WO2019165808A1 - 一种基于物联网的通信方法及装置 - Google Patents

一种基于物联网的通信方法及装置 Download PDF

Info

Publication number
WO2019165808A1
WO2019165808A1 PCT/CN2018/117524 CN2018117524W WO2019165808A1 WO 2019165808 A1 WO2019165808 A1 WO 2019165808A1 CN 2018117524 W CN2018117524 W CN 2018117524W WO 2019165808 A1 WO2019165808 A1 WO 2019165808A1
Authority
WO
WIPO (PCT)
Prior art keywords
access point
internet
things
data packet
indication information
Prior art date
Application number
PCT/CN2018/117524
Other languages
English (en)
French (fr)
Inventor
郭宇宸
黄晨宇
张黔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019165808A1 publication Critical patent/WO2019165808A1/zh
Priority to US17/007,424 priority Critical patent/US11316630B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y30/00IoT infrastructure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1685Details of the supervisory signal the supervisory signal being transmitted in response to a specific request, e.g. to a polling signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus based on the Internet of Things.
  • IoT Internet of Things
  • IoT devices have been widely used in life and production, such as attaching IoT devices to items, enabling tracking of items, such as baggage monitoring in airports, and monitoring of product lines in factories.
  • the IoT device Since the IoT device is mobile, the IoT device may move out of the signal coverage of the AP after being associated with an access point (AP), thereby disconnecting the AP. The IoT device can then find a new AP by issuing a probe request message, and after receiving the probe response message from the new AP, it can associate with the new AP. However, when the IoT device frequently moves, it is necessary to frequently send a probe request message to switch the associated AP, which consumes a large amount of power and affects the endurance capability of the IoT device.
  • AP access point
  • the embodiment of the present application provides an Internet of Things-based communication method and apparatus for solving the problem of poor endurance capability of frequent moving of an Internet of Things device.
  • an embodiment of the present application provides a method for communication based on an Internet of Things, the method comprising: receiving, by a second access point, a data packet from an Internet of Things device, the data packet carrying an identifier of an access point collaboration set, and then The second access point may send an acknowledgement message to the IoT device; or the second access point sends the data strength of the data packet and the data packet received by the second access point to the first access point.
  • the access point cooperation set includes at least a first access point and a second access point, where the first access point is an access point initially associated with the IoT device.
  • the second access point that belongs to the same collaboration set as the first access point can replace the first access point to reply to the Internet of Things device.
  • a confirmation message, or the second access point can forward the data packet from the IoT device to the first access point, thereby ensuring that the data packet sent during the movement of the IoT device can be processed in time without interruption of data transmission.
  • Phenomenon and after the IoT device removes the coverage of the first access point, it does not need to send a probe request and associate a new access point, which can save signaling overhead and reduce energy consumption of the IoT device, thereby improving the IoT device. Endurance ability.
  • the acknowledgement message may be an ACK message
  • the signal strength of the data packet may be RSSI
  • the second access point before the second access point sends an acknowledgment message to the IoT device, the second access point can receive data packets from other access points in the access point cooperation set and receive by each access point. The signal strength of the incoming packet.
  • the second access point may decrypt the data packet by using a shared key of the collaboration set to which it belongs.
  • the second access point sends an acknowledgment message to the IoT device, which may be implemented as follows: if the second access point determines that the signal strength of the data packet received by the second access point is greater than other The signal strength of the data packet received by the access point, and the second access point sends an acknowledgement message to the IoT device.
  • the second access point sends an acknowledgment message to the IoT device instead of the first access point to avoid the interruption of data transmission, and the second access point can assist the communication between the first access point and the Internet of Things device, the Internet of Things device No need to frequently switch the associated access points, which can reduce energy consumption and improve the endurance of IoT devices.
  • the second access point after the second access point forwards the data strength of the data packet and the data packet received by the second access point to the first access point, the second access point receives the first access Point indication information, the indication information is used to indicate that the second access point returns an acknowledgement message, and then the second access point sends an acknowledgement message to the Internet of Things device.
  • the second access point can assist the first access point to send an acknowledgement message to the Internet of Things device according to the indication information of the first access point, and the IoT device can receive the acknowledgement without being associated with the new access point.
  • the message can avoid the energy consumption generated by frequently switching the access point, and can improve the endurance of the IoT device.
  • the data packet sent by the IoT device to the first access point is forwarded by the second access point, and the first access point may be in the process of initially associating the first access point with the IoT device.
  • the time delay between sending the data packet and receiving the acknowledgement message is set for the IoT device, and the IoT device can be in the sleep state during the time period corresponding to the time delay.
  • the second access point after the second access point receives the data packet from the IoT device, the second access point can receive a block acknowledgment request BAR message from the IoT device.
  • the BAR message carries the indication information, where the indication information is used to indicate the type of the acknowledgment message requested to be acquired, and the type of the acknowledgment message requested to be acquired may be a BA or an ACK.
  • the acknowledgment message is a BA message or an ACK message.
  • an embodiment of the present application provides a communication method based on an Internet of Things, the method comprising: receiving, by a second access point, first indication information from a first access point, where the first indication information is used to indicate access Whether the IoT devices of the point collaboration set service have downlink data to be received, and the second access point sends the first indication information to the IoT device.
  • the access point cooperation set includes at least a first access point and a second access point, where the first access point is an access point initially associated with the IoT device.
  • the IoT device has downlink data to be received, avoiding the problem of data transmission interruption caused by the first access point being unable to directly communicate with the IoT device, and the IoT device does not need to send a probe request and associate a new access point. It can save signaling overhead and reduce the energy consumption of IoT devices, thus improving the endurance of IoT devices.
  • the second access point after the second access point sends the first indication message to the IoT device, the second access point receives the energy-saving polling frame from the IoT device, and then the second access point goes to the first The access point sends the energy-saving polling frame and the signal strength of the energy-saving polling frame received by the second access point, and sends an acknowledgement message to the Internet of Things device.
  • the energy saving polling frame is PS-Poll
  • the signal strength is RSSI
  • the second access point after the second access point sends the energy-saving polling frame to the first access point and the signal strength of the energy-saving polling frame received by the second access point, the second access point receives the The second indication information of the first access point is used to indicate that the second access point sends the downlink data to the Internet of Things device.
  • an embodiment of the present application provides a communication method based on an Internet of Things, the method comprising: receiving, by a first access point, a data packet from each access point in an access point cooperation set, and receiving, by each access point, The signal strength of the data packet; the first access point sends the indication information to the second access point, wherein the indication information is used to indicate that the second access point returns an acknowledgement message to the Internet of Things device.
  • the access point cooperation set includes at least a first access point and a second access point, where the first access point is an access point initially associated with the IoT device.
  • the access point that belongs to the same access point cooperation set as the first access point can forward the object to the first access point.
  • the data packet of the networked device, and the first access point can reply the confirmation message to the IoT device through other access points in the access point cooperation set, thereby ensuring that the data packet sent by the IoT device during the mobile device can be processed in time, There is a phenomenon that the data transmission is interrupted, and the IoT device can save signaling overhead and reduce the energy consumption of the IoT device after removing the coverage of the first access point without sending a probe request and associating a new access point. Thereby improving the endurance of the IoT device.
  • the signal strength of the data packets received by the second access point is greater than the signal strength of the data packets received by other access points in the access point cooperation set.
  • the first access point selects the second access point with the highest signal strength of the data packet received by the access point cooperation set, and assists the first access point to communicate with the Internet of Things device through the second access point. To ensure the quality of service of IoT devices.
  • an embodiment of the present application provides a communication method based on an Internet of Things, the method comprising: when a first access point determines to send downlink data to an IoT device, the first access point to the second access point And transmitting, by the first access point, the downlink information from the access point cooperation set And the first access point sends the second indication information to the second access point, where the second indication information is used to indicate the second connection.
  • the inbound point sends downlink data to the IoT device.
  • the access point cooperation set includes at least a first access point and a second access point, where the first access point is an access point initially associated with the IoT device.
  • the first access point may notify through the second access point.
  • the IoT device has downlink data to be received, avoiding the problem of data transmission interruption caused by the first access point being unable to directly communicate with the IoT device, and the IoT device does not need to send a probe request and associate a new access point. It can save signaling overhead and reduce the energy consumption of IoT devices, thus improving the endurance of IoT devices.
  • the signal strength of the energy-saving polling frame received by the second access point is greater than the signal strength of the data packet received by other access points in the access point cooperation set.
  • an embodiment of the present application provides a communication method based on an Internet of Things, the method comprising: an IoT device transmitting a data packet, the data packet carrying an identifier of an access point cooperation set, and then the IoT device receiving the second connection Confirmation message for the entry point.
  • the access point cooperation set includes at least a first access point and a second access point, where the first access point is an access point initially associated with the IoT device.
  • the IoT device sends a block acknowledgment request BAR message before the IoT device receives the acknowledgment message from the second access point.
  • the BAR message carries the indication information, where the indication information is used to indicate the type of the acknowledgment message requested to be acquired, and the type of the acknowledgment message requested to be acquired may be a BA or an ACK.
  • the acknowledgment message is a BA message or an ACK message.
  • an embodiment of the present application provides a communication method based on an Internet of Things, the method comprising: receiving, by an IoT device, indication information from a second access point, where the indication information is used to indicate each of the access point collaboration set services. Whether the IoT device has downlink data to be received, and then the IoT device sends an energy-saving polling frame according to the service indication information, and the IoT device receives the confirmation message from the second access point.
  • the access point cooperation set includes at least a first access point and a second access point, where the first access point is an access point initially associated with the IoT device.
  • the IoT device After the IoT device removes the coverage of the first access point, it does not need to send a probe request and associate a new access point, and may also receive downlink data sent by the first access point through other access points. It can save signaling overhead, reduce energy consumption of IoT devices, and improve endurance.
  • an embodiment of the present application provides a device, which has a function of implementing a second access point behavior in the foregoing method design.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be a second access point or can be a chip in a second access point.
  • the device is a second access point
  • the second access point includes a processor configured to support the second access point to perform a corresponding function in the above method.
  • the second access point may further include a transmitter and a receiver, and the transmitter and the receiver are configured to support the second access point and the IoT device, the second access point, and other access points in the same collaboration set. Communication between (eg, the first access point).
  • the second access point may further include a memory for coupling with the processor, which stores program instructions and data necessary for the second access point.
  • an embodiment of the present application provides a device, which has a function of implementing a behavior of a first access point in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be the first access point or can be a chip in the first access point.
  • the device is a first access point
  • the first access point includes a processor configured to support the first access point to perform a corresponding function in the above method.
  • the first access point may further include a transmitter and a receiver, where the transmitter and the receiver are configured to support the first access point and the Internet of Things device, the first access point, and other access points in the same collaboration set. Communication between (eg, a second access point).
  • the first access point may further include a memory for coupling with the processor, which stores program instructions and data necessary for the first access point.
  • the embodiment of the present application provides a device, which has the function of implementing the behavior of the Internet of Things device in the design of the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the device can be an IoT device or can be a chip in an IoT device.
  • the device is an IoT device, and the IoT device includes a processor configured to support an IoT device to perform a corresponding function in the above method.
  • the Internet of Things device may further include a transmitter and a receiver for supporting the IoT device with the first access point and the second access point and other cooperation groups belonging to the first access point Communication between access points.
  • the IoT device can also include a memory for coupling with the processor that holds the necessary program instructions and data for the IoT device.
  • the embodiment of the present application provides a communication system, where the system includes the Internet of Things device, the first access point, and the second access point, and optionally, the system may further include The access point and the second access point belong to other access points of the same collaboration set, and the Internet of Things device, the first access point, and the second access point described in the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing the computer software instructions for the second access point, which is configured to perform the foregoing first and second aspects. program.
  • the embodiment of the present application provides a computer storage medium for storing the foregoing computer software instructions for a first access point, which is configured to perform the foregoing third and fourth aspects. program.
  • the embodiment of the present application provides a computer storage medium for storing the computer software instructions used for the foregoing Internet of Things device, which includes a program designed to execute the fifth aspect and the sixth aspect.
  • an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the first and second aspects described above.
  • an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the third and fourth aspects described above.
  • an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the fourth aspect described above.
  • an embodiment of the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of the fifth and sixth aspects described above.
  • an embodiment of the present application provides a chip system, which is applied to a second access point, where the chip system includes at least one processor, a memory, and a transceiver circuit, the memory, the transceiver circuit, and the Said at least one processor interconnected by a line, wherein said at least one memory stores instructions; said instructions being executed by said processor to perform said second access in said method of said first aspect and said second aspect Point operation.
  • an embodiment of the present application provides a chip system, which is applied to a first access point, where the chip system includes at least one processor, a memory, and a transceiver circuit, the memory, the transceiver circuit, and the Said at least one processor interconnected by a line, wherein said at least one memory stores instructions; said instructions being executed by said processor to perform said first access in said method of said third aspect and said fourth aspect Point operation.
  • an embodiment of the present application provides a chip system for use in an Internet of Things device, the chip system including at least one processor, a memory and a transceiver circuit, the memory, the transceiver circuit, and the at least A processor is interconnected by a line, and the at least one memory stores instructions; the instructions are executed by the processor to perform the operations of the Internet of Things device in the methods of the fifth and sixth aspects described above.
  • the object-based communication method provided by the embodiment of the present application may replace the second access point that belongs to the same collaboration set as the first access point after the IoT device moves out of the coverage of the initially associated first access point.
  • the first access point returns an acknowledgement message to the IoT device, or the second access point can forward the data packet from the IoT device to the first access point, thereby ensuring that the data packet sent by the IoT device during the mobile device can be timely
