WO2019165637A1 - 风电场群有功功率的控制方法及装置 - Google Patents

风电场群有功功率的控制方法及装置 Download PDF

Info

Publication number
WO2019165637A1
WO2019165637A1 PCT/CN2018/077864 CN2018077864W WO2019165637A1 WO 2019165637 A1 WO2019165637 A1 WO 2019165637A1 CN 2018077864 W CN2018077864 W CN 2018077864W WO 2019165637 A1 WO2019165637 A1 WO 2019165637A1
Authority
WO
WIPO (PCT)
Prior art keywords
active power
wind farm
priority
wind
commanded
Prior art date
Application number
PCT/CN2018/077864
Other languages
English (en)
French (fr)
Inventor
王靖然
翟丙旭
孙荣富
蓝海波
王若阳
丁然
徐海翔
梁志峰
伦涛
鲁宗相
徐忱
舒力
沈宇
邬小波
Original Assignee
国网冀北电力有限公司
国家电网有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网冀北电力有限公司, 国家电网有限公司, 清华大学 filed Critical 国网冀北电力有限公司
Priority to BR112018072366-5A priority Critical patent/BR112018072366B1/pt
Priority to US16/090,677 priority patent/US11451066B2/en
Priority to PCT/CN2018/077864 priority patent/WO2019165637A1/zh
Publication of WO2019165637A1 publication Critical patent/WO2019165637A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/48Controlling the sharing of the in-phase component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/103Purpose of the control system to affect the output of the engine
    • F05B2270/1033Power (if explicitly mentioned)
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Definitions

