WO2019167584A1 - Air purification device - Google Patents

Air purification device Download PDF

Info

Publication number
WO2019167584A1
WO2019167584A1 PCT/JP2019/004327 JP2019004327W WO2019167584A1 WO 2019167584 A1 WO2019167584 A1 WO 2019167584A1 JP 2019004327 W JP2019004327 W JP 2019004327W WO 2019167584 A1 WO2019167584 A1 WO 2019167584A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
filter
base material
material layer
layer
Prior art date
Application number
PCT/JP2019/004327
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 小森
港 加藤
知弘 足立
由浩 辻
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019167584A1 publication Critical patent/WO2019167584A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/52Particle separators, e.g. dust precipitators, using filters embodying folded corrugated or wound sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material

Definitions

  • the present invention relates to an air purifier equipped with an air filter for the purpose of air purification.
  • aldehydes that are representative of odorous substances is formaldehyde.
  • Formaldehyde is emitted from wallpaper and furniture in the house. And even if it is a low concentration, it causes health problems, so it is desired to remove formaldehyde as an indoor pollutant.
  • the filter medium 101 mounted on the air cleaning device contains the adsorbent 102 in the carrier layer 103 and holds the carrier layer 103 sandwiched between the base material 104 and the cover layer 105.
  • the support layer 103 is activated carbon, silica gel, or the like. Furthermore, it has been disclosed that the filter medium 101 is formed into a pleated shape (see, for example, Patent Document 1).
  • the adsorbent (chemical reaction chemicals and catalysts, zeolite and activated carbon with adsorption performance, etc.) carried on the air filter carrier layer increases the treatment air volume at high wind speeds, The consumption increased and the adsorption performance deteriorated early.
  • An object of the present invention is to provide an air cleaning device that suppresses performance deterioration due to local consumption of adsorbent.
  • An air purifying apparatus includes a case provided with an intake port and an exhaust port, and an air filter disposed in the case and pleated with a sheet-like filter medium.
  • the air filter has a base material layer that supports the filter shape and a fiber layer that collects particles in the air.
  • the fiber which comprises a fiber layer has a fiber diameter thinner than the fiber which comprises a base material layer.
  • the base material layer has a higher air permeability than the fiber layer and includes an adsorbent containing an amine compound.
  • the fiber layer is arrange
  • the air flowing into the air cleaning device passes through the base material layer after passing through the fiber layer.
  • the air flowing from the fiber layer with low air permeability into the base layer with high air permeability causes turbulent flow in the fiber layer with low air permeability. Due to the turbulent action, the air flow direction spreads in a different direction at the base material layer interface and inside the base material layer, so that the surface air speed distribution of the air filter is leveled, that is, the wind speed when passing through the air filter surface The effect of suppressing the performance deterioration due to local consumption of the adsorbent is achieved.
  • FIG. 1 is a perspective view showing an installation state of the air cleaning device according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the air cleaning device according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of the air filter of the air cleaning device according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a filter medium used for the air filter according to the first embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a filter medium used in the air filter according to the first embodiment of the present invention.
  • FIG. 6 is an enlarged schematic cross-sectional view of the filter medium used in the air filter according to the first embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of an air cleaning device according to a second embodiment of the present invention.
  • FIG. 8 is a schematic view showing the arrangement of the continuous rectifying filter and the air filter in the air cleaning device according to the second embodiment of the present invention.
  • FIG. 9 is a schematic view showing the arrangement of the grid rectification filter and the air filter in the air cleaning device according to the second embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a filter medium mounted on a conventional air cleaning device.
  • the air cleaning device 4 shown in the first embodiment is installed on the floor 3 in the room and performs an air cleaning operation.
  • the body case 5 of the air cleaning device 4 has a substantially vertically long box shape.
  • a substantially rectangular air inlet 9 is provided on the front surface of the main body case 5.
  • the air inlet 9 surrounds the central panel 32 at the front edge.
  • a substantially rectangular exhaust port 10 is provided on the top surface of the main body case 5.
  • a blower 6 and an air filter 7 are provided in the main body case 5.
  • the air blower 6 is provided in the air passage between the air inlet 9 and the air outlet 10 in the main body case 5.
  • the air blowing unit 6 includes a scroll-shaped casing 11, blades 12, and an electric motor 13.
  • the blade 12 is a centrifugal blower fan provided in the casing 11.
  • the electric motor 13 rotates the blades 12.
  • the air blowing unit 6 is below the main body case 5. This is due to the configuration of the casing 11 in consideration of the influence of the main body air volume and the blowing sound.
  • An opening 30 is provided on the downstream side of the intake port 9.
  • the opening 30 forms an entrance into the main body case 5 and has a substantially square shape.
  • the air blower 6 is arranged further downstream of the air filter 7 and upstream of the exhaust port 10.
  • the air filter 7 is formed of a filter medium 14 and a shape holding part 15 as shown in FIG.
  • the shape holding unit 15 holds the filter medium 14.
  • the shape holding section 15 holds the filter medium 14 so that the area of the filter medium 14 is widened. Therefore, as shown in FIGS. 3 and 4, the filter medium 14 is formed into a pleated shape in the form of a sheet.
  • the shape holding unit 15 includes a frame portion 16 having a quadrangular side shape, and an adhesive member 17 provided between the frame portion 16 and the filter medium 14. That is, the frame portion 16 is located on the periphery of the filter medium 14.
  • the pleated filter medium 14 is fixed to the frame 16 by the adhesive member 17.
  • the pleated shape may be formed by folding the sheet-like filter medium 14 alternately with a mountain fold and a valley fold using a folding machine (not shown). Finally, the filter medium 14 formed into a pleat shape is fixed to the frame portion 16 by the adhesive member 17.
  • a hot melt resin or various adhesives can be used for the adhesive member 17. If a method such as joining only the apexes of the pleats with the adhesive member 17 is used, the shape can be fixed while ensuring the surface area of the filter medium 14.
  • the setting of the pitch 18 greatly affects the area of the filter medium 14 to be used.
  • the pitch 18 is narrowed and the mountains 31 (see FIG. 4) are increased, the area of the filter medium 14 can be increased.
  • the speed of the air passing through the filter medium 14 can be reduced, and the deodorization performance can be improved.
  • the amount of the adsorbent 21 (see FIG. 6) contained in the base material layer 19 (see FIG. 5) constituting the filter medium 14 is increased, the life that can be deodorized can be extended.
  • the detailed configuration of the filter medium 14 will be described later.
  • the area of the filter medium 14 is the product of the thickness dimension and height dimension of the air filter 7 and the width dimension of the sheet-like filter medium 14 multiplied by a value obtained by doubling the number of peaks 31.
  • the pitch 18 interval is 3.5 mm (about 10 to 15 times) with respect to the air filter 7 having a width of 273 mm, a height of 454 mm, and a thickness of 43.5 mm
  • the area of the filter medium 14 is 3. 1 m 2 .
  • the surface wind speed is a value obtained by dividing the processing air volume by the area of the filter medium 14, and therefore when the processing air volume is 8.8 m 3 / min, the surface air speed of 4.7 cm / sec is applied to the filter medium 14. It becomes.
  • the filter medium 14 before the pleating process includes a base material layer 19 and a fiber layer 20.
  • the base material layer 19 supports the filter shape of the air filter 7.
  • the fiber layer 20 is disposed upstream of the airflow with respect to the base material layer 19 and collects particulate matter in the air.
  • the base material layer 19 and the fiber layer 20 are bonded using an adhesive.
  • the type and method of the adhesive are not particularly limited, and examples thereof include an adhesive method using a resin adhesive such as hot melt or powder or a hot-melt resin fiber.
  • a resin adhesive such as hot melt or powder
  • a heat-melted adhesive is applied to the base material layer 19, and the fiber layer 20 is bonded and cooled before it is hardened.
  • the filter medium 14 is produced.
  • adhesion by heat melting adhesion to which a molten adhesive is bonded after application
  • adhesion by applying a powdered adhesive and then thermocompression bonding adhesion by applying a powdered adhesive and then thermocompression bonding
  • the molten adhesive after application. This is because the coating concentration on the surface can be made thin and uniform, and the adhesion between the fiber layer 20 and the base material layer 19 can be improved. That is, peeling can be prevented by improving the adhesion. Furthermore, since the adhesive that soaks into the base material layer 19 at the time of application can be thinned, the adhesive does not include the components of the adsorbent 21. That is, it can suppress that deodorizing performance falls by using the fuse
  • the pressure loss generated after pleating can be reduced by setting the thickness of the sheet-like filter medium 14 to 0.74 mm or less.
  • the thickness of the filter medium 14 is changed to a predetermined value. The pressure loss in the air volume was compared.
  • the pressure loss was 70 Pa.
  • the pressure loss was 72 Pa.
  • the pressure loss increased to 160 Pa.
  • the thickness of the filter medium 14 is preferably in a range thinner than the thickness dimension in which the pressure loss increases rapidly. That is, it is preferable that the thickness of the filter medium 14 be in the vicinity of 0.74 mm.
  • a general resin material or a natural fiber material can be used.
  • PAN polyacrylonitrile
  • PP polypropylene
  • PE polyethylene
  • PS polystyrene
  • PEO polyethylene oxide
  • PPE polyphenyl ether
  • PPO polyphenylene oxide
  • PTFE polytetrafluoroethylene
  • PEN Polyethylene naphthalate
  • PET polyethylene terephthalate
  • PES polyethersulfone
  • polymethacrylic acid polymethyl methacrylate
  • PVDF polyvinylidene fluoride
  • PVDF polyvinyl chloride
  • PVA polytetrafluoroethylene
  • PC polycarbonate
  • PC polyamide, polyimide, polyamideimide, aramid, polyimide benzazole
  • PGA polyglycolic acid
  • PGA polylactic acid
  • PVA Polyurethane
  • cellulose compound a polypeptide, nylon, etc., or may be those such as mixtures thereof
  • the average fiber diameter of the fibers constituting the fiber layer 20 is preferably thinner.
  • the average fiber diameter of the fibers constituting the fiber layer 20 is preferably 100 nm or more and 5000 nm or less.
  • the fiber diameter is larger than 5000 nm, even if the fiber layer 20 forms pores, the ratio of the volume occupied by the resin fibers increases, and the air resistance increases (increases the pressure loss), which is not preferable.
  • the fiber diameter is smaller than 100 nm because fiber breakage or fluffing is likely to occur.
  • the dust collection performance can be improved by subjecting the fiber layer 20 to a post-charging treatment.
  • a post-charging treatment there is an electret for applying corona discharge to the fiber layer 20 or a technique of impregnating with a solvent and then drying (not shown).
  • the basis weight of the fiber layer 20 is preferably 10 to 100 g / m 2 . If the basis weight is less than 10 g / m 2 , the self-supporting property of the fiber layer 20 is lowered, and it becomes difficult for the fiber layer 20 itself to maintain the nonwoven fabric in a film form. On the other hand, if the basis weight exceeds 100 g / m 2 , the pressure loss of the fiber layer 20 increases, and the structural pressure loss of the air filter 7 when pleated becomes large, which is not preferable.
  • the base material layer 19 is formed of fibers including at least one of glass fibers, pulp fibers, resin fibers, carbon fibers, and inorganic fibers.
  • Examples of the method for producing the base material layer 19 include a spunbond method, a dry or wet papermaking method, a melt blown method, a spunbond method, an airlaid method, and a thermal bond method.
  • the basis weight of the base material layer 19 is preferably 50 to 100 g / m 2 .
  • the basis weight is less than 50 g / m 2 , the bending resistance of the base material layer 19 is lowered, and it becomes difficult to reduce the productivity of the pleating process and to maintain the filter shape.
  • it exceeds 100 g / m ⁇ 2 > in addition to the pressure loss of the base material layer 19 becoming large, the structural pressure loss of the air filter 7 at the time of pleating becomes large, which is not preferable.
  • the average fiber diameter of the fibers constituting the base material layer 19 is preferably 20 to 50 ⁇ m. If the average fiber diameter is less than 20 ⁇ m, the strength of the fibers is low, and the strength as a reinforcing material is insufficient. Further, when the fiber diameter is reduced, the adsorbent 21 is attached to the gaps between the fibers rather than on the fiber, and the pressure loss is increased, or the amount of adsorbent 21 attached is reduced, or the adsorbent 21 is reduced. The problem that it becomes easy to detach arises. On the other hand, when the average fiber diameter exceeds 50 ⁇ m, the thickness of the base material layer 19 is increased, and the structural pressure loss of the air filter 7 when pleated is increased, which is not preferable.
  • the fiber diameter of the base material layer 19 is 10 times or more thicker than the fiber diameter of the fiber layer 20. That is, the fiber layer 20 is composed of fibers that are sufficiently thinner than the fibers constituting the base material layer 19.
  • the fabric weight of the fiber layer 20 and the base material layer 19 is comparable. Therefore, the volume density of the base material layer 19 is extremely smaller than the volume density of the fiber layer 20, and accordingly, the air permeability is sufficiently small.
  • the fiber diameter of the base material layer 19 is 50 ⁇ m