  • there is no interruption of data transmission and after the IoT device moves out of the coverage of the first access point, there is no need to send a probe request and associate a new access point, which can save signaling overhead and reduce IoT devices. Energy consumption, thereby improving the endurance of IoT devices.
  • FIG. 1 is a schematic diagram of a possible network architecture provided by an embodiment of the present application
  • FIG. 2 is an exemplary schematic diagram of a structure of a Preamble according to an embodiment of the present application
  • FIG. 3 is an exemplary schematic diagram of an implementation scenario provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for communication based on an Internet of Things according to an embodiment of the present application
  • FIG. 5 is an exemplary schematic diagram of a frame structure of a BAR according to an embodiment of the present application.
  • FIG. 6 is an exemplary schematic diagram of a specific field in a BAR frame structure according to an embodiment of the present application.
  • FIG. 7 is a flowchart of another method for communication based on the Internet of Things according to an embodiment of the present application.
  • FIG. 8 is an exemplary schematic diagram of another implementation scenario provided by an embodiment of the present application.
  • FIG. 9 is a flowchart of another Internet of Things-based communication method according to an embodiment of the present application.
  • FIG. 10 is a flowchart of another method for communication based on the Internet of Things according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an access point according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another apparatus according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of an Internet of Things device according to an embodiment of the present application.
  • Embodiments of the present application may be applied to an Internet of Things-based communication system including an access point cooperation set and an access point cooperation set service IoT device, and the access point cooperation set includes at least two access points.
  • the access point cooperation set serves at least one IoT device.
  • FIG. 1 shows a schematic diagram of a possible communication system of the present application, wherein AP1, AP2 and AP3 belong to the same access point cooperation set.
  • the Internet of Things station (IoT STA) 1 is the IoT device associated with AP1 within the coverage of AP1.
  • the IoT STA2 is within the coverage of AP2 and is the IoT device associated with AP2.
  • each AP can communicate by wire, and the AP and the IoT STA can communicate wirelessly.
  • the IoT STA in this application also known as the Internet of Things device, is a mobile device with wireless transceiver capability that can be deployed on land, indoors or outdoors, handheld or on-board, or deployed on the water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the IoT device may include various types of user equipment (UE), mobile phone, tablet, virtual reality (VR) terminal device, and augmented reality (AR).
  • UE user equipment
  • VR virtual reality
  • AR augmented reality
  • Terminal equipment terminal equipment of machine type communication (MTC), terminal equipment in industrial control, terminal equipment in self driving, terminal equipment in remote medical , terminal equipment in the smart grid, terminal equipment in transport safety, terminal equipment in smart city, and wearable devices (such as smart watches, smart bracelets, pedometers) Etc) or various types of sensors and so on.
  • MTC machine type communication
  • terminal equipment in industrial control terminal equipment in industrial control
  • terminal equipment in self driving terminal equipment in remote medical
  • terminal equipment in the smart grid terminal equipment in transport safety
  • terminal equipment in smart city and wearable devices (such as smart watches, smart bracelets, pedometers) Etc) or various types of sensors and so on.
  • wearable devices such as smart watches, smart bracelets, pedometers) Etc
  • FIG. 1 the number of devices in FIG. 1 is exemplary, and the number of devices included in the communication system of the present application is not limited thereto.
  • An access point collaboration set can be referred to as a collaboration set.
  • a collaboration set includes at least two APs. APs in the same collaboration set are assigned the same collaboration set identifier. One AP can belong to different collaboration sets. In the case of different collaboration sets, the AP may be assigned multiple collaboration set identifiers, and services are provided for the Internet of Things devices that serve different collaboration sets according to the respective collaboration set identifiers.
  • a collaboration set may have a shared key that can be used for communication between the AP and the IoT device in the collaboration set.
  • the AP needs to decode information from the IoT device that is not managed by itself, the AP needs to use the shared key for decoding.
  • the AP may allocate a first identifier to the IoT device, where the first identifier is used to identify the IoT device, and the first identifier is mapped to a bit.
  • the AP sends the first identifier mapped to the bitmap and the AP information associated with it to other APs belonging to the same collaboration set as the AP, so that the other APs update the bitmap.
  • the AP associated with the IoT device can assign a second identifier to the IoT device according to the requirements of the IoT device, and the second identifier can be an AP address, a collaboration set identifier, or a basic service set color associated with the IoT device. (basic service set color, BSS color).
  • BSS color basic service set color
  • the second identifier is taken as an example of the collaboration set identifier as an example.
  • the collaboration set ID is carried in the Preamble of the data packet to identify its identity.
  • the structure of the Preamble is as shown in FIG. 2, including default information, mobility, and optionally, a collaboration set identifier and an AP address.
  • the mobility is 1, it indicates that the Internet of Things device is a mobile IoT device, and the Preamble sent by the IoT device needs to carry an AP collaboration set identifier, which is used to inform the AP of the collaboration set to which the AP belongs.
  • the AP address is the address of the destination AP of the data packet sent by the IoT device.
  • FIG. 3 is exemplified by the common coverage of the IoT device moving to AP B and AP C.
  • the uplink data transmission method in the embodiment of the present application is described based on the implementation scenario shown in FIG. 3.
  • the embodiment of the present application provides a communication method based on the Internet of Things. As shown in FIG. 4, the method includes:
  • Step 401 The Internet of Things device sends a data packet.
  • the data packet carries a collaboration set identifier.
  • the data packet may also carry a destination address of the data packet, that is, an AP address initially associated with the IoT device.
  • Step 402 The second access point receives the data packet from the IoT device.
  • the second access point may be the AP B and the AP C, that is, both the AP B and the AP C can receive the data packet from the IoT device, and the AP B and the AP C can detect the data packet after receiving the data packet.
  • the collaboration set identifier carried in is the same as its own collaboration set identifier. If they are the same, the subsequent steps are performed.
  • the second access point may determine whether the data packet is from an IoT device associated with itself, and if not, determine the collaboration set identifier and the self in the data packet. Whether the identifiers of the cooperation sets are consistent, if they are consistent, there are two subsequent processing modes, the first one is step 403 to step 405, and the second type is step 406 to step 407.
  • Step 403 The second access point sends the data strength of the data packet and the data packet received by the second access point to the first access point.
  • the first access point receives the data strength of the data packets from the second access point and the data packets received by the second access point.
  • the signal strength may be RSSI.
  • the AP B may forward the data packet to the AP A according to the initially associated AP address (ie, the address of the AP A) in the data packet, and The APA sends the RSSI of the data packet it receives.
  • the AP C can forward the data packet to the AP A according to the initially associated AP address (ie, the address of the AP A) in the data packet, and send the data received by the AP A to the AP A.
  • the RSSI of the package After receiving the data packet from the IoT device, the AP C may forward the data packet to the AP A according to the initially associated AP address (ie, the address of the AP A) in the data packet, and send the data received by the AP A to the AP A.
  • the RSSI of the package After receiving the data packet from the IoT device, the AP B may forward the data packet to the AP A according to the initially associated AP address (ie, the address of the AP A) in the
  • the second access point can determine the address of the first access point according to the destination address carried in the data packet, and further send the data packet to the first access point and the data packet received by the second access point. Signal strength.
  • Step 404 The first access point sends the indication information to the second access point. Accordingly, the second access point receives the indication information from the first access point.
  • the indication information is used to indicate that the second access point returns the first confirmation message to the IoT device.
  • the first acknowledgement message is an Acknowledgement (ACK) message.
  • AP A can compare the signal strength and select the AP corresponding to the maximum signal strength to send the indication information. For example, if AP A Receiving only the data packet and signal strength from AP B and AP C, and the signal strength from AP B is greater than the signal strength from AP C, AP A sends an indication message to AP B, instructing AP B to send the first to the Internet of Things device. A confirmation message.
  • Step 405 The second access point sends a first confirmation message to the Internet of Things device.
  • the second access point in this step is the AP B.
  • Step 406 The second access point receives the data packet from the other access points in the cooperation set and the signal strength of the data packets received by each access point.
  • the second access point can also send the signal strength of the data packet and the received data packet to other access points in the cooperation set.
  • the second access point may further forward the data packet to the first access point, and the access point that receives the data packet in the cooperation set may also forward the data packet to the first access point.
  • AP B and AP C can mutually transmit the RSSI of the received data packet and the received data packet, and compare the received RSSI with the RSSI of the data packet received by itself, and if it is determined that it has received The RSSI of the data packet is greater than the RSSI of the data packet received by other access points in the cooperation set, and the first acknowledgement message is sent by itself to the Internet of Things device.
  • the AP B determines that the RSSI of the data packet received by the AP C is smaller than the RSSI of the data packet received by the AP, the AP B performs step 407, and the AP C does not need to perform step 407.
  • Step 407 The second access point sends a first confirmation message to the Internet of Things device.
  • the IoT-based communication method provided by the embodiment of the present application, after the IoT device moves out of the coverage of the original associated AP, other APs belonging to the same collaboration set as the original associated AP can assist the IoT device to the original IoT device.
  • the associated AP forwards the data packet, thereby ensuring that the data transmission is not interrupted during the movement of the IoT device, and the IoT device does not need to frequently send the probe request and associate the new AP, which can save signaling overhead and reduce the object. Energy consumption of networked devices.
  • the AP after receiving the data packet from the IoT device, the AP has two response modes.
  • the first mode is that the AP needs to reply an ACK for each received data packet.
  • the second access point needs to reply an ACK to the Internet of Things device.
  • the second mode is that the AP does not reply to the acknowledgement message after receiving the data packet, and after receiving the block acknowledgement request (BAR) message from the Internet of Things device, the AP acknowledges the block acknowledgement (block acknowledgement, BA) message or ACK message.
  • the IoT device can send a BAR message according to a specified time delay.
  • the data packet sent by the IoT device further carries indication information for notifying the AP to respond by using the BAR mechanism, and the second access point confirms the Internet of Things device according to the data packet.
  • the first confirmation message is not sent to the IoT device.
  • the message is sent, and the BAR message carries the indication information, where the indication information is used. Indicates the type of acknowledgment message requested to be obtained.
  • the type of acknowledgment message requested is ACK or BA.
  • step 405 or step 407 can be performed. If the acknowledgment message type requested to be acquired is ACK, the first acknowledge message is The BA message, if the type of the acknowledgment message requested to be obtained is BA, the first acknowledgment message is a BA message.
  • the BAR mechanism may be applied to the method flow shown in FIG. 4, or may be independent of the method flow shown in FIG. 4. It is understood that the AP receives the access point regardless of whether there is an access point cooperation set in the communication system. After the data packet of the Internet of Things device, the ACK message may not be replied to the IoT device temporarily, and after the AP receives the BAR message from the IoT device, the ACK message or the BA is returned to the IoT device according to the indication information in the BAR message. Message. Illustratively, in conjunction with FIG. 1, AP1 is associated with the Internet of Things device 1, and AP1 does not reply to the ACK message after receiving the data packet sent by the Internet of Things device 1.
  • the Internet of Things device 1 When the Internet of Things device 1 needs to obtain an ACK message, it can send a BAR to AP1.
  • the message, the indication information carried in the BAR message is used to indicate that the type of the acknowledgment message requested to be acquired is ACK, and the AP1 sends an ACK message to the Internet of Things device.
  • the IoT device sends a BAR message to the AP, which is an acknowledgment message (ie, BA) for requesting to acquire multiple data packets at one time. If the IoT device only sends one data packet, the BAR message is used to request acquisition. An acknowledgement message (ie, ACK) of a data packet, so the BAR message also needs to carry indication information indicating that the acquired acknowledgement message type is ACK or BA.
  • the present application can indicate the type of acknowledgment message requested to be obtained by modifying the frame structure of the BAR message. As shown in FIG. 5, FIG. 5 is a schematic diagram of a frame structure of a BAR.
  • the BAR frame structure includes a frame control, a duration, a receiver address (RA), a transmitter address (TA), a block confirmation request control (BAR control), and a block acknowledgement request.
  • RA receiver address
  • TA transmitter address
  • BAR control block confirmation request control
  • FCS frame check sequence
  • the present application may use a reserved field in the BAR Control in the BAR frame structure to indicate the type of the acknowledgment message requested to be acquired.
  • the BAR control includes a Block Ack Policy (BAR Ack Policy) field and a multi-service identity ( Multi-trafficidentity (Multi-TID) field, compressed bitmap field, group-cast retry (GCR) field, reserved field, and service identification information (TID_INFO).
  • BAR Ack Policy Block Ack Policy
  • Multi-TID Multi-trafficidentity
  • GCR group-cast retry
  • reserved field service identification information
  • one of the reserved field combinations of the Multi-TID subfield value, the Compressed Bitmap subfield value and the GCR subfield value in the BAR Control may be used to indicate the type of the acknowledgment message requested to be acquired, as shown in Table 1.
  • the three "reserved field combination values" in Table 1 can be used to indicate the type of acknowledgment message requested to be obtained.
  • the method for transmitting the downlink data in the embodiment of the present application is described in conjunction with the implementation scenario shown in FIG. As shown in FIG. 7, the method includes:
  • Step 701 When the first access point determines to send downlink data to the IoT device, the first access point sends the first indication information to the second access point. Correspondingly, the second access point receives the first indication information.
  • the first access point may be the AP A in FIG. 3, and the second access point is the AP B and the AP C in FIG.
  • each AP in the collaboration set needs to exchange downlink service information, and each AP in the collaboration set stores a first indication information.
  • the first indication information which may also be referred to as service indication information, is used to indicate whether the IoT devices of the collaboration set service have downlink data to be received.
  • the service indication information is used to indicate whether the IoT device associated with each AP in the collaboration set has downlink data to be received.
  • the service indication information may be a traffic indication map (TIM).
  • the service indication information may be set based on the AID space, for example, the service indication information includes a start indication bit, a length, and an indication content, where the start indication bit is used to indicate from which IoT device to start indication, for example, if the start indication bit is 10
  • the length is used to indicate the number of IoT devices indicated. If the length is 3, it means that 3 IoT devices need to indicate whether there is downlink data to be received.
  • the indication content is used to indicate whether the IoT device has downlink data to be received.
  • the indication content of the service indication information is as shown in Table 2. It should be noted that FIG. 2 is only an exemplary indication form of the service indication information, and the present application does not limit the indication form of the service indication information.
  • each IoT device identifier corresponds to “0”.
  • the "0" corresponding to the IoT device identifier in the service indication information is changed to "1”. The updated service indication information is then sent to the second access point.
  • the first access point is AP A, and if the IoT device associated with the AP A is identified as A, AP A updates the service indication information to Table 2, and then to AP B and AP C. Send updated business instructions.
  • step 702 is further performed.
  • Step 702 The second access point modifies its own service indication information according to the received first indication information.
  • the second access point may determine whether the received service indication information is consistent with the service indication information of the first access point, and if not, according to the received service indication.
  • the information modifies its own business indication information.
  • both AP B and AP C can receive the service indication information from AP A, and then modify their own service indication information to the service indication information shown in Table 2.
  • Step 703 The second access point sends the first indication information to the Internet of Things device. Accordingly, the Internet of Things device receives the first indication information.
