WO2019167586A1 - Shock absorber - Google Patents

Shock absorber Download PDF

Info

Publication number
WO2019167586A1
WO2019167586A1 PCT/JP2019/004369 JP2019004369W WO2019167586A1 WO 2019167586 A1 WO2019167586 A1 WO 2019167586A1 JP 2019004369 W JP2019004369 W JP 2019004369W WO 2019167586 A1 WO2019167586 A1 WO 2019167586A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorber
water
impact
shock absorber
outlet
Prior art date
Application number
PCT/JP2019/004369
Other languages
French (fr)
Japanese (ja)
Inventor
杉江悠一
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2019524286A priority Critical patent/JP7311896B2/en
Publication of WO2019167586A1 publication Critical patent/WO2019167586A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/04Devices damping pulsations or vibrations in fluids

Definitions

  • the technology disclosed here relates to an impact absorber.
  • the fluid system includes various devices, and each device is connected by piping.
  • the fluid system disclosed in Patent Document 1 includes a heat exchanger, and piping is connected to an inlet and an outlet of the heat exchanger.
  • a pipe connected to the outlet of the heat exchanger is provided with an on-off valve that switches the flow / shutoff of hot water.
  • an impact such as a water hammer often occurs.
  • a water hammer may be generated in the pipe.
  • a large impact is generated and the impact propagates through the fluid in the pipe.
  • the impact acts on the heat exchanger.
  • an impact absorber on the downstream side of the heat exchanger.
  • such an impact does not necessarily occur only on the downstream side of the device to be protected, but may occur on the upstream side of the device.
  • the shock absorber is arranged according to the positional relationship between the place where the occurrence of the shock is expected and the device to be protected from the shock. That is, the shock absorber is required to be able to cope with both the impact from the upstream side and the impact from the downstream side. Further, since the shock absorber is incorporated in the fluid system, it is necessary to ensure a sufficient flow rate in a normal use state where no shock is generated.
  • the technology disclosed herein has been made in view of the above points, and its purpose is to provide an impact absorber that can mitigate impacts from both upstream and downstream while ensuring a normal flow rate. It is to provide.
  • the shock absorber disclosed herein includes a casing having an inlet through which fluid flows in and an outlet through which fluid flows out, and an absorber that is disposed in the casing and is moved by being pushed by the fluid flowing in the casing.
  • a first flow path that connects the inlet and the outlet is formed in the casing, and the absorber has a part of a second flow path that connects the inlet and the outlet.
  • the absorber closes the inlet and blocks the first flow path.
  • the absorber is positioned closer to the outlet than at the time of reverse flow. Maintaining the open state, the first Road and through the second flow path circulating a fluid.
  • the impact absorber it is possible to provide an impact absorber that can mitigate impacts from both upstream and downstream while securing a normal flow rate.
  • FIG. 1 is an exploded perspective view of the shock absorber according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the shock absorber during forward flow.
  • FIG. 3 is a longitudinal sectional view of the shock absorber during reverse flow.
  • FIG. 4 is a configuration diagram of the fluid system.
  • FIG. 5 is a longitudinal sectional view of the shock absorber according to the second embodiment, and shows a state in which an impact in the forward flow direction is applied.
  • FIG. 6 is a longitudinal sectional view of the shock absorber according to the second embodiment, and shows a state in which an impact in the reverse flow direction is applied.
  • FIG. 1 is an exploded perspective view of an impact absorber 1 according to the first embodiment.
  • FIG. 2 is a longitudinal sectional view of the shock absorber 1 during forward flow.
  • FIG. 3 is a longitudinal sectional view of the shock absorber 1 during backflow.
  • the shock absorber 1 includes a casing 10 and an absorber 40.
  • Casing 10 has a cylindrical portion 20 and a lid 30 attached to the cylindrical portion 20.
  • the cylinder part 20 is formed in the bottomed substantially cylindrical shape.
  • the cylindrical portion 20 includes a substantially cylindrical peripheral wall 21 having the X axis as an axis, and a substantially disc-shaped bottom wall 22 connected to one end of the peripheral wall 21 in the X axis direction.
  • a substantially circular inlet 23 is formed through the bottom wall 22.
  • the central axis of the inflow port 23 coincides with the X axis.
  • a bearing 24 that supports the absorber 40 is provided on the bottom wall 22.
  • the bearing 24 is disposed substantially at the center of the inlet 23 and is connected to the bottom wall 22 via two beams 25.
  • the axis of the bearing 24 coincides with the X axis.
  • the two beams 25 extend in the radial direction about the X axis.
  • the two beams 25 are arranged on a substantially straight line.
  • a protrusion 26 is provided on the inner surface of the bottom wall 22 (that is, the inner surface of the casing 10).
  • the protrusion 26 is formed in an annular shape so as to surround the inflow port 23.
  • the lid 30 is formed in a substantially annular shape.
  • the lid 30 is screwed to the end of the peripheral wall 21 in the X-axis direction where the bottom wall 22 is not provided.
  • the lid 30 includes a ring 31 formed in an annular shape and a bearing 34 that supports the absorber 40.
  • a substantially circular outlet 33 is formed by the opening of the ring 31.
  • the central axis of the outflow port 33 coincides with the X axis.
  • the bearing 34 is disposed substantially at the center of the ring 31 and is connected to the ring 31 through three beams 35.
  • the three beams 35 extend in the radial direction around the X axis.
  • the three beams 35 are arranged at equal intervals around the X axis.
  • the axis of the bearing 34 coincides with the X axis.
  • the lid 30 is provided with three stoppers 36 protruding inside the casing 10.
  • the three stoppers 36 are arranged at equal intervals around the X axis. More specifically, each stopper 36 is provided at a connection portion between each beam 35 and the ring 31.
  • the absorber 40 has a receiving part 41 and a shaft 50.
  • the receiving portion 41 has a substantially circular outer shape centering on the X axis.
  • the outer diameter of the receiving portion 41 is smaller than the inner diameter of the peripheral wall 21 and larger than the inner diameter of the inflow port 23.
  • the shaft 50 penetrates the receiving portion 41 and extends in the X-axis direction.
  • the axis of the shaft 50 coincides with the X axis. That is, the shaft 50 is provided at the center of the receiving portion 41.
  • Both end portions of the shaft 50 are fitted in the bearing 24 and the bearing 34 so as to be slidable in the X-axis direction.
  • the absorber 40 is arranged in the casing 10 in a state in which the absorber 40 can move in the X-axis direction.
  • the peripheral portion of the receiving portion 41 is formed flat.
  • An inner portion of the receiving portion 41 with respect to the peripheral portion is formed in a curved shape.
  • a first receiving surface 42 on which a fluid flowing in from the inflow port 23 collides is formed in a portion of the receiving portion 41 facing the inflow port 23.
  • the first receiving surface 42 is inclined with respect to the X axis. More specifically, the first receiving surface 42 is a concave curved surface that is curved so that the center (that is, the portion through which the X axis passes) is most concave.
  • a portion of the receiving portion 41 that faces the outflow port 33 is formed with a second receiving surface 43 on which the fluid flowing backward from the outflow port 33 collides. Most of the second receiving surface 43 is inclined with respect to the X axis. More specifically, the second receiving surface 43 is a convex curved surface that is curved so that the center (that is, the portion through which the X axis passes) bulges most.
  • a circular concave groove 44 extending in the circumferential direction around the X axis is formed on the surface of the peripheral portion of the receiving portion 41 facing the inflow port 23.
  • An annular rubber 45 is fitted in the concave groove 44. The rubber 45 comes into contact with the protruding portion 26 of the casing 10 when the absorber 40 moves toward the inflow port 23.
  • the surface of the peripheral portion of the receiving portion 41 facing the outlet 33 comes into contact with the stopper 36 of the casing 10 when the absorber 40 moves toward the outlet 33.
  • the receiving portion 41 has six through holes 46 through which fluid passes. Specifically, one end of each through hole 46 opens to the first receiving surface 42 and the other end opens to the second receiving surface 43.
  • the through hole 46 penetrates the receiving portion 41 substantially parallel to the X axis.
  • the six through holes 46 are arranged at equal intervals in the circumferential direction around the X axis.
  • a gap is formed between the peripheral wall 21 of the casing 10 and the receiving portion 41 of the absorber 40. That is, in the casing 10, the 1st flow path F1 (two-dot chain line of FIG. 2) which connects the inflow port 23 and the outflow port 33 through the clearance gap between the surrounding wall 21 and the receiving part 41 is formed. In addition, a second flow path F ⁇ b> 2 (broken line in FIGS. 2 and 3) that connects the inflow port 23 and the outflow port 33 through the through hole 46 of the absorber 40 is formed in the casing 10.
  • FIG. 4 is a configuration diagram of the fluid system 9.
  • the fluid system 9 includes devices such as a heat exchanger 91 and a valve 92, and pipes 93 that connect the devices.
  • a valve 92 is disposed downstream of the heat exchanger 91. Water circulates through the heat exchanger 91, the valve 92, and the pipe 93 (at least the section shown). Water is an example of a fluid.
  • the fluid system 9 further includes two shock absorbers 1.
  • the shock absorber 1 disposed on the upstream side of the heat exchanger 91 is referred to as a first shock absorber 1A
  • the shock absorber 1 disposed on the downstream side of the heat exchanger 91 and on the upstream side of the valve 92 Is referred to as a second shock absorber 1B.
  • Both the first shock absorber 1A and the second shock absorber 1B have the above-described configuration.
  • the first shock absorber 1A reduces the shock that propagates to the heat exchanger 91 from the upstream side of the first shock absorber 1A.
  • the second shock absorber 1B reduces the shock that propagates to the heat exchanger 91 from the downstream side of the second shock absorber 1B.
  • the first flow path F1 is open. That is, the water flowing through the pipe 93 flows into the casing 10 from the inlet 23.
  • the inflow direction of water from the inflow port 23 is substantially parallel to the X axis.
  • the water that flows in generally proceeds in the X-axis direction and collides with the first receiving surface 42 of the absorber 40. Since the first receiving surface 42 is formed in a concave curved surface that is curved so that the center is recessed, water that has collided with the first receiving surface 42 has a deep portion of the concave curved surface along the first receiving surface 42, that is, the first 1 Flows so as to turn toward the center of the receiving surface 42.
  • the second flow path F2 is also opened. That is, a part of the water flowing in from the inflow port 23 passes through the absorber 40 from the first receiving surface 42 side to the second receiving surface 43 side through the through hole 46. Thus, the water that has passed through the absorber 40 also flows out of the casing 10 through the outlet 33.
  • the shock propagates to the shock absorber 1. That is, water can flow into the shock absorber 1 vigorously.
  • the impact absorber 1 absorbs the impact of water and reduces the impact that propagates downstream of the impact absorber 1.
  • the water flowing in from the inlet 23 first collides with the absorber 40. This reduces the impact of water.
  • the first receiving surface 42 is inclined (more specifically, curved) so as to be recessed toward the center, the water colliding with the first receiving surface 42 gathers at the center of the first receiving surface 42. To go. In this way, the impact of water is also weakened by the collision of water gathering at the center of the first receiving surface 42.
  • the water flows through the first flow path F ⁇ b> 1 bent or curved so as to bypass the absorber 40.
  • the impact of water is also weakened by the channel resistance at this time.
  • a part of the water passes through the through hole 46 of the absorber 40.
  • the impact of water is also weakened by the flow path resistance of the through hole 46 at this time.
  • the water flowing through the pipe 93 flows into the casing 10 from the inlet 23, the water flows in substantially parallel to the X axis.
  • the water that flows in generally proceeds in the X-axis direction and collides with the first receiving surface 42 of the absorber 40. Since the first receiving surface 42 is inclined so that the center swells, a part of the impact of water colliding with the first receiving surface 42 escapes along the first receiving surface 42. That is, the impact received by the absorber 40 is slightly reduced. Moreover, the impact received by the absorber 40 is also slightly reduced by a part of the water colliding with the first receiving surface 42 flowing into the through hole 46.
  • the impact of water flowing out of the shock absorber 1 during forward flow is weakened.
  • the impact of water propagating to the heat exchanger 91 is reduced by the first shock absorber 1A.
  • the impact of water propagating to the valve 92 is reduced by the second shock absorber 1B.
  • a water hammer may occur on the downstream side of the shock absorber 1.
  • a water hammer may occur upstream of the valve 92 when the valve 92 is closed and the flow of water is suddenly interrupted.
  • the impact propagates from the location where the water hammer is generated to the upstream side and the downstream side.
  • water flows in the direction opposite to that in the forward flow. This flow is called “back flow”.
  • back flow water flows into the impact absorber 1 from the outlet 33 vigorously.
  • the impact absorber 1 absorbs the impact of water and reduces the impact that propagates upstream of the impact absorber 1.
  • the opening of the second flow path F2 is maintained. That is, the water that flows in from the outlet 33 passes through the absorber 40 from the second receiving surface 43 side to the first receiving surface 42 side through the through hole 46. The water that has passed through the absorber 40 flows out of the casing 10 through the inflow port 23. The impact of water is also weakened by the flow path resistance when passing through the through hole 46. In other words, only water that has passed through the through hole 46 and whose impact has weakened flows out from the shock absorber 1 to the upstream side. If the shock absorber 1 completely blocks the flow of water, all the water shocks flowing into the shock absorber 1 must be received by the absorber 40 or the like. On the other hand, the impact on the absorber 40 etc. can be relieved by flowing a part of water through the second flow path F2.
  • circulates the piping 93 flows in into the casing 10 from the outflow port 33, it flows in in parallel with a X-axis substantially. That is, the inflow direction of water from the outlet 33 is substantially parallel to the X axis.
  • the inflowing water generally travels in the X-axis direction and collides with the second receiving surface 43 of the absorber 40. Since the second receiving surface 43 is inclined (more specifically, curved) so that the center swells, a part of the impact of water colliding with the second receiving surface 43 is along the second receiving surface 43. And run away. That is, the impact received by the absorber 40 is slightly reduced. Further, when the absorber 40 contacts the protruding portion 26, the rubber 45 contacts the protruding portion 26, so that the impact when the absorber 40 closes the inlet 23 is alleviated.
  • the impact of water flowing out from the shock absorber 1 to the upstream side during backflow is weakened.
  • the impact transmitted to the heat exchanger 91 is reduced by the second shock absorber 1B.
  • the shock absorber 1 can alleviate the impact from both the upstream side and the downstream side, and reduce the impact of the flowing water.
  • the open state of the first flow path F1 is maintained without closing the inflow port 23 and the outflow port 33, so that it is possible to secure a flow rate through the shock absorber 1. That is, it is possible to ensure a normal flow rate in which no water hammer or the like is generated.
  • the shock absorber 1 is disposed in the casing 10 having the inlet 23 into which water (fluid) flows in and the outlet 33 from which water flows out, and pushes against the water flowing in the casing 10.
  • the first flow path F1 that connects the inlet 23 and the outlet 33 is formed in the casing 10, and the absorber 40 includes the inlet 23, the outlet 33, and the like.
  • the absorber 40 closes the inlet 23 during reverse flow in which a through-hole 46 through which water passes is formed and water flows from the outlet 33 to the inlet 23.
  • the shock absorber 1 basically absorbs the water shock by the absorber 40.
  • the absorber 40 approaches the outflow port 33 but maintains the outflow port 33 in an open state. That is, the first flow path F1 is opened.
  • the absorber 40 since water is normally flowing in the fluid system in which the shock absorber 1 is incorporated, it is necessary to ensure the flow rate of water passing through the shock absorber 1. As described above, although the absorber 40 approaches the outflow port 30, the state in which the outflow port 33 is opened is maintained, so that the flow rate from the shock absorber 1 is ensured.
  • the inlet 23 serving as the outlet of water is closed by the absorber 40, and the first flow path F1 is blocked.
  • the second flow path F2 through the through hole 46 of the absorber 40 is open, the flow of water through the second flow path F2 is maintained.
  • the effect of reducing the impact on the upstream side of the impact absorber 1 is enhanced by closing the inlet 23 and blocking the first flow path F1.
  • the shock absorber 1 causes the water that has flowed in to flow backward through the through hole 46 of the absorber 40, that is, through the second flow path F2. Thereby, the impact to the absorber 40 etc. can also be relieved.
  • the flow rate at this time is small compared to the case where both the first flow path F1 and the second flow path F2 are open. Therefore, the impact propagating to the upstream side of the impact absorber 1 due to the backflow through the second flow path F2 is also small.
  • the shock absorber 1 reduces the shock that propagates through the shock absorber 1 regardless of whether the shock occurs on the upstream side or the downstream side while ensuring a normal flow rate (forward flow time). can do.
  • a device eg, heat exchanger 91
  • the shock absorber. 1 can be applied.