  • the basis weight is 100 g / m 2
  • the fiber diameter of the fiber layer 20 is 5 ⁇ m
  • the basis weight is 100 g / m 2 , both of which have the same fiber length and thickness.
  • the volume density of the base material layer 19 is 1/100 times the volume density of the fiber layer 20.
  • This difference in volume density causes a difference in air permeability between the base material layer 19 and the fiber layer 20.
  • the air permeability of the base material layer 19 is about 2 to 4 times larger than the air permeability of the fiber layer 20. That is, the base material layer 19 has a sufficiently higher air permeability than the fiber layer 20.
  • the base material layer 19 carries an adsorbent 21 containing an amine-based drug.
  • the adsorbent 21 carried on the base material layer 19 contains an amine compound as a part of the components. It is known that an amine compound and formaldehyde cause the following irreversible chemical reaction.
  • the filter medium 14 can be applied to deodorization intended for aldehydes.
  • the above chemical reaction is called chemisorption and is distinguished from physical adsorption such as activated carbon.
  • chemical adsorption since the adsorbed aldehydes are not re-released, there is an advantage that the aldehydes can be removed stably.
  • Examples of the method for including the adsorbent 21 containing the amine compound in the base material layer 19 include a method for including the base material layer 19 before the formation of the base material layer 19 and a method for including the base material layer 19 after the formation. .
  • a method of including before the base material layer 19 is formed there is a method in which the adsorbent 21 is contained in the spinning solution or the coating solution at the time of fiber spinning or coating of the base fiber with a resin or the like.
  • a method of inclusion after the formation of the base material layer 19 a method in which the adsorbent 21 is dissolved and dispersed in a solution, a small amount of a surfactant and a binder are added, and then the base material layer 19 is immersed in this liquid.
  • examples thereof include a method in which the liquid contained in the agent 21 is sprayed and a method in which the liquid is applied with a brush or a roller.
  • a method using a method of impregnating the adsorbent 21 after forming the base material layer 19 is preferable.
  • the surface portion 22 of the base material layer 19 can be in a state where a large amount of the adsorbent 21 is contained over a wide range. If the adsorbent 21 can be present in a wide range of the surface portion 22 of the base material layer 19, the contact probability with formaldehyde increases, and the adsorption performance can be improved.
  • the particle size of the adsorbent 21 is 10 ⁇ m or less.
  • the particle diameter is set to 10 ⁇ m or less, the surface area of the adsorbent 21 is increased, and the contact probability with formaldehyde can be increased and the reactivity can be improved.
  • the particle diameter exceeds 10 ⁇ m, the adsorbent 21 becomes difficult to adhere to the fibers of the base material layer 19 and causes powder falling. When powder falling occurs, the deodorizing performance is degraded.
  • the particle diameter exceeds 10 ⁇ m, the adsorbent 21 fills the gaps between the fibers forming the base material layer 19, and further increases the rigidity when pleated, thus causing a pressure loss of the air filter 7. Also mentioned.
  • the amount of adsorbent 21 attached to the base material layer 19 is 10 g / m 2 to 30 g / m 2 .
  • the fiber layer 20 is arranged and pleated so as to be upstream of the base material layer 19 in the airflow direction.
  • the air cleaning device 4 uses the air filter 7 to remove formaldehyde contained in indoor air and blows air into the room.
  • the air filter 7 has a structure in which the fiber layer 20 that mainly collects the particulate matter and the base material layer 19 containing the component of the adsorbent 21 are laminated and further pleated. Yes. Thereby, the area of the filter medium 14 can be increased, the amount of each fiber can be increased, and in addition, the amount of adsorbent 21 attached can be increased. Adsorption performance can be improved.
  • formaldehyde generally tends to cause an adsorption reaction with the adsorbent 21 present on the surface portion 22 of the base material layer 19. This is because there is a high probability that formaldehyde comes into contact with the adsorbent 21 present on the surface portion 22 of the base material layer 19. On the other hand, it is difficult to react with the adsorbent 21 that has entered the deep layer portion 23 of the base material layer. As a result, the air cleaning device 4 has high initial adsorption performance, and if the adsorbent 21 present on the surface portion 22 of the base material layer 19 is consumed, the adsorption performance becomes low.
  • the distribution of the surface wind speed flowing into the air filter 7 is uneven, the consumption of the adsorbent 21 is locally increased.
  • the air blowing section 6 is below the main body case 5, so the surface wind speed is high below the air filter 7 and the surface wind speed is relatively high above. There are examples of lowering.
  • the initial high adsorption performance is lost early in the local portion where the surface wind speed has increased. That is, the adsorption performance as the air cleaning device 4 is deteriorated early.
  • the fiber layer 20 is disposed on the upstream side of the base material layer 19 and further pleated.
  • the air flowing into the air filter 7 passes through the base material layer 19 after passing through the fiber layer 20.
  • the fibers constituting the fiber layer 20 are sufficiently thinner than the fibers constituting the base layer 19 (for example, the diameter of the constituent fibers of the base layer 19 is 2 ⁇ m, whereas the diameter of the constituent fibers of the base layer 19 is 2 ⁇ m). 20 ⁇ m), a turbulent flow can be generated in the previous stage of the base material layer 19 containing the adsorbent 21. Due to the turbulent flow, the distribution of the surface wind speed is leveled at the entrance of the base material layer 19.
  • the air permeability of the base material layer 19 is sufficiently higher than that of the fiber layer 20, the energy of the turbulent flow generated in the fiber layer 20 is maintained. At the interface between the base material layer 19 and the fiber layer 20 or inside the base material layer 19, the air current spreads in different directions due to the energy of the turbulent flow.
  • the distribution of the surface wind speed is leveled and the air volume passing through the base material layer 19 is balanced.
  • the fiber layer 20 has a small fiber diameter, the inflowed formaldehyde diffuses in the fiber layer 20. Therefore, there is no bias in the amount of formaldehyde that passes through the base material layer 19. As described above, it is possible to prevent the adsorption performance of the adsorbent 21 of the base material layer 19 from being lowered or locally deteriorated, and maintain the formaldehyde adsorption performance of the air cleaning device 4 over a long period of time.
  • the air cleaning device 4 of the present embodiment includes a rectifying filter 8 on the front surface of the air filter 7 on the upstream side of the airflow.
  • the rectifying filter 8 has a larger area than the front surface of the air filter 7 and is disposed over the entire surface of the opening 30. That is, the front surface of the air filter 7 is covered.
  • the rectifying filter 8 is adjacent to the air filter 7. From the air inlet 9 toward the air outlet 10, the air inlet 9, the rectifying filter 8, the air filter 7, the air blower 6, and the air outlet 10 are arranged in this order from the upstream side of the airflow.
  • the form of the rectifying filter 8 includes a continuous shape (FIG. 8), a lattice shape (FIG. 9), a net shape, a pleat shape, a corrugated shape, and the like. Among them, it is preferable to adopt a continuous shape or a lattice shape.
  • the rectifying filter 8 itself has a thickness for diffusing air so that the inside can be ventilated in the vertical direction.
  • the thickness of the rectifying filter 8 is a length from the upstream side to the downstream side (from the left side to the right side in FIG. 7).
  • the vertical direction refers to a direction perpendicular to the thickness direction of the rectifying filter 8.
  • the method of manufacturing the rectifying filter 8 is, for example, a method of cutting a urethane foam with low pressure loss into a rectangular body, or after attaching an adhesive to the continuous support 24, A method in which activated carbon or zeolite is retained and dried, or a method in which activated carbon or zeolite is retained and dried after attaching an adhesive to the lattice-like support 24, or a plurality of corrugated molds are stacked. There is a manufacturing method. These are fixed by a frame or a net. Furthermore, as shown in FIG. 8, it is also possible to arrange a plurality of these rectifying filters 8 in a stacked manner.
  • the air flowing into the air inlet 9 of the air purifier 4 by the operation of the air blowing unit 6 once collides with the rectifying filter 8 from the opening 30 on the air inlet 9 side to generate turbulent flow. At this time, an air flow from the colliding part toward the support 24 is generated. Thereafter, rectification is performed in the rectification filter 8.
  • the rectifying filter 8 with a thickness, the air that has flowed in can be diffused in the direction perpendicular to the thickness direction inside the rectifying filter 8 to be ventilated.
  • the air flowing in from the intake port 9 can level the surface wind speed distribution that it originally had with the rectifying filter 8, so that there is no bias in the processing air volume in the air filter 7.
  • the air filter 7 arranged on the downstream side of the rectifying filter 8 it is possible to prevent a decrease in adsorption performance and local consumption of the adsorbent 21 contained in the base material layer 19. That is, the adsorption performance of the air filter 7 can be maintained over a long period of time. And the air purification apparatus which maintained the removal performance of formaldehyde for a long period can be provided.
  • the inflowed formaldehyde is physically adsorbed once on the activated carbon or zeolite. After that, it will be released. Therefore, the flow rate of the adsorbed substance into the air filter 7 is reduced by arranging the rectifying filter 8 to which activated carbon or zeolite is attached. Moreover, the formaldehyde concentration can be made uniform.
  • the air that has flowed into the air cleaning device 4 is perpendicular to the inflow direction on the inner side surrounded by the support 24 for the continuous flow. It flows along the direction and can move from a location with a high wind speed distribution to a location with a low wind speed distribution.
  • the wind speed distribution of the air flowing into the air filter 7 can be leveled. That is, the surface wind speed distribution of the air flowing into the air filter 7 becomes uniform, the local degradation of the adsorbent 21 can be prevented, and the formaldehyde adsorption performance of the air cleaning device 4 can be maintained over a long period of time.
  • the air filter 7 is adjacent to a portion where the surface air velocity is high (for example, a portion facing the suction port of the blower 6).
  • the part which is adjacent to the part (for example, the part away from the air blowing part 6) where the surface wind speed of the air filter 7 is low may be a large opening 26. According to this configuration, it is easy to generate turbulent flow with a small opening 25 in a portion where the surface wind speed is high, and an air flow to the large opening 26 is easily generated.
  • the rectifying filter 8 may be attached with at least one of activated carbon and zeolite.
  • the small openings 25 increase the amount of physical adsorption by increasing the amount of activated carbon or zeolite per unit area.
  • the air purifier includes a case provided with an intake port and an exhaust port, and an air filter disposed in the case and pleated with a sheet-like filter medium.
  • the air filter has a base material layer that supports the filter shape and a fiber layer that collects particles in the air.
  • the fiber layer is comprised with the fiber whose fiber diameter is thinner than the fiber which comprises a base material layer.
  • the base material layer has a higher air permeability than the fiber layer and includes an adsorbent containing an amine compound.
  • a fiber layer is arrange
  • the air flowing into the air cleaning device passes through the base material layer after passing through the fiber layer.
  • the air flowing from the fiber layer with low air permeability into the base layer with high air permeability causes turbulent flow in the fiber layer with low air permeability. Due to the turbulent action, the airflow direction spreads in different directions at the base material layer interface and inside the base material layer, so that the surface wind speed distribution of the air filter is leveled. That is, there is an effect that the air volume passing through the air filter is made uniform, and performance deterioration due to local consumption of the adsorbent is suppressed.
  • the air cleaning device may further include a rectifying filter disposed on the upstream side of the air filter.
  • the rectifying filter is disposed over the entire opening on the intake port side, and has a configuration in which air flowing from the intake port can pass through the inside of the rectifying filter in a direction perpendicular to the thickness direction.
  • the rectifying filter may be one in which at least one of activated carbon and zeolite is attached to a lattice-like support.
  • the adsorbed adsorbed material is once physically adsorbed on at least one of the activated carbon and zeolite, and then released.
  • the inflow speed of the adsorbed material to the air filter is leveled, and the concentration difference of the adsorbed material is made uniform.
  • the rectifying filter into a lattice shape or a continuous shape, the inflowing air diffuses in the direction perpendicular to the inflow direction on the inner side surrounded by the support body, and the wind speed distribution starts from the part where the wind speed distribution is high. It can flow to a low point. Thereby, the wind speed distribution of the air flowing into the air filter can be leveled.
  • the rectifying filter may have a lattice shape, and a portion having a high surface wind speed may have a small opening, and a portion having a low surface wind speed may have a large opening.
  • the amount of physical adsorption can be improved by reducing the mesh size and increasing the amount of activated carbon or zeolite per unit area.
  • the configuration of the air purifier can effectively remove odorous substances such as formaldehyde, can be stably maintained for a long time, and can be applied to a ventilator that requires the same function.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

