WO2019164154A1 - Rubber reinforcer comprising aluminosilicate particles, and tire rubber composition comprising same - Google Patents

Rubber reinforcer comprising aluminosilicate particles, and tire rubber composition comprising same Download PDF

Info

Publication number
WO2019164154A1
WO2019164154A1 PCT/KR2019/001383 KR2019001383W WO2019164154A1 WO 2019164154 A1 WO2019164154 A1 WO 2019164154A1 KR 2019001383 W KR2019001383 W KR 2019001383W WO 2019164154 A1 WO2019164154 A1 WO 2019164154A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
aluminosilicate particles
particles
aluminosilicate
less
Prior art date
Application number
PCT/KR2019/001383
Other languages
French (fr)
Korean (ko)
Inventor
최권일
성은규
이하나
김우석
오명환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190011316A external-priority patent/KR102151066B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019553239A priority Critical patent/JP6862016B2/en
Priority to US16/497,756 priority patent/US10889702B2/en
Publication of WO2019164154A1 publication Critical patent/WO2019164154A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers

Definitions

  • Rubber reinforcement material containing aluminosilicate particles and rubber composition for tires containing the same [Technical Field]
  • the present invention relates to a rubber reinforcement material comprising aluminosilicate particles and a rubber composition for a tire comprising the same. [Technique to become background of invention]
  • Eco-friendly tires are tires that lower the rolUng resistance of rubber and give them high efficiency and high fuel efficiency, resulting in lower carbon emissions.
  • modified rubber materials and white additives for reinforcing rubber for example, precipitated silica are mainly used.
  • silica materials have a problem of low dispersibility in the rubber composition and loss of wear resistance.
  • a highly dispersible precipitated silica with a silane coupling agent in a specific condition, an environmentally friendly tire material having good wear resistance can be made.
  • Non-Patent Document 1 Kay Saalwachter, Microstructure and molecular dynamics of elastomers as studied by advanced low-resolution nuclear magnetic resonance methods, Rubber Chemistry and Technology, Vol. 85, No. 3, pp. 350-386 (2012).
  • the present invention is to provide a rubber reinforcing material that can give excellent reinforcement effect and workability to the tire.
  • the present invention is to provide a rubber composition for a tire including the rubber reinforcing material.
  • the aluminosilicate particles are
  • the full width at half maximum (FWHM) of 20 to 23 ° to 37 ° range is 5 ° to 7 ° , at least 23 ° Having a maximum peak intensity (Imax) in the 26 range of less than 26 ° ,
  • Rubber reinforcements are provided: 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • a rubber composition for a tire comprising the rubber reinforcing material.
  • a rubber reinforcing material and a rubber composition for a tire including the same according to embodiments of the present invention will be described.
  • the term “comprising 1" embodies a particular characteristic, region, integer, step, operation, element, or component, and excludes the addition of other specific characteristics, region, integer, step, operation, element, or component. It is not.
  • Amorphous having the composition of Formula 1 As a rubber reinforcement comprising aluminosilicate particles;
  • the aluminosilicate particles are
  • the half width of the maximum peak in the range of 20 to 23 ° to 37 ° (11 ⁇ I 1 1 1 1113x111111111, ⁇ 1, / [) is from 5 ° to 7 °, and in the range of 20 to less than 23 ° 26 ° peak intensity, I max ),
  • Rubber reinforcements are provided:
  • the aluminosilicate particles satisfying the above-described properties can exhibit improved reinforcing effect according to excellent dispersibility in the rubber composition, but do not impair the processability of the rubber composition, thereby imparting to the rubber composition for tires. It can be preferably applied as a rubber reinforcing material.
  • the aluminosilicate particles may exhibit excellent mechanical properties (eg, excellent durability, abrasion resistance, compressive strength, etc.) as compared to the reinforcing materials that do not satisfy the above-described properties as the formation of micropores inside the particles is suppressed. have.
  • the aluminosilicate particles included in the rubber reinforcement are amorphous.
  • the amorphous aluminosilicate particles according to an embodiment of the present invention In the data graph obtained by X-ray diffraction (XRD), the full peak at at maximum maximum (FWHM) in the range of 23 ° to 37 ° of 20 is satisfied by 5 ° to 7 ° . It can exhibit excellent physical properties as rubber reinforcement.
  • XRD X-ray diffraction
  • the full width at half maximum (FWHM) of the maximum peak is at least 5.0 °, at least 5.5 ° , or at least 6.0 ° .
  • the half width (FWHM) of the maximum peak is 7.0 ° or less or 6.5 ° or less.
  • the full width at half maximum (FWHM) of the maximum peak may be 5 ° to T, or 5.5 ° to T, or 5.5 ° to 6.5 ° , or 6.0 ° to 6.5 ° .
  • the half width of the maximum peak (FWHM) is a numerical value of the peak width at the half position of the maximum peak intensity in the range of 23 ° to 37 ° of 20 obtained by X-ray diffraction of the aluminosilicate particles.
  • the unit of the full width at half maximum (FWHM) of the maximum peak may be expressed in degrees ( ° ), which is 20 units, and the higher the crystallinity, the smaller the half width.
  • XRD X- ray diffraction
  • the maximum peak intensity Imax is at least 23.0 ° , or at least 23.5 ° , or at least 24.0 ° , or at least 24.5 ° of 2e. Also preferably, the maximum peak intensity (Imax) is less than 26.0 ° of 20, or 25.9 ° aha, or
  • the maximum peak intensity (23) may be at least 23 ° and less than 26 ° , or from 23.5 ° to 25.9 °, or from 24.0 ° to 25.9 ° , or from 24.5 ° to 25.8 ° .
  • amorphous silica generally exhibits I max in a range of 20 ° to 25 ° and amorphous alumina typically exhibits I max in a range of 30 ° to 40 ° .
  • the aluminosilicate particles have a composition of Formula 1 below: 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • the IV! Is Ni, Na / X,] 3 ⁇ 4, ⁇ 6 6 / ⁇ , Ca / 3 ⁇ 4 ⁇ , and the element selected from the group consisting of or ions thereof,
  • the aluminosilicate particles comprise alkali metals or their ions as metal elements () or ions thereof, in particular 3.0 ⁇ It satisfies the composition of ⁇ 20.0 and X ⁇ 1.2.
  • is greater than 3.0, or 3.1 or more, or 3.2 or more, or 3.3 or more, or 3.5 or more, or 4.0 or more; Less than 20.0, or less than or equal to 15.0, or less than or equal to 10.0, or less than or equal to 5.0, or less than or equal to 4.5, or less than or equal to 4.4, or less than or equal to 4.3, or less than or equal to 4.2, may be advantageous for the development of various properties according to the present invention.
  • Chemical Formula 1 it may be greater than 3.0 and less than 20.0, or 3.1 to 10.0, or 3.2 to 5.0, or 3.3 to 4.5, or 3.5 to 4.2, or 4.0 to 4.2.
  • X is less than 1.2, or 1.0 or less, or 0.9 or less, or 0.8 or less, or 0.7 or less; At least 0.01, or at least 0.02, or at least 0.03, or at least 0.04, or at least 0.05, or at least 0.1, or at least 0.2, or at least 0.3, or at least 0.5 may be advantageous for the development of various properties according to the present invention.
  • X may be 0.01 to 1.0, or 0.01 to 0.9, or 0.05 to 0.9, or 0.1 to 0.8, or 0.3 to 0.8, or 0.5 to 0.7. 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • the aluminosilicate particles have a Bruner-Emet-Tella specific surface area burr of 110 to 260 111 2 / silver and 90 to 220 1 high 2 / of external specific surface area by nitrogen adsorption / desorption analysis 8 6 ⁇ : ⁇ ovule ⁇ , 3 ⁇ 4) have.
  • 3 ⁇ 4 is at least 110 1 112 / is or at least 115 111 2 / is; 260 or less, or 250 hemp 2 / or less, or 245 ⁇ 1 2 / or less.
  • 3 ⁇ 4 may be 110 to 260 kPa, or 115 to 260 111 2 / & or 115 to 250 1 and 2 / & or 115 to 245 is 2 .
  • 0 ' is greater than or equal to 90 ⁇ ⁇ / or 95 1 and 2 / is greater; 220 1 high 2 / or less, or 210 111 2 / ⁇ or less, or 200 1 ⁇ / or less, or 195 111 2 / or less.
  • the table! ⁇ May be 90 to 220 111 2 /, or 90 to 210 ⁇ I ⁇ ⁇ , or 90 to 200111 2 / & or 90 to 195 1 / & or 95 to 195 1 / silver.
  • the ratio of 3 ⁇ 4 ⁇ ⁇ and 3 ⁇ 4 of the aluminosilicate particles (3 ⁇ 4 / 3 ⁇ 4 burr is 0.65 to 0.95 may be more advantageous for the expression of various properties according to the present invention.
  • 3 ⁇ 4 / 3 ⁇ 4 ⁇ is at least 0, or at least 0.70, or at least 0.75; 0.95 or less, or 0.93 or less, or 0.92 or less, or 0.91 or less.
  • 5 £> 0 '/ 58' may be 0.65 to 0.95, or 0.70 to 0.93, or 0.75 to 0.92, or 0.75 to 0.91.
  • the content of micropores fish moss is preferably minimized. This is because the micropores can cause defects ((acting as urinary diastolic) and lowering the physical properties of the rubber reinforcing material.
  • the aluminosilicate particles the micropores having a pore size of less than 2 calculated Small to below, it enables the development of excellent mechanical properties as a rubber reinforcement.
  • the 0.05 / less than or 0.025 Or less, or 0.020 (: 111 3 / less; 0.001 0 to 3 / or more, or 0.002 011 3 / or more, or 0.003 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • ⁇ 1 0 may be 0.001 to 0.025 11 3 / & or 0.003 to 0.020 0 / & or 0.005 to 0.020 0 11 3 / or 0.006 to 0.020 «11 3 / on:
  • the aluminosilicate particles have an average primary particle diameter of 10 to 50 11.
  • the aluminosilicate particles are 10 11111 or more, or 15 1 ⁇ 1 or more, or 20 1 ⁇ 11 or more; 50 11 111 or less, or 45 11 111 or less, or 40 It may have an average primary particle diameter of less than or equal to 35 _.