  • first flow path F1 is formed so as to go around the absorber 40 and connect the inflow port 23 and the outflow port 33.
  • the first flow path F1 does not connect the inflow port 23 and the outflow port 33 linearly, but connects with a bent or curved flow path, so that the flow path resistance of the first flow path F1 is low. growing. Thereby, the effect of reducing impact during forward flow can be enhanced.
  • a first receiving surface 42 that is inclined with respect to the inflow direction of water from the inflow port 23 is formed in a portion of the absorber 40 that faces the inflow port 23 and collides with water that flows in from the inflow port 23. ing.
  • the absorber 40 does not receive all the impact of water, but can release a part of the impact. Thereby, the impact which the absorber 40 receives is relieved.
  • the first receiving surface 42 is formed in a concave curved surface.
  • the water colliding with the first receiving surface 42 becomes a flow that gathers while turning toward a deep portion of the concave curved surface. As a result, water easily collides, and the impact of water is further weakened.
  • a second receiving surface 43 that is inclined with respect to the inflow direction of the fluid from the outlet 33 is formed in a portion of the absorber 40 that faces the outlet 33 and collides with the fluid that flows in from the outlet 33. ing.
  • the absorber 40 does not receive all the impact of water, but can release a part of the impact. Thereby, the impact which the absorber 40 receives is relieved.
  • the casing 10 comes into contact with the absorber 40 when it moves in a direction approaching the outlet port 33, and the absorber 40 is prevented from moving so that the absorber 40 maintains the state in which the outlet port 33 is opened.
  • a stopper 36 is provided.
  • FIG. 5 is a longitudinal sectional view of the shock absorber 201 according to the second embodiment, and shows a state in which an impact in the forward flow direction is applied.
  • FIG. 6 is a longitudinal sectional view of the shock absorber 201 and shows a state in which an impact in the reverse flow direction is applied.
  • it demonstrates centering on a different part from the shock absorber 1 among the structures of the shock absorber 201, about the structure similar to the shock absorber 1, the same code
  • the shock absorber 201 includes a casing 210 and an absorber 240.
  • the casing 210 has a first tube portion 220 and a second tube portion 230.
  • the 1st cylinder part 220 and the 2nd cylinder part 230 are mutually connected.
  • the 1st cylinder part 220 is formed in the bottomed substantially cylindrical shape.
  • the first cylindrical portion 220 has a substantially cylindrical peripheral wall 221 having the X axis as an axis, and a substantially disc-shaped bottom wall 222 connected to one end of the peripheral wall 221 in the X axis direction. ing.
  • a substantially circular inflow port 223 is formed through the bottom wall 222.
  • the central axis of the inflow port 223 coincides with the X axis.
  • a bearing 224 that supports the absorber 240 is provided on the bottom wall 222.
  • the bearing 224 is disposed substantially at the center of the inflow port 223 and is connected to the bottom wall 222 via two beams 225.
  • the shaft center of the bearing 224 coincides with the X axis.
  • the two beams 225 extend in the radial direction about the X axis.
  • the two beams 225 are arranged on a substantially straight line.
  • a protrusion 226 is provided on the inner surface of the bottom wall 222 (that is, the inner surface of the casing 210).
  • the protrusion 226 is formed in an annular shape so as to surround the inflow port 223.
  • the second cylinder part 230 basically has the same configuration as the first cylinder part 220.
  • the 2nd cylinder part 230 is formed in the bottomed substantially cylindrical shape.
  • the second cylindrical portion 230 has a substantially cylindrical peripheral wall 231 centered on the X axis, and a substantially disc-shaped bottom wall 232 connected to one end of the peripheral wall 231 in the X axis direction. ing.
  • a substantially circular outlet 233 is formed in the bottom wall 232 so as to penetrate therethrough. The central axis of the outlet 233 coincides with the X axis.
  • a bearing 234 that supports the absorber 240 is provided on the bottom wall 232.
  • the bearing 234 is disposed substantially at the center of the outlet 233 and is connected to the bottom wall 232 via two beams 235.
  • the shaft center of the bearing 234 coincides with the X axis.
  • the two beams 235 extend in the radial direction about the X axis.
  • the two beams 235 are arranged on a substantially straight line.
  • Two stoppers 236 projecting inside the casing 210 are provided on the bottom wall 232.
  • the two stoppers 236 are arranged at positions facing each other across the X axis.
  • Each stopper 236 is provided at a connection portion between each beam 235 and the bottom wall 232.
  • the absorber 240 has a first receiving part 241, a second receiving part 261, and a shaft 250.
  • the first receiving portion 241 has a substantially circular outer shape centering on the X axis.
  • the outer diameter of the first receiving portion 241 is smaller than the inner diameter of the peripheral wall 221 and larger than the inner diameter of the inflow port 223.
  • the second receiving portion 261 has a substantially circular outer shape centering on the X axis.
  • the outer diameter of the second receiving portion 261 is smaller than the inner diameter of the peripheral wall 231 and larger than the inner diameter of the outlet 233.
  • the shaft 250 extends through the first receiving portion 241 and the second receiving portion 261 in the X-axis direction.
  • the axis of the shaft 250 coincides with the X axis. That is, the shaft 250 is provided at the center of the first receiving portion 241 and the second receiving portion 261.
  • Both end portions of the shaft 250 are fitted in the bearing 224 and the bearing 234 so as to be slidable in the X-axis direction.
  • the absorber 240 is arranged in the casing 210 so as to be movable in the X-axis direction in the casing 210.
  • the peripheral edge portion of the first receiving portion 241 is formed flat.
  • An inner portion of the first receiving portion 241 than the peripheral portion is formed in a curved shape.
  • a first receiving surface 242 on which a fluid flowing in from the inflow port 223 collides is formed in a portion of the first receiving portion 241 that faces the inflow port 223.
  • the first receiving surface 242 is inclined with respect to the X axis. More specifically, the first receiving surface 242 is a concave curved surface that is curved so that the center (that is, the portion through which the X axis passes) is most concave.
  • a circular concave groove 244 extending in the circumferential direction around the X axis is formed on the surface of the peripheral edge of the first receiving portion 241 facing the inflow port 223.
  • An annular rubber 245 is fitted in the concave groove 244. The rubber 245 comes into contact with the protrusion 226 of the casing 210 when the absorber 240 moves toward the inflow port 223.
  • the first receiving portion 241 has six first through holes 246 through which fluid passes. One end of the first through hole 246 opens in the first receiving surface 242. The first through hole 246 passes through the first receiving portion 241 substantially parallel to the X axis. The six first through holes 246 are arranged at equal intervals in the circumferential direction around the X axis.
  • the basic configuration of the second receiving portion 641 is the same as that of the first receiving portion 241.
  • the peripheral edge portion of the second receiving portion 261 is formed flat.
  • An inner portion of the second receiving portion 261 with respect to the peripheral portion is formed in a curved shape.
  • a second receiving surface 262 on which the fluid flowing in from the outlet 233 collides is formed at a portion of the second receiving portion 261 facing the outlet 233.
  • the second receiving surface 262 is inclined with respect to the X axis. More specifically, the second receiving surface 262 is a concave curved surface that is curved so that the center (that is, the portion through which the X axis passes) is most concave.
  • the second receiving portion 261 is formed with six second through holes 266 through which fluid passes. One end of the second through hole 266 opens in the second receiving surface 262.
  • the six second through holes 266 are arranged at equal intervals in the circumferential direction around the X axis.
  • the second through hole 266 passes through the second receiving portion 261 substantially parallel to the X axis.
  • the absorber 240 is disposed in the casing 210 with the first receiving portion 241 facing the inflow port 223 and the second receiving portion 261 facing the outflow port 233.
  • a first spring 271 is disposed in a compressed state between the first receiving portion 241 and the bottom wall 222
  • a second spring 272 is disposed in a compressed state between the second receiving portion 261 and the bottom wall 232. Is done.
  • the spring constants of the first spring 271 and the second spring 272 are set so that the absorber 240 stops at a position where neither the protrusion 226 nor the stopper 236 comes into contact.
  • gaps are formed between the peripheral wall 221 and the first receiving portion 241 and between the peripheral wall 231 and the second receiving portion 261. That is, in the casing 210, the first flow path F201 (the first flow path F201 (which connects the inlet 223 and the outlet 233) through the gap between the peripheral wall 221 and the first receiving portion 241 and the gap between the peripheral wall 231 and the second receiving portion 261. A two-dot chain line in FIG. 5 is formed. In addition, in the casing 210, a second flow path F202 (broken line in FIGS. 5 and 6) connecting the inlet 223 and the outlet 233 via the first through hole 246 and the second through hole 266 of the absorber 240. ) Is formed.
  • the shock absorber 201 During forward flow, in the shock absorber 201, water flows into the casing 210 from the inflow port 223, and water flows out of the casing 210 through the outflow port 233. At this time, the absorber 240 is not in contact with the protrusion 226 and the stopper 236. That is, the inflow port 223 and the outflow port 233 have a sufficient opening degree.
  • the first flow path F201 is open. That is, water that has flowed into the casing 210 from the inlet 223 substantially in parallel with the X axis travels in the X axis direction and collides with the first receiving surface 242 of the absorber 240. Since the first receiving surface 242 is curved so that the center is recessed, the water colliding with the first receiving surface 242 travels along the first receiving surface 242 toward the center of the first receiving surface 242. The water toward the center collides with the water that has come from the other direction toward the center, and then flows toward the outer peripheral side of the first receiving surface 242. Thereafter, the water flows toward the second receiving surface 262 through the gap between the first receiving portion 241 and the peripheral wall 221 and the gap between the second receiving portion 261 and the peripheral wall 231. Finally, water flows out of the casing 210 through the outlet 233.
  • the second flow path F202 is also opened. That is, a part of the water flowing in from the inflow port 223 passes through the absorber 240 from the first receiving surface 242 side to the second receiving surface 262 side through the first through hole 246 and the second through hole 266. To do. In this way, the water that has passed through the absorber 240 also flows out of the casing 210 through the outlet 233.
  • the absorber 240 moves toward the outlet 233 when the water collides.
  • the spring constants of the first spring 271 and the second spring 272 are set so that the absorber 240 does not contact the stopper 236 when the water flow rate is within a normal range. Thereby, the sufficient opening degree of the outflow port 233 is ensured in normal time.
  • the shock propagates to the shock absorber 201. That is, water can flow into the shock absorber 201 with vigor.
  • the impact absorber 201 absorbs the impact of water and reduces the impact that propagates downstream of the impact absorber 201.
  • the water flowing in from the inlet 223 first collides with the first receiving surface 242 of the absorber 240.
  • the absorber 240 moves toward the outlet 233 and compresses and deforms the second spring 272. Thereby, the impact of water is absorbed.
  • the impact of water is weakened by colliding with the absorber 240 and compressing and deforming the second spring 272.
  • first receiving surface 242 is inclined (more specifically, curved) so as to be recessed toward the center, water colliding with the first receiving surface 242 gathers at the center of the first receiving surface 242 and other The impact of water also weakens by colliding with water gathered from the direction of. Thereafter, the water flows through the first flow path F201 bent or curved so as to bypass the absorber 240. The impact of water is also weakened by the channel resistance at this time. Furthermore, a part of the water passes through the first through hole 246 and the second through hole 266 of the absorber 240. The impact of water is also weakened by the flow path resistance of the first through hole 246 and the second through hole 266 at this time.
  • the absorber 240 contacts the stopper 236 depending on the flow rate of water. Since the absorber 240 approaches the outlet 233, the opening degree of the outlet 233 is reduced, but the outlet 233 is not closed. That is, the shock absorber 201 can secure a certain amount of water flow through. When an impact occurs on the upstream side of the impact absorber 201, the direction of water flow is the forward flow direction. Therefore, the impact absorber 201 can secure a certain amount of water flow while absorbing the impact of water. Thereby, the normal water flow of the fluid system in which the shock absorber 201 is incorporated can be maintained.
  • the shock absorber 201 water flows into the casing 210 from the outlet 233.
  • the water flowing in from the outlet 233 first collides with the second receiving surface 262 of the absorber 240.
  • the absorber 240 moves toward the inflow port 223 and compresses and deforms the first spring 271.
  • the impact of water is absorbed.
  • the impact of water is weakened by colliding with the absorber 240 and compressing and deforming the first spring 271.
  • the second receiving surface 262 is inclined (more specifically, curved) so as to be recessed toward the center, the water colliding with the second receiving surface 262 gathers at the center of the second receiving surface 262, and the like.
  • the impact of water also weakens by colliding with water gathered from the direction of.
  • the absorber 240 contacts the protrusion 226 depending on the flow rate of water. That is, the absorber 240 closes the inflow port 223. As a result, the first flow path F201 is blocked. However, the opening of the second flow path F202 is maintained.
  • the water that flows in from the outlet 233 passes through the absorber 240 from the second receiving surface 262 side to the first receiving surface 242 side through the second through hole 266 and the first through hole 246.
  • the water that has passed through the absorber 240 flows out of the casing 210 through the inflow port 223.
  • the impact of water is also weakened by the flow path resistance when passing through the second through hole 266 and the first through hole 246. In other words, only water that has passed through the second through hole 266 and the first through hole 246 and whose impact has weakened flows out from the shock absorber 201 to the upstream side.
  • the absorber 240 may not move to the protruding portion 226 even if the first spring 271 is compressed and deformed. At this time, the inlet 223 is not closed. In that case, the water colliding with the second receiving surface 262 flows through the first flow path F201 bent so as to bypass the absorber 240. The impact of water is also weakened by the channel resistance at this time.
  • the shock absorber 201 can relieve the impact from both the upstream side and the downstream side, and reduce the impact of the flowing water.
  • the open state of the first flow path F201 is maintained without closing the inflow port 223 and the outflow port 233, so that the flow rate through the shock absorber 201 can be ensured. That is, it is possible to ensure a normal flow rate in which no water hammer or the like is generated.
  • the shock absorber 201 is disposed in the casing 210 having the inlet 223 into which water (fluid) flows in and the outlet 233 from which water flows out, and pushes against the water flowing in the casing 210.
  • the first flow path F201 that connects the inlet 223 and the outlet 233 is formed in the casing 210, and the absorber 240 includes the inlet 223 and the outlet 233.
  • the first through-hole 246 and the second through-hole 266 through which water passes are formed to form a part of the second flow path F202 that connects the two, and the absorber 240 during reverse flow in which water flows from the outlet 233 to the inlet 223.
  • the shock absorber 201 passes through the shock absorber 201 regardless of whether the shock occurs on the upstream side or the downstream side while ensuring a normal flow rate.
  • the impact that propagates can be reduced.
  • the second receiving surface 262 is formed in a concave curved surface.
  • the second receiving surface 262 is concave while being curved, the water colliding with the second receiving surface 262 at the time of backflow becomes a flow that gathers while turning toward a deep portion of the concave curved surface. As a result, water easily collides, and the impact of water is further weakened.
  • the fluid flowing through the shock absorbers 1, 201 may be a fluid other than water.
  • the 1st flow path F1 and the 2nd flow path F2 which are formed in the casing 10 can be formed in arbitrary shapes.
  • the 1st flow path F210 and the 2nd flow path F202 which are formed in the casing 210 can also be formed in arbitrary shapes.
  • the shape of the absorbers 40 and 240 can be any shape.
  • the absorbers 40 and 240 should just be arrange
  • the receiving part 41 may be formed in a flat plate shape.
  • the receiving portion 41 may be a block-like member instead of a plate-like shape.
  • the shock absorber 1 may have the first spring 271 and / or the second spring 272 in the shock absorber 201. That is, the absorber 40 may be elastically supported in the casing 10.
  • the shock absorber 201 may have only one of the first spring 271 and the second spring 272. That is, when both ends of the spring are attached to the casing 210 and the absorber 240, the number of springs that support the absorber 240 may be one. Further, the shock absorber 201 may not have the first spring 271 and the second spring 272. In that case, the absorber 240 is movably disposed in the casing 210 like the absorber 40 of the shock absorber 1.
  • the stopper 236 may not be provided. That is, even when an impact in the forward flow direction occurs, it is sufficient that the second spring 272 has a spring constant that is large enough that the absorber 240 does not close the outlet 233.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pipe Accessories (AREA)