An air purification device (4) is equipped with a case (5) in which an intake opening (9) and an exhaust opening (10) are provided, and an air filter (7) which is disposed within the case (5) and is formed by pleating a sheet filter material. The air filter (7) is provided with a substrate layer that supports the filter shape, and a fiber layer that is formed from fibers having a narrower diameter than the fibers forming the substrate layer and that traps particles in the air. The substrate layer has higher air permeability than the fiber layer and includes an adsorbent containing an amine compound. The fiber layer is disposed upstream of the substrate layer relative to the direction of air flow.

Description

空気清浄装置Air purifier
 本発明は、空気浄化を目的としてエアフィルタを備えた空気清浄装置に関するものである。 The present invention relates to an air purifier equipped with an air filter for the purpose of air purification.
 臭気物質の代表とされるアルデヒド類の一つにホルムアルデヒドがある。 One of the aldehydes that are representative of odorous substances is formaldehyde.
 ホルムアルデヒドは、住宅内の壁紙や家具等から放出される。そして、低濃度であっても健康障害を起こすため、室内汚染物質としてホルムアルデヒドを除去することが望まれている。 Formaldehyde is emitted from wallpaper and furniture in the house. And even if it is a low concentration, it causes health problems, so it is desired to remove formaldehyde as an indoor pollutant.
 従来、図10に示すように、空気清浄装置に搭載されたフィルタろ材101は、吸着剤102を担持層103に含有させ、担持層103を基材104とカバー層105に挟み込んで保持していた。担持層103は、活性炭、シリカゲルなどである。さらに、フィルタろ材101をプリーツ状に成形することが開示されていた(例えば、特許文献1を参照)。 Conventionally, as shown in FIG. 10, the filter medium 101 mounted on the air cleaning device contains the adsorbent 102 in the carrier layer 103 and holds the carrier layer 103 sandwiched between the base material 104 and the cover layer 105. . The support layer 103 is activated carbon, silica gel, or the like. Furthermore, it has been disclosed that the filter medium 101 is formed into a pleated shape (see, for example, Patent Document 1).
国際公開第2016/195009号International Publication No. 2016/195090
 しかし、フィルタろ材を空気清浄装置に搭載した際に、風路の構造に起因して、フィルタろ材内に風速分布が生じていた。 However, when the filter medium was mounted on an air purifier, a wind speed distribution was generated in the filter medium due to the structure of the air path.
 そのため、エアフィルタである担持層に担持されている吸着剤(化学反応を有する薬剤や触媒、吸着性能を有するゼオライトや活性炭など)は、風速が高いところでは処理風量が増加して、吸着剤の消費量が増加して、吸着性能の劣化が早期に生じていた。 Therefore, the adsorbent (chemical reaction chemicals and catalysts, zeolite and activated carbon with adsorption performance, etc.) carried on the air filter carrier layer increases the treatment air volume at high wind speeds, The consumption increased and the adsorption performance deteriorated early.
 本発明は、局所的な吸着剤の消費による性能劣化を抑制する空気清浄装置を提供することを目的とする。 An object of the present invention is to provide an air cleaning device that suppresses performance deterioration due to local consumption of adsorbent.
 本発明の一態様に係る空気清浄装置は、吸気口と排気口が設けられたケースと、ケース内に配置され、シート状ろ材をプリーツ化しているエアフィルタと、を備える。エアフィルタは、フィルタ形状を支持する基材層と、空気中の粒子を捕集する繊維層と、を有する。また、繊維層を構成する繊維は基材層を構成する繊維よりも繊維径が細い。基材層は繊維層よりも通気度が高く、アミン系化合物を含んだ吸着剤を含む。そして、繊維層は、気流の流れ方向に対して基材層よりも上流側に配置されている。 An air purifying apparatus according to an aspect of the present invention includes a case provided with an intake port and an exhaust port, and an air filter disposed in the case and pleated with a sheet-like filter medium. The air filter has a base material layer that supports the filter shape and a fiber layer that collects particles in the air. Moreover, the fiber which comprises a fiber layer has a fiber diameter thinner than the fiber which comprises a base material layer. The base material layer has a higher air permeability than the fiber layer and includes an adsorbent containing an amine compound. And the fiber layer is arrange | positioned upstream from the base material layer with respect to the flow direction of airflow.
 これにより、空気清浄装置に流入した空気は、繊維層を通過した後に基材層を通過する。通気度の低い繊維層から通気度の高い基材層へ流入する空気は、通気度の低い繊維層内で乱流を起こす。乱流の作用によって、基材層界面と基材層内部では気流方向が異方向に広がることとなるので、エアフィルタの面風速分布を平準化させる、すなわちエアフィルタの面を通過するときの風速を均一化させて、局所的な吸着剤の消費による性能劣化を抑制するという効果を奏する。 Thereby, the air flowing into the air cleaning device passes through the base material layer after passing through the fiber layer. The air flowing from the fiber layer with low air permeability into the base layer with high air permeability causes turbulent flow in the fiber layer with low air permeability. Due to the turbulent action, the air flow direction spreads in a different direction at the base material layer interface and inside the base material layer, so that the surface air speed distribution of the air filter is leveled, that is, the wind speed when passing through the air filter surface The effect of suppressing the performance deterioration due to local consumption of the adsorbent is achieved.
図1は、本発明の第1の実施の形態の空気清浄装置の設置状態を示す斜視図である。FIG. 1 is a perspective view showing an installation state of the air cleaning device according to the first embodiment of the present invention. 図2は、本発明の第1の実施の形態の空気清浄装置の断面図である。FIG. 2 is a cross-sectional view of the air cleaning device according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態の空気清浄装置のエアフィルタの斜視図である。FIG. 3 is a perspective view of the air filter of the air cleaning device according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態のエアフィルタに使用するフィルタろ材の構成図である。FIG. 4 is a configuration diagram of a filter medium used for the air filter according to the first embodiment of the present invention. 図5は、本発明の第1の実施の形態のエアフィルタに使用するフィルタろ材の概略断面図である。FIG. 5 is a schematic cross-sectional view of a filter medium used in the air filter according to the first embodiment of the present invention. 図6は、本発明の第1の実施の形態のエアフィルタに使用するフィルタろ材を拡大した概略断面図である。FIG. 6 is an enlarged schematic cross-sectional view of the filter medium used in the air filter according to the first embodiment of the present invention. 図7は、本発明の第2の実施の形態の空気清浄装置の断面図である。FIG. 7 is a cross-sectional view of an air cleaning device according to a second embodiment of the present invention. 図8は、本発明の第2の実施の形態の空気清浄装置における連子状整流フィルタとエアフィルタの配置を示した概略図である。FIG. 8 is a schematic view showing the arrangement of the continuous rectifying filter and the air filter in the air cleaning device according to the second embodiment of the present invention. 図9は、本発明の第2の実施形態の空気清浄装置における格子状整流フィルタとエアフィルタの配置を示した概略図である。FIG. 9 is a schematic view showing the arrangement of the grid rectification filter and the air filter in the air cleaning device according to the second embodiment of the present invention. 図10は、従来の空気清浄装置に搭載されているフィルタろ材を示す断面図である。FIG. 10 is a cross-sectional view showing a filter medium mounted on a conventional air cleaning device.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (第1の実施の形態)
 通常建物内において、ホルムアルデヒドは、図1に示すように、壁紙1あるいは家具2などから発生する。ホルムアルデヒドは、空気よりも比重が重いため、室内では、床3付近に濃度が高い状態で存在している。
(First embodiment)
In a normal building, formaldehyde is generated from wallpaper 1 or furniture 2 as shown in FIG. Since formaldehyde has a higher specific gravity than air, it is present indoors in a high concentration state near the floor 3.
 第1の実施の形態に示す空気清浄装置4は、室内の床3の上に設置され、空気清浄運転を行うものである。 The air cleaning device 4 shown in the first embodiment is installed on the floor 3 in the room and performs an air cleaning operation.
 図2に示すように、空気清浄装置4の本体ケース5は略縦長箱形状である。本体ケース5の前面には、略四角形状の吸気口9が設けられている。吸気口9は、前面の縁部において中央部のパネル32を包囲している。また、本体ケースの5の天面部には、略四角形状の排気口10が設けられている。 As shown in FIG. 2, the body case 5 of the air cleaning device 4 has a substantially vertically long box shape. A substantially rectangular air inlet 9 is provided on the front surface of the main body case 5. The air inlet 9 surrounds the central panel 32 at the front edge. A substantially rectangular exhaust port 10 is provided on the top surface of the main body case 5.
 本体ケース5内には、送風部6とエアフィルタ7が設けられている。 A blower 6 and an air filter 7 are provided in the main body case 5.
 送風部6は、本体ケース5内において、吸気口9と排気口10との間の風路に設けられている。また、送風部6は、スクロール形状のケーシング11と、羽根12と、電動機13とから構成されている。羽根12は、ケーシング11内に設けられた遠心送風ファンである。電動機13は、羽根12を回転させるものである。送風部6は、本体ケース5の下方にある。これは、本体風量と送風音の影響を考慮したケーシング11の構成によるものである。 The air blower 6 is provided in the air passage between the air inlet 9 and the air outlet 10 in the main body case 5. In addition, the air blowing unit 6 includes a scroll-shaped casing 11, blades 12, and an electric motor 13. The blade 12 is a centrifugal blower fan provided in the casing 11. The electric motor 13 rotates the blades 12. The air blowing unit 6 is below the main body case 5. This is due to the configuration of the casing 11 in consideration of the influence of the main body air volume and the blowing sound.
 吸気口9の下流側には、開口30が設けられている。開口30は、本体ケース5内への入り口を成すものであって、略四角形状を有している。送風部6は、エアフィルタ7のさらに下流側で、かつ排気口10よりは上流側に配置されている。 An opening 30 is provided on the downstream side of the intake port 9. The opening 30 forms an entrance into the main body case 5 and has a substantially square shape. The air blower 6 is arranged further downstream of the air filter 7 and upstream of the exhaust port 10.
 エアフィルタ7は、図3に示すように、フィルタろ材14と形状保持部15とから形成されている。形状保持部15は、フィルタろ材14を保持している。 The air filter 7 is formed of a filter medium 14 and a shape holding part 15 as shown in FIG. The shape holding unit 15 holds the filter medium 14.
 通風時の面風速を下げて集塵性能と脱臭性能を向上させるために、形状保持部15は、フィルタろ材14の面積が広くなるようにして、フィルタろ材14を保持した方が良い。そこで図3、図4に示すように、フィルタろ材14は、シート状のものをプリーツ形状に形成している。また、形状保持部15は、四角形の辺の形状の枠部16と、枠部16とフィルタろ材14との間に設けられた接着部材17とから構成されている。つまり、枠部16は、フィルタろ材14の周縁に位置している。そして、接着部材17によって、プリーツ形状のフィルタろ材14が枠部16に固定されている。 In order to reduce the surface wind speed during ventilation and improve the dust collection performance and deodorization performance, it is better that the shape holding section 15 holds the filter medium 14 so that the area of the filter medium 14 is widened. Therefore, as shown in FIGS. 3 and 4, the filter medium 14 is formed into a pleated shape in the form of a sheet. The shape holding unit 15 includes a frame portion 16 having a quadrangular side shape, and an adhesive member 17 provided between the frame portion 16 and the filter medium 14. That is, the frame portion 16 is located on the periphery of the filter medium 14. The pleated filter medium 14 is fixed to the frame 16 by the adhesive member 17.
 特に限定は無いが、プリーツ化の方法について以下に説明を加える。シート状のフィルタろ材14を折り曲げ機(図示せず)を用いて、山折りと谷折りとを交互に折っていくことで、プリーツ形状を成形すれば良い。そして最後に、接着部材17によって、プリーツ形状に成形したフィルタろ材14を枠部16に固定するものである。 Although there is no particular limitation, the explanation of the pleating method will be added below. The pleated shape may be formed by folding the sheet-like filter medium 14 alternately with a mountain fold and a valley fold using a folding machine (not shown). Finally, the filter medium 14 formed into a pleat shape is fixed to the frame portion 16 by the adhesive member 17.
 接着部材17には、例えば、ホットメルト樹脂や各種の接着剤を用いることができる。接着部材17でプリーツの頂点のみをつなぎとめるなどの方法を用いれば、フィルタろ材14の表面積を確保しつつ、形状を固定することができる。 For example, a hot melt resin or various adhesives can be used for the adhesive member 17. If a method such as joining only the apexes of the pleats with the adhesive member 17 is used, the shape can be fixed while ensuring the surface area of the filter medium 14.
 プリーツ化において、ピッチ18(図4参照)の設定は、使用するフィルタろ材14の面積に大きな影響を与える。ピッチ18を狭くして山31(図4参照)を多くすると、フィルタろ材14の面積を大きくすることができる。フィルタろ材14の面積を大きくすることでフィルタろ材14を通過する空気の速度を下げて、脱臭性能を向上することができる。また同時に、フィルタろ材14を構成する基材層19(図5参照)に含まれている吸着剤21(図6参照)の存在量も増えるので、脱臭できる寿命も伸ばすことができる。フィルタろ材14の詳細な構成については、後述する。 In pleating, the setting of the pitch 18 (see FIG. 4) greatly affects the area of the filter medium 14 to be used. When the pitch 18 is narrowed and the mountains 31 (see FIG. 4) are increased, the area of the filter medium 14 can be increased. By increasing the area of the filter medium 14, the speed of the air passing through the filter medium 14 can be reduced, and the deodorization performance can be improved. At the same time, since the amount of the adsorbent 21 (see FIG. 6) contained in the base material layer 19 (see FIG. 5) constituting the filter medium 14 is increased, the life that can be deodorized can be extended. The detailed configuration of the filter medium 14 will be described later.