  • the embodiments of the present application relate to a control technology for active power of a wind farm group, for example, a method and a device for controlling active power of a wind farm group.
  • the relevant control method is to reserve a certain safety margin according to the grid's capacity, and then limit the wind to each wind farm in different time periods, so that each wind farm is in The active power in one period remains unchanged.
  • the active power of each wind farm is fixed in a period of time, cannot be quickly adjusted following the grid's ability to dissipate, and the power generation sequence of the wind farm is not considered, so that the power generation capability of the wind farm cannot be fully utilized.
  • the present application provides a method and a device for controlling the active power of a wind farm group, so as to quickly adjust the active power of the wind farm according to the capacity of the grid to fully utilize the power generation capability of each wind farm.
  • the embodiment of the present application provides a method for controlling active power of a wind farm group, where the wind farm group includes m priority wind farms, where m is a positive integer, and the control method includes:
  • the commanded active power of the wind farm in each priority is determined according to the order of priority from high to low;
  • the actual active power of the wind farm within each priority is controlled according to the commanded active power.
  • the embodiment of the present application further provides a control device for active power of a wind farm group, where the wind farm group includes m wind farms with multiple priorities, wherein m is a positive integer, and the control device includes:
  • the target active power determination module of the wind farm group is set to monitor the grid consumption capacity in real time, and determine the target active power of the wind farm group according to the grid capacity;
  • the commanded active power calculation module is configured to determine the commanded active power of the wind farm in each priority according to the target active power of the wind farm group according to the order of priority from high to low;
  • the control module is configured to control the actual active power of the wind farm within each priority according to the commanded active power.
  • the method and device for controlling the active power of a wind farm group determine the target active power of the wind farm group according to the real-time detected power grid capacity by dividing the wind farm into different priorities; and then according to the wind farm The target active power of the group determines the commanded active power of the wind farm in each priority according to the order of priority from high to low; finally, the actual active power of the wind farm in each priority is controlled according to the commanded active power.
  • the technical solution provided by the embodiment of the present application realizes fast control and adjustment of the active power of each wind farm according to the real-time monitored power consumption capability; and when controlling and adjusting the active power of each wind farm, Each wind farm is prioritized to take full advantage of the power generation capacity of each wind farm. The problem that the power generation capability of the wind farm cannot be fully utilized is solved.
  • Embodiment 1 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 1.
  • FIG. 2 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 2.
  • Embodiment 3 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 3.
  • FIG. 4 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 4.
  • FIG. 5 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 5.
  • FIG. 6 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 6.
  • FIG. 7 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 7.
  • FIG. 8 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 8.
  • Embodiment 1 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 1. This embodiment can be applied to the case where the active power of the wind farm group is controlled when the peak shaving is difficult, and the control method can be performed by the wind power group active power control device.
  • the wind farm group includes m priority wind farms, wherein m is a positive integer, and the above control method includes the following steps:
  • Step 100 Real-time monitoring the power consumption capacity of the power grid, and determining the target active power of the wind farm group according to the power consumption capacity of the power grid.
  • the general peak shaving unit has a gas turbine. Units and pumped storage units, etc.
  • the power grid has different ability to absorb new energy sources such as wind power, that is, when different power loads are used, the active power output from new energy power generation places such as wind power can be different.
  • the wind power group active power control device can monitor the grid consumption capacity in real time, and determine the target active power of the wind farm group according to the monitored grid capacity. For example, there is only one wind farm group in a certain regional power grid. When the grid capacity is 500 MW, the target active power of the wind farm group can be determined as 500 MW.
  • Step 200 Determine the commanded active power of the wind farm in each priority according to the target active power of the wind farm group according to the order of priority from high to low.
  • the wind farm group includes three priority wind farms, which are priority 1, priority 2, and priority 3.
  • the priority ranges from high to low in order of priority 1, priority 2, and priority 3.
  • the commanded active power of the wind farm within each priority is assigned in order of priority from high to low. It is assumed that under normal conditions, the total generating active power of all wind farms belonging to priority 1 can reach 300 MW, and the total generating active power of all wind farms belonging to priority 2 can reach 200 MW, and the total generating power of all wind farms belonging to priority 3 The active power can reach 100MW.
  • the commanded active power of all wind farms belonging to priority 1 can be determined as 300 MW, and the commanded active power of all wind farms belonging to priority 2 is 200 MW, which belongs to priority 3.
  • the commanded active power of all wind farms is 0 MW. Ensure that wind farms that are high priority give priority to generating electricity.
  • Step 300 Control the actual active power of the wind farm in each priority according to the commanded active power.
  • the wind power group active power control device controls the actual active power of the wind farm in each priority according to the commanded active power. For example, when it is determined that the commanded active power of all wind farms belonging to priority 1 is determined to be 300 MW, the commanded active power of all wind farms belonging to priority 2 is 200 MW, and the commanded active power of all wind farms belonging to priority 3 is 0 MW.
  • the control device issues the commanded active power to each priority wind farm, so that the actual active power of each wind farm approaches the commanded active power until the actual active power reaches the commanded active power value.
  • real-time monitoring of the grid consumption capability, and determining the target active power of the wind farm group according to the grid consumption capability may further include:
  • the priority of each wind farm is regularly updated, and the same priority includes n wind farms, wherein n is a positive integer.
  • the above steps clarify the priority of each wind farm in the wind farm group, and provide a basis for the active power allocation in each priority wind farm in the subsequent steps. It should be noted that the division of priorities should implement the national policy on the premise of ensuring the safe operation of the grid, and protect the legitimate rights and interests of each party according to the grid-connection scheduling agreement.
  • the active power control method of the wind farm group determines the target active power of the wind farm group according to the real-time detected grid capacity by dividing the wind farm into different priorities; and then according to the wind farm group The target active power determines the commanded active power of the wind farm in each priority according to the order of priority from high to low; finally, the actual active power of the wind farm in each priority is controlled according to the commanded active power.
  • the technical solution provided by the embodiment implements fast control and adjustment of the active power of each wind farm according to the real-time monitored power consumption capability; and when controlling and adjusting the active power of each wind farm, each The priority of the wind farms makes full use of the power generation capacity of each wind farm, which solves the problem that the power generation capacity of the wind farm cannot be fully utilized.
  • FIG. 2 is a flowchart of a method for controlling active power of a wind farm group according to the second embodiment.
  • the present embodiment provides an optional control of active power of a wind farm group based on the technical solution of the first embodiment.
  • the control method is performed by a control device for active power of the wind farm group.
  • step 100 provided in the foregoing Embodiment 1 includes:
  • Step 110 Real-time monitoring of the grid consumption capability, and determining the target active power of the wind farm group in the (t+1) period according to the grid consumption capacity at the end of the t period, where t takes a positive integer.
  • the wind power group active power control device monitors the grid consumption capability in real time, and calculates the target active power of the wind farm group every fixed time, and the fixed time can be regarded as one cycle. For example, if the target active power of the wind farm group is calculated every 5 minutes, then 5 minutes can be regarded as one cycle. For example, from 0:00 on a certain day to calculate the target active power of the wind farm group, then the 0:00-0:05 is regarded as the first cycle, and the second grid is determined according to the last monitored grid capacity of 0:05. The target active power of the wind farm group in the period 0:05-0:10.
  • determining the active power of the wind farm in each priority according to the target active power of the wind farm group according to the order of priority from high to low including:
  • Step 210 Set a target active power threshold. If the target active power of the wind farm group is less than or equal to the target active power threshold, the commanded active power of the wind farm in each priority is controlled to be equal to zero.
  • the target active power threshold can be set, for example, the target active power threshold is set to 1 MW. Then, when the target active power of the determined wind farm group is less than or equal to the target active power threshold of 1 MW, the control device determines that the wind farm group is The power of the commanded active power of each priority wind farm in the wind farm group is set to zero without generating electricity.
  • Step 220 If the target active power of the wind farm group is greater than the target active power threshold, calculate the commanded active power of each wind farm in each priority according to the following steps:
  • Step 221 For the i wind farm in the jth priority, calculate the command active power corresponding to the i wind farm according to the following formula (1):
  • the initial commanded active power of the i wind farm within the j priority within the (t+1) period The actual active power of the i wind farm within the j priority at the end of the t period; the instruction step size of the i wind farm within the jth priority of ⁇ P i , and Nj represents the jth priority.
  • the command step size ⁇ P i of the i wind farm in the jth priority described above can be determined based on the installed capacity. The following schemes are all described with the installed capacity value of the command step size ⁇ P i equal to 10%.
  • wind farms A and B belong to the first priority
  • wind farms C, D, and E belong to the first 2 priority
  • wind farms F and G belong to the third priority.
  • the order of priority from high to low is the first priority, the second priority, and the third priority.
  • the target active power of the wind farm group is greater than the target active power threshold, as shown in Table 1, for the A wind farm in the first priority, calculate each wind farm in each priority according to formula (1).
  • the initial commanded active power of each of the other wind fields can be calculated, as shown in Table 1.
  • Step 222 After calculating the initial commanded active power of all the wind farms in one priority, calculate the remaining target active power of the priority wind farm after the priority according to the following formula (2):
  • the remaining target active power of the priority wind farm after j priority For the target active power of the wind farm group, The sum of the initial commanded active powers of all wind farms before the jth priority and the jth priority.
  • the second priority after the first priority is calculated according to formula (2).
  • the second calculation is performed according to the formula (2).
  • Step 223 Remaining target active power of the priority wind farm after j priority
  • the sum of the initial commanded active power of each wind farm with (j+1) priority Compare, if The commanded active power of the wind farm after the (j+1)th priority is controlled to be 0; the first commanded active power of each wind farm in the (j+1)th priority is determined by the following formula:
  • the first command active power of the i wind farm within the (j+1)th priority The initial command active power for the i wind farm within the (j+1) priority; The sum of the active powers of the initial command for all wind farms in the (j+1) priority; The remaining target active power of the priority wind farm after j priority.
  • the remaining target active power of the second priority and the third priority wind farm after the first priority is calculated to be 325 MW
  • the remaining target active power of the second priority and the third priority wind farm is 325 MW and the 1
  • the priority of the next priority ie, the 2nd priority
  • the commanded active power of the wind farm in the third priority is re-determined to 0, covering the corresponding initial command active power, that is, the commanded active powers 73 and 95 of the F and G wind farms calculated according to formula (1) are updated to 0.
  • the first commanded active power of each wind farm in the second priority is determined according to formula (3).
  • the first commanded active power of the C wind farm in the second priority Similarly, it can be determined that the first commanded active powers of the D wind farm and the E wind farm in the second priority are 54.2 MW and 162.5 MW, respectively.
  • Step 224 Control the jth priority and the j priority.
  • the active command of each wind farm in the prior priority is equal to the active power of the initial active command, and the commanded active power of each wind farm in the (j+1) priority is equal to the first
  • a command active power the formula is as follows:
  • the C, D, and E wind farms in the second priority are calculated according to Formula 1.
  • the instruction output power is available.
  • the commanded active power of each wind farm after the operation according to steps 221 to 224 is obtained as shown in Table 2.
  • the wind farm group includes a wind farm that does not have an upward adjustment capability
  • the active power of the wind farm according to the target of the wind farm group determines the commanded active power of the wind farm in each priority according to the order of priority from high to low, and further includes: A fixed command active power is issued for a wind farm that does not have an upward adjustment capability.
  • the main models are squirrel cage asynchronous fans, which do not have the ability to continuously adjust active power; some newly built wind farms are in the stage of grid connection commissioning, and the active control system is not put into use.
  • the above two types of wind farms do not have the ability to up-regulate active power, and issue fixed commanded active power to them.
  • the control method further includes:
  • Step 225 Repeat steps 221 to 224 until the remaining target active power of the priority wind farm after a certain priority is less than the sum of the commanded active powers of each wind farm in the next priority of the priority.
  • the target active power of the wind farm group is constant within a plurality of cycles, it is assumed that after the t period, the target active power in the five consecutive cycles is 750 MW, then in the t+1 period, according to the above formula (1) and formula (2), the initial command active power of the A and B wind farms in the first priority is 35MW and 140MW respectively; the initial command active power of the C, D and E wind farms in the second priority is 112MW respectively. , 56MW, 168MW; the initial command active power of the F and G wind farms in the third priority is 73MW and 95MW respectively.
  • the remaining target active power of the second priority and the third priority after the first priority is 575 MW, and the remaining target active power of the third priority after the second priority is 239 MW.
  • the target active power cannot be used up by each wind farm, and the control device sends an active command to each wind farm according to the initial command active power of each wind farm in the t+1 cycle.
  • the active power of the command is continuously adjusted according to the formula (1) in the t+2 cycle, and the corresponding step active power is added to each wind farm, for example,
  • the initial command active power in the t+2 period is 160, 124, 62, 186, 81, and 105, and the remaining target active power corresponding to the second priority and the third priority after the first priority is calculated according to the formula (2).
  • Step 300 Control the actual active power of the wind farm in each priority according to the commanded active power. This step is the same as the steps in the first embodiment, and details are not described herein again.
  • control device issues a command active power.
  • each wind farm adjusts the actual active power once according to the commanded active power.
  • the actual active power of each wind farm is directly controlled according to the commanded active power calculated in steps 221-224 in each period.
  • the active power of each wind farm in each priority level is adjusted according to the instruction step size according to the order of priority from high to low, The smooth adjustment of the active power in the wind farm makes the active power of each wind farm change after the grid's capacity is determined.
  • the power generation capacity of each wind farm is fully utilized.
  • Embodiment 3 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 3. This embodiment is based on the above embodiments, and provides a control method for active power of a wind farm group.
  • each priority corresponds to a section
  • the control method further includes:
  • wind farm group includes a section with a section limit
  • Step 2220 If the commanded active power of each wind farm in the jth priority is greater than the section limit in the priority, calculate the second command active power of each wind farm in the priority according to the following formula (4):
  • the second command active power of the i wind farm within the jth priority The commanded active power of the i wind farm within the jth priority calculated according to steps 1 to 4; Is the sum of the commanded active powers of all wind farms in the jth priority, P j,lim is the section limit in the jth priority;
  • the commanded active power of the i wind farm in the jth priority is updated.
  • determining the active power of the wind farm in each priority according to the target active power of the wind farm group according to the priority from high to low further comprising:
  • the target active power of the wind farm group in the (t+1) period is compared with the sum of the limits of each section in descending order of priority, when ( The target active power of the wind farm group in the t+1) period is greater than the sum of the j-th priority and the j-th priority before the j-th priority and less than or equal to the j+1-th priority and the j+1-priority
  • the commanded active power of the first priority to the jth priority is clamped to the section limit corresponding to each priority, and the remaining target of the priority wind farm after the priority of j is calculated according to the following formula Active power:
  • M' is a set of sections having all the upward adjustment capabilities
  • M" is a set of sections having no upward adjustment capability
  • the control method provided in this embodiment will be described by taking the wind farm group assembled by the 7 wind farm as an example.
  • the basic information such as the section limit and installed capacity are shown in Table 4.
  • the wind farms A and B are sent through the section 1, and the 40% power generation capacity is limited by the section limit; the wind farms C, D, and E are sent through the section 2, 17
  • the % capacity is limited, and it is assumed that the C wind farm is a wind farm that has not been put into the active control system; the wind farms F and G are sent through the section 3, and are not limited.
  • the priority order is set to: section 1 ⁇ section 2 ⁇ section 3; the wind farm command step is 10% installed capacity.
  • the actual active power of the wind farm increases by more than half a step in the t period, it is determined to have an upward adjustment capability in the (t+1) period.
  • the control method is implemented as follows: At the end of the t-th cycle, the total active power of all wind farms is 600MW, and the t+1 time is limited by the peak-shaving limit.
  • the total power of wind power is 300MW, that is, the target active power of the wind farm group is 300MW.
  • the commanded active power of the wind farm C is calculated to be 50 MW.
  • the target active power of section 1 is
  • the target active power of section 2 can be calculated as
  • the initial command active power of C, D, E wind farms in section 2 is 50MW, 56MW, 168MW, respectively, and the sum of 274MW is greater than 100MW, indicating that the remaining peaking target active power will be used in this priority.
  • the first commanded active power of the wind farms D and E is obtained according to formula (3):
  • the command for each stage of the wind farm is 0:
  • the peaking target value of the grid starting from the (t'+1) period is raised from 300MW at the end of the t' period to 500MW, that is, the target active power of the wind farm group is increased from 300MW to 500MW.
  • the fixed command of the wind farm C is adjusted to 100 MW at this time.
