WO2019167553A1 - Actuator for variable compression ratio mechanism for internal combustion engine, and actuator used in device for internal combustion engine - Google Patents

Actuator for variable compression ratio mechanism for internal combustion engine, and actuator used in device for internal combustion engine Download PDF

Info

Publication number
WO2019167553A1
WO2019167553A1 PCT/JP2019/003791 JP2019003791W WO2019167553A1 WO 2019167553 A1 WO2019167553 A1 WO 2019167553A1 JP 2019003791 W JP2019003791 W JP 2019003791W WO 2019167553 A1 WO2019167553 A1 WO 2019167553A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
combustion engine
internal combustion
compression ratio
variable compression
Prior art date
Application number
PCT/JP2019/003791
Other languages
French (fr)
Japanese (ja)
Inventor
正登 真子
健 ブライアン 池口
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019167553A1 publication Critical patent/WO2019167553A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • F02D15/02Varying compression ratio by alteration or displacement of piston stroke

Definitions

  • the present invention relates to an actuator for a variable compression ratio mechanism of an internal combustion engine and an actuator used for an internal combustion engine device.
  • Patent Document 1 discloses an actuator that reduces the rotational speed of an electric motor by a wave gear reducer and transmits it to the control shaft as an actuator that changes the rotational position of the control shaft of the variable compression ratio mechanism.
  • the flexible external gear of the wave gear reducer includes a cylindrical body, a diaphragm that closes one end of the body, and a boss that is integrally formed at the center of the diaphragm and is connected to the control shaft.
  • One of the objects of the present invention is to provide an actuator for a variable compression ratio mechanism of an internal combustion engine and an actuator used for an internal combustion engine device that can shorten the axial length.
  • At least a part of the boss portion extends in the axial direction from the bottom portion and is connected to the control shaft.
  • the shaft length of the actuator can be shortened.
  • FIG. 1 is a schematic view of an internal combustion engine including an actuator of a variable compression ratio mechanism according to Embodiment 1.
  • FIG. 3 is an exploded perspective view of an actuator 40 of the variable compression ratio mechanism according to the first embodiment.
  • FIG. 3 is a side view of an actuator 40 of the variable compression ratio mechanism according to the first embodiment.
  • FIG. 4 is a cross-sectional view taken along line S4-S4 in FIG. 3. It is a figure which shows the flexible external gear 36 of Embodiment 1.
  • FIG. FIG. 5 is an enlarged view of a main part of FIG. 4 showing the actuator 40 of the first embodiment.
  • FIG. 5 is an enlarged view of a main part of FIG. 4 showing an actuator 40 according to a second embodiment.
  • FIG. 6 is a cross-sectional view taken along the line cc in FIG. 5A showing a flexible external gear 36 according to the third embodiment. It is a figure which shows the flexible external gear 36 of Embodiment 4.
  • FIG. 1 is a schematic view of an internal combustion engine provided with an actuator of a variable compression ratio mechanism according to a first embodiment.
  • the basic configuration is the same as that described in FIG. 1 of Japanese Patent Application Laid-Open No. 2011-169251, for example, and will be described briefly.
  • the piston 1 reciprocates in a cylinder of a cylinder block in an internal combustion engine (gasoline engine).
  • the upper end of the upper link 3 is rotatably connected to the piston 1 via a piston pin 2.
  • a lower link 5 is rotatably connected to the lower end of the upper link 3 via a connecting pin 6.
  • a crankshaft 4 is rotatably connected to the lower link 5 via a crankpin 4a.
  • the connection mechanism 9 includes a first control shaft 10, a second control shaft (control shaft) 11, a second control link 12, and an arm link 13.
  • the first control shaft 10 is disposed in parallel with the crankshaft 4 disposed along the cylinder row direction inside the internal combustion engine.
  • the first control shaft 10 includes a first journal portion 10a, a control eccentric shaft portion 10b, an eccentric shaft portion 10c, a first arm portion 10d, and a second arm portion 10e.
  • the first journal portion 10a is rotatably supported by the internal combustion engine body.
  • the control eccentric shaft portion 10b is rotatably connected to the lower end portion of the first control link 7.
  • the eccentric shaft portion 10c is rotatably connected to one end portion 12a of the second control link 12.
  • One end of the first arm portion 10d is connected to the first journal portion 10a.
  • the other end of the first arm portion 10d is connected to the control eccentric shaft portion 10b.
  • the control eccentric shaft portion 10b is located at a position offset by a predetermined amount with respect to the first journal portion 10a.
  • One end of the second arm portion 10e is connected to the first journal portion 10a.
  • the other end of the second arm portion 10e is connected to the eccentric shaft portion 10c.
  • the eccentric shaft portion 10c is at a position that is eccentric by a predetermined amount with respect to the first journal portion 10a.
  • One end of the arm link 13 is rotatably connected to the other end portion 12b of the second control link 12.
  • the other end of the arm link 13 is connected to the second control shaft 11.
  • the arm link 13 and the second control shaft 11 do not move relative to each other.
  • the second control shaft 11 is rotatably accommodated in a housing 20 described later.
  • the second control link 12 has a lever shape, and one end portion 12a connected to the eccentric shaft portion 10c is formed substantially linearly.
  • FIG. 2 is an exploded perspective view of the actuator 40 of the variable compression ratio mechanism according to the first embodiment
  • FIG. 3 is a side view of the actuator 40
  • FIG. 4 is a sectional view taken along line S4-S4 in FIG.
  • the other end portion 12 b of the second control link 12 is curved and the arm link 13 is connected.
  • An insertion hole 12c through which the eccentric shaft portion 10c is rotatably inserted is formed through the distal end portion of the one end portion 12a of the second control link 12.
  • the other end portion 12b has a tip end portion 12d.
  • a connecting hole 12e is formed through the tip portion 12d.
  • the arm link 13 is formed separately from the second control link 12.
  • the arm link 13 has an annular portion 13d and a pair of arm portions 13b1 and 13b2.
  • a press-fitting hole 13a is formed through the annular portion 13d.
  • a fixing portion 11b formed between the journal portions 11c and 11d of the second control shaft 11 is press-fitted.
  • the pair of arm portions 13b1 and 13b2 are formed in a bifurcated shape protruding from the annular portion 13d toward the outer periphery.
  • a pair of connecting holes 13c is formed through the pair of arm portions 13b1 and 13b2.
  • a distal end portion 12d of the second control link 12 is inserted between the pair of arm portions 13b1 and 13b2.
  • connection pin 14 is inserted into each connection hole 12e, 13c, 13c.
  • the center of each of the connection holes 12e, 13c, 13c (the axis of the connection pin 14) is eccentric by a predetermined amount with respect to the axis of the second control shaft 11.
  • the actuator 40 includes a drive motor 22, a wave gear reducer 50, a housing 20, and a second control shaft 11.
  • a direction along the rotation axis O of the motor shaft 48 of the drive motor 22 is referred to as an axial direction
  • a radial direction of the rotation axis O is referred to as a radial direction
  • a direction around the rotation axis O is referred to as a circumferential direction.
  • the X axis is set in the axial direction, and in the X axis direction, the direction from the motor shaft 48 side to the second control shaft 11 side is the positive direction, and from the second control shaft 11 side to the motor shaft 48 side.
  • the direction to go is defined as the negative X-axis direction.
  • the actuator 40 changes the rotational position of the second control shaft 11 by decelerating the rotational speed of the drive motor 22 by the wave gear reducer 50 and transmitting it to the second control shaft 11.
  • the rotational position of the second control shaft 11 is changed, the attitude of the second control link 12 is changed, the first control shaft 10 is rotated, and the position of the lower end portion of the first control link 7 is changed.
  • the posture of the lower link 5 changes, and the stroke position and stroke amount of the piston 1 in the cylinder change.
  • the engine compression ratio of the internal combustion engine can be changed.
  • the drive motor 22 is a DC brushless motor, for example, and has a motor casing 45, a coil 46, a rotor 47, and a motor shaft 48.
  • the motor casing 45 is formed in a bottomed cylindrical shape and is fixed to the second housing 20 b of the housing 20.
  • the coil 46 is fixed to the inner peripheral surface of the motor casing 45.
  • the rotor 47 is rotatably disposed inside the coil 46.
  • the motor shaft 48 is fixed at the center of the rotor 47.
  • the motor shaft 48 is rotatably provided to the second housing 20b and the motor casing 45 through two ball bearings 51 and 52.
  • the ball bearing 51 is fixed to the second housing 20b.
  • Ball bearing 52 is fixed to the bottom of motor casing 45.
  • the tip 48a of the motor shaft 48 on the X axis positive direction side penetrates the second housing 20b and is connected to the wave generating plug 371 of the wave generator 37 of the wave gear reducer 50.
  • the second control shaft 11 is located on the X axis positive direction side of the motor shaft 48 and is coaxial with the motor shaft 48. That is, the second control shaft 11 and the motor shaft 48 have the same rotation axis O.
  • An end (control shaft first end) 11a on the X axis negative direction side of the second control shaft 11 is connected to a boss portion 363 of the flexible external gear 36 of the wave gear reducer 50.
  • the motor casing 45 has a plurality of boss portions 45a. Each boss portion 45a is formed with a bolt hole 45b through which the bolt 49 is passed.
  • the motor casing 45 is fixed to the second housing 20b by screwing the bolt 49 into the female screw portion 20b1 formed in the second housing 20b.
  • the interior of the motor casing 45 and the second housing 20b is maintained by a seal 100 in a drying chamber that does not supply lubricating oil or the like.
  • the wave gear reducer 50 is accommodated in the housing 20.
  • the wave gear reducer 50 includes a rigid internal gear (internal gear) 38, a flexible external gear 36, and a wave generator 37.
  • the rigid internal gear 38 is a rigid annular member having a plurality of internal teeth 38a on the inner periphery.
  • the rigid internal gear 38 is fixed to the first housing 20 a of the housing 20.
  • the flexible external gear 36 is disposed on the radially inner side of the rigid internal gear 38.
  • 5A and 5B are diagrams showing the flexible external gear 36 according to the first embodiment, where FIG. 5A is a front view, FIG. 5B is a right side view, and FIG. 5C is a cross-sectional view taken along line cc in FIG. is there.
  • the flexible external gear 36 is formed of a metal material, and has a body part 361, a bottom part 362, and a boss part (first boss part) 363.
  • the body 361 is formed in a thin cylindrical shape that can be bent and deformed.
  • the X-axis negative direction end (body second end) 361b is opened.
  • External teeth 364 are formed on the X axis negative direction side of the outer peripheral surface of the body portion 361.
  • the external teeth 364 mesh with the internal teeth 38a of the rigid internal gear 38.
  • the number of external teeth 364 is two fewer than the number of internal teeth 38a.
  • the bottom portion 362 extends radially inward from the X axis positive direction end portion (body first end portion) 361a of the body portion 361.
  • the thickness of the bottom portion 362 substantially matches the thickness of the body portion 361.
  • the boss portion 363 is formed in a cylindrical shape extending from the bottom portion 362 to the X axis negative direction side.
  • the X-axis negative direction end of the boss portion 363 is located on the X-axis positive direction side with respect to the X-axis negative direction end of the body portion 361. That is, the boss portions 363 are all located inside the trunk portion 361.
  • the boss portion 363 partially overlaps the external teeth 364 in the X-axis direction on the X-axis negative direction side.
  • the boss 363 has a hole 363a on the inner periphery thereof.
  • the hole portion 363a has a plurality of wavy grooves (groove portions) 363a1 arranged in the circumferential direction on the inner peripheral surface thereof.
  • the hole portion 363a is a spline hole, and the wavy groove 363a1 is each groove of the spline hole.
  • the end 11a of the second control shaft 11 is inserted into the hole 363a.
  • the end portion 11a has a plurality of wavy protrusions (protrusion portions) 11a1 that are arranged in the circumferential direction and can be fitted in the wavy groove 363a1 on the outer peripheral surface thereof. That is, the end portion 11a is a spline shaft, and the wavy projection 11a1 is each projection of the spline shaft.
  • the wavy groove 363a1 and the wavy protrusion 11a1 mesh the second control shaft 11 and the boss portion 363 in the circumferential direction, and allow the relative movement between the second control shaft 11 and the boss portion 363 in the X-axis direction. It is.
  • the shape of the cross section orthogonal to the rotation axis O of the wavy groove 363a1 and the wavy protrusion 11a1 is formed using an involute curve. That is, the coupling unit 101 is an involute spline.
  • the wavy groove 363a1 and the wavy protrusion 11a1 are engaged with each other with a predetermined play in the radial direction. For this reason, the end portion 11a can move relative to the hole portion 363a by a predetermined range in the radial direction.
  • the outer peripheral surface of the wave generator 37 slides along the inner peripheral surface of the flexible external gear 36.
  • the wave generator 37 has a wave generating plug 371 and a ball bearing (rolling bearing) 372.
  • the wave generating plug 371 has an elliptical outer shape in a cross section orthogonal to the rotation axis O, and has an elliptical outer shape having a major axis portion with the largest radius and a minor axis portion with the smallest radius about the rotation axis O. .
  • the wave generating plug 371 is supported rotatably with respect to the second housing 20b via a ball bearing 37a.
  • the wave generating plug 371 has a through hole 371b at the center.
  • the tip 48a of the motor shaft 48 is press-fitted into the through hole 371b.
  • the end surface of the wave generating plug 371 on the X axis positive direction side is an abutting surface 371a.
  • the abutting surface 371a abuts on the boss portion 363 and restricts the movement of the boss portion 363 in the negative direction of the X axis. Therefore, as shown in FIG. 6, in the X-axis direction, the clearance ⁇ D1 between the boss portion 363 and the abutting surface 371a is larger than the clearance ⁇ D2 between the X-axis negative direction end portion 361b of the body 361 and the ball bearing 37a. It is set small.
  • the ball bearing 372 allows relative rotation between the outer periphery of the wave generating plug 371 and the inner periphery of the flexible external gear 36.
  • the ball bearing 372 includes an inner ring 372a, an outer ring 372b, a plurality of balls 372c, and a cage 372d.
  • the inner ring 372a is formed integrally with the outer peripheral surface of the wave generating plug 371.
  • the outer ring 372b is formed in a thin annular shape having flexibility, and is in contact with the inner periphery of the flexible external gear 36.
  • the plurality of balls 372c are formed in a spherical shape and are disposed between the inner ring 372a and the outer ring 372b.
  • the cage 372d is disposed between the inner ring 372a and the outer ring 372b, and keeps the interval between the balls 372c constant.
  • the housing 20 has a first housing 20a and a second housing 20b, and is formed in a substantially cubic shape by an aluminum alloy material.
  • a large-diameter annular opening groove 20c is formed on the X-axis negative direction side of the first housing 20a (see FIG. 4).
  • the opening groove 20c is closed by the second housing 20b.
  • the second housing 20b has a motor shaft through hole 20d through which the motor shaft 48 penetrates at a central position, and four boss portions 20e having a diameter expanded toward the radially outer peripheral side.
  • the first housing 20a and the second housing 20b are fastened by a bolt 35 inserted through the boss portion 20e.
  • an opening (not shown) for the second control link 12 connected to the arm link 13 is formed on the side surface closer to the X-axis positive direction than the opening groove 20c.
  • a storage chamber 29 serving as an operation region of the arm link 13 and the second control link 12 is formed (see FIG. 4).
  • a support hole 30b through which the second journal portion 11d of the second control shaft 11 passes is formed between the opening groove portion 20c and the storage chamber 29 in the X-axis direction.
  • a support hole 30a through which the first journal portion 11c of the second control shaft 11 passes is formed on the X axis positive direction side of the storage chamber 29.
  • a bearing 301 as a bearing portion is disposed between the inner peripheral surface of the support hole 30a and the outer peripheral surface of the first journal portion 11c.
  • a bearing 304 as a bearing portion is disposed between the inner peripheral surface of the support hole 30b and the outer peripheral surface of the second journal portion 11d.
  • the radial play between the bearing 301 and the first journal part 11c and the radial play between the bearing 304 and the second journal part 11d are smaller than the radial play between the wavy groove 363a1 and the wavy projection 11a1.
  • a retainer receiving hole 31 is formed on the positive side of the support hole 30a in the X-axis direction. The inner diameter of the retainer receiving hole 31 is larger than the inner diameter of the support hole 30a.
  • the retainer accommodation hole 31 and the support hole 30a are connected by a step surface 31a.
  • the step surface 31a is orthogonal to the rotation axis O.
  • a retainer 350 is accommodated in the retainer accommodation hole 31.
  • the retainer 350 is formed in an annular shape, and the second control shaft 11 is press-fitted therein. The retainer 350 restricts the movement of the second control shaft 11 in the negative X-axis direction by contacting the step surface 31a in the X-axis direction.
  • An angle sensor 32 is attached to the X axis positive direction end of the housing 20.
  • the angle sensor 32 detects the rotation angle of the second control shaft 11.
  • the rotation angle detected by the angle sensor 32 is sent to a control unit (not shown) of the drive motor 22 housed in the motor casing 45.
  • the angle sensor 32 has a sensor holder 32a attached so as to close the retainer receiving hole 31 from the outside of the housing 20.
  • the sensor holder 32a has a flange portion 32a1 for fixing to the first housing 20a with a bolt 321.
  • a seal ring 33 is installed between the sensor holder 32a and the first housing 20a. The seal ring 33 ensures liquid tightness between the retainer receiving hole 31 and the outside.
  • a sensor cover 32c for closing the retainer receiving hole 31 is provided outside the sensor holder 32a.
  • a seal ring 323 is installed between the sensor cover 32c and the sensor holder 32a. The seal ring 323 ensures liquid tightness between the retainer receiving hole 31 and the outside.
  • the sensor cover 32c is fastened to the sensor holder 32a by a bolt 34.
  • the rotor 32b of the angle sensor 32 is formed in an elliptical ring shape, and is fixed to an end portion (control shaft second end portion) 11e of the second control shaft 11 on the X axis positive direction side.
  • the angle sensor 32 is a so-called resolver, and detects a change in the distance between the inner periphery of the sensor holder 32a and the outer periphery of the rotor 32b due to the rotation of the rotor 32b by a change in inductance of a detection coil (not shown). Thereby, the rotational position of the rotor 32b, that is, the rotational angle of the second control shaft 11 is detected.
  • a flange (restricting portion) 11f is formed on the X axis positive direction side of the end portion 11a.
  • the flange 11f abuts on the boss portion 363 of the flexible external gear 36 and restricts the movement of the flexible external gear 36 in the positive direction of the X axis.
  • the outer diameter of the flange 11f is smaller than the outer diameter of the boss portion 363.
  • the end portion 11a has an annular relief groove (groove) 11g recessed inward in the radial direction at a connection portion with the flange 11f.
  • the second control shaft 11 has a supply oil passage 111.
  • the supply oil passage 111 has an axial oil passage 111a and a radial oil passage 111b.
