WO2019165603A1 - 一种三维空间测量的方法、装置及系统 - Google Patents

一种三维空间测量的方法、装置及系统 Download PDF

Info

Publication number
WO2019165603A1
WO2019165603A1 PCT/CN2018/077574 CN2018077574W WO2019165603A1 WO 2019165603 A1 WO2019165603 A1 WO 2019165603A1 CN 2018077574 W CN2018077574 W CN 2018077574W WO 2019165603 A1 WO2019165603 A1 WO 2019165603A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
target object
position information
processor
camera
Prior art date
Application number
PCT/CN2018/077574
Other languages
English (en)
French (fr)
Inventor
周琨
李乐
袁磊
Original Assignee
深圳市欢创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市欢创科技有限公司 filed Critical 深圳市欢创科技有限公司
Priority to PCT/CN2018/077574 priority Critical patent/WO2019165603A1/zh
Publication of WO2019165603A1 publication Critical patent/WO2019165603A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target

Definitions

  • the invention belongs to the field of spatial positioning, and in particular to a method, device and system for measuring three-dimensional space.
  • the first generation of sweeping robots is completely random motion, using collision sensors for random selection of paths, and there is no obstacle avoidance capability.
  • the second generation of sweeping robots relies on built-in gyroscopes and accelerometers, and has open-loop local planning. Function, there is no memory function for the surrounding environment, and there is no obstacle avoidance ability;
  • the third generation of sweeping robots that are currently emerging adopts laser radar for planning and navigation, and the 360-degree rotating laser probe is used to measure the space between the device and the surrounding objects.
  • Distance avoiding impact on objects, so that the robot can perceive the surrounding two-dimensional (2D) environment, but because its collected information is very limited, it can not identify surrounding objects, surrounding environment, etc., so its interaction and perception functions are still limited. It is impossible to identify and determine obstacles, and therefore does not have good obstacle avoidance capabilities.
  • a relatively popular obstacle recognition and obstacle avoidance method uses a monocular RGB camera as a hardware, cooperates with LED illumination light as an auxiliary light source, takes a 2D image, and performs deep learning and training through a large number of sample collections, thereby Achieve the purpose of identifying objects in the surrounding environment.
  • the monocular RGB camera since the monocular RGB camera is used, although the cost is very low and the amount of information collected is very rich, its robustness to the recognition of surrounding objects is poor. Because in the home environment, the shape of the obstacles varies widely, and the complexity of the ground reflection and ambient light, and some obstacles are flexible objects (such as cables) that are deformable, therefore, through the monocular RGB camera. It is very difficult to achieve reliable environmental awareness and obstacle recognition. In addition, due to the monocular camera, the distance of obstacles can only be approximated by multi-point measurement. The error of this estimation is usually very large, and the calculation amount is also very large, which is not suitable for cost-sensitive consumer electronics. product.
  • the invention provides a method, a device and a system for measuring a three-dimensional space, realizing external contour data acquisition of a target object (obstacle) by a monocular camera, establishing a three-dimensional space model of the target object, and locating the three-dimensional space of the target object
  • the spatial position solves the problem that the stability is poor and the calculation amount is large due to the use of deep learning two-dimensional (2D) images in the prior art, and the recognition efficiency and recognition stability of the target object are improved.
  • an embodiment of the present invention provides a three-dimensional space measurement system, the system comprising:
  • a three-dimensional section measuring device for transmitting a linear beam to a target object, receiving the reflected light after the transmitting linear beam is emitted to the target object, generating a response signal, and transmitting the generated response signal to the processor;
  • a spatial positioning device configured to acquire location information of the three-dimensional space measurement system, and send the location information to the processor
  • the processor is built in the three-dimensional section measuring device or independent of the three-dimensional section measuring device, and is configured to calculate one or more aspects of the target object according to the received response signal and position information.
  • the three-dimensional data is used to establish a three-dimensional space model of the target object according to the calculated plurality of sliced three-dimensional data, and to locate the three-dimensional spatial position information of the target object.
  • the processor calculates three-dimensional data of one or more aspects of the target object according to the received response signal and position information, and calculates the plurality of data according to the plurality of Cutting the three-dimensional data to establish a three-dimensional model of the target object, including:
  • the three-dimensional section measuring device is further configured to:
  • the linear beam is continuously transmitted to the target object to generate a plurality of response signals at different times to cause the processor to acquire three-dimensional data of different slices at different times.
  • the processor acquires three-dimensional data of different aspects at different times, including:
  • the processor extracts an intersection line of the linear beam with the target object or the ground, and calculates a three-dimensional information of the linear beam and the plurality of section lines of the target object by using a trigonometric method.
  • the three-dimensional section measuring device is further configured to:
  • the linear beam is continuously transmitted to the target object through different angles to generate different response signals at different times.
  • An embodiment of the present invention further provides a three-dimensional space measurement system, where the three-dimensional space measurement system includes:
  • a three-dimensional section measuring device comprising a light emitter and a camera, the camera and the light emitter being fixedly placed up and down, and the camera and/or the light emitter are lowered at a pitch angle Looking down on the ground;
  • a processor built in the three-dimensional section measuring device or independent of the three-dimensional section measuring device, controlling the three-dimensional section measuring device to perform linear beam transmission and reception, and receiving a response signal sent by the three-dimensional section measuring device;
  • a spatial positioning device is connected to the processor, and the acquired three-dimensional spatial measurement system position information is sent to the processor, so that the processor establishes a three-dimensional object object according to the response signal and the position information. a spatial model and positioning the three-dimensional spatial position information of the target object.
  • the three-dimensional section measuring device further includes a beam splitter disposed at an emission port of the light emitter to expand a spot light emitted by the light emitter into a linear beam.
  • the camera is parallel or at an angle to the optical axis of the light emitter.
  • the camera and the light emitter are fixedly placed up and down, and include:
  • the camera is located above or below the light emitter, and the perpendicular and horizontal lines of the camera and the center of the light emitter exhibit a roll angle, and the angle of the roll angle is greater than or equal to 0 degrees and less than 90 degrees.
  • the processor establishes a three-dimensional spatial model of the target object according to the response signal and the position information, and locates the three-dimensional spatial position information of the target object, including:
  • the processor calculates three-dimensional data of one or more aspects of the target object according to the received response signal and position information
  • the embodiment of the invention further provides a three-dimensional section measuring device, wherein the three-dimensional section measuring apparatus comprises:
  • a light emitter comprising a laser and a beam splitter, the beam splitter being disposed at a laser emission entrance of the laser, and expanding a point laser transmitted by the laser into a linear laser beam;
  • the camera and the light emitter are fixedly placed up and down, and the camera and/or the light emitter face down to the ground at a pitch angle, and the camera collects the linear laser beam to be emitted to a target object After the reflected light, output a response signal to the processor;
  • the processor controls the light emitter to emit a linear beam, and receives a response signal sent by the camera, acquires position information of the three-dimensional section measuring device, and calculates one or more aspects of the target object. 3D data.
  • the processor is further configured to:
  • Receiving position information transmitted by the spatial positioning device establishing a three-dimensional space model of the target object according to the position information and the three-dimensional data of the plurality of aspects, and locating the three-dimensional spatial position information of the target object.
  • the laser is an infrared laser or a visible laser.
  • the camera is a CCD camera or a CMOS camera, and the camera is an infrared camera or a visible light camera.
  • the embodiment of the invention further provides a positioning device, the positioning device comprising:
  • a positioning module configured to acquire three-dimensional spatial position information of the positioning device
  • a processor configured to receive three-dimensional spatial position information acquired by the positioning module, and receive a response signal sent by the three-dimensional slice measuring device, and calculate a target object according to the response signal and the plurality of three-dimensional data of the sliced surface And displaying a three-dimensional space model of the target object according to the received position information and the calculated plurality of sliced three-dimensional data, and positioning the three-dimensional spatial position information of the target object.
  • the positioning device is a combination of one or more of a laser radar, a wireless positioning device, a monocular camera, or a binocular camera.
  • An embodiment of the present invention further provides a three-dimensional space measurement method, which is applied to a three-dimensional space measurement system, and the method includes:
  • the three-dimensional section measuring device transmits a linear beam to the target object, receives the reflected light after the transmitting linear beam is emitted to the target object, generates a response signal, and sends the generated response signal to the processor;
  • the spatial positioning device acquires location information of the three-dimensional space measurement system, and sends the location information to the processor;
  • the processor calculates three-dimensional data of one or more aspects of the target object according to the received response signal and position information, and establishes the target object according to the calculated plurality of sliced three-dimensional data. a three-dimensional space model and locate the three-dimensional spatial position information of the target object.
  • the processor calculates three-dimensional data of one or more aspects of the target object according to the received response signal and position information, and calculates the plurality of data according to the plurality of Cutting the three-dimensional data to establish a three-dimensional model of the target object, including:
  • the three-dimensional section measuring device transmits a linear beam to the target object, including:
  • the linear beam is continuously transmitted to the target object, and a plurality of response signals at different times are generated to enable the processor to acquire three-dimensional data of different slices at different times.
  • the processor acquires three-dimensional data of different aspects at different times, including:
  • the processor extracts an intersection of the linear beam with the target object or the ground, and calculates three-dimensional information of the linear beam and a plurality of slice segments of the target object.
  • the three-dimensional section measuring device generates a response signal, including:
  • the linear beam is continuously transmitted to the target object through different angles to generate different response signals at different times.
  • the three-dimensional space measurement system calculates the three-dimensional data of the plurality of different cut surfaces of the target object by continuously transmitting the linear light beam to the target object, receiving the reflected light emitted to the target object, and measuring the position information collected by the positioning device.
  • the target object has a plurality of slice point clouds relative to the position of the three-dimensional space measurement system, thereby establishing a three-dimensional space model of the target object, and positioning the three-dimensional spatial position of the target object. It improves the robustness of mobile robots to identify obstacles and can be applied to a variety of lighting environments and complex home environments while reducing the cost.
  • FIG. 1 is a structural diagram of a three-dimensional space measuring system in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing the working principle of a three-dimensional space measuring system in Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the operation of the three-dimensional space measuring system in the traveling process according to Embodiment 1 of the present invention.
  • FIG. 4 is a structural diagram of a three-dimensional space measuring system in Embodiment 2 of the present invention.
  • Figure 5 is a structural diagram showing the structure of a three-dimensional section measuring device in Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram showing the relationship between a position of a light emitter and a camera in Embodiment 3 of the present invention.
  • FIG. 7 is a side view showing the positional relationship between a light emitter and a camera in Embodiment 3 of the present invention.
  • Figure 8 is a front elevational view showing the relationship between the position of the light emitter and the camera in Embodiment 3 of the present invention.
  • Figure 9 is a structural diagram showing the structure of a space locating device in Embodiment 4 of the present invention.
  • Figure 10 is a flow chart of a three-dimensional space measuring method in Embodiment 5 of the present invention.
  • the present invention provides a three-dimensional space measuring system 11 comprising the following components:
  • the three-dimensional section measuring device 12 is configured to send a linear beam to the target object, receive the reflected light after the transmitting linear beam is emitted to the target object, generate a response signal, and send the generated response signal to the processor 14;
