WO2019167248A1 - Air-conditioning system, use-side unit, control device, and control method - Google Patents

Air-conditioning system, use-side unit, control device, and control method Download PDF

Info

Publication number
WO2019167248A1
WO2019167248A1 PCT/JP2018/007999 JP2018007999W WO2019167248A1 WO 2019167248 A1 WO2019167248 A1 WO 2019167248A1 JP 2018007999 W JP2018007999 W JP 2018007999W WO 2019167248 A1 WO2019167248 A1 WO 2019167248A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
temperature
use side
air conditioning
Prior art date
Application number
PCT/JP2018/007999
Other languages
French (fr)
Japanese (ja)
Inventor
勝弘 廣瀬
豊大 薮田
▲高▼田 茂生
直史 竹中
仁隆 門脇
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/007999 priority Critical patent/WO2019167248A1/en
Priority to CN201880089765.3A priority patent/CN111758008B/en
Priority to JP2020503227A priority patent/JP7138696B2/en
Publication of WO2019167248A1 publication Critical patent/WO2019167248A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/875Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling heat-storage apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater

Definitions

  • the present invention relates to an air conditioning system including an intermediate heat exchanger for exchanging heat between a refrigerant and a heat medium, a use side unit provided in the air conditioning system, a control device provided in the air conditioning system, and a control method.
  • an air conditioning system that supplies hot or cold generated by a heat source side unit to a use side unit.
  • a multi-room type air conditioning system in which a plurality of usage-side units are connected to one heat source side unit is generally introduced.
  • a building multi-air conditioner that circulates refrigerant to the room is widely used.
  • an air conditioning system that uses a heat medium such as water to supply hot or cold heat to an indoor unit and uses a small amount of refrigerant has been proposed (see, for example, Patent Document 1).
  • Patent Document 1 discloses a refrigeration cycle apparatus that transports hot or cold generated by an outdoor unit to an indoor unit using a heat medium such as water or antifreeze via a branch unit having an intermediate heat exchanger. . Patent Document 1 also discloses a refrigeration cycle apparatus in which cold heat and warm heat are stored in a heat storage tank provided on the roof of a building.
  • Patent Document 1 requires a separate heat storage tank in order to store cold or warm heat.
  • the present invention has been made to solve the above-described problems, and is an air conditioning system that can store cold or heat without a heat storage tank, a use side unit provided in the air conditioning system, a control device provided in the air conditioning system, and A control method is provided.
  • An air conditioning system includes a compressor, a heat source side heat exchanger, an expansion unit, an intermediate heat exchanger that exchanges heat between the refrigerant and the heat medium, connected by a refrigerant pipe, a refrigerant circuit through which the refrigerant flows, a pump When the intermediate heat exchanger and the use side heat exchanger are connected by the heat medium pipe and the heat medium circuit through which the heat medium flows and the compressor is operating, the use side heat exchanger or the heat medium pipe is used. And a control device having a heat storage mode for storing the heat or cold of the heat medium, and a use mode for using the heat or cold stored in the heat storage mode.
  • the control device has a heat storage mode and a use mode.
  • the air conditioning system can store cold or warm heat inside the use side heat exchanger or the heat medium pipe.
  • the air conditioning system can store cold or warm heat without a heat storage tank.
  • FIG. 1 is a schematic diagram showing an air conditioning system 100 according to Embodiment 1 of the present invention.
  • a heat source side unit 1 that is an outdoor unit
  • a plurality of usage side units 2 a, 2 b, 2 c, and 2 d that adjust air in an air-conditioned space such as a room
  • the relay unit 3 installed in the non-air-conditioned space 8 or the like that is not the object of harmony is provided, and a control device 50 that controls them.
  • the heat source side unit 1 and the relay unit 3 are connected by two refrigerant pipes 4 to form a refrigerant circuit through which a two-phase changing refrigerant or a supercritical refrigerant flows.
  • the relay unit 3 and the use side units 2a, 2b, 2c, and 2d are connected by two heat medium pipes 5 to form a heat medium circuit through which a heat medium such as water, brine, or antifreeze liquid flows.
  • a heat medium such as water, brine, or antifreeze liquid flows.
  • the heat source unit 1 is usually installed in an outdoor space 6 that is an external space of a building 9 such as a building.
  • the use side units 2a, 2b, 2c, and 2d are installed at positions in the indoor space 7 such as a living room inside a building 9 such as a building where heated or cooled heat medium is delivered.
  • the relay unit 3 is configured as a separate housing from the heat source side unit 1 and the use side units 2a, 2b, 2c, and 2d, and is connected by the refrigerant pipe 4 and the heat medium pipe 5, and is connected to the outdoor space 6 and the indoor space. It is installed in a place different from the space 7.
  • the relay unit 3 is installed in a non-air-conditioned space 8 such as a ceiling, which is a space different from the indoor space 7 in the interior of the building 9.
  • the relay unit 3 may be installed in a common part provided with an elevator or the like.
  • the relay unit 3 is composed of one parent relay unit 3a and two child relay units 3b. Thereby, a plurality of child relay units 3b (1) and 3b (2) can be connected to one parent relay unit 3a. In the first embodiment, there are three connection pipes between the parent relay unit 3a and the child relay unit 3b.
  • FIG. 2 is a schematic diagram showing an air conditioning system 100 according to a first modification of the first embodiment of the present invention.
  • the number of relay units 3 may be one. When the number of usage-side units 2a, 2b, 2c, and 2d connected is small, the number of relay units 3 can be reduced.
  • the heat source side unit 1 is illustrated as being installed in the outdoor space 6 outside the building 9, but is installed in a closed space such as a machine room provided with a ventilation opening. It may be installed inside the building 9, and exhaust heat may be exhausted outside the building 9 by an exhaust duct, or it may be installed inside the building 9 as a water-cooled heat source side unit 1. .
  • the use side units 2a, 2b, 2c, and 2d are of the ceiling cassette type is illustrated, the use side units 2a, 2b, 2c, and 2d are like a ceiling embedded type or a ceiling hanging type. As long as it is connected to the indoor space 7 directly or using a duct or the like and can supply heated air or cooled air to the indoor space 7.
  • the relay unit 3 may be arranged in the vicinity of the heat source side unit 1, but in order to reduce the energy for transferring the heat medium and save energy, the relay unit 3 and the use side units 2 a, 2 b, 2 c, 2 d and It is desirable that the distance of is shorter.
  • a case where four usage-side units 2a, 2b, 2c, and 2d are connected to one heat-source-side unit 1 is illustrated, but the number of heat-source-side units 1 is two.
  • the number of use side units 2a, 2b, 2c, and 2d may be one to three or five or more.
  • FIG. 3 is a circuit diagram showing the air conditioning system 100 according to Embodiment 1 of the present invention.
  • the heat source side unit 1 includes a compressor 10, a flow path switching device 11, a heat source side heat exchanger 12, an accumulator 17, and a heat source side flow path adjustment unit 13.
  • the compressor 10 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state.
  • the compressor 10 has a discharge side connected to the flow path switching device 11 and a suction side connected to the accumulator 17.
  • the compressor 10 is, for example, an inverter compressor whose capacity can be controlled.
  • the flow path switching device 11 is, for example, a four-way valve, and switches the flow direction of the refrigerant according to the operation mode. When the operation mode is the cooling operation, the flow path switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12, and connects the heat source side flow path adjustment unit 13 and the suction side of the accumulator 17. To do.
  • the flow path switching device 11 connects the discharge side of the compressor 10 and the heat source side flow path adjustment unit 13, and connects the heat source side heat exchanger 12 and the suction side of the accumulator 17. Connect.
  • the flow-path switching apparatus 11 has illustrated about the case where it is a four-way valve, you may be comprised by combining a two-way valve or a three-way valve.
  • the heat source side heat exchanger 12 is a plate type heat exchanger that exchanges heat between a refrigerant flowing in the plate and a heat medium such as water or antifreeze flowing in the plate.
  • One of the heat source side heat exchangers 12 is connected to the flow path switching device 11, and the other is connected to the high-pressure side refrigerant pipe 4 via the heat source side flow path adjustment unit 13.
  • the heat source side heat exchanger 12 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • a heat source side blower (not shown) may be provided in the vicinity of the heat source side heat exchanger 12. Thereby, condensation and evaporation of the heat medium of the heat source side heat exchanger 12 can be promoted.
  • the heat source side heat exchanger 12 is not limited to a plate-type heat exchanger, and may be any configuration that can dissipate heat or absorb heat.
  • the accumulator 17 stores surplus refrigerant that is the difference between the refrigerant that flows during the heating operation and the refrigerant that flows during the cooling operation. In addition, the accumulator 17 stores surplus refrigerant generated by an excessive change in operation, such as a change in the number of operating units 2a, 2b, 2c, and 2d.
  • One of the accumulators 17 is connected to the suction side of the compressor 10 and the other is connected to the flow path switching device 11. The accumulator 17 may be omitted.
  • the heat source side flow path adjustment unit 13 makes the flow of the refrigerant flowing from the heat source side unit 1 to the relay unit 3 in a certain direction in both the cooling operation and the heating operation, and the first check valve 13b. , A second check valve 13c, a third check valve 13a, and a fourth check valve 13d.
  • the first check valve 13b is provided in a pipe connecting the flow path switching device 11 and the high-pressure side refrigerant pipe 4, and allows the refrigerant to flow from the flow path switching apparatus 11 toward the high-pressure side refrigerant pipe 4. .
  • the second check valve 13 c is provided in a pipe connecting the heat source side heat exchanger 12 and the low pressure side refrigerant pipe 4, and flows the refrigerant flowing from the low pressure side refrigerant pipe 4 toward the heat source side heat exchanger 12. Allow.
  • the third check valve 13 a is provided in a pipe connecting the heat source side heat exchanger 12 and the high pressure side refrigerant pipe 4, and flows the refrigerant flowing from the heat source side heat exchanger 12 toward the high pressure side refrigerant pipe 4. Allow.
  • the fourth check valve 13d is provided in a pipe connecting the flow path switching device 11 and the low-pressure side refrigerant pipe 4, and allows the refrigerant to flow from the low-pressure side refrigerant pipe 4 toward the flow path switching apparatus 11. .
  • the heat source side flow path adjustment unit 13 may be omitted.
  • the use-side units 2a, 2b, 2c, and 2d are arranged at positions where cooling air or heating air can be supplied in an indoor space 7 that is a space inside the building 9 such as a living room. Thereby, the use side units 2a, 2b, 2c, and 2d supply the cooling air or the heating air to the indoor space 7 that is the air-conditioning target space.
  • a remote controller (not shown) is connected to the use side units 2a, 2b, 2c, and 2d by wire or wireless, and when the user operates the remote control, the use side units 2a, 2b, 2c, A predetermined signal is transmitted to 2d.
  • Each utilization side unit 2a, 2b, 2c, 2d has utilization side heat exchanger 26a, 26b, 26c, 26d and utilization side air blower 20a, 20b, 20c, 20d, respectively.
  • the use side heat exchangers 26 a, 26 b, 26 c, and 26 d exchange heat between the air that is the load heat medium supplied from the use side blowers 20 a, 20 b, 20 c, and 20 d and the heat medium to form the indoor space 7. Supply as air for cooling or air for heating.
  • the use side heat exchangers 26a, 26b, 26c, and 26d are connected to the relay unit 3 through the refrigerant pipe 4, respectively.
  • the use side heat exchangers 26a, 26b, 26c, and 26d function as an evaporator during the cooling operation, and function as a condenser during the heating operation.
  • the use side blowers 20a, 20b, 20c, and 20d send room air to the use side heat exchangers 26a, 26b, 26c, and 26d. Thereby, condensation or evaporation of the heat medium of the use side heat exchangers 26a, 26b, 26c, and 26d can be promoted. If the use side heat exchangers 26a, 26b, 26c, and 26d use radiant heat, the use side blowers 20a, 20b, 20c, and 20d can be omitted.
  • An indoor temperature sensor 39 for detecting the indoor temperature is provided in the room where the use side units 2a, 2b, 2c, and 2d are installed.
  • the relay unit 3 includes a housing different from the heat source side unit 1 and the plurality of usage side units 2a, 2b, 2c, and 2d, and can be installed at a position different from the outdoor space 6 and the indoor space 7.
  • the relay unit 3 is connected to the heat source unit 1 via the high-pressure side refrigerant pipe 4 and the low-pressure side refrigerant pipe 4, and is connected to each usage-side unit 2 a, 2 b, 2 c, 2 d via the heat medium pipe 5. ing.
  • the relay unit 3 distributes the cold heat or hot heat supplied from the heat source side unit 1 to the use side units 2a, 2b, 2c, 2d.
  • the relay unit 3 includes the parent relay unit 3a and the child relay unit 3b.
  • the parent relay unit 3a includes a gas-liquid separator 14 and an expansion part 16e.
  • the gas-liquid separator 14 separates the high-pressure gas-liquid two-phase refrigerant supplied from the heat source side unit 1 into a liquid refrigerant and a gas refrigerant.
  • the gas-liquid separator 14 is installed at the inlet of the relay unit 3 and connected to the heat source unit 1 via the high-pressure side refrigerant pipe 4.
  • the expansion part 32 consists of an electronic expansion valve whose opening degree can be changed, for example, and decompresses the refrigerant to expand it. Incidentally, if the CO 2 refrigerant is used, since the supercritical cycle, the radiator for cooling the refrigerant, the refrigerant does not liquefy. For this reason, heating operation is carried out in principle. At this time, in the gas-liquid separator 14, the gas refrigerant flows out to the intermediate heat exchanger 15a.
  • the child relay unit 3b includes intermediate heat exchangers 15a, 15b, child expansion portions 16a, 16b, 16c, 16d, pumps 21a, 21b, flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, Stop valves 24a, 24b, 24c, 24d, bypass circuits 27a, 27b, 27c, 27d and flow rate adjusting valves 25a, 25b, 25c, 25d are provided.
  • the intermediate heat exchangers 15a and 15b are heat exchangers that exchange heat between the refrigerant and the heat medium.
  • the case where two of the intermediate heat exchanger 15a for heating and the intermediate heat exchanger 15b for cooling are installed is illustrated, but only one of heating and cooling is performed. In this case, only one intermediate heat exchanger 15a, 15b is required. In this case, since it is not necessary to flow the heat medium to the separate intermediate heat exchangers 15a and 15b during the freeze prevention operation, the flow path can be simplified. Further, a plurality of heating intermediate heat exchangers 15a and cooling intermediate heat exchangers 15b may be provided.
  • Each child expansion portions 16a, 16b, 16c, and 16d are provided, for example, which are electronic expansion valves whose opening degree can be changed, and expand the refrigerant by decompressing the refrigerant.
  • the pumps 21a and 21b are provided on the downstream side of the intermediate heat exchangers 15a and 15b, and transfer the heat medium.
  • the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, and 23d are composed of three-way valves and the like, and the inlet-side flow paths and the outlet-side flow paths of the respective use side heat exchangers 26a, 26b, 26c, and 26d.
  • the flow path switching valves 22a, 22b, 22c and 22d switch the outlet side flow path between the intermediate heat exchangers 15a and 15b, and the flow path switching valves 23a, 23b, 23c and 23d. Switches the inlet-side flow path.
  • the flow path switching valves 22a, 22b, 22c, and 22d switch the outlet side flow path between the intermediate heat exchangers 15a and 15b, and the flow path switching valves 23a, 23b, 23c, and 23d are intermediate heat.
  • the inlet-side flow path is switched between the exchangers 15a and 15b.
  • the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, and 23d may be ones that switch a three-way flow path such as a three-way valve, or a combination of two on-off valves that switch a two-way flow path. May be good.
  • the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, and 23d change the flow rate of a three-way flow path such as a stepping motor drive type mixing valve or change the flow rate of a two-way flow path.
  • a combination of two electronic expansion valves or the like may be used. Thereby, the water hammer by the sudden opening and closing of a flow path can be suppressed.
  • the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, the stop valves 24a, 24b, 24c, 24d and the flow rate adjusting valves 25a, 25b, 25c, 25d are each used side heat exchangers.
  • the case where one is connected to each of 26a, 26b, 26c, and 26d is illustrated, but a plurality of each of the use side heat exchangers 26a, 26b, 26c, and 26d may be connected.
  • the flow rate adjusting valves 25a, 25b, 25c, and 25d may be operated in the same manner.
  • Stop valves 24 a, 24 b, 24 c and 24 d are provided in the heat medium circuit and block the flow of the heat medium flowing through the heat medium pipe 5.
  • the bypass circuits 27a, 27b, 27c, and 27d connect the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d, and bypass the heat medium.
  • the flow rate adjusting valves 25a, 25b, 25c, and 25d are three-way valves or the like, and switch whether the heat medium flows to the use side heat exchangers 26a, 26b, 26c, and 26d or to the bypass circuits 27a, 27b, 27c, and 27d. .
  • the refrigerant circuit includes the compressor 10, the flow path switching device 11, the heat source side heat exchanger 12, the expansion part 16e, the gas-liquid separator 14, the intermediate heat exchangers 15a and 15b, and the child expansion parts 16a, 16b, 16c, 16d is connected by the refrigerant
  • the refrigerant flowing in the refrigerant circuit includes single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, A refrigerant having a relatively low global warming coefficient such as CF 3 CF ⁇ CH 2 containing a double bond or a mixture thereof, or a natural refrigerant such as CO 2 or propane can be used.
  • One heat medium circuit includes an intermediate heat exchanger 15a, a pump 21a, flow path switching valves 22a, 22b, 22c, and 22d, stop valves 24a, 24b, 24c, and 24d, and use side heat exchangers 26a, 26b, 26c, and 26 d, flow rate adjustment valves 25 a, 25 b, 25 c, 25 d and flow path switching valves 23 a, 23 b, 23 c, 23 d are connected by a heat medium pipe 5.
  • another heat medium circuit includes an intermediate heat exchanger 15b, a pump 21b, flow path switching valves 23a, 23b, 23c, 23d, stop valves 24a, 24b, 24c, 24d, use side heat exchangers 26a, 26b, 26c, 26d, the flow rate adjusting valves 25a, 25b, 25c, and 25d and the flow path switching valves 22a, 22b, 22c, and 22d are connected by the heat medium pipe 5 to constitute a heat medium circuit.
  • each utilization side heat exchanger 26a, 26b, 26c, 26d is provided in parallel with respect to the two intermediate heat exchangers 15a, 15b, respectively, and each constitutes a heat medium circuit.
  • the heat medium flowing through the heat medium circuit is water or brine.
  • the slave relay unit 3b includes first heat medium temperature sensors 31a and 31b, second heat medium temperature sensors 32a and 32b, third heat medium temperature sensors 33a, 33b, 33c, and 33d, and a fourth heat medium. It has temperature sensors 34a, 34b, 34c, 34d, a fifth temperature sensor 35, a sixth temperature sensor 37, a seventh temperature sensor 38, and a pressure sensor 36.
  • the first heat medium temperature sensors 31a and 31b detect the temperature of the heat medium on the outlet side of the intermediate heat exchangers 15a and 15b.
  • the second heat medium temperature sensors 32a and 32b detect the temperature of the heat medium on the inlet side of the intermediate heat exchangers 15a and 15b.
  • the third heat medium temperature sensors 33a, 33b, 33c, 33d detect the temperature of the heat medium on the inlet side during cooling of the use side heat exchangers 26a, 26b, 26c, 26d.
  • the fourth heat medium temperature sensors 34a, 34b, 34c, 34d detect the temperature of the heat medium on the outlet side during cooling of the use side heat exchangers 26a, 26b, 26c, 26d.
  • the fifth temperature sensor 35 detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 15a.
  • the pressure sensor 36 detects the pressure of the refrigerant on the outlet side of the intermediate heat exchanger 15a.
  • the sixth temperature sensor 37 detects the temperature of the refrigerant on the inlet side of the intermediate heat exchanger 15b.
  • the seventh temperature sensor 38 detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 15b.
  • the flow rate adjusting valves 25a, 25b, 25c, 25d, the third heat medium temperature sensors 33a, 33b, 33c, 33d, and the fourth heat medium temperature sensors 34a, 34b, 34c, 34d are provided inside the relay unit 3. Although illustrated about the case where it is installed, it is not restricted to this.
  • the flow rate adjusting valves 25a, 25b, 25c, and 25d, the third heat medium temperature sensors 33a, 33b, 33c, and 33d, and the fourth heat medium temperature sensors 34a, 34b, 34c, and 34d are used on the use side heat exchanger 26a, It may be installed in the vicinity of 26b, 26c, 26d, that is, in or near the use side units 2a, 2b, 2c, 2d.
  • Each heat load of use side heat exchanger 26a, 26b, 26c, 26d is represented by (1) Formula.
  • the heat load is determined by multiplying the flow rate, density, constant pressure specific heat of the heat medium, and the temperature difference between the heat medium at the inlet and outlet of the use side heat exchangers 26a, 26b, 26c, 26d.
  • Vw is the flow rate of the heat medium
  • ⁇ w is the density of the heat medium
  • Cpw is the constant pressure specific heat of the heat medium
  • Tw is the temperature of the heat medium
  • subscript in is the inlet of the use side heat exchangers 26a, 26b, 26c, 26d. The value of the heat medium on the side, and the subscript out indicates the value of the heat medium on the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d.
  • the target value of the temperature difference between the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d is set to 5 ° C., for example.
  • the flow rate adjustment valves 25a, 25b, 25c, and 25d are mixing valves installed on the downstream side of the use side heat exchangers 26a, 26b, 26c, and 26d has been described as an example. However, it may be a three-way valve installed on the upstream side of the use side heat exchangers 26a, 26b, 26c, and 26d.
  • Twin and Twout are the heat medium temperatures on the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d
  • Vw is the flow rate of the heat medium flowing into the flow rate adjusting valves 25a, 25b, 25c, and 25d
  • Vwr is the flow rate of the heat medium flowing into the use side heat exchangers 26a, 26b, 26c, and 26d
  • Tw is the heat medium that flows through the use side heat exchangers 26a, 26b, 26c, and 26d and the bypass circuits 27a, 27b, 27c, This represents the temperature of the heat medium after the heat medium that has flowed to 27d has joined.
  • the heat exchangers 26a, 26b, 26c, and 26d on the use side heat exchangers exchange heat and the bypass circuits 27a, 27b, 27c, and 27d without heat exchange and temperature changes.
  • the temperature of the heat medium approaches the temperature on the inlet side of the use side heat exchangers 26a, 26b, 26c, and 26d by the amount of flow that bypasses the temperature difference of the heat medium.
  • the total flow rate is 20 L / min
  • the heat medium inlet temperature of the use side heat exchangers 26a, 26b, 26c, 26d is 7 ° C.
  • the outlet temperature is 13 ° C.
  • the use side heat exchangers 26a, 26b, 26c, 26d side When the flow rate that flows through is 10 L / min, the temperature after the subsequent merging is 10 ° C. from the equation (2).
  • the heat medium that passes through the use side units 2a, 2b, 2c, 2d or the bypass circuits 27a, 27b, 27c, 27d and passes through the flow path switching valves 22a, 22b, 22c, 22d is subjected to intermediate heat exchange. Flows into the containers 15a and 15b. At this time, if the heat exchange amount of the intermediate heat exchangers 15a and 15b does not change, the temperature difference between the heat mediums on the inlet side and the outlet side becomes substantially the same due to heat exchange in the intermediate heat exchanger 15a or 15b.
  • the temperature difference of the heat medium between the inlet side and the outlet side of the intermediate heat exchanger 15a or 15b is 6 ° C.
  • the temperature of the heat medium at the inlet side of the intermediate heat exchanger 15a or 15b is 13 ° C.
  • the temperature of the heat medium on the outlet side is 7 ° C.
  • the heat load in the use side heat exchangers 26a, 26b, 26c, and 26d decreases, and the temperature of the heat medium on the inlet side of the intermediate heat exchanger 15a or 15b decreases to 10 ° C.
  • the intermediate heat exchanger 15a or 15b performs approximately the same amount of heat exchange, so that the heat medium flows out from the intermediate heat exchanger 15a or 15b at 4 ° C., and this is repeated. The temperature of the heat medium will drop.
  • the pumps 21a, 21b are changed according to the change in the heat load of the use side heat exchangers 26a, 26b, 26c, 26d so that the temperature of the heat medium on the outlet side of the intermediate heat exchanger 15a or 15b approaches the target value. Change the rotation speed.
  • the rotation speed of the pumps 21a and 21b decreases to save energy
  • the rotation speed of the pumps 21a and 21b increases and the flow rate Vw of the heat medium increases. Can be increased.
  • the pump 21b operates when a cooling load or a dehumidifying load is generated in any of the use side heat exchangers 26a, 26b, 26c, and 26d. In any of the use side heat exchangers 26a, 26b, 26c, and 26d, the pump 21b operates. If there is no cooling load or dehumidifying load, the operation is stopped.
  • the pump 21a operates when a heating load is generated in any of the usage side heat exchangers 26a, 26b, 26c, and 26d, and in any of the usage side heat exchangers 26a, 26b, 26c, and 26d. Stop when there is no heating load.
  • Control device 50 In the first embodiment, a case where there is one control device 50 will be described, but the control device 50 is separated into a heat source side control device 50a and a relay side control device 50b as shown in FIG. Also good.
  • the heat source side control device 50a controls the heat source side unit 1 so as to function as an outdoor unit
  • the relay side control device 50b controls devices constituting the relay unit 3.
  • the heat source side control device 50a and the relay side control device 50b are composed of a microcomputer, an electric circuit, and the like, and can communicate with each other.
  • the relay side control device 50b may be communicably connected to a remote controller, another air conditioner connected to the network, the heat source side unit 1, and the usage side units 2a, 2b, 2c, 2d.
  • the heat source side control device 50 a and the relay side control device 50 b may be connected to a centralized controller that controls the entire air conditioning system 100.
  • the function of the relay side control device 50b may be shared with any one of the heat source side unit 1, the use side units 2a, 2b, 2c, and 2d, the centralized controller, the remote controller, or another air conditioner connected to the network.
  • the centralized controller manages the heat source side unit 1 and the usage side units 2a, 2b, 2c, and 2d
  • the remote controller is provided in the indoor space 7 and uses the room temperature information instructed by the user as the heat source side unit 1 and the usage side unit. Transmit to the side units 2a, 2b, 2c, 2d.
  • Information from the remote controller may be transmitted to the heat source side unit 1 via the heat source side control device 50a.
  • the heat source unit 1 and the remote controller may communicate with each other.
  • the control apparatus 50 may be comprised with several apparatus like this Embodiment 1, and may be comprised with a single apparatus.
  • the first embodiment is an air conditioning system 100 in which each usage-side unit 2a, 2b, 2c, 2d performs a cooling / heating mixed operation in which a cooling operation or a heating operation can be performed.
  • FIG. 4 is a hardware configuration diagram showing a physical configuration of the control device 50 according to Embodiment 1 of the present invention.
  • the control device 50 controls the operation of the air conditioning system 100, and includes a communication unit 54, a control determination unit 51, and a storage unit 55.
  • the communication unit 54, the control determination unit 51, and the storage unit 55 are connected by an internal bus.
  • the communication unit 54 is a transmission / reception circuit connected to the communication port, and transmits / receives communication via the communication port.
  • the control determination unit 51 is, for example, a microcomputer, and stores data received by the communication unit 54 in the storage unit 55 as necessary.
  • the control determination unit 51 reads data stored in the storage unit 55 and transmits the read data to the transmission target via the communication unit 54.
  • the storage means 55 is a RAM that stores various data.
  • FIG. 5 is a block diagram showing a functional configuration of the control device 50 according to Embodiment 1 of the present invention.
  • the control device 50 includes an input unit 52, an output unit 53, a communication unit 54, a storage unit 55, and a control determination unit 51.
  • the function of the control device 50 may be realized by a program executed by a microcomputer.
  • the input unit 52 acquires information typified by a set temperature set by the user. Further, the input unit 52 reads detection results of the first heat medium temperature sensors 31a, 31b and the like.
  • the output unit 53 outputs control information for adjusting the flow rate of the heat medium flowing through the bypass circuits 27a, 27b, 27c, and 27d to the flow rate adjusting valves 25a, 25b, 25c, and 25d.
  • the communication unit 54 communicates with devices constituting the air conditioning system 100 such as the use side units 2a, 2b, 2c, and 2d, the heat source side unit 1, and the centralized controller. For example, information such as temperature, valve opening / closing, control of the flow path control device, frequency of the compressor 10 and operation stop of the air conditioning system 100 is communicated.
  • the control device 50 has a heat storage mode and a use mode.
  • the heat storage mode is a mode in which warm heat or cold heat of the heat medium is stored using the use side heat exchangers 26a, 26b, 26c, 26d or the heat medium pipe 5 when the compressor 10 is operating.
  • the use mode is a mode in which warm or cold energy stored in the heat storage mode is used.
  • the storage means 55 includes a memory or the like, and has heat medium flow control information 55a and space information 55b.
  • the heat medium flow control information 55 a includes a target set temperature set by the user and information necessary for heat medium flow control based on the detection result of the indoor temperature sensor 39.
  • the information necessary for controlling the flow rate of the heat medium is, for example, the inlet temperature, outlet temperature, suction temperature, etc. of the use side units 2a, 2b, 2c, 2d.
  • the air conditioning system 100 calculates the operating capacity of each usage side unit 2a, 2b, 2c, 2d based on the inlet temperature, outlet temperature, suction temperature, etc. of the usage side units 2a, 2b, 2c, 2d, and reaches the set temperature. Harmonize with the air.
  • the space information 55b includes information for identifying the correspondence between the indoor space 7 and the installed use side units 2a, 2b, 2c, and 2d, and the characteristics of the installed space.
  • the information for identifying the use side units 2a, 2b, 2c, 2d is a floor plan of the indoor space 7 or a unique address for communication of the use side units 2a, 2b, 2c, 2d.
  • the characteristic of the space is information such as that the indoor space 7 is used as a computer room, or that the room 7 is vacant in a specific time zone.
  • the space characteristic is information such as that the temperature change of the space is within an allowable range. Note that the storage unit 55 may not be incorporated in the control device 50.
  • the control determination unit 51 compares the information received from the input unit 52 with the information from the storage unit 55 and the communication unit 54, and transmits the control content of each device to the output unit 53.
  • the information from the communication unit 54 is information such as temperature, valve opening / closing, flow path control device control, frequency of the compressor 10 and operation stop of the air conditioning system 100 as described above.
  • the control determination unit 51 includes a heat storage unit 51a, a freezing suppression unit 51b, and a heat medium flow rate control unit 51c.
  • the heat storage means 51a is for storing, in the heat storage mode, the warm or cold energy of the heat medium in the housing when the compressor 10 is operating.
  • the heat storage means 51a receives information from the input unit 52 that any one of the indoor spaces 7 in which the use side heat exchangers 26a, 26b, 26c, and 26d are installed is an empty room, the indoor space 7 that is an empty room.
  • the hot or cold heat of the heat medium flowing in the use side heat exchangers 26a, 26b, 26c, and 26d installed in is stored in the empty room.
  • the information indicating that the room is vacant is received by the heat storage means 51a via the input unit 52 by the user operating with a remote controller or the like, and stored in the storage means 55 as the spatial information 55b.
  • the heat storage means 51a determines the availability.
  • a vacant room is a room where there is no person. Examples of vacancies include living rooms, warehouses or computer rooms.
  • the upper limit value and the lower limit value (space information 55b) of the internal temperature are set in consideration of the storage state of the stored goods.
  • the spatial information 55b may be set using a user interface using a centralized controller.
  • using the user interface means setting on the display device.
  • the setting of the spatial information 55b may be a combination of a mechanical on or off state by a plurality of switches. Further, static information in the spatial information 55b may be set in advance when the air conditioning system 100 is manufactured.
  • the freezing suppression means 51b suppresses freezing of the heat medium by flowing the heat stored by the heat storage means 51a through the heat medium in the use mode.
  • the anti-freezing means 51b causes the intermediate heat exchangers 15a and 15b to perform an anti-freeze operation that causes the heat stored in the heat storage means 51a to flow through the heat medium and suppress the heat medium from freezing. Let it be implemented.
  • the flow path of the heat medium from the intermediate heat exchangers 15a, 15b to the use side heat exchangers 26a, 26b, 26c, 26d is generally installed inside the building 9, and usually the freezing temperature of the heat medium, for example, water In this case, the temperature is kept higher than 0 ° C.
  • the heat medium circuit is cooled to reach the freezing temperature.
  • the temperature drop of the outside air is remarkable at midnight and the like, and there are many people absent, heating is not used and the stop state continues, so that the heat medium is likely to freeze. For this reason, it is necessary to perform freezing suppression for suppressing freezing of the heat medium.
  • Freezing suppression means 51b includes first heat medium temperature sensors 31a, 31b, second heat medium temperature sensors 32a, 32b, third heat medium temperature sensors 33a, 33b, 33c, 33d, or a fourth heat medium temperature sensor.
  • the freeze prevention operation is performed by the intermediate heat exchangers 15a and 15b.
  • the anti-freezing means 51b operates the pump 21a or 21b in the intermediate heat exchangers 15a and 15b to circulate the heat medium, and stirs the heat medium in the heat medium pipe 5 to thereby heat the heat medium circuit.
  • the entire temperature can be made uniform, and the temperature of the heat medium in the part where the temperature has decreased can be raised to prevent freezing.