  • the shaft center oil passage 111a extends in the X-axis direction from the center of the second control shaft 11 and opens at the X-axis negative direction end of the second control shaft 11.
  • Lubricating oil pumped from an oil pump (not shown) is introduced into the shaft center oil passage 111a through an oil passage (not shown) formed in the first housing 20a.
  • An orifice 111c is attached to the end of the axial center oil passage 111a in the negative X-axis direction. Lubricating oil that has flowed out of the second control shaft 11 from the X axis negative direction end of the shaft center oil passage 111a (orifice 111c) is used for lubrication of the wave generator 37 and the coupling portion 101.
  • the radial oil passage 111b extends radially outward from the axial oil passage 111a and opens into the escape groove 11g.
  • the lubricating oil that has flowed out of the second control shaft 11 from the shaft center oil passage 111a is used for lubrication of the wave generator 37 and the coupling portion 101.
  • the effect of Embodiment 1 is demonstrated.
  • the boss portion 363 extends from the bottom portion 362 to the X axis negative direction side and is connected to the second control shaft 11. That is, at least a part of the boss portion 363 is located on the radially inner side of the body portion 361.
  • the axial length of the flexible external gear 36 can be shortened in the direction along the rotational axis of the body portion 361 as compared with the conventional actuator in which the boss portion is disposed on the opposite side of the body portion 361 across the bottom portion. .
  • the shaft length of the actuator 40 can be shortened, and the degree of freedom of the vehicle mounting layout can be improved.
  • the distance from the meshing position of the inner teeth 38a and the outer teeth 364 in the X-axis direction to the boss portion 363 can be shortened. Therefore, when the flexible external gear 36 is deformed elliptically, the distance in the X-axis direction to the force point (the boss portion 363) can be shortened when the meshing position of the internal teeth 38a and the external teeth 364 is used as a fulcrum. As a result, as shown in FIG. 6, the elliptical deformation stress acting on the connecting portion (corner R portion) A between the bottom portion 362 and the boss portion 363, which is the weakest strength portion in the flexible external gear 36, can be suppressed. As a result, the allowable torque increases and a strength corresponding to a higher torque is obtained, which is advantageous as an actuator for a variable compression ratio mechanism of an internal combustion engine.
  • the actuator 40 includes a coupling portion 101 that is provided on the second control shaft 11 and the boss portion 363, and the second control shaft 11 and the boss portion 363 are engaged with each other.
  • the explosive force in the expansion stroke of the internal combustion engine applies a radial load to the second control shaft 11 via the variable compression ratio mechanism.
  • the body of the flexible external gear The part 361 is inclined with respect to the rotation axis.
  • the coupling portion 101 can absorb the radial displacement of the end portion 11a.
  • the inclination of the external gear 36 is suppressed.
  • the meshing between the outer teeth 364 and the inner teeth 38a can be maintained satisfactorily, and the load acting on the ball bearing 372 can be reduced, so that a decrease in transmission efficiency can be suppressed.
  • the transmission loss of the output torque of the drive motor 22 is reduced, so that the power consumption of the drive motor 22 can be suppressed.
  • the coupling portion 101 includes a wavy protrusion 11a1 provided on the outer peripheral surface of the second control shaft 11, and a wavy groove 363a1 provided on the inner peripheral surface of the boss portion 363.
  • the wavy protrusion 11a1 and the wavy groove 363a1 are , Have play in the radial direction. Thereby, the coupling portion 101 can absorb the radial displacement of the end portion 11a caused by the deflection of the second control shaft 11 due to the radial play.
  • the coupling portion 101 allows relative movement in the X-axis direction between the second control shaft 11 and the boss portion 363.
  • the second control shaft 11 receives a reverse input from the variable compression ratio mechanism due to the explosive force in the expansion stroke of the internal combustion engine.
  • the reverse input torque is canceled by the output torque of the drive motor 22 in order to maintain the current compression ratio
  • the body 361 is twisted to generate a load in the X-axis direction.
  • the boss 363 fixed to the second control shaft does not move in the X-axis direction. There is a possibility that stress concentration may occur at the corner of the connecting portion with the boss portion 363.
  • the boss portion 363 can move in the X-axis direction with respect to the second control shaft 11, the boss portion 363 can follow the body portion 361 and be displaced in the X-axis direction. Thereby, the stress concentration generated in the connecting portion A between the bottom portion 362 and the boss portion 363 can be relaxed.
  • the wavy projections 11a1 are each projection of the spline shaft (end portion 11a), and the wavy grooves 363a1 are each groove of the spline hole (hole portion 363a). That is, the connection between the second control shaft 11 and the boss portion 363 is a spline fitting. Since spline fitting has a large number of meshing portions in the circumferential direction, the second control shaft 11 can be rotated forward and backward with a torque input from the internal combustion engine side as in a variable compression ratio mechanism, or at a fixed angle. For example, the torque transmission state between the second control shaft 11 and the boss portion 363 can be maintained regardless of the inclination or radial displacement of the second control shaft 11.
  • the boss portion 363 is located on the opposite side of the body portion 361 across the bottom portion, stress is concentrated on the connecting portion between the body portion 361 and the boss portion 363 when the flexible external gear is deformed elliptically. Almost damaged.
  • the boss portion 363 By installing the boss portion 363 on the inside, the impact load is absorbed by the flexible external gear 36 while satisfying the strength in spline fitting, and abnormal noise generated in each meshing portion can be reduced.
  • the end 11a and the hole 363a are involute splines. As a result, when the second control shaft 11 is rotated forward and backward or maintained at a constant angle, when a torque load is applied to the flexible external gear 36, the rotation axis of the second control shaft 11 is flexible.
  • a force in a direction to match the rotation axis of the external external gear 36 is applied to perform self-alignment.
  • wear at each meshing portion of the spline fitting can be suppressed.
  • the second control shaft 11 and the flexible external gear 36 are automatically aligned even during assembly, axial misalignment between the second control shaft 11 and the flexible external gear 36 can be suppressed, resulting in stable performance. Is excellent.
  • the end 11a of the second control shaft 11 is inserted into the hole 363a of the boss 363 on the radially inner side of the body 361. That is, since the coupling portion 101 between the second control shaft 11 and the boss portion 363 overlaps the body portion 361 in the X-axis direction, the axial length of the actuator 40 can be shortened.
  • the boss portion 363 can come into contact with the wave generator 37 when moved in the negative direction of the X axis.
  • the boss 363 functions as a retainer for the flexible external gear 36 and can prevent the flexible external gear 36 from falling off from the end 11a.
  • the wave generator 37 has an abutment surface 371a that restricts the movement of the boss portion 363 in the negative direction of the X axis. Accordingly, the movement range can be restricted while allowing the flexible external gear 36 to move in the negative direction of the X-axis, and the flexible external gear 36 can be prevented from falling off from the end portion 11a.
  • the second control shaft 11 has a flange 11f that restricts the movement of the bottom 362 in the positive direction of the X axis. Thereby, the movement range can be regulated while allowing the flexible external gear 36 to move in the positive direction of the X-axis. As a result, it is possible to prevent deterioration of the control function of the engine compression ratio and damage of the sliding contact portion due to the sliding contact of the flexible external gear 36 with the housing 20 or the bearing 304. Since the second control shaft 11 and the flexible external gear 36 rotate integrally, the engine compression ratio control function is not lowered and the sliding contact portion is not damaged.
  • the outer diameter of the flange 11f is smaller than the outer diameter of the boss portion 363.
  • the boss portions 363 are all on the radially inner side of the body portion 361. That is, since the boss 363 overlaps the body 361 in the X-axis direction over the entire length, the axial length of the actuator 40 can be shortened.
  • the second control shaft 11 has a supply oil passage 111 that opens to the inside of the body 361 in the radial direction and supplies lubricating oil to the inside of the body 361 in the radial direction. Accordingly, the lubricating oil can be supplied from the radially inner side of the flexible external gear 36 to the meshing position of the external teeth 364 and the internal teeth 38a and the ball bearing 372 of the wave generator 37.
  • the boss portion 363 is located on the radially inner side of the body portion 361, the distance between the end portion 11a of the second control shaft 11 and the lubricated portion can be reduced in the X-axis direction.
  • the supply oil path 111 can supply the lubricating oil to the coupling portion 101 via the radial play between the wavy groove 363a1 and the wavy projection 11a1, it is possible to suppress wear at each meshing portion of the spline fitting.
  • the end portion 11a of the second control shaft 11 has an annular relief groove 11g that is recessed inward in the radial direction at a connection portion with the flange 11f.
  • a relief shape such as a chamfer or an R portion
  • the thickness of the portion close to the connection with the thin portion (bottom portion 362) becomes thin, and the strength may be reduced.
  • the escape groove 11g on the second control shaft 11 side, it is possible to secure the wall thickness at the root portion (X-axis positive direction end portion) of the boss portion 363 and suppress the strength reduction of the boss portion 363. . Further, since the contact area of the boss portion 363 with the flange 11f is increased, durability against thrust load can be improved.
  • the boss portion 363 at least partially overlaps the external teeth 364 in the X-axis direction. Thereby, the axial length of the actuator 40 can be shortened. Further, since the distance from the meshing position of the inner teeth 38a and the outer teeth 364 in the X-axis direction to the boss portion 363 can be shortened, the elliptical deformation stress acting on the connecting portion A between the bottom portion 362 and the boss portion 363 can be suppressed.
  • the radial play between the wavy groove 363a1 and the wavy projection 11a1 is larger than the radial play between the bearing 301 and the first journal part 11c and the radial play between the bearing 304 and the second journal part 11d. As a result, even when the second control shaft 11 is bent, the tip of the wave-like protrusion 11a1 does not hit the bottom of the wave-like groove 363a1, so that a reduction in transmission efficiency can be suppressed.
  • FIG. 7 is an enlarged view of a main part of FIG. 4 showing the actuator 40 of the second embodiment.
  • the clearance ⁇ D1 between the boss portion 363 and the abutting surface 371a is set larger than the clearance ⁇ D2 between the X-axis negative direction end portion 361b of the body portion 361 and the ball bearing 37a. .
  • the X-axis negative direction end 361b of the body 361 is on the X-axis positive direction side of the outer ring 37a1 of the ball bearing 37a. Abutting against the abutting surface 37a1a, which is an end surface, is restricted from moving in the negative direction of the X axis.
  • the housing 20 of the second embodiment has an abutment surface 37a1a that restricts the movement of the body 361 in the negative X-axis direction. Accordingly, the movement range can be restricted while allowing the flexible external gear 36 to move in the negative direction of the X-axis, and the flexible external gear 36 can be prevented from falling off from the end portion 11a.
  • FIG. 8 is a cross-sectional view taken along the line cc of FIG. 5 (a) showing the flexible external gear 36 of the third embodiment.
  • the flexible external gear 36 has a first boss portion 3632 extending from the bottom portion 362 to the X axis negative direction side, and a second boss portion 3633 extending from the bottom portion 362 to the X axis positive direction side.
  • the outer diameter of the first boss portion 3632 and the second boss portion 3633 and the length in the X-axis direction from the bottom portion 362 are the same.
  • the first boss portion 3632 and the second boss portion 3633 have a hole 363a on the inner periphery thereof.
  • the hole 363a has a wave-like groove (groove) 363a1 on the inner peripheral surface thereof.
  • a first boss portion 3632 extending from the bottom portion 362 to the X axis negative direction side, and a second boss extending from the bottom portion 362 to the X axis positive direction side and coupled to the second control shaft 11 together with the first boss portion 3632.
  • Part 3363 As a result, compared to the case where the second boss portion 3633 is not provided, the connecting portion of the flexible external gear 36 to the second control shaft 11 can be made longer in the X-axis direction. Can be improved.
  • FIG. 9A and 9B are diagrams showing the flexible external gear 36 according to the fourth embodiment, where FIG. 9A is a front view, FIG. 9B is a right side view, and FIG. 9C is a sectional view taken along line cc in FIG. is there.
  • FIG. 9A shows a front view of the end portion 11 a of the second control shaft 11.
  • the end portion 11a has four keys (projections) 11a2 on the outer peripheral surface thereof.
  • the keys 11a2 are arranged at equal intervals in the circumferential direction.
  • the key 11a2 is formed in a rectangular shape and extends in the X-axis direction.
  • the hole portion 363a has four key grooves (groove portions) 363a2 on the inner peripheral surface thereof.
  • the key grooves 363a2 are arranged at equal intervals in the circumferential direction.
  • Each keyway 363a2 is fitted with the corresponding key 11a2.
  • the key 11a2 and the key groove 363a2 are coupling portions 101 that mesh the second control shaft 11 and the boss portion 363 in the circumferential direction and allow relative movement between the second control shaft 11 and the boss portion 363 in the X-axis direction. is there.
  • the coupling portion 101 since the coupling portion 101 has the key 11a2 and the key groove 363a2 that fits with the key 11a2, the second control shaft 11 and the boss portion 363 can move relative to each other in the radial direction compared to the spline fitting.
  • a structure capable of transmitting the rotational force can be easily formed. Since there are a plurality of keys 11a2 and key grooves 363a2 in the circumferential direction, the load acting on each key 11a2 and key grooves 363a2 can be dispersed when the second control shaft 11 is held at a specific rotation angle. As a result, the durability of each key 11a2 and keyway 363a2 can be improved.
  • the embodiment for carrying out the present invention has been described above, the specific configuration of the present invention is not limited to the configuration of the embodiment, and there are design changes and the like within the scope not departing from the gist of the invention. Are also included in the present invention.
  • any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved.
  • the actuator of the present invention is particularly suitable as an actuator for a variable compression ratio mechanism of an internal combustion engine.
  • a valve timing adjustment for adjusting a valve timing of a valve that opens and closes a camshaft by torque transmission from a crankshaft is also applicable to the device.
  • a supply oil passage for supplying lubricating oil to the flexible external gear may be provided in the housing.
  • the outer diameter of the wave generating plug is not necessarily limited to an elliptical shape, and may be a polygonal shape such as a triangular shape with corners formed in an arc shape.
  • an actuator for a variable compression ratio mechanism of an internal combustion engine has a drive motor that rotates a motor shaft, and an outer shape of a cross section that rotates integrally with the motor shaft and is orthogonal to the rotation axis of the motor shaft.
  • a non-circular wave generator and a bottomed cylindrical flexible external gear coupled to a control shaft that changes the attitude of the variable compression ratio mechanism of the internal combustion engine by rotating within a predetermined angular range;
  • a flexible external gear having a body portion, a bottom portion, external teeth, and a first boss portion.
  • the barrel portion is formed in a cylindrical shape having flexibility that can be deformed and deformed in a non-circular shape by rotation of the wave generator, and the bottom portion has the axial direction when the direction along the rotation axis is an axial direction.
  • the first end and the second end of the body which are both ends of the body, and the external teeth are configured such that the radial direction of the rotation axis is a radial direction.
  • at least a part of the first boss portion extends in the axial direction from the bottom portion toward the second end portion of the trunk portion, and is provided on the radially outer surface of the trunk portion.
  • the actuator further includes an internal gear that meshes with the external teeth of the body part that is deformed by bending.
  • the first boss portion has, on its inner periphery, the control shaft among the control shaft first end portion and the control shaft second end portion which are both end portions of the control shaft in the axial direction. A shaft first end portion is inserted, and the control shaft first end portion is inserted inside the body portion in the radial direction.
  • the connection between the first boss portion and the control shaft is achieved by spline fitting.
  • the first boss portion can contact the wave generator in the axial direction.
  • the control shaft is a restricting portion capable of contacting the first boss portion in the axial direction, and the body portion from the body second end portion.
  • a restricting portion for restricting movement of the flexible external gear toward the side toward the first end portion is provided.
  • the restriction portion is a flange capable of contacting the bottom portion, and in the radial direction, an outer diameter of the flange is equal to or less than an outer diameter of the first boss portion. It is.
  • the first boss part is entirely inside the trunk part in the radial direction.
  • the flexible external gear is a second boss portion that extends in the axial direction from the bottom portion toward the body first end portion, and It has the 2nd boss
  • the wave generator includes a rolling bearing that is in contact with an inner periphery of the flexible external gear in the radial direction, and the control shaft is A supply oil passage for supplying lubricating oil to the inside of the body portion is provided.
  • control shaft includes a restriction portion that restricts movement of the flexible external gear in the axial direction, and a side of the body portion second end from the restriction portion.
  • a first end portion of the control shaft extending into the first boss portion, and the first end portion of the control shaft has a groove recessed inward in the radial direction at a connecting portion with the restricting portion.
  • at least a part of the first boss portion overlaps the external teeth in the axial direction.
  • an actuator used for an internal combustion engine device has a drive motor that rotates a motor shaft and a cross section that rotates integrally with the motor shaft and is orthogonal to the rotation axis of the output shaft.
  • a non-circular wave generator and a bottomed cylindrical flexible external gear coupled to a control shaft that changes the attitude of the internal combustion engine device by rotating within a predetermined angular range,
  • a flexible external gear having a portion, a bottom portion, external teeth, and a first boss portion.
  • the barrel portion is formed in a cylindrical shape having flexibility that can be deformed and deformed in a non-circular shape by rotation of the wave generator, and the bottom portion has the axial direction when the direction along the rotation axis is an axial direction.
  • the actuator further includes an internal gear that meshes with the external teeth of the body part that is deformed by bending.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Retarders (AREA)