  • the three-dimensional section measuring device can be composed of a camera, a laser source and a beam splitter.
  • the camera can be a monocular RGB camera or a monocular infrared/visible camera.
  • the laser source can be either a visible laser source or an infrared laser source.
  • the embodiment of the invention can adopt an infrared camera and an infrared laser source. Compared with the visible light camera and the illumination source, the infrared ray can avoid complex ambient visible light, and the recognition rate and robustness of the target object (obstacle). Sex will be better.
  • the beam splitter is placed at the light source outlet of the laser source, and the two are fixed and built in a laser.
  • the camera includes a lens and an image sensor, and the image sensor includes but is not limited to a CCD and a CMOS sensor, and the image sensor can be arrayed.
  • the structure or the linear structure is not limited in the embodiment of the present invention.
  • the laser source may be a point source.
  • the point source After being expanded by a beam splitter (also known as a beam expander), the point source may be expanded into a linear beam, and the linear beam is a line formed by an infinite number of points.
  • the light beam when the linear beam is emitted to the target object at a certain top angle, forms a cross-section on the target object and generates reflected light.
  • the camera After receiving the reflected light, the camera generates a response signal, and the response signal includes the reflected light and Its associated geometric information, such as the offset value L of the reflected light, the angle between the optical axis of the camera and the optical axis of the laser, and/or the focal length f of the filter, and the like.
  • FIG. 2 is a working principle diagram of the distance measurement of the three-dimensional section measuring device.
  • the camera and the laser are arranged up and down, and the camera and the optical axis of the laser are parallel or at an angle, and the camera and the laser are inclined at a top angle. Down, ensure that the beam emitted by the laser is emitted obliquely downward, and the camera can receive the light reflected back after the launch.
  • the laser emits a linear laser beam to the outer surface of the target object, forms all the line segments, and reflects to the camera.
  • the geometric parameters of the reflected light are acquired, and a response signal is generated and sent to the processor 14, and the processor 14 According to the response signal, the distance from the laser of the section line segment is calculated by a trigonometric method, and the three-dimensional spatial position information of the section line segment can be calculated according to the spatial positioning information.
  • Fig. 3 is a schematic view of a laser measuring target object in a three-dimensional section measuring device during traveling. As shown in FIG.
  • the upper, middle, and lower figures respectively indicate that the position of the laser relative to the target object is far and near.
  • the linear laser beam is emitted to different sections of the target object to form different reflected lights.
  • the camera collects the different reflected lights to generate different response signals.
  • the embodiment of the present invention can also measure different cut surfaces of the target object by simply rotating the laser up and down without being in a traveling state. It is only necessary to install a rotating shaft on the laser, and by controlling the rotating shaft to move up and down, the laser can be controlled to emit a linear beam (scanning) target object at different top angles.
  • the spectroscope may be a lattice spectroscope or an area grating, such as a diffraction grating (DOE) or an optical prism, or may be other spectroscopic devices, which is not limited by the embodiment of the present invention.
  • DOE diffraction grating
  • the spatial positioning device 13 is configured to acquire location information of the three-dimensional space measurement system, and send the location information to the processor 14;
  • the spatial positioning device 13 may be a combination of one or more of a wireless positioning device, a laser radar, a monocular camera or a binocular camera. The purpose is to perform three-dimensional spatial positioning on the three-dimensional space measurement system in real time, and determine the three-dimensional space measurement system in real time.
  • the wireless positioning device may be a device such as an iBeacon.
  • the three-dimensional spatial position information may include spatial information and/or heading angle information.
  • the processor 14 is built in the three-dimensional section measuring device or independent of the three-dimensional section measuring device, and is configured to calculate one or more aspects of the target object according to the received response signal and position information.
  • the three-dimensional data is used to establish a three-dimensional space model of the target object according to the calculated plurality of sliced three-dimensional data, and to locate the three-dimensional spatial position information of the target object.
  • the processor 14 has two functions: 1. real-time measurement of three-dimensional spatial data of one or more aspects of the target object in combination with the received position information; 2. multi-dimensional data of the plurality of aspects and current The real-time position is fused, a three-dimensional space model of the target object is established, and the three-dimensional spatial position of the target object is located.
  • the laser distance measuring device or the hand-held laser distance measuring device currently applied to the mobile robot is to acquire the two-dimensional data of the target object and combine the triangulation method to measure the target object (obstacle), for example, the patent 20111286775.9
  • the two-dimensional ranging method and device also use a monocular camera to measure the obstacles, but it is only processing the two-dimensional data, and the processing of the three-dimensional data is not yet achieved.
  • the ranging device provided by the embodiment of the invention can not only perform two-dimensional ranging, but also establish a three-dimensional space model and acquire the position of the three-dimensional space of the target object.
  • the embodiment of the present invention can further improve the recognition rate and robustness of obstacle measurement with respect to the patent.
  • binocular camera for 3D ranging.
  • the use of binocular cameras for 3D ranging is not only expensive. It is difficult to implement, so it is mostly used in the special industrial grade or high-speed ranging field, and is not suitable for the consumer mobile robot field.
  • the technical principle of the binocular camera to realize the three-dimensional distance measurement is that the binocular vision depth is different, and the essence and principle of the technical solution are greatly different from the single eye measurement three-dimensional space provided by the embodiment of the present invention.
  • the invention can acquire the positioning data in real time during the moving process, and can calculate the displacement value in the current time period according to the three-dimensional coordinates of the positioning data, and combine the displacement value to output the three-dimensional transformation data of the three-dimensional point cloud in real time, and then output the three-dimensional shape of the slice surface.
  • the present invention adopts a time-sharing mechanism, which does not require multiple beams of linear light to be simultaneously transmitted to a target object.
  • the workload of the solution is much lower than the traditional three-dimensional modeling technology, and the error is small. And the cost is low, which is more conducive to commercial success;
  • the traditional 3D modeling technology usually uses the current 3D space measurement system as the coordinate starting point, and the solution can be based on the 3D information provided by the positioning module in the wide area.
  • the three-dimensional modeling of the geographic three-dimensional space, the technical implementation difficulty is greatly improved compared with the traditional three-dimensional modeling technology.
  • the processor 14 to combine the received position information, the three-dimensional spatial data of one or more aspects of the target object is measured in real time by using a triangulation method, and the implementation of the solution may specifically be:
  • the three-dimensional spatial measurement is acquired from the measurement system when the target object is detected (ie, the first time the scanning is performed to the target object during the traveling process), or from the scanning to the target object at a later time.
  • Position information of the first moment of the system (the first moment can be as shown in the uppermost figure in FIG. 3), and acquiring three-dimensional data of the first cut surface of the target object in the first time, and calculating the first cut surface of the target object
  • the single-section three-dimensional data is not enough for the three-dimensional modeling and spatial localization of the target object. It also needs to perform three-dimensional data of multiple cut surfaces. The more three-dimensional data of the obtained cut surface, the more accurate the modeling and the higher the positioning accuracy. Therefore, it is also necessary to continuously acquire three-dimensional data of different cut surfaces at different times, thereby obtaining three-dimensional data of the outer surface contour of the target object composed of the plurality of cut surfaces.
  • the processor 14 further needs to acquire position information of the time N (N is a positive integer greater than or equal to 2) of the three-dimensional space measurement system, and acquire three-dimensional data of the Nth slice of the target object in the Nth time, Calculating position information of the three-dimensional point cloud of the outer contour of the Nth section of the target object relative to the three-dimensional space measurement system (the Nth moment is as shown in the middle diagram and the lower diagram in FIG. 3);
  • the outer contour three-dimensional spatial data of the target object Determining part or all of the outer contour three-dimensional spatial data of the target object according to the obtained first to third N-point cloud of the target object relative to all position information of the three-dimensional space measurement system, and establishing the target A three-dimensional model of the object and measuring the three-dimensional spatial position of the target object.
  • the three-dimensional data of the plurality of slices since the three-dimensional data of the plurality of slices has been acquired, that is, the three-dimensional data of the outer surface of part or all of the target object has been acquired (the plurality of slices constitute part or all of the outer surface of the target object), The three-dimensional modeling of the target object is performed according to the existing data modeling method, and will not be described here.
  • the outer surface three-dimensional spatial data can be equivalent to the three-dimensional spatial position information of the target object.
  • the three-dimensional slice measuring device 12 may continuously transmit the linear beam to the target object to generate a plurality of response signals at different times, so that the processor 14 is at different times. Get 3D data from different sections.
  • the response signals at different times contain the geometric characteristics of the target object at different times.
  • the three-dimensional section measuring device 12 can also continuously transmit the linear beam to the target object when the moving state is relative to the target object (for example, the target object is stationary, the three-dimensional space measuring system moves in parallel), and generate different Different response signals at the moment,
  • the linear beam is continuously transmitted to the target object through different angles to generate different response signals at different times. That is, it is possible to rotate the laser directly through the built-in rotating shaft without considering the movement of the three-dimensional space measuring system, so that it can scan the target object through different top angles.
  • the processor 14 acquires three-dimensional data of different aspects at different times, specifically:
  • the processor 14 extracts the intersection of the linear beam with the target object or the ground, and calculates the three-dimensional information of the linear beam and the plurality of section lines of the target object by using a trigonometric method.
  • Triangulation also known as triangulation, is a commonly used ranging method in the field of optical positioning. The method is as follows: by calculating the position of the center of gravity of the region and the relative angle and spacing of the image sensor of the known laser emitting device and the camera, the distance of the target distance image sensor can be estimated.
  • the position of the center of gravity of the coordinates, z is the measured distance.
  • the modeling of the target object and the measurement of the position of the three-dimensional space are completed by acquiring the three-dimensional data of the plurality of cut surfaces.
  • the solution provided by the embodiment of the present invention is not only low in cost, but also has a recognition rate. And the robustness is significantly improved, the user experience will be greatly enhanced, and bring commercial success.
  • an embodiment of the present invention provides a three-dimensional space measurement system, where the three-dimensional space measurement system includes:
  • the three-dimensional section measuring device includes a light emitter 221 and a camera 222, the camera 222 and the light emitter 221 are fixedly placed up and down, and the camera 222 and/or the light emitter 221 looking down at the ground at a pitch angle;
  • the processor 23 is built in the three-dimensional section measuring device 22 or independent of the three-dimensional section measuring device 22, and controls the three-dimensional section measuring device 22 to perform linear beam transmission and reception, and receives the response sent by the three-dimensional section measuring device 22. signal;
  • the spatial positioning device 24 is connected to the processor 23, and sends the acquired three-dimensional spatial measurement system position information to the processor 23, so that the processor 23 establishes according to the response signal and the position information.
  • the three-dimensional section measuring device 22 further includes a beam splitter 223 disposed at an emission port of the light emitter 221 to expand the spot light emitted by the light emitter 221 into a linear beam.
  • the camera 222 may be a monocular RGB camera or a monocular infrared/visible camera.
  • the light emitter 221 may be a visible light laser or an infrared/visible laser.
  • the embodiment of the invention can adopt an infrared camera and an infrared laser. Compared with the visible light camera and the illumination source, the infrared ray can avoid complex ambient visible light, and the recognition rate and robustness of the target object (obstacle). will be better.
