WO2019164519A1 - Gas-loading and packaging method and apparatus - Google Patents

Gas-loading and packaging method and apparatus Download PDF

Info

Publication number
WO2019164519A1
WO2019164519A1 PCT/US2018/019616 US2018019616W WO2019164519A1 WO 2019164519 A1 WO2019164519 A1 WO 2019164519A1 US 2018019616 W US2018019616 W US 2018019616W WO 2019164519 A1 WO2019164519 A1 WO 2019164519A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid material
chamber
packaging
pressure
process chamber
Prior art date
Application number
PCT/US2018/019616
Other languages
French (fr)
Inventor
Darren R. Burgess
Michael Raymond GREENWALD
Brent W. Barbee
Original Assignee
Industrial Heat, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Heat, Llc filed Critical Industrial Heat, Llc
Priority to PCT/US2018/019616 priority Critical patent/WO2019164519A1/en
Publication of WO2019164519A1 publication Critical patent/WO2019164519A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates generally to alternative energy technologies and, more particularly, to methods and apparatus for gas-loading and packaging solid materials for use in hydrogen fuel cells and low-energy nuclear reactions (LENRs).
  • LNRs low-energy nuclear reactions
  • the loading of hydrogen (or its isotopes) into a solid material is an important technology for hydrogen fuel cells and low energy nuclear reactors.
  • a hydrogen loading ratio in palladium above 0.8 is widely believed to be a necessary condition to produce a LENR.
  • High loading of hydrogen into a fuel cell compatible material increases the life of the fuel cell.
  • the loading of methane into metal-organic frameworks is an important, emerging technology to increase the storage capacity of this fuel source. In each of these scenarios, the loading process must be controllable, quantifiable and sustainable to be repeatable and production-worthy.
  • the amount of hydrogen loaded into a solid material can be quantified by measuring an increase in a sample’s mass or a decrease in pressure of a fixed quantity of gas in the presence of the material.
  • the present disclosure describes a method and apparatus for loading a solid material with a gas and packaging the solid material in a sealed container.
  • the solid material is placed in a chamber with a controlled environment.
  • the environment may be a vacuum, hydrogen or one of its isotopes, or any other gas of interest.
  • the loading of a gas into or onto a solid material is quantified by measuring the solid material’s increase in mass.
  • the loaded material is transferred to a second chamber where it is packaged while maintaining the loading gas atmosphere and pressure.
  • Figure 1 is a schematic diagram illustrating a system for gas-loading and packaging a solid material.
  • Figures 2A -2C illustrate an intake process during which the sample loading chamber of the gas-loading and packaging system is evacuated and then pressurized.
  • Figures 2D and 2E illustrate a first transfer process during which the solid material is transferred from the sample loading chamber to a process chamber of the gas-loading and packaging system.
  • Figure 2F illustrates a gas-loading process during which the solid material is loaded with hydrogen gas in the process chamber.
  • Figures 2G and 2H illustrate a second transfer process during which the solid material is transferred from the process chamber to a packaging chamber gasloading and packaging system.
  • Figures 2I and 2J illustrate the packaging process during which the solid material is packaged into a sealed container.
  • Figure 3 illustrates an exemplary controller for controlling the gas loading and packaging system
  • Figures 4A and 4B illustrate an exemplary method for gas-loading and packaging a solid material.
  • Figure 1 illustrates an exemplary gas-loading and packaging system 10 according to one exemplary embodiment.
  • the main function of the gas-loading and packaging system 10 is to load a solid material used in a hydrogen fuel cell or LENR with gas and package the solid material.
  • the gas may comprise a hydrogen gas or other gas.
  • hydrogen gas includes all gaseous isotopes of hydrogen including deuterium and tritium.
  • the solid material may, for example, comprise palladium, a nickel alloy, platinum, or other metal.
  • the solid material is loaded with gas by exposing the solid material to the gas under high pressure. When the solid material is exposed to gas under pressure, the gas absorbs into or adsorbs onto the solid material. After the solid material is loaded with gas, the gas atmosphere and high pressure are maintained while the solid material is packaged in a sealed container that is capable of retaining the high pressure gas.
  • the main functional components of the gas-loading and packaging system 10 comprise a gas source 12, rough/backing pump 15, turbo-molecular pump 17, sample loading chamber 20, process chamber 40, and packaging chamber 60.
  • the gas source 12 connects via gas supply line 14 to the sample loading chamber 20, process chamber 40, and packaging chamber 60.
  • Control valves 22, 42, and 62 control the flow of gas from the gas source 12 into the sample loading chamber 20, process chamber 40, and packaging chamber 60 respectively.
  • the rough/backing pump 15 connects via vacuum line 16 to the sample loading chamber 20, process chamber 40, and packaging chamber 60.
  • turbo- molecular pump 17 connects via vacuum line 18 to the sample loading chamber 20, process chamber 40, and packaging chamber 60.
  • Control valves 26, 46, and 64 connect/disconnect the sample loading chamber 20, process chamber 40, and packaging chamber 60 respectively from the turbo-molecular pump 17.
  • the sample loading chamber 20 is the point of entry where the solid material is initially introduced into the gas-loading and packaging system 10.
  • the sample loading chamber 20 includes a door 34 through which a solid material is placed inside the sample loading chamber 20. When closed, the door 34 forms a seal that is capable of holding pressure or vacuum inside the sample loading chamber 20.
  • a pressure gauge 28 measures the gas pressure inside the sample loading chamber 20.
  • a linear transfer apparatus 36 is disposed inside the sample loading chamber 20 for transferring the solid material from the sample loading chamber 20 to the process chamber 40 as hereinafter described in greater detail.