Abstract

Provided is an actuator for a variable compression ratio mechanism for an internal combustion engine and an actuator used in a device for an internal combustion engine, with which it is possible to shorten shaft length. At least part of a first boss portion of a flexible outer gear extends in the axial direction from the bottom thereof and is connected to the control shaft.

Description

内燃機関の可変圧縮比機構のアクチュエータおよび内燃機関用機器に用いられるアクチュエータActuator for variable compression ratio mechanism of internal combustion engine and actuator used for internal combustion engine equipment
 本発明は、内燃機関の可変圧縮比機構のアクチュエータおよび内燃機関用機器に用いられるアクチュエータに関する。 The present invention relates to an actuator for a variable compression ratio mechanism of an internal combustion engine and an actuator used for an internal combustion engine device.
 特許文献1には、可変圧縮比機構の制御軸の回転位置を変更するアクチュエータとして、電動モータの回転速度を波動歯車減速機により減速して制御軸へ伝達するアクチュエータが開示されている。波動歯車減速機の可撓性外歯車は、筒状の胴部と、胴部の一端側を塞ぐダイヤフラムと、ダイヤフラムの中心に一体成形され制御軸と連結するボス部とを有する。 Patent Document 1 discloses an actuator that reduces the rotational speed of an electric motor by a wave gear reducer and transmits it to the control shaft as an actuator that changes the rotational position of the control shaft of the variable compression ratio mechanism. The flexible external gear of the wave gear reducer includes a cylindrical body, a diaphragm that closes one end of the body, and a boss that is integrally formed at the center of the diaphragm and is connected to the control shaft.
国際公開第2014/027497号International Publication No. 2014/027497
 しかしながら、上記従来技術にあっては、ボス部がダイヤフラムを挟んで胴部と反対側に配置されているため、アクチュエータの軸長が長くなり、車両搭載レイアウトが不利となるおそれがあった。
  本発明の目的の一つは、軸長を短縮化できる内燃機関の可変圧縮比機構のアクチュエータおよび内燃機関用機器に用いられるアクチュエータを提供することにある。
However, in the above prior art, since the boss part is arranged on the opposite side of the body part across the diaphragm, there is a possibility that the axial length of the actuator becomes long and the vehicle mounting layout becomes disadvantageous.
One of the objects of the present invention is to provide an actuator for a variable compression ratio mechanism of an internal combustion engine and an actuator used for an internal combustion engine device that can shorten the axial length.
 本発明の一実施形態における内燃機関の可変圧縮比機構のアクチュエータにおいて、ボス部の少なくとも一部は、底部から軸方向に延びて制御軸と連結される。 In the actuator of the variable compression ratio mechanism of the internal combustion engine according to the embodiment of the present invention, at least a part of the boss portion extends in the axial direction from the bottom portion and is connected to the control shaft.
 よって、アクチュエータの軸長を短縮化できる。 Therefore, the shaft length of the actuator can be shortened.
実施形態1の可変圧縮比機構のアクチュエータを備えた内燃機関の概略図である。1 is a schematic view of an internal combustion engine including an actuator of a variable compression ratio mechanism according to Embodiment 1. FIG. 実施形態1の可変圧縮比機構のアクチュエータ40の分解斜視図である。FIG. 3 is an exploded perspective view of an actuator 40 of the variable compression ratio mechanism according to the first embodiment. 実施形態1の可変圧縮比機構のアクチュエータ40の側面図である。FIG. 3 is a side view of an actuator 40 of the variable compression ratio mechanism according to the first embodiment. 図3のS4-S4線矢視断面図である。FIG. 4 is a cross-sectional view taken along line S4-S4 in FIG. 3. 実施形態1の可撓性外歯車36を示す図である。It is a figure which shows the flexible external gear 36 of Embodiment 1. FIG. 実施形態1のアクチュエータ40を示す図4の要部拡大図である。FIG. 5 is an enlarged view of a main part of FIG. 4 showing the actuator 40 of the first embodiment. 実施形態2のアクチュエータ40を示す図4の要部拡大図である。FIG. 5 is an enlarged view of a main part of FIG. 4 showing an actuator 40 according to a second embodiment. 実施形態3の可撓性外歯車36を示す図5(a)のc-c線矢視断面図である。FIG. 6 is a cross-sectional view taken along the line cc in FIG. 5A showing a flexible external gear 36 according to the third embodiment. 実施形態4の可撓性外歯車36を示す図である。It is a figure which shows the flexible external gear 36 of Embodiment 4.
 〔実施形態1〕
  図1は、実施形態1の可変圧縮比機構のアクチュエータを備えた内燃機関の概略図である。基本的な構成は、例えば特開2011-169251号公報の図1に記載されたものと同じであるため、簡単に説明する。
  ピストン1は、内燃機関(ガソリンエンジン)におけるシリンダブロックのシリンダ内を往復運動する。ピストン1には、ピストンピン2を介してアッパリンク3の上端が回転可能に連結する。アッパリンク3の下端には、連結ピン6を介してロアリンク5が回転可能に連結する。ロアリンク5には、クランクピン4aを介してクランクシャフト4が回転可能に連結する。ロアリンク5には、連結ピン8を介して第1制御リンク7の上端部が回転可能に連結する。第1制御リンク7の下端部は、複数のリンクを有する連結機構9と連結する。連結機構9は、第1制御軸10、第2制御軸(制御軸)11、第2制御リンク12およびアームリンク13を有する。
Embodiment 1
FIG. 1 is a schematic view of an internal combustion engine provided with an actuator of a variable compression ratio mechanism according to a first embodiment. The basic configuration is the same as that described in FIG. 1 of Japanese Patent Application Laid-Open No. 2011-169251, for example, and will be described briefly.
The piston 1 reciprocates in a cylinder of a cylinder block in an internal combustion engine (gasoline engine). The upper end of the upper link 3 is rotatably connected to the piston 1 via a piston pin 2. A lower link 5 is rotatably connected to the lower end of the upper link 3 via a connecting pin 6. A crankshaft 4 is rotatably connected to the lower link 5 via a crankpin 4a. An upper end portion of the first control link 7 is rotatably connected to the lower link 5 via a connecting pin 8. A lower end portion of the first control link 7 is connected to a connecting mechanism 9 having a plurality of links. The connection mechanism 9 includes a first control shaft 10, a second control shaft (control shaft) 11, a second control link 12, and an arm link 13.
 第1制御軸10は、内燃機関内部の気筒列方向に沿って配置されたクランクシャフト4と平行に配置されている。第1制御軸10は、第1ジャーナル部10a、制御偏心軸部10b、偏心軸部10c、第1アーム部10dおよび第2アーム部10eを有する。第1ジャーナル部10aは、内燃機関本体に回転可能に支持されている。制御偏心軸部10bは、第1制御リンク7の下端部と回転可能に連結する。偏心軸部10cは、第2制御リンク12の一端部12aと回転可能に連結する。第1アーム部10dの一端は、第1ジャーナル部10aと連結する。第1アーム部10dの他端は、制御偏心軸部10bと連結する。制御偏心軸部10bは、第1ジャーナル部10aに対して所定量偏心した位置にある。第2アーム部10eの一端は、第1ジャーナル部10aと連結する。第2アーム部10eの他端は、偏心軸部10cと連結する。偏心軸部10cは、第1ジャーナル部10aに対して所定量偏心した位置にある。第2制御リンク12の他端部12bは、アームリンク13の一端が回転可能に連結する。アームリンク13の他端は、第2制御軸11と連結する。アームリンク13と第2制御軸11は相対移動しない。第2制御軸11は、後述するハウジング20内に回転可能に収容されている。第2制御リンク12は、レバー形状であり、偏心軸部10cに連結された一端部12aは、略直線的に形成されている。 The first control shaft 10 is disposed in parallel with the crankshaft 4 disposed along the cylinder row direction inside the internal combustion engine. The first control shaft 10 includes a first journal portion 10a, a control eccentric shaft portion 10b, an eccentric shaft portion 10c, a first arm portion 10d, and a second arm portion 10e. The first journal portion 10a is rotatably supported by the internal combustion engine body. The control eccentric shaft portion 10b is rotatably connected to the lower end portion of the first control link 7. The eccentric shaft portion 10c is rotatably connected to one end portion 12a of the second control link 12. One end of the first arm portion 10d is connected to the first journal portion 10a. The other end of the first arm portion 10d is connected to the control eccentric shaft portion 10b. The control eccentric shaft portion 10b is located at a position offset by a predetermined amount with respect to the first journal portion 10a. One end of the second arm portion 10e is connected to the first journal portion 10a. The other end of the second arm portion 10e is connected to the eccentric shaft portion 10c. The eccentric shaft portion 10c is at a position that is eccentric by a predetermined amount with respect to the first journal portion 10a. One end of the arm link 13 is rotatably connected to the other end portion 12b of the second control link 12. The other end of the arm link 13 is connected to the second control shaft 11. The arm link 13 and the second control shaft 11 do not move relative to each other. The second control shaft 11 is rotatably accommodated in a housing 20 described later. The second control link 12 has a lever shape, and one end portion 12a connected to the eccentric shaft portion 10c is formed substantially linearly.
 図2は実施形態1の可変圧縮比機構のアクチュエータ40の分解斜視図、図3はアクチュエータ40の側面図、図4は図3のS4-S4線矢視断面図である。
  図2の分解斜視図に示すように、第2制御リンク12の他端部12bは、湾曲形成され、アームリンク13が連結されている。第2制御リンク12の一端部12aの先端部には、偏心軸部10cが回動自在に挿通される挿通孔12cが貫通形成されている。他端部12bは、先端部12dを有する。先端部12dには、連結用孔12eが貫通形成されている。アームリンク13は、第2制御リンク12とは別体に形成されている。アームリンク13は、円環状部13dおよび1対のアーム部13b1,13b2を有する。円環状部13dには、圧入用孔13aが貫通形成されている。圧入用孔13aは、第2制御軸11の各ジャーナル部11c,11d間に形成された固定部11bが圧入されている。1対のアーム部13b1,13b2は、円環状部13dから外周に向けて突出する二股状に形成されている。1対のアーム部13b1,13b2には、連結用孔13cがそれぞれ貫通形成されている。1対のアーム部13b1,13b2の間には、第2制御リンク12の先端部12dが挿通されている。各連結用孔12e,13c,13cには、連結ピン14が挿入されている。各連結用孔12e,13c,13cの中心(連結ピン14の軸心)は、第2制御軸11の軸心に対して所定量偏心している。
2 is an exploded perspective view of the actuator 40 of the variable compression ratio mechanism according to the first embodiment, FIG. 3 is a side view of the actuator 40, and FIG. 4 is a sectional view taken along line S4-S4 in FIG.
As shown in the exploded perspective view of FIG. 2, the other end portion 12 b of the second control link 12 is curved and the arm link 13 is connected. An insertion hole 12c through which the eccentric shaft portion 10c is rotatably inserted is formed through the distal end portion of the one end portion 12a of the second control link 12. The other end portion 12b has a tip end portion 12d. A connecting hole 12e is formed through the tip portion 12d. The arm link 13 is formed separately from the second control link 12. The arm link 13 has an annular portion 13d and a pair of arm portions 13b1 and 13b2. A press-fitting hole 13a is formed through the annular portion 13d. In the press-fitting hole 13a, a fixing portion 11b formed between the journal portions 11c and 11d of the second control shaft 11 is press-fitted. The pair of arm portions 13b1 and 13b2 are formed in a bifurcated shape protruding from the annular portion 13d toward the outer periphery. A pair of connecting holes 13c is formed through the pair of arm portions 13b1 and 13b2. A distal end portion 12d of the second control link 12 is inserted between the pair of arm portions 13b1 and 13b2. A connection pin 14 is inserted into each connection hole 12e, 13c, 13c. The center of each of the connection holes 12e, 13c, 13c (the axis of the connection pin 14) is eccentric by a predetermined amount with respect to the axis of the second control shaft 11.
 アクチュエータ40は、駆動モータ22、波動歯車減速機50、ハウジング20および第2制御軸11を有する。以下、駆動モータ22のモータ軸48の回転軸線Oに沿う方向を軸方向、回転軸線Oの放射方向を径方向、回転軸線O周りの方向を周方向という。また、軸方向にX軸を設定し、X軸方向において、モータ軸48の側から第2制御軸11の側へ向かう方向を正方向、第2制御軸11の側からモータ軸48の側へ向かう方向をX軸負方向と定義する。
  アクチュエータ40は、駆動モータ22の回転速度を波動歯車減速機50により減速して第2制御軸11へ伝達することにより、第2制御軸11の回転位置を変更する。第2制御軸11の回転位置が変更されると、第2制御リンク12の姿勢が変化して第1制御軸10が回転し、第1制御リンク7の下端部の位置が変更される。これにより、ロアリンク5の姿勢が変化し、ピストン1のシリンダ内におけるストローク位置やストローク量が変わる。この結果、内燃機関の機関圧縮比を変更できる。
The actuator 40 includes a drive motor 22, a wave gear reducer 50, a housing 20, and a second control shaft 11. Hereinafter, a direction along the rotation axis O of the motor shaft 48 of the drive motor 22 is referred to as an axial direction, a radial direction of the rotation axis O is referred to as a radial direction, and a direction around the rotation axis O is referred to as a circumferential direction. Also, the X axis is set in the axial direction, and in the X axis direction, the direction from the motor shaft 48 side to the second control shaft 11 side is the positive direction, and from the second control shaft 11 side to the motor shaft 48 side. The direction to go is defined as the negative X-axis direction.
The actuator 40 changes the rotational position of the second control shaft 11 by decelerating the rotational speed of the drive motor 22 by the wave gear reducer 50 and transmitting it to the second control shaft 11. When the rotational position of the second control shaft 11 is changed, the attitude of the second control link 12 is changed, the first control shaft 10 is rotated, and the position of the lower end portion of the first control link 7 is changed. As a result, the posture of the lower link 5 changes, and the stroke position and stroke amount of the piston 1 in the cylinder change. As a result, the engine compression ratio of the internal combustion engine can be changed.
 駆動モータ22は、例えばDCブラシレスモータであり、モータケーシング45、コイル46、ロータ47およびモータ軸48を有する。モータケーシング45は、有底円筒状に形成され、ハウジング20の第2ハウジング20bに固定されている。コイル46は、モータケーシング45の内周面に固定されている。ロータ47は、コイル46の内側に回転可能に配置されている。モータ軸48は、ロータ47の中心に固定されている。モータ軸48は、2つのボールベアリング51,52を介して第2ハウジング20bおよびモータケーシング45に対し回転可能に設けられている。ボールベアリング51は第2ハウジング20bに固定されている。ボールベアリング52はモータケーシング45の底部に固定されている。モータ軸48のX軸正方向側の先端部48aは、第2ハウジング20bを貫通し、波動歯車減速機50の波動発生器37の波動発生プラグ371と連結する。 The drive motor 22 is a DC brushless motor, for example, and has a motor casing 45, a coil 46, a rotor 47, and a motor shaft 48. The motor casing 45 is formed in a bottomed cylindrical shape and is fixed to the second housing 20 b of the housing 20. The coil 46 is fixed to the inner peripheral surface of the motor casing 45. The rotor 47 is rotatably disposed inside the coil 46. The motor shaft 48 is fixed at the center of the rotor 47. The motor shaft 48 is rotatably provided to the second housing 20b and the motor casing 45 through two ball bearings 51 and 52. The ball bearing 51 is fixed to the second housing 20b. Ball bearing 52 is fixed to the bottom of motor casing 45. The tip 48a of the motor shaft 48 on the X axis positive direction side penetrates the second housing 20b and is connected to the wave generating plug 371 of the wave generator 37 of the wave gear reducer 50.
 第2制御軸11は、モータ軸48のX軸正方向側に位置し、モータ軸48と同軸である。つまり、第2制御軸11およびモータ軸48は、同一の回転軸線Oを持つ。第2制御軸11のX軸負方向側の端部(制御軸第1端部)11aは、波動歯車減速機50の可撓性外歯車36のボス部363と連結する。
  モータケーシング45は、複数のボス部45aを有する。各ボス部45aには、ボルト49を通すボルト穴45bが形成されている。ボルト49が第2ハウジング20bに形成された雌ねじ部20b1にねじ込まれることにより、モータケーシング45が第2ハウジング20bに固定されている。モータケーシング45および第2ハウジング20bの内部は、シール100によって潤滑油等を供給しない乾燥室に維持されている。
The second control shaft 11 is located on the X axis positive direction side of the motor shaft 48 and is coaxial with the motor shaft 48. That is, the second control shaft 11 and the motor shaft 48 have the same rotation axis O. An end (control shaft first end) 11a on the X axis negative direction side of the second control shaft 11 is connected to a boss portion 363 of the flexible external gear 36 of the wave gear reducer 50.
The motor casing 45 has a plurality of boss portions 45a. Each boss portion 45a is formed with a bolt hole 45b through which the bolt 49 is passed. The motor casing 45 is fixed to the second housing 20b by screwing the bolt 49 into the female screw portion 20b1 formed in the second housing 20b. The interior of the motor casing 45 and the second housing 20b is maintained by a seal 100 in a drying chamber that does not supply lubricating oil or the like.
 波動歯車減速機50は、ハウジング20に収容されている。波動歯車減速機50は、剛性内歯車(内歯車)38、可撓性外歯車36および波動発生器37を有する。
  剛性内歯車38は、内周に複数の内歯38aを有する剛体円環状部材である。剛性内歯車38は、ハウジング20の第1ハウジング20aに固定されている。
  可撓性外歯車36は、剛性内歯車38の径方向内側に配置されている。図5は、実施形態1の可撓性外歯車36を示す図であり、(a)は正面図、(b)は右側面図、(c)は(a)のc-c線矢視断面図である。可撓性外歯車36は、金属材料によって形成され、胴部361、底部362およびボス部(第1ボス部)363を有する。
  胴部361は、撓み変形可能な薄肉の円筒状に形成されている。X軸負方向端部(胴部第2端部)361bは開口する。胴部361の外周面のX軸負方向側には、外歯364が形成されている。外歯364は、剛性内歯車38の内歯38aと噛み合う。外歯364の歯数は内歯38aの歯数よりも2歯少ない。
  底部362は、胴部361のX軸正方向端部(胴部第1端部)361aから径方向内側へ延びる。底部362の肉厚は胴部361の肉厚と略一致する。
The wave gear reducer 50 is accommodated in the housing 20. The wave gear reducer 50 includes a rigid internal gear (internal gear) 38, a flexible external gear 36, and a wave generator 37.
The rigid internal gear 38 is a rigid annular member having a plurality of internal teeth 38a on the inner periphery. The rigid internal gear 38 is fixed to the first housing 20 a of the housing 20.
The flexible external gear 36 is disposed on the radially inner side of the rigid internal gear 38. 5A and 5B are diagrams showing the flexible external gear 36 according to the first embodiment, where FIG. 5A is a front view, FIG. 5B is a right side view, and FIG. 5C is a cross-sectional view taken along line cc in FIG. is there. The flexible external gear 36 is formed of a metal material, and has a body part 361, a bottom part 362, and a boss part (first boss part) 363.