  • the sections 1, 2, and 3 have the upward adjustment capability, and the target active power increase threshold is 100 MW. According to the above conditions, versus The difference is 200 MW, which is greater than the target active power increase threshold and takes 100 MW. According to the above step 200, it is known
  • the target active power of section 1 is the section limit
  • the target active power of section 2 is the section limit
  • the initial commanded active power of the wind farms D and E can be obtained from equation (1).
  • the active command will always be adjusted up according to equation (2) until section 2 reaches the limit.
  • the target active power of section 3 can be obtained from equation (5)
  • the active command will always be adjusted up according to equation (2) until the target active power is used up.
  • the active power of the t'+1 cycle command obtained after calculation according to the above method is as shown in Table 4.
  • control method further includes:
  • Step 230 Acquire real-time active power of each wind farm in each priority in real time; if the sum of actual active powers of each wind farm in all priorities is greater than the target active power of the wind farm group, calculate according to the following formula (6) The commanded active power of each wind farm:
  • the fourth command active power for the i wind farm The actual active power of the i wind farm; The sum of the actual active power of the wind farm group; The target active power for the wind farm group;
  • the commanded active power of each wind farm of the wind farm group is updated.
  • the actual active powers of A, B, C, D, E, F, and G in the wind farm group are 32MW, 125MW, 100MW, 35MW, 95MW, 10MW, and 15MW, respectively.
  • the sum of the actual active power of the field is 520 MW, which is greater than the target active power of the wind farm group of 500 MW.
  • the commanded active power of the t'+1 period is recalculated according to the above formula (6), and is used as the fourth command active power. According to formula (6),
  • the fourth command active power of each of the other wind farms in the wind farm group can be calculated in turn, and the commanded active power of each wind farm in the period is calculated according to the fourth command active power update.
  • the control device sends a forced trigger command to each wind farm, so that each wind farm adjusts the actual active power according to the fourth command active power.
  • the threshold of the number of times the forced triggering command is issued may be set. When the threshold of the above-mentioned situation occurs within one cycle, the forced triggering command is not issued.
  • the control method of the active power of the wind farm group provided by the present embodiment considers the section limit of each priority corresponding section under the premise of considering the grid capacity of the grid, and realizes the wind power active under the joint action of the peak shaving constraint and the section constraint of the power grid. Coordinated control of power. Moreover, when the power consumption capacity of the power grid increases rapidly, the active power of the low-priority wind farm starts to increase after the active power of the high-priority wind farm is firstly raised, thereby avoiding the low priority when the power consumption of the power grid is rapidly increased. The wind farm quickly starts and stops the phenomenon of the fan.
  • the commanded active power is recalculated, and a forced trigger command is issued to each wind farm according to the commanded active power, thereby avoiding the wind farm when the wind is suddenly coming.
  • the total actual active power of the group is greater than the target active power of the wind farm group, and the difficulty of peak shaving is increased.
  • Embodiment 4 is a flow chart of a method for controlling active power of a wind farm group according to Embodiment 4. This embodiment provides another control method for the active power of the wind farm group based on the second embodiment.
  • some or all of the wind farms in the wind farm group may participate in the heating market transaction during the load period.
  • a wind farm participates in the low-temperature heating market-oriented transaction within the priority level, it must ensure that the trading power is prioritized, and at the same time, the growth of the wind power participating in the heating transaction must be reflected in the commanded output active power.
  • the command active power of each wind farm in each priority is determined according to the priority of the wind farm group according to the order of priority from high to low, include:
  • Step 310 Calculate the benchmark transaction power of the wind farm according to the total electricity amount and the hour of the load involved in the heating transaction of the wind farm participating in the low-temperature heating market transaction in the current month, and the formula is as follows:
  • Li represents the base transaction power of the current wind farm
  • Q i represents the total amount of electricity that the wind farm participates in the heating transaction in the current month
  • T represents the hour of the wind load in the current wind farm
  • the total heating capacity of the transaction is 3000MW
  • the trough hour is 150 hours, according to the formula (7).
  • Each wind farm participating in the heating transaction has a certain power supply index, which may be the active power of the wind farm participating in the heating transaction when the valley is low. Calculating the active power of the wind farm based on the power supply indicator includes the following steps:
  • Step 320 Calculate the third command active power of the wind farm participating in the low-temperature heating market transaction according to the following formula (8):
  • the third command active power for wind farms involved in the marketization of low valley heating The commanded active power calculated by the wind farms participating in the low-temperature heating market trading according to steps 1 to 4;
  • the information of the installed capacity of each wind farm and the like are shown in Table 5.
  • the wind farms A and B belong to the first priority
  • the wind farm C, D, and E belong to the second priority
  • the wind farms F and G belong to the third priority.
  • the order of priority from high to low is the first priority, the second priority, and the third priority.
  • the target active power of the power generation group in the (t+1) period is determined to be 500 MW according to the power consumption capacity at the end of the t period.
  • the commanded active power of each wind farm is as shown in the second embodiment. Table 2 in.
  • the allocated heating transaction index is 10MW.
  • the C wind farm participates in the heating transaction, and the allocated heating transaction index is 10MW, according to formula (8):
  • Step 330 Each priority corresponds to a section. If the wind farm group includes a section having a section limit, after calculating the commanded active power of each wind farm, perform the following operations:
  • the second commanded active power of each wind farm in the priority is calculated according to the following formula:
  • the second command active power of the i wind farm within the jth priority The commanded active power of the i wind farm within the jth priority calculated according to steps 1 to 4; Is the sum of the commanded active powers of all wind farms in the jth priority, P j,lim is the section limit in the jth priority;
  • the commanded active power of the i wind farm in the jth priority is updated.
  • Step 340 Calculate the commanded active power of the wind farm that does not participate in the low-temperature heating marketization transaction in each priority.
  • the target active power of a wind farm that does not participate in the market-oriented trading of low-temperature heating within the priority of the wind farm that participates in the market-oriented transaction of low-temperature heating The target active power of all wind farms within the priority of the wind farm that participates in the marketization of low-temperature heating market;
  • NL represents the set of wind farms that participate in the market-oriented trading of trough heating in the j priority.
  • the method for controlling the active power of the wind farm group considers not only the section limit of each priority corresponding section but also the wind power participation in the low-temperature heating market transaction under the premise of considering the grid capacity of the grid.
  • the wind farms participating in the heating transaction indicate the growth of the heating power after the active power is realized, and realize the coordinated control of the active power of the wind power under the combined action of the peak shaving constraint and the section constraint and the market transaction.
  • FIG. 5 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 5.
  • the control device may be implemented by the control method provided by any of the above embodiments, wherein the wind farm group comprises m wind farms with multiple priorities, wherein m is a positive integer, and the control device comprises:
  • the wind farm group target active power determining module 400 is configured to monitor the grid consumption capability in real time, and determine the target active power of the wind farm group according to the grid capacity;
  • the commanded active power calculation module 500 is configured to determine the commanded active power of the wind farm in each priority according to the target active power of the wind farm group according to the order of priority from high to low;
  • the control module 600 is configured to control the actual active power of the wind farm within each priority according to the commanded active power.
  • the active power control device of the wind farm group determines the target active power of the wind farm group according to the real-time detected power grid capacity by dividing the wind farm into different priorities; and then according to the wind farm group
  • the target active power determines the commanded active power of the wind farm in each priority according to the order of priority from high to low; finally, the actual active power of the wind farm in each priority is controlled according to the commanded active power.
  • the technical solution provided by the embodiment of the present application realizes fast control and adjustment of the active power of each wind farm according to the real-time monitored power consumption capability; and when controlling and adjusting the active power of each wind farm, Each wind farm has priority and makes full use of each wind farm to generate power. The problem that the power generation capability of the wind farm cannot be fully utilized is solved.
  • FIG. 6 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 6. This embodiment provides an optional control device for active power of a wind farm group based on the fourth embodiment.
  • the wind farm group target active power determining module 400 provided in the foregoing fourth embodiment is configured to:
  • the grid consumption capability is monitored in real time, and the target active power of the wind farm group in the (t+1) period is determined according to the grid consumption capacity at the end of the t period.
  • the commanded active power calculation module 500 provided in the foregoing Embodiment 3 includes:
  • the first commanded active power calculation sub-module 510 is configured to set a target active power threshold. If the target active power of the wind farm group is less than or equal to the target active power threshold, the commanded active power of the wind farm in each priority is equal to zero.
  • the commanded active power calculation module 500 provided in the foregoing third embodiment further includes:
  • the second command active power calculation sub-module 520 is configured to calculate the commanded active power of each wind farm in each priority level as follows if the target active power of the wind farm group is greater than the target active power threshold:
  • Step 1 For the i wind farm in the jth priority, calculate the initial commanded active power corresponding to the i wind farm according to the following formula:
  • the initial commanded active power of the i wind farm within the j priority within the (t+1) period The actual active power of the i wind farm within the j priority at the end of the t period;
  • ⁇ P i the command step size of the i wind farm within the jth priority, Nj represents the jth priority;
  • Step 2 After calculating the initial commanded active power of all wind farms in a priority, calculate the remaining target active power of the priority wind farm after the priority according to the following formula:
  • the remaining target active power of the priority wind farm after j priority For the target active power of the wind farm group, The sum of the initial commanded active powers of all wind farms before the jth priority and the jth priority;
  • Step 3 Residual target active power of the priority wind farm after j priority
  • the sum of the initial commanded active power of each wind farm with (j+1) priority Compare, if The commanded active power of the wind farm after the (j+1)th priority is controlled to be 0; the first commanded active power of each wind farm in the (j+1)th priority is determined by the following formula:
  • the first command active power of the i wind farm within the (j+1)th priority The initial command active power for the i wind farm within the (j+1) priority; The sum of the active powers of the initial command for all wind farms in the (j+1) priority; The remaining target active power of the priority wind farm after j priority.
  • Step 4 Control the jth priority and the j priority.
  • the active command of each wind farm in the prior priority is equal to the active power of the initial active command, and the commanded active power of each wind farm in the (j+1) priority is equal to the first
  • a command active power the formula is as follows:
  • the second instruction calculation sub-module is further configured to repeatedly perform step one to step four until the remaining target active power of the priority wind farm after a certain priority is less than each wind power of the next priority of the priority The sum of the commanded active power of the field.
  • the control device provided by the embodiment can adjust the active power of each wind farm in each priority according to the instruction step according to the order of priority, after the grid consumption capability is determined.
  • the smooth adjustment of the active power in each wind farm enables the active power of each wind farm to change after the grid's capacity is determined. When the peak shaving is difficult, the power generation capacity of each wind farm is fully utilized.
  • FIG. 7 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 7.
  • the present embodiment is based on the above-mentioned Embodiment 4 and Embodiment 5, and provides an optional control device for active power of a wind farm group.
  • the second instruction active power calculation submodule 520 provided in the fifth embodiment includes:
  • the second instruction active power calculation unit 521 is configured to execute:
  • the second instruction of each wind farm in the priority is calculated according to the following formula Active power:
  • the second command active power of the i wind farm within the jth priority The commanded active power of the i wind farm within the jth priority calculated according to steps 1 to 4; Is the sum of the commanded active powers of all wind farms in the jth priority, and P j,lim is the section limit in the jth priority;
  • the commanded active power of the i wind farm in the jth priority is updated.
  • the second instruction active power calculation sub-module 520 further includes:
  • the clamp calculation unit 522 is configured to set a target active power increase threshold, if the target active power of the wind farm group is greater than the target active power threshold, and calculate the target active power of the wind farm group in the (t+1) period and t When the difference between the target active power of the wind farm group is greater than the target active power increase threshold, the target active power of the wind farm group in the (t+1) period is in order of priority from high to low and the limit of each section.
  • the value are compared, when the target active power of the wind farm group in the (t+1) period is greater than the sum of the j-th priority and the j-th order before the j-th priority and less than or equal to the j+1 priority and When the sum of the limit of each level before the j+1 priority is reached, the commanded active power of the first priority to the jth priority is clamped to the section limit corresponding to each priority, and the j priority is calculated according to the following formula The remaining target active power of the priority wind farm in the future:
  • M' is a set of sections having all the upward adjustment capabilities
  • M" is the set of sections having no upward adjustment capability
  • the commanded active power calculation module 500 provided in the fourth embodiment further includes:
  • the fourth command active power calculation sub-module 530 is configured to acquire the actual active power of each wind farm in each priority in real time before controlling the actual active power of the wind farm within each priority according to the commanded active power;
  • the fourth command active power for the i wind farm The actual active power of the i wind farm; The sum of the actual active power of the wind farm group; The target active power of the wind farm group;
  • the commanded active power of each wind farm in the wind farm group is updated.
  • the wind farm group control device provided by the embodiment of the present application considers the section limit of each priority corresponding section under the premise of considering the grid capacity, and realizes the wind power active power under the joint of the power grid peak shaving constraint and the section constraint. Coordinated control. Moreover, when the power consumption capacity of the power grid increases rapidly, the active power of the low-priority wind farm starts to increase after the active power of the high-priority wind farm is firstly adjusted, thereby avoiding the low priority when the power consumption of the power grid is rapidly increased. The wind farm quickly starts and stops the phenomenon of the fan.
  • the commanded active power is recalculated, and a forced trigger command is issued to each wind farm according to the commanded active power, thereby avoiding the wind farm when the wind is suddenly coming.
  • the total actual active power of the group is greater than the target active power of the wind farm group, and the difficulty of peak shaving is increased.
  • FIG. 8 is a schematic structural diagram of a control device for active power of a wind farm group according to Embodiment 8. This embodiment provides an optional control device for the active power of the wind farm group based on the sixth embodiment.
  • some or all of the wind farms in the wind farm group may participate in the heating market transaction during the load period.
  • a wind farm participates in the low-temperature heating market-oriented transaction within the priority level, it must ensure that the trading power is prioritized, and at the same time, the growth of the wind power participating in the heating transaction must be reflected in the commanded output active power.
  • the commanded active power calculation module 500 further includes: a low valley heating power calculation sub-module 540, configured to: if there is a wind farm participating in the trough heating marketization transaction in the wind farm group, according to the target active power of the wind farm group according to the priority
  • the commanded active power of the wind farm in each priority is determined in descending order, including the following steps:
  • the basic trading power of the wind farm is calculated as follows:
  • Li represents the base transaction power of the current wind farm
  • Q i represents the total amount of electricity that the wind farm participates in the heating transaction in the current month
  • T represents the hour of the wind load in the current wind farm.
  • the total heating capacity of the transaction is 3000MW
  • the trough hour is 150 hours, according to the formula (7).
  • Each wind farm participating in the heating transaction has a certain power supply index, which may be the active power of the wind farm participating in the heating transaction when the valley is low. Calculating the active power of the wind farm based on the power supply indicator includes the following steps:
  • the third command active power for wind farms involved in the marketization of low valley heating The commanded active power calculated according to steps 221 to 224 for the wind farm participating in the low-temperature heating market transaction.
  • Each priority corresponds to a section. If the wind farm group includes a section with a section limit, after calculating the commanded active power of each wind farm, perform the following operations:
  • the second commanded active power of each wind farm in the priority is calculated according to the following formula:
  • the second command active power of the i wind farm within the jth priority The commanded active power of the i wind farm within the jth priority calculated according to steps 221 to 224; Is the sum of the commanded active powers of all wind farms in the jth priority, P j,lim is the section limit in the jth priority;
  • the commanded active power of the i wind farm in the jth priority is updated.
  • the target active power of a wind farm that does not participate in the market-oriented trading of low-temperature heating within the priority of the wind farm that participates in the market-oriented transaction of low-temperature heating The target active power of all wind farms within the priority of the wind farm that participates in the marketization of low-temperature heating market;
  • NL represents the set of wind farms that participate in the market-oriented trading of trough heating in the j priority.
  • the control device for active power of the wind farm group provided by the present embodiment not only considers the section limit of each priority corresponding section, but also considers that it conforms to the low-valley wind power participation in the low-temperature heating market-oriented transaction.
  • the wind farms participating in the heating transaction indicate the growth of the heating power after the active power is realized, and realize the coordinated control of the active power of the wind power under the combined action of the peak shaving constraint and the section constraint and the market transaction.
  • the present invention provides a control method and device for active power of a wind farm group, which realizes control and adjustment of the active power of each wind farm according to the real-time monitored power consumption capacity, and can fully utilize the power generation capability of each wind farm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Wind Motors (AREA)