  • the AP B and the AP C change the "0" corresponding to the IoT device A associated with the AP A in the service indication information to "1".
  • the AP B and the AP C sends service indication information to the Internet of Things device A.
  • the service indication information sent by the AP B to the Internet of Things device A is its updated service indication information
  • the service indication information sent by the AP C to the Internet of Things device A is also its updated service indication information.
  • Step 704 The Internet of Things device sends an energy-saving polling frame. Accordingly, the second access point receives the energy saving polling frame.
  • the energy saving polling frame may be PS-Poll.
  • the energy-saving polling frame may carry the cooperation set identifier and the address of the AP that is initially associated with itself.
  • both AP B and AP C can receive the energy saving poll frame.
  • the first processing mode is step 705 to step 708, and the second processing mode is step 709 to step 710. .
  • Step 705 The second access point sends the energy-saving polling frame to the first access point and the signal strength of the energy-saving polling frame received by itself.
  • the first access point receives the data strength of the data packets from the second access point and the data packets received by the second access point.
  • the signal strength may be the RSSI.
  • the AP B and the AP C may refer to the initially associated AP address (ie, the address of the AP A) in the energy-saving polling frame to the AP A. Forwards the energy-saving polling frame and sends the RSSI of the number of energy-saving polling frames received by itself to the APA.
  • Step 706 The second access point sends a second confirmation message to the Internet of Things device. Accordingly, the IoT device receives the second confirmation message.
  • both AP B and AP C send a second acknowledgement message to the IoT device in FIG. 3, and the second acknowledgement message is used to notify the IoT device that the AP has received the energy-saving poll frame.
  • Step 707 The first access point sends the second indication information to the second access point.
  • the second access point receives the second indication information from the first access point.
  • the second indication information is used to instruct the second access point to send downlink data to the Internet of Things device.
  • AP A can compare the signal strength and select the AP corresponding to the maximum signal strength to send the second indication information. If AP A only receives the energy-saving polling frame and signal strength from AP B and AP C, and the signal strength from AP B is greater than the signal strength from AP C, AP A sends a second indication message to AP B, indicating AP B assists AP A in downlink data transmission.
  • Step 708 The second access point sends downlink data to the Internet of Things device.
  • the second access point is the AP B
  • the AP A can send the downlink data that needs to be sent to the IoT device to the AP B, and then the downlink data is forwarded by the AP B.
  • Step 709 The second access point receives the energy-saving polling frame from other access points in the cooperation set and the signal strength of the energy-saving polling frame received by the access points.
  • the second access point may also send the energy-saving polling frame received by itself to the other access points in the cooperation set, and the signal strength of the received energy-saving polling frame.
  • AP B and AP C can mutually transmit the signal strength of the energy-saving polling frame received by itself and the received energy-saving polling frame, and transmit the received signal strength to the signal of the energy-saving polling frame received by itself. The strength is compared. If it is determined that the signal strength of the energy-saving polling frame received by itself is greater than the signal strength of the energy-saving polling frame received by other access points in the cooperation set, the downlink data is sent by itself to the Internet of Things device.
  • AP B determines that the signal strength of the energy-saving polling frame received by the AP C is less than the signal strength of the energy-saving polling frame received by the AP, the AP B performs step 710, and the AP C does not need to perform step 710.
  • Step 710 The second access point sends downlink data to the Internet of Things device.
  • the second access point in this step is AP B.
  • the Internet of Things-based communication method provided by the embodiment of the present application, after the IoT device moves out of the coverage of the original associated AP, the APs that belong to the same collaboration set as the APs that are originally associated with the AP can assist the AP pair originally associated with the IoT device.
  • the IoT device performs downlink data transmission, which ensures that the data transmission is not interrupted during the movement of the IoT device, and the IoT device does not need to frequently send probe requests and associate new APs, which can save signaling overhead and reduce the signaling overhead. Energy consumption of IoT devices.
  • the embodiment of the present application may be applied to another possible implementation scenario, where the IoT device moves after being associated with the AP, but the coverage of the AP is not removed, and the scenario shown in FIG. 8 is
  • AP A, AP B, and AP C exist in the collaboration set.
  • the collaboration set can serve the Internet of Things device shown in FIG. 8 , where the access point initially associated with the IoT device is the first.
  • An access point, such as the AP A in FIG. 3, may be referred to as a second access point, except for the first access point, which can receive the data packet sent by the IoT device.
  • both AP B and AP C can be referred to as a second access point
  • FIG. 8 is exemplified by the public coverage of the IoT device moving to AP A, AP B, and AP C.
  • the uplink data transmission method in the embodiment of the present application is described based on the implementation scenario shown in FIG. 8. As shown in FIG. 9, the method includes:
  • Step 901 The Internet of Things device sends a data packet.
  • the data packet carries a collaboration set identifier.
  • the data packet may also carry an AP address initially associated with the IoT device.
  • Step 902 The first access point and the second access point receive data packets from the IoT device.
  • the first access point can also receive the data packet from the IoT device.
  • the second access point may be the AP B and the AP C, that is, both the AP B and the AP C can receive the data packet from the IoT device, and the AP B and the AP C can detect the data packet after receiving the data packet.
  • the collaboration set identifier carried in is the same as its own collaboration set identifier. If they are the same, the subsequent steps are performed.
  • the second access point after receiving the data packet from the IoT device, the second access point has two processing manners, the first is step 903 to step 904, and the second is step 905 to step 907.
  • Step 903 The second access point sends the data strength of the data packet and the data packet received by the second access point to the first access point.
  • the first access point receives the data strength of the data packets from the second access point and the data packets received by the second access point.
  • the signal strength may be RSSI.
  • the AP B and the AP C may forward the data packet to the AP A according to the initially associated AP address (ie, the address of the AP A) in the data packet. And send the RSSI of the packet received by itself to AP A.
  • Step 904 The first access point sends a first confirmation message to the Internet of Things device. Accordingly, the IoT device receives the first confirmation message.
  • the AP A can still receive the data packet from the IoT device or receive the data packet forwarded by other APs in the collaboration set.
  • the first acknowledgement message is an ACK message.
  • AP A can also compare the signal strength of the data packet received by itself and the signal strength of the data packet received by AP B and AP C. If the signal strength of the data packet received by AP A is the largest, The AP A sends a first acknowledgement message to the Internet of Things device. If the signal strength of the data packet received by the AP B is the largest, the AP A instructs the AP B to send a first acknowledgement message to the Internet of Things device to ensure the communication quality of the Internet of Things device.
  • Step 905 The second access point receives the data packet from the other access points in the cooperation set and the signal strength of the data packet received by each access point.
  • the second access point can also send the signal strength of the data packet and the received data packet to other access points in the cooperation set.
  • AP A, AP B, and AP C can mutually transmit the RSSI of the received data packet and the received data packet, and compare the received RSSI with the RSSI of the data packet received by itself. If the RSSI of the data packet received by itself is greater than the RSSI of the data packet received by other access points in the cooperation set, the first acknowledgement message is sent by itself to the Internet of Things device.
  • AP A determines that the signal strength of the data packet received by itself is the largest, AP A sends a first acknowledgement message to the Internet of Things device, that is, step 906 is performed; or
  • the AP B determines that the signal strength of the data packet received by itself is the largest, the AP B sends a first acknowledgement message to the Internet of Things device, that is, the AP B performs the step 907 as the second access point; or
  • the AP C determines that the signal strength of the data packet received by itself is the largest, the AP C sends a first acknowledgement message to the Internet of Things device, that is, the AP C performs the step 907 as the second access point.
  • Step 906 The first access point sends a first confirmation message to the Internet of Things device.
  • Step 907 The second access point sends a first confirmation message to the Internet of Things device.
  • the Internet of Things-based communication method can directly perform the AP associated with the IoT device directly after the IoT device moves but does not move out of the coverage of the original associated AP.
  • the communication, or the AP can select other APs with the best signal strength of the data packets of the IoT device received in the collaborative set to communicate with the IoT device, and can ensure the communication quality during the movement of the IoT device.
  • the Internet of Things device may be configured to notify the AP to adopt the BAR in the data packet sent to the first access point.
  • the indication information that the mechanism responds the first access point does not immediately reply to the ACK message after receiving the data packet, and after the first access point receives the BAR message from the IoT device, if the indication message carried by the BAR message indicates the request to obtain The acknowledgment message type is ACK, and then the ACK message is replied to the IoT device.
  • the indication information carried in the BAR message indicates that the type of the acknowledgment message requested to be acquired is BA
  • the first access point replies to the IoT device with the BA message.
  • the reply is suspended, and after receiving the BAR message, the BA message or the ACK is replied to the Internet of Things device according to the BAR message. Message.
  • the downlink data transmission method in the embodiment of the present application is described in conjunction with the implementation scenario shown in FIG. 8. As shown in FIG. 10, the method includes:
  • Step 1001 When the first access point determines to send downlink data to the Internet of Things device, the first access point sends the service indication information to the Internet of Things device. Accordingly, the IoT device receives the service indication information from the first access point.
  • the first access point is an access point associated with the IoT device, and may be, for example, AP A in FIG. 8 .
  • the service indication information in this step is the same as the service indication information in step 701.
  • Step 1002 The Internet of Things device sends an energy-saving polling frame to the first access point. Accordingly, the first access point receives an energy saving polling frame from the IoT device.
  • Step 1003 The first access point sends downlink data to the Internet of Things device. Accordingly, the IoT device receives downstream data from the IoT device.
  • Step 1004 The IoT device sends an ACK message to the first access point.
  • the solution provided by the embodiment of the present application is mainly introduced from the perspective of interaction between the access point and the Internet of Things device.
  • the access point and the Internet of Things device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements of the examples and algorithm steps described in the embodiments disclosed in the application. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application may perform functional unit division on an access point, an Internet of Things device, and the like according to the foregoing method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the embodiment of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 11 shows a schematic block diagram of an apparatus provided in the embodiment of the present invention.
  • the device may be in the form of software, may be an access point, or may be a chip in an access point.
  • the apparatus 1100 includes a receiving unit 1101, a transmitting unit 1102, and a processing unit 1103.
  • the device 1100 may be the first access point or the chip in the first access point described above.
  • the receiving unit 1101 is configured to support the device 1100 to perform step 403 in FIG. 4, step 705 in FIG. 7, steps 901, 902, and 903 in FIG. 9, steps 1002 and 1004 in FIG.
  • the transmitting unit 1102 is configured to support the device 1100 to perform step 404 in FIG. 4, steps 701 and 707 in FIG. 7, step 904 and step 906 in FIG. 9, step 1001 and step 1003 in FIG.
  • the processing unit 1103 can support the apparatus 1100 to perform the actions performed by the first access point in the above method example.
  • the device 1100 may be a chip in the second access point or the second access point described above.
  • the receiving unit 1101 is configured to support the device 1100 to perform steps 401, 402, 404, and 406 in FIG. 4, steps 701, 704, and 709 in FIG. 7, and steps 901, 902, and 905 in FIG.
  • the sending unit 1102 is configured to support the device 1100 to perform steps 403, 405, and 407 in FIG. 4, and steps 703, 705, 706, 708, and 710 in FIG.
  • the processing unit 1103 can support the apparatus 1100 to perform the actions performed by the second access point in the above method example, such as step 702 in FIG. 7 and the like.
  • the device 1100 may further include a storage unit 1104 for storing program codes and data of the device 1100.
  • the processing unit 1103 may be a processor or a controller, such as a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (Application-Specific). Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the receiving unit 1101 and the sending unit 1102 may be a communication interface, where the communication interface is a collective name.
  • the communication interface may include multiple interfaces.
  • the communication interface may include: an interface between the first access point and other access points in the same collaboration set, and between the first access point and the Internet of Things device. Interface and / or other interfaces.
  • the communication interface may include an interface between the second access point and other access points in the same collaboration set, and between the first access point and the Internet of Things device. Interface and / or other interfaces.
  • the storage unit 1104 can be a memory.
  • the structure of the device 1100 may be the structure of the access point as shown in FIG. .
  • FIG. 12 is a schematic diagram showing a possible structure of an access point provided by an embodiment of the present application.
  • the access point 1200 includes a processor 1202, a communication interface 1203, and a memory 1201.
  • the access point 1200 can also include a bus 1204.
  • the communication interface 1203, the processor 1202, and the memory 1201 may be connected to each other through a bus 1204.
  • the bus 1204 may be a PCI bus or an EISA bus.
  • the bus 1204 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 12, but it does not mean that there is only one bus or one type of bus.
  • the access point depicted in Figure 12 may be the first access point described above or may be the second access point described above.
  • FIG. 13 shows a schematic block diagram of an apparatus provided in an embodiment of the present invention, in the case where the respective functional modules are divided by respective functions.
  • the device may be in the form of software, or may be an Internet of Things device, or may be a chip in an Internet of Things device.
  • the device 1300 includes a receiving unit 1301, a transmitting unit 1302, and a processing unit 1303.
  • the receiving unit 1301 is configured to support the device 1300 to perform steps 405 and 407 in FIG. 4, steps 703, 706, 708, and 710 in FIG. 7, steps 904, 906, and 907 in FIG. 9, and FIG. Steps 1001 and 1003.
  • the sending unit 1302 is configured to support the device 1300 to perform step 401 in FIG. 4, step 704 in FIG. 7, step 901 in FIG. 9, and step 1002 and step 1004 in FIG.
  • Processing unit 1304 can support apparatus 1300 to perform the actions performed by the IoT device in the method examples described above.
  • the device 1300 may further include a storage unit 1304 for storing program codes and data of the device 1300.
  • the processing unit 1303 may be a processor or a controller, for example, may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application specific integrated circuit (Application-Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the receiving unit 1301 and the sending unit 1302 may be a communication interface, where the communication interface is a collective name.
  • the communication interface may include multiple interfaces.
  • the communication interface can include an interface between the IoT device and the first access point, an interface between the IoT device and the second access point, and/or other interfaces.
  • Storage unit 1304 can be a memory.
  • the structure of the device 1300 may be the structure of the Internet of Things device as shown in FIG. .
  • FIG. 14 is a schematic diagram showing a possible structure of an Internet of Things device provided by an embodiment of the present application.
  • the Internet of Things device 1400 includes a processor 1402, a communication interface 1403, and a memory 1401.
  • the access point 1400 can also include a bus 1404.
  • the communication interface 1403, the processor 1402, and the memory 1401 may be connected to each other through a bus 1404; the bus 1404 may be a PCI bus or an EISA bus or the like.
  • the bus 1404 can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in Figure 14, but it does not mean that there is only one bus or one type of bus.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be composed of corresponding software modules, which may be stored in a random access memory (RAM), a flash memory, a read only memory (ROM), an erasable programmable read only memory ( Erasable Programmable ROM (EPROM), electrically erasable programmable read only memory (EEPROM), registers, hard disk, removable hard disk, compact disk read only (CD-ROM) or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a core network device or terminal.
  • the processor and the storage medium may also exist as discrete components in a core network device or terminal.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network devices. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the present application can be implemented by means of software plus necessary general hardware, and of course, by hardware, but in many cases, the former is a better implementation. .
  • the technical solution of the present application which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk, etc. includes instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various embodiments of the present application.