  • the sample loading chamber 20 is connected to the process chamber 40 by a sealed passageway 30 including a gate valve 32 for isolating the sample loading chamber from the process chamber 40, and vice versa.
  • the passageway 30 and gate valve 32 are sized to allow the transfer of the solid material from the sample loading chamber 20 to the process chamber 40 while maintaining the gas atmosphere and high gas pressure.
  • the process chamber 40 is where the solid material is exposed to and loaded with hydrogen gas.
  • a pressure gauge 48 measures the gas pressure inside the process chamber 40.
  • a scale 54 inside the process chamber 40 continuously measures the mass of the solid material while the solid material is in the process of being loaded with hydrogen gas. As described in more detail below, the
  • measurements of the mass of the solid material are used to determine when the solid material is loaded with a desired amount of hydrogen gas. Measurements of the mass of the solid material may be made when the solid material is initially placed in the process chamber 40 to determine the starting mass of the solid material and at predetermined or periodic time intervals during the loading of gas into the solid material to determine the change in mass of the solid material. The measurements may continue until the predetermined amount of gas is loaded into the solid material.
  • the process chamber 40 is connected to the packaging chamber 60 by a sealed passageway 50 including a gate valve 52 for isolating the process chamber 40 from the packaging chamber 60, and vice versa.
  • the passageway 50 and gate valve 52 are sized to allow the transfer of the solid material from the process chamber 40 to the packaging chamber 60 while maintaining the gas atmosphere and high gas pressure.
  • the packaging chamber 60 is where the solid material loaded with hydrogen gas is packaged in a sealed container.
  • a pressure gauge 68 measures the gas pressure inside the packaging chamber 60.
  • the packaging chamber 60 includes a door 72 through which the sealed container containing the solid material is removed from the gas loading and packaging system 10. When closed, the door 34 forms a seal that is capable of holding pressure or vacuum inside the packaging chamber 60.
  • a linear transfer apparatus 70 is disposed inside the packaging chamber 60. The linear transfer apparatus is used to transfer the solid material after it is loaded with hydrogen gas from the process chamber 40 to the packaging chamber 60.
  • the operation of the gas loading and packaging system 10 can be broken down into five processes: an intake process, a first transfer process, a gas loading process, a second transfer process, and a packaging process.
  • a sample of solid material e.g. palladium
  • the sample loading chamber 20 is evacuated to remove contaminants. Once the contaminants are removed, the sample loading chamber 20 is pressurized to about 760 Torr, which is one atmosphere.
  • the intake process ends and the first transfer process begins, during which the solid material is transferred from the sample loading chamber 20 to the process chamber 40.
  • the pressure in the process chamber is raised to about 10 Torr to 50 Torr above the sample loading chamber pressure.
  • the higher pressure in the process chamber 40 relative to the sample loading chamber 20 serves to minimize the flow of any contaminants from the sample loading chamber 20 to the process chamber 40 during the transfer of the solid material.
  • the gate valve 32 isolating the sample loading chamber 20 is then opened and the linear transfer apparatus 36 transfers the sample of solid material into the process chamber 40 and places the sample on the scale 54.
  • the linear transfer apparatus 36 may comprise a retractable arm that picks up the solid material, extends into the process chamber 40 and deposits the solid material on the scale 54, and then retracts back into the sample loading chamber 20.
  • the gate valve 32 is closed. At this point, the first transfer process ends and the gas loading process begins, during which the solid material is loaded with hydrogen gas.
  • both gate valves 32 and 52 are closed to isolate the process chamber 40.
  • the process chamber pressure is increased to a pressure in the range of about 3800 Torr to about 7600 Torr.
  • hydrogen gas is absorbed into and adsorbed onto the solid material.
  • the amount of hydrogen gas loaded onto the solid material, by absorption and/or adsorption, is determined by the change of mass of the solid material.
  • the change of mass of the solid material is related to the amount of hydrogen by: L D m
  • L is the loading ratio of atoms of hydrogen to atoms of palladium
  • Am is the change in mass of the palladium sample in grams
  • P is the mass of the palladium sample in grams.
  • the mass of the solid material is continuously or periodically checked during the gas loading process to determine when the solid material is loaded with a desired amount of hydrogen gas.
  • the change of mass is calculated and compared to a pre-computed mass change threshold to determine when the solid material is loaded with a desired amount of hydrogen gas.
  • the amount of hydrogen gas loaded onto the solid material is computed according to Equation 1 .
  • the gas loading process ends when the change of mass reaches the threshold, or when the calculated amount of hydrogen gas loaded onto the solid material equals the desired amount.
  • the second transfer process begins. During the second transfer process, the pressure inside the packaging chamber is raised to about 10 Torr to about 50 Torr below the process chamber pressure and the gate valve 52 is opened. The lower
  • the linear transfer apparatus 70 in the packaging chamber 60 transfers the solid material loaded with hydrogen gas from the process chamber 40 into the packaging 60.
  • the linear transfer apparatus 70 may comprise a retractable arm that extends into the process chamber 40, picks up the solid material, and then retracts back into the packaging chamber 60. After the solid material is transferred into the packaging chamber 60, the gate valve 52 is closed to isolate the packaging chamber 60. At this point the second transfer process ends and the packaging process begins.
  • a sealed container is placed inside the packaging chamber 60 prior to the start of the packaging process.
  • the sealed container may be introduced into the packaging chamber 60 anytime before the start of the second transfer process.