  • the rubber reinforcing material may exhibit an excellent reinforcing effect as the particle size is smaller, but the smaller the particle size, the less easily dispersibility due to the aggregation phenomenon between the particles in the rubber composition. If the mirror aggregation becomes severe, phase separation between the rubber reinforcement and the rubber components may occur, and as a result, the workability of the tire may be degraded and the target reinforcement effect may be difficult to obtain.
  • the secondary particles of the aluminosilicate particles 6 ( : 0) 1 ( 1 3 ⁇ 4 1 ⁇ year ie, the aggregate is a volume average particle diameter of 1 to 25 _ measured under distilled water using a particle size analyzer, 1 to 20 _ It can have a secondary particle size distribution that represents the geometric standard deviation of (approximately 0111 1 ⁇ s acid dispersion) and 90% cumulative particle diameter (11 ⁇ 2) of 1 to 50.
  • secondary particles of the aluminosilicate particles Is at least 1, or at least 2.5 lM, or at least 5 _, at least 7.5 _, or at least 10.0 _; and at least 25.0 1, or at most 22.5 _, or at most 20.0 _, or at most 19.5. It can have a particle diameter (1 ) .
  • the secondary particles of the aluminosilicate particles are 1 to 25, or 5 to 22.5, or 7.5 to 7.5 measured under distilled water.
  • the secondary particles of the aluminosilicate particles are 1.0 or more, or 2.5 measured in distilled water Or above 5.0 or above, or above 7.0 / year; And a geometric standard of 20 II or less, or 15 or less, or 10 m or less. have.
  • the secondary particles of the aluminosilicate particles are 1 to 1 measured under distilled water Have a geometric standard deviation of 15 or 7 to 10_. And, the secondary particles of the aluminosilicate particles are 1 _ or more, or 5 _ or more, or 10 m or more, or 15 / / III or more, or 20 _ or more, or 25 ⁇ ! measured under distilled water; And 50 _ or less, or 40]! 90% cumulative particle diameter of 35 or less.
  • the secondary particles of the aluminosilicate particles are 1 to 1 measured under distilled water
  • aluminosilicate particles that meet the above-described characteristics can be prepared by a method comprising the following steps:
  • Aluminosilicate particles can be obtained.
  • the aluminosilicate particles satisfying the above-mentioned characteristics are ( 3 ) 70 Obtaining a reaction solution having a pH of 6 to 10 containing an aluminosilicate salt by neutralization of an alkaline silicon source and an acidic aluminum source under the following temperature; Washing the non-aluminosilicate salts to obtain aluminosilicate particles; And (0) drying the aluminosilicate particles.
  • the neutralization reaction is 70 It is carried out at a temperature exceeding 95 or less, wherein the reaction solution formed by the neutralization reaction has a hydrogen ion concentration of pH 6 to M Table 10, thereby exhibiting excellent dispersibility in the rubber composition while improving workability and productivity in the rubber molding process.
  • Aluminosilicate particles may be provided that allow for the expression of.
  • the aluminosilicate particles provided by the production method can be preferably applied as a rubber reinforcing material added to the rubber composition for a tire.
  • the silicon source is an alkaline solution of greater than 11 7 containing a water soluble silicone salt.
  • the water-soluble silicone salt a silicone compound capable of exhibiting an alkalinity of greater than 1 3/4 may be used without particular limitation.
  • the water-soluble silicone salt may be at least one compound selected from the group consisting of sod silicate ( ⁇ 3 ⁇ 43 ⁇ 40 3 ) and potassium silicate (3 ⁇ 43 ⁇ 40 3 ).
  • the aluminum source is an acidic solution of less than 1 line containing a water-soluble aluminum salt.
  • the water-soluble aluminum salt in an aqueous solution Aluminum compounds that can exhibit an acidity of less than 7 can be used without particular limitation.
  • the water-soluble aluminum salt is aluminum chloride 1 (part 3 ), aluminum nitrate ((1 3 ⁇ 4) 3 ), aluminum monoacetate (0) 2 3 ⁇ 43 ⁇ 403 ⁇ 4), aluminum diacetate ⁇ 0cin ([3 ⁇ 4 [ 0 2 ) 2), aluminum triacetate (Cho ((3 ⁇ 4 (: 0 2 ) 3 ), aluminum sulfate (New 2 (50 4 ⁇ ) and aluminum potassium sulfate (C. 50 4 ) 2)
  • the above compound may be sufficient. More preferably, 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • the use of aluminum nitrate, aluminum potassium sulphate or mixtures thereof as the water soluble aluminum salt may be advantageous in that the aggregation of the particles can be minimized during the recovery of the aluminosilicate particles.
  • the neutralization reaction is performed by mixing the alkaline silicon source and the acidic aluminum source, whereby a reaction solution containing an aluminosilicate salt as a solid is obtained.
  • the neutralization reaction is It is preferable to carry out under the following temperature.
  • the neutralization reaction is Greater than or equal to 75 Or 80 or more; And 95 Or below 90 Or at or below 85 X :. More preferably, the neutralization reaction is 75 To 90 ° to 10 °.
  • the neutralization reaction is 70 It is preferably carried out under temperatures above.
  • the neutralization reaction is preferably carried out under the following temperature.
  • the mixing ratio of the silicon source and the aluminum source is different from each other.
  • a reaction solution which is a product of the neutralization reaction It may be determined in consideration of the range.
  • the reaction solution is a product of the neutralization reaction It is preferable to have a hydrogen ion concentration.
  • the hydrogen ion concentration of the reaction solution If it is less than 6, it becomes difficult to control the particle size of the aluminosilicate particles and the size of the particles 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • the aluminosilicate particles finally obtained represent Affect
  • the pH represented by the aluminosilicate particles has an influence on scorch time (8 (: Lee: 0: 11 acid 111 ⁇ 2)) in the process of blending the particles with the rubber composition.
  • the scorch time refers to the time taken to start the thermosetting of the rubber composition in the rubber molding process. In general, since the rubber composition flows out of the mold after the thermosetting of the rubber composition starts and molding such as a press becomes difficult, proper scorch time is required to secure workability and productivity.
  • the aluminosilicate particles represent If it is too low or too high, it is difficult to secure proper scorch time during the rubber molding process, and the workability and productivity of the rubber molding may be deteriorated, such as the addition of a separate heat curing retardant or additional measures to prevent the scorch.
  • the aluminosilicate particles represent When low, the scorch time slows down when rubber is mixed, If it is too high, the scorch time can be dramatically faster.
  • the pH of the particles greatly affects the reactivity of the components mixed together in the rubber compounding process, and in particular, promotes or alleviates the rate at which the amine-based functional groups react. That is, of the particles In this case, the reactivity of the amine group is decreased, and when the pH of the particles is high, the reactivity of the amine group is promoted. If the reactivity is too accelerated in the rubber compounding process, there is a problem in forming the product, and if the reactivity is too low, productivity may be reduced.
  • the neutralization reaction is carried out using a reaction solution containing an aluminosilicate salt.
  • the aluminosilicate salt as a solid is recovered from the reaction solution obtained through the neutralization reaction, dispersed in water such as distilled water and deionized water, and washed several times to obtain aluminosilicate particles. 2019/164154 1 »(: 1 ⁇ 1 ⁇ 2019/001383
  • the step of drying the washed aluminosilicate particles is performed.
  • the drying may be performed for 1 to 48 hours at a temperature of 20 to 150 ° (:).
  • a rubber composition for a tire comprising the above-described aluminosilicate particles as a rubber reinforcing material.
  • Aluminosilicate particles prepared by the above and satisfying the above properties can exhibit improved reinforcement effect according to good dispersibility in the rubber composition while also allowing for improved workability and productivity.
  • the aluminosilicate particles have excellent mechanical properties (for example, excellent durability, abrasion resistance, compressive strength, etc.) compared to rubber reinforcement materials that do not satisfy the above-described properties as the formation of micropores inside the particles is suppressed. Can be represented.
  • the rubber composition for a tire may include a conventional diene elastomer without particular limitation.
  • the diene elastomer may be a natural rubber, polybutadiene, polyisoprene, butadiene / styrene copolymer, butadiene / isoprene copolymer, butadiene / acrylonitrile copolymer, isoptene / styrene copolymer, and butadiene / styreneten / isoprene copolymer It may be one or more compounds selected from the group consisting of polymers.
  • the rubber composition for a tire may include a coupling agent that provides a chemical and / or physical bond between the aluminosilicate particles and the diene elastomer.
  • the coupling agent may include conventional components such as polysiloxane compounds without particular limitation.
  • plasticizers pigments, antioxidants, ozone deterioration inhibitors, vulcanization accelerators and the like commonly used in the tire field may be added to the rubber composition for tires.
  • the aluminosilicate particles included in the rubber reinforcing material according to the present invention can exhibit an improved reinforcing effect according to excellent dispersibility in the rubber composition, but do not impair the processability of the rubber composition, and thus are provided as rubber reinforcing materials to the rubber composition for tires. It can be preferably applied.
  • Example 1
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • Example 2 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles.
  • Example 2 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles.
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • Example 5 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles.
  • Example 5 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles.
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • the solid product formed by curing was put in 90 distilled water, stirred for 12 hours, and washed until reaching a pH of 7 by centrifugation.
  • the washed solid product was dispersed in distilled water to form a colloidal solution and then centrifuged for 5 minutes at 1500 rpm to settle the unreacted source. This yielded a supernatant in which the aluminosilicate particles were dispersed and discarded the unreacted source that had settled.
  • the supernatant in which the aluminosilicate particles were dispersed was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles.
  • Comparative Example 1 is a method of synthesizing aluminosilicate using metakaolin in an aqueous solution of a strong base (pH 14), which is not only complicated in the synthesis process but also requires high cost in forming a strong base atmosphere. do. Comparative Example 2
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • the aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
  • a rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Example 3 were added instead of the aluminosilicate particles of Example 1 as a reinforcing material.
  • Preparation Example 4
  • a rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that silica particles according to Comparative Example 4 were added instead of the aluminosilicate particles of Example 1 as the reinforcing material.