The body 361 is formed in a thin cylindrical shape that can be bent and deformed. The X-axis negative direction end (body second end) 361b is opened. External teeth 364 are formed on the X axis negative direction side of the outer peripheral surface of the body portion 361. The external teeth 364 mesh with the internal teeth 38a of the rigid internal gear 38. The number of external teeth 364 is two fewer than the number of internal teeth 38a.
The bottom portion 362 extends radially inward from the X axis positive direction end portion (body first end portion) 361a of the body portion 361. The thickness of the bottom portion 362 substantially matches the thickness of the body portion 361.
 ボス部363は、底部362からX軸負方向側へ延びる円筒状に形成されている。ボス部363のX軸負方向端は、胴部361のX軸負方向端よりもX軸正方向側に位置する。つまり、ボス部363は、全て胴部361の内側に位置する。また、ボス部363は、X軸負方向側の一部が外歯364とX軸方向にオーバーラップしている。ボス部363は、その内周に孔部363aを有する。孔部363aは、その内周面に、周方向に並ぶ複数の波状溝(溝部)363a1を有する。つまり、孔部363aはスプライン穴であり、波状溝363a1は、スプライン穴の各溝である。孔部363aには、第2制御軸11の端部11aが挿入されている。端部11aは、その外周面に、周方向に並び波状溝363a1と嵌合可能な複数の波状突起(突起部)11a1を有する。つまり、端部11aは、スプライン軸であり、波状突起11a1は、スプライン軸の各突起である。波状溝363a1および波状突起11a1は、周方向において第2制御軸11とボス部363とを噛み合わせると共に、X軸方向において第2制御軸11とボス部363との相対移動を許容する結合部101である。波状溝363a1および波状突起11a1の回転軸線Oと直交する断面の形状は、インボリュート曲線を用いて形成されている。すなわち、結合部101は、インボリュートスプラインである。波状溝363a1および波状突起11a1は、径方向に所定のガタを有して噛み合わされている。このため、端部11aは、孔部363aに対して、径方向に所定の範囲だけ相対移動可能である。 The boss portion 363 is formed in a cylindrical shape extending from the bottom portion 362 to the X axis negative direction side. The X-axis negative direction end of the boss portion 363 is located on the X-axis positive direction side with respect to the X-axis negative direction end of the body portion 361. That is, the boss portions 363 are all located inside the trunk portion 361. The boss portion 363 partially overlaps the external teeth 364 in the X-axis direction on the X-axis negative direction side. The boss 363 has a hole 363a on the inner periphery thereof. The hole portion 363a has a plurality of wavy grooves (groove portions) 363a1 arranged in the circumferential direction on the inner peripheral surface thereof. That is, the hole portion 363a is a spline hole, and the wavy groove 363a1 is each groove of the spline hole. The end 11a of the second control shaft 11 is inserted into the hole 363a. The end portion 11a has a plurality of wavy protrusions (protrusion portions) 11a1 that are arranged in the circumferential direction and can be fitted in the wavy groove 363a1 on the outer peripheral surface thereof. That is, the end portion 11a is a spline shaft, and the wavy projection 11a1 is each projection of the spline shaft. The wavy groove 363a1 and the wavy protrusion 11a1 mesh the second control shaft 11 and the boss portion 363 in the circumferential direction, and allow the relative movement between the second control shaft 11 and the boss portion 363 in the X-axis direction. It is. The shape of the cross section orthogonal to the rotation axis O of the wavy groove 363a1 and the wavy protrusion 11a1 is formed using an involute curve. That is, the coupling unit 101 is an involute spline. The wavy groove 363a1 and the wavy protrusion 11a1 are engaged with each other with a predetermined play in the radial direction. For this reason, the end portion 11a can move relative to the hole portion 363a by a predetermined range in the radial direction.
 波動発生器37は、その外周面が可撓性外歯車36の内周面に沿って摺動する。波動発生器37は、波動発生プラグ371およびボールベアリング(転がり軸受)372を有する。波動発生プラグ371は、回転軸線Oと直交する断面の外形が楕円状であって、回転軸線Oを中心として最も半径の大きい長軸部分および最も半径の小さい短軸部分を有する楕円状外形を有する。波動発生プラグ371は、ボールベアリング37aを介して第2ハウジング20bに対し回転可能に支持されている。波動発生プラグ371は中心に貫通孔371bを有する。貫通孔371bには、モータ軸48の先端部48aが圧入されている。波動発生プラグ371のX軸正方向側の端面は突き当て面371aである。突き当て面371aは、ボス部363と当接し、ボス部363のX軸負方向側への移動を規制する。このため、図6に示すように、X軸方向において、ボス部363および突き当て面371a間のクリアランスΔD1は、胴部361のX軸負方向端部361bおよびボールベアリング37a間のクリアランスΔD2よりも小さく設定されている。ボールベアリング372は、波動発生プラグ371の外周および可撓性外歯車36の内周間の相対回転を許容する。図4に示すように、ボールベアリング372は、内輪372a、外輪372b、複数のボール372cおよび保持器372dを有する。内輪372aは、波動発生プラグ371の外周面と一体的に形成されている。外輪372bは、可撓性を有する薄肉の環状に形成され、可撓性外歯車36の内周と接する。複数のボール372cは、球状に形成され、内輪372aおよび外輪372b間に配置されている。保持器372dは、内輪372aおよび外輪372b間に配置され、各ボール372cの間隔を一定に保持する。 The outer peripheral surface of the wave generator 37 slides along the inner peripheral surface of the flexible external gear 36. The wave generator 37 has a wave generating plug 371 and a ball bearing (rolling bearing) 372. The wave generating plug 371 has an elliptical outer shape in a cross section orthogonal to the rotation axis O, and has an elliptical outer shape having a major axis portion with the largest radius and a minor axis portion with the smallest radius about the rotation axis O. . The wave generating plug 371 is supported rotatably with respect to the second housing 20b via a ball bearing 37a. The wave generating plug 371 has a through hole 371b at the center. The tip 48a of the motor shaft 48 is press-fitted into the through hole 371b. The end surface of the wave generating plug 371 on the X axis positive direction side is an abutting surface 371a. The abutting surface 371a abuts on the boss portion 363 and restricts the movement of the boss portion 363 in the negative direction of the X axis. Therefore, as shown in FIG. 6, in the X-axis direction, the clearance ΔD1 between the boss portion 363 and the abutting surface 371a is larger than the clearance ΔD2 between the X-axis negative direction end portion 361b of the body 361 and the ball bearing 37a. It is set small. The ball bearing 372 allows relative rotation between the outer periphery of the wave generating plug 371 and the inner periphery of the flexible external gear 36. As shown in FIG. 4, the ball bearing 372 includes an inner ring 372a, an outer ring 372b, a plurality of balls 372c, and a cage 372d. The inner ring 372a is formed integrally with the outer peripheral surface of the wave generating plug 371. The outer ring 372b is formed in a thin annular shape having flexibility, and is in contact with the inner periphery of the flexible external gear 36. The plurality of balls 372c are formed in a spherical shape and are disposed between the inner ring 372a and the outer ring 372b. The cage 372d is disposed between the inner ring 372a and the outer ring 372b, and keeps the interval between the balls 372c constant.
 ハウジング20は、第1ハウジング20aおよび第2ハウジング20bを有し、アルミニウム合金材料によって略立方体形状に形成されている。第1ハウジング20aのX軸負方向側には大径円環状の開口溝部20cが形成されている(図4参照)。この開口溝部20cは、第2ハウジング20bにより閉塞される。第2ハウジング20bは、中央位置にモータ軸48が貫通するモータ軸貫通孔20dと、径方向外周側に向けて拡径された4つのボス部20eとを有する。第1ハウジング20aと第2ハウジング20bとは、ボス部20eに挿通されたボルト35により締結されている。 The housing 20 has a first housing 20a and a second housing 20b, and is formed in a substantially cubic shape by an aluminum alloy material. A large-diameter annular opening groove 20c is formed on the X-axis negative direction side of the first housing 20a (see FIG. 4). The opening groove 20c is closed by the second housing 20b. The second housing 20b has a motor shaft through hole 20d through which the motor shaft 48 penetrates at a central position, and four boss portions 20e having a diameter expanded toward the radially outer peripheral side. The first housing 20a and the second housing 20b are fastened by a bolt 35 inserted through the boss portion 20e.
 第1ハウジング20aにおいて、開口溝部20cよりもX軸正方向側の側面には、アームリンク13と連結された第2制御リンク12用の開口(不図示)が形成されている。この開口が形成された第1ハウジング20aの内部には、アームリンク13および第2制御リンク12の作動領域となる収容室29が形成されている(図4参照)。X軸方向において、開口溝部20cと収容室29との間には、第2制御軸11の第2ジャーナル部11dが貫通する支持孔30bが形成されている。また、収容室29のX軸正方向側には、第2制御軸11の第1ジャーナル部11cが貫通する支持孔30aが形成されている。支持孔30aの内周面と第1ジャーナル部11cの外周面との間には、軸受部としての軸受301が配置されている。支持孔30bの内周面と第2ジャーナル部11dの外周面との間には、軸受部としての軸受304が配置されている。軸受301および第1ジャーナル部11c間の径方向のガタ、および軸受304および第2ジャーナル部11d間の径方向のガタは、波状溝363a1および波状突起11a1間の径方向のガタよりも小さい。
  支持孔30aのX軸正方向側には、リテーナ収容孔31が形成されている。リテーナ収容孔31の内径は、支持孔30aの内径よりも大きい。リテーナ収容孔31と支持孔30aとは段差面31aにより接続されている。段差面31aは、回転軸線Oと直交する。リテーナ収容孔31には、リテーナ350が収容されている。リテーナ350は、円環状に形成され、第2制御軸11が圧入されている。リテーナ350は、段差面31aとX軸方向に当接することにより、第2制御軸11のX軸負方向側への移動を規制する。
In the first housing 20a, an opening (not shown) for the second control link 12 connected to the arm link 13 is formed on the side surface closer to the X-axis positive direction than the opening groove 20c. Inside the first housing 20a in which the opening is formed, a storage chamber 29 serving as an operation region of the arm link 13 and the second control link 12 is formed (see FIG. 4). A support hole 30b through which the second journal portion 11d of the second control shaft 11 passes is formed between the opening groove portion 20c and the storage chamber 29 in the X-axis direction. Further, a support hole 30a through which the first journal portion 11c of the second control shaft 11 passes is formed on the X axis positive direction side of the storage chamber 29. A bearing 301 as a bearing portion is disposed between the inner peripheral surface of the support hole 30a and the outer peripheral surface of the first journal portion 11c. A bearing 304 as a bearing portion is disposed between the inner peripheral surface of the support hole 30b and the outer peripheral surface of the second journal portion 11d. The radial play between the bearing 301 and the first journal part 11c and the radial play between the bearing 304 and the second journal part 11d are smaller than the radial play between the wavy groove 363a1 and the wavy projection 11a1.
A retainer receiving hole 31 is formed on the positive side of the support hole 30a in the X-axis direction. The inner diameter of the retainer receiving hole 31 is larger than the inner diameter of the support hole 30a. The retainer accommodation hole 31 and the support hole 30a are connected by a step surface 31a. The step surface 31a is orthogonal to the rotation axis O. A retainer 350 is accommodated in the retainer accommodation hole 31. The retainer 350 is formed in an annular shape, and the second control shaft 11 is press-fitted therein. The retainer 350 restricts the movement of the second control shaft 11 in the negative X-axis direction by contacting the step surface 31a in the X-axis direction.
 ハウジング20のX軸正方向端には、角度センサ32が取り付けられている。角度センサ32は、第2制御軸11の回転角度を検出する。角度センサ32により検出された回転角度は、モータケーシング45に収容された駆動モータ22のコントロールユニット(不図示)へと送られる。角度センサ32は、リテーナ収容孔31をハウジング20の外部から閉塞するように取り付けられたセンサホルダ32aを有する。センサホルダ32aは、ボルト321により第1ハウジング20aに固定するためのフランジ部32a1を有する。センサホルダ32aおよび第1ハウジング20a間には、シールリング33が設置されている。シールリング33は、リテーナ収容孔31と外部との間の液密性を確保する。また、センサホルダ32aの外側には、リテーナ収容孔31を閉塞するセンサカバー32cを有する。センサカバー32cとセンサホルダ32aとの間には、シールリング323が設置されている。シールリング323は、リテーナ収容孔31と外部との間の液密性を確保する。センサカバー32cは、ボルト34によりセンサホルダ32aに締結されている。
  角度センサ32のロータ32bは、楕円環状に形成され、第2制御軸11のX軸正方向側の端部(制御軸第2端部)11eに固定されている。角度センサ32は、いわゆるレゾルバであって、ロータ32bの回転に伴うセンサホルダ32aの内周とロータ32bの外周との距離の変化を検知コイル(不図示)のインダクタンス変化により検出する。これにより、ロータ32bの回転位置、すなわち第2制御軸11の回転角度を検出する。
An angle sensor 32 is attached to the X axis positive direction end of the housing 20. The angle sensor 32 detects the rotation angle of the second control shaft 11. The rotation angle detected by the angle sensor 32 is sent to a control unit (not shown) of the drive motor 22 housed in the motor casing 45. The angle sensor 32 has a sensor holder 32a attached so as to close the retainer receiving hole 31 from the outside of the housing 20. The sensor holder 32a has a flange portion 32a1 for fixing to the first housing 20a with a bolt 321. A seal ring 33 is installed between the sensor holder 32a and the first housing 20a. The seal ring 33 ensures liquid tightness between the retainer receiving hole 31 and the outside. A sensor cover 32c for closing the retainer receiving hole 31 is provided outside the sensor holder 32a. A seal ring 323 is installed between the sensor cover 32c and the sensor holder 32a. The seal ring 323 ensures liquid tightness between the retainer receiving hole 31 and the outside. The sensor cover 32c is fastened to the sensor holder 32a by a bolt 34.
The rotor 32b of the angle sensor 32 is formed in an elliptical ring shape, and is fixed to an end portion (control shaft second end portion) 11e of the second control shaft 11 on the X axis positive direction side. The angle sensor 32 is a so-called resolver, and detects a change in the distance between the inner periphery of the sensor holder 32a and the outer periphery of the rotor 32b due to the rotation of the rotor 32b by a change in inductance of a detection coil (not shown). Thereby, the rotational position of the rotor 32b, that is, the rotational angle of the second control shaft 11 is detected.
 第2制御軸11の外周面において、端部11aのX軸正方向側には、フランジ(規制部)11fが形成されている。フランジ11fは、可撓性外歯車36のボス部363と当接し、可撓性外歯車36のX軸正方向への移動を規制する。フランジ11fの外径は、ボス部363の外径よりも小さい。端部11aは、フランジ11fとの連結部分において、径方向内側に凹む環状の逃げ溝(溝)11gを有する。
  第2制御軸11は、供給油路111を有する。供給油路111は、軸心油路111aおよび径方向油路111bを有する。軸心油路111aは、第2制御軸11の中心をX軸方向に延び、第2制御軸11のX軸負方向端に開口する。軸心油路111aには、第1ハウジング20aに形成された油路(不図示)を介して、図外のオイルポンプから圧送された潤滑油が導入される。軸心油路111aのX軸負方向端には、オリフィス111cが取り付けられている。軸心油路111a(オリフィス111c)のX軸負方向端から第2制御軸11の外部に流出した潤滑油は、波動発生器37および結合部101の潤滑に供される。径方向油路111bは、軸心油路111aから径方向外側へ延び、逃げ溝11gに開口する。軸心油路111aから第2制御軸11の外部に流出した潤滑油は、波動発生器37および結合部101の潤滑に供される。
On the outer peripheral surface of the second control shaft 11, a flange (restricting portion) 11f is formed on the X axis positive direction side of the end portion 11a. The flange 11f abuts on the boss portion 363 of the flexible external gear 36 and restricts the movement of the flexible external gear 36 in the positive direction of the X axis. The outer diameter of the flange 11f is smaller than the outer diameter of the boss portion 363. The end portion 11a has an annular relief groove (groove) 11g recessed inward in the radial direction at a connection portion with the flange 11f.
The second control shaft 11 has a supply oil passage 111. The supply oil passage 111 has an axial oil passage 111a and a radial oil passage 111b. The shaft center oil passage 111a extends in the X-axis direction from the center of the second control shaft 11 and opens at the X-axis negative direction end of the second control shaft 11. Lubricating oil pumped from an oil pump (not shown) is introduced into the shaft center oil passage 111a through an oil passage (not shown) formed in the first housing 20a. An orifice 111c is attached to the end of the axial center oil passage 111a in the negative X-axis direction. Lubricating oil that has flowed out of the second control shaft 11 from the X axis negative direction end of the shaft center oil passage 111a (orifice 111c) is used for lubrication of the wave generator 37 and the coupling portion 101. The radial oil passage 111b extends radially outward from the axial oil passage 111a and opens into the escape groove 11g. The lubricating oil that has flowed out of the second control shaft 11 from the shaft center oil passage 111a is used for lubrication of the wave generator 37 and the coupling portion 101.
 次に、実施形態1の作用効果を説明する。
  実施形態1のアクチュエータ40において、ボス部363は、底部362から少なくとも一部がX軸負方向側へ延びて第2制御軸11と連結する。つまり、ボス部363の少なくとも一部は、胴部361の径方向内側に位置する。このため、胴部361の回転軸線に沿う方向において、ボス部が底部を挟んで胴部361と反対側へ配置された従来のアクチュエータと比べて、可撓性外歯車36の軸長を短くできる。この結果、アクチュエータ40の軸長を短縮化でき、車両搭載レイアウトの自由度を向上できる。
  また、上記従来のアクチュエータと比べて、X軸方向における内歯38aと外歯364との噛み合い位置からボス部363までの距離を短くできる。このため、可撓性外歯車36の楕円変形時において、内歯38aと外歯364との噛み合い位置を支点とした場合、力点(ボス部363)までのX軸方向の距離を短くできる。これにより、図6に示すように、可撓性外歯車36における強度最弱部位である、底部362とボス部363との連結部分(隅R部分)Aに作用する楕円変形応力を抑えられる。この結果、許容トルクが増大し、より高トルクに対応した強度が得られるため、内燃機関の可変圧縮比機構のアクチュエータとして有利となる。
Next, the effect of Embodiment 1 is demonstrated.
In the actuator 40 of the first embodiment, at least a part of the boss portion 363 extends from the bottom portion 362 to the X axis negative direction side and is connected to the second control shaft 11. That is, at least a part of the boss portion 363 is located on the radially inner side of the body portion 361. For this reason, the axial length of the flexible external gear 36 can be shortened in the direction along the rotational axis of the body portion 361 as compared with the conventional actuator in which the boss portion is disposed on the opposite side of the body portion 361 across the bottom portion. . As a result, the shaft length of the actuator 40 can be shortened, and the degree of freedom of the vehicle mounting layout can be improved.