Abstract

一种风电场群有功功率的控制方法及装置。风电场群包括m个优先级的风电场,其中,m为正整数,该控制方法包括:实时监测电网消纳能力,根据电网消纳能力确定风电场群的目标有功功率;根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率;根据指令有功功率控制每个优先级内风电场的实际有功功率。

Description

风电场群有功功率的控制方法及装置 技术领域
本申请实施例涉及风电场群有功功率的控制技术,例如涉及一种风电场群有功功率的控制方法及装置。
背景技术
风电场大多远离负荷中心,因此需要大规模远距离输送。风电场的波动性和反调峰特性增加了电网调峰的难度,因调峰困难导致弃风的问题日益突出。
针对调峰困难时风电场群的有功功率控制,相关的控制方法是根据电网消纳能力,预留一定的安全裕度后,分时段对每个风电场进行限风,使每个风电场在一个时段内的有功功率保持不变。
然而,使得每个风电场的有功功率在一个时间段内固定,不能跟随电网消纳能力快速调节,且未考虑风电场的发电顺序,使得风电场的发电能力不能被充分利用。
发明内容
本申请提供一种风电场群有功功率的控制方法及装置,以实现根据电网消纳能力快速调节风电场的有功功率,以充分利用各风电场的发电能力。
第一方面,本申请实施例提供了一种风电场群有功功率的控制方法,风电场群包括m个优先级的风电场,其中,m为正整数,该控制方法包括:
实时监测电网消纳能力,根据电网消纳能力确定风电场群的目标有功功率;
根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率;
根据指令有功功率控制每个优先级内风电场的实际有功功率。
第二方面,本申请实施例还提供了风电场群有功功率的控制装置,风电场群包括m多个优先级的风电场,其中,m为正整数,该控制装置包括:
风电场群目标有功功率确定模块,设置为实时监测电网消纳能力,根据电网消纳能力确定风电场群的目标有功功率;
指令有功功率计算模块,设置为根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率;
控制模块,设置为根据指令有功功率控制每个优先级内风电场的实际有功功率。
本申请实施例提供的风电场群有功功率的控制方法和装置,通过将风电场划分为不同的优先级,根据实时检测到的电网消纳能力确定风电场群的目标有功功率;然后根据风电场群的目标有功功率按照优先级由高到低的顺序确定各优先级内风电场的指令有功功率;最后根据指令有功功率控制各优先级内风电场的实际有功功率。本申请实施例提供的技术方案,实现了根据实时监测到的电网消纳能力对每个风电场的有功功率进行快速控制和调节;并且对每个风电场的有功功率进行控制和调节时,考虑每个风电场优先级,充分利用每个风电场的发电能力。解决了风电场的发电能力不能被充分利用的问题。
附图说明
图1是实施例一提供的一种风电场群有功功率的控制方法的流程图。
图2是实施例二提供的一种风电场群有功功率的控制方法的流程图。
图3是实施例三提供的一种风电场群有功功率的控制方法的流程图。
图4是实施例四提供的一种风电场群有功功率的控制方法的流程图。
图5是实施例五提供的一种风电场群有功功率的控制装置的结构示意图。
图6是实施例六提供的一种风电场群有功功率的控制装置的结构示意图。
图7是实施例七提供的一种风电场群有功功率的控制装置的结构示意图。
图8是实施例八提供的一种风电场群有功功率的控制装置的结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的实施例仅用于解释本申请,而非对本申请的限定。为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
实施例一
图1是实施例一提供的一种风电场群有功功率的控制方法的流程图。本实施例可适用于调峰困难时对风电场群有功功率进行控制的情况,该控制方法可以由风电场群有功功率的控制装置来执行。该控制方法中,风电场群包括m个优先级的风电场,其中,m为正整数,上述控制方法包括如下步骤:
步骤100、实时监测电网消纳能力,根据电网消纳能力确定风电场群的目标有功功率。
由于用电负荷是不均匀的,需要投入在正常运行以外的发电机组来进行调峰,且调峰机组的要求是启动和停止方便快捷,并网时的同步调整容易,一般调峰机组有燃气轮机机组和抽水蓄能机组等等。不同用电负荷时,电网对风电等新能源发电的消纳能力不同,即不同用电负荷时,可以接受风电等新能源发电场所输出的有功功率使不同的。风电场群有功功率的控制装置可以实时监测电网消纳能力,并根据监测到的电网消纳能力确定风电场群的目标有功功率。例如,某一地区电网只存在一个风电场群,检测到电网消纳能力为500MW时,可以将风电场群的目标有功功率确定为500MW。
步骤200、根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率。
例如,风电场群包括3个优先级的风电场,分别为优先级1、优先级2、优先级3。其中,优先级由高到低顺序依次为优先级1、优先级2、优先级3。按照优先级由高到低的顺序分配每个优先级内风电场的指令有功功率。假设正常情况下,属于优先级1的所有风电场的总发电有功功率可以达到300MW,属于优先级2的所有风电场的总发电有功功率可以达到200MW,属于优先级3的所有风电场的总发电有功功率可以达到100MW。若确定的风电场群目标有功功率为500MW,可以将属于优先级1的所有风电场的指令有功功率确定为300MW,属于优先级2的所有风电场的指令有功功率为200MW,属于优先级3的所有风电场的指令有功功率为0MW。保证属于高优先级的风电场优先发电。
步骤300、根据指令有功功率控制每个优先级内风电场的实际有功功率。
当确定属于每个优先级内风电场的指令有功功率后,风电场群有功功率的控制装置根据该指令有功功率控制每个优先级内风电场的实际有功功率。例如,当确定属于优先级1的所有风电场的指令有功功率确定为300MW,属于优先级2的所有风电场的指令有功功率为200MW,属于优先级3的所有风电场的指令有功功率为0MW时,控制装置向每个优先级的风电场下达指令有功功率,使每个风电场的实际有功功率向指令有功功率靠近,直到实际有功功率达到指令有功功率值。
在上述技术方案的基础上,在上述步骤100的操作,实时监测电网消纳能力,根据电网消纳能力确定风电场群的目标有功功率之前,还可以包括:
预先设定风电场群内每个风电场的优先级j,其中,j=1,2,……m,每个风电场的优先级定期更新,同一优先级内包括n个风电场,其中,n为正整数。
上述步骤明确了风电场群内每个风电场的优先级,为后续步骤中对每个优先级风电场内有功功率分配提供了依据。需要说明的是,优先级的划分应在确保电网安全运行前提下执行国家政策、按照并网调度协议保护每个协议方的合法权益。
本实施例提供的风电场群的有功功率的控制方法,通过将风电场划分为不同的优先级,根据实时检测到的电网消纳能力确定风电场群的目标有功功率;然后根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率;最后根据指令有功功率控制每个优先级内风电场的实际有功功率。本实施例提供的技术方案,实现了根据实时监测到的电网消纳能力对每个风电场的有功功率进行快速控制和调节;并且对每个风电场的有功功率进行控制和调节时,考虑每个风电场优先级,充分利用每个风电场了发电能力,解决了风电场的发电能力不能被充分利用的问题。
实施例二
图2为实施例二提供的一种风电场群有功功率的控制方法的流程图,本实施例以上述实施例一的技术方案为基础,提供了一种可选的风电场群有功功率的控制方法,该控制方法由风电场群有功功率的控制装置来执行。
参考图2,可选的,对于上述实施例一提供的步骤100的操作,包括:
步骤110、实时监测电网消纳能力,根据t周期末电网消纳能力确定(t+1)周期内风电场群的目标有功功率,其中,t取正整数。
示例性的,风电场群有功功率的控制装置实时监测电网消纳能力,且每隔固定时间计算风电场群的目标有功功率,可将该固定时间视为一个周期。例如每隔5分钟计算一次风电场群的目标有功功率,那么可将5分钟视为一个周期。例如从某日0:00开始检计算风电场群的目标有功功率,那么从0:00-0:05视为第一个周期,根据0:05最后监测到的电网消纳能力确定第二个周期0:05-0:10内风电场群的目标有功功率。
可选的,对于上述实施例一提供的步骤200的操作,根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率,包括:
步骤210、设定目标有功功率阈值,若风电场群的目标有功功率小于或等于目标有功功率阈值,控制每个优先级内风电场的指令有功功率等于0。
示例性的,当根据电网消纳能力确定的目标有功功率很小时,风电场群中每个风电场的风机可能刚开始启动就又收到停机信号,造成风机的快速启停,对风机寿命造成影响。因此,可以设定目标有功功率阈值,例如设定目标有功功率阈值为1MW,那么,当确定的风电场群的目标有功功率小于或等于目标有功功率阈值为1MW时,控制装置判定为风电场群不需进行发电,将风电场群内每个优先级内风电场的指令有功功率设置为0。
步骤220、若风电场群的目标有功功率大于目标有功功率阈值,按如下步骤计算每个优先级内每个风电场的指令有功功率:
步骤221、对于第j优先级内的i风电场,按照如下公式(1)计算与i风电场对应的指令有功功率:
Figure PCTCN2018077864-appb-000001
其中,
Figure PCTCN2018077864-appb-000002
为(t+1)周期内j优先级内i风电场的初始指令有功功率,
Figure PCTCN2018077864-appb-000003
为t周期末j优先级内i风电场的实际有功功率;ΔP i第j优先级内的i风电场的指令步长,Nj表示第j优先级。
上述第j优先级内的i风电场的指令步长ΔP i可以根据装机容量来确定。以下方案均以指令步长ΔP i等于10%的装机容量值来进行说明。
以7风电场汇集成的风电场群为例,每个风电场的装机容量等信息参考表1,示例性的,风电场A、B属于第1优先级;风电场C、D、E属于第2优先级;风电场F、G属于第3优先级。优先级由高到低的顺序依次为第1优先级,第2优先级,第3优先级。
表1 7风电场汇集系统有功指令表1
Figure PCTCN2018077864-appb-000004
对于风电场群的目标有功功率大于目标有功功率阈值的情况,如表1中所示,对于第1优先级内的A风电场,按照公式(1)计算每个优先级内每个风电场的指令有功功率。例如,对于第1优先级内的A风场,其
Figure PCTCN2018077864-appb-000005
ΔP A=50*10%=5MW,
Figure PCTCN2018077864-appb-000006
故根据公式(1)可计算出对于第1优先级内的A风场在t+1周期内的指令有功功率为35MW。同理,按照公式(1)可计算其他每个风场的初始指令有功功率,如表1中所示。
步骤222、每计算出一个优先级内所有风电场的初始指令有功功率后,按如下公式(2)计算该优先级以后的优先级风电场的剩余目标有功功率:
Figure PCTCN2018077864-appb-000007
其中,
Figure PCTCN2018077864-appb-000008
为j优先级以后的优先级风电场的剩余目标有功功率,
Figure PCTCN2018077864-appb-000009
为风电场群的目标有功功率,
Figure PCTCN2018077864-appb-000010
为第j优先级及第j优先级以前所有风电场的初始指令有功功率之和。
例如,在计算出第1优先级的A风场的初始指令有功功率为35MW和B风场的初始指令有功功率为140MW后,按照公式(2)计算第1优先级以后的第2优先级和第3优先级风电场的剩余目标有功功率值。假设根据t周期末电网消纳能力确定(t+1)周期内发电场群的目标有功功率为500MW,那么第2优先级和第3优先级风电场的剩余目标有功功率为500-(35+140)=325MW。
同理,在计算出第2优先级的C风场的初始指令有功功率112MW、D风场的初始指令有功功率56MW、E风场的初始指令有功功率168MW后,按照公式(2)计算第2优先级以后的第3优先级风电场的剩余目标有功功率值。假设根据t周期末电网消纳能力确定(t+1)周期内发电场群的目标有功功率为500MW,那么第3优先级风电场的剩余目标有功功率为500-(35+140)-(112+56+168)=-11MW。
步骤223、将j优先级以后的优先级风电场的剩余目标有功功率
Figure PCTCN2018077864-appb-000011
与(j+1)优先级内每个风电场的初始指令有功功率之和
Figure PCTCN2018077864-appb-000012
进行比较,若
Figure PCTCN2018077864-appb-000013
控制第(j+1)优先级以后的风电场的指令有功功率为0;第(j+1)优先级内每个风电场的第一指令有功功率按如下公式确定:
Figure PCTCN2018077864-appb-000014
其中,
Figure PCTCN2018077864-appb-000015
为第(j+1)优先级内i风电场的第一指令有功功率;
Figure PCTCN2018077864-appb-000016
为第(j+1)优先级内i风电场初始指令有功功率;
Figure PCTCN2018077864-appb-000017
为第(j+1)优先级内所有风电场初始指令有功功率之和;
Figure PCTCN2018077864-appb-000018
为j优先级以后的优先级风电场的剩 余目标有功功率。
例如,计算出第1优先级以后的第2优先级和第3优先级风电场的剩余目标有功功率为325MW,将第2优先级和第3优先级风电场的剩余目标有功功率为325MW与第1优先级的下一优先级(即第2优先级)内每个风电场的指令有功功率之和(112+56+168)=336MW进行比较,325<336,则将第2优先级以后的第3优先级内风电场的指令有功功率重新确定为0,覆盖对应的初始指令有功功率,即按照公式(1)计算出的F、G风电场的指令有功功率73和95都被更新为0;第2优先级内每个风电场的第一指令有功功率按照公式(3)确定。例如,对于第2优先级内的C风电场,根据公式(3),第2优先级内C风电场的第一指令有功功率
Figure PCTCN2018077864-appb-000019
同理,可以确定第2优先级内D风电场和E风电场的第一指令有功功率分别为54.2MW和162.5MW。
步骤224、控制第j优先级以及j优先级以前优先级内每个风电场的有功指令等于初始有功指令有功功率,控制第(j+1)优先级内每个风电场的指令有功功率等于第一指令有功功率,公式如下:
Figure PCTCN2018077864-appb-000020
Figure PCTCN2018077864-appb-000021
其中,
Figure PCTCN2018077864-appb-000022
为i风电场的指令有功功率。
例如,按照如步骤223中确定的第2优先级内C、D、E的第一指令有功功率108.3MW、54.2MW、162.5MW更新第2优先级内C、D、E风电场按照公式1计算出的指令有功功率。最后,得到按照步骤221-步骤224运算后每个风电场的指令有功功率如表2所示。
表2 7风电场汇集系统有功指令表2
Figure PCTCN2018077864-appb-000023
可选的,风电场群中包括不具备上调能力的风电场,根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率,还包括:对于不具备上调能力的风电场下发固定的指令有功功率。