  • the camera 222 is parallel or at an angle to the optical axis of the laser. Preferably, the angle is greater than or equal to 0 degrees and less than 90 degrees.
  • the light emitter 221 can be connected to a rotating shaft.
  • the rotating shaft rotates, the light emitter 221 is rotated up and down.
  • the light emitter 221 rotates up and down (ie, the pitch angle changes in real time)
  • the emitted linear beam is
  • the target object (obstacle) can be scanned up and down without scanning the obstacle during travel.
  • the camera 222 and the light emitter 221 are fixedly placed up and down, and specifically:
  • the camera 222 is located above or below the light emitter 221, and the vertical line and the horizontal line of the camera 222 and the center of the light emitter 221 exhibit a roll angle, and the angle of the roll angle is greater than or equal to 0 degrees and less than 90 degrees.
  • the processor 23 establishes a three-dimensional space model of the target object according to the response signal and the position information, and locates the three-dimensional spatial position information of the target object, which may be:
  • the processor 23 calculates, according to the received response signal, a distance of one or more cut surfaces of the target object from the three-dimensional space measuring system by using a triangulation method, and calculates the position according to the position information sent by the positioning device.
  • an embodiment of the present invention provides a three-dimensional cut surface measuring device 31, and the three-dimensional cut surface measuring device 31 includes:
  • a light emitter 32 comprising a laser 321 and a beam splitter 322, the beam splitter being placed at a laser emission entrance of the laser, and expanding a point laser transmitted by the laser into a linear laser beam;
  • the camera 33, the camera 33 and the light emitter 32 are fixedly placed up and down, and the camera 33 and/or the light emitter 32 are laid down to the ground at a pitch angle, and the camera 33 collects the linearity.
  • the laser beam is emitted to the reflected light after the target object, and the response signal is output to the processor 34;
  • the light emitter 32 can be connected to a rotating shaft, and when the rotating shaft rotates, the light emitter 32 is rotated up and down.
  • the light emitter 322 rotates up and down (ie, the pitch angle changes in real time)
  • the emitted linear beam is
  • the target object obstacle
  • the processor 34 controls the light emitter 32 to emit a linear beam and receives a response signal sent by the camera 33 to calculate three-dimensional data of one or more aspects of the target object.
  • the processor 34 is further configured to: receive location information sent by the spatial positioning device, establish a three-dimensional space model of the target object according to the location information and the three-dimensional data of the plurality of aspects, and locate the The three-dimensional spatial position information of the target object.
  • location information sent by the spatial positioning device establish a three-dimensional space model of the target object according to the location information and the three-dimensional data of the plurality of aspects, and locate the The three-dimensional spatial position information of the target object.
  • the light emitter 32 is an infrared laser or a visible light laser.
  • the camera 33 is a CCD camera or a CMOS camera, and the camera is an infrared camera or a visible light camera. Referring to FIG. 6, the light emitter 32 and the camera 33 can be vertically fixed vertically. The light emitter emits a linear beam downward at a certain overhead angle, and the camera receives the reflected light reflected by the linear beam. Referring to FIG. 7, both the light emitter 32 and the camera 33 can be launched/acquired downward at a certain top angle pitch, and the angle of the plan view angle pitch can be arbitrarily selected between 0 and 90 degrees. At the same time, the light emitter 32 and the camera 33 may not be completely perpendicular. As shown in FIG. 8, a roll angle roll may also be present between the two, and the angle of the roll angle may be arbitrarily selected between 0-90 degrees.
  • the embodiment of the present invention further provides a spatial positioning device 41, which may be a combination of one or more of a laser radar, a wireless positioning device, a monocular camera, or a binocular camera.
  • the spatial positioning device 41 includes:
  • a positioning module 42 for acquiring three-dimensional spatial position information of the positioning device
  • a processor 43 configured to receive three-dimensional spatial position information acquired by the positioning module, and receive a response signal sent by the three-dimensional aspect measuring device, and calculate three-dimensional data of the plurality of aspects of the target object according to the three-dimensional spatial position information. And establishing a three-dimensional space model of the target object according to the received location information and the calculated plurality of sliced three-dimensional data, and locating the three-dimensional spatial position information of the target object.
  • the present invention provides a method for three-dimensional space measurement, which is applied to a three-dimensional space measurement system, and the method includes the following steps:
  • the three-dimensional section measuring device sends a linear beam to the target object, receives the reflected light after the transmitting linear beam is emitted to the target object, generates a response signal, and sends the generated response signal to the processor;
  • the linear beam is a linear beam formed by an infinite number of points.
  • a cross section is formed on the target object, and reflected light is generated, and the camera receives After the reflected light, the response signal is generated, and the response signal includes the reflected light and its associated geometric information, such as the offset value L of the reflected light, the angle between the center line of the camera and the laser, and/or the focal length f of the filter. .
  • the measurement scheme can be applied to the moving robot, so the mobile robot is in a dynamic traveling state during the measurement process, and the measurement system keeps moving forward with respect to the stationary target object, thereby the distance The target object is getting closer and closer.
  • Linear laser beams that are emitted at a fixed overhead angle are also emitted on different surfaces of the target object to form different tangent segments. Therefore, the laser needs to continuously emit a linear beam, and the camera also needs to continuously receive the reflected beam.
  • the so-called continuous is to periodically emit a linear beam multiple times, and the period range can be customized according to those skilled in the art, such as 10 ms.
  • the spatial positioning device acquires location information of the three-dimensional space measurement system, and sends the location information to the processor.
  • the three-dimensional spatial position information may include spatial information and/or heading angle information.
  • the processor calculates, by using a trigonometric method, three-dimensional data of one or more aspects of the target object, and establishes the target according to the received location information and the calculated plurality of sliced three-dimensional data. a three-dimensional space model of the object and positioning the three-dimensional spatial position information of the target object.
  • the processing of the processor can be divided into two steps: 1. Combine the received position information to measure the three-dimensional spatial data of one or more aspects of the target object in real time; 2. Perform the three-dimensional spatial data of the plurality of slices and the current real-time position. Fusion processing, establishing a three-dimensional space model of the target object, and locating the three-dimensional spatial position of the target object.
  • the laser distance measuring device or the hand-held laser distance measuring device currently applied to the mobile robot is to acquire the two-dimensional data of the target object and combine the triangulation method to measure the target object (obstacle), for example, the patent 20111286775.9
  • the two-dimensional ranging method and device also use a monocular camera to measure the obstacles, but it is only processing the two-dimensional data, and the processing of the three-dimensional data is not yet achieved.
  • the ranging device provided by the embodiment of the invention can not only perform two-dimensional ranging, but also establish a three-dimensional space model and acquire the position of the three-dimensional space of the target object.
  • the embodiment of the present invention can further improve the recognition rate and robustness of obstacle measurement with respect to the patent.
  • binocular camera for 3D ranging.
  • the use of binocular cameras for 3D ranging is not only expensive. It is difficult to implement, so it is mostly used in the special industrial grade or high-speed ranging field, and is not suitable for the consumer mobile robot field.
  • the technical principle of the binocular camera to realize the three-dimensional distance measurement is that the binocular vision depth is different, and the essence and principle of the technical solution are greatly different from the single eye measurement three-dimensional space provided by the embodiment of the present invention.
  • the implementation of the solution may specifically be:
  • the three-dimensional spatial measurement is acquired from the measurement system when the target object is detected (ie, the first time the scanning is performed to the target object during the traveling process), or from the scanning to the target object at a later time.
  • Position information of the first moment of the system (the first moment can be as shown in the uppermost figure in FIG. 3), and acquiring three-dimensional data of the first cut surface of the target object in the first time, and calculating the first cut surface of the target object
  • the single-section three-dimensional data is not enough for the three-dimensional modeling and spatial localization of the target object. It also needs to perform three-dimensional data of multiple cut surfaces. The more three-dimensional data of the obtained cut surface, the more accurate the modeling and the higher the positioning accuracy. Therefore, it is also necessary to continuously acquire three-dimensional data of different cut surfaces at different times, thereby obtaining three-dimensional data of the outer surface contour of the target object composed of the plurality of cut surfaces.
  • the processor further needs to acquire position information of the time N (N is a positive integer greater than or equal to 2) of the three-dimensional space measurement system, and acquire three-dimensional data of the Nth slice of the target object in the Nth time, and calculate Positioning information of the three-dimensional point cloud of the outer contour of the Nth section of the target object relative to the three-dimensional space measuring system (the Nth moment is as shown in the middle diagram and the lower diagram in FIG. 3);
  • the outer contour three-dimensional spatial data of the target object Determining part or all of the outer contour three-dimensional spatial data of the target object according to the obtained first to third N-point cloud of the target object relative to all position information of the three-dimensional space measurement system, and establishing the target A three-dimensional model of the object and measuring the three-dimensional spatial position of the target object.
  • the three-dimensional data of the plurality of slices since the three-dimensional data of the plurality of slices has been acquired, that is, the three-dimensional data of the outer surface of part or all of the target object has been acquired (the plurality of slices constitute part or all of the outer surface of the target object), The three-dimensional modeling of the target object is performed according to the existing data modeling method, and will not be described here.
  • the outer surface three-dimensional spatial data can be equivalent to the three-dimensional spatial position information of the target object.
  • the three-dimensional slice measuring device can continuously transmit the linear beam to the target object to generate a plurality of response signals at different times, so that the processor acquires different slices at different times. 3D data.
  • the response signals at different times contain the geometric characteristics of the target object at different times.
  • the three-dimensional section measuring device can also continuously transmit the linear beam to the target object when the moving state is relative to the target object (for example, the target object is stationary, the three-dimensional space measuring system moves in parallel), and generate different moments. Different response signals, or,
  • the linear beam is continuously transmitted to the target object through different angles to generate different response signals at different times. That is, it is possible to rotate the laser directly through the built-in rotating shaft without considering the movement of the three-dimensional space measuring system, so that it can scan the target object through different top angles.
  • the processor acquires three-dimensional data of different aspects at different times, specifically:
  • the processor extracts the intersection of the linear beam with the target object or the ground, and calculates the distance between the linear beam and the plurality of section lines of the target object by using a triangulation method, and combines the position information with the position information.
  • the three-dimensional information of the plurality of face segments is calculated.
  • Triangulation also known as triangulation, is a commonly used ranging method in the field of optical positioning. The method is as follows: by calculating the position of the center of gravity of the region and the relative angle and spacing of the image sensor of the known laser emitting device and the camera, the distance of the target distance image sensor can be estimated.
  • the position of the center of gravity of the coordinates, z is the measured distance.
  • the modeling of the target object and the measurement of the position of the three-dimensional space are completed by acquiring the three-dimensional data of the plurality of cut surfaces.
  • the solution provided by the embodiment of the present invention is not only low in cost, but also has a recognition rate. And the robustness is significantly improved, the user experience will be greatly enhanced, and bring commercial success.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be taken by the embodiment of the present application.
  • the implementation process constitutes any qualification.
  • modules and method steps of the various examples described in connection with the embodiments disclosed herein can be implemented in electronic hardware or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.