Further, compared to the conventional actuator, the distance from the meshing position of the inner teeth 38a and the outer teeth 364 in the X-axis direction to the boss portion 363 can be shortened. Therefore, when the flexible external gear 36 is deformed elliptically, the distance in the X-axis direction to the force point (the boss portion 363) can be shortened when the meshing position of the internal teeth 38a and the external teeth 364 is used as a fulcrum. As a result, as shown in FIG. 6, the elliptical deformation stress acting on the connecting portion (corner R portion) A between the bottom portion 362 and the boss portion 363, which is the weakest strength portion in the flexible external gear 36, can be suppressed. As a result, the allowable torque increases and a strength corresponding to a higher torque is obtained, which is advantageous as an actuator for a variable compression ratio mechanism of an internal combustion engine.
 実施形態1のアクチュエータ40は、第2制御軸11およびボス部363に設けられ、第2制御軸11とボス部363とが噛み合う結合部101を有する。内燃機関の作動時、内燃機関の膨張行程における爆発力は可変圧縮比機構を介して第2制御軸11に径方向の荷重を与える。このとき、従来のアクチュエータでは、第2制御軸がボス部に固定されているため、可変圧縮比機構側から径方向の荷重を受けて第2制御軸が撓むと、可撓性外歯車の胴部361は回転軸線に対して傾く。可撓性外歯車が傾くと、外歯と内歯との噛み合いが悪化すると共に、波動発生器のベアリングに作用する負荷が大きくなるため、伝達効率の低下を招く。これに対し、実施形態1では、第2制御軸11が撓んで端部11aが径方向に移動した場合であっても、結合部101により端部11aの径方向変位を吸収できるため、可撓性外歯車36の傾きが抑えられる。これにより、外歯364と内歯38aとの噛み合いが良好に維持されると共に、ボールベアリング372に作用する負荷を小さくできるため、伝達効率の低下を抑制できる。この結果、駆動モータ22の出力トルクの伝達ロスが小さくなるため、駆動モータ22の消費電力を抑制できる。 The actuator 40 according to the first embodiment includes a coupling portion 101 that is provided on the second control shaft 11 and the boss portion 363, and the second control shaft 11 and the boss portion 363 are engaged with each other. During operation of the internal combustion engine, the explosive force in the expansion stroke of the internal combustion engine applies a radial load to the second control shaft 11 via the variable compression ratio mechanism. At this time, in the conventional actuator, since the second control shaft is fixed to the boss portion, when the second control shaft is bent by receiving a radial load from the variable compression ratio mechanism side, the body of the flexible external gear The part 361 is inclined with respect to the rotation axis. When the flexible external gear is tilted, the meshing between the external teeth and the internal teeth is deteriorated, and the load acting on the bearing of the wave generator is increased, leading to a decrease in transmission efficiency. On the other hand, in the first embodiment, even when the second control shaft 11 is bent and the end portion 11a moves in the radial direction, the coupling portion 101 can absorb the radial displacement of the end portion 11a. The inclination of the external gear 36 is suppressed. As a result, the meshing between the outer teeth 364 and the inner teeth 38a can be maintained satisfactorily, and the load acting on the ball bearing 372 can be reduced, so that a decrease in transmission efficiency can be suppressed. As a result, the transmission loss of the output torque of the drive motor 22 is reduced, so that the power consumption of the drive motor 22 can be suppressed.
 結合部101は、第2制御軸11の外周面に設けられた波状突起11a1と、ボス部363の内周面に設けられた波状溝363a1とを有し、波状突起11a1と波状溝363a1とは、径方向にガタを有する。これにより、結合部101は、径方向のガタによって第2制御軸11の撓みに起因する端部11aの径方向変位を吸収できる。
  結合部101は、第2制御軸11およびボス部363間のX軸方向の相対移動を許容する。内燃機関の作動時、第2制御軸11は、内燃機関の膨張行程における爆発力に起因して可変圧縮比機構から逆入力を受ける。このとき、現在の圧縮比を維持するために、駆動モータ22の出力トルクで逆入力トルクを打ち消す場合、胴部361が捩れてX軸方向の荷重が発生する。ここで、上記従来のアクチュエータでは、X軸方向の荷重により胴部361がX軸方向に変位したとき、第2制御軸に固定されたボス部363はX軸方向に移動しないため、底部362とボス部363との連結部分の隅に応力集中が生じるおそれがあった。これに対し、実施形態1では、ボス部363が第2制御軸11に対しX軸方向に移動可能であるため、ボス部363は胴部361に追従してX軸方向に変位可能である。これにより、底部362とボス部363との連結部分Aに生じる応力集中を緩和できる。
The coupling portion 101 includes a wavy protrusion 11a1 provided on the outer peripheral surface of the second control shaft 11, and a wavy groove 363a1 provided on the inner peripheral surface of the boss portion 363. The wavy protrusion 11a1 and the wavy groove 363a1 are , Have play in the radial direction. Thereby, the coupling portion 101 can absorb the radial displacement of the end portion 11a caused by the deflection of the second control shaft 11 due to the radial play.
The coupling portion 101 allows relative movement in the X-axis direction between the second control shaft 11 and the boss portion 363. During operation of the internal combustion engine, the second control shaft 11 receives a reverse input from the variable compression ratio mechanism due to the explosive force in the expansion stroke of the internal combustion engine. At this time, when the reverse input torque is canceled by the output torque of the drive motor 22 in order to maintain the current compression ratio, the body 361 is twisted to generate a load in the X-axis direction. Here, in the conventional actuator, when the body 361 is displaced in the X-axis direction due to the load in the X-axis direction, the boss 363 fixed to the second control shaft does not move in the X-axis direction. There is a possibility that stress concentration may occur at the corner of the connecting portion with the boss portion 363. On the other hand, in the first embodiment, since the boss portion 363 can move in the X-axis direction with respect to the second control shaft 11, the boss portion 363 can follow the body portion 361 and be displaced in the X-axis direction. Thereby, the stress concentration generated in the connecting portion A between the bottom portion 362 and the boss portion 363 can be relaxed.
 結合部101において、波状突起11a1は、スプライン軸(端部11a)の各突起であり、波状溝363a1は、スプライン穴(孔部363a)の各溝である。つまり、第2制御軸11とボス部363との連結は、スプライン嵌合である。スプライン嵌合は、周方向に多数の噛み合い部を持つため、可変圧縮比機構のように、内燃機関側からトルク入力を受けた状態で第2制御軸11を正逆回転させたり、一定の角度を維持したりするような使われ方をするものにおいて、第2制御軸11の傾きや径方向変位によらず、第2制御軸11およびボス部363間のトルク伝達状態を保持できる。また、従来のアクチュエータでは、底部を挟んで胴部361と反対側にボス部363があるため、可撓性外歯車の楕円変形時に胴部361とボス部363との連結部分に応力が集中して破損しやすい。内側にボス部363を設置することでスプライン嵌合での強度を満足させつつ、可撓性外歯車36で衝撃荷重を吸収し、各噛み合い部に発生する異音を低減できる。
  端部11aおよび孔部363aは、インボリュートスプラインである。これにより、第2制御軸11を正逆回転させたり、一定の角度を維持したりする際、可撓性外歯車36にトルク負荷が作用したとき、第2制御軸11の回転軸線と可撓性外歯車36の回転軸線とを一致させる方向の力が作用して自動調心される。この結果、スプライン嵌合の各噛み合い部における摩耗を抑制できる。また、組み付け時にも第2制御軸11と可撓性外歯車36とが自動調心されるため、第2制御軸11と可撓性外歯車36との軸ずれを抑制でき、性能の安定性に優れている。
In the coupling portion 101, the wavy projections 11a1 are each projection of the spline shaft (end portion 11a), and the wavy grooves 363a1 are each groove of the spline hole (hole portion 363a). That is, the connection between the second control shaft 11 and the boss portion 363 is a spline fitting. Since spline fitting has a large number of meshing portions in the circumferential direction, the second control shaft 11 can be rotated forward and backward with a torque input from the internal combustion engine side as in a variable compression ratio mechanism, or at a fixed angle. For example, the torque transmission state between the second control shaft 11 and the boss portion 363 can be maintained regardless of the inclination or radial displacement of the second control shaft 11. Further, in the conventional actuator, since the boss portion 363 is located on the opposite side of the body portion 361 across the bottom portion, stress is concentrated on the connecting portion between the body portion 361 and the boss portion 363 when the flexible external gear is deformed elliptically. Easily damaged. By installing the boss portion 363 on the inside, the impact load is absorbed by the flexible external gear 36 while satisfying the strength in spline fitting, and abnormal noise generated in each meshing portion can be reduced.
The end 11a and the hole 363a are involute splines. As a result, when the second control shaft 11 is rotated forward and backward or maintained at a constant angle, when a torque load is applied to the flexible external gear 36, the rotation axis of the second control shaft 11 is flexible. A force in a direction to match the rotation axis of the external external gear 36 is applied to perform self-alignment. As a result, wear at each meshing portion of the spline fitting can be suppressed. In addition, since the second control shaft 11 and the flexible external gear 36 are automatically aligned even during assembly, axial misalignment between the second control shaft 11 and the flexible external gear 36 can be suppressed, resulting in stable performance. Is excellent.
 第2制御軸11の端部11aは、胴部361の径方向内側でボス部363の孔部363aに挿入されている。つまり、第2制御軸11とボス部363との結合部101が胴部361とX軸方向にオーバーラップしているため、アクチュエータ40の軸長を短縮化できる。
  ボス部363は、X軸負方向側へ移動したとき波動発生器37と当接可能である。これにより、ボス部363が可撓性外歯車36の抜け止めとして機能し、可撓性外歯車36の端部11aからの脱落を防止できる。
  波動発生器37は、ボス部363のX軸負方向側への移動を規制する突き当て面371aを有する。これにより、可撓性外歯車36のX軸負方向側への移動を許容しつつ、その移動範囲を規制でき、可撓性外歯車36の端部11aからの脱落を防止できる。
The end 11a of the second control shaft 11 is inserted into the hole 363a of the boss 363 on the radially inner side of the body 361. That is, since the coupling portion 101 between the second control shaft 11 and the boss portion 363 overlaps the body portion 361 in the X-axis direction, the axial length of the actuator 40 can be shortened.
The boss portion 363 can come into contact with the wave generator 37 when moved in the negative direction of the X axis. As a result, the boss 363 functions as a retainer for the flexible external gear 36 and can prevent the flexible external gear 36 from falling off from the end 11a.
The wave generator 37 has an abutment surface 371a that restricts the movement of the boss portion 363 in the negative direction of the X axis. Accordingly, the movement range can be restricted while allowing the flexible external gear 36 to move in the negative direction of the X-axis, and the flexible external gear 36 can be prevented from falling off from the end portion 11a.
 第2制御軸11は、底部362のX軸正方向側への移動を規制するフランジ11fを有する。これにより、可撓性外歯車36のX軸正方向側への移動を許容しつつ、その移動範囲を規制できる。この結果、可撓性外歯車36のハウジング20または軸受304との摺接に起因する、機関圧縮比の制御機能低下および摺接部位の損傷を防止できる。なお、第2制御軸11と可撓性外歯車36は一体的に回転するため、機関圧縮比の制御機能低下や摺接部位の損傷は生じない。
  フランジ11fの外径は、ボス部363の外径よりも小さい。これにより、フランジ11fとの突き当て状態のとき、フランジ11fから受けるスラスト荷重が底部362の薄肉部分に入力されるのを防げるため、可撓性外歯車36の破損を抑制できる。
  ボス部363は、全て胴部361の径方向内側にある。つまり、ボス部363が全長に亘り胴部361とX軸方向にオーバーラップしているため、アクチュエータ40の軸長を短縮化できる。
The second control shaft 11 has a flange 11f that restricts the movement of the bottom 362 in the positive direction of the X axis. Thereby, the movement range can be regulated while allowing the flexible external gear 36 to move in the positive direction of the X-axis. As a result, it is possible to prevent deterioration of the control function of the engine compression ratio and damage of the sliding contact portion due to the sliding contact of the flexible external gear 36 with the housing 20 or the bearing 304. Since the second control shaft 11 and the flexible external gear 36 rotate integrally, the engine compression ratio control function is not lowered and the sliding contact portion is not damaged.
The outer diameter of the flange 11f is smaller than the outer diameter of the boss portion 363. Accordingly, since the thrust load received from the flange 11f can be prevented from being input to the thin portion of the bottom portion 362 when in contact with the flange 11f, damage to the flexible external gear 36 can be suppressed.
The boss portions 363 are all on the radially inner side of the body portion 361. That is, since the boss 363 overlaps the body 361 in the X-axis direction over the entire length, the axial length of the actuator 40 can be shortened.
 第2制御軸11は、胴部361の径方向内側へ開口し、胴部361の径方向内側に潤滑油を供給する供給油路111を有する。これにより、可撓性外歯車36の径方向内側から、外歯364と内歯38aとの噛み合い位置および波動発生器37のボールベアリング372に潤滑油を供給できる。実施形態1では、ボス部363が胴部361の径方向内側に位置するため、X軸方向において、第2制御軸11の端部11aと上記被潤滑部位との距離を詰められる。よって、供給油路111と被潤滑部位との距離が近いため、より近くから潤滑油を供給でき、潤滑性を向上できる。加えて、可撓性外歯車36はカップ状であるため、内側に潤滑油が溜まりやすく、潤滑効果を向上できる。また、供給油路111は、波状溝363a1および波状突起11a1間の径方向のガタを介して結合部101に潤滑油を供給できるため、スプライン嵌合の各噛み合い部における摩耗を抑制できる。 The second control shaft 11 has a supply oil passage 111 that opens to the inside of the body 361 in the radial direction and supplies lubricating oil to the inside of the body 361 in the radial direction. Accordingly, the lubricating oil can be supplied from the radially inner side of the flexible external gear 36 to the meshing position of the external teeth 364 and the internal teeth 38a and the ball bearing 372 of the wave generator 37. In the first embodiment, since the boss portion 363 is located on the radially inner side of the body portion 361, the distance between the end portion 11a of the second control shaft 11 and the lubricated portion can be reduced in the X-axis direction. Therefore, since the distance between the supply oil path 111 and the site to be lubricated is short, the lubricating oil can be supplied from a closer distance, and the lubricity can be improved. In addition, since the flexible external gear 36 has a cup shape, lubricating oil tends to accumulate inside, and the lubricating effect can be improved. Further, since the supply oil path 111 can supply the lubricating oil to the coupling portion 101 via the radial play between the wavy groove 363a1 and the wavy projection 11a1, it is possible to suppress wear at each meshing portion of the spline fitting.
 第2制御軸11の端部11aは、フランジ11fとの連結部分において、径方向内側に凹む環状の逃げ溝11gを有する。ここで、仮にボス部363側に面取りやR部等の逃げ形状を設けた場合、薄肉部分(底部362)とのつながりに近い部分の肉厚が薄くなり、強度が低下するおそれがある。これに対し、第2制御軸11側に逃げ溝11gを設けたことにより、ボス部363の根元部分(X軸正方向端部)における肉厚を確保でき、ボス部363の強度低下を抑制できる。また、ボス部363のフランジ11fに対する当接面積が大きくなるため、スラスト荷重に対する耐久性を向上できる。
  ボス部363は、少なくとも一部が外歯364とX軸方向にオーバーラップする。これにより、アクチュエータ40の軸長を短縮化できる。また、X軸方向における内歯38aと外歯364との噛み合い位置からボス部363までの距離を短くできるため、底部362とボス部363との連結部分Aに作用する楕円変形応力を抑制できる。
  波状溝363a1および波状突起11a1間の径方向のガタは、軸受301および第1ジャーナル部11c間の径方向のガタ、および軸受304および第2ジャーナル部11d間の径方向のガタよりも大きい。これにより、第2制御軸11が撓んだ場合であっても、波状突起11a1の先端が波状溝363a1の底部に当たらないため、伝達効率の低下を抑制できる。
The end portion 11a of the second control shaft 11 has an annular relief groove 11g that is recessed inward in the radial direction at a connection portion with the flange 11f. Here, if a relief shape such as a chamfer or an R portion is provided on the boss portion 363 side, the thickness of the portion close to the connection with the thin portion (bottom portion 362) becomes thin, and the strength may be reduced. On the other hand, by providing the escape groove 11g on the second control shaft 11 side, it is possible to secure the wall thickness at the root portion (X-axis positive direction end portion) of the boss portion 363 and suppress the strength reduction of the boss portion 363. . Further, since the contact area of the boss portion 363 with the flange 11f is increased, durability against thrust load can be improved.
The boss portion 363 at least partially overlaps the external teeth 364 in the X-axis direction. Thereby, the axial length of the actuator 40 can be shortened. Further, since the distance from the meshing position of the inner teeth 38a and the outer teeth 364 in the X-axis direction to the boss portion 363 can be shortened, the elliptical deformation stress acting on the connecting portion A between the bottom portion 362 and the boss portion 363 can be suppressed.
The radial play between the wavy groove 363a1 and the wavy projection 11a1 is larger than the radial play between the bearing 301 and the first journal part 11c and the radial play between the bearing 304 and the second journal part 11d. As a result, even when the second control shaft 11 is bent, the tip of the wave-like protrusion 11a1 does not hit the bottom of the wave-like groove 363a1, so that a reduction in transmission efficiency can be suppressed.
 〔実施形態2〕
  実施形態2の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図7は、実施形態2のアクチュエータ40を示す図4の要部拡大図である。
  実施形態2では、X軸方向において、ボス部363および突き当て面371a間のクリアランスΔD1は、胴部361のX軸負方向端部361bおよびボールベアリング37a間のクリアランスΔD2よりも大きく設定されている。このため、実施形態2では、可変圧縮比機構36がX軸負方向側へ移動した場合、胴部361のX軸負方向端部361bは、ボールベアリング37aの外輪37a1のX軸正方向側の端面である突き当て面37a1aに当接し、X軸負方向側への移動が規制される。
  実施形態2のハウジング20は、胴部361のX軸負方向側への移動を規制する突き当て面37a1aを有する。これにより、可撓性外歯車36のX軸負方向側への移動を許容しつつ、その移動範囲を規制でき、可撓性外歯車36の端部11aからの脱落を防止できる。
[Embodiment 2]
Since the basic configuration of the second embodiment is the same as that of the first embodiment, only portions different from the first embodiment will be described.
FIG. 7 is an enlarged view of a main part of FIG. 4 showing the actuator 40 of the second embodiment.