例如,对于早期投运的风电场,主要机型为鼠笼式异步风机,不具备连续调节有功的能力;部分新建风电场处于并网调试阶段,有功控制系统未投入使用。以上两类风电场不具备上调有功功率的能力,对其下发固定的指令有功功率。
其中,该控制方法还包括:
步骤225、重复执行步骤221到步骤224,直至某一优先级以后的优先级风电场的剩余目标有功功率小于该优先级的下一优先级内每个风电场的指令有功功率之和。
示例性的,若风电场群的目标有功功率在多个周期内不变,假设t周期以后,连续5个周期内的目标有功功率都是750MW,则在该t+1周期内,根据上述公式(1)和公式(2),第1优先级内A、B风电场的初始指令有功功率分别为35MW和140MW;第二优先级内C、D、E风电场的初始指令有功功率分别为112MW,56MW,168MW;第3优先级内F、G风电场的初始指令有功功率分别为73MW和95MW。第1优先级以后第2优先级和第3优先级的剩余目标有功功率为575MW,第2优先级以后第3优先级的剩余目标有功功率为239MW。在本示例中,第3优先级即为最低优先级,在该优先级内每个风电场的初始指令有功功率之和为73+95=168MW,168<239,说明以现有初始指令有功功率不能使目标有功功率被每个风电场用完,控制装置在t+1周期内按照每个风电场的初始指令有功功率向每个风电场下发有功指令。在t+2周期内重复执行上述步骤一至步骤四,若t+2周期仍不存在某一优先级以后的优先级的剩余目标有功功率小于该优先级的下一优先级内每个风电场的初始指令有功功率之和,则在该周期内,控制装置在该周期内按照每个风电场的初始指令有功功率向每个风电场下发有功指令。在每个周期内重复以上步骤,直至某一优先级以后的优先级的剩余目标有功功率小于该优先级的下一优先级内每个风电场的指令有功功率之和。对于上述示例,在t+1周期计算出的指令有功功率的基础之上,t+2周期中继续按照公式(1)调节指令有功功率,对每一个风电场增加相应的步长有功功率,例如,对于第1优先级内的A风电场,计算出t+2周期内的初始指令有功功率为35+5=40MW,同理对于B、C、D、E、F、G风电场计算出的t+2周期内的初始指令有功功率为160、124、62、186、81、105,按照公式(2)计算出第1优先级以后第2优先级和第3优先级对应的剩余目标有功功率为750-(40+160)=550MW,第2优先级以后第3优先级对应的剩余目标有功功率为750-(40+160)-(124+62+186)=178MW,第3优先级风电场F、G的初始指令功率之和为81+105=186MW。178MW<186MW,根据公式(3),计算第3优先级风电场F、G的第一指令有功功率分别为
Figure PCTCN2018077864-appb-000024
Figure PCTCN2018077864-appb-000025
然后,按照第3优先级风电场F、G的第一指令有功功率更新其根据公式(1)计算出的初始指令有功功率。在风电场群目标有功功率保持不变的(t+3)至(t+5)内,控制装置可按t+2周期内的指令有功功率下发有功指令。当某一周期内检测到风电场群目标有功功率发生变化后,再重新执行上述过程。
表3 7风电场汇集系统有功指令表3
Figure PCTCN2018077864-appb-000026
步骤300、根据指令有功功率控制每个优先级内风电场的实际有功功率。此步骤与上述实施例一中步骤相同,在此不再赘述。
需要说明的是,在一个周期内,控制装置下发一次指令有功功率。相应的,每个风电场按照指令有功功率调节一次实际有功功率。
另外,如果两个相邻周期内的电网消纳能力不同,则在每一个周期内直接按照步骤221-224计算出的指令有功功率控制每个风电场的实际有功功率。
本实施例所提供的控制方法,在电网消纳能力确定后,通过按照优先级由高到低的顺序按照指令步长调节每个优先级内每个风电场的有功功率,可以实现对每个风电场内有功功率的平稳调节,使得在电网消纳能力确定后,每个风电场的有功功率可以发生变化,在调峰困难时充分利用每个风电场了发电能力。
实施例三
图3是实施例三提供的一种风电场群有功功率的控制方法的流程图。本实施例建立在上述实施例的基础之上,提供了又一种风电场群有功功率的控制方法。
可选的,每一个优先级对应一个断面,该控制方法还包括:
若风电场群包括存在断面极限的断面,在计算出每个风电场的指令功率后,执行:
步骤2220、若第j优先级内每个风电场的指令有功功率大于该优先级内的断面极限,按如下公式(4)计算该优先级内每个风电场的第二指令有功功率:
Figure PCTCN2018077864-appb-000027
其中,
Figure PCTCN2018077864-appb-000028
为第j优先级内i风电场的第二指令有功功率;
Figure PCTCN2018077864-appb-000029
为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
Figure PCTCN2018077864-appb-000030
为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的断面极限;
按照第二指令有功功率更新第j优先级内i风电场的指令有功功率。
可选的,上述实施例一中步骤200的操作,根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率,还包括:
设定目标有功功率增大阈值,若风电场群的目标有功功率大于目标有功功率阈值,且计算出(t+1)周期内风电场群的目标有功功率与t周期内风电场群的目标有功功率的差值大于目标有功功率增大阈值时,将(t+1)周期内风电场群的目标有功功率按优先级由高到低的顺序与每个断面极限的和值进行比较,当(t+1)周期内风电场群的目标有功功率大于第j优先级及第j优先级之前的每级断面极限之和且小于等于第j+1优先级及第j+1优先级之前的每级断面极限之和时,将第一优先级至第j优先级的指令有功功率钳位在每个优先级对应的断面极限,并按如下公式计算j优先级以后的优先级风电场的剩余目标有功功率:
Figure PCTCN2018077864-appb-000031
其中,式中M′为所有具备上调能力的断面集合,M″为所有不具备上调能力的断面集合。
继续以7风电场汇集的风电场群为例,说明本实施例所提供的控制方法。断面极限、装机容量等基本信息如表4所示,其中风电场A、B通过断面1送出,受断面极限制约,40%发电容量受限;风电场C、D、E通过断面2送出,17%容量受限,且假设C风电场为未投入有功控制系统的风电场;风电场F、G通过断面3送出,不受限。设置优先级顺序为:断面1→断面2→断面3;风电场指令步长为10%装机容量。可选的,当风电场的实际有功功率在t周期内增长速率大于半个步长时判断为在(t+1)周期内具备上调能力。
1)电网消纳能力下调时,控制方法执行如下:在第t周期末所有风电场总有功功率为600MW,t+1时刻受调峰约束限电,受电网调峰影响,电网消可以消纳风电总功率为300MW,即风电场群目标有功功率为300MW。根据装机容量的比例,计算出风电场C的指令有功功率为50MW。断面1的目标有功功率为
Figure PCTCN2018077864-appb-000032
按照优先级顺序,首先计算第1优先级风电场A、B的初始指令有功功率,由式(1)求得
Figure PCTCN2018077864-appb-000033
由于该优先级内每个风电场的初始指令有功功率之和大于该优先级内风电 场的断面极限,由式(4)得修正后风电场A的第二指令有功功率
Figure PCTCN2018077864-appb-000034
修正后风电场B的第二指令有功功率
Figure PCTCN2018077864-appb-000035
然后,可计算出断面2的目标有功功率为
Figure PCTCN2018077864-appb-000036
按照公式(1)计算出断面2内C、D、E风电场的初始指令有功功率分别为50MW、56MW、168MW,其总和274MW大于100MW,说明剩余调峰目标有功功率在本优先级将被用完。根据公式(3)求得风电场D、E的第一指令有功功率:
Figure PCTCN2018077864-appb-000037
以后每级风电场的指令为0:
Figure PCTCN2018077864-appb-000038
2)电网消纳能力上调时,控制方法执行如下:
假设(t′+1)周期开始电网调峰目标值由t′周期末的300MW上调至500MW,即风电场群的目标有功功率由300MW上调至500MW。假设此时风电场C的固定指令调整为100MW。设断面1、2、3均具备上调能力,目标有功功率增大阈值取100MW。根据上述条件,
Figure PCTCN2018077864-appb-000039
Figure PCTCN2018077864-appb-000040
的差值为200MW,大于目标有功功率增大阈值取100MW,则按照上述步骤200,可知
断面1的目标有功功率为断面极限
Figure PCTCN2018077864-appb-000041
由式(1)、(4)可求得风电场A、B指令有功功率,
Figure PCTCN2018077864-appb-000042
断面2的目标有功功率为断面极限
Figure PCTCN2018077864-appb-000043
由式(1)可求得风电场D、E的初始指令有功功率
Figure PCTCN2018077864-appb-000044
如果风电场D、E一直具备上调能力,有功指令将一直按式(2)上调,直到断面2到达极限。
由式(5)可求得断面3的目标有功功率
Figure PCTCN2018077864-appb-000045
由式(1)得风电场F、G的初始指令有功功率
Figure PCTCN2018077864-appb-000046
如果风电场F、G一直具备上调能力,有功指令将一直按式(2)上调,直到目标有功功率被用完。最后得到按照上述方法计算后得到的t’+1周期指令有功功率如表4。
表4 7风电场汇集系统有功指令表4
Figure PCTCN2018077864-appb-000047
在上述方案的基础上,在步骤300的操作,根据指令有功功率控制每个优先级内风电场的实际有功功率之前,该控制方法还包括:
步骤230、实时获取每个优先级内每个风电场的实际有功功率;若所有优先级内每个风电场的实际有功功率之和大于风电场群的目标有功功率,按如下公式(6)计算每个风电场的指令有功功率:
Figure PCTCN2018077864-appb-000048
其中,
Figure PCTCN2018077864-appb-000049
为i风电场的第四指令有功功率;
Figure PCTCN2018077864-appb-000050
为i风电场的实际有功功率;
Figure PCTCN2018077864-appb-000051
风电场群的实际有功功率之和;
Figure PCTCN2018077864-appb-000052
为风电场群的目标有功功率;
按照第四指令有功功率更新风电场群每个风电场的指令有功功率。
例如,在上述t’+1周期内风电场群中A、B、C、D、E、F、G的实际有功功率分别为32MW、125MW、100MW、35MW、95MW、10MW、15MW,每个风电场的实际有功功率之和为520MW,大于该风电场群的目标有功功率500MW,则按照上述公式(6)重新计算t’+1周期的指令有功功率,并作为第四指令有功功率。根据公式(6)可以得到,
Figure PCTCN2018077864-appb-000053
同理,可以依次计算出风电场群内其他每个风电场的第四指令有功功率,并按照该第四指令有功功率更新前述计算出每个风电场在该周期内的指令有功功率。避免了突然来风时风电场群总的实际有功功率大于风电场群的目标有功功率,增加调峰难度的问题。
相应的,当存在上述情况时,控制装置向每个风电场下发强制触发指令,以使每个风电场按照上述第四指令有功功率进行调节实际有功功率。需要说明的是,在一个周期内,可以设置下发强制触发指令的次数阈值,当一个周期内出现上述情况所欲该次数阈值时,不再下发强制触发指令。
本实施例所提供的风电场群有功功率的控制方法,在考虑电网消纳能力的前提下,考虑每一优先级对应断面的断面极限,实现了电网调峰约束和断面约束共同作用下风电有功功率的协调控制。并且,当电网消纳能力快速增加时,保证高优先级风电场有功功率先行上调后,低优先级风电场的有功功率才开始增加,从而避使免了电网消纳能力快速增加时低优先级风电场快速启停风机的现象。另外,通过在风电场群的实际有功功率之和大于目标有功功率时,重新计算指令有功功率,并按照该指令有功功率向每个风电场下发强制触发指令,避免了突然来风时风电场群总的实际有功功率大于风电场群的目标有功功率,增加调峰难度的问题。
实施例四
图4是实施例四提供的一种风电场群有功功率的控制方法的流程图。本实施例在上述实施例二的基础上,提供了又一种风电场群有功功率的控制方法。
因在实际供电情况中,风电场群中的部分或全部风电场在负荷低谷期可能会参与供暖市场化交易。在优先级内有风电场参与低谷供暖市场化交易时,必须保证交易电量优先完成,同时要在指令出力有功功率中体现风电参与供暖交易电量后的增长。
可选的,若风电场群中存在参与低谷供暖市场化交易的风电场,根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率,包括:
步骤310、根据每个参与低谷供暖市场化交易的风电场当月参与供暖交易的总电量和负荷低谷小时数计算风电场的基准交易电力,公式如下:
Figure PCTCN2018077864-appb-000054
其中,L i表示当月i风电场的基准交易电力;Q i表示i风电场当月参与供暖交易的总电量;T表示i风电场当月负荷低谷小时数;
其中,在每个月的月末,根据历史数据,可以预测下个月参与供暖交易的总电量和低谷小时数,例如,交易供暖总电量为3000MW,低谷小时数为150小时,则根据公式(7)可得风电场的基准交易电力为3000/15=20MW。每个参与供暖交易的风电场的具有一定的供电指标,该供电指标可以是低谷时风电场参与供暖交易的有功功率。根据该供电指标计算风电场的有功功率,包括以下步骤:
步骤320、按照如下公式(8)计算参与低谷供暖市场化交易的风电场的第三指令有功功率:
Figure PCTCN2018077864-appb-000055
其中,
Figure PCTCN2018077864-appb-000056
为参与低谷供暖市场化交易的风电场的第三指令有功功率;
Figure PCTCN2018077864-appb-000057
为参与低谷供暖市场化交易的风电场按照步骤一至步骤四计算出的指令有功功率;
仍以实施例二中的以7风电场汇集成的风电场群为例,每个风电场的装机容量等信息参考表5,示例性的,风电场A、B属于第1优先级;风电场C、D、E属于第2优先级;风电场F、G属于第3优先级。优先级由高到低的顺序依次为第1优先级,第2优先级,第3优先级。例如,假设根据t周期末电网消纳能力确定(t+1)周期内发电场群的目标有功功率为500MW,根据步骤221至步骤224计算后,每个风电场的指令有功功率参见实施例二中的表2。假设第1优先级内A风电场参与供暖交易,分配的供暖交易指标为10MW,第2优先级内C风电场参与供暖交易,分配的供暖交易指标为10MW,则根据公式(8)可得:A风电场的第三指令有功功率为35+10=45MW,C风电场的第三指令有功功率为108.3+10=118.3MW。
步骤330、每一个优先级对应一个断面,若风电场群包括存在断面极限的断面,在计算出每个风电场的指令有功功率后,执行如下操作:
若第j优先级内每个风电场的指令有功功率大于该优先级内的断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
Figure PCTCN2018077864-appb-000058