Abstract

一种三维空间测量系统(11),包括:三维切面测量装置(12),用于发送线性光束至目标物体,接收发送线性光束发射至目标物体后的反射光,生成响应信号,将生成的响应信号发送至处理器(14);空间定位装置(13),用于获取三维空间测量系统(11)的位置信息,并将位置信息发送至处理器(14);处理器(14),内置于三维切面测量装置(12)或独立于三维切面测量装置(12),用于根据接收到的响应信号及位置信息,计算目标物体的一个或多个切面的三维数据,并根据计算出的多个切面三维数据,建立目标物体的三维空间模型,并定位出目标物体的三维空间位置信息。三维空间测量系统(11)提高了目标物体的识别率及鲁棒性。

Description

一种三维空间测量的方法、装置及系统 技术领域
本发明属于空间定位领域,具体地,涉及一种三维空间测量的方法、装置及系统。
背景技术
如今技术高速发展下,智能机器人的应用处于快速增长期。对于移动机器人(如扫地机器人)而言,环境感知与避障是个非常重要的功能。只有能真正的感知环境并智能的判别障碍物,从而采取有效的行动,才能使机器人有效的工作。要实现这个目标,需要两个技术支撑,第一是要能识别障碍物,第二是要能测定障碍物的距离。
目前的移动机器人,特别是用于家庭的扫地机器人越来越普及,然而,其对周围环境的感知能力还不够,避障功能完全缺失。例如,当扫地机器人在行走过程中碰到地上的线缆、拖鞋、地毯、甚至宠物粪便等污渍,就会造成缠绕困死、污染家庭环境等问题。另一方面,这种由撞击产生的冲击力,很有可能会造成家具磕碰、易碎品被撞等情况。而且一旦掉落在地上的袜子、耳机、纸巾、线拖线板线等被卷进设备,很容易造成物品、设备损坏。
目前,第一代扫地机器人,完全是随机运动,采用碰撞传感器进行路径的随机选择,完全没有避障能力;第二代扫地机器人,依靠内置的陀螺仪和加速度计等装置,有着开环局部规划功能,对于周围环境没有记忆功能,避障能力也完全没有;目前正在兴起的第三代扫地机器人,采用了激光雷达进行规划导航,通过360度不断旋转的激光探头,测定设备与周边 物体间的距离,避免撞击物体,使得机器人可以感知周围的二维(2D)环境,但由于其采集的信息十分有限,并不能对周围物体、周边环境等进行识别,因此其交互、感知功能仍较为局限,不能识别、判定障碍物,因此,也不具备很好的避障能力。
现有技术中,较为流行的障碍物识别和避障方法,是采用单目RGB摄像头作为硬件,配合LED照明光作为辅助光源,拍摄2D图像,通过大量的样本采集,进行深度学习和训练,从而达到识别周围环境物体的目的。
在第一种技术方案中,由于采用的是单目RGB摄像头,虽然其成本很低,采集的信息量很丰富,但其对周围物体的识别鲁棒性会很差。因为家庭环境中,障碍物的外形千差万别,而且加上地面反光、环境光线的复杂性,还有就是有些障碍物本身是可变形的柔性物体(如线缆),因此,要通过单目RGB摄像头来实现可靠的环境感知和障碍物识别,是很困难的。再加上由于单目摄像头,只能通过多点测量的方法来近似估算障碍物的距离,这种估算的误差通常很大,而且计算量也非常巨大,不适用于对成本敏感的消费类电子产品。
发明内容
本发明提供了一种三维空间测量的方法、装置及系统,通过单目摄像头实现目标物体(障碍物)的外部轮廓数据采集,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置,解决了现有技术中由于采用深度学习二维(2D)图像导致稳定性差且计算量大的问题,提高了目标物体的识别效率及识别稳定性。
为了实现上述目的,本发明一个实施例提供了一种三维空间测量系统,所述系统包括:
三维切面测量装置,用于发送线性光束至目标物体,接收所述发送线 性光束发射至目标物体后的反射光,生成响应信号,将所述生成的响应信号发送至处理器;
空间定位装置,用于获取所述三维空间测量系统的位置信息,并将所述位置信息发送至所述处理器;
所述处理器,内置于所述三维切面测量装置或独立于所述三维切面测量装置,用于根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
在本发明的一个实施例中,所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,包括:
获取所述三维空间测量系统第一时刻的位置信息,并获取所述第一时刻内所述目标物体第一切面的三维数据,计算出所述目标物体第一切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息;
获取所述三维空间测量系统第N时刻的位置信息,并获取所述第N时刻内所述目标物体第N切面的三维数据,计算出所述目标物体第N切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息,N为大于等于2的正整数;
根据获取到的目标物体的第一切面至第N切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,建立所述目标物体的三维空间模型。
在本发明的一个实施例中,所述三维切面测量装置还用于:
连续发送所述线性光束至所述目标物体,生成在不同时刻的多个响应 信号,以使所述处理器在不同时刻内获取不同切面的三维数据。
在本发明的一个实施例中,所述处理器在不同时刻内获取不同切面的三维数据,包括:
所述处理器提取出所述线性光束与所述目标物体或地面的交线,利用三角法计算出所述线性光束与所述目标物体多个切面线段的三维信息。
在本发明的一个实施例中,所述三维切面测量装置还用于:
在相对于所述目标物体处于移动状态时,连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号,
或,
通过不同角度连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号。
本发明实施例还提供一种三维空间测量系统,所述三维空间测量系统包括:
三维切面测量装置,所述三维切面测量装置包括光发射器及摄像头,所述摄像头及所述光发射器呈上下固定放置,且所述摄像头和/或所述光发射器以一俯仰角向下俯视地面;
处理器,内置于所述三维切面测量装置或独立于所述三维切面测量装置,控制所述三维切面测量装置进行线性光束发射与接收,接收所述三维切面测量装置发送的响应信号;
空间定位装置,与所述处理器连接,将获取到的所述三维空间测量系统位置信息发送至所述处理器,以使所述处理器根据所述响应信号及位置信息,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
在本发明的一个实施例中,所述三维切面测量装置还包括分光器,置于所述光发射器的发射口处,将所述光发射器发射的点光扩束成线性光束。
在本发明的一个实施例中,所述摄像头与所述光发射器的光轴平行或呈现一夹角。
在本发明的一个实施例中,所述摄像头及所述光发射器呈上下固定放置,包括:
所述摄像头位于所述光发射器的上方或下方,且所述摄像头与所述光发射器的中心连线的垂线与水平线呈现一翻滚角,所述翻滚角的角度大于等于0度且小于90度。
在本发明的一个实施例中,所述处理器根据所述响应信号及位置信息,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息,包括:
所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据;
根据所述位置信息,计算出所述目标物体的多个切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,并建立所述目标物体的三维空间模型。
本发明实施例还提供一种三维切面测量装置,所述三维切面测量装置包括:
光发射器,包括激光器及分光器,所述分光器置于所述激光器的激光发射入口处,将所述激光器发送的点激光扩束为线性激光束;
摄像头,所述摄像头及所述光发射器呈上下固定放置,且所述摄像头和/或所述光发射器以一俯仰角向下俯视地面,所述摄像头采集所述线性激光束发射至目标物体后的反射光,输出响应信号至处理器;
所述处理器,控制所述光发射器发射线性光束,并接收所述摄像头发送的响应信号,获取所述三维切面测量装置的位置信息,并计算出所述目标物体的一个或多个切面的三维数据。
在本发明的一个实施例中,所述处理器还用于:
接收空间定位装置发送的位置信息,根据所述位置信息及所述多个切面的三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
在本发明的一个实施例中,所述激光器为红外激光器或可见光激光器。
在本发明的一个实施例中,所述摄像头为CCD摄像头或CMOS摄像头,且所述摄像头为红外摄像头或可见光摄像头。
本发明实施例还提供一种定位装置,所述定位装置包括:
定位模块,所述定位模块用于获取所述定位装置的三维空间位置信息;
处理器,所述处理器用于接收所述定位模块获取的三维空间位置信息,并接收三维切面测量装置发送的响应信号,根据所述响应信号及所述多个切面三维数据,计算出目标物体的多个切面三维数据,并根据所述接收到的位置信息及所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
在本发明的一个实施例中,所述定位装置为激光雷达、无线定位装置、单目摄像头或双目摄像头的其中一个或几种的组合。
本发明实施例还提供一种三维空间测量方法,应用于三维空间测量系统,所述方法包括:
三维切面测量装置发送线性光束至目标物体,接收所述发送线性光束发射至目标物体后的反射光,生成响应信号,将所述生成的响应信号发送至处理器;
空间定位装置获取所述三维空间测量系统的位置信息,并将所述位置信息发送至所述处理器;
所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
在本发明的一个实施例中,所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,包括:
获取所述三维空间测量系统第一时刻的位置信息,并获取所述第一时刻内所述目标物体第一切面的三维数据,计算出所述目标物体第一切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息;
获取所述三维空间测量系统第N时刻的位置信息,并获取所述第N时刻内所述目标物体第N切面的三维数据,计算出所述目标物体第N切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息,N为大于等于2的正整数;
根据获取到的目标物体的第一切面至第N切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓 三维空间数据,建立所述目标物体的三维空间模型。
在本发明的一个实施例中,所述三维切面测量装置发送线性光束至目标物体,包括:
连续发送所述线性光束至所述目标物体,生成在不同时刻的多个响应信号,以使所述处理器在不同时刻内获取不同切面的三维数据。
在本发明的一个实施例中,所述处理器在不同时刻内获取不同切面的三维数据,包括:
所述处理器提取出所述线性光束与所述目标物体或地面的交线,计算出所述线性光束与所述目标物体多个切面线段的三维信息。
在本发明的一个实施例中,所述三维切面测量装置生成响应信号,包括:
在相对于所述目标物体处于移动状态时,连续发送所述线性光束至所述目标物体,以生成不同时刻的不同响应信号,
或,
通过不同角度连续发送所述线性光束至所述目标物体,以生成不同时刻的不同响应信号。
本发明实施例的方法具有下列优点:
本发明实施例中,三维空间测量系统通过连续发送线性光束至目标物体,接收发射至目标物体后的反射光,并通过定位装置采集的位置信息,测算目标物体多个不同切面三维数据,计算出该目标物体多个切面点云相对于三维空间测量系统的位置,以此建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置。提高了移动机器人识别障碍物的鲁棒 性,并且能适用于各种光线环境和复杂的家庭环境,同时还降低了成本低。
附图说明
图1是本发明实施例1中三维空间测量系统组成结构图;
图2是本发明实施例1中三维空间测量系统工作原理示意图;
图3是本发明实施例1中三维空间测量系统行进过程中工作示意图;
图4是本发明实施例2中三维空间测量系统组成结构图;
图5是本发明实施例3中三维切面测量装置组成结构图;
图6是本发明实施例3中光发射器与摄像头位置关系示意图;
图7是本发明实施例3中光发射器与摄像头位置关系侧视示意图;
图8是本发明实施例3中光发射器与摄像头位置关系正视示意图;
图9是本发明实施例4中空间定位装置组成结构图;
图10是本发明实施例5中三维空间测量方法流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
实施例1
为达到以上目的,如图1所示,本发明提供了一种三维空间测量系统11,该系统11包括以下部件:
三维切面测量装置12,用于发送线性光束至目标物体,接收所述发送线性光束发射至目标物体后的反射光,生成响应信号,将所述生成的响应信号发送至处理器14;
本发明实施例中,三维切面测量装置可以由摄像头、激光源及分光器组成。摄像头可以是单目RGB摄像头,也可以是单目红外/可见光摄像头,激光源可以是可见光激光源,也可以是红外激光源。优选地,本发明实施例可采用红外摄像头及红外激光源,其相比于可见光的摄像头及照明光源,红外射线能规避掉复杂的环境可见光,对于目标物体(障碍物)的识别率及鲁棒性会更好。可选地,分光器置于激光源的光源出口处,二者固定并内置于一激光器中,摄像头包括镜头及图像传感器,图像传感器包括但不限于CCD及CMOS传感器,且图像传感器可以采用阵列式结构或线性结构,本发明实施例对此不作限制。
本发明实施例中,激光源可以是点光源,在经过分光器(又名扩束器)的扩束之后,可将点光源扩束为线性光束,线性光束即一条由无数个点形成的直线光束,当线性光束以某个俯视角发射到目标物体上时,会在目标物体形成一条横切面,并产生反射光线,摄像头接收该反射光线后,产生响应信号,该响应信号包括该反射光线及其相关联的几何信息,例如反射光线的偏移值L、摄像头光轴与激光器光轴的夹角和/或滤镜的焦距f等。
图2是三维切面测量装置测距的工作原理图,如图2所示,摄像头与激光器呈上下排列,且摄像头与激光器的光轴平行或呈一夹角,摄像头与激光器均以一俯视角斜向下,保证激光器发射的光束呈斜下发射,摄像头可接收到发射后反射回的光线。激光器发射线性激光束至目标物体外表面,形成一切面线段,并反射至摄像头,摄像头捕捉该反射光后,获取该反射光的几何参数,并生成响应信号发送至处理器14,处理器14则根据该响应信号,利用三角法测算出该切面线段的距离激光器的距离,并根据空间定位信息,可计算出切面线段的三维空间位置信息。
此外,对于该测量系统而言,由于其处在移动机器人内,故在测量过程中移动机器人处于动态行进状态,相对于静止的目标物体而言,该测量系统会不停的前行,从而距离该目标物体越来越近。按照固定的俯视角发 射的线性激光束也会随之发射在该目标物体的不同表面,形成不同的切面线段。因此,该激光器需要连续地发射线性光束,摄像头也需要连续地接收该反射光束。所谓连续即是周期性多次发射线性光束,周期范围可以根据本领域技术人员自定义,如10ms等。图3是在行进过程中的三维切面测量装置中激光器测量目标物体的示意图。如图3所示,上中下三幅图分别表示激光器相对于目标物体的位置由远及近,随着激光器不断前行,线性激光束发射到目标物体的不同切面,形成不同的反射光,摄像头采集该不同的反射光,生成不同的响应信号。
此外,相对于图3的行进过程而言,本发明实施例也可以无需处于行进状态,单依靠采用上下转动激光器的方式即可来测量目标物体的不同切面。只需要在该激光器上安装一转动轴,通过控制该转动轴上下运动,即可控制该激光器以不同的俯视角发射线性光束(扫描)目标物体。
此外,分光器可以是点阵分光器或面阵光栅,如衍射光栅(Diffraction Optical Elements,DOE)或光学棱镜,也可以是其他的分光器件,本发明实施例对此并无限制。
空间定位装置13,用于获取所述三维空间测量系统的位置信息,并将所述位置信息发送至所述处理器14;
空间定位装置13可以是无线定位装置、激光雷达、单目摄像头或双目摄像头的其中一种或几种的组合,目的在于实时对三维空间测量系统进行三维空间定位,实时确定三维空间测量系统及装备有该三维空间测量系统的移动机器人的三维空间位置信息。其中,无线定位装置可以是iBeacon等设备。三维空间位置信息可包括空间信息和/或航向角信息。
所述处理器14,内置于所述三维切面测量装置或独立于所述三维切面测量装置,用于根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空 间位置信息。
处理器14在本发明实施例中,具备两个功能:1.结合接收到的位置信息,实时测量目标物体的一个或多个切面的三维空间数据;2.将多个切面三维空间数据与当前实时位置进行融合处理,建立目标物体的三维空间模型,并定位出该目标物体的三维空间位置。
目前应用于移动机器人(扫地机器人)的激光测距装置或手持激光测距装置,是以获取目标物体的二维数据,结合三角法进行目标物体(障碍物)的测距,例如专利20111286775.9所提及的二维测距方法及装置,同样采用了单目摄像头进行障碍物的测距,但其也只是进行二维数据的处理,尚达不到三维数据的处理。相对于该专利提供的技术方案,本发明实施例提供的测距装置不仅可以进行二维测距,还可以进行三维空间模型的建立及获取目标物体三维空间的位置。而正如背景技术所叙述的,相对于该专利而言,本发明实施例可进一步提升障碍物测量的识别率及鲁棒性。
相对于单目摄像头测距的方案而言,目前还出现了一种双目摄像头进行三维测距的产品,相对于消费级的移动机器人产品,采用双目摄像头进行三维测距的方案不仅价格昂贵,且实现难度大,故大多应用在专用的工业级或高速测距领域,并不适用于消费级的移动机器人领域。并且,双目摄像头实现三维测距的方案其技术原理在于双目测景深,该技术方案的本质、原理均与本发明实施例提供的单目测三维空间的方案有很大不同。
另外,传统的三维建模技术中,如韩国人Jeong-Gon在10年前提出的三维建模技术方案中,采用了静态时多束线性光束同时照射在障碍物,以获取障碍物的三维信息。该方案与本申请的方案也存在较大区别。首先,本发明可在移动过程中实时获取定位数据,结合定位数据的三维坐标可计算出当前时间段内的位移值,结合该位移值,实时输出三维点云的三维变换数据,进而输出切面三维坐标;其次,本发明采用分时处理机制,不需要多束线性光同时发射到目标物体上,相对于传统的三维建模技术,该方 案工作量远低于传统的三维建模技术,误差小,并且成本低,更有利于商业上的成功;最后,传统的三维建模技术通常以当前三维空间测量系统为坐标起点进行建模,而本方案可根据定位模块提供的三维信息,在广域的地理三维空间上进行三维建模,其技术实现难度相对于传统的三维建模技术大大提升。
对于处理器14结合接收到的位置信息,利用三角法实时测量目标物体的一个或多个切面的三维空间数据,其方案实现具体可以为:
结合图3,从该测量系统检测到目标物体(即行进过程中第一次俯视扫描到该目标物体)开始起算,或从扫描到目标物体自后的某一时刻起算,获取所述三维空间测量系统第一时刻的位置信息(第一时刻可如图3中最上图),并获取该第一时刻内所述目标物体第一切面的三维数据,计算出所述目标物体第一切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息;
单一的切面三维数据并不足以进行该目标物体的三维建模及空间定位,还需要进行多个切面的三维数据,获取的切面三维数据越多,其建模越精确,定位精度越高。故还需要连续获取不同时刻的不同切面三维数据,以此来获取到由该多个切面组成的目标物体外表面轮廓的三维数据。因此,处理器14还需要获取所述三维空间测量系统第N(N为大于等于2的正整数)时刻的位置信息,并获取所述第N时刻内所述目标物体第N切面的三维数据,计算出所述目标物体第N切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息(第N时刻如图3中的中图和下图);
根据获取到的目标物体的第一切面至第N切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,建立所述目标物体的三维空间模型,并测量出该目标物体的三维空间位置。对于目标物体的建模,由于已获取到多个切面的三维数据,即已获取到目标物体部分或全部的外表面的三维数据(多个切面组成 该目标物体的部分或全部外表面),可依据现有的数据建模方法进行目标物体的三维空间建模,这里不再累述。另,由于目标物体外表面的三维数据均可通过上述方案获得,该外表面三维空间数据即可等同于该目标物体的三维空间位置信息。
此外,处理器14获取多个切面三维数据之前,三维切面测量装置12可连续发送所述线性光束至目标物体,生成在不同时刻的多个响应信号,以使所述处理器14在不同时刻内获取不同切面的三维数据。不同时刻的响应信号包含了不同时刻的目标物体几何特征。
同时,三维切面测量装置12还可以在相对于所述目标物体处于移动状态时(例如目标物体静止不动,三维空间测量系统平行移动),连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号,
或,
通过不同角度连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号。即,无需考虑三维空间测量系统移动与否,直接通过内置的转轴转动激光器,使之能通过不同俯视角扫描目标物体。
此外,处理器14在不同时刻内获取不同切面的三维数据,具体为:
处理器14提取出所述线性光束与所述目标物体或地面的交线,利用三角法计算出所述线性光束与所述目标物体多个切面线段的三维信息。三角法,又称为三角测距法,是一种光学定位领域常用测距方法。该方法如下:通过计算区域的重心位置以及已知的激光发射装置和摄像头的图像传感器相对角度及间距,可以推算目标距离图像传感器的距离。三角法的基本测量公式为z=b*f/x;其中b表示激光发射装置和图像传感器间距,f为图像传感器所使用的镜头焦距,x为求得的反射光投影在图像传感器上的列坐标的重心位置,z为测得的距离。通过获取上述几何参数,本发明实施例中可利用该方法实现切面线段的三维信息,三角测距法属于现有技术,这里不再累述其具体运算过程。
本发明实施例中,通过获取多个切面的三维数据,完成了目标物体的建模及三维空间位置的测量,相比于现有技术,本发明实施例提供的方案不仅成本低廉,且识别率及鲁棒性显著提高,用户体验会有较大提成,并带来了商业上的成功。
