unit 7b, and a drive unit 7c. Further, the control valve 7 includes a hydraulic oil pipe 15 leading to a pressure accumulating facility (not shown) for accumulating the hydraulic oil pressure, a drain pipe 16 leading to a tank (not shown) for collecting the hydraulic oil (drain), A hydraulic oil flow passage 17 communicating with the hydraulic oil chamber 4 of the pump body 1 is connected. As an example, FIG. 1 illustrates a state in which the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17 are connected to the supply flow path unit 7 a of the control valve 7.
 供給流路ユニット7aは、ポンプ本体1に作動油を供給するための供給流路8aと、ドレン管16を閉じるための閉路8bとを有する。排出流路ユニット7bは、ポンプ本体1からドレンを排出するための排出流路9aと、作動油管15を閉じるための閉路9bとを有する。これらの供給流路ユニット7aおよび排出流路ユニット7bは、例えば図1に示すように、所定の方向(図1では横方向)隣接するように配置される。駆動部7cは、電磁コイル(ソレノイドコイル)等を用いて構成される。駆動部7cは、制御部11からの弁制御信号に基づいて、供給流路ユニット7aおよび排出流路ユニット7bをその隣接方向に動かし、これにより、供給流路ユニット7aおよび排出流路ユニット7bのいずれかと、作動油管15、ドレン管16および作動油流通路17とを接続させる。制御弁7は、この駆動部7cの作用によって、オン状態とオフ状態とを択一的に切り換える。 The supply flow path unit 7 a has a supply flow path 8 a for supplying hydraulic oil to the pump body 1 and a closed path 8 b for closing the drain pipe 16. The discharge flow path unit 7 b includes a discharge flow path 9 a for discharging drain from the pump body 1 and a closed path 9 b for closing the hydraulic oil pipe 15. The supply flow path unit 7a and the discharge flow path unit 7b are arranged so as to be adjacent to each other in a predetermined direction (lateral direction in FIG. 1), for example, as shown in FIG. The drive unit 7c is configured using an electromagnetic coil (solenoid coil) or the like. The drive unit 7c moves the supply flow path unit 7a and the discharge flow path unit 7b in the adjacent direction based on the valve control signal from the control unit 11, and thereby the supply flow path unit 7a and the discharge flow path unit 7b. Either of them is connected to the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17. The control valve 7 selectively switches between the on state and the off state by the action of the drive unit 7c.
 図2は、本発明の実施形態における制御弁のオン状態およびオフ状態を説明する図である。図2に示すように、制御弁7は、供給流路ユニット7aと作動油管15、ドレン管16および作動油流通路17とを接続させることにより、オフ状態からオン状態に切り換わる。オン状態において、供給流路ユニット7aは、供給流路8aと作動油管15および作動油流通路17とを接続させ且つ閉路8bとドレン管16とを接続させる。これにより、作動油管15および作動油流通路17は、供給流路8aを介して連通した状態となる。ドレン管16は、閉路8bによって閉じた状態となる。作動油は、このように連通した状態にある作動油管15と供給流路8aと作動油流通路17とを通じて、ポンプ本体1の作動油室4に供給される。作動油室4に供給された作動油は、ポンプ本体1のピストン2を後部2b側から押圧する。ポンプ本体1は、この作動油の圧力を利用してピストン2を移動させることにより、吐出室3内の水をピストン2の前部2aで加圧して注水管18内に吐出する。この作動油の供給は、制御弁7がオン状態である期間、継続して行われる。 FIG. 2 is a diagram illustrating an on state and an off state of the control valve in the embodiment of the present invention. As shown in FIG. 2, the control valve 7 is switched from the OFF state to the ON state by connecting the supply flow path unit 7 a to the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17. In the ON state, the supply flow path unit 7 a connects the supply flow path 8 a to the hydraulic oil pipe 15 and the hydraulic oil flow path 17 and connects the closed path 8 b and the drain pipe 16. As a result, the hydraulic oil pipe 15 and the hydraulic oil flow passage 17 are in communication with each other via the supply flow path 8a. The drain pipe 16 is closed by the closed path 8b. The hydraulic oil is supplied to the hydraulic oil chamber 4 of the pump body 1 through the hydraulic oil pipe 15, the supply flow path 8 a, and the hydraulic oil flow passage 17 that are in communication with each other. The hydraulic oil supplied to the hydraulic oil chamber 4 presses the piston 2 of the pump body 1 from the rear portion 2b side. The pump body 1 uses the pressure of the hydraulic oil to move the piston 2 to pressurize the water in the discharge chamber 3 at the front portion 2 a of the piston 2 and discharge the water into the water injection pipe 18. The supply of the hydraulic oil is continuously performed while the control valve 7 is on.
 また、図2に示すように、制御弁7は、排出流路ユニット7bと作動油管15、ドレン管16および作動油流通路17とを接続させることにより、オン状態からオフ状態に切り換わる。オフ状態において、排出流路ユニット7bは、排出流路9aとドレン管16および作動油流通路17とを接続させ且つ閉路9bと作動油管15とを接続させる。これにより、ドレン管16および作動油流通路17は、排出流路9aを介して連通した状態となる。作動油管15は、閉路9bによって閉じた状態となる。この結果、上記オン状態における作動油の供給が停止する。この場合、ピストン2は、ポンプ本体1の内部空間に設けられたバネ等の付勢部(図示せず)の反発力により、作動油室4内の作動油(すなわちポンプ本体1の作動に利用後の作動油)を制御弁7側へ押圧する。この押圧された作動油は、上記のように連通した状態にある作動油流通路17と排出流路9aとドレン管16とを通じて、作動油室4からドレンとして排出され、所定のタンク(図示せず)内に回収される。この結果、ピストン2は、水吐出前の位置に戻される。ポンプ本体1は、ピストン2の前部2aによる吐出室3の圧縮(水の加圧)を解除して、注水管18への水の吐出を停止する。 Further, as shown in FIG. 2, the control valve 7 is switched from the on state to the off state by connecting the discharge flow path unit 7b, the hydraulic oil pipe 15, the drain pipe 16, and the hydraulic oil flow passage 17. In the off state, the discharge flow path unit 7b connects the discharge flow path 9a with the drain pipe 16 and the hydraulic oil flow path 17, and connects the closed path 9b with the hydraulic oil pipe 15. As a result, the drain pipe 16 and the hydraulic oil flow passage 17 are in communication with each other via the discharge flow path 9a. The hydraulic oil pipe 15 is closed by the closed path 9b. As a result, the supply of hydraulic oil in the on state is stopped. In this case, the piston 2 is used for operating the hydraulic oil in the hydraulic oil chamber 4 (that is, for operating the pump main body 1) by a repulsive force of an urging portion (not shown) such as a spring provided in the internal space of the pump main body 1. The subsequent hydraulic oil) is pressed toward the control valve 7 side. The pressed hydraulic oil is discharged as drainage from the hydraulic oil chamber 4 through the hydraulic oil flow passage 17, the discharge flow passage 9a, and the drain pipe 16 that are in communication with each other as described above, and a predetermined tank (not shown). It is collected in As a result, the piston 2 is returned to the position before water discharge. The pump body 1 releases the compression (water pressurization) of the discharge chamber 3 by the front portion 2 a of the piston 2 and stops the discharge of water into the water injection pipe 18.