Abstract

A shock absorber 1 is provided with a casing 10, and an absorption body 40 which moves when pushed by water flowing inside the casing 10. A first flow passage F1 is formed within the casing 10. A through-hole 46 which constitutes part of a second flow passage F2 and through which water flows is formed in the absorption body 40. When a backflow occurs, the absorption body 40 closes an inflow opening 23 to shut off the first flow passage F1 but allows water to flow through the second flow passage F2. In a normal flow state, the absorption body 40 is located closer to an outflow opening 33 than in the backflow state but maintains the outflow opening 33 open, thereby allowing water to flow through the first water flow passage F1 and the second water flow passage F2.

Description

衝撃吸収器Shock absorber
 ここに開示された技術は、衝撃吸収器に関する。 The technology disclosed here relates to an impact absorber.
 従来より、水等の流体が流通する流体システムがよく知られている。流体システムには、様々な機器が含まれており、各機器は配管で接続されている。例えば、特許文献1に開示された流体システムは、熱交換器を含んでおり、熱交換器の入口及び出口には配管が接続されている。また、熱交換器の出口に接続された配管には、温水の流通/遮断を切り替える開閉弁が設けられている。 Conventionally, fluid systems in which fluids such as water circulate are well known. The fluid system includes various devices, and each device is connected by piping. For example, the fluid system disclosed in Patent Document 1 includes a heat exchanger, and piping is connected to an inlet and an outlet of the heat exchanger. In addition, a pipe connected to the outlet of the heat exchanger is provided with an on-off valve that switches the flow / shutoff of hot water.
特開2014-74502号公報JP 2014-74502 A
 ところで、流体システムにおいては、ウォータハンマ等の衝撃がしばしば発生する。例えば、特許文献1のような流体システムにおいては、熱交換器の出口に接続された配管の開閉弁を急速に閉弁すると、該配管中でウォータハンマが生じる場合がある。ウォータハンマが生じると、大きな衝撃が発生し、その衝撃が配管内の流体を介して伝播していく。この例の場合、衝撃が熱交換器に作用する虞がある。それに対し、熱交換器の下流側に衝撃吸収器を設置することが考えられる。また、このような衝撃は、保護したい機器の下流側のみで発生するとは限らず、機器の上流側で発生する場合もある。そのため、衝撃の発生が予想される場所と衝撃から保護したい機器との位置関係に応じて衝撃吸収器が配置される。つまり、衝撃吸収器は、上流側からの衝撃及び下流側からの衝撃の何れにも対応できることが求められる。さらに、衝撃吸収器は、流体システムに組み込まれるので、衝撃が発生していない通常の使用状態においては、十分な流量を確保する必要もある。 By the way, in a fluid system, an impact such as a water hammer often occurs. For example, in a fluid system such as that disclosed in Patent Document 1, when a valve on a pipe connected to an outlet of a heat exchanger is rapidly closed, a water hammer may be generated in the pipe. When a water hammer occurs, a large impact is generated and the impact propagates through the fluid in the pipe. In the case of this example, there is a possibility that the impact acts on the heat exchanger. On the other hand, it is conceivable to install an impact absorber on the downstream side of the heat exchanger. Moreover, such an impact does not necessarily occur only on the downstream side of the device to be protected, but may occur on the upstream side of the device. Therefore, the shock absorber is arranged according to the positional relationship between the place where the occurrence of the shock is expected and the device to be protected from the shock. That is, the shock absorber is required to be able to cope with both the impact from the upstream side and the impact from the downstream side. Further, since the shock absorber is incorporated in the fluid system, it is necessary to ensure a sufficient flow rate in a normal use state where no shock is generated.
 ここに開示された技術は、かかる点に鑑みてなされたものであり、その目的とすることは、通常時の流量を確保しつつ、上流及び下流の両方からの衝撃を緩和できる衝撃吸収器を提供することにある。 The technology disclosed herein has been made in view of the above points, and its purpose is to provide an impact absorber that can mitigate impacts from both upstream and downstream while ensuring a normal flow rate. It is to provide.
 ここに開示された衝撃吸収器は、流体が流入する流入口及び流体が流出する流出口を有するケーシングと、前記ケーシング内に配置され、前記ケーシング内を流れる流体に押されて移動する吸収体とを備え、前記ケーシング内には、前記流入口と前記流出口とを繋ぐ第1流路が形成され、前記吸収体には、前記流入口と前記流出口とを繋ぐ第2流路の一部を構成し、流体が通過する貫通孔が形成され、前記流出口から前記流入口へ流体が流れる逆流時には、前記吸収体は、前記流入口を閉じて前記第1流路を遮断する一方、前記第2流路を介して流体を流通させ、前記流入口から前記流出口へ流体が流れる順流時には、前記吸収体は、前記逆流時に比べて前記流出口に近い位置に位置するものの前記流出口を開いた状態を維持し、前記第1流路及び前記第2流路を介して流体を流通させる。 The shock absorber disclosed herein includes a casing having an inlet through which fluid flows in and an outlet through which fluid flows out, and an absorber that is disposed in the casing and is moved by being pushed by the fluid flowing in the casing. A first flow path that connects the inlet and the outlet is formed in the casing, and the absorber has a part of a second flow path that connects the inlet and the outlet. In the reverse flow in which the fluid passes from the outlet to the inlet, the absorber closes the inlet and blocks the first flow path, At the time of forward flow in which fluid flows through the second flow path and fluid flows from the inlet to the outlet, the absorber is positioned closer to the outlet than at the time of reverse flow. Maintaining the open state, the first Road and through the second flow path circulating a fluid.
 前記衝撃吸収器によれば、通常時の流量を確保しつつ、上流及び下流の両方からの衝撃を緩和できる衝撃吸収器を提供することことができる。 According to the impact absorber, it is possible to provide an impact absorber that can mitigate impacts from both upstream and downstream while securing a normal flow rate.
図1は、実施形態1に係る衝撃吸収器の分解斜視図である。FIG. 1 is an exploded perspective view of the shock absorber according to the first embodiment. 図2は、順流時の衝撃吸収器の縦断面図である。FIG. 2 is a longitudinal sectional view of the shock absorber during forward flow. 図3は、逆流時の衝撃吸収器の縦断面図である。FIG. 3 is a longitudinal sectional view of the shock absorber during reverse flow. 図4は、流体システムの構成図である。FIG. 4 is a configuration diagram of the fluid system. 図5は、実施形態2に係る衝撃吸収器の縦断面図であって、順流方向への衝撃が作用した状態の図である。FIG. 5 is a longitudinal sectional view of the shock absorber according to the second embodiment, and shows a state in which an impact in the forward flow direction is applied. 図6は、実施形態2に係る衝撃吸収器の縦断面図であって、逆流方向への衝撃が作用した状態の図である。FIG. 6 is a longitudinal sectional view of the shock absorber according to the second embodiment, and shows a state in which an impact in the reverse flow direction is applied.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail with reference to the drawings.
 《実施形態1》
 図1は、実施形態1に係る衝撃吸収器1の分解斜視図である。図2は、順流時の衝撃吸収器1の縦断面図である。図3は、逆流時の衝撃吸収器1の縦断面図である。
Embodiment 1
FIG. 1 is an exploded perspective view of an impact absorber 1 according to the first embodiment. FIG. 2 is a longitudinal sectional view of the shock absorber 1 during forward flow. FIG. 3 is a longitudinal sectional view of the shock absorber 1 during backflow.
 衝撃吸収器1は、ケーシング10と、吸収体40とを備えている。 The shock absorber 1 includes a casing 10 and an absorber 40.
 ケーシング10は、筒部20と、筒部20に取り付けられる蓋30とを有している。筒部20は、有底の略円筒状に形成されている。具体的には、筒部20は、X軸を軸心とする略円筒状の周壁21と、X軸方向における周壁21の一端に連結された略円盤状の底壁22とを有している。底壁22には、略円形の流入口23が貫通形成されている。流入口23の中心軸は、X軸と一致している。底壁22には、吸収体40を支持する軸受24が設けられている。軸受24は、流入口23の略中央に配置され、2つのビーム25を介して底壁22に連結されている。軸受24の軸心は、X軸と一致している。2つのビーム25は、X軸を中心として半径方向に延びている。2つのビーム25は、略一直線上に配置されている。図2,3に示すように、底壁22の内側の面(即ち、ケーシング10の内側の面)には、突出部26が設けられている。突出部26は、流入口23を囲むように円環状に形成されている。 Casing 10 has a cylindrical portion 20 and a lid 30 attached to the cylindrical portion 20. The cylinder part 20 is formed in the bottomed substantially cylindrical shape. Specifically, the cylindrical portion 20 includes a substantially cylindrical peripheral wall 21 having the X axis as an axis, and a substantially disc-shaped bottom wall 22 connected to one end of the peripheral wall 21 in the X axis direction. . A substantially circular inlet 23 is formed through the bottom wall 22. The central axis of the inflow port 23 coincides with the X axis. A bearing 24 that supports the absorber 40 is provided on the bottom wall 22. The bearing 24 is disposed substantially at the center of the inlet 23 and is connected to the bottom wall 22 via two beams 25. The axis of the bearing 24 coincides with the X axis. The two beams 25 extend in the radial direction about the X axis. The two beams 25 are arranged on a substantially straight line. As shown in FIGS. 2 and 3, a protrusion 26 is provided on the inner surface of the bottom wall 22 (that is, the inner surface of the casing 10). The protrusion 26 is formed in an annular shape so as to surround the inflow port 23.
 蓋30は、略円環状に形成されている。蓋30は、X軸方向における周壁21の、底壁22が設けられていない方の端部にネジ締結される。蓋30は、円環状に形成されたリング31と、吸収体40を支持する軸受34とを有している。リング31の外周面には、周壁21に螺合する雄ネジが形成されている。リング31の開口によって、略円形の流出口33が形成されている。流出口33の中心軸は、X軸と一致している。軸受34は、リング31の略中央に配置され、3つのビーム35を介してリング31に連結されている。3つのビーム35は、X軸を中心として半径方向に延びている。3つのビーム35は、X軸回りに等間隔に配置されている。軸受34の軸心は、X軸と一致している。蓋30には、ケーシング10の内側に突出する3つのストッパ36が設けられている。3つのストッパ36は、X軸回りに等間隔に配置されている。より具体的には、各ストッパ36は、各ビーム35とリング31との連結部分に設けられている。 The lid 30 is formed in a substantially annular shape. The lid 30 is screwed to the end of the peripheral wall 21 in the X-axis direction where the bottom wall 22 is not provided. The lid 30 includes a ring 31 formed in an annular shape and a bearing 34 that supports the absorber 40. On the outer peripheral surface of the ring 31, a male screw that is screwed into the peripheral wall 21 is formed. A substantially circular outlet 33 is formed by the opening of the ring 31. The central axis of the outflow port 33 coincides with the X axis. The bearing 34 is disposed substantially at the center of the ring 31 and is connected to the ring 31 through three beams 35. The three beams 35 extend in the radial direction around the X axis. The three beams 35 are arranged at equal intervals around the X axis. The axis of the bearing 34 coincides with the X axis. The lid 30 is provided with three stoppers 36 protruding inside the casing 10. The three stoppers 36 are arranged at equal intervals around the X axis. More specifically, each stopper 36 is provided at a connection portion between each beam 35 and the ring 31.
 吸収体40は、受け部41と、シャフト50とを有している。 The absorber 40 has a receiving part 41 and a shaft 50.
 受け部41は、X軸を中心とする略円形の外形を有している。受け部41の外径は、周壁21の内径よりも小さく、流入口23の内径よりも大きい。シャフト50は、受け部41を貫通してX軸方向に延びている。シャフト50の軸心は、X軸と一致している。すなわち、シャフト50は、受け部41の中心に設けられている。シャフト50の両端部はそれぞれ、X軸方向に摺動自在な状態で軸受24及び軸受34に嵌っている。こうして、吸収体40は、ケーシング10内をX軸方向に移動可能な状態でケーシング10内に配置されている。 The receiving portion 41 has a substantially circular outer shape centering on the X axis. The outer diameter of the receiving portion 41 is smaller than the inner diameter of the peripheral wall 21 and larger than the inner diameter of the inflow port 23. The shaft 50 penetrates the receiving portion 41 and extends in the X-axis direction. The axis of the shaft 50 coincides with the X axis. That is, the shaft 50 is provided at the center of the receiving portion 41. Both end portions of the shaft 50 are fitted in the bearing 24 and the bearing 34 so as to be slidable in the X-axis direction. Thus, the absorber 40 is arranged in the casing 10 in a state in which the absorber 40 can move in the X-axis direction.
 図2,3に示すように、受け部41の周縁部は、平坦に形成されている。受け部41のうち周縁部よりも内側部分は、湾曲した形状に形成されている。 As shown in FIGS. 2 and 3, the peripheral portion of the receiving portion 41 is formed flat. An inner portion of the receiving portion 41 with respect to the peripheral portion is formed in a curved shape.
 詳しくは、受け部41のうち流入口23と対向する部分には、流入口23から流入する流体が衝突する第1受け面42が形成されている。第1受け面42は、X軸に対して傾斜している。より具体的には、第1受け面42は、中心(即ち、X軸が通過する部分)が最も凹むように湾曲した凹曲面となっている。一方、受け部41のうち流出口33と対向する部分には、流出口33から逆流してくる流体が衝突する第2受け面43が形成されている。第2受け面43の大部分は、X軸に対して傾斜している。より具体的には、第2受け面43は、中心(即ち、X軸が通過する部分)が最も膨出するように湾曲した凸曲面となっている。 Specifically, a first receiving surface 42 on which a fluid flowing in from the inflow port 23 collides is formed in a portion of the receiving portion 41 facing the inflow port 23. The first receiving surface 42 is inclined with respect to the X axis. More specifically, the first receiving surface 42 is a concave curved surface that is curved so that the center (that is, the portion through which the X axis passes) is most concave. On the other hand, a portion of the receiving portion 41 that faces the outflow port 33 is formed with a second receiving surface 43 on which the fluid flowing backward from the outflow port 33 collides. Most of the second receiving surface 43 is inclined with respect to the X axis. More specifically, the second receiving surface 43 is a convex curved surface that is curved so that the center (that is, the portion through which the X axis passes) bulges most.
 尚、受け部41の周縁部のうち流入口23の方を向く面には、X軸を中心とする周方向に延びる円形の凹溝44が形成されている。凹溝44には、円環状のゴム45が嵌っている。ゴム45は、吸収体40が流入口23の方へ移動したときに、ケーシング10の突出部26と接触する。一方、受け部41の周縁部のうち流出口33の方を向く面は、吸収体40が流出口33の方へ移動したときにケーシング10のストッパ36に接触する。 A circular concave groove 44 extending in the circumferential direction around the X axis is formed on the surface of the peripheral portion of the receiving portion 41 facing the inflow port 23. An annular rubber 45 is fitted in the concave groove 44. The rubber 45 comes into contact with the protruding portion 26 of the casing 10 when the absorber 40 moves toward the inflow port 23. On the other hand, the surface of the peripheral portion of the receiving portion 41 facing the outlet 33 comes into contact with the stopper 36 of the casing 10 when the absorber 40 moves toward the outlet 33.
 受け部41には、流体が通過する6個の貫通孔46が形成されている。具体的には、各貫通孔46の一端は、第1受け面42に開口し、他端は、第2受け面43に開口している。貫通孔46は、X軸と略平行に受け部41を貫通している。6個の貫通孔46は、X軸を中心とする周方向へ等間隔に配置されている。 The receiving portion 41 has six through holes 46 through which fluid passes. Specifically, one end of each through hole 46 opens to the first receiving surface 42 and the other end opens to the second receiving surface 43. The through hole 46 penetrates the receiving portion 41 substantially parallel to the X axis. The six through holes 46 are arranged at equal intervals in the circumferential direction around the X axis.
 吸収体40がケーシング10内に配置された状態において、ケーシング10の周壁21と吸収体40の受け部41との間には隙間が形成される。つまり、ケーシング10内には、周壁21と受け部41との隙間を介して流入口23と流出口33とを繋ぐ第1流路F1(図2の二点鎖線)が形成されている。それに加えて、ケーシング10内には、吸収体40の貫通孔46を介して流入口23と流出口33とを繋ぐ第2流路F2(図2,3の破線)が形成されている。 In the state where the absorber 40 is disposed in the casing 10, a gap is formed between the peripheral wall 21 of the casing 10 and the receiving portion 41 of the absorber 40. That is, in the casing 10, the 1st flow path F1 (two-dot chain line of FIG. 2) which connects the inflow port 23 and the outflow port 33 through the clearance gap between the surrounding wall 21 and the receiving part 41 is formed. In addition, a second flow path F <b> 2 (broken line in FIGS. 2 and 3) that connects the inflow port 23 and the outflow port 33 through the through hole 46 of the absorber 40 is formed in the casing 10.
 このように構成された衝撃吸収器1は、例えば、図4に示すような流体システム9に組み込まれる。図4は、流体システム9の構成図である。流体システム9は、熱交換器91及びバルブ92等の機器と、各機器とを接続する配管93とを含んでいる。熱交換器91の下流にバルブ92が配置されている。熱交換器91、バルブ92及び配管93(少なくとも図示されている区間)には、水が流通している。水は、流体の一例である。流体システム9は、さらに、2つの衝撃吸収器1を含んでいる。ここでは、熱交換器91の上流側に配置された衝撃吸収器1を第1衝撃吸収器1Aと称し、熱交換器91の下流側で且つバルブ92の上流側に配置された衝撃吸収器1を第2衝撃吸収器1Bと称する。第1衝撃吸収器1Aと第2衝撃吸収器1Bは共に、前述の構成を有している。第1衝撃吸収器1Aと第2衝撃吸収器1Bとを区別しない場合には、単に「衝撃吸収器1」と称する。第1衝撃吸収器1Aは、第1衝撃吸収器1Aよりも上流側から熱交換器91に伝播する衝撃を低減する。第2衝撃吸収器1Bは、第2衝撃吸収器1Bよりも下流側から熱交換器91に伝播する衝撃を低減する。 The shock absorber 1 configured in this manner is incorporated into a fluid system 9 as shown in FIG. 4, for example. FIG. 4 is a configuration diagram of the fluid system 9. The fluid system 9 includes devices such as a heat exchanger 91 and a valve 92, and pipes 93 that connect the devices. A valve 92 is disposed downstream of the heat exchanger 91. Water circulates through the heat exchanger 91, the valve 92, and the pipe 93 (at least the section shown). Water is an example of a fluid. The fluid system 9 further includes two shock absorbers 1. Here, the shock absorber 1 disposed on the upstream side of the heat exchanger 91 is referred to as a first shock absorber 1A, and the shock absorber 1 disposed on the downstream side of the heat exchanger 91 and on the upstream side of the valve 92. Is referred to as a second shock absorber 1B. Both the first shock absorber 1A and the second shock absorber 1B have the above-described configuration. When the first shock absorber 1A and the second shock absorber 1B are not distinguished from each other, they are simply referred to as “shock absorber 1”. The first shock absorber 1A reduces the shock that propagates to the heat exchanger 91 from the upstream side of the first shock absorber 1A. The second shock absorber 1B reduces the shock that propagates to the heat exchanger 91 from the downstream side of the second shock absorber 1B.