Abstract

本申请的实施例提供了一种基于物联网的通信方法,应用于通信技术领域,用以解决物联网设备频繁移动时导致的续航能力差的问题。该方法应包括:第二接入点接收来自物联网设备的数据包,数据包携带接入点协作集的标识,然后第二接入点向物联网设备发送第一确认消息;或者,第二接入点向第一接入点发送数据包和第二接入点接收到的数据包的信号强度。本申请适用于物联网设备的通信过程中。

Description

一种基于物联网的通信方法及装置
本申请要求于2018年03月02日提交中国专利局、申请号为201810175072.8、申请名称为“一种基于物联网的通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于物联网的通信方法及装置。
背景技术
物联网(internet of things,IoT)是指通过各种信息传感设备,实时采集需要监控、连接、互动的物体或过程等各种需要的信息,与互联网结合形成的一个巨大网络。近年来,物联网设备被广泛应用于生活和生产中,例如将物联网设备附加在物品上,实现对物品的追踪,例如机场中的行李监控,工厂中的流水线产品监控等。
由于物联网设备具有移动性,所以物联网设备在与一个接入点(access point,AP)关联后可能会移动到该AP的信号覆盖范围之外,从而断开与该AP的连接。然后物联网设备可以通过发出探测请求消息来寻找新的AP,接收到来自新AP的探测响应消息之后,即可与新AP进行关联。然而当物联网设备频繁移动时,需频繁地发送探测请求消息来切换关联的AP,会消耗大量的电能,影响物联网设备的续航能力。
发明内容
本申请的实施例提供一种基于物联网的通信方法及装置,用以解决物联网设备频繁移动出现的续航能力差的问题。
第一方面,本申请的实施例提供一种基于物联网的通信方法,该方法包括:第二接入点接收来自物联网设备的数据包,数据包携带接入点协作集的标识,然后第二接入点可以向物联网设备发送确认消息;或者,第二接入点向第一接入点发送数据包和第二接入点接收到的数据包的信号强度。其中,接入点协作集中至少包括第一接入点和第二接入点,第一接入点为物联网设备初始关联的接入点。采用该方法,在物联网设备移出初始关联的第一接入点的覆盖范围后,与第一接入点属于同一协作集的第二接入点可代替第一接入点向物联网设备回复确认消息,或者第二接入点可向第一接入点转发来自物联网设备的数据包,进而保证了物联网设备移动过程中发送的数据包能够及时被处理,不会出现数据传输中断的现象,且物联网设备在移出第一接入点的覆盖范围后,无需发送探测请求并关联新的接入点,可以节省信令开销,减少物联网设备的能耗,从而提高物联网设备的续航能力。
可选地,确认消息可以为ACK消息,数据包的信号强度可以为RSSI。
在一种可能的设计中,在第二接入点向物联网设备发送确认消息之前,第二接入点可接收来自接入点协作集中的其他接入点的数据包和各接入点接收到的数据包的信号强度。
可选地,第二接入点可通过自身所属协作集的共享密钥来解密数据包。
在一种可能的设计中,第二接入点向物联网设备发送确认消息,具体可以实现为:若第二接入点确定自身接收到的数据包的信号强度大于接入点协作集中的其他接入点接收到的数据包的信号强度,则第二接入点向物联网设备发送确认消息。采用该方法,若接入点协作集中第二接入点接收到的数据包的信号强度最大,则说明接入点协作集中第二接入点与物联网设备的通信质量最好,由第二接入点代替第一接入点向物联网设备发送确认消息可避免出现数据传输中断的现象,且第二接入点可协助第一接入点与物联网设备之间的通信,物联网设备无需频繁切换关联的接入点,可减少能耗,提高物联网设备的续航能力。
在一种可能的设计中,在第二接入点向第一接入点转发数据包和第二接入点接收到的数据包的信号强度之后,第二接入点接收来自第一接入点的指示信息,指示信息用于指示第二接入点回传确认消息,然后第二接入点向物联网设备发送确认消息。采用该方法,第二接入点可根据第一接入点的指示信息来协助第一接入点向物联网设备发送确认消息,物联网设备无需关联到新的接入点也可以接收到确认消息,可避免频繁切换接入点而产生的能耗,可以提高物联网设备的续航能力。
可选地,物联网设备发送给第一接入点的数据包经由第二接入点转发需要时延,在第一接入点与物联网设备初始关联的过程中,第一接入点可为物联网设备设置发送数据包与接收确认消息之间的时延,在该时延对应的时间段内,物联网设备可处于休眠状态。
在一种可能的设计中,在第二接入点接收来自物联网设备的数据包之后,第二接入点可接收来自物联网设备的块确认请求BAR消息。
可选地,BAR消息携带指示信息,该指示信息用于指示请求获取的确认消息类型,请求获取的确认消息类型可以为BA或ACK。
在一种可能的设计中,确认消息为BA消息或ACK消息。
第二方面,本申请的实施例提供一种基于物联网的通信方法,该方法包括:第二接入点接收来自第一接入点的第一指示信息,第一指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,第二接入点向物联网设备发送第一指示信息。其中,接入点协作集中至少包括第一接入点和第二接入点,第一接入点为物联网设备初始关联的接入点。采用该方法,在物联网设备移出初始关联的第一接入点的覆盖范围后,若第一接入点需向物联网设备发送下行数据,第一接入点可通过第二接入点通知物联网设备存在待接收的下行数据,避免出现由于第一接入点无法直接与物联网设备通信而导致的数据传输中断的问题,且物联网设备无需发送探测请求并关联新的接入点,可以节省信令开销,减少物联网设备的能耗,从而提高物联网设备的续航能力。
在一种可能的设计中,在第二接入点向物联网设备发送第一指示信之后,第二接入点接收来自物联网设备的节能轮询帧,然后第二接入点向第一接入点发送节能轮询帧和第二接入点接收到的节能轮询帧的信号强度,并向物联网设备发送确认消息。
可选地,节能轮询帧为PS-Poll,信号强度为RSSI。
在一种可能的设计中,在第二接入点向第一接入点发送节能轮询帧和第二接入点接收到的节能轮询帧的信号强度之后,第二接入点接收来自第一接入点的第二指示信 息,第二指示信息用于指示第二接入点向物联网设备发送下行数据。
第三方面,本申请的实施例提供一种基于物联网的通信方法,该方法包括:第一接入点接收来自接入点协作集中的各接入点的数据包和各接入点接收到的数据包的信号强度;第一接入点向第二接入点发送指示信息,其中,指示信息用于指示第二接入点向物联网设备回传确认消息。其中,接入点协作集中至少包括第一接入点和第二接入点,第一接入点为物联网设备初始关联的接入点。采用该方法,在物联网设备移出初始关联的第一接入点的覆盖范围后,与第一接入点属于同一个接入点协作集的接入点可向第一接入点转发来自物联网设备的数据包,且第一接入点可通过接入点协作集中的其他接入点向物联网设备回复确认消息,保证了物联网设备移动过程中发送的数据包能够及时被处理,不会出现数据传输中断的现象,且物联网设备在移出第一接入点的覆盖范围后,无需发送探测请求并关联新的接入点,可以节省信令开销,减少物联网设备的能耗,从而提高物联网设备的续航能力。
在一种可能的设计中,第二接入点接收到的数据包的信号强度大于接入点协作集中的其他接入点接收到的数据包的信号强度。采用该方法,第一接入点选择接入点协作集中接收到的数据包的信号强度最大的第二接入点,通过第二接入点来协助第一接入点与物联网设备进行通信,可以保证物联网设备的业务质量。
第四方面,本申请的实施例提供一种基于物联网的通信方法,该方法包括:在第一接入点确定向物联网设备发送下行数据时,第一接入点向第二接入点发送第一指示信息,第一指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,然后第一接入点接收来自接入点协作集中的各接入点的节能轮询帧和各接入点接收到节能轮询帧的信号强度,然后第一接入点向第二接入点发送第二指示信息,其中,第二指示信息用于指示第二接入点向物联网设备发送下行数据。其中,接入点协作集中至少包括第一接入点和第二接入点,第一接入点为物联网设备初始关联的接入点。采用该方法,在物联网设备移出初始关联的第一接入点的覆盖范围后,若第一接入点需向物联网设备发送下行数据,第一接入点可通过第二接入点通知物联网设备存在待接收的下行数据,避免出现由于第一接入点无法直接与物联网设备通信而导致的数据传输中断的问题,且物联网设备无需发送探测请求并关联新的接入点,可以节省信令开销,减少物联网设备的能耗,从而提高物联网设备的续航能力。
在一种可能的设计中,第二接入点接收到的节能轮询帧的信号强度大于接入点协作集中的其他接入点接收到的数据包的信号强度。
第五方面,本申请的实施例提供一种基于物联网的通信方法,该方法包括:物联网设备发送数据包,数据包携带接入点协作集的标识,然后物联网设备接收来自第二接入点的确认消息。其中,接入点协作集中至少包括第一接入点和第二接入点,第一接入点为物联网设备初始关联的接入点。采用该方法,物联网设备在移出第一接入点的覆盖范围后,无需发送探测请求并关联新的接入点,也可以完成上行数据的传输,可以节省信令开销,减少物联网设备的能耗,进而提高续航能力。
在一种可能的设计中,在物联网设备接收来自第二接入点的确认消息之前,物联网设备发送块确认请求BAR消息。
可选地,BAR消息携带指示信息,该指示信息用于指示请求获取的确认消息类型, 请求获取的确认消息类型可以为BA或ACK。
在一种可能的设计中,确认消息为BA消息或ACK消息。
第六方面,本申请的实施例提供一种基于物联网的通信方法,该方法包括:物联网设备接收来自第二接入点的指示信息,指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,然后物联网设备根据业务指示信息发送节能轮询帧,物联网设备接收来自第二接入点的确认消息。其中,接入点协作集中至少包括第一接入点和第二接入点,第一接入点为物联网设备初始关联的接入点。采用该方法,物联网设备在移出第一接入点的覆盖范围后,无需发送探测请求并关联新的接入点,也可以接收到第一接入点通过其他接入点发送的下行数据,可以节省信令开销,减少物联网设备的能耗,进而提高续航能力。
第七方面,本申请实施例提供一种装置,该装置具有实现上述方法设计中第二接入点行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该装置可以为第二接入点,或者可以为第二接入点中的芯片。
在一种可能的设计中,该装置为第二接入点,第二接入点包括处理器,所述处理器被配置为支持第二接入点执行上述方法中相应的功能。进一步地,第二接入点还可以包括发射器和接收器,所述发射器和接收器用于支持第二接入点与物联网设备、第二接入点与同一协作集中的其他接入点(例如第一接入点)之间的通信。进一步的,第二接入点还可以包括存储器,所述存储器用于与处理器耦合,其保存第二接入点必要的程序指令和数据。
第八方面,本申请实施例提供一种装置,该装置具有实现上述方法设计中第一接入点行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该装置可以为第一接入点,或者可以为第一接入点中的芯片。
在一种可能的设计中,该装置为第一接入点,第一接入点包括处理器,所述处理器被配置为支持第一接入点执行上述方法中相应的功能。进一步地,第一接入点还可以包括发射器和接收器,所述发射器和接收器用于支持第一接入点与物联网设备、第一接入点与同一协作集中的其他接入点(例如第二接入点)之间的通信。进一步的,第一接入点还可以包括存储器,所述存储器用于与处理器耦合,其保存第一接入点必要的程序指令和数据。
第九方面,本申请实施例提供一种装置,该装置具有实现上述方法设计中物联网设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。例如,该装置可以为物联网设备,或者可以为物联网设备中的芯片。
在一种可能的设计中,该装置为物联网设备,物联网设备包括处理器,所述处理器被配置为支持物联网设备执行上述方法中相应的功能。进一步地,物联网设备还可以包括发射器和接收器,所述发射器和接收器用于支持物联网设备与第一接入点和第二接入点以及第一接入点所属协作集中的其他接入点之间的通信。进一步的,物联网设备还可以包括存储器,所述存储器用于与处理器耦合,其保存物联网设备必要的程 序指令和数据。
第十方面,本申请实施例提供一种通信系统,该系统包括上述方面所述的物联网设备、第一接入点和第二接入点,可选地,该系统还可以包括与第一接入点和第二接入点属于同一协作集的其他接入点以及上述方面所述的物联网设备、第一接入点和第二接入点。
第十一方面,本申请实施例提供一种计算机存储介质,用于储存为上述用于第二接入点所用的计算机软件指令,其包含用于执行上述第一方面和第二方面所设计的程序。
第十二方面,本申请实施例提供一种计算机存储介质,用于储存为上述用于第一接入点所用的计算机软件指令,其包含用于执行上述第三方面和第四方面所设计的程序。
第十三方面,本申请实施例提供一种计算机存储介质,用于储存为上述用于物联网设备所用的计算机软件指令,其包含用于执行上述第五方面和第六方面所设计的程序。
第十四方面,本申请的实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第一方面和第二方面所述的方法。
第十五方面,本申请的实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第三方面和第四方面所述的方法。
第十六方面,本申请的实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第四方面所述的方法。
第十七方面,本申请的实施例提供一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如上述第五方面和第六方面所述的方法。
第十八方面,本申请的实施例提供一种芯片系统,应用于第二接入点中,所述芯片系统包括至少一个处理器,存储器和收发电路,所述存储器、所述收发电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行上述第一方面和第二方面所述的方法中所述第二接入点的操作。
第十九方面,本申请的实施例提供一种芯片系统,应用于第一接入点中,所述芯片系统包括至少一个处理器,存储器和收发电路,所述存储器、所述收发电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行上述第三方面和第四方面所述的方法中所述第一接入点的操作。
第二十方面,本申请的实施例提供一种芯片系统,应用于物联网设备中,所述芯片系统包括至少一个处理器,存储器和收发电路,所述存储器、所述收发电路和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述处理器执行,以执行上述第五方面和第六方面所述的方法中所述物联网设备的操作。
本申请的实施例提供的基于物联的通信方法,在物联网设备移出初始关联的第一接入点的覆盖范围后,与第一接入点属于同一协作集的第二接入点可代替第一接入点向物联网设备回复确认消息,或者第二接入点可向第一接入点转发来自物联网设备的数据包,进而保证了物联网设备移动过程中发送的数据包能够及时被处理,不会出现数据传输中断的现象,且物联网设备在移出第一接入点的覆盖范围后,无需发送探测 请求并关联新的接入点,可以节省信令开销,减少物联网设备的能耗,从而提高物联网设备的续航能力。