 一方、図1に示す制御部11は、制御弁7のオン状態とオフ状態との切り換えを制御する。具体的には、制御部11は、各種プログラムを実行するためのCPU、メモリおよびソレノイド駆動部等によって構成される。制御部11は、ポンプ本体1による水の1回の吐出で要求される水吐出量(燃料流通路内への注水量)に応じて、ポンプ本体1のピストン2の目標リフト量L(n)を導出する。目標リフト量L(n)は、要求される吐出量の流体をポンプ本体1が1回の吐出で吐出するために目標とするピストン2の移動量(目標移動量)の一例である。例えば、目標リフト量L(n)は、流体の吐出を行うポンプ本体1の吐出能力等の設備仕様が既知であることから、このポンプ本体1による流体の1回の吐出で要求される当該流体の吐出量に基づいて導出することができる。 On the other hand, the control unit 11 shown in FIG. 1 controls switching of the control valve 7 between an on state and an off state. Specifically, the control unit 11 includes a CPU for executing various programs, a memory, a solenoid driving unit, and the like. The control unit 11 determines the target lift amount L t (n) of the piston 2 of the pump body 1 according to the water discharge amount (water injection amount into the fuel flow passage) required for one discharge of water by the pump body 1. ) Is derived. The target lift amount L t (n) is an example of the movement amount (target movement amount) of the piston 2 that is a target for the pump main body 1 to discharge the required discharge amount of fluid by one discharge. For example, the target lift amount L t (n) is required for one discharge of the fluid by the pump body 1 because the equipment specifications such as the discharge capacity of the pump body 1 that discharges the fluid are known. It can be derived based on the discharge amount of the fluid.
 制御部11は、ポンプ本体1による水の今回吐出の際に導出された目標リフト量L(n)と前回吐出の際に検出部6によって検出された最大リフト量L(n-1)との差をもとに、制御弁7の弁オン時間の時間補正値を算出する。弁オン時間は、制御弁7を上述したオン状態とする時間である。時間補正値は、この弁オン時間を補正するための値(補正時間)である。制御部11は、この算出された時間補正値を加味して、ポンプ本体1による水の今回吐出の際における弁オン時間を補正し、補正後の弁オン時間継続してオン状態となるように制御弁7を制御する。 The control unit 11 uses the target lift amount L t (n) derived during the current discharge of water by the pump body 1 and the maximum lift amount L m (n−1) detected by the detection unit 6 during the previous discharge. Based on the difference, a time correction value of the valve ON time of the control valve 7 is calculated. The valve on time is a time for which the control valve 7 is turned on as described above. The time correction value is a value (correction time) for correcting the valve ON time. In consideration of the calculated time correction value, the control unit 11 corrects the valve on time during the current discharge of water by the pump main body 1 so that the corrected valve on time continues and remains on. The control valve 7 is controlled.
 本実施形態において、制御部11は、図1に示すようにデータテーブル11aを有する。データテーブル11aは、ピストン2の目標リフト量L(n)と制御弁7の弁オン基本時間との相関を示すものである。弁オン基本時間は、ピストン2の目標リフト量L(n)に応じて設定された制御弁7の弁オン時間(設備仕様上の理論的な弁オン時間)である。データテーブル11aには、互いに相関するピストン2の目標リフト量L(n)と制御弁7の弁オン基本時間との組み合わせが複数含まれる。制御部11は、ポンプ本体1による水の今回吐出の際に導出された目標リフト量L(n)と相関する弁オン基本時間をデータテーブル11aに基づいて導出する。制御部11は、ポンプ本体1による水の今回吐出の際における弁オン時間を、この導出された弁オン基本時間と上述した時間補正値とを合算した時間に近付けるように補正する。 In the present embodiment, the control unit 11 has a data table 11a as shown in FIG. The data table 11 a shows the correlation between the target lift amount L t (n) of the piston 2 and the basic valve-on time of the control valve 7. The valve on basic time is the valve on time (theoretical valve on time in terms of equipment specifications) of the control valve 7 set according to the target lift amount L t (n) of the piston 2. The data table 11 a includes a plurality of combinations of the target lift amount L t (n) of the piston 2 and the valve on basic time of the control valve 7 that are correlated with each other. The control unit 11 derives the valve on basic time correlated with the target lift amount L t (n) derived during the current discharge of water by the pump body 1 based on the data table 11a. The control unit 11 corrects the valve-on time during the current discharge of water by the pump body 1 so as to approach the sum of the derived valve-on basic time and the above-described time correction value.
(舶用流体ポンプの制御方法)
 図3は、本発明の実施形態に係る舶用流体ポンプの制御方法の一例を示すフロー図である。図4は、本発明の実施形態に係る舶用流体ポンプの制御方法を具体的に説明する図である。この舶用流体ポンプ10(図1参照)の制御方法では、図3に示すステップS101~S104の各処理が行われる。この際、図4に示すように、制御部11からの弁制御信号S1に基づいて制御弁7のオン状態とオフ状態との切り換えが制御され、この制御を通して、ポンプ本体1が水を吐出する際のピストン2のリフト量が制御される。以下、ポンプ本体1による今回の水の吐出は「nサイクル目の水吐出」と称し、ポンプ本体1による前回の水の吐出は「n-1サイクル目の水吐出」と称し、ポンプ本体1による次回の水の吐出は「n+1サイクル目の水吐出」と称する。舶用流体ポンプ10の制御方法は、nサイクル目の水吐出が行われる際のステップS101~S104の各処理を例示して説明する。
(Control method for marine fluid pump)
FIG. 3 is a flowchart showing an example of a control method for the marine fluid pump according to the embodiment of the present invention. FIG. 4 is a diagram for specifically explaining a marine fluid pump control method according to an embodiment of the present invention. In the control method of the marine fluid pump 10 (see FIG. 1), each process of steps S101 to S104 shown in FIG. 3 is performed. At this time, as shown in FIG. 4, switching of the control valve 7 between the on state and the off state is controlled based on the valve control signal S1 from the control unit 11, and the pump body 1 discharges water through this control. The lift amount of the piston 2 at that time is controlled. Hereinafter, the current water discharge by the pump body 1 is referred to as “nth cycle water discharge”, and the previous water discharge by the pump body 1 is referred to as “n−1 cycle water discharge”. The next water discharge is referred to as “n + 1 cycle water discharge”. The control method of the marine fluid pump 10 will be described by exemplifying each process of steps S101 to S104 when the nth cycle of water discharge is performed.