  • Test Example 1
  • X-ray fluorescence (XRF, Rigaku zsx primus II, wavelength dispersive type) was used to confirm the composition of the particles according to the examples and comparative examples.
  • the XRF measurement was performed using the Rh target, and was measured by mounting the particle powder in a holder of 30_ diameter.
  • the range of 20 measured was 10 degrees- 90 degrees, and it scanned at the interval of 0.05 degrees .
  • SEM Scanning electron microscopy
  • the particle diameter means the Feret diameter and was calculated as an average value obtained by measuring the diameters of particles in various directions. Specifically, after obtaining an SEM image in which 100 or more particles are observed, after plotting a random straight line, the primary particle diameter of the particle can be calculated by the length of the straight line, the number of particles included in the straight line, and the magnification. The average primary particle diameter was calculated
  • a solution containing 1% by weight of particles was prepared by adding particles of 0.1 silver according to the Examples and Comparative Examples to 10 ml of distilled water.
  • the solution was sonicated at 100% pulsed ultrasonication equipment at 90% power for 5 minutes.
  • the energy due to sonication acts as a physical energy similar to the mechanical force applied to the composition when the rubber composition is blended, thereby indirectly confirming the size distribution of aggregates (aggregates) present in the rubber composition.
  • the obtained dispersion was sonicated for 2 minutes using a particle size analyzer (HORIBA, model name LA-960, laser diffraction type), and then the size distribution of the aggregates of the particles and the volume average particle diameter (D mean , m) , Geometric standard deviation (Std. Dev., Im), and cumulative particle diameters (Dio, D50, D90, _) of the volume distribution were instantaneated.
  • HORIBA model name LA-960, laser diffraction type
  • the viscoelasticity meter (DMTS 500N, Gabo, Germany) was used to measure the dynamic loss factor (tan 5) for rubber moldings according to the examples under dynamic strain 3% and static strain 3%. The measured values were normalized based on the values of the rubber moldings of Preparation Example 9 and shown together.
  • the dynamic loss factor (tan 5 @ 0 at TC is associated with the wet grip characteristics of the tire, and the higher the absolute value is, the better the wet grip characteristic is, and the dynamic loss at 60 ° C.
  • the coefficient (tan 8 @ 60 ° C) is associated with the rolling resistance properties of the tire, and the lower the absolute value, the better the rolling resistance properties.
  • the rubber molding according to Preparation Examples 1 to 5 has excellent rolling resistance characteristics and wet grip in comparison with the rubber molding of Preparation Examples 6 and 9. It was confirmed to exhibit characteristics.
  • the abrasion resistance index was determined by using the abrasion tester (Bareiss GmbH) to immediately determine the mass loss and specific gravity of the material to be tested and the reference material according to the standard of DIN ISO 4649. Was calculated and the wear resistance was evaluated.
  • the wear resistance index was calculated as ⁇ [(loss weight of reference material) X (specific gravity of reference material)] / [(loss weight of test material) X (specific gravity of test material)] ⁇ ⁇ 100 (reference material : neutral rubber).
  • the rubber molding of Preparation Example 6 exhibited excellent rolling resistance and wet grip characteristics compared to the rubber molding of Preparation Example 9, but was found to have a significantly low wear resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a rubber reinforcer comprising aluminosilicate particles, and a tire rubber composition comprising same. Aluminosilicate particles contained in the rubber reinforcer, according to the present invention, do not cause deterioration of the processability of a rubber composition while enabling an improved reinforcement effect according to excellent dispersibility in the rubber composition to be exhibited, and thus can be preferably applied as a rubber reinforcer provided to a tire rubber composition.

Description

【발명의 명칭】  [Name of invention]
알루미노실리케이트 입자를 포함한 고무 보강재 및 이를 포함한 타이어용 고무조성물 【기술분야】  Rubber reinforcement material containing aluminosilicate particles and rubber composition for tires containing the same [Technical Field]
관련 출원과의 상호 인용  Cross Citation with Related Applications
본 출원은 2018년 2월 21일자 한국 특허 출원 제 10-2018-0020651호 및 2019년 1월 29일자 한국 특허 출원 제 10-2019-0011316호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다. 본 발명은 알루미노실리케이트 입자를 포함한 고무 보강재 및 이를 포함한타이어용고무조성물에 관한 것이다. 【발명의 배경이 되는 기술】  This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0020651 dated February 21, 2018 and Korean Patent Application No. 10-2019-0011316 dated January 29, 2019. All content disclosed in the literature is included as part of this specification. The present invention relates to a rubber reinforcement material comprising aluminosilicate particles and a rubber composition for a tire comprising the same. [Technique to become background of invention]
지구 온난화와환경 문제에 대한우려가 확산되면서 에너지 효율을높여 탄소 배출량을 감축시키는 환경 친화적 개념이 다방면에서 강조되고 있다. 이러한 환경 친화적 개념은 타이어 산업 분야에서 고효율의 친환경 타이어의 개발과폐타이어의 재활용 방법 모색 등으로 가시화되고 있다.  As global warming and environmental concerns spread, environmentally friendly concepts that reduce energy emissions by increasing energy efficiency are being emphasized in many ways. This eco-friendly concept is being visualized by developing high-efficiency eco-friendly tires in the tire industry and seeking ways to recycle used tires.
친환경 타이어 (혹은 그린 타이어;)는 고무의 구름 저항 (rolUng resistance)을 낮추어 고효율과 고연비 특성을 부여하여, 결과적으로 탄소 배출량의 감축을 가능하게 하는 타이어를 말한다. 이러한 친환경 타이어를 제조하기 위하여 개질된 고무 재료 및 고무 보강용 백색 첨가제 (예를 들어 침강실리카 (precipitated silica))등이 주로사용되고 있다.  Eco-friendly tires (or green tires) are tires that lower the rolUng resistance of rubber and give them high efficiency and high fuel efficiency, resulting in lower carbon emissions. In order to manufacture such environmentally friendly tires, modified rubber materials and white additives for reinforcing rubber (for example, precipitated silica) are mainly used.
일반적으로 실리카 소재는 고무 조성물 내에서 분산성이 낮아, 내마모성이 손실되는 등의 문제가 있다. 이를 보완하기 위해 특정 조건의 고분산성 침강실리카를실란 커플링제 (silane coupling agent)와 함께 활용하여 양호한 내마모성을 가지는 친환경 타이어용 소재를 만들 수 있음이 알려져 있다.  In general, silica materials have a problem of low dispersibility in the rubber composition and loss of wear resistance. In order to compensate for this, it is known that by using a highly dispersible precipitated silica with a silane coupling agent in a specific condition, an environmentally friendly tire material having good wear resistance can be made.
한편 고분산성 침강 실리카처럼 서로 상반되는 특성 (구름 저항력과 내마모성 등의 기계적 강도)들을 양호하게 가질 수 있는 첨가제에 대한 관심 또한높다. 고무 보강용 백색 첨가제로 알루미나, 점토, 카올린 등을 적용하는 경우에도 구름 저항을 낮추어 친환경 타이어용 소재로 활용될 수 있음이 알려져 있다. 그러나, 이러한 고무 보강용 백색 첨가제는 강한 응집체 형성 등으로 분산성이 감소하며, 이에 따른 기계적 강도 저하 등의 문제점이 나타날 수 있다. On the other hand, like highly dispersible precipitated silica, There is also a high interest in additives that can have good mechanical strengths such as wear resistance). As a white additive for rubber reinforcement, even when alumina, clay, kaolin, and the like are applied, it is known that the rolling resistance can be used as an environment-friendly tire material. However, such a white additive for rubber reinforcement is reduced in dispersibility due to the formation of a strong aggregate, and thus may cause problems such as mechanical strength degradation.
【선행기술문헌】 Prior Art Documents
【비특허문헌】  [Non-patent literature]
(비특허문헌 1) Kay Saalwachter, Microstructure and molecular dynamics of elastomers as studied by advanced low-resolution nuclear magnetic resonance methods, Rubber Chemistry and Technology, Vol. 85, No. 3, pp. 350-386 (2012).  (Non-Patent Document 1) Kay Saalwachter, Microstructure and molecular dynamics of elastomers as studied by advanced low-resolution nuclear magnetic resonance methods, Rubber Chemistry and Technology, Vol. 85, No. 3, pp. 350-386 (2012).
【발명의 내용】 [Content of invention]
【해결하고자하는 과제】  【Problem to solve】
본 발명은 타이어에 대한 우수한 보강 효과와 가공성을 부여할 수 있는 고무보강재를 제공하기 위한 것이다.  The present invention is to provide a rubber reinforcing material that can give excellent reinforcement effect and workability to the tire.
그리고, 본 발명은 상기 고무 보강재를 포함한 타이어용 고무 조성물을 제공하기 위한 것이다.  The present invention is to provide a rubber composition for a tire including the rubber reinforcing material.
【과제의 해결 수단】 [Measures of problem]
본 발명에 따르면,  According to the invention,
하기 화학식 1의 조성을 갖는 비정질의 알루미노실리케이트 입자를 포함한고무보강재로서;  As a rubber reinforcing material including amorphous aluminosilicate particles having a composition of Formula 1;
상기 알루미노실리케이트 입자는  The aluminosilicate particles are
X-선 회절 (XRD)에 의해 수득된 데이터 그래프에서, 20의 23° 내지 37° 범위에서의 최대 피크의 반가폭 (full width at half maximum, FWHM)이 5° 내지 7° 이고, 23° 이상 26° 미만의 26 범위에서 최대 피크 강도 (maximum peak intensity, Imax)를 가지는, In the data graph obtained by X-ray diffraction (XRD), the full width at half maximum (FWHM) of 20 to 23 ° to 37 ° range is 5 ° to 7 ° , at least 23 ° Having a maximum peak intensity (Imax) in the 26 range of less than 26 ° ,
고무보강재가제공된다: 2019/164154 1»(:1^1{2019/001383 Rubber reinforcements are provided: 2019/164154 1 »(: 1 ^ 1 {2019/001383
[화학식 1] [Formula 1]
[( 1必公) -(5 0각)] · 1머¾〔))  [(1 必 公)-(5 0 square)] · 1 ¾ ())
상기 화학식 1에서, In Chemical Formula 1,
Figure imgf000005_0001
이루어진 군에서 선택된 원소또는 이들의 이온이고,
Figure imgf000005_0001
An element selected from the group consisting of ions thereof,
Figure imgf000005_0002
이고,
Figure imgf000005_0002
ego,
3/>< < 1.2 이고,  3 /> <<1.2,
3.0 < /乂 < 20.0 이다. 그리고, 본 발명에 따르면, 상기 고무 보강재를 포함하는 타이어용 고무 조성물이 제공된다. 이하, 발명의 구현 예들에 따른 고무 보강재 및 이를 포함한 타이어용 고무조성물에 대하여 설명한다.  3.0 </ 乂 <20.0. In addition, according to the present invention, there is provided a rubber composition for a tire comprising the rubber reinforcing material. Hereinafter, a rubber reinforcing material and a rubber composition for a tire including the same according to embodiments of the present invention will be described.