附图说明
图1为本申请的实施例提供的一种可能的网络架构示意图;
图2为本申请的实施例提供的一种Preamble的结构的示例性示意图;
图3为本申请的实施例提供的一种实施场景的示例性示意图;
图4为本申请的实施例提供的一种基于物联网的通信方法的流程图;
图5为本申请的实施例提供的一种BAR的帧结构的示例性示意图;
图6为本申请的实施例提供的一种BAR帧结构中的具体字段的示例性示意图;
图7为本申请的实施例提供的另一种基于物联网的通信方法的流程图;
图8为本申请的实施例提供的另一种实施场景的示例性示意图;
图9为本申请的实施例提供的另一种基于物联网的通信方法的流程图;
图10为本申请的实施例提供的另一种基于物联网的通信方法的流程图;
图11为本申请的实施例提供的一种装置的结构示意图;
图12为本申请的实施例提供的一种接入点的结构示意图;
图13为本申请的实施例提供的另一种装置的结构示意图;
图14为本申请的实施例提供的一种物联网设备的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。其中,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请描述的系统架构及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对于本申请提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的实施例可以应用于基于物联网的通信系统,该通信系统中包括接入点协作集和接入点协作集服务的物联网设备,接入点协作集包括至少两个接入点,接入点协作集至少服务于一个物联网设备,示例性地,图1示出了本申请的一种可能的通信系统的示意图,其中,AP1、AP2和AP3属于同一个接入点协作集,物联网站点(internet of things station,IoT STA)1在AP1的覆盖范围内,为AP1关联的物联网设备,IoT STA2在AP2的覆盖范围内,为AP2关联的物联网设备。
可选地,各AP之间可通过有线方式进行通信,AP和IoT STA之间可通过无线方式进行通信。
本申请中的IoT STA,也可称为物联网设备,是一种可移动的具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。该物联网设备可以包 括各种类型的用户设备(user equipment,UE)、手机(mobile phone)、平板电脑(pad)、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、机器类型通信(machine type communication,MTC)的终端设备,工业控制(industrial control)中的终端设备、无人驾驶(self driving)中的终端设备、远程医疗(remote medical)中的终端设备、智能电网(smart grid)中的终端设备、运输安全(transportation safety)中的终端设备、智慧城市(smart city)中的终端设备,以及可穿戴设备(如智能手表,智能手环,计步器等)或各种类型的传感器等等。
需要说明的是,图1中的各设备数量均为示例性的,本申请的通信系统中包括的各设备数量不限于此。
首先对本申请涉及到的相关术语进行解释说明。
接入点协作集,可简称为协作集,一个协作集中包括至少两个AP,处于同一个协作集中的AP会被分配同一个协作集标识,一个AP可以分别属于不同的协作集,在一个AP分别属于不同的协作集的情况下,该AP可以被分配多个协作集标识,根据各协作集标识分别为不同协作集服务的物联网设备提供服务。
可选的,一个协作集可具有一个共享密钥,可用于该协作集中的AP与物联网设备之间的通信。示例性的,若AP需要解码未与自身管理连的来自物联网设备的信息,则该AP需使用共享密钥来进行解码。
需要说明的是,在物联网设备首次接入AP时,AP可以为该物联网设备分配第一标识符,第一标识符用于标识该物联网设备,并将第一标识符映射到一个位图(bitmap)上,以用于后续的IoT信标(Beacon)。然后AP将映射到bitmap上的第一标识符以及与之关联的AP信息发送给与该AP属于同一协作集的其他AP,以便其他AP更新bitmap。
然后,与物联网设备关联的AP可根据物联网设备的需求为物联网设备分配第二标识符,第二标识符可以为与物联网设备关联的AP地址,协作集标识,或者基本服务集颜色(basic service set color,BSS color)。下文中以第二标识符为协作集标识为例进行说明。
可选的,物联网设备传输数据包时,会在数据包的Preamble中携带协作集ID以标识自己的身份。示例性的,Preamble的结构如图2所示,包括默认信息、移动性(mobility),可选地,还可以包括协作集标识和AP地址。当mobility为1时,说明该物联网设备为可移动的物联网设备,物联网设备发送的Preamble中需携带AP协作集标识,用于告知AP自身所属的协作集。AP地址为物联网设备发送的数据包的目的AP的地址。
结合上述描述,在一种可能的实施场景中,物联网设备与AP关联后发生了移动,且移出了该AP的覆盖范围,本申请以图3所示的场景为例进行说明,如图3所示,协作集中存在AP A、AP B和AP C,该协作集可以服务于图3所示的物联网设备,其中,物联网设备初始关联的接入点为第一接入点,例如为图3中的AP A,该协作集中除第一接入点之外的能够接收到物联网设备发送的数据包的接入点均可称为第二接入点,例如AP B和AP C均可称为第二接入点,图3以物联网设备移动至AP B和AP C的公 共覆盖范围为例。
基于图3所示的实施场景,对本申请实施例中的上行数据传输方法进行说明,本申请的实施例提供一种基于物联网的通信方法,如图4所示,该方法包括:
步骤401、物联网设备发送数据包。
其中,该数据包中携带协作集标识。可选的,数据包中还可携带数据包的目的地址,即该物联网设备初始关联的AP地址。
步骤402、第二接入点接收来自物联网设备的数据包。
可选的,第二接入点可以为AP B和AP C,即AP B和AP C均可接收到来自物联网设备的数据包,AP B和AP C接收到数据包后,可检测数据包中携带的协作集标识是否与自身的协作集标识相同,若相同,则执行后续步骤。
可选的,第二接入点接收到来自物联网设备的数据包后,可判断该数据包是否来自与自身关联的物联网设备,若不是,则判断数据包中的协作集标识与自身所述的协作集的标识是否一致,若一致,则后续有两种处理方式,第一种为步骤403至步骤405,第二种为步骤406至步骤407。
第一种处理方式:
步骤403、第二接入点向第一接入点发送数据包和第二接入点接收到的数据包的信号强度。相应地,第一接入点接收来自各第二接入点的数据包和各第二接入点接收到的数据包的信号强度。
示例性的,信号强度可以为RSSI,AP B接收到来自物联网设备的数据包后,可根据数据包中的初始关联的AP地址(即AP A的地址)向AP A转发数据包,并向APA发送自身接收到的数据包的RSSI。同样,AP C接收到来自物联网设备的数据包后,可根据数据包中的初始关联的AP地址(即AP A的地址)向AP A转发数据包,并向AP A发送自身接收到的数据包的RSSI。
可以理解的是,第二接入点可根据数据包中携带的目的地址确定第一接入点的地址,进而向第一接入点发送数据包和第二接入点接收到的数据包的信号强度。
步骤404、第一接入点向第二接入点发送指示信息。相应地,第二接入点接收来自第一接入点的指示信息。
其中,指示信息用于指示第二接入点向物联网设备回传第一确认消息。可选地,第一确认消息为确认(Acknowledgement,ACK)消息。
需要说明的是,AP A接收到来自AP B和AP C的数据包和信号强度后,可以比较信号强度的大小,选择最大的信号强度对应的AP来发送指示信息,示例性的,若AP A只接收到来自AP B和AP C的数据包和信号强度,且来自AP B的信号强度大于来自AP C的信号强度,则AP A向AP B发送指示信息,指示AP B向物联网设备发送第一确认消息。
步骤405、第二接入点向物联网设备发送第一确认消息。
其中,若上述步骤404中AP A向AP B发送了指示信息,则本步骤中的第二接入点为AP B。
第二种处理方式:
步骤406、第二接入点接收来自协作集中的其他接入点的所述数据包和各接入点 接收到的数据包的信号强度。
相应地,第二接入点也可向协作集中的其他接入点发送所述数据包和接收到的数据包的信号强度。
可选地,第二接入点还可以向第一接入点转发所述数据包,且协作集中其他接收到所述数据包的接入点也可向第一接入点转发所述数据包。
结合图3,AP B和AP C可互相发送自身接收到的数据包和接收到的数据包的RSSI,并将接收到的RSSI与自身接收到的数据包的RSSI进行比较,若确定自身接收到的数据包的RSSI大于协作集中的其他接入点接收到的所述数据包的RSSI,则由自身向物联网设备发送第一确认消息。
示例性的,若AP B确定AP C接收到的数据包的RSSI小于自身接收到的数据包的RSSI,则AP B执行步骤407,AP C则无需执行步骤407。
步骤407、第二接入点向物联网设备发送第一确认消息。
本申请的实施例提供的基于物联网的通信方法,在物联网设备移出原始关联的AP的覆盖范围后,与原始关联的AP属于同一协作集的其他AP可协助物联网设备向物联网设备原始关联的AP转发数据包,进而保证了物联网设备移动过程中不会出现数据传输中断的现象,且物联网设备无需频繁地发送探测请求并关联新的AP,可以节省信令开销,减少了物联网设备的能耗。
可选地,在本申请实施例提供的上行数据传输过程中,AP接收到来自物联网设备的数据包后,有两种响应方式。
方式一为AP需要针对接收到的每个数据包回复ACK,例如在上述步骤405或步骤407中,第二接入点需向物联网设备回复ACK。
方式二为AP在接收到数据包后,暂时不回复确认消息,在接收到来自物联网设备的块确认请求(block acknowledgement request,BAR)消息后,再向物联网设备回复块确认(block acknowledgement,BA)消息或ACK消息。可选地,物联网设备可根据指定时延发送BAR消息。
可选地,若采用方式二,在上述步骤401中,物联网设备发送的数据包中还携带用于通知AP采用BAR机制进行响应的指示信息,第二接入点根据数据包确认物联网设备请求使用BAR机制进行响应后,则暂时不向物联网设备发送第一确认消息,当物联网设备需要获取第一确认消息时,则发送BAR消息,BAR消息中携带指示信息,该指示信息用于指示请求获取的确认消息类型,请求获取的确认消息类型为ACK或BA。可以理解为,在采用方式二的情况下,在第二接入点接收到BAR消息的情况下才可以执行步骤405或步骤407,若请求获取的确认消息类型为ACK,则第一确认消息为BA消息,若请求获取的确认消息类型为BA,则第一确认消息为BA消息。
可选地,BAR机制可以应用于图4所示的方法流程,也可以独立于图4所示的方法流程,可理解的是,无论通信系统中是否存在接入点协作集,AP接收到来自物联网设备的数据包后,都可以暂时不向物联网设备回复ACK消息,在AP接收到来自物联网设备的BAR消息后,再根据BAR消息中的指示信息向物联网设备回复ACK消息或BA消息。示例性地,结合图1,AP1关联于物联网设备1,AP1接收到物联网设备1发送的数据包之后暂不回复ACK消息,当物联网设备1需要获取ACK消息时,可向AP1发 送BAR消息,BAR消息中携带的指示信息用于指示请求获取的确认消息类型为ACK,进而AP1向物联网设备发送ACK消息。
需要说明的是,物联网设备向AP发送BAR消息是用于请求一次性获取多个数据包的确认消息(即BA),若物联网设备只发送过一个数据包,则BAR消息用于请求获取一个数据包的确认消息(即ACK),所以BAR消息中还需携带用于指示获取的确认消息类型为ACK或BA的指示信息。本申请可通过改动BAR消息的帧结构来指示请求获取的确认消息类型。如图5所示,图5为一种BAR的帧结构示意图。
其中,BAR帧结构包括帧控制(frame control)、时长(duration)、接收节点地址(receiver address,RA)、发送节点地址(transmitter address,TA)、块确认请求控制(BAR control)、块确认请求信息(BAR information),以及帧校验序列(frame check sequence,FCS)。
本申请可以使用BAR帧结构中的BAR Control中的保留字段来指示请求获取的确认消息类型,如图6所示,BAR control中包括块确认请求应答准则(BAR Ack Policy)字段、多业务标识(Multi-trafficidentity,Multi-TID)字段、压缩位图(compressed bitmap)字段、组播重传(group-cast retry,GCR)字段、保留(reserved)字段以及业务标识信息(TID_INFO)。参考图6,可以将图6中的保留字段的一部分用于指示请求获取的确认消息类型为ACK或BA。
或者,可以使用BAR Control中的Multi-TID subfield value,Compressed Bitmap subfield value和GCR subfield value的保留字段组合中的一个来指示请求获取的确认消息类型,如表1所示。可以使用表1中的三个“保留字段组合值”来指示请求获取的确认消息类型。
表1
Figure PCTCN2018117524-appb-000001
上述为对图3所示的实施场景下的上行数据传输方法的介绍,在另一种可能的实现方式中,结合图3所示的实施场景,对本申请实施例中的下行数据传输方法进行说明,如图7所示,该方法包括:
步骤701、在第一接入点确定向物联网设备发送下行数据时,第一接入点向第二接入点发送第一指示信息。相应地,第二接入点接收第一指示信息。
其中,第一接入点可以为图3中的AP A,第二接入点为图3中的AP B和AP C。
可选地,在步骤710之前,协作集中的各AP需交互下行业务信息,协作集中的每个AP均存储一个第一指示信息。
其中,第一指示信息,也可称为业务指示信息,业务指示信息用于指示协作集服务的各物联网设备是否存在待接收的下行数据。换言之,业务指示信息用于指示协作集中各AP关联的物联网设备是否存在待接收的下行数据。
可选地,业务指示信息可以为业务指示位图(traffic indication map,TIM)。 业务指示信息可以基于AID空间来设置,例如业务指示信息包括起始指示位、长度和指示内容,其中起始指示位用于表示从哪个物联网设备开始指示,例如,若起始指示位为10,则代表从协作集中的第10个物联网设备开始指示,长度用于表示指示的物联网设备的数量,若长度为3,则代表需要指示3个物联网设备是否存在待接收的下行数据,指示内容用于指示这个物联网设备是否存在待接收的下行数据。
示例性地,业务指示信息的指示内容如表2所示。需要说明的是,图2仅为业务指示信息的一种示例性指示形式,本申请不对业务指示信息的指示形式进行限定。
表2
Figure PCTCN2018117524-appb-000002