 図4に示すように、n-1サイクル目の水吐出において、制御弁7は、弁制御信号S1に基づいて、時刻T1のタイミングにオフ状態からオン状態に切り換わり、その後、時刻T2のタイミングにオン状態からオフ状態に切り換わる。この時刻T1から時刻T2までの時間は、n-1サイクル目の水吐出における制御弁7の弁オン時間ΔT3である。この弁オン時間ΔT3は、図4に示すように、n-1サイクル目の水吐出におけるピストン2の目標リフト量L(n-1)に応じて設定された制御弁7の弁オン基本時間ΔT1と、n-1サイクル目の水吐出時に制御部11によって算出された時間補正値ΔT2とを合算した時間に相当する。 As shown in FIG. 4, in the water discharge at the (n-1) th cycle, the control valve 7 switches from the OFF state to the ON state at the time T1 based on the valve control signal S1, and then the timing at the time T2. Switch from on to off. The time from time T1 to time T2 is the valve ON time ΔT3 of the control valve 7 in the water discharge of the (n-1) th cycle. As shown in FIG. 4, the valve on time ΔT3 is the basic valve on time of the control valve 7 set according to the target lift amount L t (n−1) of the piston 2 in the water discharge of the (n−1) th cycle. This corresponds to the sum of ΔT1 and the time correction value ΔT2 calculated by the control unit 11 when the water is discharged in the (n-1) th cycle.
 弁オン時間ΔT3の期間、ポンプ本体1の作動油室4には、オン状態の制御弁7等を介して作動油が継続的に供給される。ポンプ本体1は、この供給された作動油の圧力を利用してピストン2を移動させ、これにより、水を加圧して吐出する。ピストン2のリフト量は、図4に示すように、制御弁7がオン状態となった時刻T1のタイミングから時間経過に伴い増加し、制御弁7がオフ状態となった時刻T2のタイミングから時間経過に伴い減少する。この場合、n-1サイクル目の水吐出におけるピストン2の最大リフト量L(n-1)は、図4に示すように、時刻T2のタイミングにおけるピストン2のリフト量となる。検出部6は、この最大リフト量L(n-1)を検出し、得られた最大リフト量L(n-1)を示すリフト量検出信号を制御部11に送信する。制御部11は、検出部6からリフト量検出信号を受信し、受信したリフト量検出信号によって示される最大リフト量L(n-1)を、続くnサイクル目の水吐出時のパラメータとして保持する。 During the valve on time ΔT3, hydraulic oil is continuously supplied to the hydraulic oil chamber 4 of the pump body 1 via the control valve 7 and the like in the on state. The pump body 1 moves the piston 2 using the pressure of the supplied hydraulic oil, thereby pressurizing and discharging water. As shown in FIG. 4, the lift amount of the piston 2 increases with the passage of time from the time T1 when the control valve 7 is turned on, and the time from the time T2 when the control valve 7 is turned off. Decreases with progress. In this case, the maximum lift amount L m (n−1) of the piston 2 in the water discharge of the (n−1) th cycle is the lift amount of the piston 2 at the timing of time T2, as shown in FIG. Detector 6 transmits a lift detection signal indicating the maximum lift L m (n-1) detecting a maximum resultant lift L m (n-1) to the control unit 11. The control unit 11 receives the lift amount detection signal from the detection unit 6 and holds the maximum lift amount L m (n−1) indicated by the received lift amount detection signal as a parameter at the time of the subsequent n-th water discharge. To do.
 つぎに、nサイクル目の水吐出において、制御部11は、図3に示すように、ポンプ本体1による流体の1回の吐出で要求される当該流体の吐出量に応じて、ピストン2の目標移動量を導出する(ステップS101)。 Next, in the water discharge at the nth cycle, as shown in FIG. 3, the control unit 11 sets the target of the piston 2 according to the discharge amount of the fluid required for one discharge of the fluid by the pump body 1. A movement amount is derived (step S101).
 本実施形態では、このステップS101において、制御部11は、nサイクル目の水吐出で要求される水の吐出量に応じて、ピストン2の目標リフト量L(n)を導出する。 In the present embodiment, in step S101, the control unit 11 derives the target lift amount L t (n) of the piston 2 according to the water discharge amount required for the n-th water discharge.
 つぎに、制御部11は、ステップS101(目標移動量導出ステップ)によるピストン2の目標移動量と流体の前回吐出の際におけるピストン2の最大移動量との差をもとに、制御弁7の弁オン時間の時間補正値を算出する(ステップS102)。 Next, the control unit 11 determines the control valve 7 based on the difference between the target movement amount of the piston 2 in step S101 (target movement amount derivation step) and the maximum movement amount of the piston 2 at the previous discharge of fluid. A time correction value for the valve ON time is calculated (step S102).