본 명세서 명시적인 언급이 없는 한, 전문용어는 단지 특정 구현예를 언급하기 위한 것이며,본 발명을 한정하는 것을 의도하지 않는다.  Unless expressly stated herein, the terminology is merely for reference to particular embodiments and is not intended to limit the invention.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한복수 형태들도포함한다.  As used herein, the singular forms “a,” “an,” and “the” include plural forms unless the context clearly indicates the opposite.
본 명세서에서 사용되는 1포함’의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소,또는성분의 부가를 제외시키는 것은 아니다. As used herein, the term "comprising 1 " embodies a particular characteristic, region, integer, step, operation, element, or component, and excludes the addition of other specific characteristics, region, integer, step, operation, element, or component. It is not.
1. 고무보강재 1. Rubber reinforcement
발명의 일 구현 예에 따르면,  According to one embodiment of the invention,
하기 화학식 1의 조성을 갖는 비정질의 .알루미노실리케이트 입자를 포함한고무 보강재로서; Amorphous having the composition of Formula 1 . As a rubber reinforcement comprising aluminosilicate particles;
상기 알루미노실리케이트 입자는  The aluminosilicate particles are
X-선 회절( 10)에 의해 수득된 데이터 그래프에서, 20의 23° 내지 37° 범위에서의 최대 피크의 반가폭( 11 仕 I 1 1£ 1113x111111111, \\ 1、/[)이 5° 내지 7° 이고, 23° 이상 26° 미만의 20 범위에서
Figure imgf000005_0003
peak intensity, Imax)를가지는,
In the data graph obtained by X-ray diffraction (10), the half width of the maximum peak in the range of 20 to 23 ° to 37 ° (11 仕 I 1 1 1 1113x111111111, \\ 1, / [) is from 5 ° to 7 °, and in the range of 20 to less than 23 ° 26 °
Figure imgf000005_0003
peak intensity, I max ),
고무보강재가제공된다:  Rubber reinforcements are provided:
[화학식 1]  [Formula 1]
[(MaAlxOix) · (Siy02y)] · m(H20) [(MaAlxOix) · (Si y 0 2y )] m (H 2 0)
상기 화학식 1에서,  In Chemical Formula 1,
상기 은 Li, Na, K, Rb, Cs, Be, Fr, Ca, Zn, 및 Mg로 이루어진 군에서 선택된 원소또는 이들의 이온이고,  Is an element selected from the group consisting of Li, Na, K, Rb, Cs, Be, Fr, Ca, Zn, and Mg or ions thereof,
a ³ 0, x ñ 0, y ñ 0, 및 m ³ 0 이고,  a ³ 0, x 0 0, y ñ 0, and m ³ 0,
a/x < 1.2 이고,  a / x <1.2
3.0 < y/x < 20.0 이다. 본 발명자들의 계속적인 연구 결과, 상술한 특성을 충족하는 알루미노실리케이트 입자는 고무 조성물 내에서의 우수한 분산성에 따른 향상된 보강 효과를 나타낼 수 있으면서도 고무 조성물의 가공성을 저해하지 않아, 타이어용 고무 조성물에 부여되는 고무 보강재로서 바람직하게 적용될 수 있다.  3.0 <y / x <20.0. As a result of continuous research by the present inventors, the aluminosilicate particles satisfying the above-described properties can exhibit improved reinforcing effect according to excellent dispersibility in the rubber composition, but do not impair the processability of the rubber composition, thereby imparting to the rubber composition for tires. It can be preferably applied as a rubber reinforcing material.
그리고, 상기 알루미노실리케이트 입자는 입자 내부의 미세기공의 형성이 억제됨에 따라, 상술한 물성들을 만족하지 못하는 보강재들께 비하여 우수한 기계적 물성 (예를 들어, 우수한 내구성, 내마모성, 압축 강도 등)을 나타낼 수 있다.  In addition, the aluminosilicate particles may exhibit excellent mechanical properties (eg, excellent durability, abrasion resistance, compressive strength, etc.) as compared to the reinforcing materials that do not satisfy the above-described properties as the formation of micropores inside the particles is suppressed. have.
기존의 알루미노실리케이트는 분산성 향상을 위한 커플링제를 활용하여도 고무 조성물 내 분산시 입자간 응집이 강하게 일어나 분산이 용이하지 않았다. 그러나,상술한특성을 충족하는 알루미노실리케이트 입자는 실리카와 유사한 수준의 우수한 분산성을 확보할 수 있으면서도 보강 효과의 향상과구름 저항의 저하를 가능하게 한다. 본 발명에 따르면, 상기 고무 보강재에 포함되는 알루미노실리케이트 입자는 비정질 (amorphous)이다. 특히,본 발명의 일 실시예에 따른 비정질의 알루미노실리케이트 입자는, X-선 회절 (XRD)에 의해 수득된 데이터 그래프에서 20의 23° 내지 37° 범위에서의 최대 피크의 반가폭 (full wid仕 i at half maximum, FWHM)이 5° 내지 7° 인 것을충족하여,고무 보강재로써 우수한물성을 나타낼 수 있다. Existing aluminosilicate was not easy to disperse due to the strong aggregation between particles during dispersion in the rubber composition even when using a coupling agent for improving the dispersibility. However, the aluminosilicate particles satisfying the above-described characteristics can ensure a good dispersibility similar to that of silica, while also improving the reinforcing effect and lowering the cloud resistance. According to the present invention, the aluminosilicate particles included in the rubber reinforcement are amorphous. In particular, the amorphous aluminosilicate particles according to an embodiment of the present invention, In the data graph obtained by X-ray diffraction (XRD), the full peak at at maximum maximum (FWHM) in the range of 23 ° to 37 ° of 20 is satisfied by 5 ° to 7 ° . It can exhibit excellent physical properties as rubber reinforcement.
바람직하게는, 상기 최대 피크의 반가폭 (FWHM)은 5.0° 이상, 혹은 5.5° 이상, 혹은 6.0° 이상이다. 또한, 바람직하게는, 상기 최대 피크의 반가폭 (FWHM)은 7.0° 이하혹은 6.5° 이하이다. Preferably, the full width at half maximum (FWHM) of the maximum peak is at least 5.0 °, at least 5.5 ° , or at least 6.0 ° . Also preferably, the half width (FWHM) of the maximum peak is 7.0 ° or less or 6.5 ° or less.
보다 바람직하게는, 상기 최대 피크의 반가폭 (FWHM)은 5° 내지 T , 혹은 5.5° 내지 T ,혹은 5.5° 내지 6.5° ,혹은 6.0° 내지 6.5° 일 수 있다. 상기 최대 피크의 반가폭 (FWHM)은 상기 알루미노실리케이트 입자의 X-선 회절에서 얻은 20의 23° 내지 37° 범위에서의 최대 피크 세기의 1/2 위치에서의 피크폭을수치화한 것이다. More preferably, the full width at half maximum (FWHM) of the maximum peak may be 5 ° to T, or 5.5 ° to T, or 5.5 ° to 6.5 ° , or 6.0 ° to 6.5 ° . The half width of the maximum peak (FWHM) is a numerical value of the peak width at the half position of the maximum peak intensity in the range of 23 ° to 37 ° of 20 obtained by X-ray diffraction of the aluminosilicate particles.
상기 최대 피크의 반가폭 (FWHM)의 단위는 20의 단위인 도 (° )로 나타낼 수 있으며, 결정성이 높은 화합물일수록 반가폭의 수치가작을수 있다. 동시에, 본 발명의 일 실시예에 따른 비정질의 알루미노실리케이트 입자는 X-선 회절 (XRD)에 의해 수득된 데이터 그래프에서 23° 이상 26° 미만의 20 범위에서 최대 피크 강도 (maximum peak intensity, Imax)를 나타낼 수 있어,고무보강재로써 보다향상된 물성을나타낼 수 있다. The unit of the full width at half maximum (FWHM) of the maximum peak may be expressed in degrees ( ° ), which is 20 units, and the higher the crystallinity, the smaller the half width. At the same time, of an amorphous aluminosilicate according to one embodiment of the invention the particles X- ray diffraction (XRD) data in the 20 range of less than 26 ° more than 23 ° graph maximum peak intensity (maximum peak intensity, obtained by Imax ), It can exhibit more improved physical properties as rubber reinforcement.
바람직하게는, 상기 최대 피크 강도 (Imax)는 2e의 23.0° 이상, 혹은 23.5° 이상, 혹은 24.0° 이상, 혹은 24.5° 이상이다. 또한, 바람직하게는, 상기 최대 피크 강도 (Imax)는 20의 26.0° 미만, 혹은 25.9° 아하, 혹은Preferably, the maximum peak intensity Imax is at least 23.0 ° , or at least 23.5 ° , or at least 24.0 ° , or at least 24.5 ° of 2e. Also preferably, the maximum peak intensity (Imax) is less than 26.0 ° of 20, or 25.9 ° aha, or
25.8° 이하이다. 25.8 ° or less.
보다 바람직하게는, 상기 최대 피크 강도 ( 는 20의 23° 이상 26° 미만, 혹은 23.5° 내지 25.9° , 혹은 24.0° 내지 25.9° , 혹은 24.5° 내지 25.8° 일 수 있다. More preferably, the maximum peak intensity (23) may be at least 23 ° and less than 26 ° , or from 23.5 ° to 25.9 °, or from 24.0 ° to 25.9 ° , or from 24.5 ° to 25.8 ° .