In the second embodiment, in the X-axis direction, the clearance ΔD1 between the boss portion 363 and the abutting surface 371a is set larger than the clearance ΔD2 between the X-axis negative direction end portion 361b of the body portion 361 and the ball bearing 37a. . Therefore, in the second embodiment, when the variable compression ratio mechanism 36 moves to the X-axis negative direction side, the X-axis negative direction end 361b of the body 361 is on the X-axis positive direction side of the outer ring 37a1 of the ball bearing 37a. Abutting against the abutting surface 37a1a, which is an end surface, is restricted from moving in the negative direction of the X axis.
The housing 20 of the second embodiment has an abutment surface 37a1a that restricts the movement of the body 361 in the negative X-axis direction. Accordingly, the movement range can be restricted while allowing the flexible external gear 36 to move in the negative direction of the X-axis, and the flexible external gear 36 can be prevented from falling off from the end portion 11a.
 〔実施形態3〕
  実施形態3の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図8は、実施形態3の可撓性外歯車36を示す図5(a)のc-c線矢視断面図である。
  可撓性外歯車36は、底部362からX軸負方向側へ延びる第1ボス部3632、底部362からX軸正方向側へ延びる第2ボス部3633を有する。第1ボス部3632および第2ボス部3633の外径および底部362からのX軸方向長さは同じである。第1ボス部3632および第2ボス部3633は、その内周に孔部363aを有する。孔部363aは、その内周面に、波状溝(溝部)363a1を有する。
  実施形態3では、底部362からX軸負方向側へ延びる第1ボス部3632と、底部362からX軸正方向側へ延び、第1ボス部3632と共に第2制御軸11と連結する第2ボス部3633と、を有する。これにより、第2ボス部3633を設けない場合と比べて、可撓性外歯車36における第2制御軸11との連結部分をX軸方向に長く取れるため、可撓性外歯車36の耐トルク性を向上できる。
[Embodiment 3]
Since the basic configuration of the third embodiment is the same as that of the first embodiment, only the differences from the first embodiment will be described.
FIG. 8 is a cross-sectional view taken along the line cc of FIG. 5 (a) showing the flexible external gear 36 of the third embodiment.
The flexible external gear 36 has a first boss portion 3632 extending from the bottom portion 362 to the X axis negative direction side, and a second boss portion 3633 extending from the bottom portion 362 to the X axis positive direction side. The outer diameter of the first boss portion 3632 and the second boss portion 3633 and the length in the X-axis direction from the bottom portion 362 are the same. The first boss portion 3632 and the second boss portion 3633 have a hole 363a on the inner periphery thereof. The hole 363a has a wave-like groove (groove) 363a1 on the inner peripheral surface thereof.
In the third embodiment, a first boss portion 3632 extending from the bottom portion 362 to the X axis negative direction side, and a second boss extending from the bottom portion 362 to the X axis positive direction side and coupled to the second control shaft 11 together with the first boss portion 3632. Part 3363. As a result, compared to the case where the second boss portion 3633 is not provided, the connecting portion of the flexible external gear 36 to the second control shaft 11 can be made longer in the X-axis direction. Can be improved.
 〔実施形態4〕
  実施形態4の基本的な構成は実施形態1と同じであるため、実施形態1と相違する部分のみ説明する。
  図9は、実施形態4の可撓性外歯車36を示す図であり、(a)は正面図、(b)は右側面図、(c)は(a)のc-c線矢視断面図である。なお、図9(a)には、第2制御軸11の端部11aの正面図を記載している。
  端部11aは、その外周面に、4個のキー(突起部)11a2を有する。各キー11a2は、周方向に等間隔で並ぶ。キー11a2は、矩形状に形成され、X軸方向に延びる。孔部363aは、その内周面に、4個のキー溝(溝部)363a2を有する。各キー溝363a2は、周方向に等間隔で並ぶ。各キー溝363a2は、対応するキー11a2が嵌合する。キー11a2およびキー溝363a2は、周方向において第2制御軸11とボス部363とを噛み合わせると共に、X軸方向において第2制御軸11とボス部363との相対移動を許容する結合部101である。
  実施形態4では、結合部101がキー11a2およびキー11a2と嵌合するキー溝363a2を有するため、スプライン嵌合と比べて、第2制御軸11とボス部363とが互いに径方向に相対移動可能、かつ回転力を伝達可能な構造を容易に形成できる。
  キー11a2およびキー溝363a2は、周方向に複数あるため、第2制御軸11を特定の回転角度で保持した際、各キー11a2およびキー溝363a2に作用する荷重を分散できる。この結果、各キー11a2およびキー溝363a2の耐久性を向上できる。
[Embodiment 4]
Since the basic configuration of the fourth embodiment is the same as that of the first embodiment, only the differences from the first embodiment will be described.
9A and 9B are diagrams showing the flexible external gear 36 according to the fourth embodiment, where FIG. 9A is a front view, FIG. 9B is a right side view, and FIG. 9C is a sectional view taken along line cc in FIG. is there. FIG. 9A shows a front view of the end portion 11 a of the second control shaft 11.
The end portion 11a has four keys (projections) 11a2 on the outer peripheral surface thereof. The keys 11a2 are arranged at equal intervals in the circumferential direction. The key 11a2 is formed in a rectangular shape and extends in the X-axis direction. The hole portion 363a has four key grooves (groove portions) 363a2 on the inner peripheral surface thereof. The key grooves 363a2 are arranged at equal intervals in the circumferential direction. Each keyway 363a2 is fitted with the corresponding key 11a2. The key 11a2 and the key groove 363a2 are coupling portions 101 that mesh the second control shaft 11 and the boss portion 363 in the circumferential direction and allow relative movement between the second control shaft 11 and the boss portion 363 in the X-axis direction. is there.
In the fourth embodiment, since the coupling portion 101 has the key 11a2 and the key groove 363a2 that fits with the key 11a2, the second control shaft 11 and the boss portion 363 can move relative to each other in the radial direction compared to the spline fitting. In addition, a structure capable of transmitting the rotational force can be easily formed.
Since there are a plurality of keys 11a2 and key grooves 363a2 in the circumferential direction, the load acting on each key 11a2 and key grooves 363a2 can be dispersed when the second control shaft 11 is held at a specific rotation angle. As a result, the durability of each key 11a2 and keyway 363a2 can be improved.
 〔他の実施形態〕
  以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
  例えば、本発明のアクチュエータは、内燃機関の可変圧縮比機構のアクチュエータとして特に好適であるが、内燃機関においてクランク軸からのトルク伝達によりカム軸が開閉する動弁のバルブタイミングを調整するバルブタイミング調整装置にも適用可能である。
  可撓性外歯車に潤滑油を供給する供給油路を、ハウジングに設けてもよい。
  また、波動発生プラグの外径は必ずしも楕円状に限られず、例えば角が円弧状に形成された三角形状などの多角形状であってもよい。
[Other Embodiments]
Although the embodiment for carrying out the present invention has been described above, the specific configuration of the present invention is not limited to the configuration of the embodiment, and there are design changes and the like within the scope not departing from the gist of the invention. Are also included in the present invention. In addition, any combination or omission of each constituent element described in the claims and the specification is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect is achieved. It is.
For example, the actuator of the present invention is particularly suitable as an actuator for a variable compression ratio mechanism of an internal combustion engine. However, in the internal combustion engine, a valve timing adjustment for adjusting a valve timing of a valve that opens and closes a camshaft by torque transmission from a crankshaft. It is also applicable to the device.
A supply oil passage for supplying lubricating oil to the flexible external gear may be provided in the housing.
Further, the outer diameter of the wave generating plug is not necessarily limited to an elliptical shape, and may be a polygonal shape such as a triangular shape with corners formed in an arc shape.
 以上説明した実施形態から把握し得る他の態様について、以下に記載する。
  内燃機関の可変圧縮比機構のためのアクチュエータは、その一つの態様において、モータ軸を回転させる駆動モータと、前記モータ軸と一体に回転し、前記モータ軸の回転軸線と直交する断面の外形が非円形である波動発生器と、所定角度範囲で回転することで前記内燃機関の前記可変圧縮比機構の姿勢を変化させる制御軸に連結される有底円筒状の可撓性外歯車であって、胴部と、底部と、外歯と、第1ボス部と、を有する可撓性外歯車と、を備える。前記胴部は、前記波動発生器の回転により非円形に撓み変形可能な可撓性を有する筒状に形成され、前記底部は、前記回転軸線に沿う方向を軸方向としたとき、前記軸方向における前記胴部の両端部である胴部第1端部および胴部第2端部のうち前記胴部第1端部に設けられ、前記外歯は、前記回転軸線の放射方向を径方向としたとき、前記胴部の径方向外側の面に設けられ、前記第1ボス部の少なくとも一部は、前記底部から前記胴部第2端部の側へ前記軸方向に延びて前記制御軸と連結される。前記アクチュエータは、さらに、撓み変形された前記胴部の前記外歯と噛み合う内歯車を備える。
Other aspects that can be understood from the embodiment described above will be described below.
In one aspect, an actuator for a variable compression ratio mechanism of an internal combustion engine has a drive motor that rotates a motor shaft, and an outer shape of a cross section that rotates integrally with the motor shaft and is orthogonal to the rotation axis of the motor shaft. A non-circular wave generator and a bottomed cylindrical flexible external gear coupled to a control shaft that changes the attitude of the variable compression ratio mechanism of the internal combustion engine by rotating within a predetermined angular range; A flexible external gear having a body portion, a bottom portion, external teeth, and a first boss portion. The barrel portion is formed in a cylindrical shape having flexibility that can be deformed and deformed in a non-circular shape by rotation of the wave generator, and the bottom portion has the axial direction when the direction along the rotation axis is an axial direction. Among the first end and the second end of the body, which are both ends of the body, and the external teeth are configured such that the radial direction of the rotation axis is a radial direction. And at least a part of the first boss portion extends in the axial direction from the bottom portion toward the second end portion of the trunk portion, and is provided on the radially outer surface of the trunk portion. Connected. The actuator further includes an internal gear that meshes with the external teeth of the body part that is deformed by bending.
 別の態様では、上記態様において、前記第1ボス部は、その内周に、前記軸方向における前記制御軸の両端部である制御軸第1端部および制御軸第2端部のうち前記制御軸第1端部が挿入された孔部を有し、前記制御軸第1端部は、前記径方向において、前記胴部の内側に挿入されている。
  別の態様では、上記態様のいずれかにおいて、前記第1ボス部と前記制御軸との連結は、スプライン嵌合によって達成される。
  さらに別の態様では、上記態様のいずれかにおいて、前記第1ボス部は、前記軸方向において前記波動発生器と当接可能である。
  さらに別の態様では、上記態様のいずれかにおいて、前記制御軸は、前記軸方向において、前記第1ボス部と当接可能な規制部であって、前記胴部第2端部から前記胴部第1端部へ向かう側への前記可撓性外歯車の移動を規制する規制部を備える。
  さらに別の態様では、上記態様のいずれかにおいて、前記規制部は、前記底部と当接可能なフランジであり、前記径方向において、前記フランジの外径は、前記第1ボス部の外径以下である。
In another aspect, in the above aspect, the first boss portion has, on its inner periphery, the control shaft among the control shaft first end portion and the control shaft second end portion which are both end portions of the control shaft in the axial direction. A shaft first end portion is inserted, and the control shaft first end portion is inserted inside the body portion in the radial direction.
In another aspect, in any of the above aspects, the connection between the first boss portion and the control shaft is achieved by spline fitting.
In still another aspect, in any one of the above aspects, the first boss portion can contact the wave generator in the axial direction.
In yet another aspect, in any one of the above aspects, the control shaft is a restricting portion capable of contacting the first boss portion in the axial direction, and the body portion from the body second end portion. A restricting portion for restricting movement of the flexible external gear toward the side toward the first end portion is provided.
In still another aspect, in any one of the above aspects, the restriction portion is a flange capable of contacting the bottom portion, and in the radial direction, an outer diameter of the flange is equal to or less than an outer diameter of the first boss portion. It is.
 さらに別の態様では、上記態様のいずれかにおいて、前記第1ボス部は、前記径方向において、全て前記胴部の内側にある。
  さらに別の態様では、上記態様のいずれかにおいて、前記可撓性外歯車は、前記底部から前記胴部第1端部の側へ前記軸方向に延びる第2ボス部であって、前記第1ボス部と共に前記制御軸と連結される第2ボス部を有する。
  さらに別の態様では、上記態様のいずれかにおいて、前記波動発生器は、前記径方向において前記可撓性外歯車の内周と接する転がり軸受を備え、前記制御軸は、前記径方向において、前記胴部の内側へ潤滑油を供給する供給油路を有する。
  さらに別の態様では、上記態様のいずれかにおいて、前記制御軸は、前記軸方向における前記可撓性外歯車の移動を規制する規制部と、前記規制部から前記胴部第2端部の側へ延びて前記第1ボス部に挿入される制御軸第1端部と、を備え、前記制御軸第1端部は、前記規制部との連結部分において、前記径方向の内側に凹む溝を有する。
  さらに別の態様では、上記態様のいずれかにおいて、前記第1ボス部の少なくとも一部は、前記軸方向において前記外歯とオーバーラップする。
In still another aspect, in any of the above aspects, the first boss part is entirely inside the trunk part in the radial direction.
In yet another aspect, in any one of the above aspects, the flexible external gear is a second boss portion that extends in the axial direction from the bottom portion toward the body first end portion, and It has the 2nd boss | hub part connected with the said control shaft with a boss | hub part.
In still another aspect, in any one of the above aspects, the wave generator includes a rolling bearing that is in contact with an inner periphery of the flexible external gear in the radial direction, and the control shaft is A supply oil passage for supplying lubricating oil to the inside of the body portion is provided.
In yet another aspect, in any one of the above aspects, the control shaft includes a restriction portion that restricts movement of the flexible external gear in the axial direction, and a side of the body portion second end from the restriction portion. A first end portion of the control shaft extending into the first boss portion, and the first end portion of the control shaft has a groove recessed inward in the radial direction at a connecting portion with the restricting portion. Have.
In still another aspect, in any one of the above aspects, at least a part of the first boss portion overlaps the external teeth in the axial direction.
 また、他の観点から、内燃機関用機器に用いられるアクチュエータは、ある態様において、モータ軸を回転させる駆動モータと、前記モータ軸と一体に回転し、前記出力軸の回転軸線と直交する断面の外形が非円形である波動発生器と、所定角度範囲で回転することで前記内燃機関用機器の姿勢を変化させる制御軸に連結される有底円筒状の可撓性外歯車であって、胴部と、底部と、外歯と、第1ボス部と、を有する可撓性外歯車と、を備える。前記胴部は、前記波動発生器の回転により非円形に撓み変形可能な可撓性を有する筒状に形成され、前記底部は、前記回転軸線に沿う方向を軸方向としたとき、前記軸方向における前記胴部の両端部である胴部第1端部および胴部第2端部のうち前記胴部第1端部に設けられ、前記外歯は、前記回転軸線の放射方向を径方向としたとき、前記胴部の径方向外側の面に設けられ、前記第1ボス部の少なくとも一部は、前記底部から前記胴部第2端部の側へ前記軸方向に延びて前記制御軸と連結される。前記アクチュエータは、さらに、撓み変形された前記胴部の前記外歯と噛み合う内歯車を備える。 From another point of view, an actuator used for an internal combustion engine device, in one aspect, has a drive motor that rotates a motor shaft and a cross section that rotates integrally with the motor shaft and is orthogonal to the rotation axis of the output shaft. A non-circular wave generator and a bottomed cylindrical flexible external gear coupled to a control shaft that changes the attitude of the internal combustion engine device by rotating within a predetermined angular range, A flexible external gear having a portion, a bottom portion, external teeth, and a first boss portion. The barrel portion is formed in a cylindrical shape having flexibility that can be deformed and deformed in a non-circular shape by rotation of the wave generator, and the bottom portion has the axial direction when the direction along the rotation axis is an axial direction. Among the first end and the second end of the body, which are both ends of the body, and the external teeth are configured such that the radial direction of the rotation axis is a radial direction. And at least a part of the first boss portion extends in the axial direction from the bottom portion toward the second end portion of the trunk portion, and is provided on the radially outer surface of the trunk portion. Connected. The actuator further includes an internal gear that meshes with the external teeth of the body part that is deformed by bending.
 本願は、2018年3月1日出願の日本特許出願番号2018-36291号に基づく優先権を主張する。2018年3月1日出願の日本特許出願番号2018-36291号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-36291 filed on Mar. 1, 2018. The entire disclosure including the specification, claims, drawings, and abstract of Japanese Patent Application No. 2018-36291 filed on Mar. 1, 2018 is incorporated herein by reference in its entirety.
O  回転軸線、11 第2制御軸(制御軸)、11a  端部(制御軸第1端部)、11e  端部(制御軸第2端部)、11g  逃げ溝(溝)、20 ハウジング、22 駆動モータ、36 可撓性外歯車、361  胴部、361a X軸正方向端部(胴部第1端部)、361b X軸負方向端部(胴部第2端部)、362  底部、363  ボス部(第1ボス部)、363a 孔部、3632 第1ボス部、3633 第2ボス部、364  外歯、37 波動発生器、372  ボールベアリング(転がり軸受)、38 剛性内歯車(内歯車)、40 アクチュエータ、48 モータ軸、111  供給油路 O rotation axis, 11 2nd control shaft (control shaft), 11a end (control shaft first end), 11e end (control shaft second end), 11g escape groove (groove), 20 housing, 22 drive Motor, 36 flexible external gear, 361 rod body, 361a X-axis positive direction end (trunk first end), 361b X-axis negative direction end (trunk second end), 362mm bottom, 363mm boss Part (first boss part), 363a hole part, 3632 first boss part, 3633 second boss part, 364 external teeth, 37 wave generator, 372 ball bearing (rolling bearing), 38 rigid internal gear (internal gear), 40 actuators, 48 motor shafts, 111 supply oil passage