 以下、第1衝撃吸収器1A及び第2衝撃吸収器1Bの動作について説明する。 Hereinafter, the operation of the first shock absorber 1A and the second shock absorber 1B will be described.
 バルブ92が開いている場合、流体システム9においては、熱交換器91からバルブ92へ向かう向きに水が流通している。この流れを「順流」と称する。順流時には、衝撃吸収器1においては、流入口23からケーシング10内に水が流入し、流出口33を介してケーシング10から水が流出する。このとき、図2に示すように、吸収体40は、ケーシング1内に流入する水に押されて、流出口33の方へ移動し、ストッパ36に接触している。吸収体40がストッパ36に接触した位置で停止しているので、吸収体40は流出口33を閉鎖することなく、流出口33は開いた状態が維持されている。尚、吸収体40は流出口33の方へ移動しているので、当然ながら、流入口23も開いた状態となっている。 When the valve 92 is open, in the fluid system 9, water flows in the direction from the heat exchanger 91 to the valve 92. This flow is referred to as “forward flow”. During forward flow, in the shock absorber 1, water flows into the casing 10 from the inlet 23, and water flows out of the casing 10 through the outlet 33. At this time, as shown in FIG. 2, the absorber 40 is pushed by the water flowing into the casing 1, moves toward the outlet 33, and contacts the stopper 36. Since the absorber 40 stops at the position where it contacts the stopper 36, the absorber 40 does not close the outlet 33, and the outlet 33 is kept open. In addition, since the absorber 40 is moving toward the outflow port 33, the inflow port 23 is naturally open.
 この状態においては、第1流路F1が開通している。つまり、配管93を流通する水が、流入口23からケーシング10内に流入する。流入口23からの水の流入方向は、概ねX軸と平行である。流入した水は、概ねX軸方向に進み、吸収体40の第1受け面42に衝突する。第1受け面42は中心が凹むように湾曲した凹曲面に形成されているので、第1受け面42に衝突した水は、第1受け面42に沿って凹曲面の深い部分、即ち、第1受け面42の中心に向かって旋回するように流れる。第1受け面42の中心では様々な半径方向からの水が集まって衝突し合う。その後、水は、第1受け面42の外周側へ向かって流れ、受け部41と周壁21との隙間を通って、第2受け面43の側へ流れていく。最終的に、水は、流出口33を介してケーシング10から流出していく。 In this state, the first flow path F1 is open. That is, the water flowing through the pipe 93 flows into the casing 10 from the inlet 23. The inflow direction of water from the inflow port 23 is substantially parallel to the X axis. The water that flows in generally proceeds in the X-axis direction and collides with the first receiving surface 42 of the absorber 40. Since the first receiving surface 42 is formed in a concave curved surface that is curved so that the center is recessed, water that has collided with the first receiving surface 42 has a deep portion of the concave curved surface along the first receiving surface 42, that is, the first 1 Flows so as to turn toward the center of the receiving surface 42. At the center of the first receiving surface 42, water from various radial directions gather and collide with each other. Thereafter, the water flows toward the outer peripheral side of the first receiving surface 42, passes through the gap between the receiving portion 41 and the peripheral wall 21, and flows toward the second receiving surface 43. Finally, water flows out of the casing 10 through the outlet 33.
 それに加えて、第2流路F2も開通している。つまり、流入口23から流入した水の一部は、貫通孔46を介して、第1受け面42の側から第2受け面43の側へ吸収体40を通過する。こうして、吸収体40を通過した水も、流出口33を介してケーシング10から流出していく。 In addition, the second flow path F2 is also opened. That is, a part of the water flowing in from the inflow port 23 passes through the absorber 40 from the first receiving surface 42 side to the second receiving surface 43 side through the through hole 46. Thus, the water that has passed through the absorber 40 also flows out of the casing 10 through the outlet 33.
 ここで、衝撃吸収器1の上流側においてウォータハンマが発生すると、その衝撃が衝撃吸収器1へ伝播する。つまり、水が勢いよく衝撃吸収器1へ流入し得る。しかし、衝撃吸収器1は、水の衝撃を吸収し、衝撃吸収器1の下流側へ伝播する衝撃を低減する。詳しくは、前述の如く、流入口23から流入した水は、まず吸収体40に衝突する。これにより、水の衝撃が弱まる。このとき、第1受け面42は、中心に向かって凹むように傾斜(より詳しくは、湾曲)しているため、第1受け面42に衝突した水は、第1受け面42の中心に集まっていく。こうして、第1受け面42の中心に集まってきた水同志が衝突することによっても、水の衝撃が弱まる。その後、水は、吸収体40を迂回するように屈曲又は湾曲した第1流路F1を流通する。この際の流路抵抗によっても、水の衝撃が弱まる。さらに、一部の水は、吸収体40の貫通孔46を通過する。このときの貫通孔46の流路抵抗によっても、水の衝撃が弱まる。 Here, when a water hammer occurs on the upstream side of the shock absorber 1, the shock propagates to the shock absorber 1. That is, water can flow into the shock absorber 1 vigorously. However, the impact absorber 1 absorbs the impact of water and reduces the impact that propagates downstream of the impact absorber 1. Specifically, as described above, the water flowing in from the inlet 23 first collides with the absorber 40. This reduces the impact of water. At this time, since the first receiving surface 42 is inclined (more specifically, curved) so as to be recessed toward the center, the water colliding with the first receiving surface 42 gathers at the center of the first receiving surface 42. To go. In this way, the impact of water is also weakened by the collision of water gathering at the center of the first receiving surface 42. Thereafter, the water flows through the first flow path F <b> 1 bent or curved so as to bypass the absorber 40. The impact of water is also weakened by the channel resistance at this time. Furthermore, a part of the water passes through the through hole 46 of the absorber 40. The impact of water is also weakened by the flow path resistance of the through hole 46 at this time.
 尚、配管93を流通する水が流入口23からケーシング10内に流入する際には、概ねX軸と平行に流入する。流入した水は、概ねX軸方向に進み、吸収体40の第1受け面42に衝突する。第1受け面42は、中心が膨出するように傾斜しているため、第1受け面42に衝突する水の衝撃の一部は、第1受け面42に沿って逃げていく。つまり、吸収体40が受ける衝撃が少し緩和される。また、第1受け面42に衝突した水の一部が貫通孔46に流入することによっても、吸収体40が受ける衝撃が少し緩和される。 In addition, when the water flowing through the pipe 93 flows into the casing 10 from the inlet 23, the water flows in substantially parallel to the X axis. The water that flows in generally proceeds in the X-axis direction and collides with the first receiving surface 42 of the absorber 40. Since the first receiving surface 42 is inclined so that the center swells, a part of the impact of water colliding with the first receiving surface 42 escapes along the first receiving surface 42. That is, the impact received by the absorber 40 is slightly reduced. Moreover, the impact received by the absorber 40 is also slightly reduced by a part of the water colliding with the first receiving surface 42 flowing into the through hole 46.
 こうして、順流時に衝撃吸収器1から流出する水の衝撃は弱められる。例えば、熱交換器91へ伝播する水の衝撃が第1衝撃吸収器1Aによって低減される。同様に、バルブ92へ伝播する水の衝撃が第2衝撃吸収器1Bによって低減される。 Thus, the impact of water flowing out of the shock absorber 1 during forward flow is weakened. For example, the impact of water propagating to the heat exchanger 91 is reduced by the first shock absorber 1A. Similarly, the impact of water propagating to the valve 92 is reduced by the second shock absorber 1B.
 別のケースとして、衝撃吸収器1の下流側においてウォータハンマが発生する場合もある。例えば、バルブ92を閉弁して水の流通が急に遮断された際にバルブ92の上流側でウォータハンマが発生する場合がある。この場合、ウォータハンマが発生した場所からその上流側及び下流側に衝撃が伝播していく。ウォータハンマが発生した場所よりも上流側においては、順流時とは逆向きに水が流通する。この流れを「逆流」と称する。逆流時には、衝撃吸収器1には流出口33から水が勢いよく流入してくる。しかし、衝撃吸収器1は、水の衝撃を吸収し、衝撃吸収器1の上流側へ伝播する衝撃を低減する。 As another case, a water hammer may occur on the downstream side of the shock absorber 1. For example, a water hammer may occur upstream of the valve 92 when the valve 92 is closed and the flow of water is suddenly interrupted. In this case, the impact propagates from the location where the water hammer is generated to the upstream side and the downstream side. On the upstream side of the place where the water hammer is generated, water flows in the direction opposite to that in the forward flow. This flow is called “back flow”. During the reverse flow, water flows into the impact absorber 1 from the outlet 33 vigorously. However, the impact absorber 1 absorbs the impact of water and reduces the impact that propagates upstream of the impact absorber 1.
 詳しくは、逆流時には、衝撃吸収器1においては、流出口33からケーシング10内に水が流入する。流出口33から流入した水は、まず吸収体40に衝突する。これにより、水の衝撃が弱まる。このとき、図3に示すように、吸収体40は、ケーシング1内に流入する水に押されて、流入口23の方へ移動し、突出部26に接触する。つまり、吸収体40は、流入口23を閉鎖する。これにより、第1流路F1が遮断される。 Specifically, during the reverse flow, water flows into the casing 10 from the outlet 33 in the shock absorber 1. The water that flows in from the outlet 33 first collides with the absorber 40. This reduces the impact of water. At this time, as shown in FIG. 3, the absorber 40 is pushed by the water flowing into the casing 1, moves toward the inflow port 23, and contacts the protruding portion 26. That is, the absorber 40 closes the inflow port 23. Thereby, the 1st flow path F1 is interrupted | blocked.
 しかしながら、第2流路F2の開通は維持されている。つまり、流出口33から流入した水は、貫通孔46を介して、第2受け面43の側から第1受け面42の側へ吸収体40を通過する。吸収体40を通過した水は、流入口23を介してケーシング10から流出していく。貫通孔46を通過するときの流路抵抗によっても、水の衝撃が弱まる。つまり、貫通孔46を通過して衝撃が弱まった水だけが衝撃吸収器1から上流側へ流出していく。衝撃吸収器1が水の流通を完全に遮断してしまうと、衝撃吸収器1に流入する全ての水の衝撃を吸収体40等で受け止めなければならない。それに対し、一部の水を第2流路F2を介して流出させることによって吸収体40等への衝撃を緩和することができる。 However, the opening of the second flow path F2 is maintained. That is, the water that flows in from the outlet 33 passes through the absorber 40 from the second receiving surface 43 side to the first receiving surface 42 side through the through hole 46. The water that has passed through the absorber 40 flows out of the casing 10 through the inflow port 23. The impact of water is also weakened by the flow path resistance when passing through the through hole 46. In other words, only water that has passed through the through hole 46 and whose impact has weakened flows out from the shock absorber 1 to the upstream side. If the shock absorber 1 completely blocks the flow of water, all the water shocks flowing into the shock absorber 1 must be received by the absorber 40 or the like. On the other hand, the impact on the absorber 40 etc. can be relieved by flowing a part of water through the second flow path F2.
 尚、配管93を流通する水が流出口33からケーシング10内に流入する際には、概ねX軸と平行に流入する。すなわち、流出口33からの水の流入方向は、概ねX軸と平行である。流入した水は、概ねX軸方向に進み、吸収体40の第2受け面43に衝突する。第2受け面43は、中心が膨出するように傾斜(より詳しくは、湾曲)しているため、第2受け面43に衝突する水の衝撃の一部は、第2受け面43に沿って逃げていく。つまり、吸収体40が受ける衝撃が少し緩和される。また、吸収体40が突出部26に接触する際には、ゴム45が突出部26に接触するので、吸収体40が流入口23を閉鎖する際の衝撃が緩和される。 In addition, when the water which distribute | circulates the piping 93 flows in into the casing 10 from the outflow port 33, it flows in in parallel with a X-axis substantially. That is, the inflow direction of water from the outlet 33 is substantially parallel to the X axis. The inflowing water generally travels in the X-axis direction and collides with the second receiving surface 43 of the absorber 40. Since the second receiving surface 43 is inclined (more specifically, curved) so that the center swells, a part of the impact of water colliding with the second receiving surface 43 is along the second receiving surface 43. And run away. That is, the impact received by the absorber 40 is slightly reduced. Further, when the absorber 40 contacts the protruding portion 26, the rubber 45 contacts the protruding portion 26, so that the impact when the absorber 40 closes the inlet 23 is alleviated.
 こうして、逆流時に衝撃吸収器1から上流側へ流出する水の衝撃は弱められる。例えば、バルブ92の上流側でウォータハンマが発生した場合に、熱交換器91へ伝播する衝撃が第2衝撃吸収器1Bによって低減される。 Thus, the impact of water flowing out from the shock absorber 1 to the upstream side during backflow is weakened. For example, when a water hammer occurs on the upstream side of the valve 92, the impact transmitted to the heat exchanger 91 is reduced by the second shock absorber 1B.
 このように、衝撃吸収器1は、その上流側及び下流側の何れからの衝撃も緩和し、流出する水の衝撃を低減することができる。それに加え、順流時には、流入口23及び流出口33を閉じることなく、第1流路F1の開通状態を維持するので、衝撃吸収器1を流通する流量を確保することができる。つまり、ウォータハンマ等が発生していない通常時の流量を確保することができる。 Thus, the shock absorber 1 can alleviate the impact from both the upstream side and the downstream side, and reduce the impact of the flowing water. In addition, at the time of forward flow, the open state of the first flow path F1 is maintained without closing the inflow port 23 and the outflow port 33, so that it is possible to secure a flow rate through the shock absorber 1. That is, it is possible to ensure a normal flow rate in which no water hammer or the like is generated.
 以上のように、衝撃吸収器1は、水(流体)が流入する流入口23及び水が流出する流出口33を有するケーシング10と、ケーシング10内に配置され、ケーシング10内を流れる水に押されて移動する吸収体40とを備え、ケーシング10内には、流入口23と流出口33とを繋ぐ第1流路F1が形成され、吸収体40には、流入口23と流出口33とを繋ぐ第2流路F2の一部を構成し、水が通過する貫通孔46が形成され、流出口33から流入口23へ水が流れる逆流時には、吸収体40は、流入口23を閉じて第1流路F1を遮断する一方、第2流路F2を介して水を流通させ、流入口23から流出口33へ水が流れる順流時には、吸収体40は、逆流時に比べて流出口33に近い位置に位置するものの流出口33を開いた状態を維持し、第1流路F1及び第2流路F2を介して水を流通させる。 As described above, the shock absorber 1 is disposed in the casing 10 having the inlet 23 into which water (fluid) flows in and the outlet 33 from which water flows out, and pushes against the water flowing in the casing 10. The first flow path F1 that connects the inlet 23 and the outlet 33 is formed in the casing 10, and the absorber 40 includes the inlet 23, the outlet 33, and the like. The absorber 40 closes the inlet 23 during reverse flow in which a through-hole 46 through which water passes is formed and water flows from the outlet 33 to the inlet 23. While the first flow path F1 is blocked, water is circulated through the second flow path F2, and during forward flow in which water flows from the inlet 23 to the outlet 33, the absorber 40 is connected to the outlet 33 compared to the reverse flow. Opening of the outlet 33 of a nearby item Maintaining, circulating water through the first flow path F1 and a second flow path F2.
 この構成によれば、水に押されて移動する吸収体40がケーシング10内に配置されているので、順流時及び逆流時の何れにおいても、ケーシング10内に流入した水は吸収体40に衝突して、衝撃が弱められる。衝撃吸収器1は、基本的には吸収体40によって水の衝撃を吸収する。 According to this configuration, since the absorber 40 that is pushed by water and moves is disposed in the casing 10, the water that has flowed into the casing 10 collides with the absorber 40 in both the forward flow and the reverse flow. And the impact is weakened. The shock absorber 1 basically absorbs the water shock by the absorber 40.
 それに加えて、順流時には、吸収体40は、流出口33に近づくものの、流出口33を開いた状態を維持する。つまり、第1流路F1が開通した状態となる。順流時は、衝撃吸収器1が組み込まれた流体システムにおいて水が正常に流通しているときでもあるので、衝撃吸収器1を通過する水の流量を確保する必要がある。前述のように、吸収体40が流出口30の方に近づくものの、流出口33を開いた状態が維持されるので、衝撃吸収器1からの流量が確保される。 In addition, at the time of forward flow, the absorber 40 approaches the outflow port 33 but maintains the outflow port 33 in an open state. That is, the first flow path F1 is opened. At the time of forward flow, since water is normally flowing in the fluid system in which the shock absorber 1 is incorporated, it is necessary to ensure the flow rate of water passing through the shock absorber 1. As described above, although the absorber 40 approaches the outflow port 30, the state in which the outflow port 33 is opened is maintained, so that the flow rate from the shock absorber 1 is ensured.
 一方、逆流時には、水の出口となる流入口23が吸収体40で閉じられ、第1流路F1が遮断される。しかしながら、吸収体40の貫通孔46を介する第2流路F2は開通しているので、第2流路F2を介した水の流通は維持される。つまり、衝撃吸収器1が組み込まれた流体システムにおいては逆流方向への流量を考慮する必要がない。そこで、逆流時には、流入口23を閉じて第1流路F1を遮断することによって、衝撃吸収器1の上流側への衝撃の低減効果を高める。ただし、衝撃吸収器1からの水の流出を完全に止めると、衝撃吸収器1へ入力される衝撃を吸収体40等の部材で全て受け止めることになり、吸収体40等の寿命が短くなる虞がある。そこで、衝撃吸収器1は、流入した水を吸収体40の貫通孔46を介して、即ち、第2流路F2を介して上流側へ逆流させる。これにより、吸収体40等への衝撃も緩和することができる。このときの流量は、第1流路F1及び第2流路F2の両方が開通している場合と比べて少量である。そのため、第2流路F2を介した逆流に起因して、衝撃吸収器1の上流側へ伝播する衝撃も小さい。 On the other hand, at the time of reverse flow, the inlet 23 serving as the outlet of water is closed by the absorber 40, and the first flow path F1 is blocked. However, since the second flow path F2 through the through hole 46 of the absorber 40 is open, the flow of water through the second flow path F2 is maintained. In other words, in the fluid system in which the shock absorber 1 is incorporated, it is not necessary to consider the flow rate in the reverse flow direction. Therefore, at the time of reverse flow, the effect of reducing the impact on the upstream side of the impact absorber 1 is enhanced by closing the inlet 23 and blocking the first flow path F1. However, if the outflow of water from the shock absorber 1 is completely stopped, all the shocks input to the shock absorber 1 are received by the members such as the absorber 40 and the life of the absorber 40 and the like may be shortened. There is. Therefore, the shock absorber 1 causes the water that has flowed in to flow backward through the through hole 46 of the absorber 40, that is, through the second flow path F2. Thereby, the impact to the absorber 40 etc. can also be relieved. The flow rate at this time is small compared to the case where both the first flow path F1 and the second flow path F2 are open. Therefore, the impact propagating to the upstream side of the impact absorber 1 due to the backflow through the second flow path F2 is also small.