  • the freezing suppression means 51b operates the pump 21a when either the first heat medium temperature sensor 31a or the second heat medium temperature sensor 32a becomes a set temperature or lower. When either the first heat medium temperature sensor 31b or the second heat medium temperature sensor 32b becomes equal to or lower than the set temperature, the pump 21b is operated.
  • any of the third heat medium temperature sensors 33a, 33b, 33c, and 33d or the fourth heat medium temperature sensors 34a, 34b, 34c, and 34d falls below the set temperature, the corresponding use side heat exchange is performed.
  • Either the pump 21a or 21b connected to the units 26a, 26b, 26c, and 26d is operated to circulate the heat medium.
  • the room temperature is higher than the outside air temperature. That is, warm heat is stored in a housing such as air, walls, and floors present in the indoor space 7. At this time, since the temperature of the indoor space 7 is higher than the temperature of the heat medium in the heat medium pipe 5 disposed in the non-air-conditioned space 8, heat exchange is performed between the air in the indoor space 7 and the heat medium. However, it is possible to prevent freezing. Therefore, in the water air-conditioning system of this embodiment, heat is stored in air in an empty room that does not need to be heated and used to prevent the heat medium from freezing.
  • the heat storage means 51a identifies the usage-side units 2a, 2b, 2c, and 2d installed in the vacant space from the space information 55b, and the usage-side heat exchangers 26a and 26b of the usage-side units 2a, 2b, 2c, and 2d. , 26c, 26d, etc., by promoting heat exchange with the use side blowers 20a, 20b, 20c, 20d, etc., so that the heat stored in the housing such as air, walls, and floors in the indoor space 7 is transferred to the heat medium. Flow through the circuit. Thereby, it is possible to prevent the heat medium from freezing. Even if the room is not vacant during the day, there are many times when the freezing prevention time such as nighttime is likely to be vacant. By doing so, it is possible to perform an anti-freezing operation using an empty room.
  • the heat medium flow control means 51c receives signals from the heat storage means 51a and the freeze suppression means 51b, the pumps 21a, 21b, the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, the flow rate adjustment
  • the operation of the valves 25a, 25b, 25c, 25d, the stop valves 24a, 24b, 24c, 24d and the use side blowers 20a, 20b, 20c, 20d is controlled. Specifically, it will be described later with reference to the flowchart shown in FIG.
  • FIG. 6 is a flowchart showing the vacancy recognition operation of the air conditioning system 100 according to Embodiment 1 of the present invention.
  • the control device 50 executes the vacancy recognition operation constantly or at a constant cycle. As shown in FIG. 6, when the control device 50 receives information indicating that the room is vacant from the user via the input unit 52 (step ST1), the control device 50 stores the space information 55b indicating that the room is vacant in the storage means 55 ( Step ST2).
  • FIG. 7 is a flowchart showing the operation of preventing the freezing of the heat medium of the air conditioning system 100 according to Embodiment 1 of the present invention.
  • the freezing suppression unit 51b determines whether the temperature T1a detected by the first heat medium temperature sensor 31a is equal to or lower than the set temperature Ts (step ST11).
  • the freeze suppression means 51b determines whether the temperature T2a detected by the second heat medium temperature sensor 32a is equal to or lower than the set temperature Ts. Is determined (step ST12).
  • n is an identifier for identifying the usage-side units 2a, 2b, 2c, 2d.
  • the utilization side unit (1) is 2a
  • the utilization side unit (2) is 2b
  • the utilization side unit (3) is 2c
  • the utilization side unit (4) is 2d
  • the maximum value of n at this time is 4.
  • freezing is performed.
  • the suppression means 51b determines that the heat stored by the heat storage means 51a is used for prevention of freezing, and holds the determination result (step ST15).
  • the freezing suppression means 51b uses the heat stored by the heat storage means 51a for freezing prevention.
  • the third heat medium temperature sensors 33a, 33b, 33c, and 33d may be used instead of the fourth heat medium temperature sensors 34a, 34b, 34c, and 34d. In this case, the place where the third heat medium temperature sensors 33a, 33b, 33c, and 33d are easily frozen during the freeze prevention operation can improve the accuracy of temperature detection.
  • the freezing suppression unit 51b has all the temperatures detected by the first heat medium temperature sensors 31a, 31b and the fourth heat medium temperature sensors 34a, 34b, 34c, 34d. It is determined whether the temperature is equal to or higher than the set temperature Ts (step ST22). For example, if the amount of heat necessary for preventing freezing has already been stored in advance, the result of step ST22 is No. If the heat has not been stored, the result of step ST22 is Yes.
  • the second heat medium temperature sensors 32a and 32b and the third heat medium temperature sensors 33a, 33b, 33c, and 33d may be used for temperature determination.
  • the freezing suppression unit 51b stops the freezing prevention operation (step ST23).
  • FIG. 8 is a flowchart showing the operation of housing heat storage of the air conditioning system 100 according to Embodiment 1 of the present invention.
  • the heat storage means 51a determines whether or not the compressor 10 is operating at the current time and heat storage is required (step ST31). Whether or not heat storage is necessary is determined in step ST15, step ST19, and step ST23.
  • the heat storage means 51a determines whether the usage-side units 2a, 2b, 2c, and 2d are installed in vacant rooms (step ST34).
  • the heat storage means 51a determines whether the temperatures of the use side units 2a, 2b, 2c, 2d are within an allowable temperature range stored in advance (step ST35). When the temperature is within the allowable temperature range, the heat medium flow control means 51c operates the pump 21a or 21b (step ST36). The heat medium flow control means 51c switches the flow path switching valves 22a, 22b, 22c, and 22d connected to the use side units 2a, 2b, 2c, and 2d to the heating intermediate heat exchanger 15a side, The switching valves 23a, 23b, 23c, and 23d are switched to the cooling intermediate heat exchanger 15b side (step ST37).
  • the heat medium flow control means 51c fully opens and stops the flow rate adjusting valves 25a, 25b, 25c, 25d of the use side units 2a, 2b, 2c, 2d to the use side heat exchangers 26a, 26b, 26c, 26d side.
  • the valves 24a, 24b, 24c, and 24d are opened, and the use side fans 20a, 20b, 20c, and 20d are operated (step ST38).
  • step ST33 to step ST40 in the case of YES in step ST31 cold heat is stored in the empty room. Further, in step ST33 to step ST40 in the case of YES in step ST32, the heat stored in the housing is used. Further, the condition “use the stored cold energy” in step ST32 can be arbitrarily designated in the heat medium freezing prevention process as shown in step ST19 and step ST15 of FIG. In step ST36, both pumps 21a and 21b may be operated.
  • FIG. 9 is a circuit diagram showing the flow of the heat medium when only the usage-side unit 2a of the air conditioning system 100 according to Embodiment 1 of the present invention is set to an empty room. As shown in FIG. 9, when only the use side unit 2a is installed in the empty room, the heat medium is cooled by the intermediate heat exchanger 15b, and cold heat is stored in the empty room.
  • FIG. 10 is a circuit diagram showing the flow of the heat medium when the usage-side units 2a and 2b of the air conditioning system 100 according to Embodiment 1 of the present invention are set to vacant rooms.
  • the flow path switching valves 22 and 23 are switched to the intermediate heat exchanger 15a or 15b side, but may be switched so that the heat medium having a low temperature and the heat medium having a high temperature are stirred.
  • the flow path switching valve 22 of the use side unit (n) installed in the empty room is switched to the intermediate heat exchanger 15a side, and the flow path switching valve 23 is switched to the intermediate heat exchanger 15b side.
  • the flow-path switching valve 22 of the utilization side unit (n + 1) installed in the empty room is switched to the intermediate heat exchanger 15b side, and the flow-path switching valve 23 is switched to the intermediate heat exchanger 15a side.
  • the flow path switching valve 22 of the use side unit (n) installed in the vacant room is switched to the intermediate heat exchanger 15b side, and the flow path switching valve 23 is switched to the intermediate heat exchanger 15a side.
  • the flow-path switching valve 22 of the utilization side unit (n + 1) installed in the empty room is switched to the intermediate heat exchanger 15a side, and the flow-path switching valve 23 is switched to the intermediate heat exchanger 15b side.
  • the use side units 2a and 2b are installed in the vacant room, the heat is stored in the use side unit 2a and the cold is stored in the use side unit 2b.
  • the heating medium when the compressor 10 is in operation, has a heating temperature using the use side heat exchangers 26a, 26b, 26c, 26d or the heating medium pipe 5.
  • the method includes a step of storing cold energy and a step of using the stored heat or cold energy.
  • the control device 50 has a heat storage mode and a use mode.
  • the air conditioning system 100 can store cold or warm heat inside the use side heat exchangers 26a, 26b, 26c, 26d or the heat medium pipe 5. In this way, the air conditioning system 100 can store cold or warm heat even if a separate heat storage tank is not prepared.
  • the control device 50 uses the heat or cold that the heat medium flowing in the use side heat exchangers 26a, 26b, 26c, and 26d installed in the empty room where no person is present. Is stored in the empty room.
  • the heat storage place is a vacant room, that is, indoors, the heat or cold stored in the vacant room is not easily dissipated. Therefore, the utilization efficiency of the stored heat can be improved.
  • the control device 50 suppresses freezing of the heat medium by flowing the heat stored in the heat storage mode to the heat medium.
  • Means 51b is further provided. In this way, by preliminarily storing heat in an empty room that does not require air conditioning, freezing of the heat medium can be suppressed using the stored warm heat without starting the compressor 10. Further, by storing the cold energy, it is possible to prevent freezing and shorten the start-up time (improvement in the responsiveness of the cooling operation and the heating operation).
  • a relay unit is provided between a heat source unit and a plurality of indoor units, and heat transfer is performed between the heat source unit and the relay unit using a refrigerant, and water is transferred between the relay unit and the indoor unit using water.
  • the system is known.
  • the water air-conditioning system uses water to reduce the amount of refrigerant while realizing a reduction in start-up time, energy saving and construction by refrigerant control.
  • the water pipe may be frozen. Therefore, even when the operation is stopped, the pump, the compressor, the boiler, or the like is activated to suppress the freezing of the water pipe.
  • the compressor or the like is started during the freeze prevention operation, the power consumption increases.
  • the conventional chiller system that uses the heat stored in the buffer tank to prevent freezing takes time to start the buffer tank.
  • the first embodiment can reduce power consumption because it is not necessary to start the compressor 10 when preventing freezing.
  • the first embodiment since the first embodiment stores heat in the vacant room, the stored heat can be used only by starting the pumps 21a and 21b. Therefore, the startup time is short.
  • an air conditioner including a relay unit that connects a heat source device and a plurality of indoor units.
  • the refrigerant carries heat between the heat source device and the relay unit, and water carries heat between the relay unit and each indoor unit.
  • Refrigerant control reduces the amount of refrigerant to be used by using water while shortening the startup time, realizing energy savings and workability.
  • the temperature in the heat medium circulation circuit is made uniform by moving the pump to stir the heat medium in the heat medium piping to prevent the heat medium from freezing, and the temperature of the heat medium in the part where the temperature has decreased. To prevent freezing.
  • the air conditioning system 100 can store the cold in the vacant room in advance when the compressor 10 is operating, and store the heat when the temperature of the heat medium is equal to or lower than the set temperature.
  • anti-freezing operation such as applying the cooled heat to the heat medium, the effect of anti-freezing can be made higher than the conventional stirring of the heat medium by the pumps 21a and 21b.
  • the temperature sensor is installed in the inlet side and outlet side of intermediate heat exchanger 15a, 15b
  • the inlet side or outlet of intermediate heat exchanger 15a, 15b The temperature sensor should just be installed in either one of the sides. Also in this case, the pumps 21a and 21b can be controlled.
  • FIG. 11 is a circuit diagram showing an air conditioning system 100 according to a second modification of the first embodiment of the present invention.
  • two-way valves are used as the flow rate adjusting valves 25a, 25b, 25c, 25d, and bypass circuits 27a, 27b, 27c, 27d and stop valves 24a, 24b, 24c. 24d are omitted.
  • the opening areas of the flow rate adjusting valves 25a, 25b, 25c, and 25d are controlled, and the pumps 21a and 21b are operated after the circulation path of the heat medium is secured.
  • the opening areas of the two-way valve flow control valves 25a, 25b, 25c, and 25d can be continuously changed by a stepping motor or the like. In this case, the same control as that of the three-way valve is possible, and the control device 50 adjusts the opening degree of the flow rate adjustment valves 25a, 25b, 25c, and 25d to the use side heat exchangers 26a, 26b, 26c, and 26d.
  • the flow rate of the heat medium to be introduced is controlled.
  • the control device 50 controls the temperature difference between the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d to be a predetermined target value, for example, 5 ° C. Then, the rotational speeds of the pumps 21a and 21b may be controlled so that the temperature on the inlet side or outlet side of the intermediate heat exchangers 15a and 15b becomes a predetermined target value.
  • a two-way valve is used as the flow rate adjusting valve 25a, 25b, 25c, 25d as in the second modification, it can be used to open and close the flow path, so that the stop valves 24a, 24b, 24c, 24d are unnecessary.
  • the air conditioning system 100 can be constructed at low cost.
  • the third heat medium temperature sensors 33a, 33b, 33c, 33d, and the fourth heat medium are used.
  • the temperature sensors 34a, 34b, 34c, 34d are installed in or near the relay unit 3, and the flow rate adjusting valves 25a, 25b, 25c, 25d are installed in or near the use side units 2a, 2b, 2c, 2d. It may be.
  • FIG. FIG. 12 is a circuit diagram showing an air conditioning system 100 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment in that the relay unit 18 is simplified.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
  • the relay unit 18 includes an intermediate heat exchanger 15, an expansion unit 16, and a pump 21.
  • the flow path switching valves 22a, 22b, 22c, and 22d are omitted, and a cooling only operation and a heating operation are possible instead of a cooling and heating mixed operation.
  • the stop valves 24a, 24b, 24c, 24d, the flow rate adjusting valves 25a, 25b, 25c, 25d, the third heat medium temperature sensors 33a, 33b, 33c, 33d, and the fourth heat medium temperature sensors 34a, 34b, 34c. , 34d are provided in the use side units 2a, 2b, 2c, 2d.
  • the control of the flow path switching valves 22a, 22b, 22c, and 22d becomes unnecessary, so that the control of the pump 21 and the like are simplified.
  • FIG. 13 is a circuit diagram showing an air conditioning system 100 according to a modification of the second embodiment of the present invention.
  • two-way valves are used as the flow rate adjusting valves 25a, 25b, 25c, 25d, and bypass circuits 27a, 27b, 27c, 27d and stop valves 24a, 24b, 24c, 24d. Is omitted.
  • the opening areas of the flow rate adjusting valves 25a, 25b, 25c, and 25d are controlled, and the pumps 21a and 21b are operated after the circulation path of the heat medium is secured. Also in the modified example, the same effect as in the second embodiment is obtained.
  • FIG. FIG. 14 is a block diagram showing a control device 50 according to Embodiment 3 of the present invention.
  • the third embodiment is different from the first embodiment in that the storage unit 55 stores history information 55c and permission information 55d.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • the storage means 55 stores history information 55c and permission information 55d.
  • the history information 55c includes information such as a history of cooling or heating operation and stop, and a history of temperature change over time.
  • the history of operation or stop of cooling or heating is a history of the number of times cooling or heating has been performed for each of the usage-side units 2a, 2b, 2c, and 2d, and the control device 50 has a frequency of cooling or heating being performed. If there are few, I guess it is empty.
  • the low frequency means, for example, a case where only the trial operation is performed or a case where the operation is not performed.
  • the history of temperature change over time is a history of time change in outside air temperature or time change in room temperature, etc., and the control device 50 cannot find a correlation between the time change in outside air temperature and the time change in room temperature. Guess not vacant.
  • the control apparatus 50 estimates that it is not an empty room, when the rise in indoor temperature differs from the tendency of the rise in outside air temperature.
  • the history information 55c can improve the accuracy of estimation by storing the history of time information together. For example, it is possible to estimate the time zone or season when the room is vacant.
  • the control device 50 can estimate that the room becomes vacant in a specific time zone or season by analyzing the tendency of the frequency of use of cooling or heating.
  • Permission information 55d is information related to permission for automatic recognition of vacancies.
  • the permission information 55d is set by the user as to whether or not to allow the user to automatically recognize a vacant room without setting the permission information 55d. In the case of permission, the vacancy is automatically recognized, and in the case of prohibition, the user manually recognizes without being automatically recognized.
  • the control device 50 may set permission / rejection of automatic recognition for each space in association with the space information 55b, and automatically recognizes for each use unit 2a, 2b, 2c, 2d. May be set, or automatic recognition may be set collectively for all the use side units 2a, 2b, 2c, 2d.
  • FIG. 15 is a flowchart showing the automatic vacancy recognition operation of the air conditioning system 100 according to Embodiment 3 of the present invention.
  • the control device 50 executes the automatic vacancy recognition operation at all times or at a constant cycle.
  • the control device 50 determines whether the spatial information 55b is set by the user (step ST51).
  • the control device 50 stores the spatial information 55b in the storage unit 55 (step ST52).
  • the control device 50 determines whether automatic recognition is permitted by the user (step ST53). If permitted, control device 50 adds permission to permission information 55d (step ST54).
  • n 1 (step ST55).
  • n is an identifier for identifying the usage-side units 2a, 2b, 2c, 2d.
  • the utilization side unit (1) is 2a
  • the utilization side unit (2) is 2b
  • the utilization side unit (3) is 2c
  • the utilization side unit (4) is 2d
  • the maximum value of n at this time is 4.
  • the heat storage means 51a determines whether or not the permission information 55d of the use side units 2a, 2b, 2c, and 2d (n) is permitted (step ST56).
  • the heat storage means 51a determines whether the use-side units 2a, 2b, 2c, 2d (n) have a low frequency of heating or cooling (step ST57). At this time, the heat storage means 51 a refers to the history information 55 c stored in the storage means 55. When the frequency of heating or cooling is low, the heat storage means 51a has the same tendency of an increase in the indoor temperature of the indoor space 7 in which the use side units 2a, 2b, 2c, 2d (n) are installed and an increase in the outside air temperature. Is determined (step ST58).
  • the heat storage means 51a automatically recognizes the indoor space 7 in which the use side units 2a, 2b, 2c, 2d (n) are installed as an empty room. (Step ST59).
  • step ST62 when the operation frequency is high in step ST57 or the tendency is different in step ST58, the control device 50 cancels the setting of the vacant rooms of the use side units 2a, 2b, 2c, 2d (n) (step ST62).
  • step ST57 when the air conditioning system 100 is just introduced, and there is no operation history of heating or cooling in the use side units 2a, 2b, 2c, and 2d, NO is determined in step ST57 and the process may be shifted to step ST62. .
  • the result in step ST57 is NO, and the process may proceed to step ST62.
  • the space information 55b recognizes a vacant room only when both of step ST57 and step ST58 are YES is illustrated, but when either one of step ST57 or step ST58 is YES, it is empty. It may be recognized as a room.
  • the indoor temperature sensor 39 that detects the temperature of the air-conditioning target space is further provided, and the control device 50 stores the history of the time change of the temperature detected by the indoor temperature sensor 39.
  • the heat storage means 51a has a function of determining whether the air-conditioning target space is an empty room based on the history stored in the storage means 55.
  • the control device 50 further includes storage means 55 for storing the operation history of the refrigerant circuit and the heat medium circuit, and the heat storage means 51a has an air-conditioning target space based on the history stored in the storage means 55. It has a function to determine whether it is a room.
  • the control device 50 has a function of determining whether the air-conditioning target space is vacant for each time zone based on the history stored in the storage unit 55. In this way, it is possible to automatically recognize the vacancy simply based on the operation history or the temperature change history grasped by the air conditioning system 100. For this reason, it is possible to save the user from setting up vacancies.
  • FIG. FIG. 16 is a flowchart showing the operation of housing heat storage in the air conditioning system 100 according to Embodiment 4 of the present invention.
  • the fourth embodiment is different from the first embodiment in that heat is stored using the heat medium pipe 5.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • the heat storage means 51a stores heat in the heat medium pipe 5 connected to the use side heat exchangers 26a, 26b, 26c, and 26d that have not been subjected to heat exchange in advance, and freeze prevention means 51b. Controls freezing using the stored heat.
  • the heat medium flow control means 51c is configured so that the heat medium flows through the bypass circuits 27a, 27b, 27c, and 27d connected to the use side units 2a, 2b, 2c, and 2d installed in the vacant rooms. , 25b, 25c, 25d are fully opened to the bypass circuits 27a, 27b, 27c, 27d side.
  • the opening degree of the flow rate adjusting valves 25a, 25b, 25c, 25d is adjusted so as to satisfy the expression (2).
  • the heat medium flow control means 51c reduces the rotation speed of the pumps 21a, 21b and adjusts the opening degree of the flow rate adjustment valves 25a, 25b, 25c, 25d connected to the use side units 2a, 2b, 2c, 2d.
  • a cooling capability or a heating capability can be adjusted.
  • the heat medium on the outlet side of the bypass circuits 27a, 27b, 27c, and 27d is reheated by the intermediate heat exchangers 15a and 15b, and the average temperature of the heat medium is prevented from being biased to the target temperature. it can.
  • the heat storage means 51a determines whether the use side units 2a, 2b, 2c, 2d are in operation, and then determines whether the use side units 2a, 2b, 2c, 2d are installed in the vacant room. And the heat storage means 51a stores heat inside the heat medium pipe 5 when the use side units 2a, 2b, 2c, 2d are stopped and there is a person in the room. Moreover, when the use side units 2a, 2b, 2c, 2d are stopped and there is no person in the room, the heat storage means 51a stores heat in the empty room.
  • steps ST31 to ST40 are the same as steps ST31 to ST40 shown in FIG.
  • the heat storage means 51a determines whether the use side units 2a, 2b, 2c, 2d (n) are operating (step ST71). ). When the use side units 2a, 2b, 2c, 2d (n) are not operating, the heat storage means 51a determines whether the use side units 2a, 2b, 2c, 2d are set to vacant rooms (step ST34). When the use side units 2 a, 2 b, 2 c, 2 d are not set to empty rooms, the heat storage means 51 a stores heat inside the heat medium pipe 5.
  • the heat medium flow control means 51c operates the pump 21a or 21b.
  • the heat medium flow rate adjustment means fully opens the flow rate adjustment valves 25a, 25b, 25c, 25d connected to the use side units 2a, 2b, 2c, 2d (n) to the bypass circuits 27a, 27b, 27c, 27d side.
  • Step ST73 In step ST72 and step ST73 in the case of YES in step ST31, the heat storage means 51a bypasses the bypass circuit 27a, without changing the indoor temperature of the air-conditioned space in which the use side units 2a, 2b, 2c, 2d are installed.
  • step ST72 and step ST73 in the case of YES in step ST32 the freezing suppression means 51b bypasses the bypass circuit 27a without changing the room temperature of the air-conditioned space in which the use side units 2a, 2b, 2c, 2d are installed. , 27b, 27c, and 27d.
  • the heat storage means 51a has illustrated about the case where heat storage is carried out when the air-conditioning space is not set to the vacant space, also when it is set to the vacant space, cold heat is stored inside the heat medium pipe 5.
  • cold energy stored in the heat medium pipe 5 may be used.
  • the fourth embodiment can also be applied to a configuration that does not have the bypass circuits 27a, 27b, 27c, and 27d as shown in FIGS.
  • the control device 50 stops the use-side blowers 20a, 20b, 20c, and 20d and opens the opening of the flow rate adjusting valves 25a, 25b, 25c, and 25d, so that the heat medium is not changed. Heat can be stored inside the pipe 5.
  • the control device 50 uses the heat medium piping to heat or cool the heat medium flowing in the use side heat exchangers 26a, 26b, 26c, and 26d that have not been subjected to heat exchange.
  • 5 has a heat storage means 51a for storing the inside.
  • the use side heat exchangers 26a, 26b, 26c, and 26d are installed in the indoor space 7 where a person is present, the use side heat exchanger 26a in which heat exchange is not performed.
  • 26b, 26c, and 26d the hot or cold heat of the heat medium flowing through the heat medium is stored in the heat medium pipe 5. Thereby, heat can be stored not only in the vacant chamber but also in the heat medium pipe 5.
  • the use side heat exchangers 26a, 26b, 26c, and 26d are further provided with use side fans 20a, 20b, 20c, and 20d, and the heat storage means 51a includes the use side heat exchangers 26a, 26a, You may comprise so that the use side air blower 20a, 20b, 20c, 20d may be stopped, and the inside of the heat medium piping 5 may store the heat or cold which the heat medium which flows into 26b, 26c, 26d has. In this case, heat can be stored inside the heat medium pipe 5 without changing the room temperature.
  • bypass circuits 27a, 27b, 27c, 27d that connect the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, 26d and bypass the heat medium carried by the pumps 21a, 21b, and the pump 21a.
  • 21b is further provided with flow rate adjustment valves 25a, 25b, 25c, 25d for switching so that the heat medium carried by 21b flows to the use side heat exchangers 26a, 26b, 26c, 26d or the bypass circuits 27a, 27b, 27c, 27d.
  • the heat storage means 51a is a flow rate adjusting valve so that the heat medium flows to the bypass circuits 27a, 27b, 27c, and 27d. 25a, 25b, 25c, and 25d are switched. Thereby, it is possible to store heat in the heat medium pipe 5 connected to the use side heat exchangers 26a, 26b, 26c, and 26d that have not been subjected to heat exchange.
  • Embodiment 5 FIG.
  • the fifth embodiment is different from the first embodiment in that the heat storage amount is calculated.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • the heat storage means 51a calculates the amount of heat stored based on the temperature of the heat medium.
  • the heat storage amount of the heat medium can be calculated from the product of the mass, density, constant pressure specific heat and temperature of the heat medium, as shown in equation (1). Since the characteristics of the heat medium and the characteristics of the heat medium pipe 5 are known when the air conditioning system 100 is constructed, the mass, density, and constant pressure specific heat of the heat medium are known.
  • the amount of heat stored in the vacant space can be simply estimated based on the temperature increase rate of the heat medium.
  • the control device 50 sets the use-side fans 20a, 20b, 20c, and 20d in a state where the stop valves 24a, 24b, 24c, and 24d are fully closed or the flow rate adjustment valves 25a, 25b, 25c, and 25d are fully closed. Make it work. As a result, the temperature of the heat medium increases without changing the flow rate of the heat medium, and the difference between the heat medium and the room temperature is reduced. When the time until the temperature of the heat medium changes to the room temperature is short, it can be estimated that the heat storage amount of the vacant room is large. Therefore, the heat storage amount of the vacant room can be estimated based on the correspondence between the temperature of the heat medium and time.
  • a heat medium temperature sensor for detecting the temperature of the heat medium is further provided, and the control device 50 has a function of obtaining the amount of heat stored based on the temperature of the heat medium detected by the heat medium temperature sensor.
  • control device 50 operates the compressor 10 with the stop valves 24a, 24b, 24c, and 24d fully opened and the flow rate adjusting valves 25a, 25b, 25c, and 25d fully opened to control the flow rate of the heat medium. You may measure. In this case, the control device 50 can estimate the heat storage amount of the vacant room based on the flow rate of the heat medium and the difference between the room temperature and the target temperature.
  • FIG. 17 is a flowchart showing an energy saving control operation of the air conditioning system 100 according to Embodiment 6 of the present invention.
  • the sixth embodiment is different from the first embodiment in that the control is performed when the air conditioning capability is suppressed.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
  • the heat storage unit 51a stores cold heat or heat in the heat medium pipe 5.
  • step ST31 to step ST40 and step ST71 to step ST73 are the same as step ST31 to step ST40 and step ST71 to step ST73 shown in FIG.
  • the control device 50 need an air conditioning capability that makes the rotation speed of the compressor 10 low? Is determined (step ST81). That is, it is determined whether the difference between the temperature on the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d and the room temperature is equal to or less than the temperature difference threshold value. If the difference is equal to or smaller than the temperature difference threshold value, it is determined whether the temperature of the heat medium is the target temperature (step ST82).
  • the compressor 10 When the temperature of the heat medium is the target temperature, the compressor 10 is stopped, the stored heat is used, and the operation is continued (step ST83). On the other hand, when the temperature of the heat medium is not the target temperature, the rotation speed of the compressor 10 is maintained (step ST84). Then, the heat medium flow control means 51c restricts the opening degree of the flow rate adjustment valves 25a, 25b, 25c, 25d connected to the use side units 2a, 2b, 2c, 2d (n) (step ST85).
  • the flow control valves 25a, 25b, 25c, and 25d are set to intermediate openings, and heat is applied to any of the use side heat exchangers 26a, 26b, 26c, and 26d and the bypass circuits 27a, 27b, 27c, and 27d.
  • the medium is adjusted to flow. Thereby, heat is stored inside the heat medium pipe 5 while suppressing the air conditioning capability (step ST86).
  • the heat medium temperature sensor that detects the temperature of the heat medium and the indoor temperature sensor 39 that detects the temperature of the air-conditioning target space are further provided, and the heat storage means 51a is controlled by the heat medium temperature sensor.
  • the difference between the detected temperature and the temperature detected by the room temperature sensor 39 is equal to or lower than the temperature difference threshold value, the hot or cold heat of the heat medium is stored.
  • air-conditioning capability can be suppressed, without making it the rotation speed from which the efficiency of the compressor 10 deteriorates. That is, heat storage can be performed while suppressing the air conditioning capability. Therefore, energy efficiency is high.
  • FIG. FIG. 18 is a flowchart showing the operation of the computer room protection control of the air conditioning system 100 according to Embodiment 7 of the present invention.
  • the seventh embodiment is different from the first embodiment in that the control is to protect the computer room.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
  • Embodiment 7 exemplifies an air conditioning system 100 installed in a building 9 or the like including a space such as a computer room where it is necessary to avoid a temperature rise.
  • the temperature increase rate of the indoor space 7 in the computer room is higher than the temperature increase rate of the indoor space 7 other than the computer room. Since the computer or the like is generating heat, the computer room is constantly cooled in order to prevent the computer or the like from being damaged due to a high temperature.
  • the seventh embodiment during abnormal operation such as failure of the heat source unit 1, the temperature rise of the computer room that is always cooled using the cold stored in the heat medium pipe 5 or in the vacant room in advance. Suppress.
  • the temperature rise of the computer room is suppressed by using the cold heat of the indoor space 7 other than the computer room that tends to be lower in temperature than the indoor space 7 of the computer room. If there is cold energy stored, the computer room can be further cooled.
  • the heat storage means 51a determines whether or not the computer room has been registered in the space information 55b, and determines whether or not the heat source unit 1 has all failed.
  • the state that all the heat source side units 1 are out of order indicates that the communication with the heat source side unit 1 becomes impossible, or that the heat source side unit 1 performs an operation different from the user's intention. This is not during normal operation.
  • the control device 50 stops the use side units 2a, 2b, 2c, and 2d installed in the indoor space 7 other than the computer room.
  • control apparatus 50 sets indoor space 7 other than a computer room to an empty room, and operates the utilization side air blowers 20a, 20b, 20c, and 20d installed in the computer room. Thereby, the cold heat stored in the housing is sent to the computer room, and the computer room can be cooled.
  • the control device 50 determines whether or not the computer room has been registered in the space information 55b, and determines whether or not all the heat source side units 1 have failed (step ST91).
  • the control device 50 stops the use side units 2a, 2b, 2c, 2d installed in the indoor space 7 other than the computer room (step) ST92).
  • the control apparatus 50 sets indoor space 7 other than a computer room to an empty room (step ST93), and operates the utilization side air blowers 20a, 20b, 20c, and 20d installed in the computer room (step ST94).
  • the control device 50 can send the cold energy stored in the housing to the computer room (step ST95) and cool the computer room.
  • the use side unit 2a installed in the indoor space 7 other than the computer room is processed by the processing in steps ST35 to ST38 shown in FIG.
  • Cold heat is stored inside the heat medium pipe 5 in 2b, 2c, and 2d.
  • use side unit 2a, 2b, 2c, 2d installed in the computer room can suppress a temperature rise by the cold stored in the inside of the heat-medium piping 5.
  • the control device 50 uses the heat stored in the heat storage mode in the use-side heat exchangers 26a and 26b installed in the computer room that is constantly cooled. , 26c, 26d. In this way, when the heat source side unit 1 operates abnormally, the indoor space 7 other than the computer room is set as an empty room, and heat storage is performed, so that the temperature rise of the computer room can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