 フィルタろ材14の面積は、エアフィルタ7の厚み寸法と高さ寸法とシート状のフィルタろ材14の幅寸法の積に山31の数を2倍にした値を掛けたものである。一例として、幅が273mm、高さが454mm、厚みが43.5mmのエアフィルタ7に対して、ピッチ18間隔を3.5mm(10~15倍程度)とすると、フィルタろ材14の面積は3.1mとなる。また、面風速とは、処理風量をフィルタろ材14の面積で割った値であるので、処理風量が8.8m/minの時には、フィルタろ材14に対しては4.7cm/secの面風速となる。 The area of the filter medium 14 is the product of the thickness dimension and height dimension of the air filter 7 and the width dimension of the sheet-like filter medium 14 multiplied by a value obtained by doubling the number of peaks 31. As an example, when the pitch 18 interval is 3.5 mm (about 10 to 15 times) with respect to the air filter 7 having a width of 273 mm, a height of 454 mm, and a thickness of 43.5 mm, the area of the filter medium 14 is 3. 1 m 2 . Further, the surface wind speed is a value obtained by dividing the processing air volume by the area of the filter medium 14, and therefore when the processing air volume is 8.8 m 3 / min, the surface air speed of 4.7 cm / sec is applied to the filter medium 14. It becomes.
 図5、図6に示すように、プリーツ加工する前のフィルタろ材14は、基材層19と繊維層20とからなる。基材層19はエアフィルタ7のフィルタ形状を支持するものである。繊維層20は、基材層19に対して気流の上流側に配置され、空気中の粒子状物質を捕集するものである。 As shown in FIGS. 5 and 6, the filter medium 14 before the pleating process includes a base material layer 19 and a fiber layer 20. The base material layer 19 supports the filter shape of the air filter 7. The fiber layer 20 is disposed upstream of the airflow with respect to the base material layer 19 and collects particulate matter in the air.
 接着剤を用いて、基材層19と繊維層20は接着されている。特に限定されないが、接着剤の種類や方法については、ホットメルトやパウダーなどの樹脂接着剤や熱溶融性の樹脂繊維による接着方法が挙げられる。例えば、ホットメルトやパウダーなどの樹脂接着剤を用いた場合には、熱溶融した接着剤を基材層19に塗布し、固まる前に繊維層20を貼り合わせて冷却させることでシート状のフィルタろ材14が作製される。 The base material layer 19 and the fiber layer 20 are bonded using an adhesive. The type and method of the adhesive are not particularly limited, and examples thereof include an adhesive method using a resin adhesive such as hot melt or powder or a hot-melt resin fiber. For example, when a resin adhesive such as hot melt or powder is used, a heat-melted adhesive is applied to the base material layer 19, and the fiber layer 20 is bonded and cooled before it is hardened. The filter medium 14 is produced.
 熱溶融による接着には、溶融した接着剤を塗布後に貼り合わせる接着とパウダー状の接着剤を散布後に張り合わせて熱圧着する接着がある。 There are two types of adhesion by heat melting: adhesion to which a molten adhesive is bonded after application, and adhesion by applying a powdered adhesive and then thermocompression bonding.
 好ましくは溶融した接着剤を塗布後に貼り合わせる接着が良い。表面上の塗布濃度を薄く均一にでき、繊維層20と基材層19の密着性を向上させることができるからである。つまり、密着性の向上により剥がれを防止できるからである。さらに、塗布時に基材層19に浸み込む接着剤を薄くすることができるので、接着剤が吸着剤21の成分を包括してしまうことがなくなる。つまり、溶融した接着剤を用いることで脱臭性能が低下することを抑制できる。 It is preferable to bond the molten adhesive after application. This is because the coating concentration on the surface can be made thin and uniform, and the adhesion between the fiber layer 20 and the base material layer 19 can be improved. That is, peeling can be prevented by improving the adhesion. Furthermore, since the adhesive that soaks into the base material layer 19 at the time of application can be thinned, the adhesive does not include the components of the adsorbent 21. That is, it can suppress that deodorizing performance falls by using the fuse | melted adhesive agent.
 また、シート状のフィルタろ材14の厚みを0.74mm以下にすることでプリーツ化の後で発生する圧損を下げることが出来る。一例として、幅が273mm、高さが454mm、厚みが43.5mmのエアフィルタ7において、ピッチ3.5mmでフィルタろ材14のプリーツ化をした場合について、フィルタろ材14の厚みを変えて、所定の風量における圧力損失を比較した。 Moreover, the pressure loss generated after pleating can be reduced by setting the thickness of the sheet-like filter medium 14 to 0.74 mm or less. As an example, in the case of the air filter 7 having a width of 273 mm, a height of 454 mm, and a thickness of 43.5 mm, when the filter medium 14 is pleated at a pitch of 3.5 mm, the thickness of the filter medium 14 is changed to a predetermined value. The pressure loss in the air volume was compared.
 フィルタろ材14の厚みが0.42mmでは、圧力損失は70Paとなった。 When the thickness of the filter medium 14 was 0.42 mm, the pressure loss was 70 Pa.
 フィルタろ材14の厚みが0.74mmでは、圧力損失は72Paとなった。 When the thickness of the filter medium 14 was 0.74 mm, the pressure loss was 72 Pa.
 これらに対して、フィルタろ材14の厚みが0.94mmでは、圧力損失は159Paとなった。 In contrast, when the thickness of the filter medium 14 was 0.94 mm, the pressure loss was 159 Pa.
 さらに、フィルタろ材14の厚みが1.27mmでは、圧力損失は160Paまで増大した。 Furthermore, when the thickness of the filter medium 14 was 1.27 mm, the pressure loss increased to 160 Pa.
 当然のことながら、フィルタろ材14の厚みを薄くすることは、圧力損失を低減するためには良いが、繊維層20の捕集効率や基材層19の吸着性能の低下を招く。そこで、フィルタろ材14の厚みは、圧力損失が急激に増大する厚み寸法よりは薄い範囲とすると良い。すなわち、フィルタろ材14の厚みは0.74mm近傍にすることが好ましい。 Naturally, reducing the thickness of the filter medium 14 is good for reducing pressure loss, but it leads to a decrease in the collection efficiency of the fiber layer 20 and the adsorption performance of the base material layer 19. Therefore, the thickness of the filter medium 14 is preferably in a range thinner than the thickness dimension in which the pressure loss increases rapidly. That is, it is preferable that the thickness of the filter medium 14 be in the vicinity of 0.74 mm.
 繊維層20には、一般的な樹脂材料や天然繊維材料を用いることができる。例えば、ポリアクリロニトリル(PAN)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリスチレン(PS)、ポリエチレンオキシド(PEO)、ポリフェニルエーテル(PPE)、ポリフェニレンオキシド(PPO)、ポリテトラフルオロエチレン(PTFE)、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリエーテルスルフォン(PES)、ポリメタクリル酸、ポリメタクリル酸メチル、ポリフッ化ビニリデン(FVDF)、ポリ塩化ビニル(PVC)、ポリテトラフルオロエチレン、ポリビニルアルコール(PVA)、ポリカーボネート(PC)、ポリアミド、ポリイミド、ポリアミドイミド、アラミド、ポリイミドベンザゾール、ポリグリコール酸(PGA)、ポリ乳酸(PLA)、ポリウレタン(PU)、セルロース化合物、ポリペプチド、ナイロンなど、あるいはこれらの混合物といったものを挙げることができる。 For the fiber layer 20, a general resin material or a natural fiber material can be used. For example, polyacrylonitrile (PAN), polypropylene (PP), polyethylene (PE), polystyrene (PS), polyethylene oxide (PEO), polyphenyl ether (PPE), polyphenylene oxide (PPO), polytetrafluoroethylene (PTFE), Polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyethersulfone (PES), polymethacrylic acid, polymethyl methacrylate, polyvinylidene fluoride (FVDF), polyvinyl chloride (PVC), polytetrafluoroethylene, polyvinyl alcohol (PVA), polycarbonate (PC), polyamide, polyimide, polyamideimide, aramid, polyimide benzazole, polyglycolic acid (PGA), polylactic acid (PLA), Polyurethane (PU), cellulose compound, a polypeptide, nylon, etc., or may be those such as mixtures thereof.
 低圧損化を目的とした場合に、繊維層20を構成する繊維の平均繊維径は、より細いことが好ましい。具体的には、繊維層20を構成する繊維の平均繊維径は、100nm以上5000nm以下であることが好ましい。繊維径が5000nmより太いと、繊維層20が空孔を形成しても樹脂繊維が占める体積の割合が大きくなり、空気抵抗が増加する(圧力損失の上昇を招く)ため好ましくない。また、繊維径が100nmより細いと、繊維破損や毛羽立ちが起こりやすいため好ましくない。 For the purpose of reducing the pressure loss, the average fiber diameter of the fibers constituting the fiber layer 20 is preferably thinner. Specifically, the average fiber diameter of the fibers constituting the fiber layer 20 is preferably 100 nm or more and 5000 nm or less. When the fiber diameter is larger than 5000 nm, even if the fiber layer 20 forms pores, the ratio of the volume occupied by the resin fibers increases, and the air resistance increases (increases the pressure loss), which is not preferable. Moreover, it is not preferable that the fiber diameter is smaller than 100 nm because fiber breakage or fluffing is likely to occur.
 また、繊維層20に後帯電処理を施すことで粉塵の捕集性能を向上させることが出来る。後帯電処理としては、コロナ放電を繊維層20に当てるエレクトレットや溶剤を含浸させた後乾燥させる手法などがある(図示せず)。 Moreover, the dust collection performance can be improved by subjecting the fiber layer 20 to a post-charging treatment. As the post-charging treatment, there is an electret for applying corona discharge to the fiber layer 20 or a technique of impregnating with a solvent and then drying (not shown).
 繊維層20の目付量は、10~100g/mであることが好ましい。目付量が10g/m未満であると、繊維層20の自立性が低下して、繊維層20自身が不織布を膜状に維持することが困難になる。また、目付量が100g/mを越えると、繊維層20の圧力損失が大きくなることに加え、プリーツ化した際のエアフィルタ7の構造的な圧力損失が大きくなり好ましくない。 The basis weight of the fiber layer 20 is preferably 10 to 100 g / m 2 . If the basis weight is less than 10 g / m 2 , the self-supporting property of the fiber layer 20 is lowered, and it becomes difficult for the fiber layer 20 itself to maintain the nonwoven fabric in a film form. On the other hand, if the basis weight exceeds 100 g / m 2 , the pressure loss of the fiber layer 20 increases, and the structural pressure loss of the air filter 7 when pleated becomes large, which is not preferable.
 基材層19は、ガラス繊維、パルプ繊維、樹脂繊維、炭素繊維および無機繊維のなかから、少なくとも1つを含む繊維によって形成されている。基材層19の製法としては、スパンボンド法、乾式または湿式抄紙法、メルトブローン法、スパンボンド法、エアレイド法、サーマルボンド法などが挙げられる。 The base material layer 19 is formed of fibers including at least one of glass fibers, pulp fibers, resin fibers, carbon fibers, and inorganic fibers. Examples of the method for producing the base material layer 19 include a spunbond method, a dry or wet papermaking method, a melt blown method, a spunbond method, an airlaid method, and a thermal bond method.
 基材層19の目付量は、50~100g/mであることが好ましい。目付量が50g/m未満であると、基材層19の剛軟度が低下して、プリーツ加工の生産性の低下やフィルタ形状の維持が困難になる。また、100g/mを越えると、基材層19の圧力損失が大きくなることに加え、プリーツ化した際のエアフィルタ7の構造的な圧力損失が大きくなり好ましくない。 The basis weight of the base material layer 19 is preferably 50 to 100 g / m 2 . When the basis weight is less than 50 g / m 2 , the bending resistance of the base material layer 19 is lowered, and it becomes difficult to reduce the productivity of the pleating process and to maintain the filter shape. Moreover, when it exceeds 100 g / m < 2 >, in addition to the pressure loss of the base material layer 19 becoming large, the structural pressure loss of the air filter 7 at the time of pleating becomes large, which is not preferable.
 基材層19を構成する繊維の平均繊維径は、20~50μmであることが好ましい。平均繊維径が20μm未満であると、繊維の強度が低く、補強材としての強度が不十分となる。また、繊維径が細くなると、繊維上よりも繊維間の空隙に吸着剤21が添着されるようになり、圧力損失が高くなる、あるいは吸着剤21の添着量が少なくなる、あるいは吸着剤21が離脱しやすくなるといった問題が生じる。一方で、平均繊維径が50μmを越えると、基材層19の厚みが厚くなり、プリーツ化した際のエアフィルタ7の構造的な圧力損失が大きくなるので、好ましくない。 The average fiber diameter of the fibers constituting the base material layer 19 is preferably 20 to 50 μm. If the average fiber diameter is less than 20 μm, the strength of the fibers is low, and the strength as a reinforcing material is insufficient. Further, when the fiber diameter is reduced, the adsorbent 21 is attached to the gaps between the fibers rather than on the fiber, and the pressure loss is increased, or the amount of adsorbent 21 attached is reduced, or the adsorbent 21 is reduced. The problem that it becomes easy to detach arises. On the other hand, when the average fiber diameter exceeds 50 μm, the thickness of the base material layer 19 is increased, and the structural pressure loss of the air filter 7 when pleated is increased, which is not preferable.
 基材層19の繊維径は、繊維層20の繊維径よりも、10倍以上太い。すなわち、繊維層20は基材層19を構成する繊維よりも十分に細い繊維で構成されている。一方で、繊維層20と基材層19の目付け量は同程度である。したがって、基材層19の体積密度は、繊維層20の体積密度よりも極めて小さく、それに伴い、通気度も十分に小さい。例えば、基材層19の繊維径が50μmで、目付量が100g/mであり、繊維層20の繊維径が5μmで、目付量が100g/mであり、ともに繊維長さと厚みが同じであったとする。この場合、基材層19の体積密度は繊維層20の体積密度の1/100倍である。この体積密度の差が要因となり、基材層19と繊維層20の通気度に差が表れる。基材層19の通気度は繊維層20通気度に比べて、2~4倍程度大きくなる。すなわち、基材層19は繊維層20よりも通気度が十分に高いものである。 The fiber diameter of the base material layer 19 is 10 times or more thicker than the fiber diameter of the fiber layer 20. That is, the fiber layer 20 is composed of fibers that are sufficiently thinner than the fibers constituting the base material layer 19. On the other hand, the fabric weight of the fiber layer 20 and the base material layer 19 is comparable. Therefore, the volume density of the base material layer 19 is extremely smaller than the volume density of the fiber layer 20, and accordingly, the air permeability is sufficiently small. For example, the fiber diameter of the base material layer 19 is 50 μm, the basis weight is 100 g / m 2 , the fiber diameter of the fiber layer 20 is 5 μm, and the basis weight is 100 g / m 2 , both of which have the same fiber length and thickness. Suppose that In this case, the volume density of the base material layer 19 is 1/100 times the volume density of the fiber layer 20. This difference in volume density causes a difference in air permeability between the base material layer 19 and the fiber layer 20. The air permeability of the base material layer 19 is about 2 to 4 times larger than the air permeability of the fiber layer 20. That is, the base material layer 19 has a sufficiently higher air permeability than the fiber layer 20.
 基材層19には、アミン系薬剤を含む吸着剤21が担持されている。基材層19に担持させた吸着剤21は、成分の一部にアミン系化合物を含んだものである。アミン化合物とホルムアルデヒドは、次のような不可逆な化学反応を生じることが知られている。 The base material layer 19 carries an adsorbent 21 containing an amine-based drug. The adsorbent 21 carried on the base material layer 19 contains an amine compound as a part of the components. It is known that an amine compound and formaldehyde cause the following irreversible chemical reaction.
 例えば、
R-ΝH2+HCHO
     →R-N=CH2+H2O(shiff塩基)
2H2NCONH2(尿素)+HCHO
     →NN2CONHCH2NHCONH2(ジメチロール尿素)
NH2-NH2(ヒドラジン)+2HCΗO
     →CΗ2=N-N=CΗ2
などのように反応する。
For example,
R-ΝH2 + HCHO
→ RN = CH2 + H2O (shiff base)
2H2NCONH2 (urea) + HCHO
→ NN2CONHCH2NHCONH2 (dimethylol urea)
NH2-NH2 (hydrazine) + 2HCΗO
→ CΗ2 = N−N = CΗ2
It reacts like this.