 本実施形態では、このステップS102において、制御部11は、上述したステップS101で導出したピストン2の目標リフト量L(n)と、n-1サイクル目の水吐出の際に取得して保持したピストン2の最大リフト量L(n-1)との差(=L(n)-L(n-1))、すなわち図4に示すリフト量偏差ΔL(n)を算出する。制御部11は、この算出したリフト量偏差ΔL(n)をもとに、nサイクル目の水吐出における時間補正値ΔT12を算出する。この際、制御部11は、ポンプ本体1の設備仕様、例えば、作動油の圧力を利用して移動するピストン2の単位時間当たりのリフト量(リフト量の経時変化量)等に基づいて、リフト量偏差ΔL(n)を時間に換算(すなわち時間補正値ΔT12に換算)する。制御部11は、n-1サイクル目の水吐出における時間補正値ΔT2を、このように算出した時間補正値ΔT12に更新する。 In this embodiment, in step S102, the control unit 11 acquires and holds the target lift amount L t (n) of the piston 2 derived in step S101 described above and the water discharge at the (n-1) th cycle. The difference (= L t (n) −L m (n−1)) from the maximum lift amount L m (n−1) of the piston 2, that is, the lift amount deviation ΔL (n) shown in FIG. 4 is calculated. Based on the calculated lift amount deviation ΔL (n), the controller 11 calculates a time correction value ΔT12 in the nth cycle of water discharge. At this time, the control unit 11 lifts the lift based on the equipment specifications of the pump body 1, for example, the lift amount per unit time of the piston 2 that moves using the pressure of the hydraulic oil (amount of change over time of the lift amount). The quantity deviation ΔL (n) is converted into time (that is, converted into a time correction value ΔT12). The control unit 11 updates the time correction value ΔT2 in the water discharge of the (n−1) th cycle to the time correction value ΔT12 calculated in this way.
 つぎに、制御部11は、ステップS102(時間補正値算出ステップ)による時間補正値ΔT12を加味して、ポンプ本体1による流体の今回吐出の際における制御弁7の弁オン時間を補正する(ステップS103)。 Next, the control unit 11 corrects the valve-on time of the control valve 7 during the current discharge of the fluid by the pump body 1 in consideration of the time correction value ΔT12 in step S102 (time correction value calculation step) (step S102). S103).
 本実施形態では、このステップS103において、制御部11は、ピストン2の目標リフト量Lt(n)に応じて設定された制御弁7の弁オン基本時間ΔT11を導出する。例えば、制御部11は、データテーブル11aに基づいて、上述したステップS101による目標リフト量Lt(n)と相関する弁オン基本時間ΔT11を導出する。制御部11は、nサイクル目の水吐出における制御弁7の弁オン時間ΔT13を、上記のように導出した弁オン基本時間ΔT11とステップS102によって算出した時間補正値ΔT12とを合算した時間(=ΔT11+ΔT12)となるように算出(補正)する。 In the present embodiment, in this step S103, the control unit 11 derives the valve on basic time ΔT11 of the control valve 7 set according to the target lift amount Lt (n) of the piston 2. For example, the control unit 11 derives the valve-on basic time ΔT11 that correlates with the target lift amount Lt (n) in step S101 described above based on the data table 11a. The controller 11 adds the valve on basic time ΔT11 derived as described above and the time correction value ΔT12 calculated in step S102 to the valve on time ΔT13 of the control valve 7 in the water discharge of the nth cycle (= (T11 + ΔT12) is calculated (corrected).
 つぎに、制御部11は、ステップS103(補正ステップ)による補正後の弁オン時間ΔT13の期間、継続してオン状態となるように制御弁7を制御する(ステップS104)。制御部11は、このステップS104(補正ステップ)を実行後、上述したステップS101に戻り、このステップS101以降の処理ステップを繰り返す。 Next, the control unit 11 controls the control valve 7 so as to be continuously turned on during the valve on-time ΔT13 after the correction in step S103 (correction step) (step S104). After executing step S104 (correction step), the control unit 11 returns to step S101 described above and repeats the processing steps after step S101.
 本実施形態では、このステップS104において、制御部11は、上述したように補正した弁オン時間ΔT13継続してオン状態となるよう指示する弁制御信号S1(図4参照)を制御弁7に送信する。これにより、制御部11は、nサイクル目の水吐出における制御弁7のオン状態とオフ状態との切り換えを制御する。制御弁7は、図4に示すように、この弁制御信号S1に基づいて、時刻T3のタイミングにオフ状態からオン状態に切り換わり、その後、時刻T4のタイミングにオン状態からオフ状態に切り換わる。この時刻T3から時刻T4までの時間は、nサイクル目の水吐出における制御弁7の弁オン時間ΔT13である。 In the present embodiment, in step S104, the control unit 11 transmits to the control valve 7 a valve control signal S1 (see FIG. 4) that instructs the valve ON time ΔT13 corrected as described above to continue to be in the ON state. To do. Thereby, the control part 11 controls switching of the ON state of the control valve 7 in the water discharge of the nth cycle, and an OFF state. As shown in FIG. 4, the control valve 7 switches from the off state to the on state at the timing of time T3 based on the valve control signal S1, and then switches from the on state to the off state at the timing of time T4. . The time from time T3 to time T4 is the valve-on time ΔT13 of the control valve 7 in the water discharge of the nth cycle.
 弁オン時間ΔT13の期間、ポンプ本体1の作動油室4には、オン状態の制御弁7等を介して作動油が継続的に供給される。ポンプ本体1は、この供給された作動油の圧力を利用してピストン2を移動させ、これにより、水を加圧して吐出する。ピストン2のリフト量は、図4に示すように、制御弁7がオン状態となった時刻T3のタイミングから時間経過に伴い増加し、制御弁7がオフ状態となった時刻T4のタイミングから時間経過に伴い減少する。この場合、nサイクル目の水吐出におけるピストン2の最大リフト量L(n)は、図4に示すように、時刻T4のタイミングにおけるピストン2のリフト量となる。検出部6は、この最大リフト量L(n)を検出し、得られた最大リフト量L(n)を示すリフト量検出信号を制御部11に送信する。制御部11は、検出部6からリフト量検出信号を受信し、受信したリフト量検出信号によって示される最大リフト量L(n)を、続くn+1サイクル目の水吐出時のパラメータとして保持する。 During the valve on time ΔT13, hydraulic oil is continuously supplied to the hydraulic oil chamber 4 of the pump body 1 through the control valve 7 and the like in the on state. The pump body 1 moves the piston 2 using the pressure of the supplied hydraulic oil, thereby pressurizing and discharging water. As shown in FIG. 4, the lift amount of the piston 2 increases with the passage of time from the timing at time T3 when the control valve 7 is turned on, and the time from the timing at time T4 when the control valve 7 is turned off. Decreases with progress. In this case, the maximum lift amount L m (n) of the piston 2 in the water discharge at the nth cycle is the lift amount of the piston 2 at time T4 as shown in FIG. Detector 6 transmits a lift detection signal indicating the maximum detected the lift amount L m (n), the amount of the maximum resultant lift L m (n) to the controller 11. The control unit 11 receives the lift amount detection signal from the detection unit 6 and holds the maximum lift amount L m (n) indicated by the received lift amount detection signal as a parameter at the time of the subsequent n + 1 cycle water discharge.