This air-conditioning system is provided with: a refrigerant circuit in which a compressor, a heat-source-side heat-exchanger, an expansion unit, and an intermediate heat-exchanger for exchanging heat between a refrigerant and a heat medium are connected by refrigerant piping, the refrigerant circuit having the refrigerant flowing therethrough; a heat-medium circuit in which a pump, the intermediate heat-exchanger, and a use-side heat-exchanger are connected by heat-medium piping, the heat-medium circuit having the heat medium flowing therethrough; and a control device having a heat-storage mode in which hot or cold energy of the heat medium is stored using the use-side heat-exchanger or the heat-medium piping while the compressor is operating and a use mode in which the hot or cold energy stored in the heat-storage mode is used.

Description

空調システム、利用側ユニット、制御装置及び制御方法Air conditioning system, user side unit, control device and control method
 本発明は、冷媒と熱媒体との間で熱交換する中間熱交換器を備える空調システム、空調システムに備わる利用側ユニット、空調システムに備わる制御装置及び制御方法に関する。 The present invention relates to an air conditioning system including an intermediate heat exchanger for exchanging heat between a refrigerant and a heat medium, a use side unit provided in the air conditioning system, a control device provided in the air conditioning system, and a control method.
 従来、熱源側ユニットで生成された温熱又は冷熱を利用側ユニットに供給する空調システムが知られている。そして、空調対象面積が広いビルには、1台の熱源側ユニットに複数台の利用側ユニットが接続される多室型の空調システムが一般的に導入されている。ここで、省エネ及び省施工の観点から、冷媒を室内まで循環させるビル用マルチエアコンが広く利用されている。一方で、地球温暖化防止の観点から水等の熱媒体を使用して温熱又は冷熱を室内ユニットに供給する、冷媒の使用量が少ない空調システムが提案されている(例えば特許文献1参照)。 Conventionally, there is known an air conditioning system that supplies hot or cold generated by a heat source side unit to a use side unit. In a building having a large area to be air-conditioned, a multi-room type air conditioning system in which a plurality of usage-side units are connected to one heat source side unit is generally introduced. Here, from the viewpoint of energy saving and construction, a building multi-air conditioner that circulates refrigerant to the room is widely used. On the other hand, from the viewpoint of global warming prevention, an air conditioning system that uses a heat medium such as water to supply hot or cold heat to an indoor unit and uses a small amount of refrigerant has been proposed (see, for example, Patent Document 1).
 特許文献1には、室外ユニットによって生成された温熱又は冷熱を、中間熱交換器を有する分岐ユニットを介して水又は不凍液といった熱媒体を用いて室内ユニットに搬送する冷凍サイクル装置が開示されている。また特許文献1には、ビルの屋上に設けられた蓄熱槽に冷熱及び温熱が蓄えられる冷凍サイクル装置も開示されている。 Patent Document 1 discloses a refrigeration cycle apparatus that transports hot or cold generated by an outdoor unit to an indoor unit using a heat medium such as water or antifreeze via a branch unit having an intermediate heat exchanger. . Patent Document 1 also discloses a refrigeration cycle apparatus in which cold heat and warm heat are stored in a heat storage tank provided on the roof of a building.
特開2003-343936号公報JP 2003-343936 A
 しかしながら、特許文献1に開示された冷凍サイクル装置は、冷熱又は温熱を蓄えるために、別途蓄熱槽が必要となる。 However, the refrigeration cycle apparatus disclosed in Patent Document 1 requires a separate heat storage tank in order to store cold or warm heat.
 本発明は、上記のような課題を解決するためになされたもので、蓄熱槽がなくとも冷熱又は温熱を蓄えることができる空調システム、空調システムに備わる利用側ユニット、空調システムに備わる制御装置及び制御方法を提供するものである。 The present invention has been made to solve the above-described problems, and is an air conditioning system that can store cold or heat without a heat storage tank, a use side unit provided in the air conditioning system, a control device provided in the air conditioning system, and A control method is provided.
 本発明に係る空調システムは、圧縮機、熱源側熱交換器、膨張部及び冷媒と熱媒体との間で熱交換する中間熱交換器が冷媒配管により接続され、冷媒が流れる冷媒回路と、ポンプ、中間熱交換器及び利用側熱交換器が熱媒体配管により接続され、熱媒体が流れる熱媒体回路と、圧縮機が動作しているときに、利用側熱交換器又は熱媒体配管を用いて熱媒体が有する温熱又は冷熱を蓄える蓄熱モードと、蓄熱モードにおいて蓄えられた温熱又は冷熱を利用する利用モードとを有する制御装置と、を備える。 An air conditioning system according to the present invention includes a compressor, a heat source side heat exchanger, an expansion unit, an intermediate heat exchanger that exchanges heat between the refrigerant and the heat medium, connected by a refrigerant pipe, a refrigerant circuit through which the refrigerant flows, a pump When the intermediate heat exchanger and the use side heat exchanger are connected by the heat medium pipe and the heat medium circuit through which the heat medium flows and the compressor is operating, the use side heat exchanger or the heat medium pipe is used. And a control device having a heat storage mode for storing the heat or cold of the heat medium, and a use mode for using the heat or cold stored in the heat storage mode.
 本発明によれば、制御装置が蓄熱モードと利用モードとを有している。空調システムは、蓄熱モードにおいて、利用側熱交換器又は熱媒体配管の内部に冷熱又は温熱を蓄えることができる。このように、空調システムは、蓄熱槽がなくとも冷熱又は温熱を蓄えることができる。 According to the present invention, the control device has a heat storage mode and a use mode. In the heat storage mode, the air conditioning system can store cold or warm heat inside the use side heat exchanger or the heat medium pipe. Thus, the air conditioning system can store cold or warm heat without a heat storage tank.
本発明の実施の形態1に係る空調システム100を示す模式図である。It is a schematic diagram which shows the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の第1変形例に係る空調システム100を示す模式図である。It is a schematic diagram which shows the air conditioning system 100 which concerns on the 1st modification of Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システム100を示す回路図である。It is a circuit diagram which shows the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置50の物理的な構成を示すハードウエア構成図である。It is a hardware block diagram which shows the physical structure of the control apparatus 50 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る制御装置50の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the control apparatus 50 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システム100の空室の認識動作を示すフローチャートである。It is a flowchart which shows the recognition operation | movement of the vacancy of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システム100の熱媒体の凍結防止の動作を示すフローチャートである。It is a flowchart which shows the freeze prevention operation | movement of the heat medium of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システム100の躯体蓄熱の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the frame heat storage of the air conditioning system 100 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空調システム100の利用側ユニット2aのみが空室に設定されている場合の熱媒体の流れを示す回路図である。It is a circuit diagram which shows the flow of a thermal medium in case only the utilization side unit 2a of the air conditioning system 100 which concerns on Embodiment 1 of this invention is set to an empty room. 本発明の実施の形態1に係る空調システム100の利用側ユニット2a,2bが空室に設定されている場合の熱媒体の流れを示す回路図である。It is a circuit diagram which shows the flow of a heat medium when the utilization side units 2a and 2b of the air conditioning system 100 which concern on Embodiment 1 of this invention are set to the empty room. 本発明の実施の形態1の第2変形例に係る空調システム100を示す回路図である。It is a circuit diagram which shows the air conditioning system 100 which concerns on the 2nd modification of Embodiment 1 of this invention. 本発明の実施の形態2に係る空調システム100を示す回路図である。It is a circuit diagram which shows the air conditioning system 100 which concerns on Embodiment 2 of this invention. 本発明の実施の形態2の変形例に係る空調システム100を示す回路図である。It is a circuit diagram which shows the air conditioning system 100 which concerns on the modification of Embodiment 2 of this invention. 本発明の実施の形態3に係る制御装置50を示すブロック図である。It is a block diagram which shows the control apparatus 50 which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空調システム100の空室の自動認識動作を示すフローチャートである。It is a flowchart which shows the automatic recognition operation | movement of the vacancy of the air conditioning system 100 which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空調システム100の躯体蓄熱の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the frame heat storage of the air conditioning system 100 which concerns on Embodiment 4 of this invention. 本発明の実施の形態6に係る空調システム100の省エネ制御の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the energy-saving control of the air conditioning system 100 which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る空調システム100の電算室保護制御の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the computer room protection control of the air conditioning system 100 which concerns on Embodiment 7 of this invention.
実施の形態1.
 以下、本発明に係る空調システム及び利用側ユニットの実施の形態について、図面を参照しながら説明する。図1は、本発明の実施の形態1に係る空調システム100を示す模式図である。図1に示すように、例えば室外機である熱源側ユニット1と、室内等の空調空間の空気を調整する複数の利用側ユニット2a,2b,2c,2dと、熱源側ユニット1とは別に空気調和の対象でない非空調空間8等に設置される中継ユニット3と、これらを制御する制御装置50とを備えている。熱源側ユニット1と中継ユニット3とは、2本の冷媒配管4で接続され、二相変化する冷媒又は超臨界状態の冷媒が流れる冷媒回路が構成されている。中継ユニット3と利用側ユニット2a,2b,2c,2dとは2本の熱媒体配管5で接続され、水、ブライン又は不凍液等といった熱媒体が流れる熱媒体回路が構成されている。このように、2本の配管が用いられることにより、空調システム100の施工が容易となる。
Embodiment 1 FIG.
Hereinafter, embodiments of an air conditioning system and a usage-side unit according to the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an air conditioning system 100 according to Embodiment 1 of the present invention. As shown in FIG. 1, for example, a heat source side unit 1 that is an outdoor unit, a plurality of usage side units 2 a, 2 b, 2 c, and 2 d that adjust air in an air-conditioned space such as a room, and a heat source side unit 1 The relay unit 3 installed in the non-air-conditioned space 8 or the like that is not the object of harmony is provided, and a control device 50 that controls them. The heat source side unit 1 and the relay unit 3 are connected by two refrigerant pipes 4 to form a refrigerant circuit through which a two-phase changing refrigerant or a supercritical refrigerant flows. The relay unit 3 and the use side units 2a, 2b, 2c, and 2d are connected by two heat medium pipes 5 to form a heat medium circuit through which a heat medium such as water, brine, or antifreeze liquid flows. Thus, the construction of the air conditioning system 100 is facilitated by using two pipes.
 熱源側ユニット1は、通常、ビル等の建物9の外部空間である室外空間6に設置されている。利用側ユニット2a,2b,2c,2dは、ビル等の建物9の内部の居室等の室内空間7において、加熱された又は冷却された熱媒体が送り届けられる位置に設置されている。中継ユニット3は、熱源側ユニット1及び利用側ユニット2a,2b,2c,2dとは別の筐体として構成されており、冷媒配管4及び熱媒体配管5によって接続されて、室外空間6及び室内空間7とは別の場所に設置される。中継ユニット3は、建物9の内部のうち、室内空間7とは別の空間である例えば天井裏等の非空調空間8に設置されている。なお、中継ユニット3は、エレベータ等が設けられた共用部等に設置されてもよい。 The heat source unit 1 is usually installed in an outdoor space 6 that is an external space of a building 9 such as a building. The use side units 2a, 2b, 2c, and 2d are installed at positions in the indoor space 7 such as a living room inside a building 9 such as a building where heated or cooled heat medium is delivered. The relay unit 3 is configured as a separate housing from the heat source side unit 1 and the use side units 2a, 2b, 2c, and 2d, and is connected by the refrigerant pipe 4 and the heat medium pipe 5, and is connected to the outdoor space 6 and the indoor space. It is installed in a place different from the space 7. The relay unit 3 is installed in a non-air-conditioned space 8 such as a ceiling, which is a space different from the indoor space 7 in the interior of the building 9. In addition, the relay unit 3 may be installed in a common part provided with an elevator or the like.
 中継ユニット3は、1つの親中継ユニット3aと2つの子中継ユニット3bとから構成されている。これにより、1つの親中継ユニット3aに対し、複数の子中継ユニット3b(1),3b(2)を接続することができる。なお、本実施の形態1では、親中継ユニット3aと子中継ユニット3bとの間の接続配管は3本である。 The relay unit 3 is composed of one parent relay unit 3a and two child relay units 3b. Thereby, a plurality of child relay units 3b (1) and 3b (2) can be connected to one parent relay unit 3a. In the first embodiment, there are three connection pipes between the parent relay unit 3a and the child relay unit 3b.
 図2は、本発明の実施の形態1の第1変形例に係る空調システム100を示す模式図である。図2に示すように、中継ユニット3が1つであってもよい。接続される利用側ユニット2a,2b,2c,2dが少ない場合に、中継ユニット3の数を減らすことができる。 FIG. 2 is a schematic diagram showing an air conditioning system 100 according to a first modification of the first embodiment of the present invention. As shown in FIG. 2, the number of relay units 3 may be one. When the number of usage- side units 2a, 2b, 2c, and 2d connected is small, the number of relay units 3 can be reduced.
 なお、本実施の形態1では、熱源側ユニット1は、建物9の外の室外空間6に設置されている場合について例示しているが、換気口が設けられた機械室等といった閉空間に設置されてもよいし、建物9の内部に設置されて排気ダクトによって廃熱を建物9の外に排気してもよいし、水冷式の熱源側ユニット1として建物9の内部に設置されてもよい。また、利用側ユニット2a,2b,2c,2dが天井カセット型である場合について例示しているが、利用側ユニット2a,2b,2c,2dは、天井埋め込み型又は天井吊り下げ型等のように、室内空間7に直接又はダクト等を用いて接続され、加熱された空気又は冷却された空気を室内空間7に供給できるものであればよい。なお、中継ユニット3は、熱源側ユニット1の近傍に配置されてもよいが、熱媒体の移送動力を減らして省エネ化するために、中継ユニット3と利用側ユニット2a,2b,2c,2dとの距離は短い方が望ましい。なお、本実施の形態1では、1台の熱源側ユニット1に4台の利用側ユニット2a,2b,2c,2dが接続されている場合について例示するが、熱源側ユニット1の台数は2台以上でもよいし、利用側ユニット2a,2b,2c,2dの台数は1台から3台でも5台以上でもよい。 In the first embodiment, the heat source side unit 1 is illustrated as being installed in the outdoor space 6 outside the building 9, but is installed in a closed space such as a machine room provided with a ventilation opening. It may be installed inside the building 9, and exhaust heat may be exhausted outside the building 9 by an exhaust duct, or it may be installed inside the building 9 as a water-cooled heat source side unit 1. . Moreover, although the case where the use side units 2a, 2b, 2c, and 2d are of the ceiling cassette type is illustrated, the use side units 2a, 2b, 2c, and 2d are like a ceiling embedded type or a ceiling hanging type. As long as it is connected to the indoor space 7 directly or using a duct or the like and can supply heated air or cooled air to the indoor space 7. The relay unit 3 may be arranged in the vicinity of the heat source side unit 1, but in order to reduce the energy for transferring the heat medium and save energy, the relay unit 3 and the use side units 2 a, 2 b, 2 c, 2 d and It is desirable that the distance of is shorter. In the first embodiment, a case where four usage- side units 2a, 2b, 2c, and 2d are connected to one heat-source-side unit 1 is illustrated, but the number of heat-source-side units 1 is two. The number of use side units 2a, 2b, 2c, and 2d may be one to three or five or more.
 (熱源側ユニット1)
 図3は、本発明の実施の形態1に係る空調システム100を示す回路図である。図3に示すように、熱源側ユニット1は、圧縮機10、流路切替装置11、熱源側熱交換器12、アキュムレータ17及び熱源側流路調整ユニット13を有している。
(Heat source side unit 1)
FIG. 3 is a circuit diagram showing the air conditioning system 100 according to Embodiment 1 of the present invention. As shown in FIG. 3, the heat source side unit 1 includes a compressor 10, a flow path switching device 11, a heat source side heat exchanger 12, an accumulator 17, and a heat source side flow path adjustment unit 13.
 圧縮機10は、吸入した冷媒を圧縮して高温且つ高圧の状態で吐出する。圧縮機10は、吐出側が流路切替装置11に接続され、吸入側がアキュムレータ17に接続される。圧縮機10は、例えば容量制御可能なインバータ圧縮機等である。流路切替装置11は、例えば四方弁であり、運転モードに応じて冷媒の流れる方向を切り替える。流路切替装置11は、運転モードが冷房運転であるとき、圧縮機10の吐出側と熱源側熱交換器12とを接続し、熱源側流路調整ユニット13とアキュムレータ17の吸入側とを接続する。また、流路切替装置11は、運転モードが暖房運転であるとき、圧縮機10の吐出側と熱源側流路調整ユニット13とを接続し、熱源側熱交換器12とアキュムレータ17の吸入側とを接続する。なお、流路切替装置11は、四方弁である場合について例示しているが、二方弁又は三方弁等を組み合わせることによって構成されてもよい。 The compressor 10 compresses the sucked refrigerant and discharges it in a high temperature and high pressure state. The compressor 10 has a discharge side connected to the flow path switching device 11 and a suction side connected to the accumulator 17. The compressor 10 is, for example, an inverter compressor whose capacity can be controlled. The flow path switching device 11 is, for example, a four-way valve, and switches the flow direction of the refrigerant according to the operation mode. When the operation mode is the cooling operation, the flow path switching device 11 connects the discharge side of the compressor 10 and the heat source side heat exchanger 12, and connects the heat source side flow path adjustment unit 13 and the suction side of the accumulator 17. To do. Further, when the operation mode is the heating operation, the flow path switching device 11 connects the discharge side of the compressor 10 and the heat source side flow path adjustment unit 13, and connects the heat source side heat exchanger 12 and the suction side of the accumulator 17. Connect. In addition, although the flow-path switching apparatus 11 has illustrated about the case where it is a four-way valve, you may be comprised by combining a two-way valve or a three-way valve.
 熱源側熱交換器12は、例えばプレート内を流れる冷媒とプレート内を流れる水又は不凍液等の熱媒体との間で熱交換するプレート型熱交換器である。熱源側熱交換器12は、一方が流路切替装置11に接続され、他方が熱源側流路調整ユニット13を介して高圧側の冷媒配管4に接続されている。熱源側熱交換器12は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。なお、熱源側熱交換器12の近傍に熱源側送風機(図示せず)が設けられてもよい。これにより、熱源側熱交換器12の熱媒体の凝縮及び蒸発を促進させることができる。なお、熱源側熱交換器12は、プレート型熱交換器に限定されず、放熱または吸熱が可能な構成であればよい。 The heat source side heat exchanger 12 is a plate type heat exchanger that exchanges heat between a refrigerant flowing in the plate and a heat medium such as water or antifreeze flowing in the plate. One of the heat source side heat exchangers 12 is connected to the flow path switching device 11, and the other is connected to the high-pressure side refrigerant pipe 4 via the heat source side flow path adjustment unit 13. The heat source side heat exchanger 12 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation. Note that a heat source side blower (not shown) may be provided in the vicinity of the heat source side heat exchanger 12. Thereby, condensation and evaporation of the heat medium of the heat source side heat exchanger 12 can be promoted. In addition, the heat source side heat exchanger 12 is not limited to a plate-type heat exchanger, and may be any configuration that can dissipate heat or absorb heat.
 アキュムレータ17は、暖房運転時に流れる冷媒と冷房運転時に流れる冷媒との差である余剰冷媒を蓄える。また、アキュムレータ17は、例えば利用側ユニット2a,2b,2c,2dの運転台数の変化といった過度的な運転の変化によって生じる余剰冷媒を蓄える。アキュムレータ17は、一方が圧縮機10の吸入側に接続され、他方が流路切替装置11に接続されている。なお、アキュムレータ17は省略されてもよい。 The accumulator 17 stores surplus refrigerant that is the difference between the refrigerant that flows during the heating operation and the refrigerant that flows during the cooling operation. In addition, the accumulator 17 stores surplus refrigerant generated by an excessive change in operation, such as a change in the number of operating units 2a, 2b, 2c, and 2d. One of the accumulators 17 is connected to the suction side of the compressor 10 and the other is connected to the flow path switching device 11. The accumulator 17 may be omitted.
 熱源側流路調整ユニット13は、冷房運転及び暖房運転のいずれの場合にも、熱源側ユニット1から中継ユニット3に流れる冷媒の流れを一定方向にするものであり、第1の逆止弁13b、第2の逆止弁13c、第3の逆止弁13a及び第4の逆止弁13dを有している。第1の逆止弁13bは、流路切替装置11と高圧側の冷媒配管4とを接続する配管に設けられ、流路切替装置11から高圧側の冷媒配管4に向かう冷媒の流れを許容する。第2の逆止弁13cは、熱源側熱交換器12と低圧側の冷媒配管4とを接続する配管に設けられ、低圧側の冷媒配管4から熱源側熱交換器12に向かう冷媒の流れを許容する。第3の逆止弁13aは、熱源側熱交換器12と高圧側の冷媒配管4とを接続する配管に設けられ、熱源側熱交換器12から高圧側の冷媒配管4に向かう冷媒の流れを許容する。第4の逆止弁13dは、流路切替装置11と低圧側の冷媒配管4とを接続する配管に設けられ、低圧側の冷媒配管4から流路切替装置11に向かう冷媒の流れを許容する。なお、熱源側流路調整ユニット13は、省略されてもよい。 The heat source side flow path adjustment unit 13 makes the flow of the refrigerant flowing from the heat source side unit 1 to the relay unit 3 in a certain direction in both the cooling operation and the heating operation, and the first check valve 13b. , A second check valve 13c, a third check valve 13a, and a fourth check valve 13d. The first check valve 13b is provided in a pipe connecting the flow path switching device 11 and the high-pressure side refrigerant pipe 4, and allows the refrigerant to flow from the flow path switching apparatus 11 toward the high-pressure side refrigerant pipe 4. . The second check valve 13 c is provided in a pipe connecting the heat source side heat exchanger 12 and the low pressure side refrigerant pipe 4, and flows the refrigerant flowing from the low pressure side refrigerant pipe 4 toward the heat source side heat exchanger 12. Allow. The third check valve 13 a is provided in a pipe connecting the heat source side heat exchanger 12 and the high pressure side refrigerant pipe 4, and flows the refrigerant flowing from the heat source side heat exchanger 12 toward the high pressure side refrigerant pipe 4. Allow. The fourth check valve 13d is provided in a pipe connecting the flow path switching device 11 and the low-pressure side refrigerant pipe 4, and allows the refrigerant to flow from the low-pressure side refrigerant pipe 4 toward the flow path switching apparatus 11. . The heat source side flow path adjustment unit 13 may be omitted.
 (利用側ユニット2a,2b,2c,2d)
 利用側ユニット2a,2b,2c,2dは、例えば居室等の建物9の内部の空間である室内空間7において、冷房用空気又は暖房用空気を供給することができる位置に配置されている。これにより、利用側ユニット2a,2b,2c,2dは、空調対象空間である室内空間7に冷房用空気又は暖房用空気を供給する。利用側ユニット2a,2b,2c,2dには、有線又は無線によってリモコン(図示せず)が接続されており、利用者がリモコンを操作することによって、リモコンから利用側ユニット2a,2b,2c,2dに所定の信号が送信される。各利用側ユニット2a,2b,2c,2dは、それぞれ利用側熱交換器26a,26b,26c,26d及び利用側送風機20a,20b,20c,20dを有している。
(Use side units 2a, 2b, 2c, 2d)
The use- side units 2a, 2b, 2c, and 2d are arranged at positions where cooling air or heating air can be supplied in an indoor space 7 that is a space inside the building 9 such as a living room. Thereby, the use side units 2a, 2b, 2c, and 2d supply the cooling air or the heating air to the indoor space 7 that is the air-conditioning target space. A remote controller (not shown) is connected to the use side units 2a, 2b, 2c, and 2d by wire or wireless, and when the user operates the remote control, the use side units 2a, 2b, 2c, A predetermined signal is transmitted to 2d. Each utilization side unit 2a, 2b, 2c, 2d has utilization side heat exchanger 26a, 26b, 26c, 26d and utilization side air blower 20a, 20b, 20c, 20d, respectively.
 利用側熱交換器26a,26b,26c,26dは、利用側送風機20a,20b,20c,20dから供給される負荷熱媒体である空気と熱媒体との間で熱交換して、室内空間7に冷房用空気又は暖房用空気として供給する。利用側熱交換器26a,26b,26c,26dは、冷媒配管4を介して、中継ユニット3にそれぞれ接続されている。利用側熱交換器26a,26b,26c,26dは、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。利用側送風機20a,20b,20c,20dは、利用側熱交換器26a,26b,26c,26dに室内空気を送る。これにより、利用側熱交換器26a,26b,26c,26dの熱媒体の凝縮または蒸発を促進させることができる。なお、利用側熱交換器26a,26b,26c,26dが放射熱を利用するものであれば、利用側送風機20a,20b,20c,20dを省略することもできる。なお、利用側ユニット2a,2b,2c,2dが設置されている室内には、室内の温度を検出する室内温度センサ39が設けられている。 The use side heat exchangers 26 a, 26 b, 26 c, and 26 d exchange heat between the air that is the load heat medium supplied from the use side blowers 20 a, 20 b, 20 c, and 20 d and the heat medium to form the indoor space 7. Supply as air for cooling or air for heating. The use side heat exchangers 26a, 26b, 26c, and 26d are connected to the relay unit 3 through the refrigerant pipe 4, respectively. The use side heat exchangers 26a, 26b, 26c, and 26d function as an evaporator during the cooling operation, and function as a condenser during the heating operation. The use side blowers 20a, 20b, 20c, and 20d send room air to the use side heat exchangers 26a, 26b, 26c, and 26d. Thereby, condensation or evaporation of the heat medium of the use side heat exchangers 26a, 26b, 26c, and 26d can be promoted. If the use side heat exchangers 26a, 26b, 26c, and 26d use radiant heat, the use side blowers 20a, 20b, 20c, and 20d can be omitted. An indoor temperature sensor 39 for detecting the indoor temperature is provided in the room where the use side units 2a, 2b, 2c, and 2d are installed.
 (中継ユニット3)
 中継ユニット3は、熱源側ユニット1及び複数の利用側ユニット2a,2b,2c,2dとは別の筐体からなり、室外空間6及び室内空間7とは別の位置に設置可能である。中継ユニット3は、高圧側の冷媒配管4及び低圧側の冷媒配管4を介して熱源側ユニット1に接続され、熱媒体配管5を介して各利用側ユニット2a,2b,2c,2dに接続されている。中継ユニット3は、熱源側ユニット1から供給される冷熱又は温熱を各利用側ユニット2a,2b,2c,2dに分配する。中継ユニット3は、前述の如く、親中継ユニット3aと、子中継ユニット3bとから構成されている。
(Relay unit 3)
The relay unit 3 includes a housing different from the heat source side unit 1 and the plurality of usage side units 2a, 2b, 2c, and 2d, and can be installed at a position different from the outdoor space 6 and the indoor space 7. The relay unit 3 is connected to the heat source unit 1 via the high-pressure side refrigerant pipe 4 and the low-pressure side refrigerant pipe 4, and is connected to each usage- side unit 2 a, 2 b, 2 c, 2 d via the heat medium pipe 5. ing. The relay unit 3 distributes the cold heat or hot heat supplied from the heat source side unit 1 to the use side units 2a, 2b, 2c, 2d. As described above, the relay unit 3 includes the parent relay unit 3a and the child relay unit 3b.
 親中継ユニット3aは、気液分離器14と、膨張部16eとを備えている。気液分離器14は、熱源側ユニット1から供給される高圧の気液二相冷媒を、液冷媒とガス冷媒とに分離する。気液分離器14は、中継ユニット3の入口に設置され、高圧側の冷媒配管4を介して熱源側ユニット1に接続されている。膨張部32は、例えば開度が変更自在の電子式膨張弁からなり、冷媒を減圧して膨張させる。なお、CO冷媒が使用される場合、超臨界サイクルとなるため、冷媒を冷却する放熱器では、冷媒は液化しない。このため、原則として暖房運転が実施される。このとき、気液分離器14においてガス冷媒は、中間熱交換器15aに流出する。 The parent relay unit 3a includes a gas-liquid separator 14 and an expansion part 16e. The gas-liquid separator 14 separates the high-pressure gas-liquid two-phase refrigerant supplied from the heat source side unit 1 into a liquid refrigerant and a gas refrigerant. The gas-liquid separator 14 is installed at the inlet of the relay unit 3 and connected to the heat source unit 1 via the high-pressure side refrigerant pipe 4. The expansion part 32 consists of an electronic expansion valve whose opening degree can be changed, for example, and decompresses the refrigerant to expand it. Incidentally, if the CO 2 refrigerant is used, since the supercritical cycle, the radiator for cooling the refrigerant, the refrigerant does not liquefy. For this reason, heating operation is carried out in principle. At this time, in the gas-liquid separator 14, the gas refrigerant flows out to the intermediate heat exchanger 15a.
 子中継ユニット3bは、中間熱交換器15a,15b、子膨張部16a,16b,16c,16d、ポンプ21a,21b、流路切替弁22a,22b,22c,22d、23a,23b,23c,23d、止め弁24a,24b,24c,24d、バイパス回路27a,27b,27c,27d及び流量調整弁25a,25b,25c,25dを有している。中間熱交換器15a,15bは、冷媒と熱媒体との間で熱交換する熱交換器である。本実施の形態1では、加熱用の中間熱交換器15a及び冷却用の中間熱交換器15bの2つが設置されている場合について例示しているが、暖房又は冷房のいずれか一方のみが行われる場合、中間熱交換器15a,15bは1台で済む。この場合、凍結防止運転時に、別の中間熱交換器15a,15bに熱媒体を流す必要がないため、流路を簡素化することができる。また、加熱用の中間熱交換器15a及び冷却用の中間熱交換器15bはそれぞれ複数個設けられてもよい。 The child relay unit 3b includes intermediate heat exchangers 15a, 15b, child expansion portions 16a, 16b, 16c, 16d, pumps 21a, 21b, flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, Stop valves 24a, 24b, 24c, 24d, bypass circuits 27a, 27b, 27c, 27d and flow rate adjusting valves 25a, 25b, 25c, 25d are provided. The intermediate heat exchangers 15a and 15b are heat exchangers that exchange heat between the refrigerant and the heat medium. In the first embodiment, the case where two of the intermediate heat exchanger 15a for heating and the intermediate heat exchanger 15b for cooling are installed is illustrated, but only one of heating and cooling is performed. In this case, only one intermediate heat exchanger 15a, 15b is required. In this case, since it is not necessary to flow the heat medium to the separate intermediate heat exchangers 15a and 15b during the freeze prevention operation, the flow path can be simplified. Further, a plurality of heating intermediate heat exchangers 15a and cooling intermediate heat exchangers 15b may be provided.
 子膨張部16a,16b,16c,16dは、4つ設けられ、例えば開度が変更自在の電子式膨張弁からなり、冷媒を減圧して膨張させる。ポンプ21a,21bは、それぞれの中間熱交換器15a,15bの下流側に設けられており、熱媒体を移送する。流路切替弁22a,22b,22c,22d,23a,23b,23c,23dは、三方弁等からなり、各利用側熱交換器26a,26b,26c,26dの入口側流路と出口側流路とに対応して設けられており、流路切替弁22a,22b,22c,22dは中間熱交換器15a,15bの間で出口側流路を切り替え、流路切替弁23a,23b,23c,23dは入口側流路を切り替える。 Four child expansion portions 16a, 16b, 16c, and 16d are provided, for example, which are electronic expansion valves whose opening degree can be changed, and expand the refrigerant by decompressing the refrigerant. The pumps 21a and 21b are provided on the downstream side of the intermediate heat exchangers 15a and 15b, and transfer the heat medium. The flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, and 23d are composed of three-way valves and the like, and the inlet-side flow paths and the outlet-side flow paths of the respective use side heat exchangers 26a, 26b, 26c, and 26d. The flow path switching valves 22a, 22b, 22c and 22d switch the outlet side flow path between the intermediate heat exchangers 15a and 15b, and the flow path switching valves 23a, 23b, 23c and 23d. Switches the inlet-side flow path.
 本実施の形態1では、流路切替弁22a,22b,22c,22dが中間熱交換器15a,15bの間で出口側流路を切り替え、流路切替弁23a,23b,23c,23dが中間熱交換器15a,15bの間で入口側流路を切り替えている。なお、流路切替弁22a,22b,22c,22d,23a,23b,23c,23dは、三方弁等の三方流路を切り替えるものでもよいし、二方流路を切り替える開閉弁等を2つ組み合わせたものでもよい。また、流路切替弁22a,22b,22c,22d,23a,23b,23c,23dは、ステッピングモータ駆動式の混合弁等の三方流路の流量を変化させるもの又は二方流路の流量を変化させる電子式膨張弁等を2つ組み合わせたものでもよい。これにより、流路の突然の開閉によるウォーターハンマーを抑制することができる。 In the first embodiment, the flow path switching valves 22a, 22b, 22c, and 22d switch the outlet side flow path between the intermediate heat exchangers 15a and 15b, and the flow path switching valves 23a, 23b, 23c, and 23d are intermediate heat. The inlet-side flow path is switched between the exchangers 15a and 15b. The flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, and 23d may be ones that switch a three-way flow path such as a three-way valve, or a combination of two on-off valves that switch a two-way flow path. May be good. The flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, and 23d change the flow rate of a three-way flow path such as a stepping motor drive type mixing valve or change the flow rate of a two-way flow path. A combination of two electronic expansion valves or the like may be used. Thereby, the water hammer by the sudden opening and closing of a flow path can be suppressed.
 なお、流路切替弁22a,22b,22c,22d,23a,23b,23c,23d、止め弁24a,24b,24c,24d及び流量調整弁25a,25b,25c,25dは、各利用側熱交換器26a,26b,26c,26dにそれぞれ1つずつ接続される場合について例示しているが、各利用側熱交換器26a,26b,26c,26d1つに対し、それぞれが複数接続されてもよい。この場合、同じ利用側熱交換器26a,26b,26c,26dに接続されている流路切替弁22a,22b,22c,22d,23a,23b,23c,23d、止め弁24a,24b,24c,24d及び流量調整弁25a,25b,25c,25dは、同じように動作させればよい。 The flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, the stop valves 24a, 24b, 24c, 24d and the flow rate adjusting valves 25a, 25b, 25c, 25d are each used side heat exchangers. The case where one is connected to each of 26a, 26b, 26c, and 26d is illustrated, but a plurality of each of the use side heat exchangers 26a, 26b, 26c, and 26d may be connected. In this case, the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, stop valves 24a, 24b, 24c, 24d connected to the same use side heat exchangers 26a, 26b, 26c, 26d. The flow rate adjusting valves 25a, 25b, 25c, and 25d may be operated in the same manner.
 止め弁24a,24b,24c,24dは、熱媒体回路に設けられ、熱媒体配管5に流れる熱媒体の流れを遮断する。バイパス回路27a,27b,27c,27dは、利用側熱交換器26a,26b,26c,26dの入口側と出口側とを接続し、熱媒体をバイパスする。流量調整弁25a,25b,25c,25dは、三方弁等からなり、熱媒体が利用側熱交換器26a,26b,26c,26dに流れるかバイパス回路27a,27b,27c,27dに流れるかを切り替える。 Stop valves 24 a, 24 b, 24 c and 24 d are provided in the heat medium circuit and block the flow of the heat medium flowing through the heat medium pipe 5. The bypass circuits 27a, 27b, 27c, and 27d connect the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d, and bypass the heat medium. The flow rate adjusting valves 25a, 25b, 25c, and 25d are three-way valves or the like, and switch whether the heat medium flows to the use side heat exchangers 26a, 26b, 26c, and 26d or to the bypass circuits 27a, 27b, 27c, and 27d. .
 ここで冷媒回路は、圧縮機10、流路切替装置11、熱源側熱交換器12、膨張部16e、気液分離器14、中間熱交換器15a,15b及び子膨張部16a,16b,16c,16dが冷媒配管4により接続されて構成されている。冷媒回路に流れる冷媒は、R-22及びR-134a等の単一冷媒、R-410A及びR-404A等の疑似共沸混合冷媒、R-407C等の非共沸混合冷媒、化学式内に二重結合を含むCFCF=CH等の地球温暖化係数が比較的小さい値とされている冷媒又はその混合物、CO又はプロパン等の自然冷媒とすることができる。 Here, the refrigerant circuit includes the compressor 10, the flow path switching device 11, the heat source side heat exchanger 12, the expansion part 16e, the gas-liquid separator 14, the intermediate heat exchangers 15a and 15b, and the child expansion parts 16a, 16b, 16c, 16d is connected by the refrigerant | coolant piping 4. The refrigerant flowing in the refrigerant circuit includes single refrigerants such as R-22 and R-134a, pseudo-azeotropic mixed refrigerants such as R-410A and R-404A, non-azeotropic mixed refrigerants such as R-407C, A refrigerant having a relatively low global warming coefficient such as CF 3 CF═CH 2 containing a double bond or a mixture thereof, or a natural refrigerant such as CO 2 or propane can be used.