其中,“0”代表存在待接收的下行数据,“1”代表不存在待接收的下行数据。
可以理解的是,在协作集中的各AP均无需向关联的物联网设备发送下行数据时,在各AP存储的业务指示信息中,各物联网设备标识均对应“0”。当第一接入点需要向关联的物联网设备发送下行数据时,将业务指示信息中该物联网设备标识对应的“0”改为“1”。然后向第二接入点发送更新后的业务指示信息。
示例性地,结合图3,第一接入点为AP A,假设AP A关联的物联网设备为的标识为A,则AP A将业务指示信息更新为表2,然后向AP B和AP C发送更新后的业务指示信息。
可选地,若第一接入点发送的是更新后的业务指示信息,则还需执行步骤702。
步骤702、第二接入点根据接收到的第一指示信息修改自身的业务指示信息。
可选地,第二接入点接收到来自第一接入点的业务指示信息后,可判断接收到的业务指示信息与自身的业务指示信息是否一致,若不一致,则根据接收到的业务指示信息修改自身的业务指示信息。
示例性地,结合图3,AP B和AP C均可接收到来自AP A的业务指示信息,然后将自身的业务指示信息均修改为表2所示的业务指示信息。
步骤703、第二接入点向物联网设备发送第一指示信息。相应地,物联网设备接收第一指示信息。
示例性地,AP B和AP C在上述步骤702中均将自身业务指示信息中AP A关联的物联网设备A对应的“0”改为“1”,则在本步骤中,AP B和AP C均向物联网设备A发送业务指示信息。可以理解的是,AP B向物联网设备A发送的业务指示信息为自身的更新后的业务指示信息,AP C向物联网设备A发送的业务指示信息也为自身的更新后的业务指示信息。
步骤704、物联网设备发送节能轮询帧。相应地,第二接入点接收节能轮询帧。
可选地,节能轮询帧可以为PS-Poll。节能轮询帧可携带协作集标识和自身初始关联的AP的地址。
结合图3,由于物联网设备处于AP B和AP C的公共覆盖范围内,所以AP B和AP C均可以接收到节能轮询帧。
可选地,第二接入点接收到来自物联网设备的节能轮询帧后有两种处理方式,第 一种处理方式为步骤705至步骤708,第二种处理方式为步骤709至步骤710。
第一种处理方式:
步骤705、第二接入点向第一接入点发送节能轮询帧和自身接收到的节能轮询帧的信号强度。相应地,第一接入点接收来自各第二接入点的数据包和各第二接入点接收到的数据包的信号强度。
示例性地,信号强度可以为RSSI,AP B和AP C接收到来自物联网设备的节能轮询帧后,可根据节能轮询帧中初始关联的AP地址(即AP A的地址)向AP A转发节能轮询帧,并向APA发送自身接收到的数节能轮询帧的RSSI。
步骤706、第二接入点向物联网设备发送第二确认消息。相应地,物联网设备接收第二确认消息。
可选地,AP B和AP C均向图3中的物联网设备发送第二确认消息,第二确认消息用于告知物联网设备AP已接收到节能轮询帧。
需要说明的是,本申请实施例不限制步骤705和步骤706的执行顺序。
步骤707、第一接入点向第二接入点发送第二指示信息。相应地,第二接入点接收来自第一接入点的第二指示信息。
其中,第二指示信息用于指示第二接入点向物联网设备发送下行数据。
需要说明的是,AP A接收到来自AP B和AP C的节能轮询帧和信号强度后,可以比较信号强度的大小,选择最大的信号强度对应的AP来发送第二指示信息,示例性的,若AP A只接收到来自AP B和AP C的节能轮询帧和信号强度,且来自AP B的信号强度大于来自AP C的信号强度,则AP A向AP B发送第二指示信息,指示AP B协助AP A进行下行数据传输。
步骤708、第二接入点向物联网设备发送下行数据。
可以理解的是,结合步骤707中的描述,此时第二接入点为AP B,AP A可将需要发送给物联网设备的下行数据发送给AP B,进而由AP B转发下行数据。
第二种处理方式:
步骤709、第二接入点接收来自协作集中的其他接入点的节能轮询帧和个接入点接收到的节能轮询帧的信号强度。
相应地,第二接入点也可以向协作集中的其他接入点发送自身接收到的节能轮询帧,以及接收到的节能轮询帧的信号强度。
结合图3,AP B和AP C可互相发送自身接收到的节能轮询帧和接收到的节能轮询帧的信号强度,并将接收到的信号强度与自身接收到的节能轮询帧的信号强度进行比较,若确定自身接收到的节能轮询帧的信号强度大于协作集中的其他接入点接收到的所述节能轮询帧的信号强度,则由自身向物联网设备发送下行数据。
示例性的,若AP B确定AP C接收到的节能轮询帧的信号强度小于自身接收到的节能轮询帧的信号强度,则AP B执行步骤710,AP C则无需执行步骤710。
步骤710、第二接入点向物联网设备发送下行数据。
可以理解的是,结合步骤709中的举例,本步骤的第二接入点为AP B。
本申请的实施例提供的基于物联网的通信方法,在物联网设备移出原始关联的AP的覆盖范围后,与原始关联的AP属于同一协作集的其他AP可协助物联网设备原始关 联的AP对物联网设备进行下行数据传输,进而保证了物联网设备移动过程中不会出现数据传输中断的现象,且物联网设备无需频繁地发送探测请求并关联新的AP,可以节省信令开销,减少了物联网设备的能耗。
可选地,本申请的实施例还可以应用于另一种可能的实施场景下,物联网设备与AP关联后发生了移动,但未移出该AP的覆盖范围,以图8所示的场景为例进行说明,如图8所示,协作集中存在AP A、AP B和AP C,该协作集可以服务于图8所示的物联网设备,其中,物联网设备初始关联的接入点为第一接入点,例如为图3中的AP A,该协作集中除第一接入点之外的能够接收到物联网设备发送的数据包的接入点均可称为第二接入点,例如AP B和AP C均可称为第二接入点,图8以物联网设备移动至AP A、AP B和AP C的公共覆盖范围为例。
基于图8所示的实施场景,对本申请实施例中的上行数据传输方法进行说明,如图9所示,该方法包括:
步骤901、物联网设备发送数据包。
其中,该数据包中携带协作集标识。可选的,数据包中还可携带该物联网设备初始关联的AP地址。
步骤902、第一接入点和第二接入点接收来自物联网设备的数据包。
可以理解的是,由于物联网设备未移出第一接入点的覆盖范围,所以第一接入点也可以接收到来自物联网设备的数据包。
可选的,第二接入点可以为AP B和AP C,即AP B和AP C均可接收到来自物联网设备的数据包,AP B和AP C接收到数据包后,可检测数据包中携带的协作集标识是否与自身的协作集标识相同,若相同,则执行后续步骤。
可选的,第二接入点接收到来自物联网设备的数据包后有两种处理方式,第一种为步骤903至步骤904,第二种为步骤905至步骤907。
第一种处理方式:
步骤903、第二接入点向第一接入点发送数据包和第二接入点接收到的数据包的信号强度。相应地,第一接入点接收来自各第二接入点的数据包和各第二接入点接收到的数据包的信号强度。
示例性的,信号强度可以为RSSI,AP B和AP C接收到来自物联网设备的数据包后,可根据数据包中的初始关联的AP地址(即AP A的地址)向AP A转发数据包,并向AP A发送自身接收到的数据包的RSSI。
步骤904、第一接入点向物联网设备发送第一确认消息。相应地,物联网设备接收第一确认消息。
需要说明的是,结合图8,由于物联网设备仍处于AP A的覆盖范围内,所以AP A接收到来自物联网设备的数据包或接收到协作集中其他AP转发的数据包后,仍然可以自己向物联网设备回复第一确认消息。可选地,第一确认消息为ACK消息。
可选地,AP A还可以比较自身接收到的数据包的信号强度,和AP B和AP C接收到的数据包的信号强度的大小,若AP A接收到的数据包的信号强度最大,则AP A向物联网设备发送第一确认消息,若AP B接收到的数据包的信号强度最大,则AP A指示AP B向物联网设备发送第一确认消息,以保证物联网设备的通信质量。
第二种处理方式:
步骤905、第二接入点接收来自协作集中的其他接入点的所述数据包和各接入点接收到的数据包的信号强度。
相应地,第二接入点也可向协作集中的其他接入点发送所述数据包和接收到的数据包的信号强度。
结合图3,AP A、AP B和AP C可互相发送自身接收到的数据包和接收到的数据包的RSSI,并将接收到的RSSI与自身接收到的数据包的RSSI进行比较,若确定自身接收到的数据包的RSSI大于协作集中的其他接入点接收到的所述数据包的RSSI,则由自身向物联网设备发送第一确认消息。
示例性的,若AP A确定自身接收到的数据包的信号强度最大,则AP A向物联网设备发送第一确认消息,即执行步骤906;或者,
若AP B确定自身接收到的数据包的信号强度最大,AP B向物联网设备发送第一确认消息,即由AP B作为第二接入点执行步骤907;或者,
若AP C确定自身接收到的数据包的信号强度最大,AP C向物联网设备发送第一确认消息,即由AP C作为第二接入点执行步骤907。
步骤906、第一接入点向物联网设备发送第一确认消息。
步骤907、第二接入点向物联网设备发送第一确认消息。
本申请的实施例提供的基于物联网的通信方法,在物联网设备发生移动,但未移出原始关联的AP的覆盖范围的情况下,物联网设备原始关联的AP仍可以与物联网设备直接进行通信,或者该AP可以选取协作集中接收到的物联网设备的数据包的信号强度最好的其他AP与物联网设备进行通信,可以保证物联网设备移动过程中的通信质量。
可选地,结合图8所示的实施场景,在本申请的实施例的另一种实现方式中,物联网设备可在向第一接入点发送的数据包中携带用于通知AP采用BAR机制进行响应的指示信息,第一接入点接收到数据包后不立刻回复ACK消息,在第一接入点接收到来自物联网设备的BAR消息后,若BAR消息携带的指示信息指示请求获取的确认消息类型为ACK,再向物联网设备回复ACK消息。或者,若BAR消息携带的指示信息指示请求获取的确认消息类型为BA,则第一接入点向物联网设备回复BA消息。
或者,结合图9,在第一接入点或第二接入点确定向物联网设备回复确认消息时,暂缓回复,待接收到BAR消息后,根据BAR消息向物联网设备回复BA消息或ACK消息。
在另一种可能的实现方式中,结合图8所示的实施场景,对本申请实施例中的下行数据传输方法进行说明,如图10所示,该方法包括:
步骤1001、在第一接入点确定向物联网设备发送下行数据时,第一接入点向物联网设备发送业务指示信息。相应地,物联网设备接收来自第一接入点的业务指示信息。
其中,第一接入点为与物联网设备关联的接入点,例如可以为图8中的AP A。
其中,本步骤中的业务指示信息与步骤701中的业务指示信息相同,可参考步骤701中的相关描述,此处不再赘述。
步骤1002、物联网设备向第一接入点发送节能轮询帧。相应地,第一接入点接收来自物联网设备的节能轮询帧。
步骤1003、第一接入点向物联网设备发送下行数据。相应地,物联网设备接收来 自物联网设备的下行数据。
步骤1004、物联网设备向第一接入点发送ACK消息。
上述主要从接入点与物联网设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,接入点与物联网设备为了实现上述功能,包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对接入点和物联网设备等进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图11示出了本发明实施例中提供的一种装置的示意性框图。该装置可以以软件的形式存在,也可以为接入点,还可以为接入点中的芯片。该装置1100包括:接收单元1101、发送单元1102和处理单元1103。
在一种可能的实现方式中,装置1100可以为上文所述的第一接入点或第一接入点中的芯片。其中,接收单元1101,用于支持装置1100执行图4中的步骤403、图7中的步骤705、图9中的步骤901、902和903,图10中的步骤1002和1004。发送单元1102用于支持装置1100执行图4中的步骤404,图7中的步骤701和707,图9中的步骤904和步骤906,图10中的步骤1001和步骤1003。处理单元1103可以支持装置1100执行上述方法示例中由第一接入点完成的动作。
在另一种可能的实现方式中,装置1100可以为上文所述的第二接入点或第二接入点中的芯片。其中,接收单元1101,用于支持装置1100执行图4中的步骤401、402、404、406,图7中的步骤701、704、709,图9中的步骤901、902和905。发送单元1102用于支持装置1100执行图4中的步骤403、405、407,图7中的步骤703、705、706、708、710。处理单元1103可以支持装置1100执行上述方法示例中由第二接入点完成的动作,例如图7中的步骤702等。
可选地,装置1100还可以包括存储单元1104,用于存储装置1100的程序代码和数据。
其中,上述方法实施例涉及的各步骤的所有相关内容均可援引到对应功能模块的功能描述,在此不再赘述。
其中,处理单元1103可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容 所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。接收单元1101和发送单元1102,可以是通信接口,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。例如,在装置1100为第一接入点的情况下,该通信接口可以包括:第一接入点与同一协作集中其他接入点之间的接口、第一接入点与物联网设备之间的接口和/或其他接口。又例如,在装置1100为第二接入点的情况下,该通信接口可以包括第二接入点与同一协作集中其他接入点之间的接口、第一接入点与物联网设备之间的接口和/或其他接口。存储单元1104可以是存储器。
当处理单元1103为处理器,接收单元1101和发送单元1102为通信接口,存储单元1104为存储器时,本申请实施例所涉及的装置1100的结构可以是如图12所示的接入点的结构。
图12示出了本申请实施例提供的接入点的一种可能的结构示意图。
如图12所示,该接入点1200包括:处理器1202、通信接口1203、存储器1201。可选的,接入点1200还可以包括总线1204。其中,通信接口1203、处理器1202以及存储器1201可以通过总线1204相互连接;总线1204可以是PCI总线或EISA总线等。所述总线1204可以分为地址总线、数据总线、控制总线等。为便于表示,图12中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
图12所述的接入点可以是上文所述的第一接入点,或者可以是上文所述的第二接入点。
在采用对应各个功能划分各个功能模块的情况下,图13示出了本发明实施例中提供的一种装置的示意性框图。该装置可以以软件的形式存在,也可以为物联网设备,还可以为物联网设备中的芯片.装置1300包括:接收单元1301、发送单元1302和处理单元1303。
其中,接收单元1301,用于支持装置1300执行图4中的步骤405和407,图7中的步骤703、706、708、710,图9中的步骤904、906、907,以及图10中的步骤1001和1003。发送单元1302,用于支持装置1300执行步骤图4中的步骤401,图7中的步骤704,图9中的步骤901,以及图10中的步骤1002和步骤1004。处理单元1304可以支持装置1300执行上述方法示例中由物联网设备完成的动作。