Claims (12)

  1.  内燃機関の可変圧縮比機構のためのアクチュエータであって、
     モータ軸を回転させる駆動モータと、
     前記モータ軸と一体に回転し、前記モータ軸の回転軸線と直交する断面の外形が非円形である波動発生器と、
     回転することで前記内燃機関の前記可変圧縮比機構の姿勢を変化させる制御軸に連結される有底円筒状の可撓性外歯車であって、胴部と、底部と、外歯と、第1ボス部と、を有する可撓性外歯車と、
     を備え、
     前記胴部は、前記波動発生器の回転により非円形に撓み変形可能な可撓性を有する筒状に形成され、
     前記底部は、前記回転軸線に沿う方向を軸方向としたとき、前記軸方向における前記胴部の両端部である胴部第1端部および胴部第2端部のうち前記胴部第1端部に設けられ、
     前記外歯は、前記回転軸線の放射方向を径方向としたとき、前記胴部の径方向外側の面に設けられ、
     前記第1ボス部の少なくとも一部は、前記底部から前記胴部第2端部の側へ前記軸方向に延びて前記制御軸と連結され、
     前記アクチュエータは、さらに、撓み変形された前記胴部の前記外歯と噛み合う内歯を有する内歯車を備える
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine,
    A drive motor that rotates the motor shaft;
    A wave generator that rotates integrally with the motor shaft and has a non-circular outer shape in a cross section orthogonal to the rotation axis of the motor shaft;
    A bottomed cylindrical flexible external gear coupled to a control shaft that rotates to change a posture of the variable compression ratio mechanism of the internal combustion engine, and includes a body portion, a bottom portion, external teeth, A flexible external gear having one boss portion;
    With
    The trunk is formed in a cylindrical shape having flexibility that can be bent and deformed in a non-circular shape by rotation of the wave generator;
    The bottom portion has a body first end among a body first end and a body second end that are both ends of the body in the axial direction when the direction along the rotation axis is an axial direction. Provided in the department,
    The outer teeth are provided on a radially outer surface of the body when the radial direction of the rotation axis is a radial direction,
    At least a part of the first boss part extends in the axial direction from the bottom part toward the body second end part and is connected to the control shaft.
    The actuator further includes an internal gear having an internal gear that meshes with the external gear of the body portion that is bent and deformed. The actuator for a variable compression ratio mechanism of an internal combustion engine.
  2.  請求項1に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記第1ボス部は、その内周に、前記軸方向における前記制御軸の両端部である制御軸第1端部および制御軸第2端部のうち前記制御軸第1端部が挿入された孔部を有し、
     前記制御軸第1端部は、前記径方向において前記胴部の内側に挿入されている
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 1,
    The first boss portion has the control shaft first end portion inserted between the control shaft first end portion and the control shaft second end portion, which are both ends of the control shaft in the axial direction, on the inner periphery thereof. Has a hole,
    The control shaft first end is inserted inside the body in the radial direction. An actuator for a variable compression ratio mechanism of an internal combustion engine.
  3.  請求項2に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記第1ボス部と前記制御軸との連結は、スプライン嵌合によって達成される
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 2,
    The connection between the first boss portion and the control shaft is achieved by spline fitting. An actuator for a variable compression ratio mechanism of an internal combustion engine.
  4.  請求項3に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記第1ボス部は、前記軸方向において前記波動発生器と当接可能である
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 3,
    The actuator for a variable compression ratio mechanism of an internal combustion engine, wherein the first boss portion is capable of contacting the wave generator in the axial direction.
  5.  請求項3に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記制御軸は、前記軸方向において前記第1ボス部と当接可能な規制部であって、前記胴部第2端部から前記胴部第1端部へ向かう側への前記可撓性外歯車の移動を規制する規制部を備える
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 3,
    The control shaft is a restricting portion capable of abutting on the first boss portion in the axial direction, and the flexible outer side from the body second end portion toward the body first end portion. An actuator for a variable compression ratio mechanism of an internal combustion engine comprising a restricting portion that restricts movement of a gear.
  6.  請求項5に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記規制部は、前記底部と当接可能なフランジであり、
     前記径方向において、前記フランジの外径は、前記第1ボス部の外径以下である
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 5,
    The restricting portion is a flange capable of contacting the bottom portion,
    An actuator for a variable compression ratio mechanism of an internal combustion engine, wherein an outer diameter of the flange is equal to or less than an outer diameter of the first boss portion in the radial direction.
  7.  請求項1に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記第1ボス部は、前記径方向において、全て前記胴部の内側にある
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 1,
    The first boss portion is all inside the body portion in the radial direction. An actuator for a variable compression ratio mechanism of an internal combustion engine.
  8.  請求項1に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記可撓性外歯車は、前記底部から前記胴部第1端部の側へ前記軸方向に延びる第2ボス部であって、前記第1ボス部と共に前記制御軸と連結される第2ボス部を有する
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 1,
    The flexible external gear is a second boss portion that extends in the axial direction from the bottom portion toward the first end portion of the body portion, and is connected to the control shaft together with the first boss portion. An actuator for a variable compression ratio mechanism of an internal combustion engine.
  9.  請求項1に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記波動発生器は、前記径方向において前記可撓性外歯車の内周と接する転がり軸受を備え、
     前記制御軸は、前記径方向において、前記胴部の内側へ潤滑油を供給する供給油路を有する
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 1,
    The wave generator includes a rolling bearing in contact with the inner periphery of the flexible external gear in the radial direction,
    The control shaft has a supply oil passage for supplying lubricating oil to the inside of the body portion in the radial direction. An actuator for a variable compression ratio mechanism of an internal combustion engine.
  10.  請求項1に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記制御軸は、前記軸方向における前記可撓性外歯車の移動を規制する規制部と、前記規制部から前記胴部第2端部の側へ延びて前記第1ボス部に挿入される制御軸第1端部と、を備え、
     前記制御軸第1端部は、前記規制部との連結部分において、前記径方向の内側に凹む溝を有する
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 1,
    The control shaft is a control portion that restricts movement of the flexible external gear in the axial direction, and a control that extends from the control portion toward the body second end portion and is inserted into the first boss portion. A shaft first end,
    The control shaft first end portion has a groove recessed inward in the radial direction at a connecting portion with the restricting portion. An actuator for a variable compression ratio mechanism of an internal combustion engine.
  11.  請求項1に記載の内燃機関の可変圧縮比機構のためのアクチュエータであって、
     前記第1ボス部の少なくとも一部は、前記軸方向において前記外歯とオーバーラップする
     内燃機関の可変圧縮比機構のためのアクチュエータ。
    An actuator for a variable compression ratio mechanism of an internal combustion engine according to claim 1,
    An actuator for a variable compression ratio mechanism of an internal combustion engine, wherein at least a part of the first boss portion overlaps the external teeth in the axial direction.
  12.  内燃機関用機器に用いられるアクチュエータであって、
     モータ軸を回転させる駆動モータと、
     前記モータ軸と一体に回転し、前記モータ軸の回転軸線と直交する断面の外形が非円形である波動発生器と、
     所定角度範囲で回転することで前記内燃機関用機器の姿勢を変化させる制御軸に連結される有底円筒状の可撓性外歯車であって、胴部と、底部と、外歯と、第1ボス部と、を有する可撓性外歯車と、
     を備え、
     前記胴部は、前記波動発生器の回転により非円形に撓み変形可能な可撓性を有する筒状に形成され、
     前記底部は、前記回転軸線に沿う方向を軸方向としたとき、前記軸方向における前記胴部の両端部である胴部第1端部および胴部第2端部のうち前記胴部第1端部に設けられ、
     前記外歯は、前記回転軸線の放射方向を径方向としたとき、前記胴部の径方向外側の面に設けられ、
     前記第1ボス部の少なくとも一部は、前記底部から前記胴部第2端部の側へ前記軸方向に延びて前記制御軸と連結され、
     前記アクチュエータは、さらに、撓み変形された前記胴部の前記外歯と噛み合う内歯を有する内歯車を備える
     内燃機関用機器に用いられるアクチュエータ。
    An actuator used in an internal combustion engine device,
    A drive motor that rotates the motor shaft;
    A wave generator that rotates integrally with the motor shaft and has a non-circular outer shape in a cross section orthogonal to the rotation axis of the motor shaft;
    A bottomed cylindrical flexible external gear connected to a control shaft that changes the posture of the internal combustion engine device by rotating within a predetermined angle range, and includes a trunk portion, a bottom portion, external teeth, A flexible external gear having one boss portion;
    With
    The trunk is formed in a cylindrical shape having flexibility that can be bent and deformed in a non-circular shape by rotation of the wave generator;
    The bottom portion has a body first end among a body first end and a body second end that are both ends of the body in the axial direction when the direction along the rotation axis is an axial direction. Provided in the department,
    The outer teeth are provided on a radially outer surface of the body when the radial direction of the rotation axis is a radial direction,
    At least a part of the first boss part extends in the axial direction from the bottom part toward the body second end part and is connected to the control shaft.
    The actuator further includes an internal gear having an internal gear that meshes with the external gear of the body portion that is bent and deformed. The actuator is used for an internal combustion engine device.
PCT/JP2019/003791 2018-03-01 2019-02-04 Actuator for variable compression ratio mechanism for internal combustion engine, and actuator used in device for internal combustion engine WO2019167553A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036291 2018-03-01
JP2018036291A JP2019152111A (en) 2018-03-01 2018-03-01 Actuator for variable compression ratio mechanism for internal combustion engine and actuator used for device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2019167553A1 true WO2019167553A1 (en) 2019-09-06