 これらの反応は、アルデヒド基をもつガス成分では同様に起こる。ホルムアルデヒド以外では、アセトアルデヒド、プロピオンアルデヒドなどのアルデヒド類化合物でも同様の反応を起こす。本実施の形態のフィルタろ材14は、アルデヒド類を対象とした脱臭の用途に適用可能である。上記の化学反応は、化学吸着と呼ばれ、活性炭などの物理吸着とは区別される。化学吸着の場合、吸着したアルデヒド類が再放出されることがないため、アルデヒド類の除去を安定して行えるという利点がある。 These reactions occur in the same way for gas components having an aldehyde group. In addition to formaldehyde, the same reaction occurs with aldehyde compounds such as acetaldehyde and propionaldehyde. The filter medium 14 according to the present embodiment can be applied to deodorization intended for aldehydes. The above chemical reaction is called chemisorption and is distinguished from physical adsorption such as activated carbon. In the case of chemical adsorption, since the adsorbed aldehydes are not re-released, there is an advantage that the aldehydes can be removed stably.
 アミン系化合物を含有する吸着剤21を、基材層19に含ませる方法としては、基材層19の形成前に含ませる方法と、基材層19の形成後に含ませる方法を挙げることができる。基材層19の形成前に含ませる方法としては、繊維紡糸時や基材繊維への樹脂等のコーティング時に、吸着剤21を紡糸液やコーティング液に含有させておく方法がある。また、基材層19の形成後に含ませる方法として、吸着剤21を溶液に溶解・分散させ、少量の界面活性剤およびバインダーを加えた後、この液体に基材層19を浸漬させる方法、吸着剤21が含有した液体をスプレーで噴き付ける方法、刷毛やローラーで塗布する方法等を挙げることができる。 Examples of the method for including the adsorbent 21 containing the amine compound in the base material layer 19 include a method for including the base material layer 19 before the formation of the base material layer 19 and a method for including the base material layer 19 after the formation. . As a method of including before the base material layer 19 is formed, there is a method in which the adsorbent 21 is contained in the spinning solution or the coating solution at the time of fiber spinning or coating of the base fiber with a resin or the like. In addition, as a method of inclusion after the formation of the base material layer 19, a method in which the adsorbent 21 is dissolved and dispersed in a solution, a small amount of a surfactant and a binder are added, and then the base material layer 19 is immersed in this liquid. Examples thereof include a method in which the liquid contained in the agent 21 is sprayed and a method in which the liquid is applied with a brush or a roller.
 上記方法の中で好ましいのは、基材層19の形成後に吸着剤21を含浸させる方法を用いる手段である。 Among the above methods, a method using a method of impregnating the adsorbent 21 after forming the base material layer 19 is preferable.
 これにより、基材層19の表面部22で広範囲にわたって、吸着剤21が多量に含有された状態にすることができる。基材層19の表面部22の広範囲に吸着剤21を存在させることができれば、ホルムアルデヒドとの接触確率が上がり、吸着性能を向上させることができる。 Thereby, the surface portion 22 of the base material layer 19 can be in a state where a large amount of the adsorbent 21 is contained over a wide range. If the adsorbent 21 can be present in a wide range of the surface portion 22 of the base material layer 19, the contact probability with formaldehyde increases, and the adsorption performance can be improved.
 吸着剤21の粒子径は、10μm以下であることが重要である。 It is important that the particle size of the adsorbent 21 is 10 μm or less.
 なぜなら、粒子径を10μm以下にすることで吸着剤21の表面積が大きくなりホルムアルデヒドとの接触確率を上げ反応性を向上させることができるからである。また、粒子径が10μmを超えると、吸着剤21は基材層19の繊維に付着しづらくなり、粉落ちの原因となる。粉落ちが発生すると、脱臭性能が低下してしまう。さらに、粒子径が10μmを超えると、吸着剤21が基材層19を形成する繊維間の空隙を埋め、さらにプリーツ化した際の剛性が上がってしまうため、エアフィルタ7の圧力損失も招くことも挙げられる。 This is because by setting the particle diameter to 10 μm or less, the surface area of the adsorbent 21 is increased, and the contact probability with formaldehyde can be increased and the reactivity can be improved. On the other hand, if the particle diameter exceeds 10 μm, the adsorbent 21 becomes difficult to adhere to the fibers of the base material layer 19 and causes powder falling. When powder falling occurs, the deodorizing performance is degraded. Furthermore, if the particle diameter exceeds 10 μm, the adsorbent 21 fills the gaps between the fibers forming the base material layer 19, and further increases the rigidity when pleated, thus causing a pressure loss of the air filter 7. Also mentioned.
 基材層19への吸着剤21の添着量は、10g/mから30g/mである。 The amount of adsorbent 21 attached to the base material layer 19 is 10 g / m 2 to 30 g / m 2 .
 なぜなら、添着量が10g/mよりも少ないと、脱臭性能が低くなり、添着量が30g/mよりも多くなると、粉落ちによる性能低下や基材層19の空隙を埋めることによる圧力損失増大を招くためである。 This is because if the amount of adhesion is less than 10 g / m 2 , the deodorizing performance is lowered, and if the amount of adhesion is larger than 30 g / m 2 , the performance loss due to powder falling or the pressure loss due to filling the voids of the base material layer 19 This is to cause an increase.
 また、繊維層20は、気流の流れ方向に対して、基材層19よりも上流側となるように配置され、プリーツ化される。 Also, the fiber layer 20 is arranged and pleated so as to be upstream of the base material layer 19 in the airflow direction.
 以上の構成を備えた空気清浄装置4では、送風部6によって、吸気口9から本体ケース5内に室内の空気が吸気されると、吸気された空気は、エアフィルタ7を通過して排気口10から室内へ返される。つまり、空気清浄装置4は、エアフィルタ7を用いて、室内の空気に含まれるホルムアルデヒドを除去して、室内へ送風するものである。 In the air cleaning device 4 having the above-described configuration, when indoor air is sucked into the main body case 5 from the air inlet 9 by the air blowing unit 6, the air that has been sucked in passes through the air filter 7 and the exhaust port. 10 is returned to the room. That is, the air cleaning device 4 uses the air filter 7 to remove formaldehyde contained in indoor air and blows air into the room.
 上記構成によれば、エアフィルタ7は、粒子状物質を主に捕集する繊維層20と吸着剤21の成分を含んだ基材層19とが積層され、さらにプリーツ化された構成をしている。これにより、フィルタろ材14の面積が増えて、各繊維の量も増加できる、加えて、添着している吸着剤21の量も増加することができることから、粒子状物質の捕集性能やホルムアルデヒドの吸着性能を向上させることができる。 According to the above configuration, the air filter 7 has a structure in which the fiber layer 20 that mainly collects the particulate matter and the base material layer 19 containing the component of the adsorbent 21 are laminated and further pleated. Yes. Thereby, the area of the filter medium 14 can be increased, the amount of each fiber can be increased, and in addition, the amount of adsorbent 21 attached can be increased. Adsorption performance can be improved.
 さて、図6において、一般的にはホルムアルデヒドは、基材層19の表面部22に存在する吸着剤21と吸着反応を起こしやすい。これはホルムアルデヒドが基材層19の表面部22に存在する吸着剤21と接触する確率が高いためである。一方で基材層の深層部23に入り込んだ吸着剤21とは反応を起こしにくい。結果として空気清浄装置4は初期の吸着性能が高く、基材層19の表面部22に存在している吸着剤21が消費されてしまうと吸着性能が低くなる。また、エアフィルタ7に流入する面風速の分布に偏りがあった場合には、局所的に吸着剤21の消費が増大してしまう。エアフィルタ7に流入する面風速の分布に偏りが生じる例としては、送風部6が本体ケース5の下方にあるため、エアフィルタ7の下方では面風速が高くなり、上方では面風速が相対的に低くなる事例が挙げられる。 Now, in FIG. 6, formaldehyde generally tends to cause an adsorption reaction with the adsorbent 21 present on the surface portion 22 of the base material layer 19. This is because there is a high probability that formaldehyde comes into contact with the adsorbent 21 present on the surface portion 22 of the base material layer 19. On the other hand, it is difficult to react with the adsorbent 21 that has entered the deep layer portion 23 of the base material layer. As a result, the air cleaning device 4 has high initial adsorption performance, and if the adsorbent 21 present on the surface portion 22 of the base material layer 19 is consumed, the adsorption performance becomes low. Further, when the distribution of the surface wind speed flowing into the air filter 7 is uneven, the consumption of the adsorbent 21 is locally increased. As an example in which the distribution of the surface wind speed flowing into the air filter 7 is biased, the air blowing section 6 is below the main body case 5, so the surface wind speed is high below the air filter 7 and the surface wind speed is relatively high above. There are examples of lowering.
 これにより、面風速が増大した局所的な部分において、初期の高い吸着性能が早期に失われてしまう。つまり、空気清浄装置4としての吸着性能が早期に低下してしまう。 As a result, the initial high adsorption performance is lost early in the local portion where the surface wind speed has increased. That is, the adsorption performance as the air cleaning device 4 is deteriorated early.
 本実施の形態の空気清浄装置4のエアフィルタ7は、繊維層20を基材層19の上流側に配置し、さらにプリーツ化している。エアフィルタ7に流入した空気は、繊維層20を通過した後に基材層19を通過する。繊維層20を構成する繊維は、基材層19を構成する繊維よりも十分に細いので(例えば、繊維層20の構成繊維の径が2μmに対して、基材層19の構成繊維の径が20μm)、吸着剤21が含まれる基材層19の前段で乱流を生じさせることができる。乱流によって、基材層19の入り口では面風速の分布が平準化される。一方で、基材層19の通気度は繊維層20よりも十分に高いため、繊維層20で生じた乱流のエネルギーは維持される。基材層19と繊維層20の界面または、基材層19の内部では、乱流のエネルギーによって気流は異方向に広がる。 In the air filter 7 of the air cleaning device 4 of the present embodiment, the fiber layer 20 is disposed on the upstream side of the base material layer 19 and further pleated. The air flowing into the air filter 7 passes through the base material layer 19 after passing through the fiber layer 20. The fibers constituting the fiber layer 20 are sufficiently thinner than the fibers constituting the base layer 19 (for example, the diameter of the constituent fibers of the base layer 19 is 2 μm, whereas the diameter of the constituent fibers of the base layer 19 is 2 μm). 20 μm), a turbulent flow can be generated in the previous stage of the base material layer 19 containing the adsorbent 21. Due to the turbulent flow, the distribution of the surface wind speed is leveled at the entrance of the base material layer 19. On the other hand, since the air permeability of the base material layer 19 is sufficiently higher than that of the fiber layer 20, the energy of the turbulent flow generated in the fiber layer 20 is maintained. At the interface between the base material layer 19 and the fiber layer 20 or inside the base material layer 19, the air current spreads in different directions due to the energy of the turbulent flow.
 これにより、面風速の分布が平準化され、基材層19を通過する風量のバランスがとれる。また、繊維層20は構成する繊維径が細いので、流入したホルムアルデヒドは繊維層20の中で拡散する。したがって、基材層19を通過するホルムアルデヒド量の偏りが無くなる。以上により、基材層19の吸着剤21の吸着性能低下や局所劣化することを防止し、長期間にわたり、空気清浄装置4のホルムアルデヒド吸着性能を維持させることができる。 Thereby, the distribution of the surface wind speed is leveled and the air volume passing through the base material layer 19 is balanced. Further, since the fiber layer 20 has a small fiber diameter, the inflowed formaldehyde diffuses in the fiber layer 20. Therefore, there is no bias in the amount of formaldehyde that passes through the base material layer 19. As described above, it is possible to prevent the adsorption performance of the adsorbent 21 of the base material layer 19 from being lowered or locally deteriorated, and maintain the formaldehyde adsorption performance of the air cleaning device 4 over a long period of time.
 (第2の実施の形態)
 第1の実施の形態の構成に加えて、整流フィルタ8を備えた構成について、説明する。
(Second Embodiment)
A configuration including the rectifying filter 8 in addition to the configuration of the first embodiment will be described.
 本実施の形態の空気清浄装置4は、図7に示すように、気流の上流側でエアフィルタ7の前面に整流フィルタ8を備えている。整流フィルタ8は、エアフィルタ7の前面より大きな面積を有しており、開口30の全面に渡って配置されている。すなわち、エアフィルタ7の前面を覆う構成をしている。 As shown in FIG. 7, the air cleaning device 4 of the present embodiment includes a rectifying filter 8 on the front surface of the air filter 7 on the upstream side of the airflow. The rectifying filter 8 has a larger area than the front surface of the air filter 7 and is disposed over the entire surface of the opening 30. That is, the front surface of the air filter 7 is covered.
 整流フィルタ8は、エアフィルタ7と隣接している。吸気口9から排気口10へ向けて、気流の上流側から吸気口9、整流フィルタ8、エアフィルタ7、送風部6、排気口10の順番に配置されている。 The rectifying filter 8 is adjacent to the air filter 7. From the air inlet 9 toward the air outlet 10, the air inlet 9, the rectifying filter 8, the air filter 7, the air blower 6, and the air outlet 10 are arranged in this order from the upstream side of the airflow.
 特に限定はしないが、整流フィルタ8の構成材料としては、活性炭、ゼオライト、ウレタンフォーム、不織布といったものを用いることが好ましい。また、整流フィルタ8の形態は、連子状(図8)、格子状(図9)、ネット状、プリーツ状、コルゲート状などがある。そのなかで、連子状もしくは格子状を採用することが好ましい。また、整流フィルタ8自体に空気を拡散させるための厚みを持たせ、内部を垂直方向に通風可能な構成をとるものとする。ここでいう整流フィルタ8の厚みとは、上流側から下流側(図7における左側から右側)への長さである。また、垂直方向とは、整流フィルタ8の厚み方向に対して垂直な方向をいう。 Although not particularly limited, it is preferable to use activated carbon, zeolite, urethane foam, nonwoven fabric, or the like as a constituent material of the rectifying filter 8. The form of the rectifying filter 8 includes a continuous shape (FIG. 8), a lattice shape (FIG. 9), a net shape, a pleat shape, a corrugated shape, and the like. Among them, it is preferable to adopt a continuous shape or a lattice shape. Further, the rectifying filter 8 itself has a thickness for diffusing air so that the inside can be ventilated in the vertical direction. Here, the thickness of the rectifying filter 8 is a length from the upstream side to the downstream side (from the left side to the right side in FIG. 7). The vertical direction refers to a direction perpendicular to the thickness direction of the rectifying filter 8.