其中,
Figure PCTCN2018077864-appb-000059
为第j优先级内i风电场的第二指令有功功率;
Figure PCTCN2018077864-appb-000060
为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
Figure PCTCN2018077864-appb-000061
为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的断面极限;
按照第二指令有功功率更新第j优先级内i风电场的指令有功功率。
步骤340、计算每个优先级内未参与低谷供暖市场化交易的风电场的指令有功功率。
其中,在计算未参与低谷供暖市场化交易的风电场的指令有功功率前,修 正存在参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率,公式如下:
Figure PCTCN2018077864-appb-000062
其中,
Figure PCTCN2018077864-appb-000063
为存在参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率;
Figure PCTCN2018077864-appb-000064
为存在参与低谷供暖市场化交易的风电场的优先级内所有风电场的目标有功功率;NL表示j优先级内存在参与低谷供暖市场化交易的风电场的集合。
本实施提供的风电场群有功功率的控制方法,在考虑电网消纳能力的前提下,不仅考虑每一优先级对应断面的断面极限,而且考虑到负荷低谷期风电参与低谷供暖市场化交易时在参与供暖交易的风电场指令有功功率中体现供暖交易电量后的增长,实现了电网调峰约束和断面约束以及市场交易共同作用下风电有功功率的协调控制。
实施例五
图5是实施例五提供的一种风电场群有功功率的控制装置的结构示意图。该控制装置可执行上述任意实施例所提供的控制方法,风电场群包括m多个优先级的风电场,其中,m为正整数,该控制装置的包括:
风电场群目标有功功率确定模块400,设置为实时监测电网消纳能力,根据电网消纳能力确定风电场群的目标有功功率;
指令有功功率计算模块500,设置为根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率;
控制模块600,设置为根据指令有功功率控制每个优先级内风电场的实际有功功率。
可选的,该控制装置还包括,优先级设定模块700,设置为预先设定风电场群内每个风电场的优先级j,其中,j=1,2,……m,且每个风电场的优先级定期更新,同一优先级内包括n个风电场,其中,n为正整数。
本实施例提供的风电场群的有功功率的控制装置,通过将风电场划分为不同的优先级,根据实时检测到的电网消纳能力确定风电场群的目标有功功率;然后根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率;最后根据指令有功功率控制每个优先级内风电场的实际有功功率。本申请实施例提供的技术方案,实现了根据实时监测到的电网消纳能力对每个风电场的有功功率进行快速控制和调节;并且对每个风电场的有功功率进行控制和调节时,考虑每个风电场优先级,充分利用每个风电场了发电能力。解决了风电场的发电能力不能被充分利用的问题。
实施例六
图6是实施例六提供的一种风电场群有功功率的控制装置的结构示意图。本实施例在上述实施例四的基础上,提供了一种可选的一种风电场群有功功率的控制装置。
可选的,上述实施例四提供的风电场群目标有功功率确定模块400是设置为:
实时监测电网消纳能力,根据t周期末电网消纳能力确定(t+1)周期内风电场群的目标有功功率。
可选的,上述实施例三提供的指令有功功率计算模块500包括:
第一指令有功功率计算子模块510,设置为设定目标有功功率阈值,若风电场群的目标有功功率小于或等于目标有功功率阈值,每个优先级内风电场的指令有功功率等于0。
可选的,上述实施例三提供的指令有功功率计算模块500还包括:
第二指令有功功率计算子模块520,设置为若风电场群的目标有功功率大于目标有功功率阈值,按如下步骤计算每个优先级内每个风电场的指令有功功率:
步骤一、对于第j优先级内的i风电场,按照如下公式计算与i风电场对应的初始指令有功功率:
Figure PCTCN2018077864-appb-000065
其中,
Figure PCTCN2018077864-appb-000066
为(t+1)周期内j优先级内i风电场的初始指令有功功率,
Figure PCTCN2018077864-appb-000067
为t周期末j优先级内i风电场的实际有功功率;ΔP i第j优先级内的i风电场的指令步长,Nj表示第j优先级;
步骤二、每计算出一个优先级内所有风电场的初始指令有功功率后,按如下公式计算该优先级以后的优先级风电场的剩余目标有功功率:
Figure PCTCN2018077864-appb-000068
其中,
Figure PCTCN2018077864-appb-000069
为j优先级以后的优先级风电场的剩余目标有功功率,
Figure PCTCN2018077864-appb-000070
为风电场群的目标有功功率,
Figure PCTCN2018077864-appb-000071
为第j优先级及第j优先级以前所有风电场的初始指令有功功率之和;
步骤三、将j优先级以后的优先级风电场的剩余目标有功功率
Figure PCTCN2018077864-appb-000072
与(j+1)优先级内每个风电场的初始指令有功功率之和
Figure PCTCN2018077864-appb-000073
进行比较,若
Figure PCTCN2018077864-appb-000074
控制第(j+1)优先级以后的风电场的指令有功功率为0;第(j+1)优先级内每个风电场的第一指令有功功率按如下公式确定:
Figure PCTCN2018077864-appb-000075
其中,
Figure PCTCN2018077864-appb-000076
为第(j+1)优先级内i风电场的第一指令有功功率;
Figure PCTCN2018077864-appb-000077
为第(j+1)优先级内i风电场初始指令有功功率;
Figure PCTCN2018077864-appb-000078
为第(j+1)优先级内所有风电场初始指令有功功率之和;
Figure PCTCN2018077864-appb-000079
为j优先级以后的优先级风电场的剩余目标有功功率。
步骤四、控制第j优先级以及j优先级以前优先级内每个风电场的有功指令等于初始有功指令有功功率,控制第(j+1)优先级内每个风电场的指令有功功率等于第一指令有功功率,公式如下:
Figure PCTCN2018077864-appb-000080
Figure PCTCN2018077864-appb-000081
其中,
Figure PCTCN2018077864-appb-000082
为i风电场的指令有功功率。
可选的,第二指令计算子模块还设置为重复执行步骤一到步骤四,直至某一优先级以后的优先级风电场的剩余目标有功功率小于该优先级的下一优先级内每个风电场的指令有功功率之和。
本实施例所提供的控制装置,在电网消纳能力确定后,通过按照优先级由高到低的顺序按照指令步长调节每个优先级内每个风电场的有功功率情况,可以实现了对每个风电场内有功功率的平稳调节,使得在电网消纳能力确定后,每个风电场的有功功率可以发生变化,在调峰困难时充分利用每个风电场了发电能力。
实施例七
图7是实施例七提供的一种风电场群有功功率的控制装置的结构示意图。本实施例建立在上述实施例四和实施例五的基础之上,提供了一种可选的一种风电场群有功功率的控制装置。
可选的,实施例五提供的第二指令有功功率计算子模块520包括:
第二指令有功功率计算单元521,设置为执行:
若风电场群包括存在断面极限的断面,若第j优先级内每个风电场的指令有功功率大于该优先级内的断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
Figure PCTCN2018077864-appb-000083
其中,
Figure PCTCN2018077864-appb-000084
为第j优先级内i风电场的第二指令有功功率;
Figure PCTCN2018077864-appb-000085
为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
Figure PCTCN2018077864-appb-000086
为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的所述断面极限;
按照第二指令有功功率更新第j优先级内i风电场的指令有功功率。
第二指令有功功率计算子模块520还包括:
钳位计算单元522,设置为设定目标有功功率增大阈值,若风电场群的目标有功功率大于目标有功功率阈值,且计算出(t+1)周期内风电场群的目标有功功率与t周期内风电场群的目标有功功率的差值大于目标有功功率增大阈值时,将(t+1)周期内风电场群的目标有功功率按优先级由高到低的顺序与每个断面极限的和值进行比较,当(t+1)周期内风电场群的目标有功功率大于第j优先级及第j优先级之前的每级断面极限之和且小于或等于第j+1优先级及第j+1优先级之前的每级断面极限之和时,将第一优先级至第j优先级的指令有功功率钳位在每个优先级对应的断面极限,并按如下公式计算j优先级以后的优先级风电场的剩余目标有功功率:
Figure PCTCN2018077864-appb-000087
其中,式中M′为所有具备上调能力的断面集合,M″为所有不具备上调能力的所述断面集合。
可选的,实施例四提供的指令有功功率计算模块500还包括:
第四指令有功功率计算子模块530,设置为在根据指令有功功率控制每个优先级内风电场的实际有功功率之前实时获取每个优先级内每个风电场的实际有功功率;
若所有优先级内每个风电场的实际有功功率之和大于风电场群的目标有功功率,按如下公式计算每个风电场的第四指令有功功率:
Figure PCTCN2018077864-appb-000088
其中,
Figure PCTCN2018077864-appb-000089
为i风电场的第四指令有功功率;
Figure PCTCN2018077864-appb-000090
为i风电场的实际有功功率;
Figure PCTCN2018077864-appb-000091
风电场群的实际有功功率之和;
Figure PCTCN2018077864-appb-000092
为所述风电场群的目标有功功率;
按照第四指令有功功率更新风电场群内每个风电场的指令有功功率。
本申请实施例所提供的风电场群的控制装置,在考虑电网消纳能力的前提下,考虑每一优先级对应断面的断面极限,实现了电网调峰约束和断面约束共同作用下风电有功功率的协调控制。并且,当电网消纳能力快速增加时,保证高优先级风电场有功功率先行上调后,低优先级风电场的有功功率才开始增加, 从而避使免了电网消纳能力快速增加时低优先级风电场快速启停风机的现象。另外,通过在风电场群的实际有功功率之和大于目标有功功率时,重新计算指令有功功率,并按照该指令有功功率向每个风电场下发强制触发指令,避免了突然来风时风电场群总的实际有功功率大于风电场群的目标有功功率,增加调峰难度的问题。
实施例八
图8是实施例八提供的一种风电场群有功功率的控制装置的结构示意图。本实施例在上述实施例六的基础上,提供了一种可选的风电场群有功功率的控制装置。
因在实际供电情况中,风电场群中的部分或全部风电场在负荷低谷期可能会参与供暖市场化交易。在优先级内有风电场参与低谷供暖市场化交易时,必须保证交易电量优先完成,同时要在指令出力有功功率中体现风电参与供暖交易电量后的增长。
可选的,指令有功功率计算模块500还包括:低谷供暖功率计算子模块540,设置为若风电场群中存在参与低谷供暖市场化交易的风电场,根据风电场群的目标有功功率按照优先级由高到低的顺序确定每个优先级内风电场的指令有功功率,包括如下步骤:
根据每个参与低谷供暖市场化交易的风电场当月参与供暖交易的总电量和负荷低谷小时数计算风电场的基准交易电力,公式如下:
Figure PCTCN2018077864-appb-000093
其中,L i表示当月i风电场的基准交易电力;Q i表示i风电场当月参与供暖交易的总电量;T表示i风电场当月负荷低谷小时数。
其中,在每个月的月末,根据历史数据,可以预测下个月参与供暖交易的总电量和低谷小时数,例如,交易供暖总电量为3000MW,低谷小时数为150小时,则根据公式(7)可得风电场的基准交易电力为3000/15=20MW。每个参与供暖交易的风电场的具有一定的供电指标,该供电指标可以是低谷时风电场参与供暖交易的有功功率。根据该供电指标计算风电场的有功功率,包括以下步骤:
按照如下公式计算参与低谷供暖市场化交易的风电场的第三指令有功功率:
Figure PCTCN2018077864-appb-000094
其中,
Figure PCTCN2018077864-appb-000095
为参与低谷供暖市场化交易的风电场的第三指令有功功率;
Figure PCTCN2018077864-appb-000096
为参与低谷供暖市场化交易的风电场按照步骤221至步骤224计算出的指令有功功率。
每一个优先级对应一个断面,若风电场群包括存在断面极限的断面,在计 算出每个风电场的指令有功功率后,执行如下操作:
若第j优先级内每个风电场的指令有功功率大于该优先级内的断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
Figure PCTCN2018077864-appb-000097
其中,
Figure PCTCN2018077864-appb-000098
为第j优先级内i风电场的第二指令有功功率;
Figure PCTCN2018077864-appb-000099
为根据步骤221至步骤224计算出的第j优先级内i风电场的指令有功功率;
Figure PCTCN2018077864-appb-000100
为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的断面极限;
按照第二指令有功功率更新第j优先级内i风电场的指令有功功率。
计算每个优先级内未参与低谷供暖市场化交易的风电场的指令有功功率;
其中,在计算未参与低谷供暖市场化交易的风电场的指令有功功率前,修正存在参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率,公式如下:
Figure PCTCN2018077864-appb-000101
其中,
Figure PCTCN2018077864-appb-000102
为存在参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率;
Figure PCTCN2018077864-appb-000103
为存在参与低谷供暖市场化交易的风电场的优先级内所有风电场的目标有功功率;NL表示j优先级内存在参与低谷供暖市场化交易的风电场的集合。
本实施提供的风电场群有功功率的控制装置,在考虑电网消纳能力的前提下,不仅考虑每一优先级对应断面的断面极限,而且考虑到符合低谷期风电参与低谷供暖市场化交易时在参与供暖交易的风电场指令有功功率中体现供暖交易电量后的增长,实现了电网调峰约束和断面约束以及市场交易共同作用下风电有功功率的协调控制。
工业实用性
本申请提供了风电场群有功功率的控制方法及装置,实现了根据实时监测到的电网消纳能力对每个风电场的有功功率进行控制和调节,可以充分利用每个风电场的发电能力。