  • the packaging chamber 60 Prior to the start of the packaging process, the packaging chamber 60 may be evacuated to remove contaminants.
  • the packaging chamber 60 is outfitted with vacuum/high pressure mechanical arms or other accessories as needed to transfer the solid material sample into a container that is capable of maintaining the process gas at the process pressure.
  • the packaging chamber 60 may comprise a glove box that enables a human user to handle and package the solid material.
  • the packaging chamber 60 may be evacuated to atmospheric pressure, nominally 760 Torr (101 kPa).
  • the door 72 to the packaging chamber 60 is then opened and the packaged solid material sample is removed.
  • the packaging enables the solid material sample to maintain the incorporated gas, maximizing its usefulness in application and longevity.
  • the pressure inside the sample loading chamber 20 is measured by the pressure gauge 28.
  • valve 42 begins the first transfer process by opening valve 42 to add process gas to the process chamber 40 as shown in Figure 2D. Continue adding hydrogen gas until the pressure inside the process chamber 40 reaches between 10 and 50 Torr (1 .3 and 6.7 kPa) greater than the sample loading chamber pressure. Close valve 42 and open gate valve 32 connecting the sample loading chamber 20 to the process chamber 40. The higher pressure level of the process chamber 40 relative to the sample loading chamber 20 serves to minimize the flow of any contaminants from the sample loading chamber 20 to the process chamber 40.
  • open valve 42 to increase the process gas pressure up to nominally 3800 Torr (507 kPa) to about 7600 Torr (1014kPa) as shown in Figure 2F.
  • the sample will be loaded with hydrogen gas by absorption and adsorption.
  • the amount of gas adsorbed and absorbed is calculated from the mass change measured by the scale after correcting for a change in chamber pressure.
  • the gas-loading process periodically measure the mass of the solid material sample and calculate the mass change of the solid material sample. Continue gas-loading until a desired amount of gas is added to the solid material sample. When the mass change and/or the solid material sample is loaded with a desired amount of gas, start the second transfer process to transfer the solid material sample to the packaging chamber 60.
  • valve 62 To start the second transfer process, open valve 62 to supply gas to the process packaging chamber 60 as shown in Figure 2G. Continue supplying gas to the packaging chamber 60 until the gas pressure in the packaging chamber 60, indicated by pressure gauge 68, is between 10 and 50 Torr (1 .3 and 6.7 kPa) lower than the process chamber 40 pressure indicated by pressure gauge 48, at which time valve 62 is closed. The lower
  • pressurization of the packaging chamber 60 relative to the process chamber 40 serves to minimize the flow of any contaminants from the packaging chamber 60 to the process chamber 40 since the packaging chamber 60 is opened to atmosphere to remove the sample.
  • Open gate valve 52 and transfer the solid material sample from the process chamber 40 to the packaging chamber 60 using the second linear transfer apparatus 70 as shown in Figure 2H.
  • close gate valve 52 to isolate the packaging chamber 60. This step ends the second transfer process.
  • open valve 62 as shown in Figure 2I to pressurize the packaging chamber 60 to a desired pressure level above the processing pressure to maintain the loading of the solid material sample.
  • packaging chamber 60 may be outfitted with vacuum/high pressure mechanical arms or other accessories as needed to transfer the solid material sample into a container that is capable of maintaining the process gas at the process pressure.
  • the packaging enables the solid material sample to maintain the incorporated gas - maximizing its usefulness in application and longevity.
  • FIG. 3 illustrates an exemplary control circuit 100 for controlling the operation of the gas loading and packaging system 10.
  • the control circuit 100 comprises a processing circuit 102 that implements the main control functions of the gas loading and packaging system 10.
  • the processing circuit 102 may comprise one or more processors, hardware circuits, firmware, of a combination thereof.
  • the processing circuit 102 receives inputs from the pressure gauges 28, 48, and 68, and the scale 54 and outputs control signals to various solenoids and switches that control the valves as hereinabove described. Solenoids or switches S22, S24, S26, S42, S44, S46, S62,S64, and S66 control valves 22, 24, 26, 42, 44, 46, 62, 64, and 66 respectively.
  • Solenoids or switches S32 and S52 control gate valves 32 and 52 respectively.
  • Solenoids or switches S12, S15 and S17 control the gas source 12, rough/backing pump 15, and turbo-molecular pump 17 respectively.
  • the processing circuit 102 may also send control signals to the linear transfer apparatus 36 and 70.
  • FIGs 4A and 4B illustrate an exemplary method 150 of gas loading and packaging a solid material.
  • the solid material is transferred to a process chamber 40 (block 155).
  • the process chamber 40 is pressurized with hydrogen gas until the process chamber pressure reaches a first pressure level (block 160).
  • the process chamber pressure is maintained above the first pressure level to load the solid material with hydrogen gas.
  • the mass of the solid material is measured and the measurements are used to determine when the solid material is loaded with a predetermined amount of hydrogen gas based (blocks 165 and 170).
  • the packaging chamber 60 When the desired amount of hydrogen gas is loaded into the solid material, pressurize the packaging chamber 60 with hydrogen gas until the packaging chamber pressure reaches a second pressure level lower than the first predetermined pressure level and transfer the solid material from the process chamber to the packaging chamber (blocks 175 and 180) The solid material is then packaged in a sealed container while maintaining the packaging chamber pressure at or above second pressure level, after which the sample chamber is opened and the sealed container is removed from the packaging chamber 60 (blocks 190 and 195).
  • the packaging chamber pressure may be raised to a third pressure level higher than the first pressure level while the solid material is packaged (block 185).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