实施例2
如图4所示,本发明实施例提供了一种三维空间测量系统21,所述三维空间测量系统包括:
三维切面测量装置22,所述三维切面测量装置包括光发射器221及摄像头222,所述摄像头222及所述光发射器221呈上下固定放置,且所述摄像头222和/或所述光发射器221以一俯仰角向下俯视地面;
处理器23,内置于所述三维切面测量装置22或独立于所述三维切面测量装置22,控制所述三维切面测量装置22进行线性光束发射与接收,接收所述三维切面测量装置22发送的响应信号;
空间定位装置24,与所述处理器23连接,将获取到的所述三维空间测量系统位置信息发送至所述处理器23,以使所述处理器23根据所述响应信号及位置信息,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
其中,三维切面测量装置22还包括分光器223,置于所述光发射器221的发射口处,将所述光发射器221发射的点光扩束成线性光束。
摄像头222可以是单目RGB摄像头,也可以是单目红外/可见光摄像头,光发射器221可以是可见光激光器,也可以是红外/可见光激光器。优选地,本发明实施例可采用红外摄像头及红外激光器,其相比于可见光的摄像头及照明光源,红外射线能规避掉复杂的环境可见光,对于目标物体(障碍物)的识别率及鲁棒性会更好。其中,所述摄像头222与所述激光器的光轴平行或呈现一夹角,优选地,该夹角大于等于0度小于90度。
可选地,光发射器221可连接一转动轴,该转动轴转动时,带动光发射器221上下转动,在光发射器221上下转动时(即俯仰角实时发生变化),发射的线性光束即可上下扫描目标物体(障碍物),无需在行进过程中对障碍物进行扫描。
需要说明的是,所述摄像头222及所述光发射器221呈上下固定放置,具体可以为:
所述摄像头222位于所述光发射器221的上方或下方,且所述摄像头222与所述光发射器221的中心连线的垂线与水平线呈现一翻滚角,所述翻滚角的角度大于等于0度且小于90度。
所述处理器23根据所述响应信号及位置信息,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息,具体可以为:
所述处理器23根据接收到的所述响应信号,利用三角法计算出所述目标物体的一个或多个切面距离该三维空间测量系统的距离,并根据定位装置发送的位置信息,计算出该一个或多个切面的三维数据;
根据所述位置信息,计算出所述目标物体的多个切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,并建立所述目标物体的三维空间模型。更具体的实现方案与上一实施例的方案相同,这里不再累述。
实施例3
如图5所示,本发明实施例提供了一种三维切面测量装置31,所述三维切面测量装置31包括:
光发射器32,包括激光器321及分光器322,所述分光器置于所述激光器的激光发射入口处,将所述激光器发送的点激光扩束为线性激光束;
摄像头33,所述摄像头33及所述光发射器32呈上下固定放置,且所述摄像头33和/或所述光发射器32以一俯仰角向下俯视地面,所述摄像头 33采集所述线性激光束发射至目标物体后的反射光,输出响应信号至处理器34;
可选地,光发射器32可连接一转动轴,该转动轴转动时,带动光发射器32上下转动,在光发射器322上下转动时(即俯仰角实时发生变化),发射的线性光束即可上下扫描目标物体(障碍物),无需在行进过程中对障碍物进行扫描。所述处理器34,控制所述光发射器32发射线性光束,并接收所述摄像头33发送的响应信号,计算出所述目标物体的一个或多个切面的三维数据。
其中,所述处理器34还用于:接收空间定位装置发送的位置信息,根据所述位置信息及所述多个切面的三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。具体方案参见实施例1,本发明实施例不再累述。
其中,所述光发射器32为红外激光器或可见光激光器。所述摄像头33为CCD摄像头或CMOS摄像头,且所述摄像头为红外摄像头或可见光摄像头。参见图6,光发射器32与摄像头33可上下垂直固定,光发射器以某一俯视角向下发射线性光束,摄像头接收该线性光束反射回的反射光。参见图7,光发射器32与摄像头33均可以某一俯视角pitch向下发射/采集,该俯视角pitch的角度可在0至90度之间任意选择。同时,光发射器32与摄像头33也可以并非完全垂直,如图8所示,二者之间还可以呈现一翻滚角roll,该翻滚角的角度也可以在0-90度之间任意选择。
实施例4
如图9所示,本发明实施例还提供一种空间定位装置41,该定位装置可以为激光雷达、无线定位装置、单目摄像头或双目摄像头的其中一个或几种的组合。所述空间定位装置41包括:
定位模块42,所述定位模块用于获取所述定位装置的三维空间位置信息;
处理器43,所述处理器用于接收所述定位模块获取的三维空间位置信息,并接收三维切面测量装置发送的响应信号,结合所述三维空间位置信息,计算出目标物体的多个切面三维数据,并根据所述接收到的位置信息及所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。具体实现方案参见实施例1的相关描述,这里不再累述。
实施例5
如图10所示,本发明提供了一种三维空间测量的方法,应用于三维空间测量系统,该方法包括以下步骤:
S501、三维切面测量装置发送线性光束至目标物体,接收所述发送线性光束发射至目标物体后的反射光,生成响应信号,将所述生成的响应信号发送至处理器;
本发明实施例中,线性光束即一条由无数个点形成的直线光束,当线性光束以某个俯视角发射到目标物体上时,会在目标物体形成一条横切面,并产生反射光线,摄像头接收该反射光线后,产生响应信号,该响应信号包括该反射光线及其相关联的几何信息,例如反射光线的偏移值L、摄像头中心线与激光器的夹角和/或滤镜的焦距f等。
此外,对于该测量方案而言,可应用在处于移动的机器人上,故在测量过程中移动机器人处于动态行进状态,相对于静止的目标物体而言,该测量系统会不停的前行,从而距离该目标物体越来越近。按照固定的俯视角发射的线性激光束也会随之发射在该目标物体的不同表面,形成不同的切面线段。因此,该激光器需要连续地发射线性光束,摄像头也需要连续地接收该反射光束。所谓连续即是周期性多次发射线性光束,周期范围可 以根据本领域技术人员自定义,如10ms等。
S502、空间定位装置获取所述三维空间测量系统的位置信息,并将所述位置信息发送至所述处理器;
三维空间位置信息可包括空间信息和/或航向角信息。
S503、所述处理器利用三角法计算出所述目标物体的一个或多个切面的三维数据,并根据所述接收到的位置信息及所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
处理器的处理过程可分为前后两步骤:1.结合接收到的位置信息,实时测量目标物体的一个或多个切面的三维空间数据;2.将多个切面三维空间数据与当前实时位置进行融合处理,建立目标物体的三维空间模型,并定位出该目标物体的三维空间位置。
目前应用于移动机器人(扫地机器人)的激光测距装置或手持激光测距装置,是以获取目标物体的二维数据,结合三角法进行目标物体(障碍物)的测距,例如专利20111286775.9所提及的二维测距方法及装置,同样采用了单目摄像头进行障碍物的测距,但其也只是进行二维数据的处理,尚达不到三维数据的处理。相对于该专利提供的技术方案,本发明实施例提供的测距装置不仅可以进行二维测距,还可以进行三维空间模型的建立及获取目标物体三维空间的位置。而正如背景技术所叙述的,相对于该专利而言,本发明实施例可进一步提升障碍物测量的识别率及鲁棒性。
相对于单目摄像头测距的方案而言,目前还出现了一种双目摄像头进行三维测距的产品,相对于消费级的移动机器人产品,采用双目摄像头进行三维测距的方案不仅价格昂贵,且实现难度大,故大多应用在专用的工业级或高速测距领域,并不适用于消费级的移动机器人领域。并且,双目摄像头实现三维测距的方案其技术原理在于双目测景深,该技术方案的本质、原理均与本发明实施例提供的单目测三维空间的方案有很大不同。
对于处理器结合接收到的位置信息,并利用三角法实时测量目标物体的一个或多个切面的三维空间数据,其方案实现具体可以为:
结合图3,从该测量系统检测到目标物体(即行进过程中第一次俯视扫描到该目标物体)开始起算,或从扫描到目标物体自后的某一时刻起算,获取所述三维空间测量系统第一时刻的位置信息(第一时刻可如图3中最上图),并获取该第一时刻内所述目标物体第一切面的三维数据,计算出所述目标物体第一切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息;
单一的切面三维数据并不足以进行该目标物体的三维建模及空间定位,还需要进行多个切面的三维数据,获取的切面三维数据越多,其建模越精确,定位精度越高。故还需要连续获取不同时刻的不同切面三维数据,以此来获取到由该多个切面组成的目标物体外表面轮廓的三维数据。因此,处理器还需要获取所述三维空间测量系统第N(N为大于等于2的正整数)时刻的位置信息,并获取所述第N时刻内所述目标物体第N切面的三维数据,计算出所述目标物体第N切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息(第N时刻如图3中的中图和下图);
根据获取到的目标物体的第一切面至第N切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,建立所述目标物体的三维空间模型,并测量出该目标物体的三维空间位置。对于目标物体的建模,由于已获取到多个切面的三维数据,即已获取到目标物体部分或全部的外表面的三维数据(多个切面组成该目标物体的部分或全部外表面),可依据现有的数据建模方法进行目标物体的三维空间建模,这里不再累述。另,由于目标物体外表面的三维数据均可通过上述方案获得,该外表面三维空间数据即可等同于该目标物体的三维空间位置信息。
此外,处理器获取多个切面三维数据之前,三维切面测量装置可连续 发送所述线性光束至目标物体,生成在不同时刻的多个响应信号,以使所述处理器在不同时刻内获取不同切面的三维数据。不同时刻的响应信号包含了不同时刻的目标物体几何特征。
同时,三维切面测量装置还可以在相对于所述目标物体处于移动状态时(例如目标物体静止不动,三维空间测量系统平行移动),连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号,或,
通过不同角度连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号。即,无需考虑三维空间测量系统移动与否,直接通过内置的转轴转动激光器,使之能通过不同俯视角扫描目标物体。
此外,处理器在不同时刻内获取不同切面的三维数据,具体为:
处理器提取出所述线性光束与所述目标物体或地面的交线,利用三角法计算出所述线性光束与所述目标物体多个切面线段距离三维空间测量装置的距离,并结合位置信息,计算出该多个切面线段的三维信息。三角法,又称为三角测距法,是一种光学定位领域常用测距方法。该方法如下:通过计算区域的重心位置以及已知的激光发射装置和摄像头的图像传感器相对角度及间距,可以推算目标距离图像传感器的距离。三角法的基本测量公式为z=b*f/x;其中b表示激光发射装置和图像传感器间距,f为图像传感器所使用的镜头焦距,x为求得的反射光投影在图像传感器上的列坐标的重心位置,z为测得的距离。通过获取上述几何参数,本发明实施例中可利用该方法实现切面线段的三维信息,三角测距法属于现有技术,这里不再累述其具体运算过程。