Claims (18)

  1. 一种风电场群有功功率的控制方法,所述风电场群包括m个优先级的风电场,其中,m为正整数,所述控制方法包括:
    实时监测电网消纳能力,根据所述电网消纳能力确定所述风电场群的目标有功功率;
    根据所述风电场群的目标有功功率按照所述优先级由高到低的顺序确定每个所述优先级内风电场的指令有功功率;
    根据所述指令有功功率控制每个所述优先级内风电场的实际有功功率。
  2. 根据权利要求1所述的控制方法,其中,在实时监测电网消纳能力,所述根据电网消纳能力确定所述风电场群的目标有功功率之前,还包括:
    预先设定所述风电场群内每个风电场的优先级j,其中,j=1,2,……m,每个所述风电场的优先级定期更新,同一所述优先级内包括n个风电场,其中,n为正整数。
  3. 根据权利要求2所述的控制方法,其中,所述实时监测电网消纳能力,根据电网消纳能力确定所述风电场群的目标有功功率包括:
    实时监测电网消纳能力,根据t周期末电网消纳能力确定(t+1)周期内所述风电场群的目标有功功率,其中,t取正整数。
  4. 根据权利要求3所述的控制方法,其中,所述根据所述风电场群的目标有功功率按照所述优先级由高到低的顺序确定每个所述优先级内风电场的指令有功功率,包括:
    设定目标有功功率阈值,若所述风电场群的目标有功功率小于或等于所述目标有功功率阈值,控制每个所述优先级内风电场的指令有功功率等于0;
    若所述风电场群的目标有功功率大于所述目标有功功率阈值,按如下步骤计算每个所述优先级内每个风电场的所述指令有功功率:
    步骤一、对于第j优先级内的i风电场,按照如下公式计算与i风电场对应的初始指令有功功率:
    Figure PCTCN2018077864-appb-100001
    其中,
    Figure PCTCN2018077864-appb-100002
    为(t+1)周期内所述j优先级内i风电场的初始指令有功功率,
    Figure PCTCN2018077864-appb-100003
    为t周期末所述j优先级内i风电场的实际有功功率;ΔP i第j优先级内的i风电场的指令步长,Nj表示第j优先级;
    步骤二、每计算出一个所述优先级内所有风电场的初始指令有功功率后,按如下公式计算该优先级以后的优先级风电场的剩余目标有功功率:
    Figure PCTCN2018077864-appb-100004
    其中,
    Figure PCTCN2018077864-appb-100005
    为所述j优先级以后的优先级风电场的剩余目标有功功率,
    Figure PCTCN2018077864-appb-100006
    为所述风电场群的目标有功功率,
    Figure PCTCN2018077864-appb-100007
    为所述第j优先级及所述第j优先级以前所有风电场的初始指令有功功率之和;
    步骤三、将所述j优先级以后的优先级风电场的剩余目标有功功率
    Figure PCTCN2018077864-appb-100008
    与(j+1)优先级内每个风电场的初始指令有功功率之和
    Figure PCTCN2018077864-appb-100009
    进行比较,若
    Figure PCTCN2018077864-appb-100010
    控制第(j+1)优先级以后的风电场的指令有功功率为0;第(j+1)优先级内每个所述风电场的第一指令有功功率按如下公式确定:
    Figure PCTCN2018077864-appb-100011
    其中,
    Figure PCTCN2018077864-appb-100012
    为第(j+1)优先级内i风电场的第一指令有功功率;
    Figure PCTCN2018077864-appb-100013
    为第(j+1)优先级内i风电场所述初始指令有功功率;
    Figure PCTCN2018077864-appb-100014
    为第(j+1)优先级内所有风电场所述初始指令有功功率之和;
    Figure PCTCN2018077864-appb-100015
    为所述j优先级以后的优先级风电场的剩余目标有功功率;
    步骤四、控制第j优先级以及j优先级以前优先级内每个风电场的有功指令等于所述初始有功指令有功功率,控制所述第(j+1)优先级内每个风电场的指令有功功率等于所述第一指令有功功率,公式如下:
    Figure PCTCN2018077864-appb-100016
    Figure PCTCN2018077864-appb-100017
    其中,
    Figure PCTCN2018077864-appb-100018
    为i风电场的所述指令有功功率。
  5. 根据权利要求4所述的控制方法,其中,所述风电场群中包括不具备上调能力的风电场,所述根据所述风电场群的目标有功功率按照优先级由高到低的顺序确定每个所述优先级内风电场的指令有功功率,还包括:对不具备上调能力的风电场下发固定的指令有功功率。
  6. 根据权利要求5所述的控制方法,其中,还包括:重复执行所述步骤一到所述步骤四,直至某一所述优先级以后的优先级风电场的所述剩余目标有功功率小于所述该优先级的下一优先级内每个风电场的所述指令有功功率之和。
  7. 根据权利要求4所述的控制方法,其中,每一个所述优先级对应一个断面,所述控制方法还包括:若所述风电场群包括存在断面极限的所述断面,在计算出每个所述风电场的指令功率后,执行:
    步骤五、若所述第j优先级内每个风电场的所述指令有功功率大于该优先级 内的所述断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
    Figure PCTCN2018077864-appb-100019
    其中,
    Figure PCTCN2018077864-appb-100020
    为第j优先级内i风电场的第二指令有功功率;
    Figure PCTCN2018077864-appb-100021
    为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
    Figure PCTCN2018077864-appb-100022
    为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的所述断面极限;
    步骤六、按照所述第二指令有功功率更新所述第j优先级内i风电场的指令有功功率。
  8. 根据权利要求4所述的控制方法,其中,若所述风电场群中存在参与低谷供暖市场化交易的风电场,所述根据所述风电场群的目标有功功率按照所述优先级由高到低的顺序确定每个所述优先级内风电场的指令有功功率,包括:
    步骤七、根据每个所述参与低谷供暖市场化交易的风电场当月参与供暖交易的总电量和负荷低谷小时数计算所述风电场的基准交易电力,公式如下:
    Figure PCTCN2018077864-appb-100023
    其中,L i表示当月i风电场的基准交易电力;Q i表示i风电场当月参与供暖交易的总电量;T表示i风电场当月负荷低谷小时数;
    步骤八、按照如下公式计算所述参与低谷供暖市场化交易的风电场的第三指令有功功率:
    Figure PCTCN2018077864-appb-100024
    其中,
    Figure PCTCN2018077864-appb-100025
    为所述参与低谷供暖市场化交易的风电场的第三指令有功功率;
    Figure PCTCN2018077864-appb-100026
    为所述参与低谷供暖市场化交易的风电场按照所述步骤一至步骤四计算出的指令有功功率;
    步骤九、每一个所述优先级对应一个断面,若所述风电场群包括存在断面极限的所述断面,在计算出每个所述风电场的指令有功功率后,执行如下操作:
    若所述第j优先级内每个风电场的所述指令有功功率大于该优先级内的所述断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
    Figure PCTCN2018077864-appb-100027
    其中,
    Figure PCTCN2018077864-appb-100028
    为第j优先级内i风电场的第二指令有功功率;
    Figure PCTCN2018077864-appb-100029
    为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
    Figure PCTCN2018077864-appb-100030
    为第j优先 级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的所述断面极限;
    按照所述第二指令有功功率更新所述第j优先级内i风电场的指令有功功率;
    步骤十、计算每个优先级内未参与低谷供暖市场化交易的风电场的指令有功功率;
    其中,在计算所述未参与低谷供暖市场化交易的风电场的指令有功功率前,修正存在所述参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率,公式如下:
    Figure PCTCN2018077864-appb-100031
    其中,
    Figure PCTCN2018077864-appb-100032
    为存在所述参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率;
    Figure PCTCN2018077864-appb-100033
    为存在所述参与低谷供暖市场化交易的风电场的优先级内所有风电场的目标有功功率;NL表示j优先级内存在所述参与低谷供暖市场化交易的风电场的集合。
  9. 根据权利要求7所述的控制方法,其中,所述根据所述风电场群的目标有功功率按照优先级由高到低的顺序确定每个所述优先级内风电场的指令有功功率,还包括:
    设定目标有功功率增大阈值,若所述风电场群的目标有功功率大于所述目标有功功率阈值,且计算出所述(t+1)周期内风电场群的目标有功功率与所述t周期内所述风电场群的目标有功功率的差值大于所述目标有功功率增大阈值时,将所述(t+1)周期内风电场群的目标有功功率按优先级由高到低的顺序与每个断面极限的和值进行比较,当所述(t+1)周期内风电场群的目标有功功率大于第j优先级及所述第j优先级之前的每级所述断面极限之和且小于或等于第j+1优先级及所述第j+1优先级之前的每级所述断面极限之和时,将第一优先级至第j优先级的指令有功功率钳位在每个优先级对应的所述断面极限,并按如下公式计算所述j优先级以后的优先级风电场的剩余目标有功功率:
    Figure PCTCN2018077864-appb-100034
    其中,式中M′为所有具备上调能力的断面集合,M″为所有不具备上调能力的所述断面集合。
  10. 根据权利要求4所述的控制方法,其中,在所述根据所述指令有功功率控制每个所述优先级内风电场的实际有功功率之前,还包括:
    实时获取每个优先级内每个风电场的实际有功功率;
    若所有所述优先级内每个风电场的实际有功功率之和大于所述风电场群的目标有功功率,按如下公式计算每个风电场的第四指令有功功率:
    Figure PCTCN2018077864-appb-100035
    其中,
    Figure PCTCN2018077864-appb-100036
    为i风电场的第四指令有功功率;
    Figure PCTCN2018077864-appb-100037
    为i风电场的实际有功功率;
    Figure PCTCN2018077864-appb-100038
    风电场群的实际有功功率之和;
    Figure PCTCN2018077864-appb-100039
    为所述风电场群的目标有功功率;
    按照所述第四指令有功功率更新所述风电场群每个风电场的指令有功功率。
  11. 一种风电场群有功功率的控制装置,所述风电场群包括m多个优先级的风电场,其中,m为正整数,所述控制装置包括:
    风电场群目标有功功率确定模块,设置为实时监测电网消纳能力,根据所述电网消纳能力确定所述风电场群的目标有功功率;
    指令有功功率计算模块,设置为根据所述风电场群的目标有功功率按照所述优先级由高到低的顺序确定每个所述优先级内风电场的指令有功功率;
    控制模块,设置为根据所述指令有功功率控制每个所述优先级内风电场的实际有功功率。
  12. 根据权利要求11所述的控制装置,其中,还包括,优先级设定模块,设置为预先设定所述风电场群内每个所述风电场的优先级j,其中,j=1,2,……m,且每个所述风电场的优先级定期更新,同一所述优先级内包括n个风电场,其中,n为正整数。
  13. 根据权利要求12所述的控制装置,其中,所述风电场群目标有功功率确定模块是设置为:
    实时监测电网消纳能力,根据t周期末电网消纳能力确定(t+1)周期内所述风电场群的目标有功功率。
  14. 根据权利要求13所述的控制装置,其中,所述指令有功功率计算模块包括:
    第一指令有功功率计算子模块,设置为设定目标有功功率阈值,若所述风电场群的目标有功功率小于或等于所述目标有功功率阈值,控制每个所述优先级内风电场的指令有功功率等于0;
    第二指令有功功率计算子模块,设置为若所述风电场群的目标有功功率大于所述目标有功功率阈值,按如下步骤计算每个所述优先级内每个风电场的所述指令有功功率:
    步骤一、对于第j优先级内的i风电场,按照如下公式计算与i风电场对应的初始指令有功功率:
    Figure PCTCN2018077864-appb-100040
    其中,
    Figure PCTCN2018077864-appb-100041
    为(t+1)周期内所述j优先级内i风电场的初始指令有功功率,
    Figure PCTCN2018077864-appb-100042
    为t周期末所述j优先级内i风电场的实际有功功率;ΔP i第j优先级内的i风电场的指令步长,Nj表示第j优先级;
    步骤二、每计算出一个所述优先级内所有风电场的初始指令有功功率后,按如下公式计算该优先级以后的所述优先级风电场的剩余目标有功功率:
    Figure PCTCN2018077864-appb-100043
    其中,
    Figure PCTCN2018077864-appb-100044
    为所述j优先级以后的所述优先级风电场的剩余目标有功功率,
    Figure PCTCN2018077864-appb-100045
    为所述风电场群的目标有功功率,
    Figure PCTCN2018077864-appb-100046
    为所述第j优先级及所述第j优先级以前所有风电场的初始指令有功功率之和;
    步骤三、将所述j优先级以后的优先级风电场的剩余目标有功功率
    Figure PCTCN2018077864-appb-100047
    与(j+1)优先级内每个风电场的初始指令有功功率之和
    Figure PCTCN2018077864-appb-100048
    进行比较,若
    Figure PCTCN2018077864-appb-100049
    控制第(j+1)优先级以后的风电场的指令有功功率为0;第(j+1)优先级内每个所述风电场的第一指令有功功率按如下公式确定:
    Figure PCTCN2018077864-appb-100050
    其中,
    Figure PCTCN2018077864-appb-100051
    为第(j+1)优先级内i风电场的第一指令有功功率;
    Figure PCTCN2018077864-appb-100052
    为第(j+1)优先级内i风电场所述初始指令有功功率;
    Figure PCTCN2018077864-appb-100053
    为第(j+1)优先级内所有风电场所述初始指令有功功率之和;
    Figure PCTCN2018077864-appb-100054
    为所述j优先级以后的优先级风电场的剩余目标有功功率;
    步骤四、控制第j优先级以及j优先级以前优先级内每个风电场的有功指令等于所述初始有功指令有功功率,控制所述第(j+1)优先级内每个风电场的指令有功功率等于所述第一指令有功功率,公式如下:
    Figure PCTCN2018077864-appb-100055
    Figure PCTCN2018077864-appb-100056
    其中,
    Figure PCTCN2018077864-appb-100057
    为i风电场的所述指令有功功率。
  15. 根据权利要求14所述的控制装置,其中,每一个所述优先级对应一个断面,所述第二指令有功功率计算子模块包括:
    第二指令有功功率计算单元,设置为执行:
    步骤五、若所述风电场群包括存在断面极限的所述断面,若所述第j优先级内每个风电场的所述指令有功功率大于该优先级内的所述断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
    Figure PCTCN2018077864-appb-100058
    其中,
    Figure PCTCN2018077864-appb-100059
    为第j优先级内i风电场的第二指令有功功率;
    Figure PCTCN2018077864-appb-100060
    为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
    Figure PCTCN2018077864-appb-100061
    为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的所述断面极限;
    步骤六、按照所述第二指令有功功率更新所述第j优先级内i风电场的指令有功功率。
  16. 根据权利要求14所述的控制装置,其中,所述指令有功功率计算模块还包括:低谷供暖功率计算子模块,设置为若所述风电场群中存在参与低谷供暖市场化交易的风电场,按照如下步骤计算每个所述风电场的指令有功功率:
    步骤七、根据每个所述参与低谷供暖市场化交易的风电场当月参与供暖交易的总电量和负荷低谷小时数计算所述风电场的基准交易电力,公式如下:
    Figure PCTCN2018077864-appb-100062
    其中,L i表示当月i风电场的基准交易电力;Q i表示i风电场当月参与供暖交易的总电量;T表示i风电场当月负荷低谷小时数;
    步骤八、按照如下公式计算所述参与低谷供暖市场化交易的风电场的第三指令有功功率:
    Figure PCTCN2018077864-appb-100063
    其中,
    Figure PCTCN2018077864-appb-100064
    为所述参与低谷供暖市场化交易的风电场的第三指令有功功率;
    Figure PCTCN2018077864-appb-100065
    为所述参与低谷供暖市场化交易的风电场按照所述步骤一至步骤四计算出的指令有功功率;
    步骤九、每一个所述优先级对应一个断面,若所述风电场群包括存在断面极限的所述断面,在计算出每个所述风电场的指令有功功率后,执行如下操作:
    若所述第j优先级内每个风电场的所述指令有功功率大于该优先级内的所述断面极限,按如下公式计算该优先级内每个风电场的第二指令有功功率:
    Figure PCTCN2018077864-appb-100066
    其中,
    Figure PCTCN2018077864-appb-100067
    为第j优先级内i风电场的第二指令有功功率;
    Figure PCTCN2018077864-appb-100068
    为根据步骤一至步骤四计算出的第j优先级内i风电场的指令有功功率;
    Figure PCTCN2018077864-appb-100069
    为第j优先级内所有风电场的指令有功功率之和,P j,lim为第j优先级内的所述断面极限;
    按照所述第二指令有功功率更新所述第j优先级内i风电场的指令有功功率;
    步骤十、计算每个优先级内未参与低谷供暖市场化交易的风电场的指令有功功率;
    其中,在计算所述未参与低谷供暖市场化交易的风电场的指令有功功率前,修正存在所述参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率,公式如下:
    Figure PCTCN2018077864-appb-100070
    其中,
    Figure PCTCN2018077864-appb-100071
    为存在所述参与低谷供暖市场化交易的风电场的优先级内未参与低谷供暖市场化交易的风电场的目标有功功率;
    Figure PCTCN2018077864-appb-100072
    为存在所述参与低谷供暖市场化交易的风电场的优先级内所有风电场的目标有功功率;NL表示j优先级内存在所述参与低谷供暖市场化交易的风电场的集合。
  17. 根据权利要求15所述的控制装置,其中,所述第二指令有功功率计算子模块还包括:
    钳位计算单元,设置为设定目标有功功率增大阈值,若所述风电场群的目标有功功率大于所述目标有功功率阈值,且计算出所述(t+1)周期内风电场群的目标有功功率与所述t周期内所述风电场群的目标有功功率的差值大于所述目标有功功率增大阈值时,将所述(t+1)周期内风电场群的目标有功功率按优先级由高到低的顺序与每个断面极限的和值进行比较,当所述(t+1)周期内风电场群的目标有功功率大于第j优先级及所述第j优先级之前的每级所述断面极限之和且小于或等于第j+1优先级及所述第j+1优先级之前的每级所述断面极限之和时,将第一优先级至第j优先级的指令有功功率钳位在每个优先级对应的所述断面极限,并按如下公式计算所述j优先级以后的优先级风电场的剩余目标有功功率:
    Figure PCTCN2018077864-appb-100073
    其中,式中M′为所有具备上调能力的断面集合,M″为所有不具备上调能力的所述断面集合。
  18. 根据权利要求14所述的控制装置,其中,所述指令有功功率计算模块还包括:
    第四指令有功功率计算子模块,设置为在所述根据所述指令有功功率控制所述每个所述优先级内风电场的实际有功功率之前实时获取每个优先级内每个 风电场的实际有功功率;
    若所有所述优先级内每个风电场的实际有功功率之和大于所述风电场群的目标有功功率,按如下公式计算每个风电场的第四指令有功功率:
    Figure PCTCN2018077864-appb-100074
    其中,
    Figure PCTCN2018077864-appb-100075
    为i风电场的第四指令有功功率;
    Figure PCTCN2018077864-appb-100076
    为i风电场的实际有功功率;
    Figure PCTCN2018077864-appb-100077
    风电场群的实际有功功率之和;
    Figure PCTCN2018077864-appb-100078
    为所述风电场群的目标有功功率;
    按照所述第四指令有功功率更新所述风电场群内每个风电场的指令有功功率。
PCT/CN2018/077864 2018-03-02 2018-03-02 风电场群有功功率的控制方法及装置 WO2019165637A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112018072366-5A BR112018072366B1 (pt) 2018-03-02 2018-03-02 Método de controle e dispositivo para a potência ativa do grupo de usinas eólicas
US16/090,677 US11451066B2 (en) 2018-03-02 2018-03-02 Control method and device for active power of wind power plant cluster
PCT/CN2018/077864 WO2019165637A1 (zh) 2018-03-02 2018-03-02 风电场群有功功率的控制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077864 WO2019165637A1 (zh) 2018-03-02 2018-03-02 风电场群有功功率的控制方法及装置