可选地,装置1300还可以包括存储单元1304,用于存储装置1300的程序代码和数据。
其中,上述方法实施例涉及的各步骤的所有相关内容均可援引到对应功能模块的功能描述,在此不再赘述。
其中,处理单元1303可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。接收单元1301 和发送单元1302,可以是通信接口,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。例如,该通信接口可以包括:物联网设备与第一接入点之间的接口、物联网设备与第二接入点之间的接口和/或其他接口。存储单元1304可以是存储器。
当处理单元1303为处理器,接收单元1301和发送单元1302为通信接口,存储单元1304为存储器时,本申请实施例所涉及的装置1300的结构可以是如图14所示的物联网设备的结构。
图14示出了本申请实施例提供的物联网设备的一种可能的结构示意图。
如图14所示,该物联网设备1400包括:处理器1402、通信接口1403、存储器1401。可选的,接入点1400还可以包括总线1404。其中,通信接口1403、处理器1402以及存储器1401可以通过总线1404相互连接;总线1404可以是PCI总线或EISA总线等。所述总线1404可以分为地址总线、数据总线、控制总线等。为便于表示,图14中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网设备或终端中。当然,处理器和存储介质也可以作为分立组件存在于核心网设备或终端中。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出 贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种基于物联网的通信方法,其特征在于,包括:
    第二接入点接收来自物联网设备的数据包,所述数据包携带接入点协作集的标识,所述接入点协作集中至少包括第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    所述第二接入点向所述物联网设备发送确认消息;或者,
    所述第二接入点向所述第一接入点发送所述数据包和所述第二接入点接收到的所述数据包的信号强度。
  2. 根据权利要求1所述的基于物联网的通信方法,其特征在于,在所述第二接入点向所述物联网设备发送确认消息之前,还包括:
    所述第二接入点接收来自所述接入点协作集中的其他接入点的所述数据包和各接入点接收到的所述数据包的信号强度。
  3. 根据权利要求2所述的基于物联网的通信方法,其特征在于,所述第二接入点向所述物联网设备发送确认消息,包括:
    若所述第二接入点确定自身接收到的所述数据包的信号强度大于所述接入点协作集中的其他接入点接收到的所述数据包的信号强度,则所述第二接入点向所述物联网设备发送所述确认消息。
  4. 根据权利要求1所述的基于物联网的通信方法,其特征在于,在所述第二接入点向所述第一接入点转发所述数据包和所述第二接入点接收到的所述数据包的信号强度之后,还包括:
    所述第二接入点接收来自所述第一接入点的指示信息,所述指示信息用于指示所述第二接入点回传所述确认消息;
    所述第二接入点向所述物联网设备发送所述确认消息。
  5. 一种基于物联网的通信方法,其特征在于,包括:
    第二接入点接收来自第一接入点的第一指示信息,所述第一指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,所述接入点协作集中至少包括所述第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    所述第二接入点向所述物联网设备发送所述第一指示信息。
  6. 根据权利要求5所述的基于物联网的通信方法,其特征在于,在所述第二接入点向所述物联网设备发送所述第一指示信之后,还包括:
    所述第二接入点接收来自所述物联网设备的节能轮询帧;
    所述第二接入点向所述第一接入点发送所述节能轮询帧和所述第二接入点接收到的所述节能轮询帧的信号强度;
    所述第二接入点向所述物联网设备发送确认消息。
  7. 根据权利要求6所述的基于物联网的通信方法,其特征在于,在所述第二接入点向所述第一接入点发送所述节能轮询帧和所述第二接入点接收到的所述节能轮询帧的信号强度之后,还包括:
    所述第二接入点接收来自所述第一接入点的第二指示信息,所述第二指示信息用于指示所述第二接入点向所述物联网设备发送下行数据。
  8. 一种基于物联网的通信方法,其特征在于,包括:
    第一接入点接收来自接入点协作集中的各接入点的数据包和各接入点接收到的所述数据包的信号强度,所述接入点协作集中至少包括所述第一接入点和第二接入点, 所述第一接入点为所述物联网设备初始关联的接入点;
    所述第一接入点向所述第二接入点发送指示信息,其中,所述指示信息用于指示所述第二接入点向所述物联网设备回传确认消息。
  9. 根据权利要求8所述的基于物联网的通信方法,其特征在于,所述第二接入点接收到的所述数据包的信号强度大于所述接入点协作集中的其他接入点接收到的数据包的信号强度。
  10. 一种基于物联网的通信方法,其特征在于,包括:
    在第一接入点确定向物联网设备发送下行数据时,所述第一接入点向第二接入点发送第一指示信息,所述第一指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,所述接入点协作集中至少包括所述第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    所述第一接入点接收来自所述接入点协作集中的各接入点的节能轮询帧和各接入点接收到所述节能轮询帧的信号强度;
    所述第一接入点向所述第二接入点发送第二指示信息,其中,所述第二指示信息用于指示所述第二接入点向所述物联网设备发送下行数据。
  11. 根据权利要求10所述的基于物联网的通信方法,其特征在于,所述第二接入点接收到的所述节能轮询帧的信号强度大于所述接入点协作集中的其他接入点接收到的数据包的信号强度。
  12. 一种基于物联网的通信方法,其特征在于,包括:
    物联网设备发送数据包,所述数据包携带接入点协作集的标识,所述接入点协作集中至少包括第一接入点和第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    所述物联网设备接收来自所述第二接入点的确认消息。
  13. 一种基于物联网的通信方法,其特征在于,包括:
    物联网设备接收来自第二接入点的指示信息,所述指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,所述接入点协作集中至少包括第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    所述物联网设备根据所述业务指示信息发送节能轮询帧;
    所述物联网设备接收来自所述第二接入点的确认消息。
  14. 一种应用于第二接入点的通信装置,其特征在于,包括:
    接收单元,用于接收来自物联网设备的数据包,所述数据包携带接入点协作集的标识,所述接入点协作集中至少包括第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    发送单元,用于向所述物联网设备发送确认消息;或者,用于向所述第一接入点发送所述数据包和所述接收单元接收到的所述数据包的信号强度。
  15. 根据权利要求14所述的应用于第二接入点的通信装置,其特征在于,
    所述接收单元,还用于接收来自所述接入点协作集中的其他接入点的所述数据包和各接入点接收到的所述数据包的信号强度。
  16. 根据权利要求15所述的应用于第二接入点的通信装置,其特征在于,所述接入点还包括处理单元;
    所述处理单元,用于确定所述接收单元接收到的所述数据包的信号强度是否大于所述接入点协作集中的其他接入点接收到的所述数据包的信号强度;
    所述发送单元,还用于若所述处理单元确定所述接收单元接收到的所述数据包的信号强度大于所述接入点协作集中的其他接入点接收到的所述数据包的信号强度,则 向所述物联网设备发送所述确认消息。
  17. 根据权利要求14所述的应用于第二接入点的通信装置,其特征在于,
    所述接收单元,还用于接收来自所述第一接入点的指示信息,所述指示信息用于指示所述发送单元回传所述确认消息;
    所述发送单元,还用于向所述物联网设备发送所述确认消息。
  18. 一种应用于第二接入点的通信装置,其特征在于,包括:
    接收单元,用于接收来自第一接入点的第一指示信息,所述第一指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,所述接入点协作集中至少包括所述第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    发送单元,用于向所述物联网设备发送所述接收单元接收到的所述第一指示信息。
  19. 根据权利要求18所述的应用于第二接入点的通信装置,其特征在于,
    所述接收单元,还用于接收来自所述物联网设备的节能轮询帧;
    所述发送单元,还用于向所述第一接入点发送所述节能轮询帧和所述接收单元接收到的所述节能轮询帧的信号强度;还用于向所述物联网设备发送确认消息。
  20. 根据权利要求19所述的应用于第二接入点的通信装置,其特征在于,
    所述接收单元,用于接收来自所述第一接入点的第二指示信息,所述第二指示信息用于指示所述发送单元向所述物联网设备发送下行数据。
  21. 一种应用于第一接入点的通信装置,其特征在于,包括:
    接收单元,用于接收来自接入点协作集中的各接入点的数据包和各接入点接收到的所述数据包的信号强度,所述接入点协作集中至少包括所述第一接入点和第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    发送单元,用于向所述第二接入点发送指示信息,其中,所述指示信息用于指示所述第二接入点向所述物联网设备回传确认消息。
  22. 根据权利要求21所述的应用于第一接入点的通信装置,其特征在于,所述第二接入点接收到的所述数据包的信号强度大于所述接入点协作集中的其他接入点接收到的数据包的信号强度。
  23. 一种应用于第一接入点的通信装置,其特征在于,包括:发送单元、接收单元和处理单元;
    所述发送单元,用于在所述处理单元确定向所述物联网设备发送下行数据时,向第二接入点发送第一指示信息,所述第一指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,所述接入点协作集中至少包括所述第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    所述接收单元,用于接收来自所述接入点协作集中的各接入点的节能轮询帧和各接入点接收到所述节能轮询帧的信号强度;
    所述发送单元,还用于向所述第二接入点发送第二指示信息,其中,所述第二指示信息用于指示所述第二接入点向所述物联网设备发送下行数据。
  24. 根据权利要求23所述的应用于第一接入点的通信装置,其特征在于,所述第二接入点接收到的所述节能轮询帧的信号强度大于所述接入点协作集中的其他接入点接收到的数据包的信号强度。
  25. 一种应用于物联网设备的通信装置,其特征在于,包括:
    发送单元,用于发送数据包,所述数据包携带接入点协作集的标识,所述接入点协作集中至少包括第一接入点和第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    接收单元,用于接收来自所述第二接入点的确认消息。
  26. 一种应用于物联网设备的通信装置,其特征在于,包括:
    接收单元,用于接收来自第二接入点的指示信息,所述指示信息用于指示接入点协作集服务的各物联网设备是否存在待接收的下行数据,所述接入点协作集中至少包括第一接入点和所述第二接入点,所述第一接入点为所述物联网设备初始关联的接入点;
    发送单元,用于根据所述接收单元接收到的所述业务指示信息发送节能轮询帧;
    所述接收单元,还用于接收来自所述第二接入点的确认消息。
  27. 一种应用于第二接入点的通信装置,其特征在于,所述应用于第二接入点的通信装置包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于执行存储器中的指令以配置所述第一接入点执行权利要求1至7中任一项所述的基于物联网的通信方法。
  28. 一种应用于第一接入点的通信装置,其特征在于,所述应用于第一接入点的通信装置包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于执行存储器中的指令以配置所述第一接入点执行权利要求8至11中任一项所述的基于物联网的通信方法。
  29. 一种应用于物联网设备的通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序指令,所述处理器用于执行存储器中的指令以配置所述第一接入点执行权利要求12或13所述的基于物联网的通信方法。
  30. 一种计算机存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被计算机执行时,使得所述计算机实现权利要求1-13中任一项所述的基于物联网的通信方法。
  31. 一种装置,其特征在于,用于实现权利要求1至13中任一项所述的基于物联网的通信方法。
PCT/CN2018/117524 2018-03-02 2018-11-26 一种基于物联网的通信方法及装置 WO2019165808A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/007,424 US11316630B2 (en) 2018-03-02 2020-08-31 Internet of things-based communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810175072.8A CN110225557B (zh) 2018-03-02 2018-03-02 一种基于物联网的通信方法及装置
CN201810175072.8 2018-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/007,424 Continuation US11316630B2 (en) 2018-03-02 2020-08-31 Internet of things-based communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2019165808A1 true WO2019165808A1 (zh) 2019-09-06