참고로, amorphous silica는 20° 내지 25° 의 20 범위에서 Imax를 보이며, amorphous alumina는 30° 내지 40° 의 20 범위에서 Imax를 보이는 것이 일반적이다. 한편,상기 알루미노실리케이트 입자는 하기 화학식 1의 조성을 가진다: 2019/164154 1»(:1^1{2019/001383 For reference, amorphous silica generally exhibits I max in a range of 20 ° to 25 ° and amorphous alumina typically exhibits I max in a range of 30 ° to 40 ° . Meanwhile, the aluminosilicate particles have a composition of Formula 1 below: 2019/164154 1 »(: 1 ^ 1 {2019/001383
[화학식 1] [Formula 1]
[( 必니 · (5 0 )] - !머¾0)  [(M0 · 5 0)]-!
상기 화학식 1에서,  In Chemical Formula 1,
상기 IV!은니, Na/ X, ]¾, 氏 66/此, Ca/ ¾\, 및 온로 이루어진 군에서 선택된 원소또는 이들의 이온이고,The IV! Is Ni, Na / X,] ¾, 氏 6 6 /此, Ca / ¾ \, and the element selected from the group consisting of or ions thereof,
Figure imgf000008_0001
이고,
Figure imgf000008_0001
ego,
&/\ < 1.2 이고,  & / \ <1.2
3.0 < )ø < 20.0 이다.  3.0 <) ø <20.0.
상기 알루미노실리케이트 입자는 금속 원소 ( ) 또는 이들의 이온으로 알칼리 금속또는 이들의 이온을포함하고,특히 3.0 <
Figure imgf000008_0002
< 20.0및 X < 1.2 인 조성을충족한다. 구체적으로, 상기 화학식 1에서 八 는 3.0 초과, 혹은 3.1 이상, 혹은 3.2 이상,혹은 3.3 이상,혹은 3.5 이상,혹은 4.0 이상이고; 20.0미만,혹은 15.0 이하, 혹은 10.0 이하, 혹은 5.0 이하, 혹은 4.5 이하, 혹은 4.4 이하, 혹은 4.3 이하, 혹은 4.2 이하인 것이 본 발명에 따른 제반 특성의 발현에 유리할 수 있다.
The aluminosilicate particles comprise alkali metals or their ions as metal elements () or ions thereof, in particular 3.0 <
Figure imgf000008_0002
It satisfies the composition of <20.0 and X <1.2. Specifically, in Formula 1, 八 is greater than 3.0, or 3.1 or more, or 3.2 or more, or 3.3 or more, or 3.5 or more, or 4.0 or more; Less than 20.0, or less than or equal to 15.0, or less than or equal to 10.0, or less than or equal to 5.0, or less than or equal to 4.5, or less than or equal to 4.4, or less than or equal to 4.3, or less than or equal to 4.2, may be advantageous for the development of various properties according to the present invention.
바람직하게는, 상기 화학식 1에서 는 3.0 초과 20.0 미만, 혹은 3.1 내지 10.0, 혹은 3.2 내지 5.0, 혹은 3.3 내지 4.5, 혹은 3.5 내지 4.2, 혹은 4.0 내지 4.2일 수 있다. 또한, 구체적으로, 상기 화학식 1에서 X 는 1.2 미만, 혹은 1.0 이하, 혹은 0.9 이하, 혹은 0.8 이하, 혹은 0.7 이하이고; 0.01 이상, 혹은 0.02 이상, 혹은 0.03 이상, 혹은 0.04 이상, 혹은 0.05 이상, 혹은 0.1 이상, 혹은 0.2 이상, 혹은 0.3 이상, 혹은 0.5 이상인 것이 본 발명에 따른 제반 특성의 발현에 유리할수 있다.  Preferably, in Chemical Formula 1, it may be greater than 3.0 and less than 20.0, or 3.1 to 10.0, or 3.2 to 5.0, or 3.3 to 4.5, or 3.5 to 4.2, or 4.0 to 4.2. In addition, specifically, in Formula 1, X is less than 1.2, or 1.0 or less, or 0.9 or less, or 0.8 or less, or 0.7 or less; At least 0.01, or at least 0.02, or at least 0.03, or at least 0.04, or at least 0.05, or at least 0.1, or at least 0.2, or at least 0.3, or at least 0.5 may be advantageous for the development of various properties according to the present invention.
바람직하게는, 상기 화학식 1에서 X 는 0.01 내지 1.0, 혹은 0.01 내지 0.9, 혹은 0.05 내지 0.9, 혹은 0.1 내지 0.8, 혹은 0.3 내지 0.8, 혹은 0.5 내지 0.7일 수 있다. 2019/164154 1»(:1^1{2019/001383 Preferably, in Chemical Formula 1, X may be 0.01 to 1.0, or 0.01 to 0.9, or 0.05 to 0.9, or 0.1 to 0.8, or 0.3 to 0.8, or 0.5 to 0.7. 2019/164154 1 »(: 1 ^ 1 {2019/001383
발명의 구현 예에 따르면, 상기 알루미노실리케이트 입자는 질소 흡착/탈착 분석에 의한 110 내지 260 1112/은의 브루너-에메트-텔라 비표면적 버과 90 내지 220 1고2/ 의 외부 비표면적 떼 8 6<:냔 난 근 ■, ¾ )을 가진다. According to an embodiment of the invention, the aluminosilicate particles have a Bruner-Emet-Tella specific surface area burr of 110 to 260 111 2 / silver and 90 to 220 1 high 2 / of external specific surface area by nitrogen adsorption / desorption analysis 8 6 <: 냔 ovule ■, ¾) have.
구체적으로, 상기 ¾ 는 110 1112/은 이상, 혹은 115 1112/은 이상이고; 260 이하, 혹은 250 마2/ 이하, 혹은 245 ^12/온 이하이다. 바람직하게는, 상기 ¾ 는 110 내지 260 卜己, 혹은 115 내지 260 1112/& 혹은 115 내지 250 1고2/& 혹은 115 내지 245이2 일 수 있다. Specifically, ¾ is at least 110 1 112 / is or at least 115 111 2 / is; 260 or less, or 250 hemp 2 / or less, or 245 ^ 1 2 / or less. Preferably, ¾ may be 110 to 260 kPa, or 115 to 260 111 2 / & or 115 to 250 1 and 2 / & or 115 to 245 is 2 .
그리고, 상기 5£0 '는 90江^/용 이상 혹은 95 1고2/은 이상이고; 220 1고2/은 이하, 혹은 210 1112/§ 이하, 혹은 200 1^/은 이하, 혹은 195 1112/ 이하이다. 바람직하게는,상기 표!·는 90 내지 220 1112/ , 혹은 90 내지 210 · I己 < , 혹은 90 내지 2001112/& 혹은 90 내지 195 1 /& 혹은 95 내지 195 1 /은일 수 있다. 부가하여, 상기 알루미노실리케이트 입자가 갖는 상기 ¾^·와 ¾ 의 비(¾ /¾버는 0.65 내지 0.95 인 것이 본 발명에 따른 제반 특성의 발현에 보다 유리할 수 있다. And 5 £ ) 0 ' is greater than or equal to 90 江 ^ / or 95 1 and 2 / is greater; 220 1 high 2 / or less, or 210 111 2 / § or less, or 200 1 ^ / or less, or 195 111 2 / or less. Preferably, the table! · May be 90 to 220 111 2 /, or 90 to 210 · I 己< , or 90 to 200111 2 / & or 90 to 195 1 / & or 95 to 195 1 / silver. In addition, the ratio of ¾ ^ · and ¾ of the aluminosilicate particles (¾ / ¾ burr is 0.65 to 0.95 may be more advantageous for the expression of various properties according to the present invention.
구체적으로, 상기 ¾ /¾^는 0.的 이상, 혹은 0.70 이상, 혹은 0.75 이상이고; 0.95 이하, 혹은 0.93 이하, 혹은 0.92 이하, 혹은 0.91 이하이다.  Specifically, ¾ / ¾ ^ is at least 0, or at least 0.70, or at least 0.75; 0.95 or less, or 0.93 or less, or 0.92 or less, or 0.91 or less.
바람직하게는, 상기 5£>0'/58 '는 0.65 내지 0.95, 혹은 0.70 내지 0.93, 혹은 0.75 내지 0.92, 혹은 0.75 내지 0.91일 수 있다. 고무 보강재로 적용되는 무기 소재에서 미세기공( 어 이끼의 함유량은 최소화되는 것이 바람직하다. 상기 미세기공은 결함((뇨조근여으로 작용하여 고무 보강재로서의 물성을 저하시킬 수 있기 때문이다.  Preferably, 5 £> 0 '/ 58' may be 0.65 to 0.95, or 0.70 to 0.93, or 0.75 to 0.92, or 0.75 to 0.91. In the inorganic material applied as a rubber reinforcement material, the content of micropores (fish moss) is preferably minimized. This is because the micropores can cause defects ((acting as urinary diastolic) and lowering the physical properties of the rubber reinforcing material.
본 발명의 구현 예에 따르면, 상기 알루미노실리케이트 입자는, 상기 계산된 2 미만의 기공 크기를 갖는 미세기공의
Figure imgf000009_0001
미만으로 작아, 고무 보강재로서 우수한 기계적 물성의 발현을 가능하게 한다.
According to an embodiment of the present invention, the aluminosilicate particles, the micropores having a pore size of less than 2 calculated
Figure imgf000009_0001
Small to below, it enables the development of excellent mechanical properties as a rubber reinforcement.