Publications (1)

Publication Number Publication Date
WO2019165637A1 true WO2019165637A1 (zh) 2019-09-06

Family

ID=67804791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077864 WO2019165637A1 (zh) 2018-03-02 2018-03-02 风电场群有功功率的控制方法及装置

Country Status (3)

Country Link
US (1) US11451066B2 (zh)
BR (1) BR112018072366B1 (zh)
WO (1) WO2019165637A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509770A (zh) * 2020-04-21 2020-08-07 浙江运达风电股份有限公司 一种基于多工况专家策略的智能风电场有功功率控制方法
CN112350314A (zh) * 2020-10-30 2021-02-09 广东电网有限责任公司电力调度控制中心 一种电力系统发电智能驾驶系统的调度方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215425B (zh) * 2020-10-16 2023-10-20 国网冀北电力有限公司 风电集群有功功率的调度方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522781A (zh) * 2011-12-26 2012-06-27 国电南瑞科技股份有限公司 风火统一建模参与ace控制方法
CN104124715A (zh) * 2014-08-11 2014-10-29 国家电网公司 根据风机出力按优先级别分配的风电场有功自动调度方法
CN104467030A (zh) * 2014-12-03 2015-03-25 北京四方继保自动化股份有限公司 一种基于风电与火电联合发电的功率分配方法
US20160061189A1 (en) * 2014-09-02 2016-03-03 Siemens Industry, Inc. Systems, methods and apparatus for improved energy management systems with security-oriented probabilistic wind power generation dispatch
CN105811472A (zh) * 2016-04-14 2016-07-27 国电联合动力技术有限公司 一种基于风电场经济性的有功功率调节方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522781A (zh) * 2011-12-26 2012-06-27 国电南瑞科技股份有限公司 风火统一建模参与ace控制方法
CN104124715A (zh) * 2014-08-11 2014-10-29 国家电网公司 根据风机出力按优先级别分配的风电场有功自动调度方法
US20160061189A1 (en) * 2014-09-02 2016-03-03 Siemens Industry, Inc. Systems, methods and apparatus for improved energy management systems with security-oriented probabilistic wind power generation dispatch
CN104467030A (zh) * 2014-12-03 2015-03-25 北京四方继保自动化股份有限公司 一种基于风电与火电联合发电的功率分配方法
CN105811472A (zh) * 2016-04-14 2016-07-27 国电联合动力技术有限公司 一种基于风电场经济性的有功功率调节方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111509770A (zh) * 2020-04-21 2020-08-07 浙江运达风电股份有限公司 一种基于多工况专家策略的智能风电场有功功率控制方法
CN112350314A (zh) * 2020-10-30 2021-02-09 广东电网有限责任公司电力调度控制中心 一种电力系统发电智能驾驶系统的调度方法及装置
CN112350314B (zh) * 2020-10-30 2023-01-20 广东电网有限责任公司电力调度控制中心 一种电力系统发电智能驾驶系统的调度方法及装置

Also Published As

Publication number Publication date
BR112018072366A2 (pt) 2019-12-03
BR112018072366B1 (pt) 2023-10-17
US11451066B2 (en) 2022-09-20
US20210194252A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2021164112A1 (zh) 风电场优化配置储能作为黑启动电源的频率控制方法及系统
Chu et al. Towards optimal system scheduling with synthetic inertia provision from wind turbines
US11770098B2 (en) Coordinated control of renewable electric generation resource and charge storage device
CN109861242B (zh) 一种风电参与电网一次调频的功率协调控制方法及系统
CN109787282B (zh) 一种规模化储能参与新能源场站无功协调控制方法和系统
WO2017000853A1 (zh) 主动配电网多时间尺度协调优化调度方法和存储介质
WO2019165637A1 (zh) 风电场群有功功率的控制方法及装置
WO2020107542A1 (zh) 一种储能机组的梯次利用储能电池能量控制方法和系统
CN109768583A (zh) 一种新能源电力系统中火电机组改造容量确定方法
CN111523204B (zh) 一种并网型综合能源网电-气储能系统优化配置求解方法
TW201905774A (zh) 用於在間歇性發電廠中預測控制功率升降的方法
CN110752598B (zh) 多点分布式储能系统灵活性评价方法和装置
CN111525628B (zh) 考虑多时间尺度灵活性约束的含风电并网机组组合方法
CN111047077A (zh) 一种新能源年度交易电量优化分解方法及系统
CN108429249A (zh) 一种电力系统调峰调频的社会经济效益计算方法及系统
Wang et al. A time-scale adaptive dispatching strategy considering the matching of time characteristics and dispatching periods of the integrated energy system
CN112531773B (zh) 一种新能源发电系统及其能量调控方法及装置
CN115619153A (zh) 动态聚合下考虑分布式资源运行特性的响应方法和装置
CN110717694B (zh) 基于新能源消纳期望值的储能配置随机决策方法及装置
CN108984875B (zh) 一种计算光热机组参与电力平衡容量的方法
Mengmeng et al. Datacenter Power Consumption Regulation towards Specific Targets in Smart Grid Environment
Cai et al. Model predictive control-based wind farm power control with energy storage
Su et al. Quantification and Evaluation of Power System Flexibility under Different Time Scales
CN117439109A (zh) 一种水火储联合调频方法及装置
CN104967150A (zh) 风电场实时发电量的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907790

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018072366

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018072366

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181030

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907790

Country of ref document: EP

Kind code of ref document: A1