A gas-loading and packaging system is provided for loading a solid material used in a hydrogen fuel cell with gas and packaging the solid material in a sealed container. The gas may comprise a hydrogen gas or other gas. The solid material may, for example, comprise palladium, a nickel alloy, platinum, or other metal. The solid material is loaded with gas by exposing the solid material to the gas under high pressure. When the solid material is exposed to gas under pressure, the gas absorbs into or adsorbs onto the solid material. The mass of the solid material is continuously monitored and used to determine when the solid material is loaded with the desired amount of gas. After the solid material is loaded with gas, high pressure is maintained while the solid material is packaged in a sealed container that is capable of retaining the high pressure gas.

Description

GAS-LOADING AND PACKAGING METHOD AND APPARATUS
TECHNICAL FIELD
[001] The present disclosure relates generally to alternative energy technologies and, more particularly, to methods and apparatus for gas-loading and packaging solid materials for use in hydrogen fuel cells and low-energy nuclear reactions (LENRs).
BACKGROUND
[002] The loading of hydrogen (or its isotopes) into a solid material is an important technology for hydrogen fuel cells and low energy nuclear reactors. A hydrogen loading ratio in palladium above 0.8 is widely believed to be a necessary condition to produce a LENR. High loading of hydrogen into a fuel cell compatible material increases the life of the fuel cell. The loading of methane into metal-organic frameworks is an important, emerging technology to increase the storage capacity of this fuel source. In each of these scenarios, the loading process must be controllable, quantifiable and sustainable to be repeatable and production-worthy.
[003] Several techniques are known for measuring the amount of hydrogen that is loaded into a solid material. The amount of hydrogen loaded into a solid material can be quantified by measuring an increase in a sample’s mass or a decrease in pressure of a fixed quantity of gas in the presence of the material.
[004] Measuring the pressure decrease in a fixed quantity of gas suffers from one major source of error. The gas may adsorb on all surfaces present in addition to the material of interest. Also, the existing technologies do not allow for the hydrogen load to be sustained after quantification. For high purity, homogeneous materials this does not necessarily present a problem because sample of the same material may be used in other processes. In the case of multi-component materials such as layered thin films, nano-particles, or temperature sensitive alloys, sample-to-sample variability can be considerable creating a need to characterize materials for fuel cell or LENR use.
SUMMARY
[005] The present disclosure describes a method and apparatus for loading a solid material with a gas and packaging the solid material in a sealed container. The solid material is placed in a chamber with a controlled environment. The environment may be a vacuum, hydrogen or one of its isotopes, or any other gas of interest. The loading of a gas into or onto a solid material is quantified by measuring the solid material’s increase in mass. The loaded material is transferred to a second chamber where it is packaged while maintaining the loading gas atmosphere and pressure.
BRIEF DESCRIPTION OF THE DRAWINGS
[006] Figure 1 is a schematic diagram illustrating a system for gas-loading and packaging a solid material.
[007] Figures 2A -2C illustrate an intake process during which the sample loading chamber of the gas-loading and packaging system is evacuated and then pressurized.
[008] Figures 2D and 2E illustrate a first transfer process during which the solid material is transferred from the sample loading chamber to a process chamber of the gas-loading and packaging system.
[009] Figure 2F illustrates a gas-loading process during which the solid material is loaded with hydrogen gas in the process chamber.
[010] Figures 2G and 2H illustrate a second transfer process during which the solid material is transferred from the process chamber to a packaging chamber gasloading and packaging system.
[011] Figures 2I and 2J illustrate the packaging process during which the solid material is packaged into a sealed container. [012] Figure 3 illustrates an exemplary controller for controlling the gas loading and packaging system
[013] Figures 4A and 4B illustrate an exemplary method for gas-loading and packaging a solid material.
DETAILED DESCRIPTION
[014] Referring now to the drawings, Figure 1 illustrates an exemplary gas-loading and packaging system 10 according to one exemplary embodiment. The main function of the gas-loading and packaging system 10 is to load a solid material used in a hydrogen fuel cell or LENR with gas and package the solid material. The gas may comprise a hydrogen gas or other gas. As used herein, the term hydrogen gas includes all gaseous isotopes of hydrogen including deuterium and tritium. The solid material may, for example, comprise palladium, a nickel alloy, platinum, or other metal. The solid material is loaded with gas by exposing the solid material to the gas under high pressure. When the solid material is exposed to gas under pressure, the gas absorbs into or adsorbs onto the solid material. After the solid material is loaded with gas, the gas atmosphere and high pressure are maintained while the solid material is packaged in a sealed container that is capable of retaining the high pressure gas.
[015] In the following description, an exemplary embodiment is described for loading a solid material such as palladium with hydrogen gas. Those skilled in the art will appreciate that similar procedures may be used for loading the solid material with other gases.
[016] The main functional components of the gas-loading and packaging system 10 comprise a gas source 12, rough/backing pump 15, turbo-molecular pump 17, sample loading chamber 20, process chamber 40, and packaging chamber 60. The gas source 12 connects via gas supply line 14 to the sample loading chamber 20, process chamber 40, and packaging chamber 60. Control valves 22, 42, and 62 control the flow of gas from the gas source 12 into the sample loading chamber 20, process chamber 40, and packaging chamber 60 respectively. The rough/backing pump 15 connects via vacuum line 16 to the sample loading chamber 20, process chamber 40, and packaging chamber 60. Control valves 24, 44, and 66
connect/disconnect the sample loading chamber 20, process chamber 40, and packaging chamber 60 respectively from the rough/backing pump 15. The turbo- molecular pump 17 connects via vacuum line 18 to the sample loading chamber 20, process chamber 40, and packaging chamber 60. Control valves 26, 46, and 64 connect/disconnect the sample loading chamber 20, process chamber 40, and packaging chamber 60 respectively from the turbo-molecular pump 17.
[017] The sample loading chamber 20 is the point of entry where the solid material is initially introduced into the gas-loading and packaging system 10. The sample loading chamber 20 includes a door 34 through which a solid material is placed inside the sample loading chamber 20. When closed, the door 34 forms a seal that is capable of holding pressure or vacuum inside the sample loading chamber 20. A pressure gauge 28 measures the gas pressure inside the sample loading chamber 20. A linear transfer apparatus 36 is disposed inside the sample loading chamber 20 for transferring the solid material from the sample loading chamber 20 to the process chamber 40 as hereinafter described in greater detail.