Family

ID=67804808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117524 WO2019165808A1 (zh) 2018-03-02 2018-11-26 一种基于物联网的通信方法及装置

Country Status (3)

Country Link
US (1) US11316630B2 (zh)
CN (1) CN110225557B (zh)
WO (1) WO2019165808A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112672399A (zh) * 2019-10-15 2021-04-16 杭州萤石软件有限公司 一种无线接入设备组网中的终端接入方法、装置
CN113872739A (zh) * 2020-06-30 2021-12-31 华为技术有限公司 一种数据传输方法以及相关设备
US11950318B2 (en) * 2021-12-14 2024-04-02 Aeris Communications, Inc. Intelligent mechanism to identify and manage cost of IoT device lifecycle
CN114938529B (zh) * 2022-07-25 2022-11-11 成都伍零三科技集团有限公司 一种数据传输方法、系统、电子设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951036A (zh) * 2004-05-07 2007-04-18 Lg电子株式会社 通过推迟ip地址建立执行切换
CN103298064A (zh) * 2012-03-02 2013-09-11 华为终端有限公司 下行数据传输方法及相关设备和通信系统
CN104023312A (zh) * 2014-06-16 2014-09-03 北京傲天动联技术股份有限公司 接入网络的方法、装置及系统
CN104902537A (zh) * 2014-03-07 2015-09-09 中国移动通信集团公司 一种无线接入点ap确定方法、装置及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418264B2 (en) 2004-05-07 2008-08-26 Lg Electronics Inc. Performing handover by deferring IP address establishment
AU2005274003B2 (en) * 2004-08-12 2009-03-05 Interdigital Technology Corporation Method and system for controlling access to a wireless communication medium
US7720038B2 (en) * 2006-03-22 2010-05-18 Broadcom Corporation Cell network selectively applying proxy mode to minimize power
US20100141400A1 (en) * 2008-11-19 2010-06-10 Qualcomm Incorporated Lower power discovery and wake up using service set identifier probabilistic scanning synchronization verification and optional sensor
CN103259878B (zh) * 2013-04-18 2015-09-30 山东省计算中心(国家超级计算济南中心) 一种针对无线局域网特定目标用户的mac地址捕获方法
US9854520B2 (en) * 2015-01-20 2017-12-26 Intel IP Corporation Power saving channel access for wireless devices in dense wireless networks
US9954956B2 (en) * 2015-08-26 2018-04-24 Intel IP Corporation Secure discovery and connection to internet of things devices in a wireless local-area network
US20170188242A1 (en) * 2015-12-23 2017-06-29 Intel IP Corporation Method and apparatus for IoT device clustering
CN107040356B (zh) * 2016-02-04 2021-01-26 中兴通讯股份有限公司 无线局域网中协作传输的方法及装置
CN107872838B (zh) * 2016-09-27 2021-09-21 华为技术有限公司 中继指示方法及接入点ap
US10702912B2 (en) * 2016-11-09 2020-07-07 Intai Technology Corp. Composite manufacturing method with extruding and turning processes
US10091796B2 (en) * 2016-12-30 2018-10-02 Intel Corporation Communication method and system
US10455484B2 (en) * 2017-02-28 2019-10-22 Qualcomm Incorporated Methods and systems for access point clustering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1951036A (zh) * 2004-05-07 2007-04-18 Lg电子株式会社 通过推迟ip地址建立执行切换
CN103298064A (zh) * 2012-03-02 2013-09-11 华为终端有限公司 下行数据传输方法及相关设备和通信系统
CN104902537A (zh) * 2014-03-07 2015-09-09 中国移动通信集团公司 一种无线接入点ap确定方法、装置及系统
CN104023312A (zh) * 2014-06-16 2014-09-03 北京傲天动联技术股份有限公司 接入网络的方法、装置及系统

Also Published As

Publication number Publication date
US20200403744A1 (en) 2020-12-24
CN110225557B (zh) 2022-04-22
US11316630B2 (en) 2022-04-26
CN110225557A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
WO2019165808A1 (zh) 一种基于物联网的通信方法及装置
CN109392004B (zh) 通信方法、基站、终端设备和系统
WO2018053852A1 (zh) 无线承载的配置方法、装置及系统
US10674410B2 (en) Handover method and system, and apparatus
US9432872B2 (en) Systems and methods for direct link communication with multi-channel concurrency
US20170215122A1 (en) Apparatus and method for routing data packet to user equipment in lte-wlan aggregation system
EP3461308B3 (en) Systems and methods of handing over a wireless device
US20220394459A1 (en) Communications method and apparatus
US8971229B1 (en) Systems and methods for WLAN power management
US9813988B2 (en) Method and device for data transmission in wireless local area network
JP2019514241A (ja) 上りリンク送信方法、関係するデバイス及びシステム
WO2018233665A1 (zh) 一种信息交互方法、第一基站、第二基站和移动通信终端
CN112351460B (zh) 数据传输方法及相关设备
US9521619B2 (en) Systems and methods for implementing WLAN power saving using an alternate wireless protocol
US20230099586A1 (en) Communication method and related apparatus
US20220330203A1 (en) Data Transmission Method and Apparatus
CN108702704B (zh) 一种唤醒无线设备的方法及设备
EP3780791A1 (en) Paging method, network device and terminal device
CN112351480B (zh) 一种通信方法及装置
WO2022193304A1 (zh) 无线通信的方法和设备
CN113810964B (zh) 一种通信方法及设备
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
CN109548142B (zh) 一种寻呼方法、装置及系统
EP4024952A1 (en) Communication method and apparatus
CN113316202A (zh) 一种切换方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908175

Country of ref document: EP

Kind code of ref document: A1