 その後、n+1サイクル目の水吐出では、n+1サイクルの水吐出におけるピストン2の目標リフト量L(n+1)と、nサイクルの水吐出におけるピストン2の最大リフト量L(n)との差(=L(n+1)-L(n))であるリフト量偏差ΔL(n+1)を用いて、図3に示したしステップS101~S104の各処理ステップが行われる。これにより、n+1サイクル目の水吐出における制御弁7のオン状態とオフ状態との切り換えが制御され、この制御を通して、n+1サイクル目の水吐出におけるピストン2のリフト量が制御される。例えば、図4に示すように、n+1サイクル目の水吐出において、制御弁7は、弁制御信号S1に基づいて、時刻T5のタイミングにオフ状態からオン状態に切り換わり、その後、時刻T6のタイミングにオン状態からオフ状態に切り換わる。この時刻T5から時刻T6までの時間は、n+1サイクル目の水吐出における制御弁7の弁オン時間ΔT23である。この弁オン時間ΔT23は、図4に示すように、n+1サイクル目の水吐出におけるピストン2の目標リフト量L(n+1)に応じて設定された制御弁7の弁オン基本時間ΔT21と、n+1サイクル目の水吐出時に制御部11によって算出された時間補正値ΔT22とを合算した時間に相当する。 Thereafter, in the water discharge of the (n + 1) th cycle, the difference between the target lift amount L t (n + 1) of the piston 2 in the water discharge of the (n + 1) cycle and the maximum lift amount L m (n) of the piston 2 in the water discharge of the n cycle ( Using the lift amount deviation ΔL (n + 1) which is = L t (n + 1) −L m (n)), the respective processing steps of steps S101 to S104 shown in FIG. 3 are performed. Thereby, switching of the control valve 7 between the ON state and the OFF state in the water discharge of the (n + 1) th cycle is controlled, and the lift amount of the piston 2 in the water discharge of the (n + 1) th cycle is controlled through this control. For example, as shown in FIG. 4, in the water discharge of the (n + 1) th cycle, the control valve 7 switches from the off state to the on state at the time T5 based on the valve control signal S1, and then the timing at the time T6. Switch from on to off. The time from time T5 to time T6 is the valve ON time ΔT23 of the control valve 7 in the water discharge of the (n + 1) th cycle. As shown in FIG. 4, the valve on time ΔT23 is equal to the basic valve on time ΔT21 of the control valve 7 set according to the target lift amount L t (n + 1) of the piston 2 in the water discharge of the (n + 1) th cycle, and n + 1 This corresponds to the sum of the time correction value ΔT22 calculated by the control unit 11 when the water is discharged in the cycle.
 弁オン時間ΔT23の期間、ポンプ本体1の作動油室4には、オン状態の制御弁7等を介して作動油が継続的に供給される。ポンプ本体1は、この供給された作動油の圧力を利用してピストン2を移動させ、これにより、水を加圧して吐出する。ピストン2のリフト量は、図4に示すように、制御弁7がオン状態となった時刻T5のタイミングから時間経過に伴い増加し、制御弁7がオフ状態となった時刻T6のタイミングから時間経過に伴い減少する。この場合、n+1サイクル目の水吐出におけるピストン2の最大リフト量は、図4に示すように、時刻T6のタイミングにおけるピストン2のリフト量となる。検出部6は、この最大リフト量を検出し、得られた最大リフト量を示すリフト量検出信号を制御部11に送信する。制御部11は、上述したn-1サイクル目およびnサイクル目の各水吐出の場合と同様に、この最大リフト量を、続くサイクルの水吐出時のパラメータとして保持する。 During the valve on time ΔT23, the hydraulic oil is continuously supplied to the hydraulic oil chamber 4 of the pump body 1 through the control valve 7 in the on state. The pump body 1 moves the piston 2 using the pressure of the supplied hydraulic oil, thereby pressurizing and discharging water. As shown in FIG. 4, the lift amount of the piston 2 increases with the passage of time from the timing at time T5 when the control valve 7 is turned on, and the time from the timing at time T6 when the control valve 7 is turned off. Decreases with progress. In this case, the maximum lift amount of the piston 2 in the water discharge of the (n + 1) th cycle is the lift amount of the piston 2 at the timing of time T6 as shown in FIG. The detection unit 6 detects the maximum lift amount and transmits a lift amount detection signal indicating the obtained maximum lift amount to the control unit 11. The control unit 11 holds this maximum lift amount as a parameter at the time of water discharge in the subsequent cycle, as in the case of each of the water discharges in the (n-1) th cycle and the nth cycle described above.
 上述したような舶用流体ポンプ10の制御方法により、nサイクル目の水吐出におけるピストン2の目標リフト量L(n)と最大リフト量L(n)との誤差は、n-1サイクル目の水吐出に比べて低減されている。同様に、n+1サイクル目の水吐出におけるピストン2の目標リフト量L(n+1)と最大リフト量との誤差は、nサイクル目の水吐出に比べて低減されている。 By the control method of the marine fluid pump 10 as described above, the error between the target lift amount L t (n) of the piston 2 and the maximum lift amount L m (n) in the water discharge of the nth cycle is the n−1th cycle. It is reduced compared to the water discharge. Similarly, the error between the target lift amount L t (n + 1) of the piston 2 and the maximum lift amount in the water discharge of the (n + 1) th cycle is reduced compared to the water discharge of the nth cycle.