[018] The sample loading chamber 20 is connected to the process chamber 40 by a sealed passageway 30 including a gate valve 32 for isolating the sample loading chamber from the process chamber 40, and vice versa. The passageway 30 and gate valve 32 are sized to allow the transfer of the solid material from the sample loading chamber 20 to the process chamber 40 while maintaining the gas atmosphere and high gas pressure.
[019] The process chamber 40 is where the solid material is exposed to and loaded with hydrogen gas. A pressure gauge 48 measures the gas pressure inside the process chamber 40. A scale 54 inside the process chamber 40 continuously measures the mass of the solid material while the solid material is in the process of being loaded with hydrogen gas. As described in more detail below, the
measurements of the mass of the solid material are used to determine when the solid material is loaded with a desired amount of hydrogen gas. Measurements of the mass of the solid material may be made when the solid material is initially placed in the process chamber 40 to determine the starting mass of the solid material and at predetermined or periodic time intervals during the loading of gas into the solid material to determine the change in mass of the solid material. The measurements may continue until the predetermined amount of gas is loaded into the solid material.
[020] The process chamber 40 is connected to the packaging chamber 60 by a sealed passageway 50 including a gate valve 52 for isolating the process chamber 40 from the packaging chamber 60, and vice versa. The passageway 50 and gate valve 52 are sized to allow the transfer of the solid material from the process chamber 40 to the packaging chamber 60 while maintaining the gas atmosphere and high gas pressure.
[021] The packaging chamber 60 is where the solid material loaded with hydrogen gas is packaged in a sealed container. A pressure gauge 68 measures the gas pressure inside the packaging chamber 60. The packaging chamber 60 includes a door 72 through which the sealed container containing the solid material is removed from the gas loading and packaging system 10. When closed, the door 34 forms a seal that is capable of holding pressure or vacuum inside the packaging chamber 60. A linear transfer apparatus 70 is disposed inside the packaging chamber 60. The linear transfer apparatus is used to transfer the solid material after it is loaded with hydrogen gas from the process chamber 40 to the packaging chamber 60.
[022] The operation of the gas loading and packaging system 10 can be broken down into five processes: an intake process, a first transfer process, a gas loading process, a second transfer process, and a packaging process. During the intake process, a sample of solid material, e.g. palladium, is placed inside the sample loading chamber 20. The sample loading chamber 20 is evacuated to remove contaminants. Once the contaminants are removed, the sample loading chamber 20 is pressurized to about 760 Torr, which is one atmosphere. At this point, the intake process ends and the first transfer process begins, during which the solid material is transferred from the sample loading chamber 20 to the process chamber 40.
[023] During the first transfer process, the pressure in the process chamber is raised to about 10 Torr to 50 Torr above the sample loading chamber pressure. The higher pressure in the process chamber 40 relative to the sample loading chamber 20 serves to minimize the flow of any contaminants from the sample loading chamber 20 to the process chamber 40 during the transfer of the solid material. The gate valve 32 isolating the sample loading chamber 20 is then opened and the linear transfer apparatus 36 transfers the sample of solid material into the process chamber 40 and places the sample on the scale 54. The linear transfer apparatus 36 may comprise a retractable arm that picks up the solid material, extends into the process chamber 40 and deposits the solid material on the scale 54, and then retracts back into the sample loading chamber 20. When the transfer of the solid material is complete, the gate valve 32 is closed. At this point, the first transfer process ends and the gas loading process begins, during which the solid material is loaded with hydrogen gas.
[024] At the start of the hydrogen loading process, both gate valves 32 and 52 are closed to isolate the process chamber 40. The process chamber pressure is increased to a pressure in the range of about 3800 Torr to about 7600 Torr. When the solid material is exposed to hydrogen gas under high pressure, hydrogen gas is absorbed into and adsorbed onto the solid material. The amount of hydrogen gas loaded onto the solid material, by absorption and/or adsorption, is determined by the change of mass of the solid material. The change of mass of the solid material is related to the amount of hydrogen by: L D m
9.50x10 -3P
where L is the loading ratio of atoms of hydrogen to atoms of palladium, Am is the change in mass of the palladium sample in grams, and P is the mass of the palladium sample in grams.
[025] The mass of the solid material is continuously or periodically checked during the gas loading process to determine when the solid material is loaded with a desired amount of hydrogen gas. In one embodiment, the change of mass is calculated and compared to a pre-computed mass change threshold to determine when the solid material is loaded with a desired amount of hydrogen gas. In other embodiments, the amount of hydrogen gas loaded onto the solid material is computed according to Equation 1 . The gas loading process ends when the change of mass reaches the threshold, or when the calculated amount of hydrogen gas loaded onto the solid material equals the desired amount.
[026] Once the solid material is loaded with a desired amount of hydrogen gas, the second transfer process begins. During the second transfer process, the pressure inside the packaging chamber is raised to about 10 Torr to about 50 Torr below the process chamber pressure and the gate valve 52 is opened. The lower
pressurization of the packaging chamber 60 relative to the process chamber 40 serves to minimize the flow of any contaminants from the packaging chamber 60 to the process chamber 40 since the packaging chamber 60 is opened to the atmosphere to remove the sample. The linear transfer apparatus 70 in the packaging chamber 60 transfers the solid material loaded with hydrogen gas from the process chamber 40 into the packaging 60. The linear transfer apparatus 70 may comprise a retractable arm that extends into the process chamber 40, picks up the solid material, and then retracts back into the packaging chamber 60. After the solid material is transferred into the packaging chamber 60, the gate valve 52 is closed to isolate the packaging chamber 60. At this point the second transfer process ends and the packaging process begins.
[027] It is assumed that a sealed container is placed inside the packaging chamber 60 prior to the start of the packaging process. The sealed container may be introduced into the packaging chamber 60 anytime before the start of the second transfer process. Prior to the start of the packaging process, the packaging chamber 60 may be evacuated to remove contaminants. In one embodiment, the packaging chamber 60 is outfitted with vacuum/high pressure mechanical arms or other accessories as needed to transfer the solid material sample into a container that is capable of maintaining the process gas at the process pressure. In another embodiment, the packaging chamber 60 may comprise a glove box that enables a human user to handle and package the solid material. After sealing the container, the packaging chamber 60 may be evacuated to atmospheric pressure, nominally 760 Torr (101 kPa). The door 72 to the packaging chamber 60 is then opened and the packaged solid material sample is removed. The packaging enables the solid material sample to maintain the incorporated gas, maximizing its usefulness in application and longevity.