 このように、衝撃吸収器1は、通常時(順流時)の流量を確保しつつ、上流側及び下流側の何れで衝撃が発生した場合でも衝撃吸収器1を通過して伝播する衝撃を低減することができる。別の見方をすれば、流体システムにおける或る機器(例えば、熱交換器91)が上流側の衝撃から保護したい場合であっても下流側の衝撃から保護したい場合であっても、衝撃吸収器1を適用することができる。 As described above, the shock absorber 1 reduces the shock that propagates through the shock absorber 1 regardless of whether the shock occurs on the upstream side or the downstream side while ensuring a normal flow rate (forward flow time). can do. Viewed another way, whether a device (eg, heat exchanger 91) in a fluid system wants to protect against upstream shock or downstream shock, the shock absorber. 1 can be applied.
 また、第1流路F1は、吸収体40を回り込んで流入口23と流出口33とを繋ぐように形成されている。 Further, the first flow path F1 is formed so as to go around the absorber 40 and connect the inflow port 23 and the outflow port 33.
 この構成によれば、第1流路F1は、流入口23と流出口33とを直線的に繋ぐのではなく、屈曲又は湾曲した流路で繋ぐので、第1流路F1の流路抵抗が大きくなる。これにより、順流時における衝撃の低減効果を高めることができる。 According to this configuration, the first flow path F1 does not connect the inflow port 23 and the outflow port 33 linearly, but connects with a bent or curved flow path, so that the flow path resistance of the first flow path F1 is low. growing. Thereby, the effect of reducing impact during forward flow can be enhanced.
 さらに、吸収体40のうち流入口23と対向し、流入口23から流入する水が衝突する部分には、流入口23からの水の流入方向に対して傾斜した第1受け面42が形成されている。 Furthermore, a first receiving surface 42 that is inclined with respect to the inflow direction of water from the inflow port 23 is formed in a portion of the absorber 40 that faces the inflow port 23 and collides with water that flows in from the inflow port 23. ing.
 この構成によれば、順流時に流入口23からその中心軸に沿って流入してきた水は、第1受け面42に垂直ではなく、斜めに入射する。そのため、吸収体40は、水の衝撃を全て受け止めるわけではなく、衝撃の一部を逃がすことができる。これにより、吸収体40が受ける衝撃が緩和される。 According to this configuration, the water that flows in along the central axis from the inflow port 23 at the time of forward flow enters the first receiving surface 42 not obliquely but obliquely. Therefore, the absorber 40 does not receive all the impact of water, but can release a part of the impact. Thereby, the impact which the absorber 40 receives is relieved.
 さらに、第1受け面42は、凹曲面に形成されている。 Furthermore, the first receiving surface 42 is formed in a concave curved surface.
 この構成によれば、第1受け面42が湾曲しながら窪んでいるので、第1受け面42に衝突した水は、凹曲面の深い部分に向かって旋回しながら集まる流れとなる。その結果、水同士が衝突しやすくなり、水の衝撃がさらに弱められる。 According to this configuration, since the first receiving surface 42 is bent while being curved, the water colliding with the first receiving surface 42 becomes a flow that gathers while turning toward a deep portion of the concave curved surface. As a result, water easily collides, and the impact of water is further weakened.
 また、吸収体40のうち流出口33と対向し、流出口33から流入する流体が衝突する部分には、流出口33からの流体の流入方向に対して傾斜した第2受け面43が形成されている。 Further, a second receiving surface 43 that is inclined with respect to the inflow direction of the fluid from the outlet 33 is formed in a portion of the absorber 40 that faces the outlet 33 and collides with the fluid that flows in from the outlet 33. ing.
 この構成によれば、逆流時に流出口33からその中心軸に沿って流入してきた水は、第2受け面43に垂直ではなく、斜めに入射する。そのため、吸収体40は、水の衝撃を全て受け止めるわけではなく、衝撃の一部を逃がすことができる。これにより、吸収体40が受ける衝撃が緩和される。 According to this configuration, the water that has flowed in along the central axis from the outlet 33 at the time of backflow enters the second receiving surface 43 obliquely rather than perpendicularly. Therefore, the absorber 40 does not receive all the impact of water, but can release a part of the impact. Thereby, the impact which the absorber 40 receives is relieved.
 また、ケーシング10には、吸収体40が流出口33に近づく方向へ移動したときに接触して、吸収体40が流出口33を開いた状態を維持するように吸収体40の移動を阻止するストッパ36が設けられている。 Further, the casing 10 comes into contact with the absorber 40 when it moves in a direction approaching the outlet port 33, and the absorber 40 is prevented from moving so that the absorber 40 maintains the state in which the outlet port 33 is opened. A stopper 36 is provided.
 この構成によれば、順流時において流出口33が開いた状態を常に維持することができる。 According to this configuration, the state in which the outlet 33 is open at the time of forward flow can always be maintained.
 《実施形態2》
 続いて、実施形態2に係る衝撃吸収器201について説明する。図5は、実施形態2に係る衝撃吸収器201の縦断面図であって、順流方向への衝撃が作用した状態の図である。図6は、衝撃吸収器201の縦断面図であって、逆流方向への衝撃が作用した状態の図である。以下では、衝撃吸収器201の構成のうち衝撃吸収器1と異なる部分を中心に説明し、衝撃吸収器1と同様の構成については同様の符号を付し、説明を省略する。
<< Embodiment 2 >>
Next, the shock absorber 201 according to the second embodiment will be described. FIG. 5 is a longitudinal sectional view of the shock absorber 201 according to the second embodiment, and shows a state in which an impact in the forward flow direction is applied. FIG. 6 is a longitudinal sectional view of the shock absorber 201 and shows a state in which an impact in the reverse flow direction is applied. Below, it demonstrates centering on a different part from the shock absorber 1 among the structures of the shock absorber 201, about the structure similar to the shock absorber 1, the same code | symbol is attached | subjected and description is abbreviate | omitted.
 衝撃吸収器201は、ケーシング210と、吸収体240とを備えている。 The shock absorber 201 includes a casing 210 and an absorber 240.
 ケーシング210は、第1筒部220と、第2筒部230とを有している。第1筒部220と第2筒部230とは、互いに連結される。第1筒部220は、有底の略円筒状に形成されている。具体的には、第1筒部220は、X軸を軸心とする略円筒状の周壁221と、X軸方向における周壁221の一端に連結された略円盤状の底壁222とを有している。底壁222には、略円形の流入口223が貫通形成されている。流入口223の中心軸は、X軸と一致している。底壁222には、吸収体240を支持する軸受224が設けられている。軸受224は、流入口223の略中央に配置され、2つのビーム225を介して底壁222に連結されている。軸受224の軸心は、X軸と一致している。2つのビーム225は、X軸を中心として半径方向に延びている。2つのビーム225は、略一直線上に配置されている。底壁222の内側の面(即ち、ケーシング210の内側の面)には、突出部226が設けられている。突出部226は、流入口223を囲むように円環状に形成されている。 The casing 210 has a first tube portion 220 and a second tube portion 230. The 1st cylinder part 220 and the 2nd cylinder part 230 are mutually connected. The 1st cylinder part 220 is formed in the bottomed substantially cylindrical shape. Specifically, the first cylindrical portion 220 has a substantially cylindrical peripheral wall 221 having the X axis as an axis, and a substantially disc-shaped bottom wall 222 connected to one end of the peripheral wall 221 in the X axis direction. ing. A substantially circular inflow port 223 is formed through the bottom wall 222. The central axis of the inflow port 223 coincides with the X axis. A bearing 224 that supports the absorber 240 is provided on the bottom wall 222. The bearing 224 is disposed substantially at the center of the inflow port 223 and is connected to the bottom wall 222 via two beams 225. The shaft center of the bearing 224 coincides with the X axis. The two beams 225 extend in the radial direction about the X axis. The two beams 225 are arranged on a substantially straight line. A protrusion 226 is provided on the inner surface of the bottom wall 222 (that is, the inner surface of the casing 210). The protrusion 226 is formed in an annular shape so as to surround the inflow port 223.
 第2筒部230は、基本的には第1筒部220と同様の構成をしている。第2筒部230は、有底の略円筒状に形成されている。具体的には、第2筒部230は、X軸を軸心とする略円筒状の周壁231と、X軸方向における周壁231の一端に連結された略円盤状の底壁232とを有している。底壁232には、略円形の流出口233が貫通形成されている。流出口233の中心軸は、X軸と一致している。底壁232には、吸収体240を支持する軸受234が設けられている。軸受234は、流出口233の略中央に配置され、2つのビーム235を介して底壁232に連結されている。軸受234の軸心は、X軸と一致している。2つのビーム235は、X軸を中心として半径方向に延びている。2つのビーム235は、略一直線上に配置されている。底壁232には、ケーシング210の内側に突出する2つのストッパ236が設けられている。2つのストッパ236は、X軸を挟んで対向する位置に配置されている。各ストッパ236は、各ビーム235と底壁232との連結部に設けられている。 The second cylinder part 230 basically has the same configuration as the first cylinder part 220. The 2nd cylinder part 230 is formed in the bottomed substantially cylindrical shape. Specifically, the second cylindrical portion 230 has a substantially cylindrical peripheral wall 231 centered on the X axis, and a substantially disc-shaped bottom wall 232 connected to one end of the peripheral wall 231 in the X axis direction. ing. A substantially circular outlet 233 is formed in the bottom wall 232 so as to penetrate therethrough. The central axis of the outlet 233 coincides with the X axis. A bearing 234 that supports the absorber 240 is provided on the bottom wall 232. The bearing 234 is disposed substantially at the center of the outlet 233 and is connected to the bottom wall 232 via two beams 235. The shaft center of the bearing 234 coincides with the X axis. The two beams 235 extend in the radial direction about the X axis. The two beams 235 are arranged on a substantially straight line. Two stoppers 236 projecting inside the casing 210 are provided on the bottom wall 232. The two stoppers 236 are arranged at positions facing each other across the X axis. Each stopper 236 is provided at a connection portion between each beam 235 and the bottom wall 232.
 吸収体240は、第1受け部241と、第2受け部261と、シャフト250とを有している。 The absorber 240 has a first receiving part 241, a second receiving part 261, and a shaft 250.
 第1受け部241は、X軸を中心とする略円形の外形を有している。第1受け部241の外径は、周壁221の内径よりも小さく、流入口223の内径よりも大きい。第2受け部261は、X軸を中心とする略円形の外形を有している。第2受け部261の外径は、周壁231の内径よりも小さく、流出口233の内径よりも大きい。シャフト250は、第1受け部241及び第2受け部261を貫通してX軸方向に延びている。シャフト250の軸心は、X軸と一致している。すなわち、シャフト250は、第1受け部241及び第2受け部261の中心に設けられている。シャフト250の両端部はそれぞれ、X軸方向に摺動自在な状態で軸受224及び軸受234に嵌っている。こうして、吸収体240は、ケーシング210内をX軸方向に移動可能な状態でケーシング210内に配置されている。 The first receiving portion 241 has a substantially circular outer shape centering on the X axis. The outer diameter of the first receiving portion 241 is smaller than the inner diameter of the peripheral wall 221 and larger than the inner diameter of the inflow port 223. The second receiving portion 261 has a substantially circular outer shape centering on the X axis. The outer diameter of the second receiving portion 261 is smaller than the inner diameter of the peripheral wall 231 and larger than the inner diameter of the outlet 233. The shaft 250 extends through the first receiving portion 241 and the second receiving portion 261 in the X-axis direction. The axis of the shaft 250 coincides with the X axis. That is, the shaft 250 is provided at the center of the first receiving portion 241 and the second receiving portion 261. Both end portions of the shaft 250 are fitted in the bearing 224 and the bearing 234 so as to be slidable in the X-axis direction. Thus, the absorber 240 is arranged in the casing 210 so as to be movable in the X-axis direction in the casing 210.
 第1受け部241の周縁部は、平坦に形成されている。第1受け部241のうち周縁部よりも内側部分は、湾曲した形状に形成されている。 The peripheral edge portion of the first receiving portion 241 is formed flat. An inner portion of the first receiving portion 241 than the peripheral portion is formed in a curved shape.
 詳しくは、第1受け部241のうち流入口223と対向する部分には、流入口223から流入する流体が衝突する第1受け面242が形成されている。第1受け面242は、X軸に対して傾斜している。より具体的には、第1受け面242は、中心(即ち、X軸が通過する部分)が最も凹むように湾曲した凹曲面となっている。 Specifically, a first receiving surface 242 on which a fluid flowing in from the inflow port 223 collides is formed in a portion of the first receiving portion 241 that faces the inflow port 223. The first receiving surface 242 is inclined with respect to the X axis. More specifically, the first receiving surface 242 is a concave curved surface that is curved so that the center (that is, the portion through which the X axis passes) is most concave.
 尚、第1受け部241の周縁部のうち流入口223の方を向く面には、X軸を中心とする周方向に延びる円形の凹溝244が形成されている。凹溝244には、円環状のゴム245が嵌っている。ゴム245は、吸収体240が流入口223の方へ移動したときに、ケーシング210の突出部226と接触する。 A circular concave groove 244 extending in the circumferential direction around the X axis is formed on the surface of the peripheral edge of the first receiving portion 241 facing the inflow port 223. An annular rubber 245 is fitted in the concave groove 244. The rubber 245 comes into contact with the protrusion 226 of the casing 210 when the absorber 240 moves toward the inflow port 223.
 第1受け部241には、流体が通過する6個の第1貫通孔246が形成されている。第1貫通孔246の一端は、第1受け面242に開口している。第1貫通孔246は、X軸と略平行に第1受け部241を貫通している。6個の第1貫通孔246は、X軸を中心とする周方向へ等間隔に配置されている。 The first receiving portion 241 has six first through holes 246 through which fluid passes. One end of the first through hole 246 opens in the first receiving surface 242. The first through hole 246 passes through the first receiving portion 241 substantially parallel to the X axis. The six first through holes 246 are arranged at equal intervals in the circumferential direction around the X axis.
 第2受け部641の基本的な構成は、第1受け部241と同様である。第2受け部261の周縁部は、平坦に形成されている。第2受け部261のうち周縁部よりも内側部分は、湾曲した形状に形成されている。 The basic configuration of the second receiving portion 641 is the same as that of the first receiving portion 241. The peripheral edge portion of the second receiving portion 261 is formed flat. An inner portion of the second receiving portion 261 with respect to the peripheral portion is formed in a curved shape.
 詳しくは、第2受け部261のうち流出口233と対向する部分には、流出口233から流入する流体が衝突する第2受け面262が形成されている。第2受け面262は、X軸に対して傾斜している。より具体的には、第2受け面262は、中心(即ち、X軸が通過する部分)が最も凹むように湾曲した凹曲面となっている。 Specifically, a second receiving surface 262 on which the fluid flowing in from the outlet 233 collides is formed at a portion of the second receiving portion 261 facing the outlet 233. The second receiving surface 262 is inclined with respect to the X axis. More specifically, the second receiving surface 262 is a concave curved surface that is curved so that the center (that is, the portion through which the X axis passes) is most concave.
 尚、第2受け部261の周縁部のうち流出口233の方を向く面は、吸収体240が流出口233の方へ移動したときにケーシング210のストッパ236に接触する。 Note that the surface of the peripheral edge of the second receiving portion 261 facing the outlet 233 comes into contact with the stopper 236 of the casing 210 when the absorber 240 moves toward the outlet 233.
 第2受け部261には、流体が通過する6個の第2貫通孔266が形成されている。第2貫通孔266の一端は、第2受け面262に開口している。6個の第2貫通孔266は、X軸を中心とする周方向へ等間隔に配置されている。第2貫通孔266は、X軸と略平行に第2受け部261を貫通している。 The second receiving portion 261 is formed with six second through holes 266 through which fluid passes. One end of the second through hole 266 opens in the second receiving surface 262. The six second through holes 266 are arranged at equal intervals in the circumferential direction around the X axis. The second through hole 266 passes through the second receiving portion 261 substantially parallel to the X axis.
 吸収体240は、第1受け部241が流入口223に対向し、第2受け部261が流出口233に対向する状態で、ケーシング210内に配置される。第1受け部241と底壁222との間には、第1バネ271が圧縮状態で配置され、第2受け部261と底壁232との間には、第2バネ272が圧縮状態で配置される。このとき、吸収体240は、突出部226にもストッパ236にも接触しない位置で停止するように、第1バネ271及び第2バネ272のバネ定数が設定されている。 The absorber 240 is disposed in the casing 210 with the first receiving portion 241 facing the inflow port 223 and the second receiving portion 261 facing the outflow port 233. A first spring 271 is disposed in a compressed state between the first receiving portion 241 and the bottom wall 222, and a second spring 272 is disposed in a compressed state between the second receiving portion 261 and the bottom wall 232. Is done. At this time, the spring constants of the first spring 271 and the second spring 272 are set so that the absorber 240 stops at a position where neither the protrusion 226 nor the stopper 236 comes into contact.
 吸収体240がケーシング210内に配置された状態において、周壁221と第1受け部241との間、及び、周壁231と第2受け部261との間には隙間が形成される。つまり、ケーシング210内には、周壁221と第1受け部241との隙間及び周壁231と第2受け部261との隙間を介して流入口223と流出口233とを繋ぐ第1流路F201(図5の二点鎖線)が形成されている。それに加えて、ケーシング210内には、吸収体240の第1貫通孔246及び第2貫通孔266を介して流入口223と流出口233とを繋ぐ第2流路F202(図5,6の破線)が形成されている。 In the state where the absorber 240 is disposed in the casing 210, gaps are formed between the peripheral wall 221 and the first receiving portion 241 and between the peripheral wall 231 and the second receiving portion 261. That is, in the casing 210, the first flow path F201 (the first flow path F201 (which connects the inlet 223 and the outlet 233) through the gap between the peripheral wall 221 and the first receiving portion 241 and the gap between the peripheral wall 231 and the second receiving portion 261. A two-dot chain line in FIG. 5 is formed. In addition, in the casing 210, a second flow path F202 (broken line in FIGS. 5 and 6) connecting the inlet 223 and the outlet 233 via the first through hole 246 and the second through hole 266 of the absorber 240. ) Is formed.
 以下、衝撃吸収器201の動作について説明する。 Hereinafter, the operation of the shock absorber 201 will be described.
 順流時には、衝撃吸収器201においては、流入口223からケーシング210内に水が流入し、流出口233を介してケーシング210から水が流出する。このとき、吸収体240は、突出部226及びストッパ236に接触していない。つまり、流入口223及び流出口233は、十分な開度を有している。 During forward flow, in the shock absorber 201, water flows into the casing 210 from the inflow port 223, and water flows out of the casing 210 through the outflow port 233. At this time, the absorber 240 is not in contact with the protrusion 226 and the stopper 236. That is, the inflow port 223 and the outflow port 233 have a sufficient opening degree.