 以上、説明したように、本発明の実施形態に係る舶用流体ポンプ10およびその制御方法では、ポンプ本体1を作動させる作動油の供給を行うための制御弁7を、作動油を供給するオン状態と作動油の供給を停止するオフ状態とを択一的に切り換える開閉型の制御弁とし、ポンプ本体1による流体の1回の吐出で要求される流体吐出量に応じて、ポンプ本体1のピストン2の目標移動量を導出し、今回の流体吐出の際におけるピストン2の目標移動量と前回の流体吐出の際におけるピストン2の最大移動量との差をもとに、制御弁7をオン状態とする弁オン時間の時間補正値を算出し、算出された時間補正値を加味して、今回の流体吐出の際における制御弁7の弁オン時間を補正し、補正後の弁オン時間継続してオン状態となるように制御弁7を制御するようにし、この制御弁7を介してポンプ本体1に供給された作動油の圧力を利用してピストン2を移動させることにより、ピストン2が流体を加圧してポンプ本体1から吐出するようにしている。 As described above, in the marine fluid pump 10 and its control method according to the embodiment of the present invention, the control valve 7 for supplying the hydraulic oil for operating the pump body 1 is turned on to supply the hydraulic oil. And an open / close control valve that selectively switches off the supply of hydraulic oil, and the piston of the pump body 1 according to the fluid discharge amount required for one discharge of the fluid by the pump body 1 2 is derived, and the control valve 7 is turned on based on the difference between the target movement amount of the piston 2 during the current fluid discharge and the maximum movement amount of the piston 2 during the previous fluid discharge. The time correction value of the valve on time is calculated, and the valve on time of the control valve 7 at the time of the current fluid discharge is corrected in consideration of the calculated time correction value, and the valve on time after correction is continued. Control to turn on 7, and the piston 2 is moved using the pressure of the hydraulic oil supplied to the pump body 1 through the control valve 7, so that the piston 2 pressurizes the fluid and discharges it from the pump body 1. Like to do.
 上記の構成により、ポンプ本体1による流体の吐出期間中にピストン2の移動量の実測値と目標値との偏差を逐次算出して制御弁の開度を調整する等の煩雑な演算処理および弁開度制御を行わずとも、制御弁7の弁オン時間を簡易な装置構成で精度良く補正することができる。このため、流体を加圧して吐出する際のピストン2の移動量を、装置構成に掛かるコストの増大を抑制しながら精度良く制御することができる。この結果、舶用流体ポンプ10に要求される流体の吐出量(例えば舶用ディーゼルエンジンでの燃料噴射量や注水量等)の精度を担保することができる。 With the above configuration, complicated calculation processing such as adjusting the opening degree of the control valve by sequentially calculating the deviation between the measured value of the movement amount of the piston 2 and the target value during the fluid discharge period by the pump body 1 and the valve Even if the opening degree control is not performed, the valve ON time of the control valve 7 can be accurately corrected with a simple device configuration. For this reason, it is possible to accurately control the movement amount of the piston 2 when the fluid is pressurized and discharged while suppressing an increase in cost for the apparatus configuration. As a result, it is possible to ensure the accuracy of the fluid discharge amount required for the marine fluid pump 10 (for example, the fuel injection amount or water injection amount in the marine diesel engine).
 また、上述した制御弁7として、異物の混入に比較的弱い開度調整型の電磁弁ではなく、異物の混入に比較的強い開閉型の電磁弁を用いているため、舶用ディーゼルエンジンが動作する環境下、すなわち、異物の混入が起こり易い環境下に設置される舶用流体ポンプ10に好適な制御弁7を構成することができる。この結果、船舶内における舶用流体ポンプ10の制御弁7への異物混入に起因する故障やメンテナンス頻度を抑制することができる。 In addition, since the above-described control valve 7 is an opening / closing type electromagnetic valve that is relatively resistant to foreign matter mixing, rather than an opening adjustment type electromagnetic valve that is relatively weak against foreign matter mixing, the marine diesel engine operates. The control valve 7 suitable for the marine fluid pump 10 installed in an environment, that is, an environment in which foreign matter is likely to be mixed, can be configured. As a result, it is possible to suppress failure and maintenance frequency due to foreign matter mixing into the control valve 7 of the marine fluid pump 10 in the marine vessel.
 なお、上述した実施形態では、舶用流体ポンプ10として注水ポンプを例示したが、本発明は、これに限定されるものではない。例えば、舶用流体ポンプ10は、燃料噴射弁に対して燃料を吐出(圧送)する燃料噴射ポンプであってもよいし、燃料以外の流体を吐出するポンプであってもよい。すなわち、本発明において、吐出対象の流体の種類は特に問われない。 In the above-described embodiment, the water injection pump is exemplified as the marine fluid pump 10, but the present invention is not limited to this. For example, the marine fluid pump 10 may be a fuel injection pump that discharges (pressure feeds) fuel to the fuel injection valve, or may be a pump that discharges fluid other than fuel. That is, in the present invention, the type of fluid to be discharged is not particularly limited.
 また、上述した実施形態では、ピストン2の目標移動量と制御弁7の弁オン基本時間との相関を示すデータテーブル11aが予め設定された制御部11を例示したが、本発明は、これに限定されるものではない。例えば、制御部11には、ピストン2の目標移動量をもとに制御弁7の弁オン基本時間を算出する演算式や演算プログラム等が予め設定されていてもよい。 In the above-described embodiment, the control unit 11 in which the data table 11a indicating the correlation between the target movement amount of the piston 2 and the basic valve-on time of the control valve 7 is illustrated as an example. It is not limited. For example, the control unit 11 may be preliminarily set with an arithmetic expression, a calculation program, or the like that calculates the valve-on basic time of the control valve 7 based on the target movement amount of the piston 2.
 また、上述した実施形態では、ピストン2の移動量としてリフト量(ピストン2の上向きの移動量)を例示したが、本発明は、これに限定されるものではない。本発明において、ピストン2の移動量は吐出対象の流体を加圧する方向への移動量であればよく、この方向は特に問われない。 In the above-described embodiment, the lift amount (the upward movement amount of the piston 2) is exemplified as the movement amount of the piston 2, but the present invention is not limited to this. In the present invention, the movement amount of the piston 2 may be any movement amount in the direction in which the fluid to be discharged is pressurized, and this direction is not particularly limited.
 また、上述した実施形態により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施形態に基づいて当業者等によりなされる他の実施形態、実施例および運用技術等は全て本発明の範疇に含まれる。 Further, the present invention is not limited by the above-described embodiment, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined. In addition, other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are all included in the scope of the present invention.
 以上のように、本発明に係る舶用流体ポンプおよびその制御方法は、舶用ディーゼルエンジンにおける燃料や水等の流体の吐出に有用であり、特に、流体を加圧して吐出する際のピストンの移動量を、コストの増大を抑制しながら精度良く制御することができる舶用流体ポンプおよびその制御方法に適している。 As described above, the marine fluid pump and the control method thereof according to the present invention are useful for discharging fluids such as fuel and water in marine diesel engines, and in particular, the amount of movement of the piston when the fluid is pressurized and discharged. Is suitable for a marine fluid pump that can be controlled with high accuracy while suppressing an increase in cost, and a control method thereof.