구체적으로, 상기
Figure imgf000009_0002
0.05다 / 미만,혹은 0.025
Figure imgf000009_0003
이하, 혹은 0.020(:1113/ 이하이고; 0.001 0따3/ 이상, 혹은 0.002 0113/ 이상, 혹은 0.003 2019/164154 1»(:1^1{2019/001383
Specifically, the
Figure imgf000009_0002
0.05 / less than or 0.025
Figure imgf000009_0003
Or less, or 0.020 (: 111 3 / less; 0.001 0 to 3 / or more, or 0.002 011 3 / or more, or 0.003 2019/164154 1 »(: 1 ^ 1 {2019/001383
(:!!!3 이상,혹은 0.004 1\ 3/ 이상,혹은 0.005 «113/은이상,혹은 0.006 0113/ 이상이다. (: !!! 3 or more, or 0.004 1 \ 3 / or more, or 0.005 «11 3 / or more, or 0.006 011 3 / or more.
바람직하게는, 상기 ▽1 0는 0.001 내지 0.025 113/& 혹은 0.003 내지 0.020 0 /&혹은 0.005 내지 0.020 011 3/은,혹은 0.006 내지 0.020 «113/온일 수 있다: 발명의 구현 예에 따르면, 상기 알루미노실리케이트 입자는 10 내지 50 11이의 평균 일차 입경을 가진다. Preferably, ▽ 1 0 may be 0.001 to 0.025 11 3 / & or 0.003 to 0.020 0 / & or 0.005 to 0.020 0 11 3 / or 0.006 to 0.020 «11 3 / on: In an embodiment of the invention According to the above, the aluminosilicate particles have an average primary particle diameter of 10 to 50 11.
구체적으로, 상기 알루미노실리케이트 입자는 10 11111 이상, 혹은 15 1^1 이상,혹은 20 1^11이상이고; 50 11111이하,혹은 45 11111 이하,혹은 40
Figure imgf000010_0001
이하, 혹은 35 _이하의 평균 일차 입경을가질 수 있다.
Specifically, the aluminosilicate particles are 10 11111 or more, or 15 1 ^ 1 or more, or 20 1 ^ 11 or more; 50 11 111 or less, or 45 11 111 or less, or 40
Figure imgf000010_0001
It may have an average primary particle diameter of less than or equal to 35 _.
일반적으로 고무 보강재는 입경이 작을수록 우수한 보강 효과를 나타낼 수 있지만, 입경이 작을수록 고무 조성물 내에서 입자들간의 응집 현상이 쉽게 나타나 분산성이 떨어지게 된다. 미러한응집 현상이 심해지면 고무 보강재와 고무 성분들 사이의 상 분리가 발생할 수 있고, 결과적으로 타이어의 가공성이 저하되며 목표로 하는보강효과도 얻기 어려워질 수 있다. 한편,상기 알루미노실리케이트 입자의 이차 입자 6(0]1(1¾1子 크 년句,즉 응집체는 입도 분석기 시를 이용하여 증류수 하에서 측정된 1 내지 25 _의 체적 평균 입경 , 1 내지 20 _의 기하 표준 편차 (근0111 1切 삵 산 산 크 切미, 및 1 내지 50 의 90% 누적 입경 (1½)을 나타내는 이차 입자크기 분포를 가질 수 있다. 구체적으로, 상기 알루미노실리케이트 입자의 이차 입자는 증류수 하에서측정된 1, 이상,혹은 2.5 lM 이상,혹은 5 _ 이상,혹은 7.5 _ 이상, 혹은 10.0 _ 이상;그리고 25.0 1 이하,혹은 22.5 _ 이하,혹은 20.0 _ 이하, 혹은 19.5 이하의 체적 평균 입경 (1)춰을가질 수 있다. In general, the rubber reinforcing material may exhibit an excellent reinforcing effect as the particle size is smaller, but the smaller the particle size, the less easily dispersibility due to the aggregation phenomenon between the particles in the rubber composition. If the mirror aggregation becomes severe, phase separation between the rubber reinforcement and the rubber components may occur, and as a result, the workability of the tire may be degraded and the target reinforcement effect may be difficult to obtain. On the other hand, the secondary particles of the aluminosilicate particles 6 (0) 1 ( 1 ¾ 1 句 year ie, the aggregate is a volume average particle diameter of 1 to 25 _ measured under distilled water using a particle size analyzer, 1 to 20 _ It can have a secondary particle size distribution that represents the geometric standard deviation of (approximately 0111 1 μs acid dispersion) and 90% cumulative particle diameter (1½) of 1 to 50. Specifically, secondary particles of the aluminosilicate particles Is at least 1, or at least 2.5 lM, or at least 5 _, at least 7.5 _, or at least 10.0 _; and at least 25.0 1, or at most 22.5 _, or at most 20.0 _, or at most 19.5. It can have a particle diameter (1 ) .
바람직하게는, 상기 알루미노실리케이트 입자의 이차 입자는 증류수 하에서 측정된 1 내지 25 , 혹은 5 내지 22.5 , 혹은 7.5 내지
Figure imgf000010_0002
Preferably, the secondary particles of the aluminosilicate particles are 1 to 25, or 5 to 22.5, or 7.5 to 7.5 measured under distilled water.
Figure imgf000010_0002
10내지 19.5 /패의 체적 평균 입경 (0 ¥)을가진다. 2019/164154 1»(:1^1{2019/001383 It has a volume average particle diameter (0 ¥ ) of 10 to 19.5 / hand. 2019/164154 1 »(: 1 ^ 1 {2019/001383
그리고, 상기 알루미노 실리케이트 입자의 이차 입자는 증류수 하에서 측정된 1.0 이상, 혹은 2.5
Figure imgf000011_0001
이상, 혹은 5.0 _ 이상, 혹은 7.0 /해 이상; 그리고 20 II 이하, 혹은 15 , 이하, 혹은 10 m 이하의 기하 표준
Figure imgf000011_0002
있다.
And, the secondary particles of the aluminosilicate particles are 1.0 or more, or 2.5 measured in distilled water
Figure imgf000011_0001
Or above 5.0 or above, or above 7.0 / year; And a geometric standard of 20 II or less, or 15 or less, or 10 m or less.
Figure imgf000011_0002
have.
바람직하게는, 상기 알루미노실리케이트 입자의 이차 입자는 증류수 하에서 측정된 1 내지
Figure imgf000011_0003
15 혹은 7 내지 10 _의 기하 표준 편차를 가진다. 그리고, 상기 알루미노 실리케이트 입자의 이차 입자는 증류수 하에서 측정된 1 _ 이상,혹은 5 _ 이상,혹은 10 m 이상,혹은 15 / /III 이상,혹은 20 _ 이상, 혹은 25 쌘! 이상; 그리고 50 _ 이하, 혹은 40 ]! 이하, 혹은 35 이하의 90% 누적 입경 네을 가질 수 있다.
Preferably, the secondary particles of the aluminosilicate particles are 1 to 1 measured under distilled water
Figure imgf000011_0003
Have a geometric standard deviation of 15 or 7 to 10_. And, the secondary particles of the aluminosilicate particles are 1 _ or more, or 5 _ or more, or 10 m or more, or 15 / / III or more, or 20 _ or more, or 25 쌘! measured under distilled water; And 50 _ or less, or 40]! 90% cumulative particle diameter of 35 or less.
바람직하게는, 상기 알루미노실리케이트 입자의 이차 입자는 증류수 하에서 측정된 1 내지
Figure imgf000011_0004
Preferably, the secondary particles of the aluminosilicate particles are 1 to 1 measured under distilled water
Figure imgf000011_0004
25내지 35,의 90% 누적 입경(1¾0)을가진다. 한편, 상술한 제반 특성을 충족하는 알루미노실리케이트 입자는 아래의 단계들을포함하는 방법으로 제조될 수 있다: It has a 90% cumulative particle diameter (1¾ 0 ) of 25 to 35. On the other hand, aluminosilicate particles that meet the above-described characteristics can be prepared by a method comprising the following steps:
[1] 염기성 또는 알칼리 용액 (예를 들어 수산화 나트륨 용액)에 규소 원, 알루미늄 원 및 물을 첨가하고교반하여 특정 금속 원자비를 만족하는모노머 단위의 -0-¾구조를 형성시키는단계;  [1] adding a silicon source, an aluminum source, and water to a basic or alkaline solution (eg, sodium hydroxide solution) and stirring to form a -0-¾ structure of monomer units satisfying a specific metal atomic ratio;
[II] 상기 알루미노실리케이트 모노머를 상압 하에서 저온 (예를 들어 상온 내지 90ᄃ)에서 3 내지 24 시간 동안 경화시켜 쇼1-0-¾ 중합반응을 일으키는 단계;  [II] curing the aluminosilicate monomer at a low temperature (eg, room temperature to 90 ° C.) for 3 to 24 hours under normal pressure to cause a Show 1-0-¾ polymerization reaction;
[III] 중합된 알루미노실리케이트 입자를 세척 및 건조하는 단계; 및  [III] washing and drying the polymerized aluminosilicate particles; And
[IV] 건조된 알루미노실리케이트 입자를 파쇄하여 입도 분포를 조절하는 단계.  [IV] crushing the dried aluminosilicate particles to control the particle size distribution.
상기 제법에서 상기 모노머 단위의 형성에 적용되는 반응물와 종류, 반응물의 몰 비, 반응 조건 등을 조절하여 상술한 제반 특성을 충족하는 2019/164154 1»(:1^1{2019/001383 By adjusting the reactants and the type, the molar ratio of the reactants, the reaction conditions and the like applied to the formation of the monomer unit in the above production method to meet the above-mentioned characteristics 2019/164154 1 »(: 1 ^ 1 {2019/001383
알루미노실리케이트 입자를 얻을 수 있다. 바람직하게는, 상술한 제반 특성을 충족하는 알루미노실리케이트 입자는, (3) 70
Figure imgf000012_0001
이하의 온도 하에서 알칼리성의 실리콘 소스와 산성의 알루미늄 소스의 중화 반응에 의해 알루미노실리케이트 염을 포함한 pH 6 내지 10의 반응 용액을 얻는 단계; (비 상기 알루미노실리케이트 염을 세척하여 알루미노실리케이트 입자를 얻는 단계; 및 (0 상기 알루미노실리케이트 입자를 건조하는 단계를 포함한 방법으로 제조될 수 있다. 특히, 상기 제조 방법에 있어서, 상기 중화 반응을 70
Figure imgf000012_0002
초과 95 이하의 온도 하에서 수행하되, 상기 중화 반응에 의해 형성되는 반응 용액이 pH 6 내지 므표 10의 수소이온농도를 갖도록 함으로써, 고무 조성물 내에서 우수한 분산성을 나타내면서도 고무 성형 공정에서 향상된 작업성과 생산성의 발현을 가능하게 하는 알루미노실리케이트 입자가 제공될 수 있다.