 この状態においては、第1流路F201が開通している。つまり、ケーシング210内に流入口223から概ねX軸と平行に流入した水は、概ねX軸方向に進み、吸収体240の第1受け面242に衝突する。第1受け面242は中心が凹むように湾曲しているので、第1受け面242に衝突した水は、第1受け面242に沿って、第1受け面242の中心に向かう。中心に向かった水は、別の方向から中心に向かってきた水と衝突し合い、その後、第1受け面242の外周側へ向かって流れていく。その後、水は、第1受け部241と周壁221との隙間、及び、第2受け部261と周壁231との隙間を通って、第2受け面262の側へ流れていく。最終的に、水は、流出口233を介してケーシング210から流出していく。 In this state, the first flow path F201 is open. That is, water that has flowed into the casing 210 from the inlet 223 substantially in parallel with the X axis travels in the X axis direction and collides with the first receiving surface 242 of the absorber 240. Since the first receiving surface 242 is curved so that the center is recessed, the water colliding with the first receiving surface 242 travels along the first receiving surface 242 toward the center of the first receiving surface 242. The water toward the center collides with the water that has come from the other direction toward the center, and then flows toward the outer peripheral side of the first receiving surface 242. Thereafter, the water flows toward the second receiving surface 262 through the gap between the first receiving portion 241 and the peripheral wall 221 and the gap between the second receiving portion 261 and the peripheral wall 231. Finally, water flows out of the casing 210 through the outlet 233.
 それに加えて、第2流路F202も開通している。つまり、流入口223から流入した水の一部は、第1貫通孔246及び第2貫通孔266を介して、第1受け面242の側から第2受け面262の側へ吸収体240を通過する。こうして、吸収体240を通過した水も、流出口233を介してケーシング210から流出していく。 In addition, the second flow path F202 is also opened. That is, a part of the water flowing in from the inflow port 223 passes through the absorber 240 from the first receiving surface 242 side to the second receiving surface 262 side through the first through hole 246 and the second through hole 266. To do. In this way, the water that has passed through the absorber 240 also flows out of the casing 210 through the outlet 233.
 尚、吸収体240は、水が衝突することによって流出口233の方へ移動する。水の流量が正常な範囲内においては、吸収体240は、ストッパ236に接触しないように第1バネ271及び第2バネ272のバネ定数が設定されている。これにより、通常時において、流出口233の十分な開度が確保される。 In addition, the absorber 240 moves toward the outlet 233 when the water collides. The spring constants of the first spring 271 and the second spring 272 are set so that the absorber 240 does not contact the stopper 236 when the water flow rate is within a normal range. Thereby, the sufficient opening degree of the outflow port 233 is ensured in normal time.
 ここで、衝撃吸収器201の上流側においてウォータハンマが発生すると、その衝撃が衝撃吸収器201へ伝播する。つまり、水が勢いよく衝撃吸収器201へ流入し得る。しかし、衝撃吸収器201は、水の衝撃を吸収し、衝撃吸収器201の下流側へ伝播する衝撃を低減する。詳しくは、前述の如く、流入口223から流入した水は、まず吸収体240の第1受け面242に衝突する。吸収体240は、流出口233の方へ移動し、第2バネ272を圧縮変形させる。これにより、水の衝撃が吸収される。このように、水の衝撃は、吸収体240へ衝突すること、及び、第2バネ272を圧縮変形させることによって弱められる。さらに、第1受け面242は中心に向かって凹むように傾斜(より詳しくは、湾曲)しているため、第1受け面242に衝突した水は、第1受け面242の中心に集まり、他の方向から集まってきた水と衝突することによっても、水の衝撃が弱まる。その後、水は、吸収体240を迂回するように屈曲又は湾曲した第1流路F201を流通する。この際の流路抵抗によっても、水の衝撃が弱まる。さらに、一部の水は、吸収体240の第1貫通孔246及び第2貫通孔266を通過する。このときの第1貫通孔246及び第2貫通孔266の流路抵抗によっても、水の衝撃が弱まる。 Here, when a water hammer occurs on the upstream side of the shock absorber 201, the shock propagates to the shock absorber 201. That is, water can flow into the shock absorber 201 with vigor. However, the impact absorber 201 absorbs the impact of water and reduces the impact that propagates downstream of the impact absorber 201. Specifically, as described above, the water flowing in from the inlet 223 first collides with the first receiving surface 242 of the absorber 240. The absorber 240 moves toward the outlet 233 and compresses and deforms the second spring 272. Thereby, the impact of water is absorbed. Thus, the impact of water is weakened by colliding with the absorber 240 and compressing and deforming the second spring 272. Further, since the first receiving surface 242 is inclined (more specifically, curved) so as to be recessed toward the center, water colliding with the first receiving surface 242 gathers at the center of the first receiving surface 242 and other The impact of water also weakens by colliding with water gathered from the direction of. Thereafter, the water flows through the first flow path F201 bent or curved so as to bypass the absorber 240. The impact of water is also weakened by the channel resistance at this time. Furthermore, a part of the water passes through the first through hole 246 and the second through hole 266 of the absorber 240. The impact of water is also weakened by the flow path resistance of the first through hole 246 and the second through hole 266 at this time.
 こうして、順流時に衝撃吸収器201から流出する水の衝撃は弱められる。 Thus, the impact of water flowing out of the shock absorber 201 during forward flow is weakened.
 尚、水の流量によっては、吸収体240は、ストッパ236に接触する。吸収体240が流出口233に近づくので流出口233の開度が絞られるが、流出口233は閉鎖されない。つまり、衝撃吸収器201は、通過する水の流量を或る程度確保することができる。衝撃吸収器201の上流側で衝撃が発生した場合には、水が流れる方向は、順流方向である。そのため、衝撃吸収器201は、水の衝撃を吸収しつつ、水の流量を或る程度確保することができる。これにより、衝撃吸収器201が組み込まれた流体システムの正常な水の流通を維持することができる。 In addition, the absorber 240 contacts the stopper 236 depending on the flow rate of water. Since the absorber 240 approaches the outlet 233, the opening degree of the outlet 233 is reduced, but the outlet 233 is not closed. That is, the shock absorber 201 can secure a certain amount of water flow through. When an impact occurs on the upstream side of the impact absorber 201, the direction of water flow is the forward flow direction. Therefore, the impact absorber 201 can secure a certain amount of water flow while absorbing the impact of water. Thereby, the normal water flow of the fluid system in which the shock absorber 201 is incorporated can be maintained.
 一方、衝撃吸収器201の下流側においてウォータハンマが発生する場合には、衝撃吸収器201には流出口233から水が勢いよく流入(即ち、逆流)してくる。しかし、衝撃吸収器201は、水の衝撃を吸収し、衝撃吸収器201の上流側へ伝播する衝撃を低減する。 On the other hand, when a water hammer is generated on the downstream side of the shock absorber 201, water flows into the shock absorber 201 from the outlet 233 vigorously (that is, reverse flow). However, the impact absorber 201 absorbs the impact of water and reduces the impact that propagates upstream of the impact absorber 201.
 詳しくは、逆流時には、衝撃吸収器201においては、流出口233からケーシング210内に水が流入する。流出口233から流入した水は、まず吸収体240の第2受け面262に衝突する。吸収体240は、流入口223の方へ移動し、第1バネ271を圧縮変形させる。これにより、水の衝撃が吸収される。このように、水の衝撃は、吸収体240へ衝突すること、及び、第1バネ271を圧縮変形させることによって弱められる。さらに、第2受け面262は中心に向かって凹むように傾斜(より詳しくは、湾曲)しているため、第2受け面262に衝突した水は、第2受け面262の中心に集まり、他の方向から集まってきた水と衝突することによっても、水の衝撃が弱まる。 Specifically, at the time of backflow, in the shock absorber 201, water flows into the casing 210 from the outlet 233. The water flowing in from the outlet 233 first collides with the second receiving surface 262 of the absorber 240. The absorber 240 moves toward the inflow port 223 and compresses and deforms the first spring 271. Thereby, the impact of water is absorbed. Thus, the impact of water is weakened by colliding with the absorber 240 and compressing and deforming the first spring 271. Further, since the second receiving surface 262 is inclined (more specifically, curved) so as to be recessed toward the center, the water colliding with the second receiving surface 262 gathers at the center of the second receiving surface 262, and the like. The impact of water also weakens by colliding with water gathered from the direction of.
 さらに、吸収体240は、水の流量によっては、突出部226に接触する。つまり、吸収体240は、流入口223を閉鎖する。これにより、第1流路F201が遮断される。しかしながら、第2流路F202の開通は維持されている。流出口233から流入した水は、第2貫通孔266及び第1貫通孔246を介して、第2受け面262の側から第1受け面242の側へ吸収体240を通過する。吸収体240を通過した水は、流入口223を介してケーシング210から流出していく。第2貫通孔266及び第1貫通孔246を通過するときの流路抵抗によっても、水の衝撃が弱まる。つまり、第2貫通孔266及び第1貫通孔246を通過して衝撃が弱まった水だけが衝撃吸収器201から上流側へ流出していく。 Furthermore, the absorber 240 contacts the protrusion 226 depending on the flow rate of water. That is, the absorber 240 closes the inflow port 223. As a result, the first flow path F201 is blocked. However, the opening of the second flow path F202 is maintained. The water that flows in from the outlet 233 passes through the absorber 240 from the second receiving surface 262 side to the first receiving surface 242 side through the second through hole 266 and the first through hole 246. The water that has passed through the absorber 240 flows out of the casing 210 through the inflow port 223. The impact of water is also weakened by the flow path resistance when passing through the second through hole 266 and the first through hole 246. In other words, only water that has passed through the second through hole 266 and the first through hole 246 and whose impact has weakened flows out from the shock absorber 201 to the upstream side.
 尚、逆流の水の流量が比較的少ない場合には、吸収体240は第1バネ271を圧縮変形させても突出部226まで移動しないこともあり得る。このとき、流入口223は閉鎖されない。その場合、第2受け面262に衝突した水は、吸収体240を迂回するように屈曲した第1流路F201を流通する。この際の流路抵抗によっても、水の衝撃が弱まる。 In addition, when the flow rate of the backflow water is relatively small, the absorber 240 may not move to the protruding portion 226 even if the first spring 271 is compressed and deformed. At this time, the inlet 223 is not closed. In that case, the water colliding with the second receiving surface 262 flows through the first flow path F201 bent so as to bypass the absorber 240. The impact of water is also weakened by the channel resistance at this time.
 こうして、逆流時に衝撃吸収器201から流出する水の衝撃は弱められる。 Thus, the impact of water flowing out of the shock absorber 201 during backflow is weakened.
 このように、衝撃吸収器201は、その上流側及び下流側の何れからの衝撃も緩和し、流出する水の衝撃を低減することができる。それに加え、順流時には、流入口223及び流出口233を閉じることなく、第1流路F201の開通状態を維持するので、衝撃吸収器201を流通する流量を確保することができる。つまり、ウォータハンマ等が発生していない通常時の流量を確保することができる。 Thus, the shock absorber 201 can relieve the impact from both the upstream side and the downstream side, and reduce the impact of the flowing water. In addition, at the time of forward flow, the open state of the first flow path F201 is maintained without closing the inflow port 223 and the outflow port 233, so that the flow rate through the shock absorber 201 can be ensured. That is, it is possible to ensure a normal flow rate in which no water hammer or the like is generated.
 以上のように、衝撃吸収器201は、水(流体)が流入する流入口223及び水が流出する流出口233を有するケーシング210と、ケーシング210内に配置され、ケーシング210内を流れる水に押されて移動する吸収体240とを備え、ケーシング210内には、流入口223と流出口233とを繋ぐ第1流路F201が形成され、吸収体240には、流入口223と流出口233とを繋ぐ第2流路F202の一部を構成し、水が通過する第1貫通孔246及び第2貫通孔266が形成され、流出口233から流入口223へ水が流れる逆流時には、吸収体240は、流入口223を閉じて第1流路F201を遮断する一方、第2流路F202を介して水を流通させ、流入口223から流出口233へ水が流れる順流時には、吸収体240は、逆流時に比べて流出口233に近い位置に位置するものの流出口233を開いた状態を維持し、第1流路F201及び第2流路F202を介して水を流通させる。 As described above, the shock absorber 201 is disposed in the casing 210 having the inlet 223 into which water (fluid) flows in and the outlet 233 from which water flows out, and pushes against the water flowing in the casing 210. The first flow path F201 that connects the inlet 223 and the outlet 233 is formed in the casing 210, and the absorber 240 includes the inlet 223 and the outlet 233. The first through-hole 246 and the second through-hole 266 through which water passes are formed to form a part of the second flow path F202 that connects the two, and the absorber 240 during reverse flow in which water flows from the outlet 233 to the inlet 223. Is closed during the forward flow in which water flows from the inlet 223 to the outlet 233 while the inlet 223 is closed and the first flow path F201 is shut off while the water flows through the second flow path F202. 240 remain the outlet 233 open to what is located at a position closer to the outflow port 233 than that in the reverse flow, circulating water through the first flow path F201 and second flow path F 202.
 この構成によれば、衝撃吸収器201は、衝撃吸収器1と同様に、通常時の流量を確保しつつ、上流側及び下流側の何れで衝撃が発生した場合でも衝撃吸収器201を通過して伝播する衝撃を低減することができる。 According to this configuration, similarly to the shock absorber 1, the shock absorber 201 passes through the shock absorber 201 regardless of whether the shock occurs on the upstream side or the downstream side while ensuring a normal flow rate. The impact that propagates can be reduced.
 また、第2受け面262は、凹曲面に形成されている。 Further, the second receiving surface 262 is formed in a concave curved surface.
 この構成によれば、第2受け面262が湾曲しながら窪んでいるので、逆流時に第2受け面262に衝突した水は、凹曲面の深い部分に向かって旋回しながら集まる流れとなる。その結果、水同士が衝突しやすくなり、水の衝撃がさらに弱められる。 According to this configuration, since the second receiving surface 262 is concave while being curved, the water colliding with the second receiving surface 262 at the time of backflow becomes a flow that gathers while turning toward a deep portion of the concave curved surface. As a result, water easily collides, and the impact of water is further weakened.
 《その他の実施形態》
 以上のように、本出願において開示する技術の例示として、前記実施形態を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、前記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
<< Other Embodiments >>
As described above, the embodiment has been described as an example of the technique disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed. Moreover, it is also possible to combine each component demonstrated by the said embodiment and it can also be set as a new embodiment. In addition, among the components described in the attached drawings and detailed description, not only the components essential for solving the problem, but also the components not essential for solving the problem in order to illustrate the technology. May also be included. Therefore, it should not be immediately recognized that these non-essential components are essential as those non-essential components are described in the accompanying drawings and detailed description.
 例えば、衝撃吸収器1,201を流通する流体は、水以外の流体であってもよい。 For example, the fluid flowing through the shock absorbers 1, 201 may be a fluid other than water.
 ケーシング10内に形成される第1流路F1及び第2流路F2は、任意の形状に形成することができる。同様に、ケーシング210内に形成される第1流路F210及び第2流路F202も、任意の形状に形成することができる。 The 1st flow path F1 and the 2nd flow path F2 which are formed in the casing 10 can be formed in arbitrary shapes. Similarly, the 1st flow path F210 and the 2nd flow path F202 which are formed in the casing 210 can also be formed in arbitrary shapes.
 吸収体40,240の形状は、任意の形状にすることができる。吸収体40,240は、ケーシング10,210を流通する流体が衝突する位置に配置されていればよい。例えば、受け部41は、平板状に形成されていてもよい。また、受け部41は、板状ではなく、ブロック状の部材であってもよい。 The shape of the absorbers 40 and 240 can be any shape. The absorbers 40 and 240 should just be arrange | positioned in the position where the fluid which distribute | circulates the casings 10 and 210 collides. For example, the receiving part 41 may be formed in a flat plate shape. Further, the receiving portion 41 may be a block-like member instead of a plate-like shape.
 衝撃吸収器1は、衝撃吸収器201における第1バネ271及び/又は第2バネ272を有していてもよい。つまり、吸収体40は、ケーシング10内において弾性的に支持されていてもよい。 The shock absorber 1 may have the first spring 271 and / or the second spring 272 in the shock absorber 201. That is, the absorber 40 may be elastically supported in the casing 10.
 衝撃吸収器201は、第1バネ271及び第2バネ272の何れか一方だけを有していてもよい。つまり、バネの両端がそれぞれケーシング210及び吸収体240に取り付けられている場合には、吸収体240を支持するバネは1つであってもよい。また、衝撃吸収器201は、第1バネ271及び第2バネ272を有していなくてもよい。その場合、吸収体240は、衝撃吸収器1の吸収体40のように、ケーシング210内において移動自在に配置される。 The shock absorber 201 may have only one of the first spring 271 and the second spring 272. That is, when both ends of the spring are attached to the casing 210 and the absorber 240, the number of springs that support the absorber 240 may be one. Further, the shock absorber 201 may not have the first spring 271 and the second spring 272. In that case, the absorber 240 is movably disposed in the casing 210 like the absorber 40 of the shock absorber 1.
 衝撃吸収器201においては、ストッパ236が設けられていなくてもよい。つまり、順流方向への衝撃が発生した場合でも、吸収体240が流出口233を閉じない程度に大きなバネ定数を第2バネ272が有していればよい。 In the shock absorber 201, the stopper 236 may not be provided. That is, even when an impact in the forward flow direction occurs, it is sufficient that the second spring 272 has a spring constant that is large enough that the absorber 240 does not close the outlet 233.
 以上説明したように、ここに開示された技術は、衝撃吸収器について有用である。 As described above, the technology disclosed herein is useful for shock absorbers.
1,201   衝撃吸収器
10,210  ケーシング
23,223  流入口
33,233  流出口
36,236  ストッパ
40,240  吸収体
42,242  第1受け面
43,262  第2受け面
46      貫通孔
246     第1貫通孔
266     第2貫通孔
F1,F201 第1流路
F2,F202 第2流路
1,201 Shock absorber 10, 210 Casing 23, 223 Inlet 33, 233 Outlet 36, 236 Stopper 40, 240 Absorber 42, 242 First receiving surface 43, 262 Second receiving surface 46 Through hole 246 First through Hole 266 Second through hole F1, F201 First flow path F2, F202 Second flow path