 また1つの熱媒体回路が、中間熱交換器15a、ポンプ21a、流路切替弁22a,22b,22c,22d、止め弁24a,24b,24c,24d、利用側熱交換器26a,26b,26c,26d、流量調整弁25a,25b,25c,25d及び流路切替弁23a,23b,23c,23dが熱媒体配管5により接続されて構成されている。さらに別の熱媒体回路が、中間熱交換器15b、ポンプ21b、流路切替弁23a,23b,23c,23d、止め弁24a,24b,24c,24d、利用側熱交換器26a,26b,26c,26d、流量調整弁25a,25b,25c,25d及び流路切替弁22a,22b,22c,22dが熱媒体配管5により接続されて熱媒体回路が構成されている。なお、各利用側熱交換器26a,26b,26c,26dは、2つの中間熱交換器15a,15bに対しそれぞれ並列に設けられており、それぞれ熱媒体回路を構成している。熱媒体回路に流れる熱媒体は、水又はブライン等である。 One heat medium circuit includes an intermediate heat exchanger 15a, a pump 21a, flow path switching valves 22a, 22b, 22c, and 22d, stop valves 24a, 24b, 24c, and 24d, and use side heat exchangers 26a, 26b, 26c, and 26 d, flow rate adjustment valves 25 a, 25 b, 25 c, 25 d and flow path switching valves 23 a, 23 b, 23 c, 23 d are connected by a heat medium pipe 5. Further, another heat medium circuit includes an intermediate heat exchanger 15b, a pump 21b, flow path switching valves 23a, 23b, 23c, 23d, stop valves 24a, 24b, 24c, 24d, use side heat exchangers 26a, 26b, 26c, 26d, the flow rate adjusting valves 25a, 25b, 25c, and 25d and the flow path switching valves 22a, 22b, 22c, and 22d are connected by the heat medium pipe 5 to constitute a heat medium circuit. In addition, each utilization side heat exchanger 26a, 26b, 26c, 26d is provided in parallel with respect to the two intermediate heat exchangers 15a, 15b, respectively, and each constitutes a heat medium circuit. The heat medium flowing through the heat medium circuit is water or brine.
 また、子中継ユニット3bは、第1の熱媒体温度センサ31a,31b、第2の熱媒体温度センサ32a,32b、第3の熱媒体温度センサ33a,33b,33c,33d、第4の熱媒体温度センサ34a,34b,34c,34d、第5の温度センサ35、第6の温度センサ37、第7の温度センサ38及び圧力センサ36を有している。第1の熱媒体温度センサ31a,31bは、中間熱交換器15a,15bの出口側の熱媒体の温度を検出する。第2の熱媒体温度センサ32a,32bは、中間熱交換器15a,15bの入口側の熱媒体の温度を検出する。 The slave relay unit 3b includes first heat medium temperature sensors 31a and 31b, second heat medium temperature sensors 32a and 32b, third heat medium temperature sensors 33a, 33b, 33c, and 33d, and a fourth heat medium. It has temperature sensors 34a, 34b, 34c, 34d, a fifth temperature sensor 35, a sixth temperature sensor 37, a seventh temperature sensor 38, and a pressure sensor 36. The first heat medium temperature sensors 31a and 31b detect the temperature of the heat medium on the outlet side of the intermediate heat exchangers 15a and 15b. The second heat medium temperature sensors 32a and 32b detect the temperature of the heat medium on the inlet side of the intermediate heat exchangers 15a and 15b.
 第3の熱媒体温度センサ33a,33b,33c,33dは、利用側熱交換器26a,26b,26c,26dの冷房時の入口側の熱媒体の温度を検出する。第4の熱媒体温度センサ34a,34b,34c,34dは、利用側熱交換器26a,26b,26c,26dの冷房時の出口側の熱媒体の温度を検出する。第5の温度センサ35は、中間熱交換器15aの出口側の冷媒の温度を検出する。圧力センサ36は、中間熱交換器15aの出口側の冷媒の圧力を検出する。第6の温度センサ37は、中間熱交換器15bの入口側の冷媒の温度を検出する。第7の温度センサ38は、中間熱交換器15bの出口側の冷媒の温度を検出する。なお、これらの温度センサ及び圧力センサ36として、各種の温度計、温度センサ、圧力計又は圧力センサ36等が用いられる。 The third heat medium temperature sensors 33a, 33b, 33c, 33d detect the temperature of the heat medium on the inlet side during cooling of the use side heat exchangers 26a, 26b, 26c, 26d. The fourth heat medium temperature sensors 34a, 34b, 34c, 34d detect the temperature of the heat medium on the outlet side during cooling of the use side heat exchangers 26a, 26b, 26c, 26d. The fifth temperature sensor 35 detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 15a. The pressure sensor 36 detects the pressure of the refrigerant on the outlet side of the intermediate heat exchanger 15a. The sixth temperature sensor 37 detects the temperature of the refrigerant on the inlet side of the intermediate heat exchanger 15b. The seventh temperature sensor 38 detects the temperature of the refrigerant on the outlet side of the intermediate heat exchanger 15b. As these temperature sensor and pressure sensor 36, various thermometers, temperature sensors, pressure gauges, pressure sensors 36, or the like are used.
 なお、流量調整弁25a,25b,25c,25d、第3の熱媒体温度センサ33a,33b,33c,33d、第4の熱媒体温度センサ34a,34b,34c,34dが、中継ユニット3の内部に設置されている場合について例示しているが、これに限らない。例えば、流量調整弁25a,25b,25c,25d、第3の熱媒体温度センサ33a,33b,33c,33d、第4の熱媒体温度センサ34a,34b,34c,34dが利用側熱交換器26a,26b,26c,26dの近傍、即ち利用側ユニット2a,2b,2c,2dの内部又は近傍に設置されてもよい。 The flow rate adjusting valves 25a, 25b, 25c, 25d, the third heat medium temperature sensors 33a, 33b, 33c, 33d, and the fourth heat medium temperature sensors 34a, 34b, 34c, 34d are provided inside the relay unit 3. Although illustrated about the case where it is installed, it is not restricted to this. For example, the flow rate adjusting valves 25a, 25b, 25c, and 25d, the third heat medium temperature sensors 33a, 33b, 33c, and 33d, and the fourth heat medium temperature sensors 34a, 34b, 34c, and 34d are used on the use side heat exchanger 26a, It may be installed in the vicinity of 26b, 26c, 26d, that is, in or near the use side units 2a, 2b, 2c, 2d.
 (熱負荷)
 次に、利用側熱交換器26a,26b,26c,26dのそれぞれにおける熱負荷について説明する。利用側熱交換器26a,26b,26c,26dのそれぞれの熱負荷は、(1)式で表される。熱負荷は、熱媒体の流量と密度と定圧比熱と、利用側熱交換器26a,26b,26c,26dの入口と出口の熱媒体の温度差とを乗じることによって求められる。ここで、Vwは熱媒体の流量、ρwは熱媒体の密度、Cpwは熱媒体の定圧比熱、Twは熱媒体の温度、添字のinは利用側熱交換器26a,26b,26c,26dの入口側の熱媒体の値、添字のoutは利用側熱交換器26a,26b,26c,26dの出口側の熱媒体の値を示す。
(Heat load)
Next, the heat load in each of the use side heat exchangers 26a, 26b, 26c, and 26d will be described. Each heat load of use side heat exchanger 26a, 26b, 26c, 26d is represented by (1) Formula. The heat load is determined by multiplying the flow rate, density, constant pressure specific heat of the heat medium, and the temperature difference between the heat medium at the inlet and outlet of the use side heat exchangers 26a, 26b, 26c, 26d. Here, Vw is the flow rate of the heat medium, ρw is the density of the heat medium, Cpw is the constant pressure specific heat of the heat medium, Tw is the temperature of the heat medium, subscript in is the inlet of the use side heat exchangers 26a, 26b, 26c, 26d. The value of the heat medium on the side, and the subscript out indicates the value of the heat medium on the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d.
Figure JPOXMLDOC01-appb-M000001
・・・(1)
Figure JPOXMLDOC01-appb-M000001
... (1)
 (1)式より、利用側熱交換器26a,26b,26c,26dへ流す熱媒体の流量が一定の場合、利用側熱交換器26a,26b,26c,26dでの熱負荷の変化に応じ、熱媒体の入出口での温度差が変化する。そこで、利用側熱交換器26a,26b,26c,26dの入出口の温度差を目標とし、予め定めた目標値に近づくように、流量調整弁25a,25b,25c,25dが制御される。これにより、余分な熱媒体がバイパス回路27a,27b,27c,27dに流れて、利用側熱交換器26a,26b,26c,26dへ流れる流量を制御することができる。利用側熱交換器26a,26b,26c,26dの入口側と出口側との温度差の目標値は、例えば5℃等に設定される。 From the equation (1), when the flow rate of the heat medium flowing to the use side heat exchangers 26a, 26b, 26c, and 26d is constant, according to the change of the heat load in the use side heat exchangers 26a, 26b, 26c, and 26d, The temperature difference at the entrance and exit of the heat medium changes. Therefore, the flow rate adjusting valves 25a, 25b, 25c, and 25d are controlled so as to approach the predetermined target value with the temperature difference between the inlet and outlet of the use side heat exchangers 26a, 26b, 26c, and 26d as a target. Thereby, an excess heat medium flows into bypass circuits 27a, 27b, 27c, and 27d, and the flow volume which flows into use side heat exchangers 26a, 26b, 26c, and 26d can be controlled. The target value of the temperature difference between the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d is set to 5 ° C., for example.
 なお、本実施の形態1では、流量調整弁25a,25b,25c,25dが利用側熱交換器26a,26b,26c,26dの下流側に設置する混合弁である場合を例に説明を行ったが、利用側熱交換器26a,26b,26c,26dの上流側に設置する三方弁であってもよい。 In the first embodiment, the case where the flow rate adjustment valves 25a, 25b, 25c, and 25d are mixing valves installed on the downstream side of the use side heat exchangers 26a, 26b, 26c, and 26d has been described as an example. However, it may be a three-way valve installed on the upstream side of the use side heat exchangers 26a, 26b, 26c, and 26d.
 そして、利用側熱交換器26a,26b,26c,26dにおいて熱交換を行った熱媒体と、熱交換を行わず温度変化をせずバイパス回路27a,27b,27c,27dを通過した熱媒体とは、その後の合流部で合流する。合流部においては、(2)式が成り立つ。ここで、Twin、Twoutは利用側熱交換器26a,26b,26c,26dの入口側及び出口側の熱媒体温度、Vwは流量調整弁25a,25b,25c,25dへ流入する熱媒体の流量、Vwrは利用側熱交換器26a,26b,26c,26dへ流入する熱媒体の流量、Twは利用側熱交換器26a,26b,26c,26dを流れた熱媒体とバイパス回路27a,27b,27c,27dに流れた熱媒体とが合流した後の熱媒体の温度を表す。 The heat medium that has undergone heat exchange in the use- side heat exchangers 26a, 26b, 26c, and 26d and the heat medium that has passed through the bypass circuits 27a, 27b, 27c, and 27d without heat exchange and without temperature change. , And then merge at the junction. Formula (2) is established at the junction. Here, Twin and Twout are the heat medium temperatures on the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d, Vw is the flow rate of the heat medium flowing into the flow rate adjusting valves 25a, 25b, 25c, and 25d, Vwr is the flow rate of the heat medium flowing into the use side heat exchangers 26a, 26b, 26c, and 26d, and Tw is the heat medium that flows through the use side heat exchangers 26a, 26b, 26c, and 26d and the bypass circuits 27a, 27b, 27c, This represents the temperature of the heat medium after the heat medium that has flowed to 27d has joined.
Figure JPOXMLDOC01-appb-M000002
・・・(2)
Figure JPOXMLDOC01-appb-M000002
... (2)
 (2)式より、利用側熱交換器26a,26b,26c,26dにおいて熱交換を行い温度が変化した熱媒体と、熱交換を行わず温度変化をせずバイパス回路27a,27b,27c,27dを通過した熱媒体とが、合流すると、熱媒体の温度差がバイパスされた流量の分、利用側熱交換器26a,26b,26c,26dの入口側の温度に近づく。例えば、全流量が20L/min、利用側熱交換器26a,26b,26c,26dの熱媒体入口温度が7℃、出口温度が13℃、利用側熱交換器26a,26b,26c,26dの側に流れた流量が10L/minである時、その後の合流後の温度は、(2)式より、10℃となる。 From equation (2), the heat exchangers 26a, 26b, 26c, and 26d on the use side heat exchangers exchange heat and the bypass circuits 27a, 27b, 27c, and 27d without heat exchange and temperature changes. When the heat medium that has passed through is joined, the temperature of the heat medium approaches the temperature on the inlet side of the use side heat exchangers 26a, 26b, 26c, and 26d by the amount of flow that bypasses the temperature difference of the heat medium. For example, the total flow rate is 20 L / min, the heat medium inlet temperature of the use side heat exchangers 26a, 26b, 26c, 26d is 7 ° C., the outlet temperature is 13 ° C., the use side heat exchangers 26a, 26b, 26c, 26d side When the flow rate that flows through is 10 L / min, the temperature after the subsequent merging is 10 ° C. from the equation (2).
 利用側ユニット2a,2b,2c,2d又はバイパス回路27a,27b,27c,27dを通過して、流路切替弁22a,22b,22c,22dを通ったあとに合流した熱媒体は、中間熱交換器15a,15bへ流入する。この際、中間熱交換器15a,15bの熱交換量が変わらなければ、中間熱交換器15a又は15bでの熱交換により、入口側と出口側での熱媒体の温度差はほぼ同じになる。例えば、中間熱交換器15a又は15bの入口側と出口側で熱媒体の温度差が6℃となっており、当初は、中間熱交換器15a又は15bの入口側での熱媒体の温度が13℃、出口側の熱媒体の温度が7℃となっていたとする。そして、利用側熱交換器26a,26b,26c,26dでの熱負荷が下がり、中間熱交換器15a又は15bの入口側の熱媒体の温度が10℃に低下したとする。すると、何もしなければ、中間熱交換器15a又は15bはほぼ同じ量の熱交換を行うため、中間熱交換器15a又は15bから熱媒体は4℃にて流出し、これが繰り返され、出口側の熱媒体の温度が下がっていってしまう。 The heat medium that passes through the use side units 2a, 2b, 2c, 2d or the bypass circuits 27a, 27b, 27c, 27d and passes through the flow path switching valves 22a, 22b, 22c, 22d is subjected to intermediate heat exchange. Flows into the containers 15a and 15b. At this time, if the heat exchange amount of the intermediate heat exchangers 15a and 15b does not change, the temperature difference between the heat mediums on the inlet side and the outlet side becomes substantially the same due to heat exchange in the intermediate heat exchanger 15a or 15b. For example, the temperature difference of the heat medium between the inlet side and the outlet side of the intermediate heat exchanger 15a or 15b is 6 ° C., and initially the temperature of the heat medium at the inlet side of the intermediate heat exchanger 15a or 15b is 13 ° C. Suppose that the temperature of the heat medium on the outlet side is 7 ° C. Then, it is assumed that the heat load in the use side heat exchangers 26a, 26b, 26c, and 26d decreases, and the temperature of the heat medium on the inlet side of the intermediate heat exchanger 15a or 15b decreases to 10 ° C. Then, if nothing is done, the intermediate heat exchanger 15a or 15b performs approximately the same amount of heat exchange, so that the heat medium flows out from the intermediate heat exchanger 15a or 15b at 4 ° C., and this is repeated. The temperature of the heat medium will drop.
 そこで、中間熱交換器15a又は15bの出口側の熱媒体の温度が目標値に近づくように、利用側熱交換器26a,26b,26c,26dの熱負荷の変化に応じて、ポンプ21a,21bの回転数を変化させる。これにより、熱負荷が下がったときは、ポンプ21a,21bの回転数が下がって省エネになり、熱負荷が上がった時は、ポンプ21a,21bの回転数が上がって、熱媒体の流量Vwを増やすことができる。 Therefore, the pumps 21a, 21b are changed according to the change in the heat load of the use side heat exchangers 26a, 26b, 26c, 26d so that the temperature of the heat medium on the outlet side of the intermediate heat exchanger 15a or 15b approaches the target value. Change the rotation speed. As a result, when the heat load decreases, the rotation speed of the pumps 21a and 21b decreases to save energy, and when the heat load increases, the rotation speed of the pumps 21a and 21b increases and the flow rate Vw of the heat medium increases. Can be increased.
 ポンプ21bは、利用側熱交換器26a,26b,26c,26dのいずれかにて、冷房負荷又は除湿負荷が発生した場合に動作し、いずれの利用側熱交換器26a,26b,26c,26dにおいても、冷房負荷及び除湿負荷がない場合は停止する。また、ポンプ21aは、利用側熱交換器26a,26b,26c,26dのいずれかにて、暖房負荷が発生した場合に動作し、いずれの利用側熱交換器26a,26b,26c,26dにおいても、暖房負荷がない場合は停止する。 The pump 21b operates when a cooling load or a dehumidifying load is generated in any of the use side heat exchangers 26a, 26b, 26c, and 26d. In any of the use side heat exchangers 26a, 26b, 26c, and 26d, the pump 21b operates. If there is no cooling load or dehumidifying load, the operation is stopped. The pump 21a operates when a heating load is generated in any of the usage side heat exchangers 26a, 26b, 26c, and 26d, and in any of the usage side heat exchangers 26a, 26b, 26c, and 26d. Stop when there is no heating load.
 (制御装置50)
 本実施の形態1では、制御装置50が一つである場合について説明するが、制御装置50は、図3に示すように、熱源側制御装置50aと中継側制御装置50bとに分離されていてもよい。この場合、熱源側制御装置50aは、熱源側ユニット1が室外機として機能するように制御し、中継側制御装置50bは、中継ユニット3を構成する機器を制御する。熱源側制御装置50a及び中継側制御装置50bは、マイコン及び電気回路等からなり、互いに通信可能である。なお、中継側制御装置50bは、リモコン、ネットワークに接続された他の空調機器、熱源側ユニット1及び利用側ユニット2a,2b,2c,2dと通信可能に接続されてもよい。なお、熱源側制御装置50a及び中継側制御装置50bは、空調システム100の全体を統括する集中コントローラに接続されてもよい。
(Control device 50)
In the first embodiment, a case where there is one control device 50 will be described, but the control device 50 is separated into a heat source side control device 50a and a relay side control device 50b as shown in FIG. Also good. In this case, the heat source side control device 50a controls the heat source side unit 1 so as to function as an outdoor unit, and the relay side control device 50b controls devices constituting the relay unit 3. The heat source side control device 50a and the relay side control device 50b are composed of a microcomputer, an electric circuit, and the like, and can communicate with each other. The relay side control device 50b may be communicably connected to a remote controller, another air conditioner connected to the network, the heat source side unit 1, and the usage side units 2a, 2b, 2c, 2d. The heat source side control device 50 a and the relay side control device 50 b may be connected to a centralized controller that controls the entire air conditioning system 100.
 また、中継側制御装置50bの機能は、熱源側ユニット1、利用側ユニット2a,2b,2c,2d、集中コントローラ、リモコン又はネットワークに接続された他の空調機器のいずれかと分担されてもよい。ここで、集中コントローラは、熱源側ユニット1及び利用側ユニット2a,2b,2c,2dを管理し、リモコンは室内空間7に設けられてユーザから指示された室温情報を、熱源側ユニット1及び利用側ユニット2a,2b,2c,2dに送信する。リモコンからの情報は、熱源側制御装置50aを介して熱源側ユニット1に送信されてもよい。このように、省エネ性の観点から、熱源側ユニット1とリモコンとが通信する場合もある。なお、制御装置50は、本実施の形態1のように複数の機器で構成されてもよいし単一の機器で構成されてもよい。本実施の形態1は、各利用側ユニット2a,2b,2c,2dがそれぞれ冷房運転又は暖房運転が可能な冷暖混在運転を行う空調システム100である。 Further, the function of the relay side control device 50b may be shared with any one of the heat source side unit 1, the use side units 2a, 2b, 2c, and 2d, the centralized controller, the remote controller, or another air conditioner connected to the network. Here, the centralized controller manages the heat source side unit 1 and the usage side units 2a, 2b, 2c, and 2d, and the remote controller is provided in the indoor space 7 and uses the room temperature information instructed by the user as the heat source side unit 1 and the usage side unit. Transmit to the side units 2a, 2b, 2c, 2d. Information from the remote controller may be transmitted to the heat source side unit 1 via the heat source side control device 50a. Thus, from the viewpoint of energy saving, the heat source unit 1 and the remote controller may communicate with each other. In addition, the control apparatus 50 may be comprised with several apparatus like this Embodiment 1, and may be comprised with a single apparatus. The first embodiment is an air conditioning system 100 in which each usage- side unit 2a, 2b, 2c, 2d performs a cooling / heating mixed operation in which a cooling operation or a heating operation can be performed.
 図4は、本発明の実施の形態1に係る制御装置50の物理的な構成を示すハードウエア構成図である。図4に示すように、制御装置50は、空調システム100の動作を制御するものであり、通信部54と、制御判定部51と、記憶手段55とを有している。通信部54、制御判定部51及び記憶手段55は、内部バスで接続されている。通信部54は、通信ポートに接続された送受信回路であり、通信ポートを介して通信の送受信をする。制御判定部51は、例えばマイクロコンピュータであり、通信部54が受信したデータを、必要に応じて記憶手段55に格納する。また、制御判定部51は、記憶手段55に格納されたデータを読み出し、読み出したデータを通信部54を介して送信対象に送信する。記憶手段55は、各種データを記憶するRAMである。 FIG. 4 is a hardware configuration diagram showing a physical configuration of the control device 50 according to Embodiment 1 of the present invention. As shown in FIG. 4, the control device 50 controls the operation of the air conditioning system 100, and includes a communication unit 54, a control determination unit 51, and a storage unit 55. The communication unit 54, the control determination unit 51, and the storage unit 55 are connected by an internal bus. The communication unit 54 is a transmission / reception circuit connected to the communication port, and transmits / receives communication via the communication port. The control determination unit 51 is, for example, a microcomputer, and stores data received by the communication unit 54 in the storage unit 55 as necessary. In addition, the control determination unit 51 reads data stored in the storage unit 55 and transmits the read data to the transmission target via the communication unit 54. The storage means 55 is a RAM that stores various data.
 図5は、本発明の実施の形態1に係る制御装置50の機能的な構成を示すブロック図である。図5に示すように、制御装置50は、入力部52と、出力部53と、通信部54と、記憶手段55と、制御判定部51とを有している。なお、制御装置50の機能は、マイコンが実行するプログラムによって実現されてもよい。入力部52は、ユーザから設定される設定温度に代表される情報を取得する。また、入力部52は、第1の熱媒体温度センサ31a,31b等の検出結果を読み込む。出力部53は、バイパス回路27a,27b,27c,27dに流れる熱媒体の流量を調節する制御情報等を流量調整弁25a,25b,25c,25dに出力する。通信部54は、利用側ユニット2a,2b,2c,2d、熱源側ユニット1、集中コントローラ等の空調システム100を構成する機器と通信する。例えば、温度、バルブ開閉、流路制御装置の制御、圧縮機10の周波数及び空調システム100の運転停止等の情報が通信される。ここで、制御装置50は、蓄熱モードと利用モードとを有している。蓄熱モードは、圧縮機10が動作しているときに、利用側熱交換器26a,26b,26c,26d又は熱媒体配管5を用いて熱媒体が有する温熱又は冷熱を蓄えるモードである。利用モードは、蓄熱モードにおいて蓄えられた温熱又は冷熱を利用するモードである。 FIG. 5 is a block diagram showing a functional configuration of the control device 50 according to Embodiment 1 of the present invention. As illustrated in FIG. 5, the control device 50 includes an input unit 52, an output unit 53, a communication unit 54, a storage unit 55, and a control determination unit 51. Note that the function of the control device 50 may be realized by a program executed by a microcomputer. The input unit 52 acquires information typified by a set temperature set by the user. Further, the input unit 52 reads detection results of the first heat medium temperature sensors 31a, 31b and the like. The output unit 53 outputs control information for adjusting the flow rate of the heat medium flowing through the bypass circuits 27a, 27b, 27c, and 27d to the flow rate adjusting valves 25a, 25b, 25c, and 25d. The communication unit 54 communicates with devices constituting the air conditioning system 100 such as the use side units 2a, 2b, 2c, and 2d, the heat source side unit 1, and the centralized controller. For example, information such as temperature, valve opening / closing, control of the flow path control device, frequency of the compressor 10 and operation stop of the air conditioning system 100 is communicated. Here, the control device 50 has a heat storage mode and a use mode. The heat storage mode is a mode in which warm heat or cold heat of the heat medium is stored using the use side heat exchangers 26a, 26b, 26c, 26d or the heat medium pipe 5 when the compressor 10 is operating. The use mode is a mode in which warm or cold energy stored in the heat storage mode is used.
 記憶手段55は、メモリ等からなり、熱媒体流量制御情報55aと空間情報55bとを有している。熱媒体流量制御情報55aは、ユーザが設定する目標設定温度と、室内温度センサ39の検出結果に基づいた熱媒体の流量制御に必要な情報とからなる。熱媒体の流量制御に必要な情報とは、例えば、利用側ユニット2a,2b,2c,2dの入口温度、出口温度及び吸込み温度等である。空調システム100は、利用側ユニット2a,2b,2c,2dの入口温度、出口温度及び吸込み温度等に基づいて各利用側ユニット2a,2b,2c,2dの運転能力を算出し、設定温度に到達するように空気調和する。空間情報55bは、室内空間7と設置されている利用側ユニット2a,2b,2c,2dとの対応を識別する情報と、設置された空間の特性とからなる。ここで、利用側ユニット2a,2b,2c,2dを識別する情報とは、室内空間7の間取り、又は利用側ユニット2a,2b,2c,2dが有する通信用の固有アドレス等である。空間の特性は、室内空間7が電算室として利用されていること、又は特定の時間帯に空室となること等の情報である。また、空間の特性は、ほかに、空間の温度変化が許容範囲にあること等の情報である。なお、記憶手段55は、制御装置50に組み込まれていなくてもよい。 The storage means 55 includes a memory or the like, and has heat medium flow control information 55a and space information 55b. The heat medium flow control information 55 a includes a target set temperature set by the user and information necessary for heat medium flow control based on the detection result of the indoor temperature sensor 39. The information necessary for controlling the flow rate of the heat medium is, for example, the inlet temperature, outlet temperature, suction temperature, etc. of the use side units 2a, 2b, 2c, 2d. The air conditioning system 100 calculates the operating capacity of each usage side unit 2a, 2b, 2c, 2d based on the inlet temperature, outlet temperature, suction temperature, etc. of the usage side units 2a, 2b, 2c, 2d, and reaches the set temperature. Harmonize with the air. The space information 55b includes information for identifying the correspondence between the indoor space 7 and the installed use side units 2a, 2b, 2c, and 2d, and the characteristics of the installed space. Here, the information for identifying the use side units 2a, 2b, 2c, 2d is a floor plan of the indoor space 7 or a unique address for communication of the use side units 2a, 2b, 2c, 2d. The characteristic of the space is information such as that the indoor space 7 is used as a computer room, or that the room 7 is vacant in a specific time zone. In addition, the space characteristic is information such as that the temperature change of the space is within an allowable range. Note that the storage unit 55 may not be incorporated in the control device 50.
 制御判定部51は、入力部52から受け取った情報を、記憶手段55及び通信部54からの情報と照合して、各機器の制御内容を出力部53に送信する。ここで、通信部54からの情報とは、前述の如く、例えば、温度、バルブ開閉、流路制御装置の制御、圧縮機10の周波数及び空調システム100の運転停止等の情報である。制御判定部51は、蓄熱手段51a、凍結抑制手段51b及び熱媒体流量制御手段51cを有している。 The control determination unit 51 compares the information received from the input unit 52 with the information from the storage unit 55 and the communication unit 54, and transmits the control content of each device to the output unit 53. Here, the information from the communication unit 54 is information such as temperature, valve opening / closing, flow path control device control, frequency of the compressor 10 and operation stop of the air conditioning system 100 as described above. The control determination unit 51 includes a heat storage unit 51a, a freezing suppression unit 51b, and a heat medium flow rate control unit 51c.
 蓄熱手段51aは、蓄熱モードにおいて、圧縮機10が動作しているときに、熱媒体が有する温熱又は冷熱を躯体に蓄えるものである。本実施の形態1では、利用側熱交換器26a,26b,26c,26dを利用して熱を蓄える場合について例示しており、空室に蓄熱される。蓄熱手段51aは、入力部52から利用側熱交換器26a,26b,26c,26dが設置された室内空間7のいずれかが空室であるという情報を受け取った場合、空室である室内空間7に設置された利用側熱交換器26a,26b,26c,26dに流れる熱媒体が有する温熱又は冷熱を空室に蓄える。本実施の形態1では、空室であるという情報は、ユーザがリモコン等で操作して入力部52を介して蓄熱手段51aが受け取り、記憶手段55に空間情報55bとして格納される。蓄熱手段51aは、空室の判定を行う。ここで、空室とは、人が不在の部屋のことである。空室の例として、居室、倉庫又は電算室等が挙げられる。倉庫の場合、保管される荷物の保管状態を考慮して、庫内温度の上限値及び下限値(空間情報55b)が設定される。電算室の場合、必要以上に冷却されることによって、蓄冷される。なお、空間情報55bの設定は、集中コントローラによるユーザインターフェースを用いてもよい。ここで、ユーザインターフェースを用いるとは、表示装置で設定することをいう。また、空間情報55bの設定は、複数のスイッチによる機械的なオン又はオフの状態を組み合わせてもよい。更に、空間情報55bのうち静的な情報は、空調システム100の製造時に予め設定されてもよい。 The heat storage means 51a is for storing, in the heat storage mode, the warm or cold energy of the heat medium in the housing when the compressor 10 is operating. In this Embodiment 1, the case where heat is stored using the use side heat exchangers 26a, 26b, 26c, and 26d is illustrated, and heat is stored in the vacant room. When the heat storage means 51a receives information from the input unit 52 that any one of the indoor spaces 7 in which the use side heat exchangers 26a, 26b, 26c, and 26d are installed is an empty room, the indoor space 7 that is an empty room. The hot or cold heat of the heat medium flowing in the use side heat exchangers 26a, 26b, 26c, and 26d installed in is stored in the empty room. In the first embodiment, the information indicating that the room is vacant is received by the heat storage means 51a via the input unit 52 by the user operating with a remote controller or the like, and stored in the storage means 55 as the spatial information 55b. The heat storage means 51a determines the availability. Here, a vacant room is a room where there is no person. Examples of vacancies include living rooms, warehouses or computer rooms. In the case of a warehouse, the upper limit value and the lower limit value (space information 55b) of the internal temperature are set in consideration of the storage state of the stored goods. In the case of a computer room, it is stored cold by being cooled more than necessary. The spatial information 55b may be set using a user interface using a centralized controller. Here, using the user interface means setting on the display device. The setting of the spatial information 55b may be a combination of a mechanical on or off state by a plurality of switches. Further, static information in the spatial information 55b may be set in advance when the air conditioning system 100 is manufactured.
 凍結抑制手段51bは、利用モードにおいて、蓄熱手段51aによって蓄えられた温熱を熱媒体に流して熱媒体の凍結を抑制するものである。凍結抑制手段51bは、熱媒体の温度が温度閾値以下の場合、蓄熱手段51aによって蓄えられた温熱を熱媒体に流して熱媒体の凍結を抑制する凍結防止運転を中間熱交換器15a,15bに実施させる。中間熱交換器15a,15bから利用側熱交換器26a,26b,26c,26dに至る熱媒体の流路は、概して建物9の内部に設置されており、通常は熱媒体の凍結温度、例えば水の場合は0℃よりも高い温度に保たれている。ここで、圧縮機10及びポンプ21a,21bが長期間停止されていた場合、又は、中間熱交換器15a,15bが屋外に設置されている場合等に、熱媒体回路が冷やされ凍結温度に至る可能性がある。特に、深夜等は外気の温度低下が顕著であり、また人が不在となることが多いために暖房が使われず停止状態が続くため、熱媒体の凍結が発生しやすい。このため、熱媒体の凍結を抑制するための凍結抑制を行う必要がある。 The freezing suppression means 51b suppresses freezing of the heat medium by flowing the heat stored by the heat storage means 51a through the heat medium in the use mode. When the temperature of the heat medium is equal to or lower than the temperature threshold value, the anti-freezing means 51b causes the intermediate heat exchangers 15a and 15b to perform an anti-freeze operation that causes the heat stored in the heat storage means 51a to flow through the heat medium and suppress the heat medium from freezing. Let it be implemented. The flow path of the heat medium from the intermediate heat exchangers 15a, 15b to the use side heat exchangers 26a, 26b, 26c, 26d is generally installed inside the building 9, and usually the freezing temperature of the heat medium, for example, water In this case, the temperature is kept higher than 0 ° C. Here, when the compressor 10 and the pumps 21a and 21b have been stopped for a long period of time, or when the intermediate heat exchangers 15a and 15b are installed outdoors, the heat medium circuit is cooled to reach the freezing temperature. there is a possibility. In particular, since the temperature drop of the outside air is remarkable at midnight and the like, and there are many people absent, heating is not used and the stop state continues, so that the heat medium is likely to freeze. For this reason, it is necessary to perform freezing suppression for suppressing freezing of the heat medium.
 凍結抑制手段51bは、第1の熱媒体温度センサ31a,31b、第2の熱媒体温度センサ32a,32b、第3の熱媒体温度センサ33a,33b,33c,33d又は第4の熱媒体温度センサ34a,34b,34c,34dのいずれかの検出温度が、予め定めた設定温度以下になった場合に凍結防止運転を中間熱交換器15a,15bに実施させる。 Freezing suppression means 51b includes first heat medium temperature sensors 31a, 31b, second heat medium temperature sensors 32a, 32b, third heat medium temperature sensors 33a, 33b, 33c, 33d, or a fourth heat medium temperature sensor. When the detected temperature of any one of 34a, 34b, 34c, and 34d becomes equal to or lower than a preset temperature, the freeze prevention operation is performed by the intermediate heat exchangers 15a and 15b.
 凍結防止運転では、凍結抑制手段51bは、中間熱交換器15a,15bにポンプ21a又は21bを動作させて熱媒体を循環させ、熱媒体配管5内の熱媒体を攪拌することにより、熱媒体回路全体の温度を均一化することができ、温度が下がった部分の熱媒体の温度を上げ、凍結を防止することができる。 In the anti-freezing operation, the anti-freezing means 51b operates the pump 21a or 21b in the intermediate heat exchangers 15a and 15b to circulate the heat medium, and stirs the heat medium in the heat medium pipe 5 to thereby heat the heat medium circuit. The entire temperature can be made uniform, and the temperature of the heat medium in the part where the temperature has decreased can be raised to prevent freezing.
 なお、第1の熱媒体温度センサ31a,31b、第2の熱媒体温度センサ32a,32b、第3の熱媒体温度センサ33a,33b,33c,33d又は第4の熱媒体温度センサ34a,34b,34c,34dのいずれの検出温度が設定温度以下になったかによって、ポンプ21a,21bのうち、いずれを動作させるかが変更される。凍結抑制手段51bは、第1の熱媒体温度センサ31aと第2の熱媒体温度センサ32aとのいずれかが設定温度以下になった場合は、ポンプ21aを動作させる。また、第1の熱媒体温度センサ31bと第2の熱媒体温度センサ32bとのいずれかが設定温度以下になった場合は、ポンプ21bを動作させる。更に、第3の熱媒体温度センサ33a,33b,33c,33d又は第4の熱媒体温度センサ34a,34b,34c,34dのいずれかが設定温度以下になった場合は、対応する利用側熱交換器26a,26b,26c,26dに接続されるポンプ21a又は21bのいずれかを動作させ熱媒体を循環させる。 The first heat medium temperature sensors 31a, 31b, the second heat medium temperature sensors 32a, 32b, the third heat medium temperature sensors 33a, 33b, 33c, 33d, or the fourth heat medium temperature sensors 34a, 34b, Which of the pumps 21a and 21b is operated is changed depending on which detected temperature of 34c and 34d is equal to or lower than the set temperature. The freezing suppression means 51b operates the pump 21a when either the first heat medium temperature sensor 31a or the second heat medium temperature sensor 32a becomes a set temperature or lower. When either the first heat medium temperature sensor 31b or the second heat medium temperature sensor 32b becomes equal to or lower than the set temperature, the pump 21b is operated. Furthermore, when any of the third heat medium temperature sensors 33a, 33b, 33c, and 33d or the fourth heat medium temperature sensors 34a, 34b, 34c, and 34d falls below the set temperature, the corresponding use side heat exchange is performed. Either the pump 21a or 21b connected to the units 26a, 26b, 26c, and 26d is operated to circulate the heat medium.
 また、例えば日中に暖房運転をしている場合は、外気温度よりも室内温度の方が高温になる。即ち、室内空間7に存在する空気、壁及び床等の躯体に温熱が蓄えられている。このとき、非空調空間8に配設された熱媒体配管5内の熱媒体の温度より室内空間7の温度の方が高いため、室内空間7の空気と熱媒体との間で熱交換することでも凍結防止が可能である。そこで、この実施の形態の水空調システムでは加温する必要のない空室内の空気に蓄熱をして熱媒体の凍結防止に利用する。蓄熱手段51aは、空間情報55bから空室に設置されている利用側ユニット2a,2b,2c,2dを識別し、この利用側ユニット2a,2b,2c,2dの利用側熱交換器26a,26b,26c,26dに取り付けられた利用側送風機20a,20b,20c,20d等で熱交換を促進することで、室内空間7に存在する空気、壁及び床等の躯体に蓄熱された温熱を熱媒体回路に流す。これにより、熱媒体の凍結を防ぐことが可能である。なお、日中は空室ではない場合でも、夜間等の凍結防止が起こり易い時間帯は空室となることが多いため、事前に空間情報55bに夜間の時間帯に限定して空室を設定することによって、空室を利用した凍結防止運転を行うことができる。 Also, for example, when heating operation is performed during the day, the room temperature is higher than the outside air temperature. That is, warm heat is stored in a housing such as air, walls, and floors present in the indoor space 7. At this time, since the temperature of the indoor space 7 is higher than the temperature of the heat medium in the heat medium pipe 5 disposed in the non-air-conditioned space 8, heat exchange is performed between the air in the indoor space 7 and the heat medium. However, it is possible to prevent freezing. Therefore, in the water air-conditioning system of this embodiment, heat is stored in air in an empty room that does not need to be heated and used to prevent the heat medium from freezing. The heat storage means 51a identifies the usage- side units 2a, 2b, 2c, and 2d installed in the vacant space from the space information 55b, and the usage- side heat exchangers 26a and 26b of the usage- side units 2a, 2b, 2c, and 2d. , 26c, 26d, etc., by promoting heat exchange with the use side blowers 20a, 20b, 20c, 20d, etc., so that the heat stored in the housing such as air, walls, and floors in the indoor space 7 is transferred to the heat medium. Flow through the circuit. Thereby, it is possible to prevent the heat medium from freezing. Even if the room is not vacant during the day, there are many times when the freezing prevention time such as nighttime is likely to be vacant. By doing so, it is possible to perform an anti-freezing operation using an empty room.