Aluminosilicate particles can be obtained. Preferably, the aluminosilicate particles satisfying the above-mentioned characteristics are ( 3 ) 70
Figure imgf000012_0001
Obtaining a reaction solution having a pH of 6 to 10 containing an aluminosilicate salt by neutralization of an alkaline silicon source and an acidic aluminum source under the following temperature; Washing the non-aluminosilicate salts to obtain aluminosilicate particles; And (0) drying the aluminosilicate particles. In particular, in the production method, the neutralization reaction is 70
Figure imgf000012_0002
It is carried out at a temperature exceeding 95 or less, wherein the reaction solution formed by the neutralization reaction has a hydrogen ion concentration of pH 6 to M Table 10, thereby exhibiting excellent dispersibility in the rubber composition while improving workability and productivity in the rubber molding process. Aluminosilicate particles may be provided that allow for the expression of.
상기 제조 방법에 의해 제공되는 알루미노실리케이트 입자는 타이어용 고무 조성물에 첨가되는 고무 보강재로서 바람직하게 적용될 수 있다.  The aluminosilicate particles provided by the production method can be preferably applied as a rubber reinforcing material added to the rubber composition for a tire.
상기 제조 방법에서, 상기 실리콘 소스는 수용성 실리콘 염을 포함한 11 7초과의 알칼리성 용액이다.  In this preparation method, the silicon source is an alkaline solution of greater than 11 7 containing a water soluble silicone salt.
상기 수용성 실리콘 염으로는 수용액에서 1 ¾ 7 초과의 알칼리성을 나타낼 수 있는 실리콘 화합물이 특별한 제한 없이 사용될 수 있다. 바람직하게는, 상기 수용성 실리콘 염은 소둠 실리케이트(^¾¾03) 및 포타슘 실리케이트(¾¾03)로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다. 상기 제조 방법에서, 상기 알루미늄 소스는 수용성 알루미늄 염을 포함한 1선7 미만의 산성 용액이다. As the water-soluble silicone salt, a silicone compound capable of exhibiting an alkalinity of greater than 1 3/4 may be used without particular limitation. Preferably, the water-soluble silicone salt may be at least one compound selected from the group consisting of sod silicate (^ ¾¾0 3 ) and potassium silicate (¾¾0 3 ). In the production method, the aluminum source is an acidic solution of less than 1 line containing a water-soluble aluminum salt.
상기 수용성 알루미늄 염으로는 수용액에서
Figure imgf000012_0003
7 미만의 산성을 나타낼 수 있는 알루미늄 화합물아 특별한 제한 없이 사용될 수 있다. 바람직하게는, 상기 수용성 알루미늄 염은 알루미늄 클로라이드 1(그3), 알루미늄 나이트레이트( (1 ¾)3), 알루미늄 모노아세테이트( 0)2시幻¾0¾), 알루미늄 디아세테이트 ^0신(〔¾〔02)2), 알루미늄 트리아세테이트(시(幻¾(:023), 알루미늄 설페이트(신2(504切, 및 알루미늄 포타슘 설페이트(시 504)2)로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다. 보다 바람직하게는, 2019/164154 1»(:1^1{2019/001383
As the water-soluble aluminum salt in an aqueous solution
Figure imgf000012_0003
Aluminum compounds that can exhibit an acidity of less than 7 can be used without particular limitation. Preferably, the water-soluble aluminum salt is aluminum chloride 1 (part 3 ), aluminum nitrate ((1 ¾) 3 ), aluminum monoacetate (0) 2 ¾¾0¾), aluminum diacetate ^ 0cin ([¾ [ 0 2 ) 2), aluminum triacetate (Cho ((¾ (: 0 2 ) 3 ), aluminum sulfate (New 2 (50 4切) and aluminum potassium sulfate (C. 50 4 ) 2) The above compound may be sufficient. More preferably, 2019/164154 1 »(: 1 ^ 1 {2019/001383
상기 수용성 알루미늄 염으로 알루미늄 나이트레이트, 알루미늄 포타슘 설페이트 또는 이들의 혼합물을 사용하는 것이 알루미노실리케이트 입자의 회수과정에서 입자의 응집을최소화할수 있다는 점에서 유리할수 있다. 상기 중화 반응은 상기 알칼리성의 실리콘 소스와 산성의 알루미늄 소스를 혼합하는 방법으로 수행되며, 이를 통해 고형분으로 알루미노실리케이트 염을포함한반응용액이 얻어진다. The use of aluminum nitrate, aluminum potassium sulphate or mixtures thereof as the water soluble aluminum salt may be advantageous in that the aggregation of the particles can be minimized during the recovery of the aluminosilicate particles. The neutralization reaction is performed by mixing the alkaline silicon source and the acidic aluminum source, whereby a reaction solution containing an aluminosilicate salt as a solid is obtained.
특히,상기 중화 반응은
Figure imgf000013_0001
이하의 온도 하에서 수행되는 것이 바람직하다.
In particular, the neutralization reaction is
Figure imgf000013_0001
It is preferable to carry out under the following temperature.
구체적으로, 상기 중화 반응은
Figure imgf000013_0003
초과, 혹은 75
Figure imgf000013_0002
이상, 혹은 80 이상; 그리고 95
Figure imgf000013_0005
이하, 혹은 90
Figure imgf000013_0004
이하, 혹은 85 X: 이하의 온도 하에서 수행될 수 있다. 보다 바람직하게는, 상기 중화 반응은 75
Figure imgf000013_0006
내지 90 10의 온도 하에서 수행될 수 있다.
Specifically, the neutralization reaction is
Figure imgf000013_0003
Greater than or equal to 75
Figure imgf000013_0002
Or 80 or more; And 95
Figure imgf000013_0005
Or below 90
Figure imgf000013_0004
Or at or below 85 X :. More preferably, the neutralization reaction is 75
Figure imgf000013_0006
To 90 ° to 10 °.
상기 중화 반응의 수행 온도가너무낮을 경우실리콘소스 및 알루미늄 소스를 포함한 무기 성분들이 중화 반응 도중에 응집되어 반응이 균일하게 진행되기 어렵다. 그에 따라, 상기 중화 반응 후 최종적으로 얻어지는 알루미노실리케이트 입자의 입도 제어가 어려워지고, 상기 입자들이 단단히 응집되어 거대한 이차 입자를 형성하며, 결과적으로 목표로 하는 고무 보강 효과를 갖는 입자를 얻을 수 없다. 그러므로, 상기 중화 반응은 70
Figure imgf000013_0007
초과의 온도 하에서 수행되는 것이 바람직하다.
When the temperature of the neutralization reaction is too low, inorganic components including the silicon source and the aluminum source are aggregated during the neutralization reaction, so that the reaction does not proceed uniformly. Therefore, it becomes difficult to control the particle size of the aluminosilicate particles finally obtained after the neutralization reaction, and the particles are tightly aggregated to form huge secondary particles, and as a result, particles having a target rubber reinforcing effect cannot be obtained. Therefore, the neutralization reaction is 70
Figure imgf000013_0007
It is preferably carried out under temperatures above.
다만, 상기 중화 반응의 수행 온도가 너무 높을 경우 용매의 끓음 현상으로 인해 반응 효율이 저하될 우려가 이다. 그러므로, 상기 중화 반응은 이하의 온도 하에서 수행되는 것이 바람직하다.  However, when the execution temperature of the neutralization reaction is too high, there is a fear that the reaction efficiency is lowered due to the boiling phenomenon of the solvent. Therefore, the neutralization reaction is preferably carried out under the following temperature.
상기 중화 반응에서 실리콘 소스와 알루미늄 소스의 혼합 비율은, 각 소스에 포함된 염의 종류, 각 소스가 갖는 !! 및 상기 중화 반응의 생성물인 반응용액이 갖는 바람직한
Figure imgf000013_0008
범위를 고려하여 결정될 수 있다.
In the neutralization reaction, the mixing ratio of the silicon source and the aluminum source is different from each other. And a reaction solution which is a product of the neutralization reaction.
Figure imgf000013_0008
It may be determined in consideration of the range.
특히,발명의 구현 예에 따르면,상기 중화 반응의 생성물인 반응 용액은
Figure imgf000013_0009
수소이온농도를 갖는 것이 바람직하다.
In particular, according to an embodiment of the invention, the reaction solution is a product of the neutralization reaction
Figure imgf000013_0009
It is preferable to have a hydrogen ion concentration.
상기 반응 용액의 수소이온농도가
Figure imgf000013_0010
6 미만일 경우, 알루미노실리케이트 입자의 입도 제어가 어려워지고 상기 입자의 크기가 2019/164154 1»(:1^1{2019/001383
The hydrogen ion concentration of the reaction solution
Figure imgf000013_0010
If it is less than 6, it becomes difficult to control the particle size of the aluminosilicate particles and the size of the particles 2019/164154 1 »(: 1 ^ 1 {2019/001383
전반적으로 커져, 목표로 하는 고무 보강 효과가 달성되지 못할 수 있다. Overall, it may not be possible to achieve the targeted rubber reinforcement effect.
나아가, 상기 반응 용액의
Figure imgf000014_0001
최종적으로 얻어지는 알루미노실리케이트 입자가 나타내는
Figure imgf000014_0002
영향을 미친다. 그리고, 상기 알루미노실리케이트 입자가 나타내는 pH는 상기 입자를 고무 조성물에 배합하는 과정에서 스코치 타임(8(:이:0:11산11½)에 이향을 미친다.
Furthermore, of the reaction solution
Figure imgf000014_0001
The aluminosilicate particles finally obtained represent
Figure imgf000014_0002
Affect In addition, the pH represented by the aluminosilicate particles has an influence on scorch time (8 (: Lee: 0: 11 acid 11½)) in the process of blending the particles with the rubber composition.