Claims (7)

  1.  流体が流入する流入口及び流体が流出する流出口を有するケーシングと、
     前記ケーシング内に配置され、前記ケーシング内を流れる流体に押されて移動する吸収体とを備え、
     前記ケーシング内には、前記流入口と前記流出口とを繋ぐ第1流路が形成され、
     前記吸収体には、前記流入口と前記流出口とを繋ぐ第2流路の一部を構成し、流体が通過する貫通孔が形成され、
     前記流出口から前記流入口へ流体が流れる逆流時には、前記吸収体は、前記流入口を閉じて前記第1流路を遮断する一方、前記第2流路を介して流体を流通させ、
     前記流入口から前記流出口へ流体が流れる順流時には、前記吸収体は、前記逆流時に比べて前記流出口に近い位置に位置するものの前記流出口を開いた状態を維持し、前記第1流路及び前記第2流路を介して流体を流通させる衝撃吸収器。
    A casing having an inlet through which fluid flows in and an outlet through which fluid flows out;
    An absorber disposed in the casing and moved by being pushed by a fluid flowing in the casing;
    A first flow path connecting the inlet and the outlet is formed in the casing,
    The absorber constitutes a part of a second flow path that connects the inlet and the outlet, and a through-hole through which a fluid passes is formed.
    At the time of reverse flow in which fluid flows from the outlet to the inlet, the absorber closes the inlet and blocks the first flow path, while allowing the fluid to flow through the second flow path,
    During forward flow in which fluid flows from the inflow port to the outflow port, the absorber is positioned closer to the outflow port than in the reverse flow, but maintains the open state of the outflow port, and the first flow path And an impact absorber that allows fluid to flow through the second flow path.
  2.  請求項1に記載の衝撃吸収器において、
     前記第1流路は、前記吸収体を回り込んで前記流入口と前記流出口とを繋ぐように形成されている衝撃吸収器。
    The shock absorber according to claim 1,
    The first flow path is an impact absorber formed so as to go around the absorber and connect the inflow port and the outflow port.
  3.  請求項2に記載の衝撃吸収器において、
     前記吸収体のうち前記流入口と対向し、前記流入口から流入する流体が衝突する部分には、前記流入口からの流体の流入方向に対して傾斜した第1受け面が形成されている衝撃吸収器。
    The shock absorber according to claim 2,
    An impact is formed in a portion of the absorber opposite to the inlet and where a fluid flowing in from the inlet collides is inclined with respect to the inflow direction of the fluid from the inlet. Absorber.
  4.  請求項3に記載の衝撃吸収器において、
     前記第1受け面は、凹曲面に形成されている衝撃吸収器。
    The shock absorber according to claim 3,
    The first absorber is an impact absorber formed in a concave curved surface.
  5.  請求項1乃至4の何れか1つに記載の衝撃吸収器において、
     前記吸収体のうち前記流出口と対向し、逆流時に前記流出口から流入する流体が衝突する部分には、前記流出口からの流体の流入方向に対して傾斜した第2受け面が形成されている衝撃吸収器。
    The shock absorber according to any one of claims 1 to 4,
    A second receiving surface that is inclined with respect to the inflow direction of the fluid from the outflow port is formed in a portion of the absorber that faces the outflow port and collides with the fluid that flows in from the outflow port during reverse flow. Shock absorber.
  6.  請求項5に記載の衝撃吸収器において、
     前記第2受け面は、凹曲面に形成されている衝撃吸収器。
    The shock absorber according to claim 5,
    The second absorber is an impact absorber formed in a concave curved surface.
  7.  請求項1乃至6の何れか1つに記載の衝撃吸収器において、
     前記ケーシングには、前記吸収体が前記流出口に近づく方向へ移動したときに接触して、前記吸収体が前記流出口を開いた状態を維持するように前記吸収体の移動を阻止するストッパが設けられている衝撃吸収器。
    The shock absorber according to any one of claims 1 to 6,
    The casing has a stopper that prevents movement of the absorber so that the absorber maintains contact with the absorber when the absorber moves in a direction approaching the outlet, and maintains the state where the absorber opens the outlet. Shock absorber provided.
PCT/JP2019/004369 2018-02-28 2019-02-07 Shock absorber WO2019167586A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019524286A JP7311896B2 (en) 2018-02-28 2019-02-07 shock absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-034630 2018-02-28
JP2018034630 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167586A1 true WO2019167586A1 (en) 2019-09-06