 特に制限は無いが、整流フィルタ8の製造方法には、例えば、圧力損失の低いウレタンフォームを角体に切り出して製造する方法、または、連子状の支持体24に接着剤を添着した後、活性炭やゼオライトを保持させ乾燥させて製造する方法、または、格子状の支持体24に接着剤を添着した後、活性炭やゼオライトを保持させ乾燥させて製造する方法、または、コルゲート型を複数重ねて製造する方法がある。そしてこれらのものを枠体やネットで固定したものである。さらに、図8に示すように、これらの整流フィルタ8を複数個重ねて配置することも可能である。 Although there is no particular limitation, the method of manufacturing the rectifying filter 8 is, for example, a method of cutting a urethane foam with low pressure loss into a rectangular body, or after attaching an adhesive to the continuous support 24, A method in which activated carbon or zeolite is retained and dried, or a method in which activated carbon or zeolite is retained and dried after attaching an adhesive to the lattice-like support 24, or a plurality of corrugated molds are stacked. There is a manufacturing method. These are fixed by a frame or a net. Furthermore, as shown in FIG. 8, it is also possible to arrange a plurality of these rectifying filters 8 in a stacked manner.
 上記構成において、送風部6の動作によって、空気清浄装置4の吸気口9に流入した空気は、吸気口9側の開口30から整流フィルタ8に一度衝突して乱流を生じる。このとき、衝突した部分から支持体24へ向けた気流が生じる。その後、整流フィルタ8内で整流される。 In the above configuration, the air flowing into the air inlet 9 of the air purifier 4 by the operation of the air blowing unit 6 once collides with the rectifying filter 8 from the opening 30 on the air inlet 9 side to generate turbulent flow. At this time, an air flow from the colliding part toward the support 24 is generated. Thereafter, rectification is performed in the rectification filter 8.
 また、整流フィルタ8に厚みを持たせることで、流入した空気を整流フィルタ8の内部で厚み方向に対し垂直な方向に拡散させて通風させることができる。これにより、吸気口9から流入した空気は、当初有していた面風速分布を整流フィルタ8で平準化することができるため、エアフィルタ7での処理風量の偏りが無くなる。 Further, by providing the rectifying filter 8 with a thickness, the air that has flowed in can be diffused in the direction perpendicular to the thickness direction inside the rectifying filter 8 to be ventilated. As a result, the air flowing in from the intake port 9 can level the surface wind speed distribution that it originally had with the rectifying filter 8, so that there is no bias in the processing air volume in the air filter 7.
 したがって、整流フィルタ8の下流側に配置されたエアフィルタ7では、基材層19に含まれた吸着剤21の吸着性能低下や局所消費を防ぐことができる。つまり、長期間にわたり、エアフィルタ7の吸着性能を維持させることができる。そして、長期間、ホルムアルデヒドの除去性能を維持した空気浄化装置を提供することができる。 Therefore, in the air filter 7 arranged on the downstream side of the rectifying filter 8, it is possible to prevent a decrease in adsorption performance and local consumption of the adsorbent 21 contained in the base material layer 19. That is, the adsorption performance of the air filter 7 can be maintained over a long period of time. And the air purification apparatus which maintained the removal performance of formaldehyde for a long period can be provided.
 また、整流フィルタ8の格子状もしくは連子状の支持体24に、活性炭を添着させた形態、もしくはゼオライトを添着させた形態を採用した場合、流入したホルムアルデヒドは、活性炭もしくはゼオライトに一度物理吸着され、その後、除放されるものとなる。したがって、活性炭、もしくはゼオライトを添着させた整流フィルタ8を配置することで、エアフィルタ7内への吸着物質の流入速度が緩和される。またホルムアルデヒド濃度を均一化することができる。 Further, when adopting a form in which activated carbon is attached to the lattice-like or continuous support 24 of the rectifying filter 8 or a form in which zeolite is attached, the inflowed formaldehyde is physically adsorbed once on the activated carbon or zeolite. After that, it will be released. Therefore, the flow rate of the adsorbed substance into the air filter 7 is reduced by arranging the rectifying filter 8 to which activated carbon or zeolite is attached. Moreover, the formaldehyde concentration can be made uniform.
 また、図8に示すように、整流フィルタ8を連子状とすることで、空気清浄装置4に流入した空気は、連子の支持体24で囲まれた内側において、流入方向に対して垂直方向に沿って流れ、風速分布の高い箇所から風速分布の低い箇所へ移ることができる。これによりエアフィルタ7へ流入する空気の風速分布を平準化することができる。つまり、エアフィルタ7に流入する空気の面風速分布が均一になり、吸着剤21の局所劣化を防止し、長期間にわたり空気清浄装置4のホルムアルデヒド吸着性能を維持させることができる。 Further, as shown in FIG. 8, by making the rectifying filter 8 into a continuous shape, the air that has flowed into the air cleaning device 4 is perpendicular to the inflow direction on the inner side surrounded by the support 24 for the continuous flow. It flows along the direction and can move from a location with a high wind speed distribution to a location with a low wind speed distribution. Thereby, the wind speed distribution of the air flowing into the air filter 7 can be leveled. That is, the surface wind speed distribution of the air flowing into the air filter 7 becomes uniform, the local degradation of the adsorbent 21 can be prevented, and the formaldehyde adsorption performance of the air cleaning device 4 can be maintained over a long period of time.
 また、図9に示すように、活性炭あるいはゼオライトを添着させた格子状の整流フィルタ8において、エアフィルタ7の面風速が高い部分(例えば、送風部6の吸込み口に対向する部分)と隣接している部分は、小さな目開き25とし、エアフィルタ7の面風速が低い部分(例えば、送風部6から距離が離れた部分)と隣接している部分は、大きな目開き26としてもよい。この構成によれば、面風速が高い部分において小さな目開き25で、乱流を生じさせやすく、大きな目開き26への気流が生じやすくなる。なお、整流フィルタ8には、活性炭およびゼオライトの少なくとも一方が添着されていればよい。 Further, as shown in FIG. 9, in the lattice-shaped rectifying filter 8 to which activated carbon or zeolite is attached, the air filter 7 is adjacent to a portion where the surface air velocity is high (for example, a portion facing the suction port of the blower 6). The part which is adjacent to the part (for example, the part away from the air blowing part 6) where the surface wind speed of the air filter 7 is low may be a large opening 26. According to this configuration, it is easy to generate turbulent flow with a small opening 25 in a portion where the surface wind speed is high, and an air flow to the large opening 26 is easily generated. The rectifying filter 8 may be attached with at least one of activated carbon and zeolite.
 したがって、エアフィルタ7へ流入する面風速分布が均一になる。 Therefore, the surface wind speed distribution flowing into the air filter 7 becomes uniform.
 また、小さな目開き25は単位面積当たりの活性炭やゼオライトの量が多量になることで、物理吸着量が向上する。 Moreover, the small openings 25 increase the amount of physical adsorption by increasing the amount of activated carbon or zeolite per unit area.
 これにより、処理するホルムアルデヒド量の偏りが無くなるので、基材層19に含まれた吸着剤21の局所劣化を防止し、長期間にわたり空気清浄装置4のホルムアルデヒド吸着性能を維持させることができる。 This eliminates the bias in the amount of formaldehyde to be processed, so that local degradation of the adsorbent 21 contained in the base material layer 19 can be prevented, and the formaldehyde adsorption performance of the air cleaning device 4 can be maintained over a long period of time.
 以上説明したように、空気清浄装置は、吸気口と排気口が設けられたケースと、ケース内に配置され、シート状ろ材をプリーツ化しているエアフィルタと、を備える。エアフィルタは、フィルタ形状を支持する基材層と、空気中の粒子を捕集する繊維層とを有する。また、繊維層は基材層を構成する繊維よりも繊維径が細い繊維で構成されている。基材層は繊維層よりも通気度が高く、アミン系化合物を含んだ吸着剤を含む。そして、繊維層は、気流の流れ方向に対して基材層よりも繊維層が上流側に配置されたものである。 As described above, the air purifier includes a case provided with an intake port and an exhaust port, and an air filter disposed in the case and pleated with a sheet-like filter medium. The air filter has a base material layer that supports the filter shape and a fiber layer that collects particles in the air. Moreover, the fiber layer is comprised with the fiber whose fiber diameter is thinner than the fiber which comprises a base material layer. The base material layer has a higher air permeability than the fiber layer and includes an adsorbent containing an amine compound. And a fiber layer is arrange | positioned with respect to the flow direction of an airflow rather than a base material layer at the upstream.
 これにより、空気清浄装置に流入した空気は、繊維層を通過した後に基材層を通過する。通気度の低い繊維層から通気度の高い基材層へ流入する空気は、通気度の低い繊維層内で乱流を起こす。乱流の作用によって、基材層界面と基材層内部では気流方向が異方向に広がることとなるので、エアフィルタの面風速分布を平準化させる。すなわちエアフィルタを通過する風量を均一化させて、局所的な吸着剤の消費による性能劣化を抑制するという効果を奏する。 Thereby, the air flowing into the air cleaning device passes through the base material layer after passing through the fiber layer. The air flowing from the fiber layer with low air permeability into the base layer with high air permeability causes turbulent flow in the fiber layer with low air permeability. Due to the turbulent action, the airflow direction spreads in different directions at the base material layer interface and inside the base material layer, so that the surface wind speed distribution of the air filter is leveled. That is, there is an effect that the air volume passing through the air filter is made uniform, and performance deterioration due to local consumption of the adsorbent is suppressed.
 また、空気清浄装置は、エアフィルタの上流側に配置された整流フィルタをさらに備えてもよい。整流フィルタは、吸気口側の開口全面に渡り配置され、吸気口から流入した空気が整流フィルタの内部を厚み方向に対して垂直な方向にも通風可能な構成を有する。 Further, the air cleaning device may further include a rectifying filter disposed on the upstream side of the air filter. The rectifying filter is disposed over the entire opening on the intake port side, and has a configuration in which air flowing from the intake port can pass through the inside of the rectifying filter in a direction perpendicular to the thickness direction.
 これにより、空気清浄装置に流入した空気は、整流フィルタを通過したときに、流入方向に対して垂直方向へ広がる。そのため、エアフィルタの面風速分布を緩和させて、通過風量のバランスを維持し、局所的な吸着剤の消費による性能劣化を抑制することができる。 This allows the air flowing into the air purifier to spread in a direction perpendicular to the inflow direction when passing through the rectifying filter. Therefore, the surface wind speed distribution of the air filter can be relaxed, the balance of the passing air volume can be maintained, and the performance deterioration due to local consumption of the adsorbent can be suppressed.
 また、整流フィルタは、格子状の支持体に活性炭およびゼオライトの少なくとも一方を添着させたものであってもよい。 Further, the rectifying filter may be one in which at least one of activated carbon and zeolite is attached to a lattice-like support.
 また、整流フィルタは、連子状の支持体に活性炭およびゼオライトの少なくとも一方を添着させたものであってもよい。 Further, the rectifying filter may be one in which at least one of activated carbon and zeolite is attached to a continuous support.
 これにより、整流フィルタに活性炭およびゼオライトの少なくとも一方を添着することで、流入した吸着物質は、一度活性炭およびゼオライトの少なくとも一方に物理吸着され、その後除放される。これにより、吸着物質のエアフィルタへの流入速度が平準化され、吸着物質の濃度差が均一化される。また、整流フィルタを、格子状または連子状とすることで、流入した空気は、支持体に囲まれた内側において流入方向に対して垂直方向に拡散して、風速分布の高い箇所から風速分布の低い箇所に流れることができる。これにより、エアフィルタへの流入する空気の風速分布を平準化することができる。 Thus, by adsorbing at least one of activated carbon and zeolite to the rectifying filter, the adsorbed adsorbed material is once physically adsorbed on at least one of the activated carbon and zeolite, and then released. Thereby, the inflow speed of the adsorbed material to the air filter is leveled, and the concentration difference of the adsorbed material is made uniform. In addition, by making the rectifying filter into a lattice shape or a continuous shape, the inflowing air diffuses in the direction perpendicular to the inflow direction on the inner side surrounded by the support body, and the wind speed distribution starts from the part where the wind speed distribution is high. It can flow to a low point. Thereby, the wind speed distribution of the air flowing into the air filter can be leveled.
 また、整流フィルタは格子状であり、面風速が高い部分は目開きを小さく、面風速が低い部分は目開きを大きくしてもよい。 Further, the rectifying filter may have a lattice shape, and a portion having a high surface wind speed may have a small opening, and a portion having a low surface wind speed may have a large opening.
 これにより、面風速が高い部分には乱流を生じさせやすく、目開きの大きな部分への気流が生じやすくできるため、整流効果を大きくすることができる。したがって、エアフィルタへ流入する面風速分布が均一にして、面風速分布を平準化させることができる。 This makes it easy to generate turbulence in a portion where the surface wind speed is high, and it is easy to generate an air flow to a portion having a large opening, so that the rectifying effect can be increased. Therefore, the surface wind speed distribution flowing into the air filter can be made uniform, and the surface wind speed distribution can be leveled.
 また、目開きを小さくして単位面積当たりの活性炭やゼオライトの量を多量にすることで、物理吸着量を向上させることができる。 Also, the amount of physical adsorption can be improved by reducing the mesh size and increasing the amount of activated carbon or zeolite per unit area.
 空気清浄装置の構成は、ホルムアルデヒド等の臭気物質を効果的に除去し長期安定的に持続でき、同様の機能が必要な換気装置等にも適用することができる。 The configuration of the air purifier can effectively remove odorous substances such as formaldehyde, can be stably maintained for a long time, and can be applied to a ventilator that requires the same function.
 1  壁紙
 2  家具
 3  床
 4  空気清浄装置
 5  本体ケース
 6  送風部
 7  エアフィルタ
 8  整流フィルタ
 9  吸気口
 10  排気口
 11  ケーシング
 12  羽根
 13  電動機
 14  フィルタろ材
 15  形状保持部
 16  枠部
 17  接着部材
 18  ピッチ
 19  基材層
 20  繊維層
 21  吸着剤
 22  表面部
 23  深層部
 24  支持体
 25  小さな目開き
 26  大きな目開き
 30  開口
 31  山
 32  パネル
 101  フィルタろ材
 102  吸着剤
 103  担持層
 104  基材
 105  カバー層
DESCRIPTION OF SYMBOLS 1 Wallpaper 2 Furniture 3 Floor 4 Air purifier 5 Main body case 6 Air blower part 7 Air filter 8 Commutation filter 9 Intake port 10 Exhaust port 11 Casing 12 Blade 13 Electric motor 14 Filter medium 15 Shape holding part 16 Frame part 17 Adhesive member 18 Pitch 19 Substrate layer 20 Fiber layer 21 Adsorbent 22 Surface portion 23 Deep layer portion 24 Support 25 Small aperture 26 Large aperture 30 Open 31 Mountain 32 Panel 101 Filter medium 102 Adsorbent 103 Support layer 104 Base material 105 Cover layer