[028] The following is a more detailed, step-by-step description of the gas loading and packaging process. Figures 2A-2J illustrate some of these steps.
1 . Load a solid material sample into the sample loading chamber and seal the sample loading chamber 20.
2. Open valve 24 to connect the sample loading chamber 20 to rough/backing pump 15 and begin evacuation of the sample loading chamber 20 as shown in Figure 2A.
3. When the pressure level in sample loading chamber 20 reaches
approximately 0.1 Torr (13 Pa), close valve 24 and open valve 26 to connect the sample loading chamber 20 to turbo-molecular pump 17 and continue evacuation of the sample loading chamber 20 as shown in Figure 2B. When the pressure level in sample loading chamber 20 reaches
approximately 1 x106 Torr (1 x10 4 Pa), close valve 26.
Open valve 22 to connect the sample loading chamber 20 to gas source 12 and fill the sample loading chamber 20 with the hydrogen gas as shown in Figure 2C. The pressure inside the sample loading chamber 20 is measured by the pressure gauge 28.
Continue adding gas until the pressure in the sample loading chamber 20 reaches nominally 760 Torr (101 kPa), which is the working pressure of the sample loading chamber 20 reached. Shut off valve 22 when the pressure reaches the working pressure. This step ends the intake process.
Begin the first transfer process by opening valve 42 to add process gas to the process chamber 40 as shown in Figure 2D. Continue adding hydrogen gas until the pressure inside the process chamber 40 reaches between 10 and 50 Torr (1 .3 and 6.7 kPa) greater than the sample loading chamber pressure. Close valve 42 and open gate valve 32 connecting the sample loading chamber 20 to the process chamber 40. The higher pressure level of the process chamber 40 relative to the sample loading chamber 20 serves to minimize the flow of any contaminants from the sample loading chamber 20 to the process chamber 40.
Transfer the solid material sample from the sample loading chamber 20 to the process chamber 40 and place the solid material sample on the scale 54 as shown in Figure 2E.
Close gate valve 32 when the transfer of the solid material sample to the process chamber 40 is completed.
If it is desirable or required to increase the process gas pressure for adsorption on and absorption into the solid material sample, open valve 42 to increase the process gas pressure up to nominally 3800 Torr (507 kPa) to about 7600 Torr (1014kPa) as shown in Figure 2F. The sample will be loaded with hydrogen gas by absorption and adsorption. The amount of gas adsorbed and absorbed is calculated from the mass change measured by the scale after correcting for a change in chamber pressure.
During the gas-loading process, periodically measure the mass of the solid material sample and calculate the mass change of the solid material sample. Continue gas-loading until a desired amount of gas is added to the solid material sample. When the mass change and/or the solid material sample is loaded with a desired amount of gas, start the second transfer process to transfer the solid material sample to the packaging chamber 60.
To start the second transfer process, open valve 62 to supply gas to the process packaging chamber 60 as shown in Figure 2G. Continue supplying gas to the packaging chamber 60 until the gas pressure in the packaging chamber 60, indicated by pressure gauge 68, is between 10 and 50 Torr (1 .3 and 6.7 kPa) lower than the process chamber 40 pressure indicated by pressure gauge 48, at which time valve 62 is closed. The lower
pressurization of the packaging chamber 60 relative to the process chamber 40 serves to minimize the flow of any contaminants from the packaging chamber 60 to the process chamber 40 since the packaging chamber 60 is opened to atmosphere to remove the sample.
Open gate valve 52 and transfer the solid material sample from the process chamber 40 to the packaging chamber 60 using the second linear transfer apparatus 70 as shown in Figure 2H. When the transfer of the metal sample to the packaging chamber 60 is complete, close gate valve 52 to isolate the packaging chamber 60. This step ends the second transfer process.
In some cases, it may be desirable to increase the pressure in the packaging chamber 60 at the start of the packaging process. In this case, open valve 62 as shown in Figure 2I to pressurize the packaging chamber 60 to a desired pressure level above the processing pressure to maintain the loading of the solid material sample.
16. Package solid material sample into a pressure sealed container. The
packaging chamber 60 may be outfitted with vacuum/high pressure mechanical arms or other accessories as needed to transfer the solid material sample into a container that is capable of maintaining the process gas at the process pressure.
17. After sealing the container, open valve 66 to evacuate the packaging
chamber 60 to atmospheric pressure, nominally 760 Torr (101 kPa) a shown in Figure 2J.
18. Open the packaging chamber 60 and remove the packaged solid material sample. The packaging enables the solid material sample to maintain the incorporated gas - maximizing its usefulness in application and longevity.
[029] Figure 3 illustrates an exemplary control circuit 100 for controlling the operation of the gas loading and packaging system 10. The control circuit 100 comprises a processing circuit 102 that implements the main control functions of the gas loading and packaging system 10. The processing circuit 102 may comprise one or more processors, hardware circuits, firmware, of a combination thereof. The processing circuit 102 receives inputs from the pressure gauges 28, 48, and 68, and the scale 54 and outputs control signals to various solenoids and switches that control the valves as hereinabove described. Solenoids or switches S22, S24, S26, S42, S44, S46, S62,S64, and S66 control valves 22, 24, 26, 42, 44, 46, 62, 64, and 66 respectively. Solenoids or switches S32 and S52 control gate valves 32 and 52 respectively. Solenoids or switches S12, S15 and S17 control the gas source 12, rough/backing pump 15, and turbo-molecular pump 17 respectively. The processing circuit 102 may also send control signals to the linear transfer apparatus 36 and 70.
[030] Figures 4A and 4B illustrate an exemplary method 150 of gas loading and packaging a solid material. The solid material is transferred to a process chamber 40 (block 155). Once the solid material is loaded in to the process chamber 40, the process chamber 40 is pressurized with hydrogen gas until the process chamber pressure reaches a first pressure level (block 160). The process chamber pressure is maintained above the first pressure level to load the solid material with hydrogen gas. While the solid material is being loaded with hydrogen gas, the mass of the solid material is measured and the measurements are used to determine when the solid material is loaded with a predetermined amount of hydrogen gas based (blocks 165 and 170). When the desired amount of hydrogen gas is loaded into the solid material, pressurize the packaging chamber 60 with hydrogen gas until the packaging chamber pressure reaches a second pressure level lower than the first predetermined pressure level and transfer the solid material from the process chamber to the packaging chamber (blocks 175 and 180) The solid material is then packaged in a sealed container while maintaining the packaging chamber pressure at or above second pressure level, after which the sample chamber is opened and the sealed container is removed from the packaging chamber 60 (blocks 190 and 195).
In some embodiments, the packaging chamber pressure may be raised to a third pressure level higher than the first pressure level while the solid material is packaged (block 185).