本发明实施例中,通过获取多个切面的三维数据,完成了目标物体的建模及三维空间位置的测量,相比于现有技术,本发明实施例提供的方案不仅成本低廉,且识别率及鲁棒性显著提高,用户体验会有较大提成,并带来了商业上的成功。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的模块及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本说明书的各个部分均采用递进的方式进行描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点介绍的都是与其他实施例不同之处。尤其,对于装置和系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例部分的说明即可。
最后,需要说明的是:以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。显然,本领域技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种三维空间测量系统,其特征在于,所述系统包括:
    三维切面测量装置,用于发送线性光束至目标物体,接收所述发送线性光束发射至目标物体后的反射光,生成响应信号,将所述生成的响应信号发送至处理器;
    空间定位装置,用于获取所述三维空间测量系统的位置信息,并将所述位置信息发送至所述处理器;
    所述处理器,内置于所述三维切面测量装置或独立于所述三维切面测量装置,用于根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
  2. 根据权利要求1所述的系统,其特征在于,所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,包括:
    获取所述三维空间测量系统第一时刻的位置信息,并获取所述第一时刻内所述目标物体第一切面的三维数据,计算出所述目标物体第一切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息;
    获取所述三维空间测量系统第N时刻的位置信息,并获取所述第N时刻内所述目标物体第N切面的三维数据,计算出所述目标物体第N切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息,N为大于等于2的正整数;
    根据获取到的目标物体的第一切面至第N切面三维点云相对于所述三 维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,建立所述目标物体的三维空间模型。
  3. 根据权利要求1所述的系统,其特征在于,所述三维切面测量装置还用于:
    连续发送所述线性光束至所述目标物体,生成在不同时刻的多个响应信号,以使所述处理器在不同时刻内获取不同切面的三维数据。
  4. 根据权利要求3所述的系统,其特征在于,所述处理器在不同时刻内获取不同切面的三维数据,包括:
    所述处理器提取出所述线性光束与所述目标物体或地面的交线,利用三角法计算出所述线性光束与所述目标物体多个切面线段的三维信息。
  5. 根据权利要求1-4任一项所述的系统,其特征在于,所述三维切面测量装置还用于:
    在相对于所述目标物体处于移动状态时,连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号,
    或,
    通过不同角度连续发送所述线性光束至所述目标物体,生成不同时刻的不同响应信号。
  6. 一种三维空间测量系统,其特征在于,所述三维空间测量系统包括:
    三维切面测量装置,所述三维切面测量装置包括光发射器及摄像头,所述摄像头及所述光发射器呈上下固定放置,且所述摄像头和/或所述光发射器以一俯仰角向下俯视地面;
    处理器,内置于所述三维切面测量装置或独立于所述三维切面测量装 置,控制所述三维切面测量装置进行线性光束发射与接收,接收所述三维切面测量装置发送的响应信号;
    空间定位装置,与所述处理器连接,将获取到的所述三维空间测量系统位置信息发送至所述处理器,以使所述处理器根据所述响应信号及位置信息,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
  7. 根据权利要求6所述的系统,其特征在于,所述三维切面测量装置还包括分光器,置于所述光发射器的发射口处,将所述光发射器发射的点光扩束成线性光束。
  8. 根据权利要求6所述的系统,其特征在于,所述摄像头与所述光发射器的光轴平行或呈现一夹角。
  9. 根据权利要求6所述的系统,其特征在于,所述摄像头及所述光发射器呈上下固定放置,包括:
    所述摄像头位于所述光发射器的上方或下方,且所述摄像头与所述光发射器的中心连线的垂线与水平线呈现一翻滚角,所述翻滚角的角度大于等于0度且小于90度。
  10. 根据权利要求6-9任一项所述的系统,其特征在于,所述处理器根据所述响应信号及位置信息,建立目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息,包括:
    所述处理器根据接收到的所述响应信号及位置信息,利用三角法计算出所述目标物体的一个或多个切面的三维数据;
    计算出所述目标物体的多个切面三维点云相对于所述三维空间测量系 统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,并建立所述目标物体的三维空间模型。
  11. 一种三维切面测量装置,其特征在于,所述三维切面测量装置包括:
    光发射器,包括激光器及分光器,所述分光器置于所述激光器的激光发射入口处,将所述激光器发送的点激光扩束为线性激光束;
    摄像头,所述摄像头及所述光发射器呈上下固定放置,且所述摄像头和/或所述光发射器以一俯仰角向下俯视地面,所述摄像头采集所述线性激光束发射至目标物体或地面后的反射光,输出响应信号至处理器;
    所述处理器,控制所述光发射器发射线性光束,并接收所述摄像头发送的响应信号,获取所述三维切面测量装置的位置信息,并计算出所述目标物体的一个或多个切面的三维数据。
  12. 根据权利要求11所述的装置,其特征在于,所述处理器还用于:
    接收空间定位装置发送的位置信息,根据所述位置信息及所述多个切面的三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
  13. 根据权利要求11所述的装置,其特征在于,所述激光器为红外激光器或可见光激光器。
  14. 根据权利要求11所述的装置,其特征在于,所述摄像头为CCD摄像头或CMOS摄像头,且所述摄像头为红外摄像头或可见光摄像头。
  15. 一种定位装置,其特征在于,所述定位装置包括:
    定位模块,所述定位模块用于获取所述定位装置的三维空间位置信息;
    处理器,所述处理器用于接收所述定位模块获取的三维空间位置信息,并接收三维切面测量装置发送的响应信号,根据所述响应信号及所述多个切面三维数据,计算出目标物体的多个切面三维数据,并根据所述接收到的位置信息及所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
  16. 根据权利要求15所述的装置,其特征在于,所述定位装置为激光雷达、无线定位装置、单目摄像头或双目摄像头的其中一个或几种的组合。
  17. 一种三维空间测量方法,应用于三维空间测量系统,其特征在于,所述方法包括:
    三维切面测量装置发送线性光束至目标物体,接收所述发送线性光束发射至目标物体后的反射光,生成响应信号,将所述生成的响应信号发送至处理器;
    空间定位装置获取所述三维空间测量系统的位置信息,并将所述位置信息发送至所述处理器;
    所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,并定位出所述目标物体的三维空间位置信息。
  18. 根据权利要求17所述的方法,其特征在于,所述处理器根据接收到的所述响应信号及位置信息,计算出所述目标物体的一个或多个切面的 三维数据,并根据所述计算出的多个切面三维数据,建立所述目标物体的三维空间模型,包括:
    获取所述三维空间测量系统第一时刻的位置信息,并获取所述第一时刻内所述目标物体第一切面的三维数据,计算出所述目标物体第一切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息;
    获取所述三维空间测量系统第N时刻的位置信息,并获取所述第N时刻内所述目标物体第N切面的三维数据,计算出所述目标物体第N切面外轮廓的三维点云相对于所述三维空间测量系统的位置信息,N为大于等于2的正整数;
    根据获取到的目标物体的第一切面至第N切面三维点云相对于所述三维空间测量系统的所有位置信息,确定所述目标物体的部分或全部外轮廓三维空间数据,建立所述目标物体的三维空间模型。
  19. 根据权利要求17所述的方法,其特征在于,所述三维切面测量装置发送线性光束至目标物体,包括:
    连续发送所述线性光束至所述目标物体,生成在不同时刻的多个响应信号,以使所述处理器在不同时刻内获取不同切面的三维数据。
  20. 根据权利要求19所述的方法,其特征在于,所述处理器在不同时刻内获取不同切面的三维数据,包括:
    所述处理器提取出所述线性光束与所述目标物体或地面的交线,计算出所述线性光束与所述目标物体多个切面线段的三维信息。
  21. 根据权利要求17-20任一项所述的方法,其特征在于,所述三维切面测量装置生成响应信号,包括:
    在相对于所述目标物体处于移动状态时,连续发送所述线性光束至所 述目标物体,以生成不同时刻的不同响应信号,
    或,
    通过不同角度连续发送所述线性光束至所述目标物体,以生成不同时刻的不同响应信号。
PCT/CN2018/077574 2018-02-28 2018-02-28 一种三维空间测量的方法、装置及系统 WO2019165603A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077574 WO2019165603A1 (zh) 2018-02-28 2018-02-28 一种三维空间测量的方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/077574 WO2019165603A1 (zh) 2018-02-28 2018-02-28 一种三维空间测量的方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2019165603A1 true WO2019165603A1 (zh) 2019-09-06