 1 ポンプ本体
 2 ピストン
 2a 前部
 2b 後部
 2c テーパ部
 3 吐出室
 4 作動油室
 5 注水口
 6 検出部
 6a 検出処理部
 6b 演算処理部
 7 制御弁
 7a 供給流路ユニット
 7b 排出流路ユニット
 7c 駆動部
 8a 供給流路
 8b 閉路
 9a 排出流路
 9b 閉路
 10 舶用流体ポンプ
 11 制御部
 11a データテーブル
 15 作動油管
 16 ドレン管
 17 作動油流通路
 18 注水管
 S1 弁制御信号
DESCRIPTION OF SYMBOLS 1 Pump main body 2 Piston 2a Front part 2b Rear part 2c Tapered part 3 Discharge chamber 4 Hydraulic oil chamber 5 Water injection port 6 Detection part 6a Detection processing part 6b Calculation processing part 7 Control valve 7a Supply flow path unit 7b Discharge flow path unit 7c Drive part 8a Supply flow path 8b Closed path 9a Discharge flow path 9b Closed path 10 Marine fluid pump 11 Control section 11a Data table 15 Hydraulic oil pipe 16 Drain pipe 17 Hydraulic oil flow path 18 Water injection pipe S1 Valve control signal

Claims (6)

  1.  作動油の圧力を利用してピストンを移動させることにより、流体を加圧して吐出するポンプ本体と、
     前記流体の1回の吐出における前記ピストンの最大移動量を検出する検出部と、
     前記ポンプ本体に前記作動油を供給するオン状態と前記作動油の供給を停止するオフ状態とを択一的に切り換える制御弁と、
     前記流体の1回の吐出で要求される前記流体の吐出量に応じて前記ピストンの目標移動量を導出し、前記流体の今回吐出の際に導出された前記目標移動量と前回吐出の際に検出された前記最大移動量との差をもとに、前記制御弁を前記オン状態とする時間である弁オン時間の時間補正値を算出し、算出された前記時間補正値を加味して、前記流体の今回吐出の際における前記弁オン時間を補正し、補正後の前記弁オン時間継続して前記オン状態となるように前記制御弁を制御する制御部と、
     を備えることを特徴とする舶用流体ポンプ。
    A pump body that pressurizes and discharges fluid by moving the piston using the pressure of hydraulic oil;
    A detection unit for detecting a maximum movement amount of the piston in one discharge of the fluid;
    A control valve that selectively switches between an on state for supplying the hydraulic oil to the pump body and an off state for stopping the supply of the hydraulic oil;
    A target movement amount of the piston is derived according to a discharge amount of the fluid required for one discharge of the fluid, and the target movement amount derived at the time of the current discharge of the fluid and a previous discharge. Based on the difference from the detected maximum movement amount, calculate a time correction value of the valve on time that is the time to turn the control valve in the on state, taking into account the calculated time correction value, A controller that corrects the valve on-time during the current discharge of the fluid, and controls the control valve so that the valve on-time after the correction continues and is in the on state;
    A marine fluid pump comprising:
  2.  前記制御部は、前記ピストンの前記目標移動量に応じて設定された前記制御弁の弁オン時間である弁オン基本時間を導出し、前記流体の今回吐出の際における前記弁オン時間を、前記弁オン基本時間と前記時間補正値とを合算した時間となるように補正することを特徴とする請求項1に記載の舶用流体ポンプ。 The control unit derives a valve on basic time which is a valve on time of the control valve set according to the target movement amount of the piston, and the valve on time at the time of the current discharge of the fluid is The marine fluid pump according to claim 1, wherein the marine fluid pump is corrected so as to be a time obtained by adding a valve on basic time and the time correction value.
  3.  前記制御部は、前記ピストンの前記目標移動量と前記制御弁の前記弁オン基本時間との相関を示すデータテーブルを有し、前記流体の今回吐出の際に導出された前記目標移動量と相関する前記弁オン基本時間を前記データテーブルに基づいて導出することを特徴とする請求項2に記載の舶用流体ポンプ。 The control unit has a data table indicating a correlation between the target movement amount of the piston and the valve-on basic time of the control valve, and is correlated with the target movement amount derived at the time of the current discharge of the fluid. The marine fluid pump according to claim 2, wherein the basic valve-on time is derived based on the data table.
  4.  ポンプ本体に作動油を供給するオン状態と前記作動油の供給を停止するオフ状態とを択一的に切り換える制御弁を介して前記ポンプ本体に作動油を供給し、供給された前記作動油の圧力を利用して前記ポンプ本体のピストンを移動させることにより、流体を加圧して吐出する舶用流体ポンプの制御方法において、
     前記流体の1回の吐出で要求される前記流体の吐出量に応じて、前記ピストンの目標移動量を導出する目標移動量導出ステップと、
     前記目標移動量導出ステップによる前記ピストンの前記目標移動量と前記流体の前回吐出の際における前記ピストンの最大移動量との差をもとに、前記制御弁を前記オン状態とする時間である弁オン時間の時間補正値を算出する時間補正値算出ステップと、
     前記時間補正値算出ステップによる前記時間補正値を加味して、前記流体の今回吐出の際における前記弁オン時間を補正する補正ステップと、
     補正後の前記弁オン時間継続して前記オン状態となるように前記制御弁を制御する制御ステップと、
     を含むことを特徴とする舶用流体ポンプの制御方法。
    The hydraulic oil is supplied to the pump body via a control valve that selectively switches between an on state for supplying the hydraulic oil to the pump body and an off state for stopping the supply of the hydraulic oil. In a control method for a marine fluid pump that pressurizes and discharges fluid by moving the piston of the pump body using pressure,
    A target movement amount deriving step for deriving a target movement amount of the piston in accordance with a discharge amount of the fluid required for one discharge of the fluid;
    A valve that is the time for which the control valve is turned on based on the difference between the target movement amount of the piston in the target movement amount derivation step and the maximum movement amount of the piston at the previous discharge of the fluid. A time correction value calculating step for calculating a time correction value of the on-time;
    In consideration of the time correction value in the time correction value calculation step, a correction step of correcting the valve on time at the time of the current discharge of the fluid;
    A control step for controlling the control valve so that the valve on-time after the correction continues and is in the on state;
    A control method for a marine fluid pump, comprising:
  5.  前記補正ステップは、前記ピストンの前記目標移動量に応じて設定された前記制御弁の弁オン時間である弁オン基本時間を導出し、前記流体の今回吐出の際における前記弁オン時間を、前記弁オン基本時間と前記時間補正値とを合算した時間となるように補正することを特徴とする請求項4に記載の舶用流体ポンプの制御方法。 The correction step derives a valve on basic time that is a valve on time of the control valve set according to the target movement amount of the piston, and sets the valve on time at the time of the current discharge of the fluid as the valve on time. 5. The marine fluid pump control method according to claim 4, wherein a correction is made so as to be a time obtained by adding a valve on basic time and the time correction value.