 熱媒体流量制御手段51cは、蓄熱手段51a及び凍結抑制手段51bから信号を受信したとき、ポンプ21a,21b、流路切替弁22a,22b,22c,22d,23a,23b,23c,23d、流量調整弁25a,25b,25c,25d、止め弁24a,24b,24c,24d及び利用側送風機20a,20b,20c,20dの動作を制御する。具体的には、図7に示すフローチャートを用いて後述する。 When the heat medium flow control means 51c receives signals from the heat storage means 51a and the freeze suppression means 51b, the pumps 21a, 21b, the flow path switching valves 22a, 22b, 22c, 22d, 23a, 23b, 23c, 23d, the flow rate adjustment The operation of the valves 25a, 25b, 25c, 25d, the stop valves 24a, 24b, 24c, 24d and the use side blowers 20a, 20b, 20c, 20d is controlled. Specifically, it will be described later with reference to the flowchart shown in FIG.
 図6は、本発明の実施の形態1に係る空調システム100の空室の認識動作を示すフローチャートである。制御装置50は、空室の認識動作を常時又は一定の周期で実行する。図6に示すように、制御装置50は、ユーザから入力部52を介して空室であるという情報を受け取る(ステップST1)と、空室であるという空間情報55bを記憶手段55に格納する(ステップST2)。 FIG. 6 is a flowchart showing the vacancy recognition operation of the air conditioning system 100 according to Embodiment 1 of the present invention. The control device 50 executes the vacancy recognition operation constantly or at a constant cycle. As shown in FIG. 6, when the control device 50 receives information indicating that the room is vacant from the user via the input unit 52 (step ST1), the control device 50 stores the space information 55b indicating that the room is vacant in the storage means 55 ( Step ST2).
 図7は、本発明の実施の形態1に係る空調システム100の熱媒体の凍結防止の動作を示すフローチャートである。図7に示すように、凍結抑制手段51bは、第1の熱媒体温度センサ31aによって検出された温度T1aが設定温度Ts以下になったかを判定する(ステップST11)。第1の熱媒体温度センサ31aによって検出された温度T1aが設定温度Tsより大きい場合、凍結抑制手段51bは、第2の熱媒体温度センサ32aによって検出された温度T2aが設定温度Ts以下になったかを判定する(ステップST12)。第2の熱媒体温度センサ32aによって検出された温度T2aが設定温度Tsより大きい場合、凍結抑制手段51bは、第1の熱媒体温度センサ31bによって検出された温度T1bが設定温度Ts以下になったかを判定する(ステップST13)。第1の熱媒体温度センサ31bによって検出された温度T1bが設定温度Tsより大きい場合、凍結抑制手段51bは、第2の熱媒体温度センサ32bによって検出された温度T2bが設定温度Ts以下になったかを判定する(ステップST14)。第2の熱媒体温度センサ32bによって検出された温度T2bが設定温度Tsより大きい場合、制御装置50はn=1とする(ステップST16)。ここで、nとは、利用側ユニット2a,2b,2c,2dを識別するための識別子である。例えば、利用側ユニット(1)は2a、利用側ユニット(2)は2b、利用側ユニット(3)は2c、利用側ユニット(4)は2dとなり、このときのnの最大値は4である。なお、ステップST11、ステップST12、ステップST13及びステップST14において第1の熱媒体温度センサ31a,31b又は第2の熱媒体温度センサ32a,32bの検出結果のいずれかが設定温度Ts以下の場合、凍結抑制手段51bは、蓄熱手段51aによって蓄えられた熱を凍結防止に利用すると判断し、その判断結果を保持する(ステップST15)。 FIG. 7 is a flowchart showing the operation of preventing the freezing of the heat medium of the air conditioning system 100 according to Embodiment 1 of the present invention. As shown in FIG. 7, the freezing suppression unit 51b determines whether the temperature T1a detected by the first heat medium temperature sensor 31a is equal to or lower than the set temperature Ts (step ST11). When the temperature T1a detected by the first heat medium temperature sensor 31a is higher than the set temperature Ts, the freeze suppression means 51b determines whether the temperature T2a detected by the second heat medium temperature sensor 32a is equal to or lower than the set temperature Ts. Is determined (step ST12). When the temperature T2a detected by the second heat medium temperature sensor 32a is higher than the set temperature Ts, the freeze suppression means 51b determines whether the temperature T1b detected by the first heat medium temperature sensor 31b is equal to or lower than the set temperature Ts. Is determined (step ST13). When the temperature T1b detected by the first heat medium temperature sensor 31b is higher than the set temperature Ts, the freezing suppression means 51b determines whether the temperature T2b detected by the second heat medium temperature sensor 32b is equal to or lower than the set temperature Ts. Is determined (step ST14). When the temperature T2b detected by the second heat medium temperature sensor 32b is higher than the set temperature Ts, the control device 50 sets n = 1 (step ST16). Here, n is an identifier for identifying the usage- side units 2a, 2b, 2c, 2d. For example, the utilization side unit (1) is 2a, the utilization side unit (2) is 2b, the utilization side unit (3) is 2c, and the utilization side unit (4) is 2d, and the maximum value of n at this time is 4. . If any of the detection results of the first heat medium temperature sensors 31a and 31b or the second heat medium temperature sensors 32a and 32b is equal to or lower than the set temperature Ts in step ST11, step ST12, step ST13, and step ST14, freezing is performed. The suppression means 51b determines that the heat stored by the heat storage means 51a is used for prevention of freezing, and holds the determination result (step ST15).
 凍結抑制手段51bは、n番目の利用側ユニット(n)に設けられた第4の熱媒体温度センサによって検出された温度T4aが設定温度Ts以下になったかを判定する(ステップST17)。第4の熱媒体温度センサによって検出された温度T4aが設定温度Tsより大きい場合、凍結抑制手段51bは、第4の熱媒体温度センサによって検出された温度T4bが設定温度Ts以下になったかを判定する(ステップST18)。第4の熱媒体温度センサによって検出された温度T4bが設定温度Ts以下の場合、制御装置50はnが最大値であるかを判定し(ステップST20)、nが最大値でない場合、n=n+1として(ステップST21)、ステップST17に戻る。なお、ステップST17及びステップST18において第4の熱媒体温度センサ34a,34b,34c,34dが設定温度Ts以下の場合、凍結抑制手段51bは、蓄熱手段51aによって蓄えられた熱を、凍結防止に利用する(ステップST19)。なお、ステップST17において、第4の熱媒体温度センサ34a,34b,34c,34dの代わりに、第3の熱媒体温度センサ33a,33b,33c,33dが使用されてもよい。この場合、第3の熱媒体温度センサ33a,33b,33c,33dが設けられた場所は、凍結防止運転中において凍結し易いため、温度検出の正確性を高めることができる。 The freezing suppression means 51b determines whether or not the temperature T4a detected by the fourth heat medium temperature sensor provided in the nth user side unit (n) has become equal to or lower than the set temperature Ts (step ST17). When the temperature T4a detected by the fourth heat medium temperature sensor is higher than the set temperature Ts, the freezing suppression unit 51b determines whether the temperature T4b detected by the fourth heat medium temperature sensor is equal to or lower than the set temperature Ts. (Step ST18). If the temperature T4b detected by the fourth heat medium temperature sensor is equal to or lower than the set temperature Ts, the control device 50 determines whether n is the maximum value (step ST20). If n is not the maximum value, n = n + 1. (Step ST21), the process returns to step ST17. When the fourth heat medium temperature sensors 34a, 34b, 34c, 34d are equal to or lower than the set temperature Ts in step ST17 and step ST18, the freezing suppression means 51b uses the heat stored by the heat storage means 51a for freezing prevention. (Step ST19). In step ST17, the third heat medium temperature sensors 33a, 33b, 33c, and 33d may be used instead of the fourth heat medium temperature sensors 34a, 34b, 34c, and 34d. In this case, the place where the third heat medium temperature sensors 33a, 33b, 33c, and 33d are easily frozen during the freeze prevention operation can improve the accuracy of temperature detection.
 ステップST20においてnが最大値である場合、凍結抑制手段51bは、第1の熱媒体温度センサ31a,31b及び第4の熱媒体温度センサ34a,34b,34c,34dによって検出された温度が、全て設定温度Ts以上かを判定する(ステップST22)。例えば、事前に凍結防止に必要な熱量が既に蓄熱されている場合は、ステップST22のNoとなり、蓄熱されていない場合は、ステップST22のYesとなる。なお、第2の熱媒体温度センサ32a,32b及び第3の熱媒体温度センサ33a,33b,33c,33dが、温度判定に使用されてもよい。全ての温度が設定温度Ts以上の場合、凍結抑制手段51bは、凍結防止運転を停止する(ステップST23)。 When n is the maximum value in step ST20, the freezing suppression unit 51b has all the temperatures detected by the first heat medium temperature sensors 31a, 31b and the fourth heat medium temperature sensors 34a, 34b, 34c, 34d. It is determined whether the temperature is equal to or higher than the set temperature Ts (step ST22). For example, if the amount of heat necessary for preventing freezing has already been stored in advance, the result of step ST22 is No. If the heat has not been stored, the result of step ST22 is Yes. The second heat medium temperature sensors 32a and 32b and the third heat medium temperature sensors 33a, 33b, 33c, and 33d may be used for temperature determination. When all the temperatures are equal to or higher than the set temperature Ts, the freezing suppression unit 51b stops the freezing prevention operation (step ST23).
 図8は、本発明の実施の形態1に係る空調システム100の躯体蓄熱の動作を示すフローチャートである。図8に示すように、蓄熱手段51aは、現在時刻で圧縮機10が運転中且つ蓄熱が必要であるかを判定する(ステップST31)。蓄熱の利用の要否は、ステップST15、ステップST19及びステップST23において決定される。圧縮機10が停止しているか蓄熱が不要である場合、制御装置50は蓄えられた熱を利用するかを判定する(ステップST32)。ステップST31又はステップST32のいずれかがYESの場合、制御装置50はn=1とする(ステップST33)。蓄熱手段51aは、利用側ユニット2a,2b,2c,2dが空室に設置されているかを判定する(ステップST34)。 FIG. 8 is a flowchart showing the operation of housing heat storage of the air conditioning system 100 according to Embodiment 1 of the present invention. As shown in FIG. 8, the heat storage means 51a determines whether or not the compressor 10 is operating at the current time and heat storage is required (step ST31). Whether or not heat storage is necessary is determined in step ST15, step ST19, and step ST23. When the compressor 10 is stopped or heat storage is not necessary, the control device 50 determines whether to use the stored heat (step ST32). When either step ST31 or step ST32 is YES, the control device 50 sets n = 1 (step ST33). The heat storage means 51a determines whether the usage- side units 2a, 2b, 2c, and 2d are installed in vacant rooms (step ST34).
 空室に設置されている場合、蓄熱手段51aは、利用側ユニット2a,2b,2c,2dの温度が、予め記憶された許容される温度範囲内にあるかを判定する(ステップST35)。許容される温度範囲内である場合、熱媒体流量制御手段51cは、ポンプ21a又は21bを動作させる(ステップST36)。そして、熱媒体流量制御手段51cは、利用側ユニット2a,2b,2c,2dに接続される流路切替弁22a,22b,22c,22dを加熱用の中間熱交換器15a側に切り替え、流路切替弁23a,23b,23c,23dを、冷却用の中間熱交換器15b側に切り替える(ステップST37)。 If installed in the vacant room, the heat storage means 51a determines whether the temperatures of the use side units 2a, 2b, 2c, 2d are within an allowable temperature range stored in advance (step ST35). When the temperature is within the allowable temperature range, the heat medium flow control means 51c operates the pump 21a or 21b (step ST36). The heat medium flow control means 51c switches the flow path switching valves 22a, 22b, 22c, and 22d connected to the use side units 2a, 2b, 2c, and 2d to the heating intermediate heat exchanger 15a side, The switching valves 23a, 23b, 23c, and 23d are switched to the cooling intermediate heat exchanger 15b side (step ST37).
 その後、熱媒体流量制御手段51cは、利用側ユニット2a,2b,2c,2dの流量調整弁25a,25b,25c,25dを利用側熱交換器26a,26b,26c,26d側に全開し、止め弁24a,24b,24c,24dを開き、利用側送風機20a,20b,20c,20dを運転させる(ステップST38)。そして、制御装置50はnが最大値であるかが判定され(ステップST39)、nが最大値でない場合、n=n+1として(ステップST40)、ステップST34に戻る。nが最大値の場合、制御は終了する。即ち、利用側ユニット2a,2b,2c,2dがn=1から順に最大値になるまで検索される。なお、ステップST31においてYESの場合のステップST33~ステップST40では、空室に冷熱が蓄えられる。また、ステップST32においてYESの場合のステップST33~ステップST40では、躯体に蓄えられた熱が利用される。また、ステップST32における「蓄熱された冷熱を利用する」という条件は、図7のステップST19及びステップST15に示すように熱媒体凍結防止の処理において任意で指示することができる。また、ステップST36においてポンプ21a,21bの両方を動作させてもよい。 Thereafter, the heat medium flow control means 51c fully opens and stops the flow rate adjusting valves 25a, 25b, 25c, 25d of the use side units 2a, 2b, 2c, 2d to the use side heat exchangers 26a, 26b, 26c, 26d side. The valves 24a, 24b, 24c, and 24d are opened, and the use side fans 20a, 20b, 20c, and 20d are operated (step ST38). Then, control device 50 determines whether n is the maximum value (step ST39). If n is not the maximum value, n = n + 1 is set (step ST40), and the process returns to step ST34. If n is the maximum value, the control ends. In other words, the usage- side units 2a, 2b, 2c, and 2d are searched in order from n = 1 until the maximum value is reached. In step ST33 to step ST40 in the case of YES in step ST31, cold heat is stored in the empty room. Further, in step ST33 to step ST40 in the case of YES in step ST32, the heat stored in the housing is used. Further, the condition “use the stored cold energy” in step ST32 can be arbitrarily designated in the heat medium freezing prevention process as shown in step ST19 and step ST15 of FIG. In step ST36, both pumps 21a and 21b may be operated.
 図9は、本発明の実施の形態1に係る空調システム100の利用側ユニット2aのみが空室に設定されている場合の熱媒体の流れを示す回路図である。図9に示すように、利用側ユニット2aのみが空室に設置されている場合、熱媒体は、中間熱交換器15bによって冷却され、空室に冷熱が蓄えられる。 FIG. 9 is a circuit diagram showing the flow of the heat medium when only the usage-side unit 2a of the air conditioning system 100 according to Embodiment 1 of the present invention is set to an empty room. As shown in FIG. 9, when only the use side unit 2a is installed in the empty room, the heat medium is cooled by the intermediate heat exchanger 15b, and cold heat is stored in the empty room.
 図10は、本発明の実施の形態1に係る空調システム100の利用側ユニット2a,2bが空室に設定されている場合の熱媒体の流れを示す回路図である。ステップST37において、流路切替弁22,23は、中間熱交換器15a又は15b側に切り替えているが、温度が低い熱媒体と温度が高い熱媒体とが撹拌するように切り替えられればよい。例えば、空室に設置されている利用側ユニット(n)の流路切替弁22が中間熱交換器15a側に切り替えられ、流路切替弁23が中間熱交換器15b側に切り替えられる。そして、空室に設置されている利用側ユニット(n+1)の流路切替弁22が中間熱交換器15b側に切り替えられ、流路切替弁23が中間熱交換器15a側に切り替えられる。 FIG. 10 is a circuit diagram showing the flow of the heat medium when the usage- side units 2a and 2b of the air conditioning system 100 according to Embodiment 1 of the present invention are set to vacant rooms. In step ST37, the flow path switching valves 22 and 23 are switched to the intermediate heat exchanger 15a or 15b side, but may be switched so that the heat medium having a low temperature and the heat medium having a high temperature are stirred. For example, the flow path switching valve 22 of the use side unit (n) installed in the empty room is switched to the intermediate heat exchanger 15a side, and the flow path switching valve 23 is switched to the intermediate heat exchanger 15b side. And the flow-path switching valve 22 of the utilization side unit (n + 1) installed in the empty room is switched to the intermediate heat exchanger 15b side, and the flow-path switching valve 23 is switched to the intermediate heat exchanger 15a side.
 また、空室に設置されている利用側ユニット(n)の流路切替弁22が中間熱交換器15b側に切り替えられ、流路切替弁23が中間熱交換器15a側に切り替えられる。そして、空室に設置されている利用側ユニット(n+1)の流路切替弁22が中間熱交換器15a側に切り替えられ、流路切替弁23が中間熱交換器15b側に切り替えられる。この場合、図10に示すように、利用側ユニット2a,2bが空室に設置されていると、利用側ユニット2aにおいて温熱が蓄えられ、利用側ユニット2bにおいて冷熱が蓄えられる。 Further, the flow path switching valve 22 of the use side unit (n) installed in the vacant room is switched to the intermediate heat exchanger 15b side, and the flow path switching valve 23 is switched to the intermediate heat exchanger 15a side. And the flow-path switching valve 22 of the utilization side unit (n + 1) installed in the empty room is switched to the intermediate heat exchanger 15a side, and the flow-path switching valve 23 is switched to the intermediate heat exchanger 15b side. In this case, as shown in FIG. 10, when the use side units 2a and 2b are installed in the vacant room, the heat is stored in the use side unit 2a and the cold is stored in the use side unit 2b.
 本実施の形態1の制御装置50の制御方法は、圧縮機10が動作しているときに、利用側熱交換器26a,26b,26c,26d又は熱媒体配管5を用いて熱媒体が有する温熱又は冷熱を蓄えるステップと、蓄えられた温熱又は冷熱を利用するステップと、を有する。 In the control method of the control device 50 according to the first embodiment, when the compressor 10 is in operation, the heating medium has a heating temperature using the use side heat exchangers 26a, 26b, 26c, 26d or the heating medium pipe 5. Alternatively, the method includes a step of storing cold energy and a step of using the stored heat or cold energy.
 本実施の形態1によれば、制御装置50が蓄熱モードと利用モードとを有している。空調システム100は、蓄熱モードにおいて、利用側熱交換器26a,26b,26c,26d又は熱媒体配管5の内部に冷熱又は温熱を蓄えることができる。このように、空調システム100は、別途蓄熱槽が用意されなくとも冷熱又は温熱を蓄えることができる。ここで、本実施の形態1において、制御装置50は、蓄熱モードにおいて、人が不在の空室に設置された利用側熱交換器26a,26b,26c,26dに流れる熱媒体が有する温熱又は冷熱を、空室に蓄える蓄熱手段51aを有する。このように、蓄熱場所は空室、即ち屋内であるため、空室に蓄えられた温熱又は冷熱は、放散され難い。従って、蓄えられた熱の利用効率を向上させることができる。 According to the first embodiment, the control device 50 has a heat storage mode and a use mode. In the heat storage mode, the air conditioning system 100 can store cold or warm heat inside the use side heat exchangers 26a, 26b, 26c, 26d or the heat medium pipe 5. In this way, the air conditioning system 100 can store cold or warm heat even if a separate heat storage tank is not prepared. Here, in the first embodiment, in the heat storage mode, the control device 50 uses the heat or cold that the heat medium flowing in the use side heat exchangers 26a, 26b, 26c, and 26d installed in the empty room where no person is present. Is stored in the empty room. Thus, since the heat storage place is a vacant room, that is, indoors, the heat or cold stored in the vacant room is not easily dissipated. Therefore, the utilization efficiency of the stored heat can be improved.
 制御装置50は、利用モードにおいて、熱媒体温度センサによって検出された熱媒体の温度が温度閾値以下の場合、蓄熱モードにおいて蓄えられた温熱を熱媒体に流して熱媒体の凍結を抑制する凍結抑制手段51bを更に有する。このように、空調が不要な空室に予め蓄熱されることによって、圧縮機10を起動させずに、蓄えられた温熱を利用して熱媒体の凍結を抑制することができる。また、冷熱を蓄えることによって、凍結防止、起動時間の短縮(冷房運転及び暖房運転の応答性の向上)が図れる。 In the use mode, when the temperature of the heat medium detected by the heat medium temperature sensor is equal to or lower than the temperature threshold, the control device 50 suppresses freezing of the heat medium by flowing the heat stored in the heat storage mode to the heat medium. Means 51b is further provided. In this way, by preliminarily storing heat in an empty room that does not require air conditioning, freezing of the heat medium can be suppressed using the stored warm heat without starting the compressor 10. Further, by storing the cold energy, it is possible to prevent freezing and shorten the start-up time (improvement in the responsiveness of the cooling operation and the heating operation).
 従来、熱源機と複数の室内機との間に中継機が設けられ、熱源機と中継機との間を冷媒で熱搬送し、中継機と室内機との間を水で熱搬送する水空調システムが知られている。水空調システムは、冷媒制御により、起動時間の短縮、省エネ及び省施工を実現しつつ、水を利用して冷媒の量を削減している。このような水空調システムは、外気温度が低いと水配管が凍結するおそれがあるため、運転停止時にもポンプ、圧縮機又はボイラ等を起動させて水配管の凍結を抑制している。しかし、凍結防止運転時に圧縮機等を起動するため、消費電力が増加してしまう。また、バッファタンクに蓄えられた熱を凍結防止に使用する従来のチラーシステムは、バッファタンクを起動する際に時間がかかる。 Conventionally, a relay unit is provided between a heat source unit and a plurality of indoor units, and heat transfer is performed between the heat source unit and the relay unit using a refrigerant, and water is transferred between the relay unit and the indoor unit using water. The system is known. The water air-conditioning system uses water to reduce the amount of refrigerant while realizing a reduction in start-up time, energy saving and construction by refrigerant control. In such a water air-conditioning system, when the outside air temperature is low, the water pipe may be frozen. Therefore, even when the operation is stopped, the pump, the compressor, the boiler, or the like is activated to suppress the freezing of the water pipe. However, since the compressor or the like is started during the freeze prevention operation, the power consumption increases. In addition, the conventional chiller system that uses the heat stored in the buffer tank to prevent freezing takes time to start the buffer tank.
 これに対し、本実施の形態1は、凍結防止時に圧縮機10を起動させる必要がないため、消費電力を削減することができる。また、本実施の形態1は、空室に蓄熱するため、ポンプ21a,21bを起動させるだけで、蓄えた熱を使用することができる。従って、起動時間が短い。 On the other hand, the first embodiment can reduce power consumption because it is not necessary to start the compressor 10 when preventing freezing. In addition, since the first embodiment stores heat in the vacant room, the stored heat can be used only by starting the pumps 21a and 21b. Therefore, the startup time is short.
 また、そのほかの従来技術として、熱源装置と複数の室内機とを接続する中継ユニットを備える空気調和装置が知られている。熱源装置と中継ユニットとの間において冷媒が熱を搬送し、中継ユニットと各室内機との間において水が熱を搬送する。冷媒制御によって、起動時間の短縮、省エネ性及び省施工性を実現しつつ、水を利用することによって使用する冷媒の量を削減している。この従来技術は、熱媒体の凍結防止のためにポンプを動かし熱媒体配管内の熱媒体を攪拌することにより、熱媒体循環回路中の温度を均一化し、温度が下がった部分の熱媒体の温度を上げ、凍結を防止している。これに対し、本実施の形態1の空調システム100は、事前に、圧縮機10の運転時に空室に冷熱を蓄熱することが可能であり、熱媒体の温度が設定温度以下の場合に、蓄熱した冷熱を熱媒体に与える等の凍結防止運転を行うことにより、従来のようなポンプ21a,21bによる熱媒体の攪拌よりも凍結防止の効果を高くすることができる。 As another conventional technique, an air conditioner including a relay unit that connects a heat source device and a plurality of indoor units is known. The refrigerant carries heat between the heat source device and the relay unit, and water carries heat between the relay unit and each indoor unit. Refrigerant control reduces the amount of refrigerant to be used by using water while shortening the startup time, realizing energy savings and workability. In this prior art, the temperature in the heat medium circulation circuit is made uniform by moving the pump to stir the heat medium in the heat medium piping to prevent the heat medium from freezing, and the temperature of the heat medium in the part where the temperature has decreased. To prevent freezing. On the other hand, the air conditioning system 100 according to the first embodiment can store the cold in the vacant room in advance when the compressor 10 is operating, and store the heat when the temperature of the heat medium is equal to or lower than the set temperature. By performing anti-freezing operation such as applying the cooled heat to the heat medium, the effect of anti-freezing can be made higher than the conventional stirring of the heat medium by the pumps 21a and 21b.
 なお、本実施の形態1では、中間熱交換器15a,15bの入口側及び出口側に温度センサが設置されている場合について例示しているが、中間熱交換器15a,15bの入口側又は出口側のいずれか一方に温度センサが設置されていればよい。この場合も、ポンプ21a,21bを制御することができる。 In addition, in this Embodiment 1, although illustrated about the case where the temperature sensor is installed in the inlet side and outlet side of intermediate heat exchanger 15a, 15b, the inlet side or outlet of intermediate heat exchanger 15a, 15b The temperature sensor should just be installed in either one of the sides. Also in this case, the pumps 21a and 21b can be controlled.
 (第2変形例)
 図11は、本発明の実施の形態1の第2変形例に係る空調システム100を示す回路図である。図11に示すように、第2変形例では、流量調整弁25a,25b,25c,25dとして二方弁が使用されており、バイパス回路27a,27b,27c,27d及び止め弁24a,24b,24c,24dが省略されている。第2変形例では、流量調整弁25a,25b,25c,25dの開口面積が制御され、熱媒体の循環流路が確保された後に、ポンプ21a,21bが動作する。
(Second modification)
FIG. 11 is a circuit diagram showing an air conditioning system 100 according to a second modification of the first embodiment of the present invention. As shown in FIG. 11, in the second modification, two-way valves are used as the flow rate adjusting valves 25a, 25b, 25c, 25d, and bypass circuits 27a, 27b, 27c, 27d and stop valves 24a, 24b, 24c. 24d are omitted. In the second modification, the opening areas of the flow rate adjusting valves 25a, 25b, 25c, and 25d are controlled, and the pumps 21a and 21b are operated after the circulation path of the heat medium is secured.
 二方弁の流量調整弁25a,25b,25c,25dは、ステッピングモータ等により開口面積を連続的に変化させることができる。この場合、三方弁と同様の制御が可能であり、制御装置50は、流量調整弁25a,25b,25c,25dの開度を調整して、利用側熱交換器26a,26b,26c,26dに流入させる熱媒体の流量を制御する。そして、制御装置50は、利用側熱交換器26a,26b,26c,26dの入口側と出口側との温度差が予め定められた目標値例えば5℃となるように制御する。その上で、中間熱交換器15a,15bの入口側又は出口側の温度が、予め定めた目標値になるようにポンプ21a,21bの回転数を制御すればよい。 The opening areas of the two-way valve flow control valves 25a, 25b, 25c, and 25d can be continuously changed by a stepping motor or the like. In this case, the same control as that of the three-way valve is possible, and the control device 50 adjusts the opening degree of the flow rate adjustment valves 25a, 25b, 25c, and 25d to the use side heat exchangers 26a, 26b, 26c, and 26d. The flow rate of the heat medium to be introduced is controlled. The control device 50 controls the temperature difference between the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d to be a predetermined target value, for example, 5 ° C. Then, the rotational speeds of the pumps 21a and 21b may be controlled so that the temperature on the inlet side or outlet side of the intermediate heat exchangers 15a and 15b becomes a predetermined target value.
 第2変形例のように、流量調整弁25a,25b,25c,25dとして二方弁を用いると、流路の開閉にも用いることができるため、止め弁24a,24b,24c,24dが不要になり、安価に空調システム100を構築することができる。なお、第2変形例のように、流量調整弁25a,25b,25c,25dとして二方弁を用いた場合は、第3の熱媒体温度センサ33a,33b,33c,33d、第4の熱媒体温度センサ34a,34b,34c,34dを中継ユニット3の内部又は近傍に設置し、流量調整弁25a,25b,25c,25dを利用側ユニット2a,2b,2c,2dの内部又は近傍に設置するようにしてもよい。 If a two-way valve is used as the flow rate adjusting valve 25a, 25b, 25c, 25d as in the second modification, it can be used to open and close the flow path, so that the stop valves 24a, 24b, 24c, 24d are unnecessary. Thus, the air conditioning system 100 can be constructed at low cost. In addition, when a two-way valve is used as the flow rate adjusting valves 25a, 25b, 25c, and 25d as in the second modification, the third heat medium temperature sensors 33a, 33b, 33c, 33d, and the fourth heat medium are used. The temperature sensors 34a, 34b, 34c, 34d are installed in or near the relay unit 3, and the flow rate adjusting valves 25a, 25b, 25c, 25d are installed in or near the use side units 2a, 2b, 2c, 2d. It may be.
実施の形態2.
 図12は、本発明の実施の形態2に係る空調システム100を示す回路図である。本実施の形態2は、中継ユニット18が簡略化されている点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2. FIG.
FIG. 12 is a circuit diagram showing an air conditioning system 100 according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment in that the relay unit 18 is simplified. In the second embodiment, the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
 中継ユニット18は、中間熱交換器15と膨張部16とポンプ21とを有している。中継ユニット3には、流路切替弁22a,22b,22c,22dが省略されており、冷暖混在運転ではなく、全冷房運転及び全暖房運転が可能である。なお、止め弁24a,24b,24c,24d、流量調整弁25a,25b,25c,25d、第3の熱媒体温度センサ33a,33b,33c,33d及び第4の熱媒体温度センサ34a,34b,34c,34dは、利用側ユニット2a,2b,2c,2dに設けられている。本実施の形態2では、冷暖混在運転を行う構造を省略することにより、部品点数を減らし、熱媒体配管5の本数を減らすことができる。このため、実施の形態1の躯体蓄熱を利用する処理において、流路切替弁22a,22b,22c,22dの制御が不要となるため、ポンプ21の制御等が簡略化される。 The relay unit 18 includes an intermediate heat exchanger 15, an expansion unit 16, and a pump 21. In the relay unit 3, the flow path switching valves 22a, 22b, 22c, and 22d are omitted, and a cooling only operation and a heating operation are possible instead of a cooling and heating mixed operation. The stop valves 24a, 24b, 24c, 24d, the flow rate adjusting valves 25a, 25b, 25c, 25d, the third heat medium temperature sensors 33a, 33b, 33c, 33d, and the fourth heat medium temperature sensors 34a, 34b, 34c. , 34d are provided in the use side units 2a, 2b, 2c, 2d. In the second embodiment, by omitting the structure for performing the cooling and heating mixed operation, the number of parts can be reduced and the number of the heat medium pipes 5 can be reduced. For this reason, in the process using the housing heat storage of the first embodiment, the control of the flow path switching valves 22a, 22b, 22c, and 22d becomes unnecessary, so that the control of the pump 21 and the like are simplified.
 (変形例)
 図13は、本発明の実施の形態2の変形例に係る空調システム100を示す回路図である。図13に示すように、変形例では、流量調整弁25a,25b,25c,25dとして二方弁が使用されており、バイパス回路27a,27b,27c,27d及び止め弁24a,24b,24c,24dが省略されている。変形例では、流量調整弁25a,25b,25c,25dの開口面積が制御され、熱媒体の循環流路が確保された後に、ポンプ21a,21bが動作する。変形例においても、実施の形態2と同様の効果を奏する。
(Modification)
FIG. 13 is a circuit diagram showing an air conditioning system 100 according to a modification of the second embodiment of the present invention. As shown in FIG. 13, in the modified example, two-way valves are used as the flow rate adjusting valves 25a, 25b, 25c, 25d, and bypass circuits 27a, 27b, 27c, 27d and stop valves 24a, 24b, 24c, 24d. Is omitted. In the modification, the opening areas of the flow rate adjusting valves 25a, 25b, 25c, and 25d are controlled, and the pumps 21a and 21b are operated after the circulation path of the heat medium is secured. Also in the modified example, the same effect as in the second embodiment is obtained.
実施の形態3.
 図14は、本発明の実施の形態3に係る制御装置50を示すブロック図である。本実施の形態3は、記憶手段55が履歴情報55c及び許可情報55dを記憶している点で、実施の形態1と相違する。本実施の形態3では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3 FIG.
FIG. 14 is a block diagram showing a control device 50 according to Embodiment 3 of the present invention. The third embodiment is different from the first embodiment in that the storage unit 55 stores history information 55c and permission information 55d. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 本実施の形態3では、室内空間7の温度上昇の履歴、冷房又は暖房の運転履歴等に基づいて、空間情報55bの空室等を推測してユーザによる設定の手間を省く。図14に示すように、記憶手段55は、履歴情報55c及び許可情報55dを記憶している。履歴情報55cは、冷房又は暖房の運転と停止の履歴、及び温度の時間変化の履歴等の情報を含む。冷房又は暖房の運転と停止の履歴とは、利用側ユニット2a,2b,2c,2d毎に冷房又は暖房が行われた回数の履歴であり、制御装置50は、冷房又は暖房が行われた頻度が少ない場合に空室であると推測する。ここで、頻度が少ないとは、例えば試運転のみ行っている場合又は運転していない場合のことをいう。温度の時間変化の履歴とは、外気温度の時間変化又は室内温度の時間変化等の履歴であり、制御装置50は、外気温度の時間変化と室内温度の時間変化とに相関性が見出せない場合、空室ではないと推測する。 In the third embodiment, based on the temperature rise history of the indoor space 7, the operation history of cooling or heating, etc., the vacancy of the space information 55b is estimated and the setting work by the user is saved. As shown in FIG. 14, the storage means 55 stores history information 55c and permission information 55d. The history information 55c includes information such as a history of cooling or heating operation and stop, and a history of temperature change over time. The history of operation or stop of cooling or heating is a history of the number of times cooling or heating has been performed for each of the usage- side units 2a, 2b, 2c, and 2d, and the control device 50 has a frequency of cooling or heating being performed. If there are few, I guess it is empty. Here, the low frequency means, for example, a case where only the trial operation is performed or a case where the operation is not performed. The history of temperature change over time is a history of time change in outside air temperature or time change in room temperature, etc., and the control device 50 cannot find a correlation between the time change in outside air temperature and the time change in room temperature. Guess not vacant.
 例えば、人が在室する空間では、冷房又は暖房が停止中でも、人体の発熱及び人が操作するパソコン等の機器の発熱等によって室温は上昇する。このため、制御装置50は、室内温度の上昇が、外気温度の上昇の傾向と異なる場合、空室ではないと推測する。履歴情報55cは、時間情報の履歴を併せて保存していることによって、推測の精度を向上させることができる。例えば、空室となる時間帯又は季節等を推測することができる。制御装置50は、冷房又は暖房の使用頻度の傾向を分析することによって、特定の時間帯又は季節等に空室となることを推測することができる。 For example, in a space where a person is present, even when cooling or heating is stopped, the room temperature rises due to the heat of the human body and the heat of a device such as a personal computer operated by the person. For this reason, the control apparatus 50 estimates that it is not an empty room, when the rise in indoor temperature differs from the tendency of the rise in outside air temperature. The history information 55c can improve the accuracy of estimation by storing the history of time information together. For example, it is possible to estimate the time zone or season when the room is vacant. The control device 50 can estimate that the room becomes vacant in a specific time zone or season by analyzing the tendency of the frequency of use of cooling or heating.
 許可情報55dは、空室の自動認識の許可に関する情報である。許可情報55dは、ユーザが自ら設定せずに空室を自動認識することを許可するか禁止するかを、ユーザが設定する。許可の場合、空室が自動認識され、禁止の場合、自動認識されずユーザが手動で認識する。ユーザから許可情報55dが設定される場合、制御装置50は空間情報55bと関連付けて、空間毎に自動認識の許否を設定してもよく、利用側ユニット2a,2b,2c,2d毎に自動認識の許否を設定してもよく、全ての利用側ユニット2a,2b,2c,2dに対し一括で自動認識の許否を設定してもよい。 Permission information 55d is information related to permission for automatic recognition of vacancies. The permission information 55d is set by the user as to whether or not to allow the user to automatically recognize a vacant room without setting the permission information 55d. In the case of permission, the vacancy is automatically recognized, and in the case of prohibition, the user manually recognizes without being automatically recognized. When the permission information 55d is set by the user, the control device 50 may set permission / rejection of automatic recognition for each space in association with the space information 55b, and automatically recognizes for each use unit 2a, 2b, 2c, 2d. May be set, or automatic recognition may be set collectively for all the use side units 2a, 2b, 2c, 2d.
 図15は、本発明の実施の形態3に係る空調システム100の空室の自動認識動作を示すフローチャートである。制御装置50は、空室の自動認識動作を常時又は一定の周期で実行する。図15に示すように、制御装置50は、ユーザから空間情報55bが設定されたかを判定する(ステップST51)。空間情報55bが設定されている場合、制御装置50は、記憶手段55に空間情報55bを格納する(ステップST52)。空間情報55bが設定されていない場合、又は制御装置50が空間情報55bを格納すると、制御装置50はユーザから自動認識が許可されているかを判定する(ステップST53)。許可されていれば、制御装置50は許可情報55dに許可であることを付加する(ステップST54)。 FIG. 15 is a flowchart showing the automatic vacancy recognition operation of the air conditioning system 100 according to Embodiment 3 of the present invention. The control device 50 executes the automatic vacancy recognition operation at all times or at a constant cycle. As illustrated in FIG. 15, the control device 50 determines whether the spatial information 55b is set by the user (step ST51). When the spatial information 55b is set, the control device 50 stores the spatial information 55b in the storage unit 55 (step ST52). When the spatial information 55b is not set or when the control device 50 stores the spatial information 55b, the control device 50 determines whether automatic recognition is permitted by the user (step ST53). If permitted, control device 50 adds permission to permission information 55d (step ST54).