Claims

CLAIMS What is claimed is:
1. A method of gas-loading and packaging a solid material, said method comprising:
transferring the solid material to a process chamber;
pressurizing the process chamber with hydrogen gas until and the process chamber pressure reaches a first pressure level and maintaining the process chamber pressure above the first pressure level to load the solid material with hydrogen gas;
measuring the mass of the solid material while maintaining the process
chamber pressure at or above the first predetermined level;
determining, based on the mass of the solid material, when the solid material is loaded with a predetermined amount of hydrogen gas; pressurizing a packaging chamber with hydrogen gas until the packaging chamber pressure reaches a second pressure level lower than the first predetermined pressure level;
transferring the solid material from the process chamber to the packaging chamber while maintaining the packaging chamber pressure at or above the second pressure level and below the first pressure level; packaging the solid material in a sealed container while maintaining the
packaging chamber pressure at or above second pressure level in the packaging chamber; and
removing the sealed container with the solid material from the packaging chamber.
2. The method of claim 1 wherein transferring the solid material to a process chamber comprises: placing the solid material in a sample loading chamber;
evacuating the loading chamber;
pressurizing the sample loading chamber to a working pressure;
pressurizing the process chamber until the process chamber pressure
reaches an initial pressure level above the loading chamber pressure; after the process chamber is pressurized, transferring the solid material from the loading chamber to the process chamber.
3. The method of claim 2 wherein the initial pressure level of the process chamber comprises a pressure level sufficient to minimize the flow of contaminants from the loading chamber into the process chamber while the solid material is transferred to the process chamber.
4. The method of claim 2 wherein the initial pressure level comprises a pressure level of at least about 10 Torr above the loading chamber pressure.
5. The method of claim 2 wherein the initial pressure level comprises a pressure level in the range of about 10 Torr - 50 Torr above the loading chamber pressure.
6. The method claim 1 wherein transferring the solid material from the loading chamber to the process chamber is performed by a linear transfer apparatus disposed in said loading chamber.
7. The method of claim 1 wherein the first pressure level comprises a pressure level of at least about 3800 Torr.
8. The method of claim 1 wherein the first pressure level comprises a pressure level in the range of about 3800 Torr to about 7600 Torr.
9. The method of claim 1 wherein, determining when the solid material is loaded with the predetermined amount of hydrogen gas comprises determining a change in mass of the solid material; and determining when the solid material is loaded with the predetermined amount of hydrogen gas based on the change in mass of the solid material.
10. The method of claim 9 wherein determining when the solid material is loaded with the predetermined amount of hydrogen gas based on the change in mass of the solid material comprises comparing the change in mass to a threshold.
11 . The method of claim 9 wherein determining when the solid material is loaded with the predetermined amount of hydrogen gas based on the change in mass of the solid material comprises calculating the amount of hydrogen loaded into the solid material based on the change in mass.
12. The method of claim 1 wherein the second pressure level is sufficiently below the process chamber pressure to prevent the flow of contaminants from the packaging chamber into the process chamber while the solid material is transferred to the packaging chamber.
13. The method of claim 12 wherein the second pressure level comprises a pressure level of at least about 10 Torr below the loading chamber pressure.
14. The method of claim 13 wherein the second pressure level comprises a pressure level in the range of about 10 Torr to about 50 Torr below the loading chamber pressure.
15. The method of claim 1 wherein transferring the solid material from the process chamber to the packaging chamber is performed by a linear transfer apparatus disposed in said packaging chamber.
16. The method of claim 1 further comprising, after the solid material is transferred to the packaging chamber, pressurizing the packaging chamber to a third pressure level greater than the first pressure level; and maintaining the packaging chamber pressure at or above the third pressure level while the solid material is packaged in the sealed container.
17. A gas-loading and packaging apparatus comprising:
a process chamber configured to receive a solid material to be loaded with hydrogen gas;
a scale disposed inside the process chamber for measuring a mass of the solid material while the solid material is loaded with the hydrogen gas; a packaging chamber connected by a first passageway to the process
chamber and configured to receive the solid material from the process chamber through said first passageway;
a gas supply system including a gas source for supplying hydrogen gas under pressure to the process chamber and the packaging chamber, said gas supply system configured to:
in a loading mode, supply hydrogen gas to the process chamber to increase the process chamber pressure to a first pressure level sufficient to effect the loading of solid material with hydrogen gas while the solid material is disposed within the process chamber; and
in a first transfer mode, supply hydrogen gas to the packaging
chamber to increase the packaging chamber pressure to a second pressure level lower than the first predetermined pressure level to enable transfer of the solid material from the process chamber to the packaging chamber.
18. The gas-loading and packaging apparatus of claim 17 further comprising: a loading chamber connected by a second passageway to the process
chamber and configured to receive the solid material prior to it being placed into the process chamber; and
a vacuum pump for evacuating the loading chamber prior to transfer of the solid material to the process chamber.
19. The gas-loading and packaging apparatus of claim 18 wherein the gas supply system is further configured to, in a second transfer mode during which the solid material is transferred via the second passageway from the loading chamber to the process chamber, increase the pressure level in the process chamber sufficient to prevent the flow of contaminants from the loading chamber into the process chamber.
20. The gas-loading and packaging apparatus of claim 19 wherein the gas supply system is further configured to, in the second transfer mode, increase the process chamber pressure to at least about 10 Torr above the loading chamber pressure.
PCT/US2018/019616 2018-02-26 2018-02-26 Gas-loading and packaging method and apparatus WO2019164519A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2018/019616 WO2019164519A1 (en) 2018-02-26 2018-02-26 Gas-loading and packaging method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2018/019616 WO2019164519A1 (en) 2018-02-26 2018-02-26 Gas-loading and packaging method and apparatus