Family

ID=67804733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/077574 WO2019165603A1 (zh) 2018-02-28 2018-02-28 一种三维空间测量的方法、装置及系统

Country Status (1)

Country Link
WO (1) WO2019165603A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925872A (zh) * 2013-12-23 2014-07-16 中国神华能源股份有限公司 一种用于获取目标物空间分布的激光扫描测量装置和方法
CN105824004A (zh) * 2016-04-29 2016-08-03 深圳市虚拟现实科技有限公司 一种交互式空间定位方法及系统
US20160245918A1 (en) * 2013-09-24 2016-08-25 Faro Technologies, Inc. Directed registration of three-dimensional scan measurements using a sensor unit
CN106886030A (zh) * 2017-03-24 2017-06-23 黑龙江硅智机器人有限公司 应用于服务机器人的同步式地图构建与定位系统及方法
CN107462226A (zh) * 2017-02-28 2017-12-12 苏州迪美格智能科技有限公司 一种三维地图测绘系统
CN107607960A (zh) * 2017-10-19 2018-01-19 深圳市欢创科技有限公司 一种光学测距的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160245918A1 (en) * 2013-09-24 2016-08-25 Faro Technologies, Inc. Directed registration of three-dimensional scan measurements using a sensor unit
CN103925872A (zh) * 2013-12-23 2014-07-16 中国神华能源股份有限公司 一种用于获取目标物空间分布的激光扫描测量装置和方法
CN105824004A (zh) * 2016-04-29 2016-08-03 深圳市虚拟现实科技有限公司 一种交互式空间定位方法及系统
CN107462226A (zh) * 2017-02-28 2017-12-12 苏州迪美格智能科技有限公司 一种三维地图测绘系统
CN106886030A (zh) * 2017-03-24 2017-06-23 黑龙江硅智机器人有限公司 应用于服务机器人的同步式地图构建与定位系统及方法
CN107607960A (zh) * 2017-10-19 2018-01-19 深圳市欢创科技有限公司 一种光学测距的方法及装置

Similar Documents

Publication Publication Date Title
US11408728B2 (en) Registration of three-dimensional coordinates measured on interior and exterior portions of an object
KR101878827B1 (ko) 다채널 라이더 기반 이동로봇의 장애물 검출 장치 및 방법, 및 이를 구비한 이동로봇
CN104036226B (zh) 一种目标物信息获取方法及电子设备
US9020240B2 (en) Method and surveying system for noncontact coordinate measurement on an object surface
US9322646B2 (en) Adaptive mechanism control and scanner positioning for improved three-dimensional laser scanning
EP1293184A2 (en) Walking auxiliary for person with dysopia
EP3407152B1 (en) Method of controlling a cleaner
CN108888187A (zh) 一种基于深度相机的扫地机器人
CN104685541A (zh) 用于确定三维对象上注视点的方法和装置
US10893190B2 (en) Tracking image collection for digital capture of environments, and associated systems and methods
US10697754B2 (en) Three-dimensional coordinates of two-dimensional edge lines obtained with a tracker camera
CN114207473A (zh) 用于至少一个扫描装置的支架和具有至少一个扫描装置的空间检测装置
CN109917791A (zh) 移动装置自动探索构建地图的方法
JP2009198382A (ja) 環境地図取得装置
JP2020525956A (ja) コンピュータ媒介現実用の表示装置
WO2019165603A1 (zh) 一种三维空间测量的方法、装置及系统
CN109991969A (zh) 一种基于深度传感器的机器人自动返航的控制方法及装置
KR101356172B1 (ko) 원격 제어를 위한 3차원 영상 생성 장치 및 방법
US20230186496A1 (en) Vision Sensing Device and Method
WO2022228461A1 (zh) 一种基于激光雷达的三维超声成像方法和系统
CN209978890U (zh) 一种多激光线快速检测系统
CN113888702A (zh) 基于多tof激光雷达和rgb摄像头的室内高精度实时建模和空间定位的装置和方法
CN101930071A (zh) 侦测物体运动的装置及方法
RU2626244C1 (ru) Способ и система позиционирования группы подводных объектов в ограниченном водном объеме
WO2014014341A1 (en) Milking arrangement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907939

Country of ref document: EP

Kind code of ref document: A1