 許可されていない場合、又は制御装置50が許可であることを付加すると、制御装置50はn=1とする(ステップST55)。ここで、nとは、利用側ユニット2a,2b,2c,2dを識別するための識別子である。例えば、利用側ユニット(1)は2a、利用側ユニット(2)は2b、利用側ユニット(3)は2c、利用側ユニット(4)は2dとなり、このときのnの最大値は4である。そして、蓄熱手段51aは、利用側ユニット2a,2b,2c,2d(n)の許可情報55dが許可とされているかを判定する(ステップST56)。許可とされている場合、蓄熱手段51aは、利用側ユニット2a,2b,2c,2d(n)の暖房又は冷房の頻度が低いかを判定する(ステップST57)。このとき、蓄熱手段51aは、記憶手段55に記憶された履歴情報55cを参照する。暖房又は冷房の頻度が低い場合、蓄熱手段51aは、利用側ユニット2a,2b,2c,2d(n)が設置された室内空間7の室内温度の上昇と、外気温度の上昇との傾向が同じであるかを判定する(ステップST58)。室内温度の上昇と、外気温度の上昇との傾向が同じである場合、蓄熱手段51aは、利用側ユニット2a,2b,2c,2d(n)が設置された室内空間7を空室と自動認識する(ステップST59)。 If it is not permitted, or if it is added that the control device 50 is permitted, the control device 50 sets n = 1 (step ST55). Here, n is an identifier for identifying the usage- side units 2a, 2b, 2c, 2d. For example, the utilization side unit (1) is 2a, the utilization side unit (2) is 2b, the utilization side unit (3) is 2c, and the utilization side unit (4) is 2d, and the maximum value of n at this time is 4. . Then, the heat storage means 51a determines whether or not the permission information 55d of the use side units 2a, 2b, 2c, and 2d (n) is permitted (step ST56). If permitted, the heat storage means 51a determines whether the use- side units 2a, 2b, 2c, 2d (n) have a low frequency of heating or cooling (step ST57). At this time, the heat storage means 51 a refers to the history information 55 c stored in the storage means 55. When the frequency of heating or cooling is low, the heat storage means 51a has the same tendency of an increase in the indoor temperature of the indoor space 7 in which the use side units 2a, 2b, 2c, 2d (n) are installed and an increase in the outside air temperature. Is determined (step ST58). When the tendency of the rise in the indoor temperature and the rise in the outside air temperature are the same, the heat storage means 51a automatically recognizes the indoor space 7 in which the use side units 2a, 2b, 2c, 2d (n) are installed as an empty room. (Step ST59).
 一方、ステップST57において運転頻度が高い場合、又はステップST58において傾向が異なる場合、制御装置50は利用側ユニット2a,2b,2c,2d(n)の空室の設定を解除する(ステップST62)。ステップST59の後、nが最大値であるかが判定され(ステップST60)、nが最大値でない場合、n=n+1として(ステップST61)、ステップST56に戻る。ステップST60においてnが最大値である場合、制御が終了する。即ち、利用側ユニット2a,2b,2c,2dがn=1から順に最大値になるまで、各利用側ユニット2a,2b,2c,2dが設置された室内空間7が空室として認識されるかが検索される。 On the other hand, when the operation frequency is high in step ST57 or the tendency is different in step ST58, the control device 50 cancels the setting of the vacant rooms of the use side units 2a, 2b, 2c, 2d (n) (step ST62). After step ST59, it is determined whether n is the maximum value (step ST60). If n is not the maximum value, n = n + 1 is set (step ST61), and the process returns to step ST56. If n is the maximum value in step ST60, the control ends. That is, whether the indoor space 7 in which each usage- side unit 2a, 2b, 2c, 2d is installed is recognized as a vacant room until the usage- side units 2a, 2b, 2c, 2d sequentially reach the maximum value from n = 1. Is searched.
 なお、空調システム100が導入されて間もない場合に、利用側ユニット2a,2b,2c,2dにおいて暖房又は冷房の運転履歴が存在しない場合、ステップST57においてNOとなりステップST62に移行してもよい。同様に、利用側ユニット2a,2b,2c,2dの温度上昇の傾向が不明の場合、ステップST57においてNOとなりステップST62に移行してもよい。また、ステップST57及びステップST58のいずれもがYESとなる場合のみに空間情報55bにおいて空室と認識する場合について例示しているが、ステップST57及びステップST58のいずれか一方がYESとなる場合に空室と認識してもよい。 In addition, when the air conditioning system 100 is just introduced, and there is no operation history of heating or cooling in the use side units 2a, 2b, 2c, and 2d, NO is determined in step ST57 and the process may be shifted to step ST62. . Similarly, when the tendency of the temperature rise of the usage- side units 2a, 2b, 2c, 2d is unknown, the result in step ST57 is NO, and the process may proceed to step ST62. Further, the case where the space information 55b recognizes a vacant room only when both of step ST57 and step ST58 are YES is illustrated, but when either one of step ST57 or step ST58 is YES, it is empty. It may be recognized as a room.
 本実施の形態3によれば、空調対象空間の温度を検出する室内温度センサ39を更に備え、制御装置50は、室内温度センサ39によって検出された温度の時間変化の履歴を記憶する記憶手段55を更に有し、蓄熱手段51aは、記憶手段55に記憶された履歴に基づいて、空調対象空間が空室であるかを判定する機能を有する。更に、制御装置50は、冷媒回路及び熱媒体回路の運転の履歴を記憶する記憶手段55を更に有し、蓄熱手段51aは、記憶手段55に記憶された履歴に基づいて、空調対象空間が空室であるかを判定する機能を有する。そして、制御装置50は、記憶手段55に記憶された履歴に基づいて、時間帯ごとに空調対象空間が空室であるかを判定する機能を有する。このように、空調システム100が把握する運転の履歴又は温度の時間変化の履歴に基づいて、簡易的に空室を自動認識することができる。このため、ユーザによる空室の設定の手間を省くことができる。 According to the third embodiment, the indoor temperature sensor 39 that detects the temperature of the air-conditioning target space is further provided, and the control device 50 stores the history of the time change of the temperature detected by the indoor temperature sensor 39. The heat storage means 51a has a function of determining whether the air-conditioning target space is an empty room based on the history stored in the storage means 55. Further, the control device 50 further includes storage means 55 for storing the operation history of the refrigerant circuit and the heat medium circuit, and the heat storage means 51a has an air-conditioning target space based on the history stored in the storage means 55. It has a function to determine whether it is a room. The control device 50 has a function of determining whether the air-conditioning target space is vacant for each time zone based on the history stored in the storage unit 55. In this way, it is possible to automatically recognize the vacancy simply based on the operation history or the temperature change history grasped by the air conditioning system 100. For this reason, it is possible to save the user from setting up vacancies.
実施の形態4.
 図16は、本発明の実施の形態4に係る空調システム100の躯体蓄熱の動作を示すフローチャートである。本実施の形態4は、熱媒体配管5を利用して蓄熱されている点で、実施の形態1と相違する。本実施の形態4では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4 FIG.
FIG. 16 is a flowchart showing the operation of housing heat storage in the air conditioning system 100 according to Embodiment 4 of the present invention. The fourth embodiment is different from the first embodiment in that heat is stored using the heat medium pipe 5. In the fourth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 本実施の形態4では、蓄熱手段51aが事前に熱交換が未実施の利用側熱交換器26a,26b,26c,26dに接続される熱媒体配管5の内部に温熱を蓄え、凍結抑制手段51bが蓄えられた温熱を利用して凍結を抑制する。熱媒体流量制御手段51cは、空室に設置された利用側ユニット2a,2b,2c,2dに接続されているバイパス回路27a,27b,27c,27dに熱媒体が流れるように、流量調整弁25a,25b,25c,25dの開度をバイパス回路27a,27b,27c,27d側に全開する。流量調整弁25a,25b,25c,25dの開度は、(2)式を満たすように調整される。 In the fourth embodiment, the heat storage means 51a stores heat in the heat medium pipe 5 connected to the use side heat exchangers 26a, 26b, 26c, and 26d that have not been subjected to heat exchange in advance, and freeze prevention means 51b. Controls freezing using the stored heat. The heat medium flow control means 51c is configured so that the heat medium flows through the bypass circuits 27a, 27b, 27c, and 27d connected to the use side units 2a, 2b, 2c, and 2d installed in the vacant rooms. , 25b, 25c, 25d are fully opened to the bypass circuits 27a, 27b, 27c, 27d side. The opening degree of the flow rate adjusting valves 25a, 25b, 25c, 25d is adjusted so as to satisfy the expression (2).
 なお、熱媒体流量制御手段51cは、ポンプ21a,21bの回転数を下げ、利用側ユニット2a,2b,2c,2dに接続される流量調整弁25a,25b,25c,25dの開度を調整することによって、(1)式及び(2)式で示すように、冷房能力又は暖房能力を調整することができる。これにより、バイパス回路27a,27b,27c,27dの出口側の熱媒体が中間熱交換器15a,15bによって再び冷熱を付加され、熱媒体の平均温度が目標温度にまで偏ることを抑制することができる。 The heat medium flow control means 51c reduces the rotation speed of the pumps 21a, 21b and adjusts the opening degree of the flow rate adjustment valves 25a, 25b, 25c, 25d connected to the use side units 2a, 2b, 2c, 2d. By this, as shown in (1) type | formula and (2) type | formula, a cooling capability or a heating capability can be adjusted. Thereby, the heat medium on the outlet side of the bypass circuits 27a, 27b, 27c, and 27d is reheated by the intermediate heat exchangers 15a and 15b, and the average temperature of the heat medium is prevented from being biased to the target temperature. it can.
 蓄熱手段51aは、利用側ユニット2a,2b,2c,2dが運転しているかを判定し、その後、利用側ユニット2a,2b,2c,2dが空室に設置されているかを判定する。そして、蓄熱手段51aは、利用側ユニット2a,2b,2c,2dが停止しており、且つ室内に人がいる場合、熱媒体配管5の内部に熱を蓄える。また、蓄熱手段51aは、利用側ユニット2a,2b,2c,2dが停止しており、且つ室内に人がいない場合、その空室に熱を蓄える。 The heat storage means 51a determines whether the use side units 2a, 2b, 2c, 2d are in operation, and then determines whether the use side units 2a, 2b, 2c, 2d are installed in the vacant room. And the heat storage means 51a stores heat inside the heat medium pipe 5 when the use side units 2a, 2b, 2c, 2d are stopped and there is a person in the room. Moreover, when the use side units 2a, 2b, 2c, 2d are stopped and there is no person in the room, the heat storage means 51a stores heat in the empty room.
 図16において、ステップST31~ステップST40は、図8に示すステップST31~ステップST40と同様であるため、説明を省略する。図16に示すように、ステップST33において、制御装置50がn=1とした後、蓄熱手段51aは利用側ユニット2a,2b,2c,2d(n)が運転しているかを判定する(ステップST71)。利用側ユニット2a,2b,2c,2d(n)が運転していない場合、蓄熱手段51aは利用側ユニット2a,2b,2c,2dが空室に設定されているかを判定する(ステップST34)。利用側ユニット2a,2b,2c,2dが空室に設定されていない場合、蓄熱手段51aは、熱媒体配管5の内部に熱を蓄える。 In FIG. 16, steps ST31 to ST40 are the same as steps ST31 to ST40 shown in FIG. As shown in FIG. 16, after the controller 50 sets n = 1 in step ST33, the heat storage means 51a determines whether the use side units 2a, 2b, 2c, 2d (n) are operating (step ST71). ). When the use side units 2a, 2b, 2c, 2d (n) are not operating, the heat storage means 51a determines whether the use side units 2a, 2b, 2c, 2d are set to vacant rooms (step ST34). When the use side units 2 a, 2 b, 2 c, 2 d are not set to empty rooms, the heat storage means 51 a stores heat inside the heat medium pipe 5.
 熱媒体流量制御手段51cは、ポンプ21a又は21bを動作させる。そして、熱媒体流量調整手段は、利用側ユニット2a,2b,2c,2d(n)に接続される流量調整弁25a,25b,25c,25dをバイパス回路27a,27b,27c,27d側に全開する(ステップST73)。なお、ステップST31においてYESの場合のステップST72及びステップST73では、蓄熱手段51aは、利用側ユニット2a,2b,2c,2dが設置された空調空間の室内温度を変化させずに、バイパス回路27a,27b,27c,27dの出口側の熱媒体配管5にバイパス回路27a,27b,27c,27dの入口側の冷熱を蓄える。また、ステップST32においてYESの場合のステップST72及びステップST73では、凍結抑制手段51bは、利用側ユニット2a,2b,2c,2dが設置された空調空間の室内温度を変化させずに、バイパス回路27a,27b,27c,27dの出口側の熱媒体を利用する。 The heat medium flow control means 51c operates the pump 21a or 21b. The heat medium flow rate adjustment means fully opens the flow rate adjustment valves 25a, 25b, 25c, 25d connected to the use side units 2a, 2b, 2c, 2d (n) to the bypass circuits 27a, 27b, 27c, 27d side. (Step ST73). In step ST72 and step ST73 in the case of YES in step ST31, the heat storage means 51a bypasses the bypass circuit 27a, without changing the indoor temperature of the air-conditioned space in which the use side units 2a, 2b, 2c, 2d are installed. Cold heat at the inlet side of the bypass circuits 27a, 27b, 27c, 27d is stored in the heat medium pipe 5 at the outlet side of 27b, 27c, 27d. In step ST72 and step ST73 in the case of YES in step ST32, the freezing suppression means 51b bypasses the bypass circuit 27a without changing the room temperature of the air-conditioned space in which the use side units 2a, 2b, 2c, 2d are installed. , 27b, 27c, and 27d.
 ここで、蓄熱手段51aは、空調空間が空室に設定されていない場合に蓄熱する場合について例示しているが、空室に設定されている場合にも熱媒体配管5の内部に冷熱を蓄えてもよく、熱媒体配管5の内部に蓄えられた冷熱を利用してもよい。なお、本実施の形態4は、図9及び図11に示すようなバイパス回路27a,27b,27c,27dを有しない構成にも適用することができる。この場合、制御装置50が利用側送風機20a,20b,20c,20dを停止して、且つ流量調整弁25a,25b,25c,25dの開度を開くことによって、室内温度を変化させることなく熱媒体配管5の内部に熱を蓄えることができる。 Here, although the heat storage means 51a has illustrated about the case where heat storage is carried out when the air-conditioning space is not set to the vacant space, also when it is set to the vacant space, cold heat is stored inside the heat medium pipe 5. Alternatively, cold energy stored in the heat medium pipe 5 may be used. The fourth embodiment can also be applied to a configuration that does not have the bypass circuits 27a, 27b, 27c, and 27d as shown in FIGS. In this case, the control device 50 stops the use- side blowers 20a, 20b, 20c, and 20d and opens the opening of the flow rate adjusting valves 25a, 25b, 25c, and 25d, so that the heat medium is not changed. Heat can be stored inside the pipe 5.
 本実施の形態4によれば、制御装置50は、蓄熱モードにおいて、熱交換が未実施の利用側熱交換器26a,26b,26c,26dに流れる熱媒体が有する温熱又は冷熱を、熱媒体配管5の内部に蓄える蓄熱手段51aを有する。更に、蓄熱手段51aは、利用側熱交換器26a,26b,26c,26dが、人が在室している室内空間7に設置されている場合、熱交換が未実施の利用側熱交換器26a,26b,26c,26dに流れる熱媒体が有する温熱又は冷熱を、熱媒体配管5の内部に蓄えるものである。これにより、空室だけではなく熱媒体配管5の内部にも蓄熱することができる。このため、蓄熱量が多くなり、熱媒体の凍結を更に抑制することができる。また、利用側熱交換器26a,26b,26c,26dに空気を送る利用側送風機20a,20b,20c,20dを更に備え、蓄熱手段51aは、熱交換が未実施の利用側熱交換器26a,26b,26c,26dに流れる熱媒体が有する温熱又は冷熱を、利用側送風機20a,20b,20c,20dを停止させて熱媒体配管5の内部に蓄えるものであるように構成されてもよい。この場合、室内温度を変化させることなく熱媒体配管5の内部に熱を蓄えることができる。また、利用側熱交換器26a,26b,26c,26dの入口側と出口側とを接続し、ポンプ21a,21bが搬送する熱媒体をバイパスするバイパス回路27a,27b,27c,27dと、ポンプ21a,21bが搬送する熱媒体が利用側熱交換器26a,26b,26c,26d又はバイパス回路27a,27b,27c,27dに流れるように切り替える流量調整弁25a,25b,25c,25dと、を更に備え、蓄熱手段51aは、熱交換が未実施の利用側熱交換器26a,26b,26c,26dを有する熱媒体回路において、熱媒体がバイパス回路27a,27b,27c,27dに流れるように流量調整弁25a,25b,25c,25dを切り替えるものである。これにより、熱交換が未実施の利用側熱交換器26a,26b,26c,26dに接続される熱媒体配管5に蓄熱することができる。 According to the fourth embodiment, in the heat storage mode, the control device 50 uses the heat medium piping to heat or cool the heat medium flowing in the use side heat exchangers 26a, 26b, 26c, and 26d that have not been subjected to heat exchange. 5 has a heat storage means 51a for storing the inside. Furthermore, in the heat storage means 51a, when the use side heat exchangers 26a, 26b, 26c, and 26d are installed in the indoor space 7 where a person is present, the use side heat exchanger 26a in which heat exchange is not performed. , 26b, 26c, and 26d, the hot or cold heat of the heat medium flowing through the heat medium is stored in the heat medium pipe 5. Thereby, heat can be stored not only in the vacant chamber but also in the heat medium pipe 5. For this reason, the amount of heat storage increases, and freezing of the heat medium can be further suppressed. Further, the use side heat exchangers 26a, 26b, 26c, and 26d are further provided with use side fans 20a, 20b, 20c, and 20d, and the heat storage means 51a includes the use side heat exchangers 26a, 26a, You may comprise so that the use side air blower 20a, 20b, 20c, 20d may be stopped, and the inside of the heat medium piping 5 may store the heat or cold which the heat medium which flows into 26b, 26c, 26d has. In this case, heat can be stored inside the heat medium pipe 5 without changing the room temperature. Further, bypass circuits 27a, 27b, 27c, 27d that connect the inlet side and the outlet side of the use side heat exchangers 26a, 26b, 26c, 26d and bypass the heat medium carried by the pumps 21a, 21b, and the pump 21a. , 21b is further provided with flow rate adjustment valves 25a, 25b, 25c, 25d for switching so that the heat medium carried by 21b flows to the use side heat exchangers 26a, 26b, 26c, 26d or the bypass circuits 27a, 27b, 27c, 27d. In the heat medium circuit having the use side heat exchangers 26a, 26b, 26c, and 26d in which heat exchange is not performed, the heat storage means 51a is a flow rate adjusting valve so that the heat medium flows to the bypass circuits 27a, 27b, 27c, and 27d. 25a, 25b, 25c, and 25d are switched. Thereby, it is possible to store heat in the heat medium pipe 5 connected to the use side heat exchangers 26a, 26b, 26c, and 26d that have not been subjected to heat exchange.
実施の形態5.
 本実施の形態5は、蓄熱量が計算される点で、実施の形態1と相違する。本実施の形態5では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 5 FIG.
The fifth embodiment is different from the first embodiment in that the heat storage amount is calculated. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 蓄熱手段51aは、熱媒体の温度に基づいて、蓄えられる熱量を求める。熱媒体の蓄熱量は、(1)式に示すように、熱媒体の質量、密度、定圧比熱及び温度の積から計算することができる。熱媒体の特性と熱媒体配管5の特性とは、空調システム100の施工時に既知であるため、熱媒体の質量、密度及び定圧比熱は既知である。 The heat storage means 51a calculates the amount of heat stored based on the temperature of the heat medium. The heat storage amount of the heat medium can be calculated from the product of the mass, density, constant pressure specific heat and temperature of the heat medium, as shown in equation (1). Since the characteristics of the heat medium and the characteristics of the heat medium pipe 5 are known when the air conditioning system 100 is constructed, the mass, density, and constant pressure specific heat of the heat medium are known.
 ここで、空室の蓄熱量は、熱媒体の温度上昇率に基づいて簡易的に推測することができる。例えば、制御装置50は、止め弁24a,24b,24c,24dが全閉の状態又は流量調整弁25a,25b,25c,25dが全閉の状態で、利用側送風機20a,20b,20c,20dを動作させる。これにより、熱媒体の流量が変化しないまま、熱媒体の温度が上昇し、熱媒体と室内温度との差が縮まる。熱媒体の温度が室内温度に変化するまでの時間が短い場合、空室の蓄熱量が大きいと推測することができる。従って、熱媒体の温度と時間との対応関係に基づいて、空室の蓄熱量を推測することができる。 Here, the amount of heat stored in the vacant space can be simply estimated based on the temperature increase rate of the heat medium. For example, the control device 50 sets the use- side fans 20a, 20b, 20c, and 20d in a state where the stop valves 24a, 24b, 24c, and 24d are fully closed or the flow rate adjustment valves 25a, 25b, 25c, and 25d are fully closed. Make it work. As a result, the temperature of the heat medium increases without changing the flow rate of the heat medium, and the difference between the heat medium and the room temperature is reduced. When the time until the temperature of the heat medium changes to the room temperature is short, it can be estimated that the heat storage amount of the vacant room is large. Therefore, the heat storage amount of the vacant room can be estimated based on the correspondence between the temperature of the heat medium and time.
 本実施の形態5において、熱媒体の温度を検出する熱媒体温度センサを更に備え、制御装置50は、熱媒体温度センサによって検出された熱媒体の温度に基づいて、蓄えられる熱量を求める機能を有する。蓄熱量を計算することによって、凍結防止等に使用することができる熱量を予め把握することができる。このため、冷熱又は温熱を利用する際の利便性が向上する。 In the fifth embodiment, a heat medium temperature sensor for detecting the temperature of the heat medium is further provided, and the control device 50 has a function of obtaining the amount of heat stored based on the temperature of the heat medium detected by the heat medium temperature sensor. Have. By calculating the heat storage amount, it is possible to grasp in advance the amount of heat that can be used to prevent freezing. For this reason, the convenience at the time of utilizing cold heat or warm heat improves.
 なお、制御装置50は、止め弁24a,24b,24c,24dが全開の状態且つ流量調整弁25a,25b,25c,25dが全開の状態で、圧縮機10を動作させて、熱媒体の流量を計測してもよい。この場合、制御装置50は、熱媒体の流量と、室内温度と目標温度との差分とに基づいて、空室の蓄熱量を推測することができる。 Note that the control device 50 operates the compressor 10 with the stop valves 24a, 24b, 24c, and 24d fully opened and the flow rate adjusting valves 25a, 25b, 25c, and 25d fully opened to control the flow rate of the heat medium. You may measure. In this case, the control device 50 can estimate the heat storage amount of the vacant room based on the flow rate of the heat medium and the difference between the room temperature and the target temperature.
実施の形態6.
 図17は、本発明の実施の形態6に係る空調システム100の省エネ制御の動作を示すフローチャートである。本実施の形態6は、空調能力を抑える場合の制御である点で、実施の形態1と相違する。本実施の形態6では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 6 FIG.
FIG. 17 is a flowchart showing an energy saving control operation of the air conditioning system 100 according to Embodiment 6 of the present invention. The sixth embodiment is different from the first embodiment in that the control is performed when the air conditioning capability is suppressed. In the sixth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. The description will focus on differences from the first embodiment.
 空調能力を抑えるために圧縮機10の回転数が低速化されると、圧縮機10の動力となるモータの力率が悪化する等の影響が生じる。このため、圧縮機10の回転数が低速の方が高速の場合よりも冷房能力又は暖房能力に対する消費エネルギが増加する。本実施の形態6では、圧縮機10の回転数が低速となることを回避しつつ、蓄熱及び蓄熱の利用を行う。 If the rotation speed of the compressor 10 is reduced in order to suppress the air conditioning capability, the power factor of the motor serving as the power of the compressor 10 is deteriorated. For this reason, the energy consumption for the cooling capacity or the heating capacity increases when the rotational speed of the compressor 10 is low than when it is high. In the sixth embodiment, heat storage and use of heat storage are performed while avoiding a low speed of the compressor 10.
 蓄熱手段51aは、熱媒体温度センサによって検出された温度と、室内温度センサ39によって検出された温度との差が温度差閾値以下の場合、熱媒体配管5の内部に冷熱又は温熱を蓄える。 When the difference between the temperature detected by the heat medium temperature sensor and the temperature detected by the room temperature sensor 39 is equal to or less than the temperature difference threshold value, the heat storage unit 51a stores cold heat or heat in the heat medium pipe 5.
 図17において、ステップST31~ステップST40及びステップST71~ステップST73は、図14に示すステップST31~ステップST40及びステップST71~ステップST73と同じであるため、説明を省略する。図17に示すように、ステップST71において、利用側ユニット2a,2b,2c,2dが運転している場合、制御装置50は、圧縮機10の回転数が低速となる空調能力が必要であるかを判定する(ステップST81)。即ち、利用側熱交換器26a,26b,26c,26dの出口側の温度と、室内温度との差が温度差閾値以下かが判定される。差が温度差閾値以下の場合、熱媒体の温度が目標温度であるかが判定される(ステップST82)。 17, step ST31 to step ST40 and step ST71 to step ST73 are the same as step ST31 to step ST40 and step ST71 to step ST73 shown in FIG. As shown in FIG. 17, when the use side units 2a, 2b, 2c, and 2d are operating in step ST71, does the control device 50 need an air conditioning capability that makes the rotation speed of the compressor 10 low? Is determined (step ST81). That is, it is determined whether the difference between the temperature on the outlet side of the use side heat exchangers 26a, 26b, 26c, and 26d and the room temperature is equal to or less than the temperature difference threshold value. If the difference is equal to or smaller than the temperature difference threshold value, it is determined whether the temperature of the heat medium is the target temperature (step ST82).
 熱媒体の温度が目標温度の場合、圧縮機10が停止されて、蓄えられた熱が利用され、運転が継続される(ステップST83)。一方、熱媒体の温度が目標温度でない場合、圧縮機10の回転数を維持したままとする(ステップST84)。そして、熱媒体流量制御手段51cは、利用側ユニット2a,2b,2c,2d(n)に接続された流量調整弁25a,25b,25c,25dの開度を絞る(ステップST85)。例えば、流量調整弁25a,25b,25c,25dの開度が中間開度とされ、利用側熱交換器26a,26b,26c,26dとバイパス回路27a,27b,27c,27dとのいずれにも熱媒体が流れるように調整される。これにより、空調能力を抑えつつ熱媒体配管5の内部に熱が蓄えられる(ステップST86)。 When the temperature of the heat medium is the target temperature, the compressor 10 is stopped, the stored heat is used, and the operation is continued (step ST83). On the other hand, when the temperature of the heat medium is not the target temperature, the rotation speed of the compressor 10 is maintained (step ST84). Then, the heat medium flow control means 51c restricts the opening degree of the flow rate adjustment valves 25a, 25b, 25c, 25d connected to the use side units 2a, 2b, 2c, 2d (n) (step ST85). For example, the flow control valves 25a, 25b, 25c, and 25d are set to intermediate openings, and heat is applied to any of the use side heat exchangers 26a, 26b, 26c, and 26d and the bypass circuits 27a, 27b, 27c, and 27d. The medium is adjusted to flow. Thereby, heat is stored inside the heat medium pipe 5 while suppressing the air conditioning capability (step ST86).
 本実施の形態6によれば、熱媒体の温度を検出する熱媒体温度センサと、空調対象空間の温度を検出する室内温度センサ39と、を更に備え、蓄熱手段51aは、熱媒体温度センサによって検出された温度と室内温度センサ39によって検出された温度との差が温度差閾値以下の場合、熱媒体が有する温熱又は冷熱を蓄える。これにより、圧縮機10の効率が悪化する回転数にすることなく、空調能力を抑えることができる。即ち、空調能力を抑えつつ蓄熱を行うことができる。従って、エネルギ効率が高い。 According to the sixth embodiment, the heat medium temperature sensor that detects the temperature of the heat medium and the indoor temperature sensor 39 that detects the temperature of the air-conditioning target space are further provided, and the heat storage means 51a is controlled by the heat medium temperature sensor. When the difference between the detected temperature and the temperature detected by the room temperature sensor 39 is equal to or lower than the temperature difference threshold value, the hot or cold heat of the heat medium is stored. Thereby, air-conditioning capability can be suppressed, without making it the rotation speed from which the efficiency of the compressor 10 deteriorates. That is, heat storage can be performed while suppressing the air conditioning capability. Therefore, energy efficiency is high.
実施の形態7.
 図18は、本発明の実施の形態7に係る空調システム100の電算室保護制御の動作を示すフローチャートである。本実施の形態7は、電算室を保護する制御である点で、実施の形態1と相違する。本実施の形態7では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 7 FIG.
FIG. 18 is a flowchart showing the operation of the computer room protection control of the air conditioning system 100 according to Embodiment 7 of the present invention. The seventh embodiment is different from the first embodiment in that the control is to protect the computer room. In the seventh embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted. The description will focus on differences from the first embodiment.
 本実施の形態7は、電算室といった温度上昇を避ける必要がある空間を含む建物9等に設置された空調システム100について例示する。電算室の室内空間7の温度上昇率は、電算室以外の室内空間7の温度上昇率よりも高い。電算室は、コンピュータ等が発熱しているため、温度が上昇し易く、高温となってコンピュータ等が故障することを抑制するために、常時冷却されている。本実施の形態7は、熱源側ユニット1が故障する等の異常動作時に、予め熱媒体配管5の内部又は空室に蓄えられた冷熱を利用して、常時冷却されている電算室の温度上昇を抑える。即ち、電算室を冷却することができない場合、電算室の室内空間7よりも温度が低い傾向にある電算室以外の室内空間7の冷熱を利用して、電算室の温度上昇を抑える。なお、蓄熱されている冷熱があれば、更に電算室を冷やすことができる。 Embodiment 7 exemplifies an air conditioning system 100 installed in a building 9 or the like including a space such as a computer room where it is necessary to avoid a temperature rise. The temperature increase rate of the indoor space 7 in the computer room is higher than the temperature increase rate of the indoor space 7 other than the computer room. Since the computer or the like is generating heat, the computer room is constantly cooled in order to prevent the computer or the like from being damaged due to a high temperature. In the seventh embodiment, during abnormal operation such as failure of the heat source unit 1, the temperature rise of the computer room that is always cooled using the cold stored in the heat medium pipe 5 or in the vacant room in advance. Suppress. That is, when the computer room cannot be cooled, the temperature rise of the computer room is suppressed by using the cold heat of the indoor space 7 other than the computer room that tends to be lower in temperature than the indoor space 7 of the computer room. If there is cold energy stored, the computer room can be further cooled.
 蓄熱手段51aは、空間情報55bに電算室が登録済みであるかを判定し、熱源側ユニット1が全て故障しているかを判定する。ここで、熱源側ユニット1が全て故障しているという状態は、熱源側ユニット1との通信が不可能になること、又は熱源側ユニット1がユーザの意図と異なる動作を行っていること等の正常動作時ではないことをいう。制御装置50は、電算室が登録済みで且つ熱源側ユニット1が全て故障している場合、電算室以外の室内空間7に設置された利用側ユニット2a,2b,2c,2dを停止させる。そして、制御装置50は、電算室以外の室内空間7を空室に設定し、電算室に設置された利用側送風機20a,20b,20c,20dを運転させる。これにより、躯体に蓄えられた冷熱が電算室に送り込まれ、電算室を冷却することができる。 The heat storage means 51a determines whether or not the computer room has been registered in the space information 55b, and determines whether or not the heat source unit 1 has all failed. Here, the state that all the heat source side units 1 are out of order indicates that the communication with the heat source side unit 1 becomes impossible, or that the heat source side unit 1 performs an operation different from the user's intention. This is not during normal operation. When the computer room has been registered and the heat source side unit 1 has all failed, the control device 50 stops the use side units 2a, 2b, 2c, and 2d installed in the indoor space 7 other than the computer room. And the control apparatus 50 sets indoor space 7 other than a computer room to an empty room, and operates the utilization side air blowers 20a, 20b, 20c, and 20d installed in the computer room. Thereby, the cold heat stored in the housing is sent to the computer room, and the computer room can be cooled.
 図18に示すように、制御装置50は、空間情報55bに電算室が登録済みであるかを判定し、熱源側ユニット1が全て故障しているかを判定する(ステップST91)。電算室が登録済みで且つ熱源側ユニット1が全て故障している場合、制御装置50は、電算室以外の室内空間7に設置された利用側ユニット2a,2b,2c,2dを停止させる(ステップST92)。そして、制御装置50は電算室以外の室内空間7を空室に設定し(ステップST93)、電算室に設置された利用側送風機20a,20b,20c,20dを運転させる(ステップST94)。 As shown in FIG. 18, the control device 50 determines whether or not the computer room has been registered in the space information 55b, and determines whether or not all the heat source side units 1 have failed (step ST91). When the computer room has been registered and all the heat source side units 1 have failed, the control device 50 stops the use side units 2a, 2b, 2c, 2d installed in the indoor space 7 other than the computer room (step) ST92). And the control apparatus 50 sets indoor space 7 other than a computer room to an empty room (step ST93), and operates the utilization side air blowers 20a, 20b, 20c, and 20d installed in the computer room (step ST94).
 これにより、制御装置50は躯体に蓄えられた冷熱を電算室に送り込み(ステップST95)、電算室を冷却することができる。具体的には、ステップST95において、躯体に蓄えられた冷熱が利用されると、図8に示すステップST35~ステップST38の処理によって、電算室以外の室内空間7に設置された利用側ユニット2a,2b,2c,2dにおいて熱媒体配管5の内部に冷熱が蓄えられる。そして、電算室に設置されている利用側ユニット2a,2b,2c,2dは、熱媒体配管5の内部に蓄えられた冷熱によって温度上昇を抑えることができる。 Thereby, the control device 50 can send the cold energy stored in the housing to the computer room (step ST95) and cool the computer room. Specifically, when the cold energy stored in the housing is used in step ST95, the use side unit 2a installed in the indoor space 7 other than the computer room is processed by the processing in steps ST35 to ST38 shown in FIG. Cold heat is stored inside the heat medium pipe 5 in 2b, 2c, and 2d. And use side unit 2a, 2b, 2c, 2d installed in the computer room can suppress a temperature rise by the cold stored in the inside of the heat-medium piping 5. FIG.
 本実施の形態7によれば、制御装置50は、冷媒回路が異常動作した場合、蓄熱モードにおいて蓄熱された冷熱を、常時冷却されている電算室に設置された利用側熱交換器26a,26b,26c,26dに供給する機能を有する。このように、熱源側ユニット1の異常動作時に、電算室以外の室内空間7を空室に設定して、蓄熱を行うことによって、電算室の温度上昇を抑えることができる。 According to the seventh embodiment, when the refrigerant circuit abnormally operates, the control device 50 uses the heat stored in the heat storage mode in the use- side heat exchangers 26a and 26b installed in the computer room that is constantly cooled. , 26c, 26d. In this way, when the heat source side unit 1 operates abnormally, the indoor space 7 other than the computer room is set as an empty room, and heat storage is performed, so that the temperature rise of the computer room can be suppressed.
 1 熱源側ユニット、2,2a,2b,2c,2d 利用側ユニット、3 中継ユニット、3a 親中継ユニット、3b 子中継ユニット、4 冷媒配管、5 熱媒体配管、6 室外空間、7 室内空間、8 非空調空間、9 建物、10 圧縮機、11 流路切替装置、12 熱源側熱交換器、13 熱源側流路調整ユニット、13b 第1の逆止弁、13c 第2の逆止弁、13a 第3の逆止弁、13d 第4の逆止弁、14 気液分離器、15,15a,15b 中間熱交換器、16a,16b,16c,16d 子膨張部、16,16e 膨張部、17 アキュムレータ、18 中継ユニット、20,20a,20b,20c,20d 利用側送風機、21,21a,21b ポンプ、22,22a,22b,22c,22d 流路切替弁、23,23a,23b,23c,23d 流路切替弁、24,24a,24b,24c,24d 止め弁、25,25a,25b,25c,25d 流量調整弁、26,26a,26b,26c,26d 利用側熱交換器、27,27a,27b,27c,27d バイパス回路、31a,31b 第1の熱媒体温度センサ、32a,32b 第2の熱媒体温度センサ、33a,33b,33c,33d 第3の熱媒体温度センサ、34a,34b,34c,34d 第4の熱媒体温度センサ、35 第5の温度センサ、36 圧力センサ、37 第6の温度センサ、38 第7の温度センサ、39 室内温度センサ、50 制御装置、50a 熱源側制御装置、50b 中継側制御装置、51 制御判定部、51a 蓄熱手段、51b 凍結抑制手段、51c 熱媒体流量制御手段、52 入力部、53 出力部、54 通信部、55 記憶手段、55a 熱媒体流量制御情報、55b 空間情報、55c 履歴情報、55d 許可情報、100 空調システム。 1 heat source side unit, 2, 2a, 2b, 2c, 2d usage side unit, 3 relay unit, 3a parent relay unit, 3b child relay unit, 4 refrigerant piping, 5 heat medium piping, 6 outdoor space, 7 indoor space, 8 Non-air-conditioned space, 9 building, 10 compressor, 11 flow path switching device, 12 heat source side heat exchanger, 13 heat source side flow path adjustment unit, 13b first check valve, 13c second check valve, 13a second 3 check valve, 13d fourth check valve, 14 gas-liquid separator, 15, 15a, 15b intermediate heat exchanger, 16a, 16b, 16c, 16d child expansion part, 16, 16e expansion part, 17 accumulator, 18 Relay unit, 20, 20a, 20b, 20c, 20d Use side blower, 21, 21a, 21b pump, 22, 22a, 22b, 22c, 22d Path switching valve, 23, 23a, 23b, 23c, 23d flow path switching valve, 24, 24a, 24b, 24c, 24d stop valve, 25, 25a, 25b, 25c, 25d flow control valve, 26, 26a, 26b, 26c , 26d use side heat exchanger, 27, 27a, 27b, 27c, 27d bypass circuit, 31a, 31b first heat medium temperature sensor, 32a, 32b second heat medium temperature sensor, 33a, 33b, 33c, 33d second 3 heat medium temperature sensor, 34a, 34b, 34c, 34d, 4th heat medium temperature sensor, 35 5th temperature sensor, 36 pressure sensor, 37 6th temperature sensor, 38 7th temperature sensor, 39 indoor temperature Sensor, 50 control device, 50a heat source side control device, 50b relay side control device, 51 control judgment unit, 51a heat storage means 51b Freezing suppression means, 51c Heat medium flow control means, 52 input section, 53 output section, 54 communication section, 55 storage means, 55a heat medium flow control information, 55b space information, 55c history information, 55d permission information, 100 air conditioning system .