Publications (1)

Publication Number Publication Date
WO2019164519A1 true WO2019164519A1 (en) 2019-08-29

Family

ID=67687216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/019616 WO2019164519A1 (en) 2018-02-26 2018-02-26 Gas-loading and packaging method and apparatus

Country Status (1)

Country Link
WO (1) WO2019164519A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986258B2 (en) * 2002-08-29 2006-01-17 Nanomix, Inc. Operation of a hydrogen storage and supply system
WO2008060275A2 (en) * 2006-11-14 2008-05-22 Energetics Systems and methods for hydrogen loading and generation of thermal response
KR20130047289A (en) * 2011-10-31 2013-05-08 한국표준과학연구원 Hydrogen consistency measuring equipment and its fabrication method
US20180194624A1 (en) * 2016-06-06 2018-07-12 Ih Ip Holdings Limited Gas-Loading and Packaging Method and Apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6986258B2 (en) * 2002-08-29 2006-01-17 Nanomix, Inc. Operation of a hydrogen storage and supply system
WO2008060275A2 (en) * 2006-11-14 2008-05-22 Energetics Systems and methods for hydrogen loading and generation of thermal response
KR20130047289A (en) * 2011-10-31 2013-05-08 한국표준과학연구원 Hydrogen consistency measuring equipment and its fabrication method
US20180194624A1 (en) * 2016-06-06 2018-07-12 Ih Ip Holdings Limited Gas-Loading and Packaging Method and Apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. CHANINE ET AL.: "low-pressure adsorption storage of hydrogen", INTERNATIONAL ASSOCIATION FOR HYDROGEN ENERGY, vol. 19, no. 2, 1994, pages 161 - 164, XP025822933 *
R. STROBEL ET AL.: "Hydrogen adsorption on carbon materials", JOURNAL OF POWER SOURCE, vol. 84, 1999, pages 221 - 224, XP055632283 *

Similar Documents

Publication Publication Date Title
US20090041629A1 (en) Method and apparatus for measuring gas sorption and desorption properties of materials
Voskuilen et al. Development of a Sievert apparatus for characterization of high pressure hydrogen sorption materials
JP4643589B2 (en) Method for filling a compressed gas container with gas
JP7165303B2 (en) Battery pack leak inspection method and leak inspection device
CN114034604B (en) Hydrogen related material comprehensive reaction system and test method thereof
JP2003014193A (en) Cylinder cabinet and its inside-pipe residual gas purging method
Broom et al. Improving reproducibility in hydrogen storage material research
JP2007537397A (en) Filling the pressure vessel with gas
JP2009002878A (en) Device and method for evaluating gas adsorption material
US10053362B2 (en) Gas-loading and packaging method and apparatus
Cho et al. R&D activities on the tritium storage and delivery system in Korea
EP0689044A1 (en) Apparatus for and method of measuring gas absorbing characteristics
CN112284651A (en) Method for detecting interlayer vacuum degree of low-temperature storage tank
CN109752442B (en) High-pressure gas trace component detection device and method based on adsorption enrichment principle
Feng et al. Hydrogen adsorption characteristics of Zr57V36Fe7 non-evaporable getters at low operating temperatures
WO2019164519A1 (en) Gas-loading and packaging method and apparatus
Zielinski et al. High pressure sorption isotherms via differential pressure measurements
KR101230060B1 (en) The improvement in the Sievert's type volumetric measurement of hydrogen storage
CN114659581A (en) Online accurate calibration method for container volume
Sun et al. Design and development of a volumetric apparatus for the measurement of methane uptakes under cryogenic conditions
Riesco et al. Venting and high vacuum performance of low density multilayer insulation
Tishin et al. The determination of zeolite sorption properties
Zhou et al. Deformation-induced hydrogen desorption from the surface oxide layer of 6061 aluminum alloy
US4476100A (en) Method of enhancing selective isotope desorption from metals
CN207133152U (en) A kind of device of acetylene absorption measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907127

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18907127

Country of ref document: EP

Kind code of ref document: A1