  6.  前記補正ステップは、前記ピストンの前記目標移動量と前記制御弁の前記弁オン基本時間との相関を示すデータテーブルに基づいて、前記目標移動量導出ステップによる前記目標移動量と相関する前記弁オン基本時間を導出することを特徴とする請求項5に記載の舶用流体ポンプの制御方法。 In the correction step, based on a data table indicating a correlation between the target movement amount of the piston and the valve-on basic time of the control valve, the valve ON that correlates with the target movement amount in the target movement amount derivation step. 6. The marine fluid pump control method according to claim 5, wherein a basic time is derived.
PCT/JP2019/005958 2018-03-02 2019-02-19 Fluid pump for ship and method for controlling same WO2019167708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207024036A KR102316904B1 (en) 2018-03-02 2019-02-19 Marine fluid pump and its control method
CN201980016089.1A CN111788381B (en) 2018-03-02 2019-02-19 Fluid pump for ship and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037827A JP6546307B1 (en) 2018-03-02 2018-03-02 Marine fluid pump and control method thereof
JP2018-037827 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019167708A1 true WO2019167708A1 (en) 2019-09-06

Family

ID=67297630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005958 WO2019167708A1 (en) 2018-03-02 2019-02-19 Fluid pump for ship and method for controlling same

Country Status (4)

Country Link
JP (1) JP6546307B1 (en)
KR (1) KR102316904B1 (en)
CN (1) CN111788381B (en)
WO (1) WO2019167708A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356156A (en) * 1999-06-15 2000-12-26 Isuzu Motors Ltd Common rail type fuel injection device
JP2009085074A (en) * 2007-09-28 2009-04-23 Denso Corp Control device for accumulator fuel-injection system
JP2010103315A (en) * 2008-10-23 2010-05-06 Denso Corp Piezoelectric actuator and fuel injection valve using the same
JP2012002179A (en) * 2010-06-18 2012-01-05 Denso Corp Device for control of high pressure pump
JP2013142299A (en) * 2012-01-10 2013-07-22 Honda Motor Co Ltd Fuel supply system for internal combustion engine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176742A (en) 1990-11-08 1992-06-24 Hayashi Gijutsu Kenkyusho:Kk Manufacture of automobile floor carpet
JP3287297B2 (en) * 1998-02-10 2002-06-04 トヨタ自動車株式会社 Fuel pump control device
JP2002364396A (en) * 2001-06-05 2002-12-18 Tokico Ltd Fuel mixing and filling system
JP5061347B2 (en) * 2004-11-04 2012-10-31 国立大学法人東京海洋大学 Fuel injection control method and apparatus for marine diesel engines
JP4176742B2 (en) * 2005-06-14 2008-11-05 三菱重工業株式会社 Hydraulic pressure supply device for internal combustion engine
NL2002384C2 (en) * 2008-03-03 2011-04-04 Vialle Alternative Fuel Systems Bv DEVICE AND METHOD FOR A COMBUSTION ENGINE WITH DIRECT INJECTION WITH TWO FUELS.
EP2295774A1 (en) * 2009-08-18 2011-03-16 Delphi Technologies Holding S.à.r.l. Control method for a common rail fuel pump and apparatus for performing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000356156A (en) * 1999-06-15 2000-12-26 Isuzu Motors Ltd Common rail type fuel injection device
JP2009085074A (en) * 2007-09-28 2009-04-23 Denso Corp Control device for accumulator fuel-injection system
JP2010103315A (en) * 2008-10-23 2010-05-06 Denso Corp Piezoelectric actuator and fuel injection valve using the same
JP2012002179A (en) * 2010-06-18 2012-01-05 Denso Corp Device for control of high pressure pump
JP2013142299A (en) * 2012-01-10 2013-07-22 Honda Motor Co Ltd Fuel supply system for internal combustion engine

Also Published As

Publication number Publication date
JP6546307B1 (en) 2019-07-17
KR102316904B1 (en) 2021-10-22
CN111788381B (en) 2022-05-03
KR20200105951A (en) 2020-09-09
CN111788381A (en) 2020-10-16
JP2019152148A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
US5197438A (en) Variable discharge high pressure pump
US7789068B2 (en) Control method of a direct injection system of the common rail type provided with a high-pressure fuel pump
US9316478B2 (en) Method and device for detecting when a closing point of a hydraulic valve has been reached
KR100289918B1 (en) Control device of fuel pump
EP1927744B1 (en) Fuel injection apparatus for engine and method of operating the engine equipped with the apparatus
JP4609524B2 (en) Fuel pressure control device and fuel pressure control system
JP2007239573A (en) Abnormality determination device of fuel supply system
JP2010174800A (en) Accumulator fuel injection device
KR20160140923A (en) Method and device for operating a pressure reservoir, in particular for common rail injection systems in automobile engineering
US9617947B2 (en) Fuel injection control device
JP2005127164A (en) Common rail type fuel injection apparatus
CN103133166A (en) Fuel-pressure-sensor diagnosis device
EP1201905B1 (en) A device for detecting failure in a high pressure fuel supply system
US7814887B2 (en) Method and device for controlling a pump connected to a fuel rail
WO2019167708A1 (en) Fluid pump for ship and method for controlling same
EP1371836B1 (en) Fuel supply control system for internal combustion engine
US9217406B2 (en) Method for controlling a high-pressure fuel pump
US8676473B2 (en) Method for the self-learning of the variation of a nominal functioning feature of a high pressure variable delivery pump in an internal combustion engine
CN109154243B (en) Fuel injection valve energization control method and common rail type fuel injection control device
WO2018198639A1 (en) Relief valve determining device for high-pressure fuel supply system
JP2007092655A (en) Control device for accumulator type fuel system
JP4597220B2 (en) Control device for internal combustion engine
JP7054363B2 (en) Fuel pump controller
CN102635454B (en) Fuel pressurization conveying system, fuel pressurization conveying control device and control method thereof
GB2575275A (en) A method of determining the functionality of an NRV in a high pressure fuel pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761594

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207024036

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761594

Country of ref document: EP

Kind code of ref document: A1