Claims (17)

  1.  圧縮機、熱源側熱交換器、膨張部及び冷媒と熱媒体との間で熱交換する中間熱交換器が冷媒配管により接続され、冷媒が流れる冷媒回路と、
     ポンプ、前記中間熱交換器及び利用側熱交換器が熱媒体配管により接続され、熱媒体が流れる熱媒体回路と、
     前記圧縮機が動作しているときに、前記利用側熱交換器又は前記熱媒体配管を用いて熱媒体が有する温熱又は冷熱を蓄える蓄熱モードと、前記蓄熱モードにおいて蓄えられた温熱又は冷熱を利用する利用モードとを有する制御装置と、
     を備える空調システム。
    A refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion unit, and an intermediate heat exchanger for exchanging heat between the refrigerant and the heat medium are connected by a refrigerant pipe, and the refrigerant flows;
    A heat medium circuit in which the pump, the intermediate heat exchanger and the use side heat exchanger are connected by a heat medium pipe, and the heat medium flows;
    When the compressor is operating, the heat storage mode for storing the heat or cold of the heat medium using the use side heat exchanger or the heat medium pipe, and the heat or cold stored in the heat storage mode are used. A control device having a use mode to
    Air conditioning system equipped with.
  2.  前記制御装置は、
     前記蓄熱モードにおいて、人が不在の空室に設置された前記利用側熱交換器に流れる熱媒体が有する温熱又は冷熱を、空室に蓄える蓄熱手段を有する
     請求項1記載の空調システム。
    The control device includes:
    2. The air conditioning system according to claim 1, further comprising: a heat storage unit that stores, in the vacant room, hot or cold heat of a heat medium flowing in the use side heat exchanger installed in the empty room where no person is present in the heat storage mode.
  3.  空調対象空間の温度を検出する室内温度センサを更に備え、
     前記制御装置は、
     前記室内温度センサによって検出された温度の時間変化の履歴を記憶する記憶手段を更に有し、
     前記蓄熱手段は、前記記憶手段に記憶された履歴に基づいて、空調対象空間が空室であるかを判定する機能を有する
     請求項2記載の空調システム。
    It further includes an indoor temperature sensor that detects the temperature of the air conditioning target space,
    The control device includes:
    Storage means for storing a history of changes in temperature detected by the indoor temperature sensor;
    The air conditioning system according to claim 2, wherein the heat storage unit has a function of determining whether the air conditioning target space is an empty room based on a history stored in the storage unit.
  4.  前記制御装置は、
     前記冷媒回路及び前記熱媒体回路の運転の履歴を記憶する記憶手段を更に有し、
     前記蓄熱手段は、前記記憶手段に記憶された履歴に基づいて、空調対象空間が空室であるかを判定する機能を有する
     請求項2又は3記載の空調システム。
    The control device includes:
    Storage means for storing a history of operation of the refrigerant circuit and the heat medium circuit;
    The air conditioning system according to claim 2 or 3, wherein the heat storage unit has a function of determining whether the air-conditioning target space is an empty room based on a history stored in the storage unit.
  5.  前記制御装置は、
     前記記憶手段に記憶された履歴に基づいて、時間帯ごとに空調対象空間が空室であるかを判定する機能を有する
     請求項3又は4記載の空調システム。
    The control device includes:
    5. The air conditioning system according to claim 3, wherein the air conditioning system has a function of determining whether the air-conditioning target space is vacant for each time period based on the history stored in the storage unit.
  6.  前記制御装置は、
     前記蓄熱モードにおいて、熱交換が未実施の前記利用側熱交換器に流れる熱媒体が有する温熱又は冷熱を、前記熱媒体配管の内部に蓄える蓄熱手段を有する
     請求項1~5のいずれか1項に記載の空調システム。
    The control device includes:
    The heat storage mode further includes heat storage means for storing the heat or cold of the heat medium flowing in the use side heat exchanger that has not been heat-exchanged inside the heat medium pipe. The air conditioning system described in.
  7.  前記蓄熱手段は、
     前記利用側熱交換器が、人が在室している室内空間に設置されている場合、熱交換が未実施の前記利用側熱交換器に流れる熱媒体が有する温熱又は冷熱を、前記熱媒体配管の内部に蓄えるものである
     請求項6記載の空調システム。
    The heat storage means is
    When the use side heat exchanger is installed in an indoor space where a person is present, the heat medium having the heat medium flowing in the use side heat exchanger that has not been subjected to heat exchange has the heat medium. The air conditioning system according to claim 6, wherein the air conditioning system is stored in a pipe.
  8.  前記利用側熱交換器の入口側と出口側とを接続し、前記ポンプが搬送する熱媒体をバイパスするバイパス回路と、
     前記ポンプが搬送する熱媒体が前記利用側熱交換器又は前記バイパス回路に流れるように切り替える流量調整弁と、を更に備え、
     前記蓄熱手段は、
     熱交換が未実施の前記利用側熱交換器を有する熱媒体回路において、熱媒体が前記バイパス回路に流れるように前記流量調整弁を切り替えるものである
     請求項6又は7記載の空調システム。
    A bypass circuit that connects an inlet side and an outlet side of the use side heat exchanger, and bypasses the heat medium conveyed by the pump;
    A flow rate adjusting valve that switches so that the heat medium conveyed by the pump flows to the use side heat exchanger or the bypass circuit, and
    The heat storage means is
    The air conditioning system according to claim 6 or 7, wherein in the heat medium circuit having the use side heat exchanger that has not been subjected to heat exchange, the flow rate adjustment valve is switched so that the heat medium flows into the bypass circuit.
  9.  前記利用側熱交換器に空気を送る利用側送風機を更に備え、
     前記蓄熱手段は、
     熱交換が未実施の前記利用側熱交換器に流れる熱媒体が有する温熱又は冷熱を、前記利用側送風機を停止させて前記熱媒体配管の内部に蓄えるものである
     請求項6~8のいずれか1項に記載の空調システム。
    A use side blower for sending air to the use side heat exchanger;
    The heat storage means is
    9. The hot or cold heat of a heat medium flowing through the use side heat exchanger that has not been subjected to heat exchange is stored in the heat medium pipe by stopping the use side blower. The air conditioning system according to item 1.
  10.  前記熱媒体の温度を検出する熱媒体温度センサを更に備え、
     前記制御装置は、
     前記利用モードにおいて、前記熱媒体温度センサによって検出された熱媒体の温度が温度閾値以下の場合、前記蓄熱モードにおいて蓄えられた温熱を前記熱媒体に流して前記熱媒体の凍結を抑制する凍結抑制手段を更に有する
     請求項1~9のいずれか1項に記載の空調システム。
    A heat medium temperature sensor for detecting a temperature of the heat medium;
    The control device includes:
    In the use mode, when the temperature of the heat medium detected by the heat medium temperature sensor is equal to or lower than the temperature threshold, the freezing suppression that suppresses freezing of the heat medium by flowing the heat stored in the heat storage mode to the heat medium. The air conditioning system according to any one of claims 1 to 9, further comprising means.
  11.  前記熱媒体の温度を検出する熱媒体温度センサを更に備え、
     前記制御装置は、
     前記熱媒体温度センサによって検出された熱媒体の温度に基づいて、蓄えられる熱量を求める機能を有する
     請求項1~10のいずれか1項に記載の空調システム。
    A heat medium temperature sensor for detecting a temperature of the heat medium;
    The control device includes:
    The air conditioning system according to any one of claims 1 to 10, wherein the air conditioning system has a function of obtaining an amount of heat stored based on a temperature of the heat medium detected by the heat medium temperature sensor.
  12.  前記熱媒体の温度を検出する熱媒体温度センサと、
     空調対象空間の温度を検出する室内温度センサと、を更に備え、
     前記蓄熱手段は、
     前記熱媒体温度センサによって検出された温度と前記室内温度センサによって検出された温度との差が温度差閾値以下の場合、熱媒体が有する温熱又は冷熱を蓄える
     請求項1~11のいずれか1項に記載の空調システム。
    A heat medium temperature sensor for detecting the temperature of the heat medium;
    An indoor temperature sensor for detecting the temperature of the air-conditioned space,
    The heat storage means is
    The hot or cold heat of the heat medium is stored when the difference between the temperature detected by the heat medium temperature sensor and the temperature detected by the indoor temperature sensor is equal to or less than a temperature difference threshold value. The air conditioning system described in.
  13.  前記制御装置は、
     前記冷媒回路が異常動作した場合、前記蓄熱モードにおいて蓄熱された冷熱を、常時冷却されている電算室に設置された前記利用側熱交換器に供給する機能を有する
     請求項1~12のいずれか1項に記載の空調システム。
    The control device includes:
    The function of supplying cold energy stored in the heat storage mode to the use side heat exchanger installed in a computer room that is constantly cooled when the refrigerant circuit operates abnormally. The air conditioning system according to item 1.
  14.  前記圧縮機及び前記熱源側熱交換器を有する熱源側ユニットと、
     複数の前記利用側熱交換器をそれぞれ有する利用側ユニットと、
     前記中間熱交換器、前記膨張部及び前記ポンプを有し、前記熱源側ユニットによって生成された温熱又は冷熱を前記利用側ユニットに分配する中継ユニットと、を備え、
     複数の前記利用側ユニットが冷暖混在運転する
     請求項1~13のいずれか1項に記載の空調システム。
    A heat source side unit having the compressor and the heat source side heat exchanger;
    A use side unit each having a plurality of use side heat exchangers;
    A relay unit that includes the intermediate heat exchanger, the expansion unit, and the pump, and distributes the heat or cold generated by the heat source side unit to the user side unit;
    The air conditioning system according to any one of claims 1 to 13, wherein a plurality of the use side units are operated in a mixed manner.
  15.  熱源側ユニットによって生成される温熱又は冷熱が中継ユニットを介して供給される利用側ユニットであって、
     利用側熱交換器と、
     前記利用側熱交換器の入口側と出口側とを接続し、前記中継ユニットに設けられたポンプが搬送する熱媒体をバイパスするバイパス回路と、
     を備える利用側ユニット。
    A use side unit to which hot or cold generated by the heat source side unit is supplied via a relay unit,
    A use side heat exchanger;
    A bypass circuit that connects an inlet side and an outlet side of the use side heat exchanger, and bypasses a heat medium conveyed by a pump provided in the relay unit;
    Use side unit with.
  16.  圧縮機が動作しているときに、利用側熱交換器又は熱媒体配管を用いて熱媒体が有する温熱又は冷熱を蓄える蓄熱モードと、前記蓄熱モードにおいて蓄えられた温熱又は冷熱を利用する利用モードと、
     を有する制御装置。
    When the compressor is operating, a heat storage mode for storing the heat or cold of the heat medium using the use-side heat exchanger or the heat medium piping, and a use mode for using the heat or cold stored in the heat storage mode When,
    Control device.
  17.  圧縮機が動作しているときに、利用側熱交換器又は熱媒体配管を用いて熱媒体が有する温熱又は冷熱を蓄えるステップと、
     蓄えられた温熱又は冷熱を利用するステップと、
     を有する制御方法。
    When the compressor is operating, the step of storing the heat or cold of the heat medium using the use side heat exchanger or the heat medium pipe;
    Using the stored hot or cold energy;
    Control method.
PCT/JP2018/007999 2018-03-02 2018-03-02 Air-conditioning system, use-side unit, control device, and control method WO2019167248A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/007999 WO2019167248A1 (en) 2018-03-02 2018-03-02 Air-conditioning system, use-side unit, control device, and control method
CN201880089765.3A CN111758008B (en) 2018-03-02 2018-03-02 Air conditioning system, control device and control method
JP2020503227A JP7138696B2 (en) 2018-03-02 2018-03-02 air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007999 WO2019167248A1 (en) 2018-03-02 2018-03-02 Air-conditioning system, use-side unit, control device, and control method

Publications (1)

Publication Number Publication Date
WO2019167248A1 true WO2019167248A1 (en) 2019-09-06

Family

ID=67805192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007999 WO2019167248A1 (en) 2018-03-02 2018-03-02 Air-conditioning system, use-side unit, control device, and control method

Country Status (3)

Country Link
JP (1) JP7138696B2 (en)
CN (1) CN111758008B (en)
WO (1) WO2019167248A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484180A (en) * 2019-09-11 2021-03-12 广东美的白色家电技术创新中心有限公司 Air conditioner
CN114341569A (en) * 2019-09-30 2022-04-12 大金工业株式会社 Heat source unit and refrigerating device
CN114484750A (en) * 2022-01-28 2022-05-13 青岛海尔空调电子有限公司 Control method and device for air conditioning system, air conditioning system and storage medium
CN114484750B (en) * 2022-01-28 2024-05-14 青岛海尔空调电子有限公司 Control method and device for air conditioning system, air conditioning system and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4735143U (en) * 1971-05-07 1972-12-19
JPH09145107A (en) * 1995-11-20 1997-06-06 Fuji Denki Koji Kk Latent heat accumulating system
JP2005265284A (en) * 2004-03-18 2005-09-29 Denso Corp Brine type air-conditioner
JP2014069639A (en) * 2012-09-28 2014-04-21 Denso Corp Refrigeration cycle device
WO2014091572A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Air conditioner device
WO2017085859A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981561B2 (en) * 1998-05-29 1999-11-22 株式会社日立製作所 Air conditioner
CN105180497B (en) * 2008-10-29 2017-12-26 三菱电机株式会社 Conditioner
CN105737283A (en) * 2009-09-10 2016-07-06 三菱电机株式会社 Air regulating device
CN103562648B (en) * 2011-06-16 2016-07-06 三菱电机株式会社 Conditioner
CN104566699B (en) * 2013-10-10 2017-06-20 海尔集团公司 Accumulation of energy multi-variable air conditioning unit and its control method
CN206281096U (en) * 2016-11-01 2017-06-27 中节能城市节能研究院有限公司 A kind of new Regional Energy secondary pumping system of utilization transmission pipeline network accumulation of energy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4735143U (en) * 1971-05-07 1972-12-19
JPH09145107A (en) * 1995-11-20 1997-06-06 Fuji Denki Koji Kk Latent heat accumulating system
JP2005265284A (en) * 2004-03-18 2005-09-29 Denso Corp Brine type air-conditioner
JP2014069639A (en) * 2012-09-28 2014-04-21 Denso Corp Refrigeration cycle device
WO2014091572A1 (en) * 2012-12-12 2014-06-19 三菱電機株式会社 Air conditioner device
WO2017085859A1 (en) * 2015-11-20 2017-05-26 三菱電機株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112484180A (en) * 2019-09-11 2021-03-12 广东美的白色家电技术创新中心有限公司 Air conditioner
CN114341569A (en) * 2019-09-30 2022-04-12 大金工业株式会社 Heat source unit and refrigerating device
CN114341569B (en) * 2019-09-30 2023-04-28 大金工业株式会社 Heat source unit and refrigerating device
CN114484750A (en) * 2022-01-28 2022-05-13 青岛海尔空调电子有限公司 Control method and device for air conditioning system, air conditioning system and storage medium
CN114484750B (en) * 2022-01-28 2024-05-14 青岛海尔空调电子有限公司 Control method and device for air conditioning system, air conditioning system and storage medium

Also Published As

Publication number Publication date
JPWO2019167248A1 (en) 2020-12-03
CN111758008B (en) 2022-05-24
CN111758008A (en) 2020-10-09
JP7138696B2 (en) 2022-09-16

Similar Documents

Publication Publication Date Title
JP5312471B2 (en) Air conditioner
JP5127931B2 (en) Air conditioner
JP5340406B2 (en) Air conditioner
EP2413056B1 (en) Air-conditioning apparatus
EP2314945B1 (en) Air conditioner
JP5247812B2 (en) Air conditioner
JP5709838B2 (en) Air conditioner
JP5774128B2 (en) Air conditioner
JP5714128B2 (en) Air conditioner
EP2733444B1 (en) Air-conditioning device
JP5911590B2 (en) Air conditioner
JP5274572B2 (en) Air conditioner
JP5689079B2 (en) Refrigeration cycle equipment
JPWO2012172613A1 (en) Air conditioner
JP5420057B2 (en) Air conditioner
JP5312606B2 (en) Air conditioner
EP2927614B1 (en) Air conditioning device
WO2019167248A1 (en) Air-conditioning system, use-side unit, control device, and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503227

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907511

Country of ref document: EP

Kind code of ref document: A1