Claims (5)

  1.  吸気口と排気口が設けられたケースと、
     前記ケース内に配置され、シート状ろ材をプリーツ化しているエアフィルタと、を備え、
     前記エアフィルタは、フィルタ形状を支持する基材層と、前記基材層を構成する繊維よりも繊維径が細い繊維で構成され、空気中の粒子を捕集する繊維層と、を有し
     前記基材層は、前記繊維層よりも通気度が高く、アミン系化合物を含んだ吸着剤を含み、
     前記繊維層は、気流の流れ方向に対して前記基材層よりも上流側に配置された空気清浄装置。
    A case provided with an air inlet and an air outlet;
    An air filter disposed in the case and pleated with a sheet-like filter medium,
    The air filter includes a base material layer that supports a filter shape, and a fiber layer that is made of fibers having a fiber diameter smaller than that of the fibers constituting the base material layer and collects particles in the air. The base material layer has a higher air permeability than the fiber layer, and includes an adsorbent containing an amine compound,
    The said fiber layer is an air cleaning apparatus arrange | positioned with respect to the flow direction of an airflow upstream from the said base material layer.
  2.  前記エアフィルタの上流側に配置された整流フィルタをさらに備え、
     前記整流フィルタは、前記吸気口側の開口全面に渡り配置され、前記吸気口から流入した空気が前記整流フィルタの内部を厚み方向に対して垂直な方向にも通風可能な構成を有する請求項1に記載の空気清浄装置。
    A rectifying filter disposed upstream of the air filter;
    2. The rectifying filter is disposed over the entire opening on the intake port side, and has a configuration in which air flowing in from the intake port can pass through the rectifying filter in a direction perpendicular to the thickness direction. The air purifier according to 1.
  3.  前記整流フィルタは、格子状の支持体に活性炭およびゼオライトの少なくとも一方が添着されている請求項1に記載の空気清浄装置。 The air rectifier according to claim 1, wherein the rectifying filter has at least one of activated carbon and zeolite attached to a lattice-like support.
  4.  前記整流フィルタは、連子状の支持体に活性体およびゼオライトの少なくとも一方が添着されている請求項1に記載の空気清浄装置。 The air rectifier according to claim 1, wherein the rectifying filter has at least one of an active material and zeolite attached to a continuous support.
  5.  前記整流フィルタは格子状であり、面風速が高い部分は目開きを小さく、面風速が低い部分は目開きを大きくしたことを特徴とする請求項2に記載の空気清浄装置。 3. The air purifier according to claim 2, wherein the rectifying filter has a lattice shape, a portion having a high surface wind speed has a small opening, and a portion having a low surface wind speed has a large opening.
PCT/JP2019/004327 2018-02-27 2019-02-07 Air purification device WO2019167584A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032643 2018-02-27
JP2018-032643 2018-02-27