Family

ID=67806041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003791 WO2019167553A1 (en) 2018-03-01 2019-02-04 Actuator for variable compression ratio mechanism for internal combustion engine, and actuator used in device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2019152111A (en)
WO (1) WO2019167553A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151088A (en) * 2008-12-26 2010-07-08 Nissan Motor Co Ltd Variable compression ratio device for internal combustion engine
WO2014027497A1 (en) * 2012-08-13 2014-02-20 日産自動車株式会社 Control device and control method for variable compression ratio internal combustion engines
WO2017141673A1 (en) * 2016-02-16 2017-08-24 日立オートモティブシステムズ株式会社 Actuator for link mechanisms for internal combustion engines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151088A (en) * 2008-12-26 2010-07-08 Nissan Motor Co Ltd Variable compression ratio device for internal combustion engine
WO2014027497A1 (en) * 2012-08-13 2014-02-20 日産自動車株式会社 Control device and control method for variable compression ratio internal combustion engines
WO2017141673A1 (en) * 2016-02-16 2017-08-24 日立オートモティブシステムズ株式会社 Actuator for link mechanisms for internal combustion engines

Also Published As

Publication number Publication date
JP2019152111A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
WO2019167591A1 (en) Actuator for variable compression ratio mechanism for internal combustion engine, and actuator used in device for internal combustion engine
US10883421B2 (en) Actuator of variable compression ratio mechanism and actuator of link mechanism
JP6384020B2 (en) Actuator of link mechanism for internal combustion engine
EP3306053B1 (en) Variable compression ratio mechanism for internal combustion engine
JP2019007409A (en) Valve opening/closing timing control device
WO2018025765A1 (en) Actuator of link mechanism for internal-combustion engine
US10900551B2 (en) Harmonic drive
WO2020129661A1 (en) Actuator for variable compression mechanism of internal combustion engine and speed reducer
JP6451029B2 (en) Actuator of link mechanism for internal combustion engine
JP6748595B2 (en) Actuator of wave gear reducer and variable compression device of internal combustion engine
EP3306054B1 (en) Variable compression ratio mechanism for internal combustion engine
WO2019167553A1 (en) Actuator for variable compression ratio mechanism for internal combustion engine, and actuator used in device for internal combustion engine
US11242775B2 (en) Valve timing adjustment device
JP2020101113A (en) Actuator of variable compression ratio mechanism for internal combustion engine
CN113167140B (en) Valve timing adjusting device
WO2020054497A1 (en) Driven gear reducer and method for manufacturing driven gear reducer
WO2020090186A1 (en) Roller type speed reducer, and variable valve device for internal combustion engine
JP6965215B2 (en) Strain wave gearing reducer and actuator of link mechanism for internal combustion engine
US11459916B2 (en) Valve timing adjustment device
US20200007005A1 (en) Strain wave gear speed reducer, method for manufacturing strain wave gear speed reducer and actuator for link mechanism for internal combustion engine
WO2021112118A1 (en) Actuator for variable-compression-ratio mechanism
JP2018048595A (en) Actuator for linkage mechanism for internal combustion engine
US11441453B2 (en) Valve timing adjustment device
JP3087775B2 (en) Variable valve timing mechanism for internal combustion engine and method of assembling the same
JP2019056441A (en) Actuator of variable compression ratio mechanism in strain wave gear reducer and internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760544

Country of ref document: EP

Kind code of ref document: A1