Family

ID=67805302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004369 WO2019167586A1 (en) 2018-02-28 2019-02-07 Shock absorber

Country Status (2)

Country Link
JP (1) JP7311896B2 (en)
WO (1) WO2019167586A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145236A (en) * 1994-11-25 1996-06-07 Nok Corp Counterpressure pressure damping valve
JP3047227U (en) * 1997-09-18 1998-04-10 瑞華 方 I-type backflow absorber
JP2001324037A (en) * 2000-05-12 2001-11-22 Bosch Braking Systems Co Ltd Check valve with variable throttle and its manufacturing method
JP2002013453A (en) * 2000-06-29 2002-01-18 Bosch Automotive Systems Corp Accumulation type fuel system
JP2004036874A (en) * 2002-06-28 2004-02-05 Hyundai Motor Co Ltd Two-way orifice check valve device for hydraulic circuit

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5738138A (en) * 1997-03-10 1998-04-14 The Horton Company Reduced water hammer control valve
JP4428501B2 (en) * 2002-09-13 2010-03-10 株式会社テイエルブイ Check valve
JP5069203B2 (en) * 2008-11-14 2012-11-07 株式会社テイエルブイ Check valve
KR20090000772U (en) * 2008-12-10 2009-01-29 이병무 A back flow of prevention system for pipe arrangement
CN202946833U (en) * 2012-12-14 2013-05-22 浙江工贸职业技术学院 Water eliminating hammer device
CN105065841A (en) * 2015-08-14 2015-11-18 中冶北方(大连)工程技术有限公司 Vibration damping device for pipeline
JP6836455B2 (en) * 2017-05-12 2021-03-03 株式会社テイエルブイ Check valve
CN107202185A (en) * 2017-06-27 2017-09-26 博纳斯威阀门股份有限公司 Check-valves being sealed a kind of water hammer-resistant multiple flow passages more

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145236A (en) * 1994-11-25 1996-06-07 Nok Corp Counterpressure pressure damping valve
JP3047227U (en) * 1997-09-18 1998-04-10 瑞華 方 I-type backflow absorber
JP2001324037A (en) * 2000-05-12 2001-11-22 Bosch Braking Systems Co Ltd Check valve with variable throttle and its manufacturing method
JP2002013453A (en) * 2000-06-29 2002-01-18 Bosch Automotive Systems Corp Accumulation type fuel system
JP2004036874A (en) * 2002-06-28 2004-02-05 Hyundai Motor Co Ltd Two-way orifice check valve device for hydraulic circuit

Also Published As

Publication number Publication date
JP7311896B2 (en) 2023-07-20
JPWO2019167586A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP5900786B2 (en) Butterfly valve
EP2818660B1 (en) Valve device for exhaust gas flow path
US3421547A (en) Check valve mechanism
US6807985B2 (en) High rangeability control valve
EP3181965B1 (en) Check valve
US9506576B2 (en) Check valve apparatuses and methods
KR20070042978A (en) Valve for use in a fuel line of a motor vehicle
US20120312546A1 (en) Water hammer mitigating flow control structure and method
US8534314B2 (en) Explosion protection valve
US9228687B2 (en) Water hammer arrester
WO2019167586A1 (en) Shock absorber
KR101852038B1 (en) Shock absorbing device of swing check valve
KR100492625B1 (en) Check Valve
JP6516785B2 (en) Eccentric rotary valve
US10598291B2 (en) Guided check valve
US10948093B2 (en) Check valves
JP2011007263A (en) Three-way valve
CN106481821B (en) Self-centering metal-to-metal seal for a valve
WO2016001475A1 (en) Valve
KR101842885B1 (en) Safety Breakaway Coupling
US10557566B1 (en) Cushioned relief valve
US20180051818A1 (en) Check valve
JP2006266416A (en) Swing check valve
US3621874A (en) Lift-type check valve
KR101934040B1 (en) Check Valve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019524286

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760297

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760297

Country of ref document: EP

Kind code of ref document: A1