Publications (1)

Publication Number Publication Date
WO2019167584A1 true WO2019167584A1 (en) 2019-09-06

Family

ID=67808871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004327 WO2019167584A1 (en) 2018-02-27 2019-02-07 Air purification device

Country Status (1)

Country Link
WO (1) WO2019167584A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111505212A (en) * 2020-05-11 2020-08-07 嵊州亚坎空气净化设备有限公司 Formaldehyde remover effect detection device
WO2020245047A1 (en) 2019-06-04 2020-12-10 Blueair Ab Filter for an air purifier comprising a malodour counteracting component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142843A (en) * 1983-02-04 1984-08-16 Tokyo Roki Kk Deodorizing filter
JPH08182915A (en) * 1994-12-28 1996-07-16 Tsuchiya Mfg Co Ltd Air filter
JP2000262601A (en) * 1999-03-19 2000-09-26 Fujitsu General Ltd Air cleaner
JP2000279505A (en) * 1999-03-30 2000-10-10 Mitsubishi Paper Mills Ltd Deodorizing electret filter and manufacture thereof
JP2004041954A (en) * 2002-07-12 2004-02-12 Matsushita Ecology Systems Co Ltd Air cleaner
JP2007260603A (en) * 2006-03-29 2007-10-11 Suminoe Textile Co Ltd Filter unit for air cleaner
JP2018015710A (en) * 2016-07-28 2018-02-01 パナソニックIpマネジメント株式会社 Filter material, and air cleaner using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59142843A (en) * 1983-02-04 1984-08-16 Tokyo Roki Kk Deodorizing filter
JPH08182915A (en) * 1994-12-28 1996-07-16 Tsuchiya Mfg Co Ltd Air filter
JP2000262601A (en) * 1999-03-19 2000-09-26 Fujitsu General Ltd Air cleaner
JP2000279505A (en) * 1999-03-30 2000-10-10 Mitsubishi Paper Mills Ltd Deodorizing electret filter and manufacture thereof
JP2004041954A (en) * 2002-07-12 2004-02-12 Matsushita Ecology Systems Co Ltd Air cleaner
JP2007260603A (en) * 2006-03-29 2007-10-11 Suminoe Textile Co Ltd Filter unit for air cleaner
JP2018015710A (en) * 2016-07-28 2018-02-01 パナソニックIpマネジメント株式会社 Filter material, and air cleaner using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020245047A1 (en) 2019-06-04 2020-12-10 Blueair Ab Filter for an air purifier comprising a malodour counteracting component
CN111505212A (en) * 2020-05-11 2020-08-07 嵊州亚坎空气净化设备有限公司 Formaldehyde remover effect detection device
CN111505212B (en) * 2020-05-11 2020-12-04 南京蓝盟科技有限公司 Formaldehyde remover effect detection device

Similar Documents

Publication Publication Date Title
CN101035615B (en) Impregnated filter element, and methods
JP4593224B2 (en) Chemical filter and manufacturing method thereof
WO2003066193A1 (en) Fluid cleaning filter and filter device
US20040163540A1 (en) Filter member
WO2019167584A1 (en) Air purification device
JP5978460B2 (en) AIR FILTER, AIR CLEANING APPARATUS HAVING THE AIR FILTER, AND ITS MANUFACTURING METHOD
KR102432767B1 (en) Air Cleaning System Capable of Filtering Fine Particles
WO2019167585A1 (en) Air purification device
JP2008086841A (en) Gas-removing filtration medium, composite filter, and filter element
JP6089199B2 (en) Air filter and air purifier equipped with the air filter
JP6259954B2 (en) A pleated filter structure and an air filtering method for air purification
JP2018122199A (en) Air filter and air cleaning device using the same
JP2018138069A (en) Filter medium and air cleaner using the same
CN109475799B (en) Filter medium and air cleaning device using the same
JP2002292227A (en) Filter unit
JP2020039999A (en) Pleat filter
JP6318716B2 (en) Air filter unit
JP2019025370A (en) Air filter, air cleaner using the same, and manufacturing method of the air filter
JP6078784B2 (en) Air filter medium, air filter, air purifier equipped with the air filter, and air purifier with a humidifying function
JP3817057B2 (en) Deodorizing filter media unit
JPH11156124A (en) Honeycomb-shaped air cleaning filter
KR102095479B1 (en) Air cleaning filter and air cleaner provided with same
JP2020048726A (en) Air filter and air cleaner using the same
JP2018034082A (en) Filter medium and air cleaner using the same
JPH11128632A (en) Filter and air cleaning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP