WO2019166732A2 - Power supply module for electric vehicle motor with heat transfer - Google Patents

Power supply module for electric vehicle motor with heat transfer Download PDF

Info

Publication number
WO2019166732A2
WO2019166732A2 PCT/FR2019/050435 FR2019050435W WO2019166732A2 WO 2019166732 A2 WO2019166732 A2 WO 2019166732A2 FR 2019050435 W FR2019050435 W FR 2019050435W WO 2019166732 A2 WO2019166732 A2 WO 2019166732A2
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
modules
power
supply module
bridge
Prior art date
Application number
PCT/FR2019/050435
Other languages
French (fr)
Other versions
WO2019166732A3 (en
Inventor
Daniel Chatroux
Laurent Garnier
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2019166732A2 publication Critical patent/WO2019166732A2/en
Publication of WO2019166732A3 publication Critical patent/WO2019166732A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20236Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures by immersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/667Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an electronic component, e.g. a CPU, an inverter or a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/269Mechanical means for varying the arrangement of batteries or cells for different uses, e.g. for changing the number of batteries or for switching between series and parallel wiring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/44Heat storages, e.g. for cabin heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the power supply of electric vehicles. It is more particularly systems for accumulating energy in these vehicles and then to restore it for, in particular, the propulsion of the vehicle.
  • Electric vehicles generally comprise an electrochemical accumulator in the form of, for example, a battery pack.
  • This electrochemical accumulator can be recharged by a source of electrical energy external to the vehicle.
  • the electric vehicle With a sufficiently charged electrochemical accumulator, the electric vehicle can power its propulsion means, generally comprising one or more electric motors.
  • the electric vehicle undergoes charging phases of the electrochemical accumulator and the propulsion phases, where the accumulator supplies the propulsion means of the vehicle.
  • the electric vehicle To power its propulsion means as well as to charge the electrochemical accumulator, the electric vehicle generally comprises a charger which is a converter from an alternating voltage to a DC voltage and which enables the charging of the accumulator from a network. electrical, during the charging phases, and an inverter which is a converter of a DC voltage to an AC voltage which allows the supply of the propulsion means from the accumulator, during the propulsion phases. For some vehicles, some parts of these converters are pooled to gain volume, weight and cost.
  • the patent application FR2738411 describes a power supply system, for electric vehicles, which comprises an inverter supplying the electric motor of the vehicle from a battery. When the inverter is not in operation, switch means present in the inverter are used to form an AC-DC converter receiving as input a single-phase AC voltage and delivering a DC charging voltage of the battery, which allows charging the battery from the single-phase AC voltage.
  • Patent Application EP0553824 discloses an electrical system for an electric vehicle which comprises an inverter allowing the control of the electric motor of the vehicle from a battery, and also allowing the charging of the battery from an AC voltage supplied from the side. of the alternating stage of the inverter. This document also describes the use of the windings of the electric motor of the vehicle as inductors used in the charging of the battery by the inverter.
  • the patent application FR2946473 describes an electromotor assembly, in particular for a motor vehicle with electric propulsion, comprising a multiphase electric motor, a storage battery, an inverter capable of converting the direct current of the battery into a multiphase alternating current adapted to power the motor. , and a connection box that alternatively powers the motor from the battery, charges the battery directly from a single-phase network, and charges the battery from a multiphase network.
  • the invention aims to improve the power supply of electric vehicles.
  • the invention provides a power supply module for an electric vehicle engine, comprising:
  • thermo transfer device between the electrochemical accumulator and the switch bridge, the heat transfer device being disposed in the housing.
  • electric vehicle designates any vehicle adapted to be propelled at least partially and at least during certain phases by an electric motor. This term includes, in particular, exclusively electric vehicles, hybrid vehicles, electric-assisted vehicles, whether they are land, sea or air vehicles, intended for a particular purpose or for the transport of loads or passengers.
  • the switch bridge forms a reversible charger and inverter device adapted on the one hand to charge said battery from a power source external electric and adapted on the other hand to convert the electrical energy of the accumulator for the power supply of an electric vehicle engine.
  • the electrochemical accumulator operates through electrochemical reactions via electrodes that convert electrical energy into a reversible chemical process.
  • the electrochemical accumulator may for example be a storage battery or a pack of cells, for example a lithium-ion or lead-acid battery pack.
  • the invention provides a temperature conditioning of the electrochemical accumulator to limit its temperature excursion despite variations in environmental temperatures.
  • the temperature of the accumulator is maintained in the temperature range limiting the aging, both in the traction phase and in the load phase.
  • Electrochemical accumulators such as battery packs are devices whose optimal operating temperature range is limited.
  • the ranges can be from -10 ° C to 60 ° C in discharge and from 0 ° C to 45 ° C under load.
  • the conductivity of the electrolyte decreases, the internal resistance of the accumulator increases and the usable capacity decreases. Landfill performance is affected accordingly.
  • the charge at low temperature below 0 ° C and up to 5 ° C classically, there is also the risk of deposition of lithium metal on the graphite of the negative electrode.
  • the normal lithium insertion reaction in the carbon-based material of the negative electrode has a potential close to that of the conversion of lithium-ion to lithium metal as a deposit of lithium metal on the surface of the metal. 'electrode.
  • This parasitic reaction degrades the battery, decreases its capacity and its lifetime.
  • the acceleration of the aging of lithium-ion accumulators at high temperature, from 35 ° C conventionally, is well known.
  • the acceleration of aging by the low temperature charge phases has an impact at least as important, especially if fast charges at low temperature are desired.
  • the invention uses the thermal losses of the accumulator and those of the bridge of switches to increase the temperature of the module.
  • the invention also uses the heat capacity of the entire power module. It is not necessary to put in operation a cooling as long as the temperature of the heat transfer device does not reach a high temperature set point.
  • the cooling of the latter is shared with the temperature maintenance of the battery.
  • the slow or fast charge can be carried out without external cooling, and therefore without ventilation noise for example, the heat generated being simply stored as a rise in the temperature of the electrochemical accumulator.
  • An external production of heat is therefore rarely necessary in such a vehicle, unlike the vehicles of the prior art, some of which consume significant energy to maintain, in cold weather, batteries in their optimal temperature range. Only if the temperature of the accumulator becomes too high will cooling be necessary. This is an advantage over prior art vehicles which generally require the switching bridge cooling circuit to be turned on for all charging phases.
  • the use of cooling devices (for example by ventilation) remains necessary for certain phases, but it can be minimized during the charging phase.
  • a cooling circuit, associated with the heat transfer device can therefore be provided for the phases where the temperature becomes too high for the accumulator. It is also possible to add to the heat transfer device a powerful cooling, both for the accumulator and for the bridge bridge components, for use cases with high load power and / or discharge. Depending on the use and the climate, it may be direct air cooling with a fluid / air exchanger or heat pump cooling to limit the temperature of the module to a value below the temperature of the module. air available.
  • a very high dielectric strength (a few continuous kilovolts or even a few tens of kilovolts) can be obtained between the battery components and the vehicle mechanics, as well as between the switch bridge components and vehicle mechanics, without degrading the heat transfer to cool these components.
  • the use of a dielectric fluid also makes it possible to greatly reduce parasitic capacitances between the parts of the switch bridge subjected to a strong voltage front and the surrounding mechanical parts as well as between filter inductance and mechanics. The reduction of these parasitic capacitances results directly in a decrease of the common-mode current flows to be processed by the EMC filtering devices.
  • the security is increased with respect to the risks of thermal runaway of the accumulators by limiting the rise speed and the amplitude of the rise in temperature of a battery in the event of a fault thereof.
  • Safety is also increased with regard to the risks of thermal runaway of the accumulators by limiting the temperature at which the accumulators located near a faulty accumulator are subjected, which implies a minimization of the risk of propagation of the battery. runaway thermal accumulators.
  • the power supply module may have the following additional features, alone or in combination:
  • the heat transfer device comprises at least one sealed chamber in which is contained a dielectric fluid which bathes the electrochemical accumulator and the switch bridge;
  • the power supply module comprises a set of coils connected to the switch bridge, these coils being also immersed in the dielectric fluid;
  • the housing forms said sealed enclosure
  • said sealed enclosure comprises a sealed enclosure arranged around the electrochemical accumulator
  • said sealed enclosure comprises a sealed enclosure disposed around the switch bridge and communicating with the sealed enclosure arranged around the electrochemical accumulator;
  • the power supply module comprises a device for the circulation of the dielectric fluid;
  • the sealed chamber disposed around the electrochemical accumulator comprises a thermal insulator;
  • the power supply module comprises a system for stopping the thermal transfer;
  • the switch bridge is reversible while being adapted to control both the charge and the discharge of the electrochemical accumulator;
  • the power module has an external hydraulic connection for the heat exchange with other elements of the vehicle;
  • the external hydraulic connection is connected to a cooling device.
  • Another object of the invention is a power pack for an electric vehicle, comprising a plurality of modules as described above and in which the dielectric fluid flows from one module to the other by the external hydraulic connection of each module.
  • the power pack may have the following additional features, alone or in combination:
  • one of the modules is adapted to heat the fluid
  • the power pack comprises at least one load terminal for connecting the pack to an electrical network, the external hydraulic connection being associated with the charging terminal, and the dielectric fluid also bathing the charging terminal.
  • Another object of the invention is a power supply module for an electric vehicle engine, comprising:
  • a switch control device of the switch bridge a set of coils connected to the switch bridge;
  • a box enclosing the elements of the power supply module, this box being provided with a set of external connections which comprise: a power supply terminal of the motor provided with the same number of output connections as the number of coils in the set reels; and a synchronization output connected to the switch controller of the switch bridge.
  • Another object of the invention is a power pack for an electric vehicle, comprising:
  • a power supply bus comprising conductors, each output connection of the terminal block of each module being connected to one of said conductors;
  • a synchronization bus to which is connected the synchronization output of each module, so that the bridge switch control device of each module is connected to the synchronization bus.
  • each module has its own electrochemical accumulator and its own converter for both the charging of the electrochemical accumulator and the power supply of an electric motor of the vehicle.
  • the synchronization output of the power modules allows each of these modules to synchronize the voltages and / or currents delivered to the voltages and / or currents of the other modules.
  • the set of modules thus provides, in common, the delivery of a controlled voltage (for example a sinusoidal motor control voltage) for the supply of a traction motor of the electric vehicle or the delivery of a controlled current. (e.g., direct current) for charging the electrochemical accumulator by absorbing a controlled current from the source of electrical energy.
  • a controlled voltage for example a sinusoidal motor control voltage
  • a controlled current e.g., direct current
  • An electric vehicle may be provided with several modules according to the invention to ensure the accumulation of electrical energy necessary for the autonomy of the vehicle, and to ensure the supply of this electrical energy to at least one electric motor of the vehicle.
  • This modular character allows easy integration into different types of vehicles by dividing into modules the total volume required for the accumulation of electrical energy and for motor control.
  • the different modules can be positioned in the various possible vehicle accommodations by making the best use of the space available in the vehicle.
  • the number of modules can be adapted to a particular vehicle in an initial configuration, depending on the electrochemical accumulator capacity requirements and / or power to be provided for the traction of the vehicle. This number can be modified in time, during a change of configuration of the vehicle, by adding or removing modules thereafter.
  • the modules can be reused for a second use in the context of a second life, for another type of vehicle or for a stationary application.
  • the electrical energy storage and the converter of the vehicle are reused in a second use, and not only the energy storage according to the standard solutions of the state of the art.
  • the modules together provide a sinusoidal voltage at a frequency adapted at all times to the drive of the motor, when using traction. They provide or absorb sinusoidal currents at the network frequency when connecting to the network for network support or battery charging. The synchronization of several modules is thus facilitated.
  • the traction function of the vehicle that is to say the supply of electrical energy to the motorization of the vehicle, benefits from the modular nature provided by the invention thanks in particular to the advantages listed below.
  • the accumulation capacity can be increased by multiplying the modules with a minimum cost and in a simplified manner if one compares, for example, the paralleling of batteries, which requires special and complex attention.
  • the traction function adapts itself to this variation of the accumulation capacity.
  • the power supply function of the electric motor is made modular, the power supplied to the motor can be increased by the multiplication of the modules with a minimum cost and in a simplified manner if one compares, for example, the change of an inverter by a more powerful inverter.
  • the modular nature provided by the invention further ensures a fault tolerance or fault of both an electrochemical accumulator and a switch bridge used as inverter, because a set of modules according to the invention continues to perform its function both that one of the modules remains functional.
  • coils in the power supply module makes it possible to supply a traction motor of the electric vehicle with slowly varying electrical voltages (for example, variations of less than 100 V / ps and preferably close to one sinusoidal voltage), instead of feeding it, as is the case in the prior art, by chopped voltages, that is to say by the fast switching edge voltages (for example voltages with variation of order of 1 kV / ps to a few tens of kilovolts per microsecond) directly from a switching bridge of an inverter.
  • slowly varying electrical voltages for example, variations of less than 100 V / ps and preferably close to one sinusoidal voltage
  • chopped voltages that is to say by the fast switching edge voltages (for example voltages with variation of order of 1 kV / ps to a few tens of kilovolts per microsecond) directly from a switching bridge of an inverter.
  • the powers to be switched in each switch bridge are smaller, the parasitic capacitances of the switching arms and the smoothing inductances with respect to the surrounding mechanical parts are lower. which makes it possible to minimize the size and the cost of the filters necessary to ensure the electromagnetic compatibility of these equipments.
  • the load is made modular because the electrochemical accumulator of each module is provided with its own charging device. Within a set of modules, each module can recharge its accumulator according to the most appropriate strategy. Load strategies can be multiple, for example:
  • the modules charge sequentially (one after the other) their respective accumulator when a low power load is available (for example, the electric vehicle connected to a domestic electrical network of a dwelling), the management of the module queue for the load is ensured by the synchronization output and this sequential load prevents the tripping of the differential switches of the installation;
  • a low power load for example, the electric vehicle connected to a domestic electrical network of a dwelling
  • An electric vehicle equipped with such a set of modules can therefore be provided with a plug, or any other connection system to the electrical network, which can be dimensioned to the fairest and which can be simplified in particular, with a mass, a volume and a reduced cost.
  • the invention makes it possible to directly connect the switch bridge to the electrochemical accumulator because the disconnection vis-à-vis the outside can be provided by a relay output of the power module.
  • This relay can be included in the module or be arranged just at its output.
  • This arrangement makes it possible to dispense with the precharging circuit and internal contactors between the switch bridge and the electrochemical accumulator.
  • Preloading circuits are devices used in the prior art and necessary for managing the recharging of the capabilities of a device when it has been disconnected from an electrochemical accumulator. These precharging circuits are here suppressed since, within a module, the accumulator is permanently connected to its switch bridge.
  • a precharging device will only be needed when the inverter first connects its filter capacitor to the storage device or, in a maintenance phase, disconnects these two parts. Such a precharging device is then a factory mounting tool and for maintenance operations and no longer a device integrated in the vehicle.
  • the power supply module may have the following additional features, alone or in combination:
  • the switch bridge is directly connected to the electrochemical accumulator
  • the set of coils is directly connected to the switch bridge
  • the power supply module further comprises, between the set of coils and the power supply terminal of the motor, a capacitive filtering stage;
  • the power supply module further comprises, between the set of coils and the power supply terminal of the motor, at least one relay having a relay contact for each output connection of the power supply terminal of the motor;
  • the switch bridge is reversible while being adapted to control both the charge and the discharge of the electrochemical accumulator
  • Each coil of the coil assembly is connected to the midpoint of an arm of the switch bridge.
  • the power pack may have the following additional features, alone or in combination:
  • the power pack comprises a load switch connected on the one hand to the power bus and connected on the other hand to at least one load terminal for connection to an electrical network;
  • the power pack includes an external synchronization module connected to the synchronization bus and controlling, from the switching of the bridges, the synchronization of voltages and / or current that are provided or absorbed by each module; alternatively, one of the modules is declared as the master module, from the switching of the bridges, the synchronization of the voltages and / or the current that are provided or absorbed by each module;
  • the modules are synchronized so that the power pack delivers a sinusoidal motor control voltage
  • the modules are synchronized so that only some of the modules deliver a sinusoidal motor control voltage
  • the modules are synchronized so that modules deliver a sinusoidal motor control voltage and for the electrochemical accumulator of only one of the modules to be discharged to the maximum;
  • the power pack further comprises a battery management system whose indicators are reset when the electrochemical accumulator of only one of the modules is discharged to the maximum;
  • the modules are synchronized so that one of the modules performs an intercellular balancing of its electrochemical accumulator, powered by at least one other module;
  • the modules are synchronized so that they reload sequentially their respective electrochemical accumulator.
  • FIG. 1 represents power supply modules of a vehicle, according to the invention
  • FIG. 2 illustrates the voltages delivered to the motor in the assembly of FIG. 1 in the case where the smoothed voltages are perfectly sinusoidal;
  • FIG. 3 is a variant of FIG. 1;
  • FIG. 4 illustrates a variant for the power supply modules of FIG.
  • FIGS. 5 and 6 show examples of the filtering stage of FIG. 1;
  • FIG. 7 represents a heat exchange device for the modules of FIG. 1;
  • FIG. 8 is a variant of the heat exchange device of FIG. 7.
  • FIG. 1 illustrates an embodiment for an electric vehicle which comprises a propulsion motor 1 and, according to the present example, three power supply modules 2A, 2B, 2C allowing the power supply of the motor 1.
  • the modules 2A, 2B, 2C are identical and their constituent elements will be designated by the same numbers in the figures.
  • the motor 1 can be powered by a power pack comprising any number of these modules.
  • the power supply modules 2A, 2B, 2C each comprise an electrochemical accumulator 3 constituted in this example by lithium-ion batteries.
  • the set of batteries 3 of all the modules 2A, 2B, 2C constitutes the storage capacity of electrical energy allowing the electric vehicle to move independently.
  • the electric vehicle comprises a first single-phase charging terminal and a second three-phase charging terminal.
  • These charging terminals 5, 6 allow the charging of the battery 3 of each module 2A, 2B, 2C and may each consist of an electrical plug for connecting the electric vehicle to the domestic single-phase network or a more powerful three-phase network.
  • the electric vehicle comprises a power supply bus 4 to which each module 2A, 2B, 2C is connected, directly or indirectly, and to which the first 5 and second 6 connection terminals are connected via a charging switch 7.
  • load 7 can be automatic or manual and can select which of the single-phase plug 5 or three-phase 6, will be used for charging the batteries 3 according to the networks available to the user at the place where the vehicle is.
  • the motor 1 is a conventional three-phase motor.
  • the power bus 4 is therefore adapted to this motor 1 and comprises, following this example, three conductors adapted to deliver to the motor 1 an AC power supply. three-phase whose current, voltage, and / or frequency will be controlled according to the driving of the vehicle.
  • the motor 1 may be of any technology requiring an AC power supply, and may have any number of poles, and the number of conductors of the power bus 4 will then be adapted to the number of conductors required for power of the engine 1.
  • the modules 2A, 2B, 2C each comprise a power supply terminal block 8 of the motor 1.
  • the set of modules 2A, 2B, 2C jointly supply power to the motor 1 by their terminal block 8 of the motor.
  • Each terminal block 8 for supplying the motor 1 has three output connections 20, 21, 22, one for each conductor of the supply bus 4. These output connections 20, 21, 22 are connected to the conductors of the power bus 4 via a capacitor filtering stage 9 (provided to ensure electromagnetic compatibility) and a relay 10 having a relay contact for each output connection 20, 21, 22, the relay 10 being thus adapted to connect or disconnect the output connections to the power bus 4.
  • the terminal block 8 of a module 2A, 2B, 2C is connected to a bridge 13 of switches.
  • Each output terminal of the power terminal block 8 is connected to an arm 14A, 14B, 14C of the bridge 13 of switches, each arm 14A, 14B, 14C having two switches.
  • the switches of the bridge 13 are, for example, power transistors such as metal-oxide gate (“MOS”) transistors.
  • All the switches of a bridge 13 of switches are controlled by a control device consisting, in the present example, of a microcontroller 15 associated with a control circuit 16 gate ("gaste driver" in English).
  • each module 2A, 2B, 2C a coil 17 is disposed between each arm 14A, 14B, 14C of the bridge 13 of switches and the corresponding output connection of the terminal block 8 of supply.
  • Each output connection of the terminal block 8 is therefore relative to an arm 14A, 14B, 14C of the bridge 13 and its coil 17. More specifically, each coil 17 is connected to the midpoint of an arm of the bridge 13 of switches.
  • the number of arms of a bridge 14 of switches is equal to: the number of poles of the motor 1; the number of drivers of the power bus 4; and the number of coils 17.
  • the modules 2A, 2B, 2C of this example further include a conventional filtering capacitor paralleling the battery 3.
  • the motor 1 is in turn connected to the power bus 4 via a relay 12 having contacts for connecting or disconnecting each motor supply conductor to a respective conductor of the power bus 4.
  • the relay control 10 and 12 makes it possible to obtain all the possible combinations of connection, via the power bus 4, of the modules 2A, 2B, 2C, of the motor 1, and of the charging terminals 5, 6.
  • the exploited combinations here are the following:
  • the coils 17 of the modules 2A, 2B, 2C and the filtering stages 9 allow the modules 2A, 2B, 2C to deliver to the motor, for the supply of the latter, a smoothed voltage adapted to the coils of the motors, conventionally it is is a smoothed sinusoidal voltage.
  • the steering of the switches of the bridge 13 is therefore performed to provide such a smooth sinusoidal voltage whose amplitude and frequency correspond to what must be supplied to the engine 1 to meet the driver's demand.
  • the modules 2A, 2B, 2C furthermore comprise a synchronization output 11 connected to the control circuit of the switches of the bridge 13, and more precisely connected here to the microcontroller 15.
  • the synchronization outputs 11 of all the modules 2A, 2B, 2C are connected to a synchronization bus 18.
  • This synchronization can be physically achieved by an external synchronization module (not shown) and also connected to the synchronization bus 18.
  • Each module 2A, 2B, 2C then comprises a close control constituted by the microcontroller 15 and the gate control circuit 16, while the system as a whole comprises a control of a level above (the external synchronization module) dedicated to the synchronization of the modules to provide voltages or supply or absorb currents of the same frequency and the same phase.
  • the synchronization of the switching operations of the bridges 13 is carried out by providing a master-slave architecture for the modules 2A, 2B, 2C in which one of the modules is declared "master”, so that the other modules, declared as “slaves", synchronize themselves on this master module on the basis of the information that the latter makes available on the synchronization bus.
  • Each power supply module 2A, 2B, 2C comprises a housing 23 (schematized in dashed lines in FIG. 1) provided with a set of external connections. These external connections comprise in particular the power supply terminal block 8 of the motor 1 and comprise the synchronization output 11. Each module is a subset physically separable from the rest of the architecture.
  • a device for example of the "rack" type, can be provided to facilitate insertion and removal of the power supply modules 2, by receiving and maintaining the module 2A, 2B, 2C mechanically and by presenting clean male-female connections. to the connections of its terminal block 8 and of its synchronization output 11.
  • An electric vehicle thus equipped can receive, connected to the power bus 4 and the synchronization bus. 18, a set of power supply modules 2A, 2B, 2C whose number is adapted to the traction power of the engine 1 and the desired range for the vehicle.
  • the modules 2 even if they correspond to the functional description previously described, are not necessarily identical. They may in particular have different battery capacities 3 or powers provided different.
  • the modular architecture provides battery-converter packs allowing the coupling of heterogeneous batteries in voltage, technologies, capacities, etc.
  • the power modules 2, in the form of limp 23, as elementary bricks, can be assembled according to criteria as varied as the energy requirement of the vehicle, the available modules, or the cost of the assembly.
  • the set can evolve over time by the addition, deletion, or replacement of power modules over time.
  • each of the modules 2A, 2B, 2C can thus, independently, drive its bridge 13 in a rectifier to absorb a classically sinusoidal current for recharging the battery 3.
  • the absorption of a sinusoidal current from the energy source is conventionally necessary to respect the normative constraints on the network harmonics.
  • the charging phase operation is an elevator operation, it is necessary for the battery voltage to be higher than the voltage supplied by the network at all times.
  • This constraint can be respected by a dimensioning with a permitted voltage range for the battery which is always greater than the peak value of the mains voltage throughout its variation range.
  • the motor 1 In the charging phase, the motor 1 is not connected to the energy source since the relay 12 is open. The parasitic capacitances of the motor do not give rise to a leakage current passing through the differential circuit breaker of the installation.
  • the modules In charging phase (that is to say, new connector battery charge position and not engine operation, but without charging the battery), the modules can also provide active or reactive energy to the network during a game the duration of the charging phase, if such network support functions are desired.
  • various other load strategies can be implemented through the synchronization bus. For example :
  • the modules can be loaded sequentially, possibly in a specific order, which allows to adapt to the available charging power or to ensure the non-tripping of the differential switch when the vehicle is connected to a domestic electrical network.
  • the sequential operation of the load of the modules makes it possible to apply between the phases and the mass only the capacitors of a module and not the capacitors of all the modules.
  • the current on the earth wiring that can trip the differential circuit breaker of the installation is reduced by the same amount;
  • modules are loaded and others are not; - Some modules are partially loaded, for example at 50% of their capacity, while other modules are loaded to the maximum.
  • the modules feed the motor one by one, sequentially (possibly in a specific order), so that when a module is unloaded, the next module takes the relay; - all the modules whose load is above a predetermined threshold (for example 10% of their capacity) supply the motor, and when a module passes below this threshold, it no longer powers the motor (its relay 10 can then be opened);
  • a predetermined threshold for example 10% of their capacity
  • a battery management system is often associated with the batteries 3, this system comprising indicators such as the state of charge of a battery or the state of health which corresponds to the percentage between the actual capacity of the battery and its initial capacity. These indicators periodically require a complete discharge of the battery to reset their zero, that is to say to achieve a tare.
  • electric vehicles are rarely completely discharged and some batteries can be loaded regularly without ever being completely discharged which leads to floating indicators and losing, in time, their initial reference. This measurement makes it possible, on the contrary, to completely discharge a module, to tare the indicators linked to the battery, while ensuring, in safety, the traction of the vehicle by the other power supply modules;
  • the modules can cooperate so that one carries out an intercellular balancing of its battery, thanks to the DC voltage supply of at least one other module. It is therefore no longer necessary to wait for a charging phase to proceed with the intercell balancing of a module. Indeed, some batteries may require such an intercellular balancing operation during which the battery (normally in the charging phase) balances the cells constituting it under a charging voltage.
  • a module 2A, 2B, 2C may also include a battery management system for its electrochemical accumulator.
  • the battery management system indicators can be recalibrated as shown above.
  • a synchronization of the voltages provided is provided for the motor to receive a form of voltage adapted to what it must provide for the traction of the vehicle. For example, depressing the accelerator pedal of the vehicle results in a torque request to be provided by the motor 1.
  • the system according to the The invention will provide the motor a smoothed sinusoidal voltage whose characteristics in voltage, frequency and phase will be adapted to this torque demand.
  • FIG. 2 schematically illustrates the profiles that the voltages supplied to the motor 1 can have.
  • FIG. 2 comprises three curves 24A, 24B, 24C relating to the three conductors supplying the motor 1 (and thus relating to the three conductors of the power bus 4). .
  • Each of these curves 24A, 24B, 24C represents the voltage provided by two of these conductors.
  • Each of these curves 24A, 24B, 24C has a shape close to a sinusoid.
  • this module can make available on the bus of synchronization 18 information such as a sync top, as well as the amplitude and frequency of the voltage to be supplied. These different pieces of information may for example be provided by a digital network of the CAN type. All the other power modules then switch their respective bridge 13 to achieve the same result, without precisely synchronizing the switching of each switch.
  • the master module (or an external synchronization module) can also make available on the synchronization bus 18 a voltage form setpoint to obtain and, likewise, the other power supply modules provide this waveform as a result, without predicting the commutations necessary to obtain this result. Heterogeneous power supply modules for switching electronics can thus be used together in the same vehicle.
  • the switches of the bridges 13 are made by silicon carbide metal oxide-oxide ("MOS SiC”) power transistors which are large-gap semiconductors, that is to say wide bandgap. These transistors switch faster than conventional power transistors such as MOSFETs and thus make it possible to produce, by the power supply modules, voltages at higher frequencies, which allows the use of coils 17 of lower value.
  • MOS SiC silicon carbide metal oxide-oxide
  • the coils 17 may have an inductance value of 10 to 100 mH.
  • FIG. 3 illustrates an alternative form to the embodiment of FIG. 1: the relay 12 of the motor is replaced by a switch 37 comprising three-way contacts enabling the synchronization bus 4 to be connected either to the load switch 7 or 1.
  • This alternative form allows the same functions as those described for FIG.
  • FIG. 4 illustrates a variant for the power supply modules of the example of FIG. 1. According to this variant, all the modules, or some of them, can integrate in their housing 23 the filtering stage 9 and / or the relay 10. The power supply modules 2A, 2B, 2C then integrate these additional functions and the terminal block 8 is located after the relay 10. The architecture of the electric vehicle side is thus simplified.
  • Figures 5 and 6 illustrate embodiments of the filter stage 9 for a power supply module 2A, 2B, 2C.
  • the filtering stage 9 is here made by three capacitors 26 placed each between two coils 17, as well as by three capacitors 27 each disposed between a coil 17 and the ground.
  • FIG. 6 represents an additional filtering stage that can be placed in series with the filtering stage of FIG. 5.
  • This filtering stage provides a common mode and differential mode filtering thanks to three coils 28 associated with three capacitors. star-shaped and a capacitor 39 connecting the midpoint of the star to ground.
  • all the modules, or some of them, may be provided with a thermal transfer device between the electrochemical accumulator and the switch bridge.
  • FIG. 7 illustrates a supply module 2A identical to those of the example of FIG. 1, provided with such a thermal transfer device.
  • the module 2A is preferably isolated from the outside by a thermal insulation 30 associated with the housing 23.
  • the housing 23 forms a sealed enclosure containing all the elements of the module 2A.
  • the internal volume delimited by this sealed enclosure is filled with a heat-transfer dielectric fluid 34.
  • Gland-type devices are provided to enable the electrical outputs, in particular the terminal block 8 and the synchronization output 11.
  • the battery 3, the switches of the bridge 13 of switches, and the coils 17 are thus immersed in the dielectric fluid 34, which allows a heat exchange between the battery 3 and the other components of module 2A.
  • the circulation of the dielectric fluid 34 is passive and proceeds by convection.
  • a mechanical device may be employed to create a flow of fluid in the housing 23.
  • FIG 8 illustrates a second embodiment of the thermal transfer device.
  • the illustration shows some elements of the example of Figure 7, with the same numbering.
  • the battery 3 is disposed in a first sealed enclosure 31 and the bridge 13 of switches is disposed in a second sealed enclosure 32.
  • the enclosure 31 comprises a thermal insulator 30 to maintain the battery temperature.
  • the enclosure 32 and / or the housing 23 also comprise a thermal insulation 30.
  • the sealed enclosures 31, 32 communicate via a first channel 33 and a second channel 35.
  • the volume delimited by the sealed enclosures 31, 32 and the channels 33, 35 is filled with a coolant dielectric fluid 34.
  • a pump 36 is disposed in the first channel 33 to circulate the dielectric fluid 34 between the enclosure 31 and the enclosure 32.
  • the passage of the electrical conductors is provided by gland-type devices provided here on the box 23 and the enclosures 31, 32.
  • the battery 3 and the switches 13 of the bridge switches are therefore immersed in the dielectric fluid 34, which allows a heat exchange between the battery 3 and the bridge 13.
  • the battery 3 is in thermal contact with components subjected to significant heat losses (power transistors and / or coils).
  • the coils 17 may be of reduced size and will therefore be more easily integrated, with their possible magnetic core. for example based on ferrite or amorphous materials, in the enclosure containing the coolant 34 as in the embodiment of Figure 7, to be completely immersed.
  • Thermal insulators 30 serve to minimize heat exchange with the outside and to obtain a thermal time constant which makes it possible to maintain Accumulators at optimum temperatures thanks to the losses generated by the power electronics during the driving and charging phases.
  • the charge of the battery can be carried out without ventilation (and therefore without the associated noise), the heat released being simply stored in the form of sensible heat by raising the temperature of the electrochemical accumulator 3. Only if the The temperature of the electrochemical accumulator 3 becomes too high that external cooling will be necessary.
  • the filter stage 9 and the relay 10 of the module are advantageously bathed also in the dielectric fluid 34.
  • the dielectric fluid 34 is a substitute for ester-based dielectric mineral oil. This type of product combines a very good dielectric strength with high biodegradability and is difficult to ignite.
  • the immersion of the battery 3, especially when it is of the lithium-ion type, in the dielectric fluid 34 increases the safety due to the improved heat transfer which limits the rise in temperature and can prevent the reaching of a critical threshold in temperature causing runaway of the accumulator.
  • the power supply module may comprise an external hydraulic connection comprising, for example, an input 38A and an output 38B (shown in FIG. 8) allowing a flow of the dielectric fluid with the outside of the module 2A.
  • the power modules do not require cooling of the battery during taxi or flight. Accordingly, according to one embodiment, the power supply modules 2A, 2B, 2C are not cooled during the power supply of the motor 1.
  • the fast charge is then performed with a powerful cooling of the battery and the inverter by external circulation to the vehicle or to the aircraft of the dielectric fluid 34, the fluid being cooled, by means of the hydraulic connection 38A, 38B, for example by an external exchanger (not shown), by the charging station, or by being replaced by another amount of fluid at a selected temperature.
  • the charging terminals 5, 6 can then provide, in addition to electrical contacts, the hydraulic connections for the circulation of the fluid.
  • the dielectric fluid can in this case also be used to cool the electric cables and associated connections.
  • the external hydraulic connection 38A, 38B can thus be associated with the charging terminals 5, 6, and the dielectric fluid 34 is then also immersed.
  • charging terminals 5, 6. In this case the user plugs a single plug on the charging station, this plug comprising the charging terminals 5, 6 and the input 38A and the output 38B of the external hydraulic connection.
  • the thermal transfer device may include a thermal transfer stopping system that can be used when the temperature of the battery is already near the upper limit of its optimum temperature range and is therefore not appropriate to heat it.
  • This thermal transfer stop system may consist for example of a valve disposed on one of the channels 33, 35 possibly associated with a bypass line (not shown).
  • the external hydraulic connection 38A, 38B also makes it possible to circulate the same dielectric fluid 34 in several supply modules 2A, 2B, 2C, so as to pool the dielectric fluid 34 for several modules.
  • the switch bridges 13 In the context of the invention, it is chosen to use the losses of the switch bridges 13 to heat or keep the electrochemical accumulators in temperature in cold weather, and to use the heat capacity of the electrochemical accumulators as thermal storage of the losses of the electrochemical accumulators. 13 bridges of switches. The cooling of the bridges 13 and the electrochemical accumulators 3 is shared. The thermal inertia of the battery 3 is used to store the calories corresponding to the losses of the power electronics.
  • the power supply strategy of the motor can be provided, thanks to the synchronization bus, so that one of the modules 2A, 2B, 2C is used to, not to feed the motor 1 as the other modules, but to dissipate the reactive power to heat the dielectric fluid 34. This allows to increase economically the temperature of the battery 3 when the ambient temperature is low (in winter).
  • the power supply modules 2A, 2B, 2C can also have a second life after a first life in an electric vehicle.
  • a second life after a first life in an electric vehicle.
  • the supply modules 2A, 2B, 2C concerned can then be reused in other vehicles or, for example for stationary applications, less demanding.
  • the power supply modules 2A, 2B, 2C can, during this second life, be assembled according to a modular architecture of which each brick has its own energy accumulator and its converter (the bridge 13) with its control electronics allowing it to function as an inverter delivering an alternating voltage.
  • the engine 1 may be a set of several engines.
  • the architecture can comprise several motors each powered by several modules through relays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

A power supply module for the motor (1) of an electric vehicle is characterised in that it comprises: - an electrochemical accumulator (3); - a reversible switch bridge (13) connected to the electrochemical accumulator (3); - a housing (23) containing the components of the power supply module; - a heat transfer device between the electrochemical accumulator (3) and the switch bridge (13), the heat transfer device being accommodated in the housing (23).

Description

Titre: Module d’alimentation pour moteur de véhicule électrique, avec transfert thermique  Title: Power Supply Module for Electric Vehicle Engine, with Thermal Transfer
L’invention concerne l’alimentation des véhicules électriques. Elle vise plus particulièrement les systèmes permettant d’accumuler de l’énergie dans ces véhicules puis ensuite de la restituer pour, notamment, la propulsion du véhicule. The invention relates to the power supply of electric vehicles. It is more particularly systems for accumulating energy in these vehicles and then to restore it for, in particular, the propulsion of the vehicle.
Les véhicules électriques comportent généralement un accumulateur électrochimique sous forme, par exemple, d’un pack de batteries. Cet accumulateur électrochimique peut être rechargé par une source d’énergie électrique externe au véhicule. Avec un accumulateur électrochimique suffisamment chargé, le véhicule électrique peut alimenter ses moyens de propulsion, comportant généralement un ou plusieurs moteurs électriques. Electric vehicles generally comprise an electrochemical accumulator in the form of, for example, a battery pack. This electrochemical accumulator can be recharged by a source of electrical energy external to the vehicle. With a sufficiently charged electrochemical accumulator, the electric vehicle can power its propulsion means, generally comprising one or more electric motors.
Le véhicule électrique subit des phases de charge de l’accumulateur électrochimique et des phases de propulsion, où l’accumulateur alimente les moyens de propulsion du véhicule. The electric vehicle undergoes charging phases of the electrochemical accumulator and the propulsion phases, where the accumulator supplies the propulsion means of the vehicle.
Pour alimenter ses moyens de propulsion ainsi que pour charger l’accumulateur électrochimique, le véhicule électrique comporte généralement un chargeur qui est un convertisseur d’une tension alternative vers une tension continue et qui permet la charge de l’accumulateur à partir d’un réseau électrique, pendant les phases de charge, et d’un onduleur qui est un convertisseur d’une tension continue vers une tension alternative qui permet l’alimentation des moyens de propulsion à partir de l’accumulateur, pendant les phases de propulsion. Pour certains véhicules, certaines parties de ces convertisseurs sont mutualisées pour gagner en volume, masse et coût. To power its propulsion means as well as to charge the electrochemical accumulator, the electric vehicle generally comprises a charger which is a converter from an alternating voltage to a DC voltage and which enables the charging of the accumulator from a network. electrical, during the charging phases, and an inverter which is a converter of a DC voltage to an AC voltage which allows the supply of the propulsion means from the accumulator, during the propulsion phases. For some vehicles, some parts of these converters are pooled to gain volume, weight and cost.
La demande de brevet FR2738411 décrit un système d’alimentation électrique, pour véhicule électrique, qui comporte un onduleur alimentant le moteur électrique du véhicule à partir d’une batterie. Lorsque l’onduleur n’est pas en service, des moyens interrupteurs présents dans l’onduleur sont utilisés pour former un convertisseur de type alternatif-continu recevant en entrée une tension alternative monophasée et délivrant une tension continue de charge de la batterie, ce qui permet de charger la batterie à partir de la tension alternative monophasée. La demande de brevet EP0553824 décrit un système électrique pour un véhicule électrique qui comporte un onduleur permettant la commande du moteur électrique du véhicule à partir d’une batterie, et permettant également la charge de la batterie à partir d’une tension alternative fournie du côté de l’étage alternatif de l’onduleur. Ce document décrit aussi l’utilisation des enroulements du moteur électrique du véhicule comme inductances utilisées dans la charge de la batterie par l’onduleur. The patent application FR2738411 describes a power supply system, for electric vehicles, which comprises an inverter supplying the electric motor of the vehicle from a battery. When the inverter is not in operation, switch means present in the inverter are used to form an AC-DC converter receiving as input a single-phase AC voltage and delivering a DC charging voltage of the battery, which allows charging the battery from the single-phase AC voltage. Patent Application EP0553824 discloses an electrical system for an electric vehicle which comprises an inverter allowing the control of the electric motor of the vehicle from a battery, and also allowing the charging of the battery from an AC voltage supplied from the side. of the alternating stage of the inverter. This document also describes the use of the windings of the electric motor of the vehicle as inductors used in the charging of the battery by the inverter.
La demande de brevet FR2946473 décrit un ensemble électromoteur, notamment pour véhicule automobile à propulsion électrique, comprenant un moteur électrique multiphasé, une batterie d'accumulateurs, un onduleur apte à convertir le courant continu de la batterie en courant alternatif multiphasé adapté pour alimenter le moteur, et un boitier de connexion qui permet alternativement d'alimenter le moteur à partir de la batterie, de charger la batterie directement à partir d'un réseau monophasé, et de charger la batterie à partir d'un réseau multiphasé. The patent application FR2946473 describes an electromotor assembly, in particular for a motor vehicle with electric propulsion, comprising a multiphase electric motor, a storage battery, an inverter capable of converting the direct current of the battery into a multiphase alternating current adapted to power the motor. , and a connection box that alternatively powers the motor from the battery, charges the battery directly from a single-phase network, and charges the battery from a multiphase network.
L’invention a pour but d’améliorer l’alimentation des véhicules électriques. The invention aims to improve the power supply of electric vehicles.
A cet effet, l’invention vise un module d’alimentation pour moteur de véhicule électrique, comportant : For this purpose, the invention provides a power supply module for an electric vehicle engine, comprising:
- un accumulateur électrochimique ; an electrochemical accumulator;
- un pont de commutateurs raccordé à l’accumulateur électrochimique ; - a switch bridge connected to the electrochemical accumulator;
- un boitier renfermant les éléments du module d’alimentation ; a box enclosing the elements of the power supply module;
- un dispositif de transfert thermique entre l’accumulateur électrochimique et le pont de commutateurs, ce dispositif de transfert thermique étant disposé dans le boitier. - A thermal transfer device between the electrochemical accumulator and the switch bridge, the heat transfer device being disposed in the housing.
L’expression « véhicule électrique » désigne tout véhicule adapté à être propulsé au moins partiellement et au moins pendant certaines phases, par un moteur électrique. Cette expression inclut notamment les véhicules exclusivement électriques, les véhicules hybrides, les véhicules à assistance électrique, qu’ils soient des véhicules terrestres, maritimes, ou aériens, destinés à un usage particulier ou au transport de charges ou de passagers. The expression "electric vehicle" designates any vehicle adapted to be propelled at least partially and at least during certain phases by an electric motor. This term includes, in particular, exclusively electric vehicles, hybrid vehicles, electric-assisted vehicles, whether they are land, sea or air vehicles, intended for a particular purpose or for the transport of loads or passengers.
Le pont de commutateurs forme un dispositif réversible chargeur et onduleur adapté d’une part à charger ledit accumulateur à partir d’une source d’énergie électrique externe et adapté d’autre part à convertir l’énergie électrique de l’accumulateur pour l’alimentation d’un moteur du véhicule électrique. The switch bridge forms a reversible charger and inverter device adapted on the one hand to charge said battery from a power source external electric and adapted on the other hand to convert the electrical energy of the accumulator for the power supply of an electric vehicle engine.
L’accumulateur électrochimique fonctionne grâce aux réactions électrochimiques via des électrodes qui assurent la conversion de l’énergie électrique en un processus chimique réversible. L’accumulateur électrochimique peut être par exemple une batterie d’accumulateurs ou un pack de cellules, par exemple un pack de batteries lithium-ion ou au plomb. The electrochemical accumulator operates through electrochemical reactions via electrodes that convert electrical energy into a reversible chemical process. The electrochemical accumulator may for example be a storage battery or a pack of cells, for example a lithium-ion or lead-acid battery pack.
L’invention assure un conditionnement en température de l’accumulateur électrochimique permettant de limiter son excursion en température malgré les variations de températures de l’environnement. La température de l’accumulateur est maintenue dans la plage de température limitant le vieillissement, aussi bien en phase de traction que de charge. The invention provides a temperature conditioning of the electrochemical accumulator to limit its temperature excursion despite variations in environmental temperatures. The temperature of the accumulator is maintained in the temperature range limiting the aging, both in the traction phase and in the load phase.
Les accumulateurs électrochimiques tels que des packs de batteries sont des dispositifs dont la plage de température de fonctionnement optimal est limitée. Pour les accumulateurs de type lithium ion, par exemple, les plages peuvent être de -10°C à 60°C en décharge et de 0°C à 45°C en charge. A basse température, la conductivité de l’électrolyte baisse, la résistance interne de l’accumulateur augmente et la capacité utilisable décroit. Les performances en décharge sont affectées en conséquence. Pour la charge à basse température, en dessous de 0°C et jusqu’à à 5°C classiquement, il y a de plus le risque de dépôt de lithium métal sur le graphite de l’électrode négative. La réaction normale d’insertion du lithium dans le matériau à base de carbone de l’électrode négative a un potentiel voisin de celle de la transformation du lithium-ion en lithium métal sous forme d’un dépôt de lithium métal à la surface de l’électrode. Cette réaction parasite dégrade l’accumulateur, fait décroître sa capacité et sa durée de vie. L’accélération du vieillissement des accumulateurs lithium-ion à haute température, à partir de 35°C classiquement, est bien connue. L’accélération du vieillissement par les phases charges à basse température a un impact au moins aussi important, surtout si des charges rapides à basse température sont souhaitées. L’invention utilise les pertes thermiques de l’accumulateur et celles du pont de commutateurs pour augmenter la température du module. L’invention utilise aussi la capacité calorifique de l’ensemble du module d’alimentation. Il n’est pas nécessaire de mettre en fonctionnement un refroidissement tant que la température du dispositif de transfert thermique n’atteint pas un niveau de consigne de température haute. Electrochemical accumulators such as battery packs are devices whose optimal operating temperature range is limited. For lithium ion batteries, for example, the ranges can be from -10 ° C to 60 ° C in discharge and from 0 ° C to 45 ° C under load. At low temperature, the conductivity of the electrolyte decreases, the internal resistance of the accumulator increases and the usable capacity decreases. Landfill performance is affected accordingly. For the charge at low temperature, below 0 ° C and up to 5 ° C classically, there is also the risk of deposition of lithium metal on the graphite of the negative electrode. The normal lithium insertion reaction in the carbon-based material of the negative electrode has a potential close to that of the conversion of lithium-ion to lithium metal as a deposit of lithium metal on the surface of the metal. 'electrode. This parasitic reaction degrades the battery, decreases its capacity and its lifetime. The acceleration of the aging of lithium-ion accumulators at high temperature, from 35 ° C conventionally, is well known. The acceleration of aging by the low temperature charge phases has an impact at least as important, especially if fast charges at low temperature are desired. The invention uses the thermal losses of the accumulator and those of the bridge of switches to increase the temperature of the module. The invention also uses the heat capacity of the entire power module. It is not necessary to put in operation a cooling as long as the temperature of the heat transfer device does not reach a high temperature set point.
Du côté du pont de commutateurs, le refroidissement de ce dernier est mutualisé avec le maintien en température de la batterie. La charge lente ou rapide peut s’effectuer sans refroidissement extérieur, et donc sans bruit de ventilation par exemple, la chaleur dégagée étant simplement stockée sous forme d’une élévation de la température de l’accumulateur électrochimique. Une production externe de chaleur est donc rarement nécessaire dans un tel véhicule, à la différence des véhicules de l’art antérieur dont certains consomment une énergie non négligeable pour maintenir, par temps froid, les batteries dans leur plage de température optimale. C’est seulement si la température de l’accumulateur devient trop élevée que le refroidissement sera nécessaire. C’est un avantage par rapport aux véhicules de l’art antérieur qui nécessitent généralement la mise en route du circuit du refroidissement du pont de commutateurs pour toutes les phases de charge. L’utilisation de dispositifs de refroidissement (par exemple par ventilation) reste nécessaire pour certaines phases, mais elle peut être minimisée en phase de charge. On the side of the switch bridge, the cooling of the latter is shared with the temperature maintenance of the battery. The slow or fast charge can be carried out without external cooling, and therefore without ventilation noise for example, the heat generated being simply stored as a rise in the temperature of the electrochemical accumulator. An external production of heat is therefore rarely necessary in such a vehicle, unlike the vehicles of the prior art, some of which consume significant energy to maintain, in cold weather, batteries in their optimal temperature range. Only if the temperature of the accumulator becomes too high will cooling be necessary. This is an advantage over prior art vehicles which generally require the switching bridge cooling circuit to be turned on for all charging phases. The use of cooling devices (for example by ventilation) remains necessary for certain phases, but it can be minimized during the charging phase.
Un circuit de refroidissement, associé au dispositif de transfert thermique, peut donc être prévu pour les phases où la température devient trop élevée pour l’accumulateur. Il est possible de plus d’ajouter au dispositif de transfert thermique un refroidissement puissant, à la fois pour l’accumulateur et pour les composants pont de commutateurs, pour les cas d’utilisation à fortes puissance de charge et/ou de décharge. Selon l’utilisation et le climat, il peut s’agir d’un refroidissement direct à air avec un échangeur fluide/air ou d’un refroidissement par pompe à chaleur afin de limiter la température du module à une valeur inférieure à la température de l’air disponible. A cooling circuit, associated with the heat transfer device, can therefore be provided for the phases where the temperature becomes too high for the accumulator. It is also possible to add to the heat transfer device a powerful cooling, both for the accumulator and for the bridge bridge components, for use cases with high load power and / or discharge. Depending on the use and the climate, it may be direct air cooling with a fluid / air exchanger or heat pump cooling to limit the temperature of the module to a value below the temperature of the module. air available.
En employant un fluide diélectrique dans le dispositif de transfert thermique, une très forte tenue diélectrique (quelques kilovolts en continu, voire quelques dizaines de kilovolts) peut être obtenue entre les composants de l’accumulateur et la mécanique du véhicule, ainsi qu’entre les composants du pont de commutateurs et la mécanique du véhicule, et ce sans dégrader le transfert thermique permettant de refroidir ces composants. L’utilisation d’un fluide diélectrique permet aussi de diminuer très fortement les capacités parasites entre les parties du pont de commutateur soumises à un fort front de tension et les pièces mécaniques environnantes ainsi que entre l’inductance de filtrage et la mécanique. La diminution de ces capacités parasites se traduit directement par une baisse des courants conduits de mode commun à traiter par les dispositifs de filtrage de CEM. By employing a dielectric fluid in the thermal transfer device, a very high dielectric strength (a few continuous kilovolts or even a few tens of kilovolts) can be obtained between the battery components and the vehicle mechanics, as well as between the switch bridge components and vehicle mechanics, without degrading the heat transfer to cool these components. The use of a dielectric fluid also makes it possible to greatly reduce parasitic capacitances between the parts of the switch bridge subjected to a strong voltage front and the surrounding mechanical parts as well as between filter inductance and mechanics. The reduction of these parasitic capacitances results directly in a decrease of the common-mode current flows to be processed by the EMC filtering devices.
La sécurité est renforcée vis-à-vis des risques d’emballement thermique des accumulateurs par la limitation de la vitesse de montée et de l’amplitude de la montée en température d’un accumulateur en cas de défaut de celui-ci. La sécurité est également renforcée vis-à-vis des risques d’emballement thermique des accumulateurs par limitation de la température à laquelle sont soumis les accumulateurs situés à proximité d’un accumulateur en défaut, ce qui implique une minimisation du risque de propagation de l’emballement thermique d’accumulateurs de proche en proche. The security is increased with respect to the risks of thermal runaway of the accumulators by limiting the rise speed and the amplitude of the rise in temperature of a battery in the event of a fault thereof. Safety is also increased with regard to the risks of thermal runaway of the accumulators by limiting the temperature at which the accumulators located near a faulty accumulator are subjected, which implies a minimization of the risk of propagation of the battery. runaway thermal accumulators.
Grâce à l’invention, il n’est pas nécessaire de recourir à une plaque à eau sur laquelle sont montés les commutateurs et permettant de refroidir le pont, comme il est courant dans l’art antérieur. Cette plaque à eau de l’art antérieur crée généralement des capacités parasites qui sont ici évitées. Thanks to the invention, it is not necessary to use a water plate on which the switches are mounted and for cooling the bridge, as is common in the prior art. This water plate of the prior art generally creates parasitic capacitances which are here avoided.
Le module d’alimentation peut comporter les caractéristiques additionnelles suivantes, seules ou en combinaison : The power supply module may have the following additional features, alone or in combination:
- le dispositif de transfert thermique comporte au moins une enceinte étanche dans laquelle est contenu un fluide diélectrique qui baigne l’accumulateur électrochimique et le pont de commutateurs ; - The heat transfer device comprises at least one sealed chamber in which is contained a dielectric fluid which bathes the electrochemical accumulator and the switch bridge;
- le module d’alimentation comporte un ensemble de bobines raccordées au pont de commutateurs, ces bobines étant également baignées dans le fluide diélectrique ; - The power supply module comprises a set of coils connected to the switch bridge, these coils being also immersed in the dielectric fluid;
- le boîtier forme ladite enceinte étanche ; the housing forms said sealed enclosure;
- ladite enceinte étanche comporte une enceinte étanche disposée autour de l’accumulateur électrochimique ; said sealed enclosure comprises a sealed enclosure arranged around the electrochemical accumulator;
- ladite enceinte étanche comporte une enceinte étanche disposée autour du pont de commutateurs et communiquant avec l’enceinte étanche disposée autour de l’accumulateur électrochimique ; said sealed enclosure comprises a sealed enclosure disposed around the switch bridge and communicating with the sealed enclosure arranged around the electrochemical accumulator;
- le module d’alimentation comporte un dispositif pour la circulation du fluide diélectrique ; - l’enceinte étanche disposée autour de l’accumulateur électrochimique comporte un isolant thermique ; the power supply module comprises a device for the circulation of the dielectric fluid; - The sealed chamber disposed around the electrochemical accumulator comprises a thermal insulator;
- le module d’alimentation comporte un système d’arrêt du transfert thermique ; - le pont de commutateurs est réversible en étant adapté à commander aussi bien la charge que la décharge de l’accumulateur électrochimique ; the power supply module comprises a system for stopping the thermal transfer; the switch bridge is reversible while being adapted to control both the charge and the discharge of the electrochemical accumulator;
- le module d’alimentation comporte une connexion hydraulique externe permettant l’échange thermique avec d’autres éléments du véhicule ; - The power module has an external hydraulic connection for the heat exchange with other elements of the vehicle;
- la connexion hydraulique externe est reliée à un dispositif de refroidissement. the external hydraulic connection is connected to a cooling device.
Un autre objet de l’invention vise un pack d’alimentation pour véhicule électrique, comportant une pluralité de modules tels que décrits ci-dessus et dans lequel le fluide diélectrique circule d’un module à l’autre par la connexion hydraulique externe de chaque module. Le pack d’alimentation peut comporter les caractéristiques additionnelles suivantes, seules ou en combinaison : Another object of the invention is a power pack for an electric vehicle, comprising a plurality of modules as described above and in which the dielectric fluid flows from one module to the other by the external hydraulic connection of each module. The power pack may have the following additional features, alone or in combination:
- l’un des modules est adapté à chauffer le fluide ; one of the modules is adapted to heat the fluid;
- les modules d’alimentation ne sont pas refroidis durant l’alimentation du moteur ; - le pack d’alimentation comporte au moins un terminal de charge permettant de relier le pack à un réseau électrique, la connexion hydraulique externe étant associée au terminal de charge, et le fluide diélectrique baignant également le terminal de charge. - the power supply modules are not cooled during the power supply of the motor; - The power pack comprises at least one load terminal for connecting the pack to an electrical network, the external hydraulic connection being associated with the charging terminal, and the dielectric fluid also bathing the charging terminal.
Un autre objet de l’invention vise un module d’alimentation pour moteur de véhicule électrique, comportant : Another object of the invention is a power supply module for an electric vehicle engine, comprising:
- un accumulateur électrochimique ; an electrochemical accumulator;
- un pont de commutateurs raccordé à l’accumulateur électrochimique ; - a switch bridge connected to the electrochemical accumulator;
- un dispositif de commande des commutateurs du pont de commutateurs ; - un ensemble de bobines raccordées au pont de commutateurs ; a switch control device of the switch bridge; a set of coils connected to the switch bridge;
- un boîtier renfermant les éléments du module d’alimentation, ce boitier étant muni d’un ensemble de connexions externes qui comportent : un bornier d’alimentation du moteur muni du même nombre de connexions de sortie que le nombre de bobines dans l’ensemble de bobines ; et une sortie de synchronisation reliée au dispositif de commande des commutateurs du pont de commutateurs. a box enclosing the elements of the power supply module, this box being provided with a set of external connections which comprise: a power supply terminal of the motor provided with the same number of output connections as the number of coils in the set reels; and a synchronization output connected to the switch controller of the switch bridge.
Un autre objet de l’invention vise un pack d’alimentation pour véhicule électrique, comportant : Another object of the invention is a power pack for an electric vehicle, comprising:
- une pluralité de modules tels que décrits ci-dessus ; a plurality of modules as described above;
- un bus d’alimentation comportant des conducteurs, chaque connexion de sortie du bornier de chaque module étant branchée sur un desdits conducteurs ; a power supply bus comprising conductors, each output connection of the terminal block of each module being connected to one of said conductors;
- un bus de synchronisation sur lequel est branchée la sortie de synchronisation de chaque module, de sorte que le dispositif de commande des commutateurs du pont de chaque module soit relié au bus de synchronisation. a synchronization bus to which is connected the synchronization output of each module, so that the bridge switch control device of each module is connected to the synchronization bus.
L’invention permet d’assurer de manière modulaire l’alimentation électrique des moyens de propulsion d’un véhicule électrique, ainsi que la charge des accumulateurs électrochimiques de ce véhicule. Dans un véhicule équipé d’un ensemble de tels modules, chaque module comporte son propre accumulateur électrochimique ainsi que son propre convertisseur permettant aussi bien la charge de l’accumulateur électrochimique que l’alimentation d’un moteur électrique du véhicule. The invention makes it possible to ensure modularly the power supply of the propulsion means of an electric vehicle, as well as the charge of the electrochemical accumulators of this vehicle. In a vehicle equipped with a set of such modules, each module has its own electrochemical accumulator and its own converter for both the charging of the electrochemical accumulator and the power supply of an electric motor of the vehicle.
La sortie de synchronisation des modules d’alimentation permet à chacun de ces modules de synchroniser les tensions et/ou courants délivrés sur les tensions et/ou courant des autres modules. L’ensemble des modules assure ainsi, en commun, la délivrance d’une tension contrôlée (par exemple une tension sinusoïdale de commande de moteur) pour l’alimentation d’un moteur de traction du véhicule électrique ou la délivrance d’un courant contrôlé (par exemple une courant continu) pour la charge de l’accumulateur électrochimique en absorbant un courant contrôlé à partir de la source d’énergie électrique. The synchronization output of the power modules allows each of these modules to synchronize the voltages and / or currents delivered to the voltages and / or currents of the other modules. The set of modules thus provides, in common, the delivery of a controlled voltage (for example a sinusoidal motor control voltage) for the supply of a traction motor of the electric vehicle or the delivery of a controlled current. (e.g., direct current) for charging the electrochemical accumulator by absorbing a controlled current from the source of electrical energy.
Un véhicule électrique peut être muni de plusieurs modules selon l’invention pour assurer l’accumulation d’énergie électrique nécessaire à l’autonomie du véhicule, et pour assurer la fourniture de cette énergie électrique à au moins un moteur électrique du véhicule. Ce caractère modulaire permet une intégration facilitée dans différents types de véhicules en divisant en modules le volume total requis pour l’accumulation de l’énergie électrique et pour la commande moteur. Les différents modules peuvent être positionnés dans les différents logements possibles du véhicule en exploitant au mieux l’espace disponible dans le véhicule. An electric vehicle may be provided with several modules according to the invention to ensure the accumulation of electrical energy necessary for the autonomy of the vehicle, and to ensure the supply of this electrical energy to at least one electric motor of the vehicle. This modular character allows easy integration into different types of vehicles by dividing into modules the total volume required for the accumulation of electrical energy and for motor control. The different modules can be positioned in the various possible vehicle accommodations by making the best use of the space available in the vehicle.
Le nombre de modules peut être adapté à un véhicule particulier dans une configuration initiale, en fonction des besoins en capacité d’accumulateur électrochimique et/ou en puissance à fournir pour la traction du véhicule. Ce nombre peut être modifié dans le temps, lors d’un changement de configuration du véhicule, en ajoutant ou enlevant des modules par la suite. The number of modules can be adapted to a particular vehicle in an initial configuration, depending on the electrochemical accumulator capacity requirements and / or power to be provided for the traction of the vehicle. This number can be modified in time, during a change of configuration of the vehicle, by adding or removing modules thereafter.
Par ailleurs, les modules peuvent être réutilisés pour une deuxième utilisation dans le cadre d’une deuxième vie, pour un autre type de véhicule ou pour une application stationnaire. Pour cette deuxième utilisation, le stockage d’énergie électrique et le convertisseur du véhicules sont réutilisés dans une seconde utilisation, et non pas seulement le stockage d’énergie selon les solutions standards de l’état de l’art. In addition, the modules can be reused for a second use in the context of a second life, for another type of vehicle or for a stationary application. For this second use, the electrical energy storage and the converter of the vehicle are reused in a second use, and not only the energy storage according to the standard solutions of the state of the art.
De préférence, les modules fournissent ensemble une tension sinusoïdale à une fréquence adaptée à tout instant à l’entrainement du moteur, lors de l’utilisation en traction. Ils fournissent ou absorbent des courants sinusoïdaux à la fréquence du réseau lors de la connexion au réseau pour le soutien au réseau ou la charge de la batterie. La synchronisation de plusieurs modules est ainsi facilitée. Preferably, the modules together provide a sinusoidal voltage at a frequency adapted at all times to the drive of the motor, when using traction. They provide or absorb sinusoidal currents at the network frequency when connecting to the network for network support or battery charging. The synchronization of several modules is thus facilitated.
La fonction de traction du véhicule, c’est à dire de fourniture d’énergie électrique à la motorisation du véhicule, bénéficie du caractère modulaire apporté par l’invention grâce notamment aux avantages listés ci-dessous. The traction function of the vehicle, that is to say the supply of electrical energy to the motorization of the vehicle, benefits from the modular nature provided by the invention thanks in particular to the advantages listed below.
Comme la fonction d’accumulation électrique est rendue modulaire, la capacité d’accumulation peut être augmentée par la multiplication des modules avec un coût minimum et de manière simplifiée si l’on compare, par exemple, à la mise en parallèle de batteries, qui requiert des attentions particulières et complexes. De plus, la fonction de traction s’adapte de fait à cette variation de la capacité d’accumulation. De la même manière, comme la fonction d’alimentation du moteur électrique est rendue modulaire, la puissance fournie au moteur peut être augmentée par la multiplication des modules avec un coût minimum et de manière simplifiée si l’on compare, par exemple, au changement d’un onduleur par un onduleur plus puissant. As the electrical accumulation function is made modular, the accumulation capacity can be increased by multiplying the modules with a minimum cost and in a simplified manner if one compares, for example, the paralleling of batteries, which requires special and complex attention. In addition, the traction function adapts itself to this variation of the accumulation capacity. In the same way, as the power supply function of the electric motor is made modular, the power supplied to the motor can be increased by the multiplication of the modules with a minimum cost and in a simplified manner if one compares, for example, the change of an inverter by a more powerful inverter.
Le caractère modulaire apporté par l’invention garantit de plus une tolérance aux pannes ou défauts aussi bien d’un accumulateur électrochimique que d’un pont de commutateurs employé comme onduleur, car un ensemble de modules selon l’invention continue à assurer sa fonction tant que l’un des modules reste fonctionnel. The modular nature provided by the invention further ensures a fault tolerance or fault of both an electrochemical accumulator and a switch bridge used as inverter, because a set of modules according to the invention continues to perform its function both that one of the modules remains functional.
L’inclusion de bobines dans le module d’alimentation permet l’alimentation d’un moteur de traction du véhicule électrique par des tensions électriques à variation lente (par exemple, des variations inférieures à 100 V/ps et de préférence proches d’une tension sinusoïdale), au lieu de l’alimenter, comme c’est le cas dans l’art antérieur, par des tensions hachées, c’est à dire par les tensions à front de commutation rapide (par exemple des tensions à variation de l’ordre de 1 kV/ps à quelques dizaines de kilovolts par microsecondes) issues directement d’un pont de commutation d’un onduleur. The inclusion of coils in the power supply module makes it possible to supply a traction motor of the electric vehicle with slowly varying electrical voltages (for example, variations of less than 100 V / ps and preferably close to one sinusoidal voltage), instead of feeding it, as is the case in the prior art, by chopped voltages, that is to say by the fast switching edge voltages (for example voltages with variation of order of 1 kV / ps to a few tens of kilovolts per microsecond) directly from a switching bridge of an inverter.
L’alimentation du moteur s’effectuant par des tensions lissées et non des tensions hachées, les capacités parasites des bobinages moteurs ne sont pas traversées par des pics de courant à chaque front de tension des bras de commutateurs comme c’est le cas pour les solutions classiques selon l’état de l’art. Ces pics de commutations sont classiquement de très forts niveaux de perturbations électromagnétiques en courant conduit dans les fils qu’il faut traiter. Since the motor supply is carried out by smoothed voltages and not chopped voltages, the spurious capacitances of the motor windings are not traversed by current peaks at each voltage edge of the switch arms, as is the case for classical solutions according to the state of the art. These switching peaks are conventionally very high levels of electromagnetic disturbances in current conducted in the son to be treated.
Par ailleurs, la puissance totale de traction étant délivrée par plusieurs modules, les puissances à commuter dans chaque pont de commutateurs sont plus faibles, les capacités parasites des bras de commutation et des inductances de lissage vis-à-vis des piècesmécaniques environnantes sont plus faibles ce qui permet de minimiser la taille et le coût des filtres nécessaires pour assurer la compatibilité électromagnétique de ces équipements. Moreover, since the total traction power is delivered by several modules, the powers to be switched in each switch bridge are smaller, the parasitic capacitances of the switching arms and the smoothing inductances with respect to the surrounding mechanical parts are lower. which makes it possible to minimize the size and the cost of the filters necessary to ensure the electromagnetic compatibility of these equipments.
De même, la répartition des puissances en différents modules entraîne une sécurité accrue vis-à-vis des risques électriques. La fonction de charge des accumulateurs d’énergie du véhicule bénéficie également du caractère modulaire apporté par l’invention grâce notamment aux avantages listés ci-dessous. Similarly, the distribution of power in different modules leads to increased security against electrical risks. The charging function of the energy accumulators of the vehicle also benefits from the modular nature provided by the invention, in particular by virtue of the advantages listed below.
La charge est rendue modulaire car l’accumulateur électrochimique de chaque module est muni de son propre dispositif de charge. Au sein d’un ensemble de modules, chaque module peut donc recharger son accumulateur selon la stratégie la mieux adaptée. Des stratégies de charge peuvent être multiples, par exemple : The load is made modular because the electrochemical accumulator of each module is provided with its own charging device. Within a set of modules, each module can recharge its accumulator according to the most appropriate strategy. Load strategies can be multiple, for example:
- tous les modules chargent ensemble leur accumulateur respectif lorsque qu’une importante puissance de charge est disponible (cas du véhicule électrique branché sur une borne de forte puissance) ;  - all the modules charge their respective accumulator together when a large load power is available (case of the electric vehicle connected to a high power terminal);
- les modules chargent séquentiellement (l’un après l’autre) leur accumulateur respectif lorsqu’une faible puissance de charge est disponible (cas, par exemple, du véhicule électrique branché sur un réseau électrique domestique d’une habitation), la gestion de la file d’attente des modules pour la charge étant assurée grâce à la sortie de synchronisation et cette charge séquentielle évite le déclenchement des interrupteurs différentiels de l’installation ;  the modules charge sequentially (one after the other) their respective accumulator when a low power load is available (for example, the electric vehicle connected to a domestic electrical network of a dwelling), the management of the module queue for the load is ensured by the synchronization output and this sequential load prevents the tripping of the differential switches of the installation;
- seulement un ou plusieurs modules chargent leur accumulateur, les accumulateurs des autres modules n’étant pas chargés (cas, par exemple, d’un mode de fonctionnement dégradé avec un temps de charge limité ou une quantité d'énergie électrique limitée). - only one or more modules instructed their accumulator, the accumulator of the other modules not being charged (if, for example, a degraded mode of operation with a limited charging time or an amount of limited power).
Un véhicule électrique équipé d’un tel ensemble de modules peut donc être muni d’une fiche, ou tout autre système de raccordement au réseau électrique, qui peut être dimensionnée au plus juste et qui peut être notamment simplifiée, avec une masse, un volume et un coût réduits.  An electric vehicle equipped with such a set of modules can therefore be provided with a plug, or any other connection system to the electrical network, which can be dimensioned to the fairest and which can be simplified in particular, with a mass, a volume and a reduced cost.
Par ailleurs, l’invention rend possible la connexion directe du pont de commutateurs à l’accumulateur électrochimique car la déconnexion vis-à-vis de l’extérieur peut être assurée par un relai en sortie du module d’alimentation. Ce relai peut être inclus dans le module ou être disposé juste à sa sortie. Ce montage permet de se dispenser de circuit de précharge et de contacteurs internes entre le pont de commutateurs et l’accumulateur électrochimique. Les circuits de précharge sont des dispositifs utilisés dans l’art antérieur et nécessaires pour gérer la recharge des capacités d’un équipement lorsqu’il a été déconnecté d’un accumulateur électrochimique. Ces circuits de précharge sont ici supprimés puisque, au sein d’un module, l’accumulateur est en permanence connecté à son pont de commutateurs. Un dispositif de précharge ne sera nécessaire que lors de la première connexion de l’onduleur muni de son condensateur de filtrage au dispositif de stockage où lors de phase de maintenance nécessitant de déconnecter ces deux parties. Un tel dispositif de précharge est alors un outillage de montage en usine et pour les opérations de maintenance et non plus un dispositif intégré au véhicule. Furthermore, the invention makes it possible to directly connect the switch bridge to the electrochemical accumulator because the disconnection vis-à-vis the outside can be provided by a relay output of the power module. This relay can be included in the module or be arranged just at its output. This arrangement makes it possible to dispense with the precharging circuit and internal contactors between the switch bridge and the electrochemical accumulator. Preloading circuits are devices used in the prior art and necessary for managing the recharging of the capabilities of a device when it has been disconnected from an electrochemical accumulator. These precharging circuits are here suppressed since, within a module, the accumulator is permanently connected to its switch bridge. A precharging device will only be needed when the inverter first connects its filter capacitor to the storage device or, in a maintenance phase, disconnects these two parts. Such a precharging device is then a factory mounting tool and for maintenance operations and no longer a device integrated in the vehicle.
Le module d’alimentation peut comporter les caractéristiques additionnelles suivantes, seules ou en combinaison : The power supply module may have the following additional features, alone or in combination:
- le pont de commutateurs est directement raccordé à l’accumulateur électrochimique ; the switch bridge is directly connected to the electrochemical accumulator;
- l’ensemble de bobines est directement raccordé au pont de commutateurs ; the set of coils is directly connected to the switch bridge;
- le module d’alimentation comporte en outre, entre l’ensemble de bobines et le bornier d’alimentation du moteur, un étage capacitif de filtrage ; - The power supply module further comprises, between the set of coils and the power supply terminal of the motor, a capacitive filtering stage;
- le module d’alimentation comporte en outre, entre l’ensemble de bobines et le bornier d’alimentation du moteur, au moins un relai comportant un contact de relai pour chaque connexion de sortie du bornier d’alimentation du moteur ; - The power supply module further comprises, between the set of coils and the power supply terminal of the motor, at least one relay having a relay contact for each output connection of the power supply terminal of the motor;
- le pont de commutateurs est réversible en étant adapté à commander aussi bien la charge que la décharge de l’accumulateur électrochimique ; the switch bridge is reversible while being adapted to control both the charge and the discharge of the electrochemical accumulator;
- chaque bobine de l’ensemble de bobines est raccordée au point milieu d’un bras du pont de commutateurs. - Each coil of the coil assembly is connected to the midpoint of an arm of the switch bridge.
Le pack d’alimentation peut comporter les caractéristiques additionnelles suivantes, seules ou en combinaison : The power pack may have the following additional features, alone or in combination:
- le pack d’alimentation comporte un commutateur de charge relié d’une part au bus d’alimentation et relié d’autre part à au moins un terminal de charge pour le branchement sur un réseau électrique ; - The power pack comprises a load switch connected on the one hand to the power bus and connected on the other hand to at least one load terminal for connection to an electrical network;
- le pack d’alimentation comporte un module de synchronisation externe raccordé au bus de synchronisation et commandant, à partir de la commutation des ponts, la synchronisation des tensions et/ou du courant qui sont fournis ou absorbés par chaque module ; - alternativement, l’un des modules est déclaré comme module maitre commandant, à partir de la commutation des ponts, la synchronisation des tensions et/ou du courant qui sont fournis ou absorbés par chaque module ; - The power pack includes an external synchronization module connected to the synchronization bus and controlling, from the switching of the bridges, the synchronization of voltages and / or current that are provided or absorbed by each module; alternatively, one of the modules is declared as the master module, from the switching of the bridges, the synchronization of the voltages and / or the current that are provided or absorbed by each module;
- les modules sont synchronisés de sorte que le pack d’alimentation délivre une tension sinusoïdale de commande de moteur ; the modules are synchronized so that the power pack delivers a sinusoidal motor control voltage;
- les modules sont synchronisés pour que seulement certains des modules délivrent une tension sinusoïdale de commande de moteur ; the modules are synchronized so that only some of the modules deliver a sinusoidal motor control voltage;
- les modules sont synchronisés pour que des modules délivrent une tension sinusoïdale de commande de moteur et pour que l’accumulateur électrochimique de l’un seulement des modules soit déchargé au maximum ; the modules are synchronized so that modules deliver a sinusoidal motor control voltage and for the electrochemical accumulator of only one of the modules to be discharged to the maximum;
- le pack d’alimentation comporte en outre un système de gestion de batteries dont les indicateurs sont recalés lorsque l’accumulateur électrochimique de l’un seulement des modules est déchargé au maximum ; - The power pack further comprises a battery management system whose indicators are reset when the electrochemical accumulator of only one of the modules is discharged to the maximum;
- les modules sont synchronisés pour qu’un des modules procède à un équilibrage intercellulaire de son accumulateur électrochimique, en étant alimenté par au moins un autre module ; the modules are synchronized so that one of the modules performs an intercellular balancing of its electrochemical accumulator, powered by at least one other module;
- les modules sont synchronisés de sorte qu’ils rechargent séquentiellement leur accumulateur électrochimique respectif. the modules are synchronized so that they reload sequentially their respective electrochemical accumulator.
Un exemple préféré de réalisation de l’invention va maintenant être décrit en référence aux dessins annexés dans lesquels : A preferred embodiment of the invention will now be described with reference to the accompanying drawings in which:
- la figure 1 représente des modules d’alimentation d’un véhicule, selon l’invention ; FIG. 1 represents power supply modules of a vehicle, according to the invention;
- la figure 2 illustre les tensions délivrées au moteur dans le montage de la figure 1 dans le cas où les tensions lissées sont parfaitement sinusoïdales ; - la figure 3 est une variante de la figure 1 ; FIG. 2 illustrates the voltages delivered to the motor in the assembly of FIG. 1 in the case where the smoothed voltages are perfectly sinusoidal; FIG. 3 is a variant of FIG. 1;
- la figure 4 illustre une variante pour les modules d’alimentation de la figureFIG. 4 illustrates a variant for the power supply modules of FIG.
1 ; 1;
- les figures 5 et 6 représentent des exemples de l’étage de filtrage de la figure 1 ; - la figure 7 représente un dispositif d’échange thermique pour les modules de la figure 1 ; FIGS. 5 and 6 show examples of the filtering stage of FIG. 1; FIG. 7 represents a heat exchange device for the modules of FIG. 1;
- la figure 8 est une variante du dispositif d’échange thermique de la figure 7. FIG. 8 is a variant of the heat exchange device of FIG. 7.
La figure 1 illustre un mode de réalisation visant un véhicule électrique qui comporte un moteur de propulsion 1 et, selon le présent exemple, trois modules d’alimentation 2A, 2B, 2C permettant l’alimentation électrique du moteur 1. Selon ce mode de réalisation, les modules 2A, 2B, 2C sont identiques et leurs éléments constitutifs seront désignés par les mêmes numéros sur les figures. FIG. 1 illustrates an embodiment for an electric vehicle which comprises a propulsion motor 1 and, according to the present example, three power supply modules 2A, 2B, 2C allowing the power supply of the motor 1. According to this embodiment , the modules 2A, 2B, 2C are identical and their constituent elements will be designated by the same numbers in the figures.
Bien que seuls trois modules 2A, 2B, 2C soient représentés sur la figure 1 , le moteur 1 peut être alimenté par un pack d’alimentation comportant un nombre quelconque de ces modules. Although only three modules 2A, 2B, 2C are shown in FIG. 1, the motor 1 can be powered by a power pack comprising any number of these modules.
Les modules d’alimentation 2A, 2B, 2C comportent chacun un accumulateur électrochimique 3 constitué, dans le présent exemple par des batteries lithium-ion. L’ensemble des batteries 3 de tous les modules 2A, 2B, 2C constitue la capacité en stockage d’énergie électrique permettant au véhicule électrique de se déplacer en autonomie. The power supply modules 2A, 2B, 2C each comprise an electrochemical accumulator 3 constituted in this example by lithium-ion batteries. The set of batteries 3 of all the modules 2A, 2B, 2C constitutes the storage capacity of electrical energy allowing the electric vehicle to move independently.
Le véhicule électrique comporte un premier terminal de charge 5 monophasé et un deuxième terminal de charge 6 triphasé. Ces terminaux de charge 5, 6 permettent la charge de la batterie 3 de chaque module 2A, 2B, 2C et peuvent être constitués chacun d’une fiche électrique permettant le branchement du véhicule électrique au réseau monophasé domestique ou à un réseau triphasé plus puissant. The electric vehicle comprises a first single-phase charging terminal and a second three-phase charging terminal. These charging terminals 5, 6 allow the charging of the battery 3 of each module 2A, 2B, 2C and may each consist of an electrical plug for connecting the electric vehicle to the domestic single-phase network or a more powerful three-phase network.
Le véhicule électrique comporte un bus d’alimentation 4 sur lequel est raccordé, directement ou indirectement, chaque module 2A, 2B, 2C et sur lequel sont raccordés les premier 5 et deuxième 6 terminaux de connexion via un commutateur de charge 7. Le commutateur de charge 7 peut être automatique ou manuel et permet de sélectionner laquelle, de la fiche monophasée 5 ou triphasée 6, sera utilisée pour la charge des batteries 3 en fonction des réseaux disponibles pour l’utilisateur au lieu où le véhicule se trouve. The electric vehicle comprises a power supply bus 4 to which each module 2A, 2B, 2C is connected, directly or indirectly, and to which the first 5 and second 6 connection terminals are connected via a charging switch 7. load 7 can be automatic or manual and can select which of the single-phase plug 5 or three-phase 6, will be used for charging the batteries 3 according to the networks available to the user at the place where the vehicle is.
Dans le présent exemple, le moteur 1 est un classique moteur triphasé. Le bus d’alimentation 4 est donc adapté à ce moteur 1 et comporte, en suivant cet exemple, trois conducteurs adaptés à délivrer au moteur 1 une alimentation alternative triphasée dont le courant, la tension, et/ou la fréquence sera pilotée en fonction de la conduite du véhicule. En variante, le moteur 1 peut être d’une quelconque technologie nécessitant une alimentation alternative, et peut comporter un nombre quelconque de pôles, et le nombre de conducteurs du bus d’alimentation 4 sera alors adapté au nombre de conducteurs nécessaires pour l’alimentation du moteur 1. In the present example, the motor 1 is a conventional three-phase motor. The power bus 4 is therefore adapted to this motor 1 and comprises, following this example, three conductors adapted to deliver to the motor 1 an AC power supply. three-phase whose current, voltage, and / or frequency will be controlled according to the driving of the vehicle. Alternatively, the motor 1 may be of any technology requiring an AC power supply, and may have any number of poles, and the number of conductors of the power bus 4 will then be adapted to the number of conductors required for power of the engine 1.
Les modules 2A, 2B, 2C comportent chacun un bornier 8 d’alimentation du moteur 1. L’ensemble des modules 2A, 2B, 2C assurent conjointement l’alimentation électrique du moteur 1 par leur bornier 8 d’alimentation du moteur. Chaque bornier 8 d’alimentation du moteur 1 comporte trois connexions de sortie 20, 21 , 22, une pour chaque conducteur du bus d’alimentation 4. Ces connexions de sortie 20, 21 , 22 sont reliées aux conducteurs du bus d’alimentation 4 par l’intermédiaire d’un étage 9 de filtrage à condensateurs (prévus pour assurer la compatibilité électromagnétique) et d’un relai 10 comportant un contact de relai pour chaque connexion de sortie 20, 21 , 22, le relai 10 étant ainsi adapté à connecter ou déconnecter les connexions de sortie au bus d’alimentation 4. The modules 2A, 2B, 2C each comprise a power supply terminal block 8 of the motor 1. The set of modules 2A, 2B, 2C jointly supply power to the motor 1 by their terminal block 8 of the motor. Each terminal block 8 for supplying the motor 1 has three output connections 20, 21, 22, one for each conductor of the supply bus 4. These output connections 20, 21, 22 are connected to the conductors of the power bus 4 via a capacitor filtering stage 9 (provided to ensure electromagnetic compatibility) and a relay 10 having a relay contact for each output connection 20, 21, 22, the relay 10 being thus adapted to connect or disconnect the output connections to the power bus 4.
En interne, le bornier 8 d’alimentation d’un module 2A, 2B, 2C est relié à un pont 13 de commutateurs. Chaque connexion de sortie du bornier 8 d’alimentation est reliée à un bras 14A, 14B, 14C du pont 13 de commutateurs, chaque bras 14A, 14B, 14C comportant deux commutateurs. Les commutateurs du pont 13 sont par exemple des transistors de puissance tels que des transistors à grille métal-oxyde (« MOS »). Internally, the terminal block 8 of a module 2A, 2B, 2C is connected to a bridge 13 of switches. Each output terminal of the power terminal block 8 is connected to an arm 14A, 14B, 14C of the bridge 13 of switches, each arm 14A, 14B, 14C having two switches. The switches of the bridge 13 are, for example, power transistors such as metal-oxide gate ("MOS") transistors.
Tous les commutateurs d’un pont 13 de commutateurs sont pilotés par un dispositif de commande constitué, dans le présent exemple, d’un microcontrôleur 15 associé à un circuit de commande 16 de grille (« gâte driver » en anglais). All the switches of a bridge 13 of switches are controlled by a control device consisting, in the present example, of a microcontroller 15 associated with a control circuit 16 gate ("gaste driver" in English).
Dans chaque module 2A, 2B, 2C, une bobine 17 est disposée entre chaque bras 14A, 14B, 14C du pont 13 de commutateurs et la connexion de sortie correspondante du bornier 8 d’alimentation. Chaque connexion de sortie du bornier 8 est donc relative à un bras 14A, 14B, 14C du pont 13 et sa bobine 17. Plus précisément, chaque bobine 17 est raccordée au point milieu d’un bras du pont 13 de commutateurs. In each module 2A, 2B, 2C, a coil 17 is disposed between each arm 14A, 14B, 14C of the bridge 13 of switches and the corresponding output connection of the terminal block 8 of supply. Each output connection of the terminal block 8 is therefore relative to an arm 14A, 14B, 14C of the bridge 13 and its coil 17. More specifically, each coil 17 is connected to the midpoint of an arm of the bridge 13 of switches.
Le nombre de bras d’un pont 14 de commutateurs est égal : au nombre de pôles du moteur 1 ; au nombre de conducteurs du bus d’alimentation 4 ; et au nombre de bobines 17. Les modules 2A, 2B, 2C de cet exemple incluent de plus une capacité 25 de filtrage classique mise en parallèle de la batterie 3. The number of arms of a bridge 14 of switches is equal to: the number of poles of the motor 1; the number of drivers of the power bus 4; and the number of coils 17. The modules 2A, 2B, 2C of this example further include a conventional filtering capacitor paralleling the battery 3.
Le moteur 1 est quant à lui relié au bus d’alimentation 4 par l’intermédiaire d’un relai 12 comportant des contact permettant de connecter ou déconnecter chaque conducteur d’alimentation du moteur à un conducteur respectif du bus d’alimentation 4. The motor 1 is in turn connected to the power bus 4 via a relay 12 having contacts for connecting or disconnecting each motor supply conductor to a respective conductor of the power bus 4.
Le pilotage de relais 10 et 12 permet d’obtenir toutes les combinaisons possibles de raccordement, via le bus d’alimentation 4, des modules 2A, 2B, 2C, du moteur 1 , et des terminaux de charge 5, 6. Les combinaisons exploitées ici sont les suivantes : The relay control 10 and 12 makes it possible to obtain all the possible combinations of connection, via the power bus 4, of the modules 2A, 2B, 2C, of the motor 1, and of the charging terminals 5, 6. The exploited combinations here are the following:
- ouverture du relai 12 et fermeture de tous les relais 10 : tous les modules 2A, 2B, 2C sont reliés à un terminal de charge 5, 6 (phase de charge conjointe de tous les modules) ; - Opening relay 12 and closing all relays 10: all modules 2A, 2B, 2C are connected to a charging terminal 5, 6 (joint charging phase of all modules);
- ouverture du relai 12 et fermeture du relai 10 d’au moins un module, tandis que le relai 10 d’au moins un autre module est maintenu ouvert : seuls certains modules 2A, 2B, 2C sont reliés à un terminal de charge 5, 6 (phase de charge mais seulement des modules connectés) ; - Opening relay 12 and closing the relay 10 of at least one module, while the relay 10 of at least one other module is kept open: only some modules 2A, 2B, 2C are connected to a charging terminal 5, 6 (charging phase but only connected modules);
- fermeture du relai 12 et fermeture du relai 10 d’au moins un module, tandis que le relai 10 d’au moins un autre module est maintenu ouvert (les terminaux de charge 5, 6 étant déconnectés du réseau électrique) : seuls certains modules 2A, 2B, 2C sont reliés au moteur 1 (phase de roulage avec seulement les modules connectés qui alimentent le moteur 1 ) ; - Closing the relay 12 and closing the relay 10 of at least one module, while the relay 10 of at least one other module is kept open (the charging terminals 5, 6 are disconnected from the power grid): only certain modules 2A, 2B, 2C are connected to the motor 1 (driving phase with only the connected modules which supply the motor 1);
- fermeture du relai 12 et fermeture de tous les relais 10 : tous les modules 2A, 2B, 2C sont reliés au moteur 1 (phase de roulage avec tous les modules qui alimentent le moteur 1 ). - Closing relay 12 and closing all relays 10: all modules 2A, 2B, 2C are connected to the motor 1 (driving phase with all the modules that supply the motor 1).
Les bobines 17 des modules 2A, 2B, 2C et les étages de filtrage 9 permettent aux modules 2A, 2B, 2C de délivrer au moteur, pour l’alimentation de ce dernier, une tension lissée adaptée aux bobinages des moteurs, classiquement il s’agit d’une tension sinusoïdale lissée. Le pilotage des commutateurs du pont 13 est donc réalisé en vue de fournir une telle tension sinusoïdale lissée dont l’amplitude et la fréquence correspondent à ce qu’il faut fournir au moteur 1 pour répondre à la demande du conducteur. Les modules 2A, 2B, 2C comportent de plus une sortie de synchronisation 11 reliée au circuit de commande des commutateurs du pont 13, et reliée plus précisément ici au microcontrôleur 15. Les sorties de synchronisation 11 de tous les modules 2A, 2B, 2C sont reliées à un bus de synchronisation 18. Cette synchronisation peut être matériellement réalisée grâce à un module de synchronisation externe (non représenté) et également relié au bus de synchronisation 18. Chaque module 2A, 2B, 2C comporte alors une commande rapprochée constituée par le microcontrôleur 15 et le circuit de commande de grille 16, tandis que le système dans son ensemble comporte une commande d’un niveau au-dessus (le module de synchronisation externe) dédiée à la synchronisation des modules pour fournir des tensions ou fournir ou absorber des courants de même fréquence et de même phase.. The coils 17 of the modules 2A, 2B, 2C and the filtering stages 9 allow the modules 2A, 2B, 2C to deliver to the motor, for the supply of the latter, a smoothed voltage adapted to the coils of the motors, conventionally it is is a smoothed sinusoidal voltage. The steering of the switches of the bridge 13 is therefore performed to provide such a smooth sinusoidal voltage whose amplitude and frequency correspond to what must be supplied to the engine 1 to meet the driver's demand. The modules 2A, 2B, 2C furthermore comprise a synchronization output 11 connected to the control circuit of the switches of the bridge 13, and more precisely connected here to the microcontroller 15. The synchronization outputs 11 of all the modules 2A, 2B, 2C are connected to a synchronization bus 18. This synchronization can be physically achieved by an external synchronization module (not shown) and also connected to the synchronization bus 18. Each module 2A, 2B, 2C then comprises a close control constituted by the microcontroller 15 and the gate control circuit 16, while the system as a whole comprises a control of a level above (the external synchronization module) dedicated to the synchronization of the modules to provide voltages or supply or absorb currents of the same frequency and the same phase.
En variante, dans l’exemple illustré, la synchronisation des commutations des ponts 13 est réalisée en prévoyant une architecture maitre-esclave pour les modules 2A, 2B, 2C dans laquelle l’un des modules est déclaré « maître », de sorte que les autres modules, déclarés comme « esclaves », se synchronisent sur ce module maître à partir des informations que ce dernier met à disposition sur le bus de synchronisation. As a variant, in the example illustrated, the synchronization of the switching operations of the bridges 13 is carried out by providing a master-slave architecture for the modules 2A, 2B, 2C in which one of the modules is declared "master", so that the other modules, declared as "slaves", synchronize themselves on this master module on the basis of the information that the latter makes available on the synchronization bus.
L’architecture modulaire qui vient d’être décrite fonctionne de la manière indiquée ci-après. The modular architecture just described operates as follows.
Chaque module d’alimentation 2A, 2B, 2C comporte un boîtier 23 (schématisé en pointillés sur la figure 1 ) muni d’un ensemble de connexions externes. Ces connexions externes comportent notamment le bornier 8 d’alimentation du moteur 1 et comportent la sortie de synchronisation 11. Chaque module est un sous-ensemble physiquement séparable du reste de l’architecture. Un dispositif, par exemple de type « rack », peut être prévu pour faciliter l’insertion et le retrait des modules d’alimentation 2, en recevant et maintenant mécaniquement le module 2A, 2B, 2C et en présentant des connexions mâle-femelle propres aux connexions de son bornier 8 et de sa sortie de synchronisation 11. Each power supply module 2A, 2B, 2C comprises a housing 23 (schematized in dashed lines in FIG. 1) provided with a set of external connections. These external connections comprise in particular the power supply terminal block 8 of the motor 1 and comprise the synchronization output 11. Each module is a subset physically separable from the rest of the architecture. A device, for example of the "rack" type, can be provided to facilitate insertion and removal of the power supply modules 2, by receiving and maintaining the module 2A, 2B, 2C mechanically and by presenting clean male-female connections. to the connections of its terminal block 8 and of its synchronization output 11.
Un véhicule électrique ainsi équipé peut recevoir, branché sur le bus d’alimentation 4 et sur le bus de synchronisation. 18, un ensemble de modules d’alimentation 2A, 2B, 2C dont le nombre est adapté à la puissance de traction du moteur 1 et à l’autonomie recherchée pour le véhicule. Les modules 2, mêmes s’ils répondent à la description fonctionnelle exposée précédemment, ne sont pas forcément identiques. Ils peuvent présenter notamment des capacités de batterie 3 différentes ou des puissances fournies différentes. L’architecture modulaire fournit des packs batteries-convertisseurs permettant le couplage de batteries hétérogènes en tension, technologies, capacités, etc. Les modules d’alimentation 2, se présentant sous la forme de boiter 23, comme des briques élémentaires, peuvent être assemblées en fonction de critères aussi variés que le besoin en énergie du véhicule, les modules disponibles, ou le coût de l’ensemble. L’ensemble peut évoluer dans le temps par l’addition, la suppression, ou le remplacement de modules d’alimentation au cours du temps. An electric vehicle thus equipped can receive, connected to the power bus 4 and the synchronization bus. 18, a set of power supply modules 2A, 2B, 2C whose number is adapted to the traction power of the engine 1 and the desired range for the vehicle. The modules 2, even if they correspond to the functional description previously described, are not necessarily identical. They may in particular have different battery capacities 3 or powers provided different. The modular architecture provides battery-converter packs allowing the coupling of heterogeneous batteries in voltage, technologies, capacities, etc. The power modules 2, in the form of limp 23, as elementary bricks, can be assembled according to criteria as varied as the energy requirement of the vehicle, the available modules, or the cost of the assembly. The set can evolve over time by the addition, deletion, or replacement of power modules over time.
Lorsqu’un véhicule électrique équipés des modules d’alimentation 2A, 2B, 2C est en configuration de charge de batteries, les relais 10 des modules à charger sont fermés, le relai 12 du moteur est ouvert, et l’un des terminaux de charge 5, 6 est branché sur le réseau électrique. La tension du réseau électrique est alors disponible pour chaque module 2A, 2B, 2C sur le bus d’alimentation 4. Chacun des modules 2A, 2B, 2C peut donc, indépendamment, piloter son pont 13 en redresseur pour absorber un courant classiquement sinusoïdal pour recharger sa batterie 3. L’absorption d’un courant sinusoïdal à partir de la source d’énergie est classiquement nécessaire pour respecter les contraintes normatives sur les harmoniques réseaux. When an electric vehicle equipped with power supply modules 2A, 2B, 2C is in the battery charging configuration, the relays 10 of the modules to be loaded are closed, the relay 12 of the motor is open, and one of the charging terminals 5, 6 is connected to the mains. The voltage of the electrical network is then available for each module 2A, 2B, 2C on the power supply bus 4. Each of the modules 2A, 2B, 2C can thus, independently, drive its bridge 13 in a rectifier to absorb a classically sinusoidal current for recharging the battery 3. The absorption of a sinusoidal current from the energy source is conventionally necessary to respect the normative constraints on the network harmonics.
Le fonctionnement en phase de charge étant élévateur, il est nécessaire que la tension de la batterie soit, à tout instant, supérieure à la tension fournie par le réseau. Cette contrainte peut être respectée par un dimensionnement avec une plage de tension autorisée pour la batterie qui est toujours supérieure à la valeur crête de la tension réseau dans toute sa plage de variation. Since the charging phase operation is an elevator operation, it is necessary for the battery voltage to be higher than the voltage supplied by the network at all times. This constraint can be respected by a dimensioning with a permitted voltage range for the battery which is always greater than the peak value of the mains voltage throughout its variation range.
En phase de charge, le moteur 1 n’est pas connecté à la source d’énergie puisque le relai 12 est ouvert. Les capacités parasites du moteur ne donnent alors pas lieu à un courant de fuite traversant le disjoncteur différentiel de l’installation. En phase de charge (c’est-à-dire à nouveau connecteur en position charge batterie et pas fonctionnement moteur, mais sans pour autant charger la batterie), les modules peuvent aussi fournir de l’énergie active ou réactive au réseau pendant une partie de la durée de la phase de charge, si de telles fonctions de soutien au réseau sont souhaitées. En plus de la charge simultanée de tous les modules, diverses autres stratégies de charge peuvent être implémentées grâce au bus de synchronisation. Par exemple : In the charging phase, the motor 1 is not connected to the energy source since the relay 12 is open. The parasitic capacitances of the motor do not give rise to a leakage current passing through the differential circuit breaker of the installation. In charging phase (that is to say, new connector battery charge position and not engine operation, but without charging the battery), the modules can also provide active or reactive energy to the network during a game the duration of the charging phase, if such network support functions are desired. In addition to the simultaneous charging of all modules, various other load strategies can be implemented through the synchronization bus. For example :
- les modules peuvent être chargés séquentiellement, éventuellement dans un ordre précis, ce qui permet de s’adapter à la puissance de charge disponible ou de garantir le non déclenchement de l’interrupteur différentiel lorsque le véhicule est branché sur un réseau électrique domestique. Le fonctionnement séquentiel de la charge des modules permet de n’appliquer entre les phases et la masse que les condensateurs d’un module et non les condensateurs de tous les modules. Le courant sur le câblage de terre pouvant faire disjoncter le disjoncteur différentiel de l’installation est réduit d’autant ; - The modules can be loaded sequentially, possibly in a specific order, which allows to adapt to the available charging power or to ensure the non-tripping of the differential switch when the vehicle is connected to a domestic electrical network. The sequential operation of the load of the modules makes it possible to apply between the phases and the mass only the capacitors of a module and not the capacitors of all the modules. The current on the earth wiring that can trip the differential circuit breaker of the installation is reduced by the same amount;
- un module déterminé est chargé au maximum et ensuite seulement tous les autres modules sont chargés simultanément ; a given module is loaded to the maximum and then only all the other modules are loaded simultaneously;
- seulement certains modules sont chargés et d’autres non ; - certains modules sont partiellement chargés, par exemple à 50 % de leur capacité, tandis que d’autres modules sont chargés au maximum. - only some modules are loaded and others are not; - Some modules are partially loaded, for example at 50% of their capacity, while other modules are loaded to the maximum.
Par ailleurs, lorsqu’un véhicule électrique équipés des modules d’alimentation 2A, 2B, 2C est en configuration de roulage, les relais 10 des modules à charger sont fermés, le relai 12 du moteur est également fermé, et les terminaux de charge 5, 6 sont débranchés du réseau électrique. Les modules 2A, 2B, 2C vont donc alimenter électriquement, via le bus d’alimentation 4, le moteur 1 pour la propulsion du véhicule électrique. On the other hand, when an electric vehicle equipped with power supply modules 2A, 2B, 2C is in a rolling configuration, the relays 10 of the modules to be loaded are closed, the relay 12 of the motor is also closed, and the charging terminals 5 , 6 are disconnected from the power grid. The modules 2A, 2B, 2C will thus feed electrically, via the power supply bus 4, the motor 1 for the propulsion of the electric vehicle.
De même que précédemment, différentes stratégies d’alimentation du moteur 1 peuvent être prévues. Par exemple : - tous les modules alimentent simultanément le moteur ; As before, different strategies for supplying the motor 1 can be provided. For example: - all modules simultaneously power the motor;
- seulement certains modules alimentent conjointement le moteur ; - only some modules jointly power the engine;
- les modules alimentent le moteur un par un, séquentiellement (éventuellement dans un ordre déterminé), de sorte que lorsqu’un module est déchargé, le module suivant prend le relai ; - tous les modules dont la charge est au-dessus d’un seuil prédéterminé (par exemple 10 % de leur capacité) alimentent le moteur, et lorsqu’un module passe en dessous de ce seuil, il n’alimente plus le moteur (son relais 10 peut alors être ouvert) ; - The modules feed the motor one by one, sequentially (possibly in a specific order), so that when a module is unloaded, the next module takes the relay; - all the modules whose load is above a predetermined threshold (for example 10% of their capacity) supply the motor, and when a module passes below this threshold, it no longer powers the motor (its relay 10 can then be opened);
- certains modules sont gardés comme réserve : ils n’alimentent pas le moteur en temps normal et deviennent opérationnel seulement lorsque tous les autres modules sont déchargés ; - some modules are kept as a reserve: they do not feed the engine in normal times and become operational only when all the other modules are unloaded;
- l’un des modules (ou chacun des modules, séquentiellement) est déchargé au maximum pour recaler les indicateurs. En effet, un système de gestion de batterie est souvent associé aux batteries 3, ce système comportant des indicateurs comme l’état de charge d’une batterie ou comme l’état de santé qui correspond au pourcentage entre la capacité réelle de la batterie et sa capacité initiale. Ces indicateurs nécessitent périodiquement une décharge complète de la batterie pour recaler leur zéro, c’est-à-dire pour réaliser une tare. Or, les véhicules électriques sont rarement complètement déchargés et certaines batteries peuvent être mises en charge régulièrement sans jamais être complètement déchargées ce qui conduit à des indicateurs flottants et perdant, dans le temps, leur référence initiale. Cette mesure permet au contraire de décharger complètement un module, de tarer les indicateurs liés à la batterie, tout en assurant, en sécurité, la traction du véhicule par les autres modules d’alimentation ; one of the modules (or each of the modules, sequentially) is unloaded as much as possible to reset the indicators. Indeed, a battery management system is often associated with the batteries 3, this system comprising indicators such as the state of charge of a battery or the state of health which corresponds to the percentage between the actual capacity of the battery and its initial capacity. These indicators periodically require a complete discharge of the battery to reset their zero, that is to say to achieve a tare. However, electric vehicles are rarely completely discharged and some batteries can be loaded regularly without ever being completely discharged which leads to floating indicators and losing, in time, their initial reference. This measurement makes it possible, on the contrary, to completely discharge a module, to tare the indicators linked to the battery, while ensuring, in safety, the traction of the vehicle by the other power supply modules;
- les modules peuvent coopérer pour que l’un procède à un équilibrage intercellulaire de sa batterie, grâce à l’alimentation en tension continue d’au moins un autre module. Il n’est donc plus nécessaire d’attendre une phase de charge pour procéder à l’équilibrage intercellulaire d’un module. En effet, certaines batteries peuvent nécessiter une telle opération d’équilibrage intercellulaire au cours de laquelle la batterie (normalement en phase de charge) procède à l’équilibrage des cellules la constituant sous une tension de charge. the modules can cooperate so that one carries out an intercellular balancing of its battery, thanks to the DC voltage supply of at least one other module. It is therefore no longer necessary to wait for a charging phase to proceed with the intercell balancing of a module. Indeed, some batteries may require such an intercellular balancing operation during which the battery (normally in the charging phase) balances the cells constituting it under a charging voltage.
Optionnellement, un module 2A, 2B, 2C peut également inclure un système de gestion de batterie pour son accumulateur électrochimique. Les indicateurs du système de gestion de batterie peuvent être recalés comme indiqué ci-dessus. Optionally, a module 2A, 2B, 2C may also include a battery management system for its electrochemical accumulator. The battery management system indicators can be recalibrated as shown above.
Lorsque plusieurs modules 2A, 2B, 2C alimentent simultanément le moteur 1 , une synchronisation des tensions fournies est prévue pour que le moteur reçoive une forme de tension adaptée à ce qu’il doit fournir pour la traction du véhicule. Par exemple, l’enfoncement de la pédale d’accélérateur du véhicule se traduit par une demande de couple à fournir par le moteur 1. Dans ce cas, plutôt que de fournir, comme il est courant dans l’art antérieur, une tension hachée dont les largeurs d’impulsion vont être revues à la hausse, le système selon l’invention va fournir au moteur une tension sinusoïdale lissée dont les caractéristiques en tension, fréquence et phase vont être adaptées à cette demande de couple. When several modules 2A, 2B, 2C simultaneously power the motor 1, a synchronization of the voltages provided is provided for the motor to receive a form of voltage adapted to what it must provide for the traction of the vehicle. For example, depressing the accelerator pedal of the vehicle results in a torque request to be provided by the motor 1. In this case, rather than providing, as is common in the prior art, a chopped voltage whose pulse widths will be revised upwards, the system according to the The invention will provide the motor a smoothed sinusoidal voltage whose characteristics in voltage, frequency and phase will be adapted to this torque demand.
La figure 2 illustre schématiquement les profils que peuvent avoir les tensions fournies au moteur 1. La figure 2 comporte trois courbes 24A, 24B, 24C relatives aux trois conducteurs alimentant le moteur 1 (et relatives donc aux trois conducteurs du bus d’alimentation 4). Chacune de ces courbes 24A, 24B, 24C représente la tension fournie par deux de ces conducteurs. Chacune de ces courbes 24A, 24B, 24C a une forme proche d’une sinusoïde. Son profil peut néanmoins être crénelé mais il se rapproche toujours de la forme générale d’une sinusoïde ce qui illustre que la commande du moteur n’est pas réalisée par un hachage (tel qu’une modulation de largeur d’impulsions) mais est réalisée par une modulation des caractéristiques des sinusoïdes telles que l’amplitude, la fréquence et le déphasage entre les sinusoïdes. FIG. 2 schematically illustrates the profiles that the voltages supplied to the motor 1 can have. FIG. 2 comprises three curves 24A, 24B, 24C relating to the three conductors supplying the motor 1 (and thus relating to the three conductors of the power bus 4). . Each of these curves 24A, 24B, 24C represents the voltage provided by two of these conductors. Each of these curves 24A, 24B, 24C has a shape close to a sinusoid. Its profile can nevertheless be crenellated but it is still close to the general shape of a sinusoid which illustrates that the motor control is not performed by a hash (such as a pulse width modulation) but is achieved by a modulation of the characteristics of the sinusoids such as the amplitude, the frequency and the phase shift between the sinusoids.
La forme de ces sinusoïdes résulte de la superposition des tensions fournies par l’ensemble des modules 2A, 2B, 2C opérationnels. Bien que ces tensions soient produites par commutations du pont 13, elles sont lissées par la présence de la bobine 17. Cette présence de la bobine 17 est primordiale car elle permet la réalisation pratique de la synchronisation des modules 2A, 2B, 2C. En effet, si les modules devaient se synchroniser dans une échelle de temps compatible avec la commutation du pont 13 (autrement dit, si les commutateurs du pont 13 de différents modules devaient commuter simultanément), la synchronisation serait difficile et coûteuse à réaliser. Selon l’invention, l’échelle de temps permise pour la synchronisation des modules est bien plus importante grâce à la bobine. La production d’une courbe de tension lissée permet un certain décalage entre les commutations des ponts 13 des divers modules, ce qui n’empêche pas une courbe résultante se rapprochant d’une sinusoïde. The shape of these sinusoids results from the superposition of the voltages provided by all the operational modules 2A, 2B, 2C. Although these voltages are produced by commutations of the bridge 13, they are smoothed by the presence of the coil 17. This presence of the coil 17 is essential because it allows the practical realization of the synchronization of the modules 2A, 2B, 2C. Indeed, if the modules were to synchronize in a time scale compatible with the switching of the bridge 13 (that is, if the switches of the bridge 13 of different modules were to switch simultaneously), synchronization would be difficult and expensive to achieve. According to the invention, the time scale allowed for the synchronization of the modules is much greater thanks to the coil. The production of a smoothed voltage curve allows a certain shift between the switching of the bridges 13 of the various modules, which does not prevent a resultant curve approaching a sinusoid.
Ainsi, que la synchronisation soit réalisée à partir d’un module de synchronisation externe ou à partir du module d’alimentation déclaré maître (dans une architecture maitre-esclave), ce module peut mettre à disposition sur le bus de synchronisation 18 des informations telles qu’un top de synchronisation, ainsi que l’amplitude et la fréquence de la tension à fournir. Ces différentes informations peuvent par exemple être fournies par un réseau numérique de type CAN. Tous les autres modules d’alimentation commutent ensuite leur pont 13 respectif pour atteindre ce même résultat, sans synchroniser précisément les commutations de chaque commutateur. Alternativement, le module maître (ou un module de synchronisation externe) peut aussi mettre à disposition sur le bus de synchronisation 18 une consigne de forme de tension à obtenir et, de même, les autres modules d’alimentation fournissent cette forme d’onde comme un résultat, sans présager des commutations nécessaires à l’obtention de ce résultat. Des modules d’alimentation hétérogènes en matière d’électroniques de commutation peuvent ainsi être employés ensembles dans le même véhicule. Thus, whether the synchronization is carried out from an external synchronization module or from the power supply declared master (in a master-slave architecture), this module can make available on the bus of synchronization 18 information such as a sync top, as well as the amplitude and frequency of the voltage to be supplied. These different pieces of information may for example be provided by a digital network of the CAN type. All the other power modules then switch their respective bridge 13 to achieve the same result, without precisely synchronizing the switching of each switch. Alternatively, the master module (or an external synchronization module) can also make available on the synchronization bus 18 a voltage form setpoint to obtain and, likewise, the other power supply modules provide this waveform as a result, without predicting the commutations necessary to obtain this result. Heterogeneous power supply modules for switching electronics can thus be used together in the same vehicle.
Dans un mode de réalisation particulièrement avantageux, les commutateurs des ponts 13 sont réalisés par des transistors de puissance à grille métal-oxyde à carbure de silicium (« MOS SiC ») qui sont des semi-conducteurs à grand gap, c’est à dire à large bande interdite. Ces transistors commutent plus vite que les transistors de puissance classiques tels que des MOSFET et permettent ainsi de produire, par les modules d’alimentation, des tensions à des fréquences plus élevées ce qui permet l’emploi de bobines 17 de plus faible valeur. In a particularly advantageous embodiment, the switches of the bridges 13 are made by silicon carbide metal oxide-oxide ("MOS SiC") power transistors which are large-gap semiconductors, that is to say wide bandgap. These transistors switch faster than conventional power transistors such as MOSFETs and thus make it possible to produce, by the power supply modules, voltages at higher frequencies, which allows the use of coils 17 of lower value.
Dans le présent exemple, les bobines 17 peuvent avoir une valeur d’inductance de 10 à 100 mH. In the present example, the coils 17 may have an inductance value of 10 to 100 mH.
Dans l’art antérieur, l’augmentation des fréquences de commutation à des niveaux permis par les transistors de puissance MOS SiC induit des difficultés liées à la compatibilité électromagnétique lors de l’alimentation du moteur par une tension hachée à de telles fréquences. Selon l’invention, les hautes fréquences de commutation ne génèrent pas de difficultés sur ce plan car chaque module ne fournit qu’une tension sinusoïdale n’induisant pas de problèmes de compatibilité électromagnétique. La compatibilité électromagnétique n’est à traiter qu’au sein de chaque module d’alimentation, dans un périmètre limité avec les capacités parasites soumises aux fronts de commutation réduites, grâce à l’étage de filtrage 9, qui peut être de plus intégré au module d’alimentation. La figure 3 illustre une forme alternative à la réalisation de la figure 1 : le relai 12 du moteur est remplacé par un commutateur 37 comportant des contacts à trois voies permettant au bus de synchronisation 4 d’être relié soit au commutateur de charge 7, soit au moteur 1. Cette forme alternative permet les mêmes fonctions que celles décrites pour la figure 1. In the prior art, the increase of the switching frequencies to levels allowed by the SiC MOS power transistors induces difficulties related to the electromagnetic compatibility during the supply of the motor by a chopped voltage at such frequencies. According to the invention, the high switching frequencies do not generate difficulties in this respect because each module provides only a sinusoidal voltage that does not induce electromagnetic compatibility problems. The electromagnetic compatibility is to be processed only within each power module, in a limited perimeter with parasitic capacitances subjected to reduced switching fronts, thanks to the filtering stage 9, which can be further integrated into the power module. FIG. 3 illustrates an alternative form to the embodiment of FIG. 1: the relay 12 of the motor is replaced by a switch 37 comprising three-way contacts enabling the synchronization bus 4 to be connected either to the load switch 7 or 1. This alternative form allows the same functions as those described for FIG.
La figure 4 illustre quant à elle une variante pour les modules d’alimentation de l’exemple de la figure 1. Selon cette variante, tous les modules, ou certains d’entre eux, peuvent intégrer dans leur boîtier 23 l’étage de filtrage 9 et/ou le relai 10. Les modules d’alimentation 2A, 2B, 2C intègrent alors ces fonctions supplémentaires et le bornier 8 est donc situé après le relai 10. L’architecture du côté du véhicule électrique est ainsi simplifiée. FIG. 4 illustrates a variant for the power supply modules of the example of FIG. 1. According to this variant, all the modules, or some of them, can integrate in their housing 23 the filtering stage 9 and / or the relay 10. The power supply modules 2A, 2B, 2C then integrate these additional functions and the terminal block 8 is located after the relay 10. The architecture of the electric vehicle side is thus simplified.
Les figures 5 et 6 illustrent des modes de réalisation de l’étage de filtrage 9 pour un module d’alimentation 2A, 2B, 2C. Figures 5 and 6 illustrate embodiments of the filter stage 9 for a power supply module 2A, 2B, 2C.
Sur la figure 5, seul le pont 13 et les bobines 17 d’un module d’alimentation ont été représentés pour simplifier la figure. L’étage de filtrage 9 est ici réalisé par trois condensateurs 26 placés chacun entre deux bobines 17, ainsi que par trois condensateurs 27 disposés chacun entre une bobine 17 et la masse. In Figure 5, only the bridge 13 and the coils 17 of a power supply module have been shown to simplify the figure. The filtering stage 9 is here made by three capacitors 26 placed each between two coils 17, as well as by three capacitors 27 each disposed between a coil 17 and the ground.
La figure 6 représente un étage de filtrage supplémentaire qui peut être placé en série avec l’étage de filtrage de la figure 5. Cet étage de filtrage assure un filtrage de mode commun et de mode différentiel grâce à trois bobines 28 associées à trois condensateurs 29 montés en étoile et un condensateur 39 reliant le point milieu de l’étoile à la masse. FIG. 6 represents an additional filtering stage that can be placed in series with the filtering stage of FIG. 5. This filtering stage provides a common mode and differential mode filtering thanks to three coils 28 associated with three capacitors. star-shaped and a capacitor 39 connecting the midpoint of the star to ground.
En référence aux figures 7 et 8, tous les modules, ou certains d’entre eux, peuvent être munis d’un dispositif de transfert thermique entre l’accumulateur électrochimique et le pont de commutateurs. With reference to FIGS. 7 and 8, all the modules, or some of them, may be provided with a thermal transfer device between the electrochemical accumulator and the switch bridge.
La figure 7 illustre un module d’alimentation 2A identique à ceux de l’exemple de la figure 1 , muni d’un tel dispositif de transfert thermique. Le module 2A est de préférence isolé de l’extérieur grâce à un isolant thermique 30 associé au boîtier 23. Le boîtier 23 forme une enceinte étanche contenant tous les éléments du module 2A. Le volume interne délimité par cette enceinte étanche est rempli d’un fluide diélectrique caloporteur 34. Des dispositifs de type presse-étoupe sont prévus pour permettre les sorties électriques, notamment le bornier 8 et la sortie de synchronisation 11. La batterie 3, les commutateurs du pont 13 de commutateurs, et les bobines 17 sont donc baignés dans le fluide diélectrique 34, ce qui permet un échange thermique entre la batterie 3 et les autres composants du module 2A. Dans cet exemple, la circulation du fluide diélectrique 34 est passive et se déroule par convection. En variante, un dispositif mécanique peut être employé pour créer une circulation du fluide dans le boîtier 23. FIG. 7 illustrates a supply module 2A identical to those of the example of FIG. 1, provided with such a thermal transfer device. The module 2A is preferably isolated from the outside by a thermal insulation 30 associated with the housing 23. The housing 23 forms a sealed enclosure containing all the elements of the module 2A. The internal volume delimited by this sealed enclosure is filled with a heat-transfer dielectric fluid 34. Gland-type devices are provided to enable the electrical outputs, in particular the terminal block 8 and the synchronization output 11. The battery 3, the switches of the bridge 13 of switches, and the coils 17 are thus immersed in the dielectric fluid 34, which allows a heat exchange between the battery 3 and the other components of module 2A. In this example, the circulation of the dielectric fluid 34 is passive and proceeds by convection. Alternatively, a mechanical device may be employed to create a flow of fluid in the housing 23.
La figure 8 illustre un deuxième mode de réalisation du dispositif de transfert thermique. L’illustration reprend certains éléments de l’exemple de la figure 7, avec la même numérotation. Selon ce deuxième mode de réalisation, la batterie 3 est disposée dans une première enceinte étanche 31 et le pont 13 de commutateurs est disposé dans une deuxième enceinte étanche 32. L’enceinte 31 comporte un isolant thermique 30 pour maintenir la batterie en température. Optionnellement, l’enceinte 32 et/ou le boîtier 23 comportent également un isolant thermique 30. Les enceintes étanches 31 , 32 communiquent par un premier canal 33 et un deuxième canal 35. Le volume délimité par les enceintes étanches 31 , 32 et les canaux 33, 35 est rempli d’un fluide diélectrique caloporteur 34. Une pompe 36 est disposée dans le premier canal 33 pour faire circuler le fluide diélectrique 34 entre l’enceinte 31 et l’enceinte 32. Le passage des conducteurs électriques est assuré par des dispositifs de type presse-étoupe prévus ici sur le boiter 23 et les enceintes 31 , 32. La batterie 3 et les commutateurs du pont 13 de commutateurs sont donc baignés dans le fluide diélectrique 34, ce qui permet un échange thermique entre la batterie 3 et le pont 13. Figure 8 illustrates a second embodiment of the thermal transfer device. The illustration shows some elements of the example of Figure 7, with the same numbering. According to this second embodiment, the battery 3 is disposed in a first sealed enclosure 31 and the bridge 13 of switches is disposed in a second sealed enclosure 32. The enclosure 31 comprises a thermal insulator 30 to maintain the battery temperature. Optionally, the enclosure 32 and / or the housing 23 also comprise a thermal insulation 30. The sealed enclosures 31, 32 communicate via a first channel 33 and a second channel 35. The volume delimited by the sealed enclosures 31, 32 and the channels 33, 35 is filled with a coolant dielectric fluid 34. A pump 36 is disposed in the first channel 33 to circulate the dielectric fluid 34 between the enclosure 31 and the enclosure 32. The passage of the electrical conductors is provided by gland-type devices provided here on the box 23 and the enclosures 31, 32. The battery 3 and the switches 13 of the bridge switches are therefore immersed in the dielectric fluid 34, which allows a heat exchange between the battery 3 and the bridge 13.
Dans les deux modes de réalisation relatifs aux figures 7 et 8, la batterie 3 est en contact thermique avec des composants soumis à des pertes thermiques significatives (transistors de puissance et/ou bobines). In the two embodiments relating to FIGS. 7 and 8, the battery 3 is in thermal contact with components subjected to significant heat losses (power transistors and / or coils).
Dans le cas où les commutateurs du pont 13 sont réalisés par des transistors de puissance à grille métal-oxyde à carbure de silicium, comme décrit précédemment, les bobines 17 peuvent être de dimension réduite et seront donc plus facilement intégrées, avec leur éventuel noyau magnétique par exemple à base de ferrite ou de matériaux amorphes, dans l’enceinte contenant le fluide caloporteur 34 comme dans le mode de réalisation de la figure 7, pour y être complètement immergées. In the case where the switches of the bridge 13 are made by silicon carbide metal-oxide gate power transistors, as described previously, the coils 17 may be of reduced size and will therefore be more easily integrated, with their possible magnetic core. for example based on ferrite or amorphous materials, in the enclosure containing the coolant 34 as in the embodiment of Figure 7, to be completely immersed.
Les isolants thermiques 30 servent à minimiser les échanges thermiques avec l’extérieur et obtenir une constante de temps thermique qui permettre de maintenir les accumulateurs à des températures optimales grâce aux pertes dégagées par l’électronique de puissance lors des phases de roulage et de charge. Thermal insulators 30 serve to minimize heat exchange with the outside and to obtain a thermal time constant which makes it possible to maintain Accumulators at optimum temperatures thanks to the losses generated by the power electronics during the driving and charging phases.
La charge de la batterie peut s’effectuer sans ventilation (et donc sans le bruit associé), la chaleur dégagée étant simplement stockée sous forme de chaleur sensible par une élévation de la température de l’accumulateur électrochimique 3. C’est seulement si la température de l’accumulateur électrochimique 3 devient trop élevée qu’un refroidissement externe sera nécessaire. The charge of the battery can be carried out without ventilation (and therefore without the associated noise), the heat released being simply stored in the form of sensible heat by raising the temperature of the electrochemical accumulator 3. Only if the The temperature of the electrochemical accumulator 3 becomes too high that external cooling will be necessary.
Dans le cas des modules conformes à la figure 4, l’étage de filtrage 9 et le relai 10 du module sont avantageusement baignés également dans le fluide diélectrique 34. In the case of the modules according to FIG. 4, the filter stage 9 and the relay 10 of the module are advantageously bathed also in the dielectric fluid 34.
De manière préférée, le fluide diélectrique 34 est un substitut d’huile minérale diélectrique à base d’ester. Ce type de produit associe une très bonne tenue diélectrique avec une biodégradabilité élevée et est difficilement inflammable. In a preferred manner, the dielectric fluid 34 is a substitute for ester-based dielectric mineral oil. This type of product combines a very good dielectric strength with high biodegradability and is difficult to ignite.
L’immersion de la batterie 3, surtout lorsqu’elle est de type lithium-ion, dans le fluide diélectrique 34 augmente la sécurité du fait du transfert thermique amélioré qui limite la montée en température et peut empêcher l’atteinte d’un seuil critique en température provoquant l’emballement de l’accumulateur. The immersion of the battery 3, especially when it is of the lithium-ion type, in the dielectric fluid 34 increases the safety due to the improved heat transfer which limits the rise in temperature and can prevent the reaching of a critical threshold in temperature causing runaway of the accumulator.
Optionnellement, le module d’alimentation peut comporter une connexion hydraulique externe comportant par exemple une entrée 38A et une sortie 38B (représentée à la figure 8) permettant une circulation du fluide diélectrique avec l’extérieur du module 2A. Pour les véhicules, et plus particulièrement pour les véhicules volants, qui nécessitent une recharge rapide tout en conservant le conditionnement en température de la batterie, les modules d’alimentation ne nécessitent pas de refroidissement de la batterie pendant le roulage ou le vol. En conséquence, selon un mode de réalisation, les modules d’alimentation 2A, 2B, 2C ne sont pas refroidis durant l’alimentation du moteur 1. La charge rapide est ensuite réalisée avec un refroidissement puissant de la batterie et de l’onduleur par circulation externe au véhicule ou à l’aéronef du fluide diélectrique 34, le fluide étant refroidi, grâce à la connexion hydraulique 38A, 38B, par exemple par un échangeur externe (non représenté), par la station de charge, ou en étant remplacé par une autre quantité de fluide à une température choisie. Les terminaux de charge 5, 6 peuvent alors assurer, en plus des contacts électriques, les connexions hydrauliques pour la circulation du fluide. Le fluide diélectrique peut dans ce cas être utilisé aussi pour refroidir les câbles électriques et les connexions associées. Dans un pack d’alimentation comportant des modules 2A, 2B, 2C et les terminaux de charge 5, 6, la connexion hydraulique externe 38A, 38B peut ainsi être associée aux terminaux de charge 5, 6, et le fluide diélectrique 34 baigne alors également les terminaux de charge 5, 6. L’utilisateur branche dans ce cas une seule fiche sur la station de charge, cette fiche comportant les terminaux de charge 5, 6 ainsi que l’entrée 38A et la sortie 38B de la connexion hydraulique externe. Optionally, the power supply module may comprise an external hydraulic connection comprising, for example, an input 38A and an output 38B (shown in FIG. 8) allowing a flow of the dielectric fluid with the outside of the module 2A. For vehicles, and more particularly for flying vehicles, which require fast charging while maintaining the temperature conditioning of the battery, the power modules do not require cooling of the battery during taxi or flight. Accordingly, according to one embodiment, the power supply modules 2A, 2B, 2C are not cooled during the power supply of the motor 1. The fast charge is then performed with a powerful cooling of the battery and the inverter by external circulation to the vehicle or to the aircraft of the dielectric fluid 34, the fluid being cooled, by means of the hydraulic connection 38A, 38B, for example by an external exchanger (not shown), by the charging station, or by being replaced by another amount of fluid at a selected temperature. The charging terminals 5, 6 can then provide, in addition to electrical contacts, the hydraulic connections for the circulation of the fluid. The dielectric fluid can in this case also be used to cool the electric cables and associated connections. In a power pack comprising modules 2A, 2B, 2C and charging terminals 5, 6, the external hydraulic connection 38A, 38B can thus be associated with the charging terminals 5, 6, and the dielectric fluid 34 is then also immersed. charging terminals 5, 6. In this case the user plugs a single plug on the charging station, this plug comprising the charging terminals 5, 6 and the input 38A and the output 38B of the external hydraulic connection.
Optionnellement, le dispositif de transfert thermique peut comporter un système d’arrêt du transfert thermique qui peut être utilisé lorsque la température de la batterie est déjà proche de la limite haute de sa plage de température optimale et qu’il n’est donc pas opportun de la chauffer. Ce système d’arrêt du transfert thermique peut être constitué par exemple d’une vanne disposée sur l’un des canaux 33, 35 associée éventuellement à une conduite de dérivation (non représentés). Optionally, the thermal transfer device may include a thermal transfer stopping system that can be used when the temperature of the battery is already near the upper limit of its optimum temperature range and is therefore not appropriate to heat it. This thermal transfer stop system may consist for example of a valve disposed on one of the channels 33, 35 possibly associated with a bypass line (not shown).
La connexion hydraulique externe 38A, 38B permet également de faire circuler le même fluide diélectrique 34 dans plusieurs modules d’alimentation 2A, 2B, 2C, de sorte à mutualiser le fluide diélectrique 34 pour plusieurs modules. The external hydraulic connection 38A, 38B also makes it possible to circulate the same dielectric fluid 34 in several supply modules 2A, 2B, 2C, so as to pool the dielectric fluid 34 for several modules.
Dans le cadre de l’invention, il est choisi d’utiliser les pertes des ponts 13 de commutateurs pour réchauffer ou maintenir en température les accumulateurs électrochimiques par temps froid, et d’utiliser la capacité calorifique des accumulateurs électrochimiques comme stockage thermique des pertes des ponts 13 de commutateurs. Le refroidissement des ponts 13 et des accumulateurs électrochimiques 3 est mutualisé. L’inertie thermique de la batterie 3 est utilisée pour stocker les calories correspondant aux pertes de l’électronique de puissance. In the context of the invention, it is chosen to use the losses of the switch bridges 13 to heat or keep the electrochemical accumulators in temperature in cold weather, and to use the heat capacity of the electrochemical accumulators as thermal storage of the losses of the electrochemical accumulators. 13 bridges of switches. The cooling of the bridges 13 and the electrochemical accumulators 3 is shared. The thermal inertia of the battery 3 is used to store the calories corresponding to the losses of the power electronics.
Selon un mode de réalisation, la stratégie d’alimentation électrique du moteur peut être prévue, grâce au bus de synchronisation, pour que l’un des modules 2A, 2B, 2C soit mis à contribution pour, non pas alimenter le moteur 1 comme les autres modules, mais pour dissiper de la puissance réactive afin de chauffer le fluide diélectrique 34. Ceci permet d’augmenter économiquement la température de la batterie 3 lorsque la température ambiante est faible (en hiver). According to one embodiment, the power supply strategy of the motor can be provided, thanks to the synchronization bus, so that one of the modules 2A, 2B, 2C is used to, not to feed the motor 1 as the other modules, but to dissipate the reactive power to heat the dielectric fluid 34. This allows to increase economically the temperature of the battery 3 when the ambient temperature is low (in winter).
Les modules d’alimentation 2A, 2B, 2C peuvent de plus avoir une deuxième vie après une première vie dans un véhicule électrique. Lorsque, par exemple, un véhicule électrique est détruit ou que des module d’alimentation 2A, 2B, 2C ne sont plus assez performants pour ce véhicule (par vieillissement de la batterie 3), les modules d’alimentation 2A, 2B, 2C concernés peuvent ensuite être réutilisés dans d’autres véhicules ou, par exemple pour des applications stationnaires, moins exigeantes. Les modules d’alimentation 2A, 2B, 2C peuvent, au cours de cette seconde vie, être assemblés selon une architecture modulaire dont chaque brique comporte son propre accumulateur d’énergie et son convertisseur (le pont 13) avec son électronique de pilotage lui permettant de fonctionner comme un onduleur délivrant une tension alternative. The power supply modules 2A, 2B, 2C can also have a second life after a first life in an electric vehicle. When, for example, an electric vehicle is destroyed or power supply modules 2A, 2B, 2C are no longer sufficiently powerful for this vehicle (aging of the battery 3), the supply modules 2A, 2B, 2C concerned can then be reused in other vehicles or, for example for stationary applications, less demanding. The power supply modules 2A, 2B, 2C can, during this second life, be assembled according to a modular architecture of which each brick has its own energy accumulator and its converter (the bridge 13) with its control electronics allowing it to function as an inverter delivering an alternating voltage.
D’autres variantes de réalisation du peuvent être mises en œuvre sans sortir du cadre de l’invention. Par exemple, le moteur 1 peut être un ensemble de plusieurs moteurs. L’architecture peut comporter plusieurs moteurs alimentés chacun par plusieurs modules grâce à des relais. Other embodiments of the implementation can be implemented without departing from the scope of the invention. For example, the engine 1 may be a set of several engines. The architecture can comprise several motors each powered by several modules through relays.

Claims

REVENDICATIONS
1. Module d’alimentation (2A, 2B, 2C) pour moteur (1 ) de véhicule électrique, caractérisé en ce qu’il comporte : - un accumulateur électrochimique (3) ; 1. Power supply module (2A, 2B, 2C) for an electric vehicle engine (1), characterized in that it comprises: an electrochemical accumulator (3);
- un pont (13) de commutateurs raccordé à l’accumulateur électrochimiquea bridge (13) of switches connected to the electrochemical accumulator
(3) ; (3);
- un boîtier (23) renfermant les éléments du module d’alimentation ; a housing (23) enclosing the elements of the power supply module;
- un dispositif de transfert thermique entre l’accumulateur électrochimique (3) et le pont (13) de commutateurs, ce dispositif de transfert thermique étant disposé dans le boîtier (23). - A thermal transfer device between the electrochemical accumulator (3) and the bridge (13) of switches, the thermal transfer device being disposed in the housing (23).
2. Module d’alimentation selon la revendication 1 , caractérisé en ce que le dispositif de transfert thermique comporte au moins une enceinte étanche (23, 31 , 32) dans laquelle est contenu un fluide diélectrique (34) qui baigne l’accumulateur électrochimique (3) et le pont (13) de commutateurs. 2. Power supply module according to claim 1, characterized in that the heat transfer device comprises at least one sealed enclosure (23, 31, 32) in which a dielectric fluid (34) is present which bathes the electrochemical accumulator ( 3) and the bridge (13) of switches.
3. Module d’alimentation selon la revendication 2, caractérisé en ce qu’il comporte un ensemble de bobines (17) raccordées au pont (13) de commutateurs, ces bobines (17) étant également baignées dans le fluide diélectrique (34). 3. Power supply module according to claim 2, characterized in that it comprises a set of coils (17) connected to the bridge (13) of switches, these coils (17) being also bathed in the dielectric fluid (34).
4. Module d’alimentation selon la revendication 2 ou 3, caractérisé en ce que le boîtier (23) forme ladite enceinte étanche. 4. Power supply module according to claim 2 or 3, characterized in that the housing (23) forms said sealed enclosure.
5. Module d’alimentation selon la revendication 2 ou 3, caractérisé en ce que ladite enceinte étanche comporte une enceinte étanche (31 ) disposée autour de l’accumulateur électrochimique (3). 5. Power supply module according to claim 2 or 3, characterized in that said sealed enclosure comprises a sealed enclosure (31) disposed around the electrochemical accumulator (3).
6. Module d’alimentation selon la revendication 5, caractérisé en ce que ladite enceinte étanche comporte une enceinte étanche (32) disposée autour du pont6. Power supply module according to claim 5, characterized in that said sealed enclosure comprises a sealed enclosure (32) arranged around the bridge
(13) de commutateurs et communiquant avec l’enceinte étanche (31 ) disposée autour de l’accumulateur électrochimique (3). (13) switches and communicating with the sealed enclosure (31) disposed around the electrochemical accumulator (3).
7. Module d’alimentation selon la revendication 6, caractérisé en ce qu’il comporte un dispositif (36) pour la circulation du fluide diélectrique (34). 7. Power supply module according to claim 6, characterized in that it comprises a device (36) for the circulation of the dielectric fluid (34).
8. Module d’alimentation selon l'une quelconque des revendications 5 à 7, caractérisé en ce que l’enceinte étanche (31 ) disposée autour de l’accumulateur électrochimique (3) comporte un isolant thermique (30). 8. Power supply module according to any one of claims 5 to 7, characterized in that the sealed enclosure (31) disposed around the electrochemical accumulator (3) comprises a thermal insulator (30).
9. Module d’alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce qu’il comporte un système d’arrêt du transfert thermique. 9. Power supply module according to any one of the preceding claims, characterized in that it comprises a thermal transfer stop system.
10. Module d’alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce que le pont (13) de commutateurs est réversible en étant adapté à commander aussi bien la charge que la décharge de l’accumulateur électrochimique (3). 10. Power supply module according to any one of the preceding claims, characterized in that the bridge (13) of switches is reversible being adapted to control both the load and the discharge of the electrochemical accumulator (3).
11. Module d’alimentation selon l'une quelconque des revendications précédentes, caractérisé en ce qu’il comporte une connexion hydraulique externe (38A, 38B) permettant l’échange thermique avec d’autres éléments du véhicule. 11. Power module according to any one of the preceding claims, characterized in that it comprises an external hydraulic connection (38A, 38B) for the heat exchange with other elements of the vehicle.
12. Module d’alimentation selon la revendication 11 , caractérisé en ce que la connexion hydraulique externe (38A, 38B) est reliée à un dispositif de refroidissement. 12. Power supply module according to claim 11, characterized in that the external hydraulic connection (38A, 38B) is connected to a cooling device.
13. Pack d’alimentation pour véhicule électrique, caractérisé en ce qu’il comporte une pluralité de modules (2A, 2B, 2C) selon l’une des revendications 11 et 12 et en ce que le fluide diélectrique (34) circule d’un module à l’autre par la connexion hydraulique externe (38A, 38B) de chaque module. 13. Power pack for electric vehicle, characterized in that it comprises a plurality of modules (2A, 2B, 2C) according to one of claims 11 and 12 and in that the dielectric fluid (34) flows from a module to the other by the external hydraulic connection (38A, 38B) of each module.
14. Pack d’alimentation selon la revendication 13, caractérisé en ce que l’un des modules (2A, 2B, 2C) est adapté à chauffer le fluide. 14. Power pack according to claim 13, characterized in that one of the modules (2A, 2B, 2C) is adapted to heat the fluid.
15. Pack d’alimentation selon l’une des revendications 12 à 14, caractérisé en ce que les modules d’alimentation (2A, 2B, 2C) ne sont pas refroidis durant l’alimentation du moteur (1 ). 15. Power pack according to one of claims 12 to 14, characterized in that the power modules (2A, 2B, 2C) are not cooled during the power supply of the motor (1).
16. Pack d’alimentation selon l’une des revendications 12 à 15, caractérisé en ce qu’il comporte au moins un terminal de charge (5, 6) permettant de relier le pack à un réseau électrique, la connexion hydraulique externe (38A, 38B) étant associée au terminal de charge (5, 6), et en ce que le fluide diélectrique (34) baigne également le terminal de charge (5, 6). 16. Pack of power according to one of claims 12 to 15, characterized in that it comprises at least one load terminal (5, 6) for connecting the pack to an electrical network, the external hydraulic connection (38A , 38B) being associated with the charging terminal (5, 6), and in that the dielectric fluid (34) also bathes the charging terminal (5, 6).
PCT/FR2019/050435 2018-02-27 2019-02-26 Power supply module for electric vehicle motor with heat transfer WO2019166732A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851745 2018-02-27
FR1851745A FR3078455B1 (en) 2018-02-27 2018-02-27 POWER SUPPLY MODULE FOR ELECTRIC VEHICLE ENGINE, WITH THERMAL TRANSFER

Publications (2)

Publication Number Publication Date
WO2019166732A2 true WO2019166732A2 (en) 2019-09-06
WO2019166732A3 WO2019166732A3 (en) 2020-01-16

Family

ID=63014627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050435 WO2019166732A2 (en) 2018-02-27 2019-02-26 Power supply module for electric vehicle motor with heat transfer

Country Status (2)

Country Link
FR (1) FR3078455B1 (en)
WO (1) WO2019166732A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112245A1 (en) * 2020-07-03 2022-01-07 Renault S.A.S. Electrical module for forming an electrical interface of an energy storage system of a motor vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553824A1 (en) 1992-01-31 1993-08-04 Fuji Electric Co., Ltd. Electric system for electric vehicle
FR2738411A1 (en) 1995-08-30 1997-03-07 Renault MIXED ELECTRIC POWER SUPPLY SYSTEM INVERTER AND CONTINUOUS-CONTINUOUS CONVERTER
FR2946473A1 (en) 2009-06-09 2010-12-10 Renault Sas RECHARGEABLE ELECTROMOTING ASSEMBLY FROM AN ELECTRICAL NETWORK, AND DEDICATED CONNECTION HOUSING.

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3044975B2 (en) * 1992-12-10 2000-05-22 トヨタ自動車株式会社 Battery heating device for electric vehicles
US7210304B2 (en) * 2005-02-09 2007-05-01 General Motors Corporation Cooling arrangements for integrated electric motor-inverters
JP2011050197A (en) * 2009-08-28 2011-03-10 Hitachi Ltd Power converter
DE102010014752A1 (en) * 2010-04-13 2010-11-11 Daimler Ag Cooling arrangement for e.g. hybrid electric vehicle, has two exhaust gas releasing devices connected in series or parallel to cooling circuit, and coupling elements for connecting electric energy storage to cooling circuit
US8574734B2 (en) * 2010-06-30 2013-11-05 Nissan North America, Inc. Vehicle battery temperature control system containing heating device and method
US9379419B2 (en) * 2013-05-13 2016-06-28 The Boeing Company Active thermal management and thermal runaway prevention for high energy density lithium ion battery packs
TWM472953U (en) * 2013-05-22 2014-02-21 Csb Battery Co Ltd Wet battery pack
US10674641B2 (en) * 2016-04-04 2020-06-02 Hamilton Sundstrand Corporation Immersion cooling systems and methods
JP6607137B2 (en) * 2016-04-21 2019-11-20 株式会社デンソー Power storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553824A1 (en) 1992-01-31 1993-08-04 Fuji Electric Co., Ltd. Electric system for electric vehicle
FR2738411A1 (en) 1995-08-30 1997-03-07 Renault MIXED ELECTRIC POWER SUPPLY SYSTEM INVERTER AND CONTINUOUS-CONTINUOUS CONVERTER
FR2946473A1 (en) 2009-06-09 2010-12-10 Renault Sas RECHARGEABLE ELECTROMOTING ASSEMBLY FROM AN ELECTRICAL NETWORK, AND DEDICATED CONNECTION HOUSING.

Also Published As

Publication number Publication date
WO2019166732A3 (en) 2020-01-16
FR3078455A1 (en) 2019-08-30
FR3078455B1 (en) 2021-01-15

Similar Documents

Publication Publication Date Title
EP3758969B1 (en) Supply module for electric vehicle motor
EP2659567B1 (en) Module for converting voltage between a high-voltage electrical network of an aircraft and an energy storage element
EP2695279B1 (en) Charge transfer device and associated management method
EP2781001B1 (en) Dc power supply including electrochemical cells with adaptable voltage level
EP2831977B1 (en) Method and system for supplying electrical power to a hybrid motor vehicle having dual electrical power storage
EP0734111A2 (en) High voltage photovoltaic energy station using a custom storage means
FR2997583A1 (en) POWER SUPPLY SYSTEM WITH DOUBLE STORAGE OF ELECTRIC ENERGY OF A MOTOR VEHICLE OR HYBRID
WO2018193173A1 (en) Battery with cell group and conversion module assemblies, for supplying various voltages and carrying out various charging operations
EP3389175B1 (en) Conversion device, associated control method and vehicle
EP2061116A1 (en) Improvement in the field of energy storage elements
WO2019166732A2 (en) Power supply module for electric vehicle motor with heat transfer
WO2010063913A2 (en) Electrical power supply device, and equipment for controlling breaker that includes such device
SE1350667A1 (en) Intrinsic overload protection for battery cell
EP4038716B1 (en) Electric charger for aeronautical maintenance equipment
WO2020244758A1 (en) Rechargeable electrical energy storage device and system, vehicle and facility provided with such a system
FR3082683A1 (en) BIDIRECTIONAL CONVERTER FOR ELECTRIC OR HYBRID VEHICLE
EP3342747B1 (en) Supply structure for a forklift truck
WO2024003005A1 (en) Power supply module with loopback and two outputs
WO2023131755A1 (en) Dc-to-dc converter for an electrical aircraft propulsion system
FR3037733A1 (en) ELECTRICAL POWER SUPPLY NETWORK FOR THE EQUIPMENT OF A MOTOR VEHICLE WITH DOUBLE SUB-ARRAYS AND USE THEREOF
EP2144322A2 (en) Pack of rechargeable accumulators with electronic controlling circuits
FR2936221A1 (en) On-board electrical distribution system for distributing electric power to airplane, has supercapacitors associated to load for maintaining power supply of load for duration equal to preset duration during implementation of switching unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19711996

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19711996

Country of ref document: EP

Kind code of ref document: A2