상기 스코치 타임은 고무 성형 과정에서 고무 조성물의 열경화가 시작되는데 걸리는 시간을 의미한다. 일반적으로, 고무 조성물의 열경화가 시작된 이후에는 몰드에서 고무 조성물의 흐름이 멎고 프레스와 같은 성형이 어려워지기 때문에, 작업성과 생산성의 확보를 위해서는 적절한 스코치 타임이 요구된다.  The scorch time refers to the time taken to start the thermosetting of the rubber composition in the rubber molding process. In general, since the rubber composition flows out of the mold after the thermosetting of the rubber composition starts and molding such as a press becomes difficult, proper scorch time is required to secure workability and productivity.
그런데, 상기 알루미노실리케이트 입자가 나타내는
Figure imgf000014_0003
너무 낮거나 너무 높을 경우 고무 성형 과정에서 적절한 스코치 타임의 확보를 어렵게 하여, 별도의 열경화 지연제 첨가나 스코치 방지를 위한 추가적인 조치가 요구되는 등 고무 성형의 작업성과 생산성이 저하될 수 있다.
By the way, the aluminosilicate particles represent
Figure imgf000014_0003
If it is too low or too high, it is difficult to secure proper scorch time during the rubber molding process, and the workability and productivity of the rubber molding may be deteriorated, such as the addition of a separate heat curing retardant or additional measures to prevent the scorch.
예를 들어, 상기 알루미노실리케이트 입자가 나타내는
Figure imgf000014_0004
낮을 경우 고무 배합시 스코치 타임이 급격히 느려지고,
Figure imgf000014_0005
너무 높을 경우 스코치 타임이 급격히 빨라질 수 있다.
For example, the aluminosilicate particles represent
Figure imgf000014_0004
When low, the scorch time slows down when rubber is mixed,
Figure imgf000014_0005
If it is too high, the scorch time can be dramatically faster.
구체적으로, 상기 입자의 pH는 고무 배합 과정에서 함께 혼합되는 성분들의 반응성에 큰 영향을 미치는데, 특히 아민 계열의 기능기가 반응하는 속도를 촉진 또는 완화한다. 즉, 상기 입자의
Figure imgf000014_0006
경우 아민 그룹의 반응성을 떨어뜨리고, 상기 입자의 pH가 높을 경우 아민 그룹의 반응성을 촉진한다. 고무 배합 공정상 반응성이 너무 촉진될 경우 제품 성형에 문제가 생기고, 반응성이 너무 떨어질 경우 생산성이 저하될 수 있다.
Specifically, the pH of the particles greatly affects the reactivity of the components mixed together in the rubber compounding process, and in particular, promotes or alleviates the rate at which the amine-based functional groups react. That is, of the particles
Figure imgf000014_0006
In this case, the reactivity of the amine group is decreased, and when the pH of the particles is high, the reactivity of the amine group is promoted. If the reactivity is too accelerated in the rubber compounding process, there is a problem in forming the product, and if the reactivity is too low, productivity may be reduced.
따라서, 상기 알루미노실리케이트 입자를 고무 보강재로 적용한 고무 성형 공정에서 적절한 스코치 타임이 확보될 수 있도록 하기 위하여, 상기 중화 반응은 알루미노실리케이트 염을 포함한 반응 용액이
Figure imgf000014_0007
Therefore, in order to ensure an appropriate scorch time in the rubber molding process in which the aluminosilicate particles are applied as a rubber reinforcing material, the neutralization reaction is carried out using a reaction solution containing an aluminosilicate salt.
Figure imgf000014_0007
수소이온 농도를 갖도록 수행되는 것이 바람직하다. It is preferably carried out to have a hydrogen ion concentration.
상기 세척 단계에서는, 상기 중화 반응을 통해 얻은 반응 용액에서 고형분인 알루미노실리케이트 염을 회수하고, 이를 증류수, 탈이온수와 같은 물에 분산시킨 후 수 회 세척하여 알루미노실리케이트 입자를 얻는다. 2019/164154 1»(:1^1{2019/001383 In the washing step, the aluminosilicate salt as a solid is recovered from the reaction solution obtained through the neutralization reaction, dispersed in water such as distilled water and deionized water, and washed several times to obtain aluminosilicate particles. 2019/164154 1 »(: 1 ^ 1 {2019/001383
그리고, 세척된 상기 알루미노실리케이트 입자를 건조하는 단계가 수행된다. 상기 건조는 20 내지 150 °(:의 온도 하에서 1 내지 48 시간 동안 수행될 수 있다. Then, the step of drying the washed aluminosilicate particles is performed. The drying may be performed for 1 to 48 hours at a temperature of 20 to 150 ° (:).
필요에 따라, 얻어진 알루미노실리케이트 입자를 분쇄, 분급하는 단계 등 통상적인 단계가 더욱 수행될 수 있다.  If necessary, conventional steps such as grinding and classifying the obtained aluminosilicate particles may be further performed.
II. 타이어용 고무 조성물 II. Rubber composition for tire
발명의 다른 일 구현 예에 따르면, 상술한 알루미노실리케이트 입자를 고무 보강재로써 포함한 타이어용 고무 조성물이 제공된다.  According to another embodiment of the invention, there is provided a rubber composition for a tire comprising the above-described aluminosilicate particles as a rubber reinforcing material.
상술한 방법에 .의해 제조되어 상기 특성들을 충족하는 알루미노실리케이트 입자는, 고무 조성물 내에서의 우수한 분산성에 따른 향상된 보강 효과를 나타낼 수 있으면서도 향상된 작업성과 생산성의 발현을 가능하게 한다. To the method described above . Aluminosilicate particles prepared by the above and satisfying the above properties can exhibit improved reinforcement effect according to good dispersibility in the rubber composition while also allowing for improved workability and productivity.
그리고, 상기 알루미노실리케이트 입자는 입자 내부의 미세기공의 형성이 억제됨에 따라, 상술한 물성들을 만족하지 못하는 고무 보강재들에 비하여 우수한 기계적 물성 (예를 들어, 우수한 내구성, 내마모성, 압축 강도 등)을 나타낼 수 있다.  In addition, the aluminosilicate particles have excellent mechanical properties (for example, excellent durability, abrasion resistance, compressive strength, etc.) compared to rubber reinforcement materials that do not satisfy the above-described properties as the formation of micropores inside the particles is suppressed. Can be represented.
상기 타이어용 고무 조성물에는 통상적인 디엔 엘라스토머가 특별한 제한 없이 포함될 수 있다.  The rubber composition for a tire may include a conventional diene elastomer without particular limitation.
예컨대, 상기 디엔 엘라스토머는 천연 고무, 폴리부타디엔, 폴리이소프렌, 부타디엔/스티렌 코폴리머, 부타디엔/이소프렌 코폴리머, 부타디엔/아크릴로니트릴 코폴리머, 이소프텐/스티렌 코폴리머, 및 부타디엔/스티텐/이소프렌 코폴리머로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.  For example, the diene elastomer may be a natural rubber, polybutadiene, polyisoprene, butadiene / styrene copolymer, butadiene / isoprene copolymer, butadiene / acrylonitrile copolymer, isoptene / styrene copolymer, and butadiene / styreneten / isoprene copolymer It may be one or more compounds selected from the group consisting of polymers.
그리고, 상기 타이어용 고무 조성물에는 상기 알루미노실리케이트 입자와 디엔 엘라스토머 사이의 화학적 및/또는 물리적 결합을 제공하는 커플링제가 포함될 수 있다. 상기 커플링제로는 폴리실록산계 화합물과 같은 통상적인 성분들이 특별한 제한 없이 포함될 수 있다.  In addition, the rubber composition for a tire may include a coupling agent that provides a chemical and / or physical bond between the aluminosilicate particles and the diene elastomer. The coupling agent may include conventional components such as polysiloxane compounds without particular limitation.
이 밖에도, 상기 타이어용 고무 조성물에는 타이어 분야에서 통상적으로 사용되는 가소제, 안료, 항산화제, 오존 열화 방지제, 가황 촉진제 등이 첨가될 수 있다. In addition, plasticizers, pigments, antioxidants, ozone deterioration inhibitors, vulcanization accelerators and the like commonly used in the tire field may be added to the rubber composition for tires. Can be.
【발명의 효과】 【Effects of the Invention】
본 발명에 따른 고무 보강재에 포함되는 알루미노실리케이트 입자는, 고무 조성물 내에서의 우수한 분산성에 따른 향상된 보강 효과를 나타낼 수 있으면서도 고무 조성물의 가공성을 저해하지 않아, 타이어용 고무 조성물에 부여되는고무보강재로서 바람직하게 적용될 수 있다.  The aluminosilicate particles included in the rubber reinforcing material according to the present invention can exhibit an improved reinforcing effect according to excellent dispersibility in the rubber composition, but do not impair the processability of the rubber composition, and thus are provided as rubber reinforcing materials to the rubber composition for tires. It can be preferably applied.
【도면의 간단한설명】 【Brief Description of Drawings】
도 1은 실시예들 및 비교예들에 따른 알루미노실리케이트 입자에 대한 1 is aluminosilicate particles according to the Examples and Comparative Examples
X-선 회절 분석 결과를나타낸 그래프이다. It is a graph showing the result of X-ray diffraction analysis.
【발명을실시하기 위한구체적인 내용】 [Specific contents for carrying out invention]
이하, 본 발명의 아해를 돕기 위하여 바람직한 실시예들을 제시한다. 그러나 하기의 실시예들은 본 발명을 예시하기 위한 것일 뿐, 본 발명을 이들만으로 한정하는 것은 아니다. 실시예 1  Hereinafter, preferred embodiments will be presented to assist in understanding the present invention. However, the following examples are only for illustrating the present invention, and the present invention is not limited thereto. Example 1
80 °C 하에서 0.005 M 소둠 실리케이트 (Na2Si03) 수용액과 0.005 M 알루미늄 나이트레이트 (A1(N03)3) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한반응 용액 (pH 6.2)을 얻었다. After mixing 0.005 M sodium silicate (Na 2 Si0 3 ) aqueous solution and 0.005 M aluminum nitrate (A1 (N0 3 ) 3 ) aqueous solution at 80 ° C. to pH 6.2, use an overhead stirrer The neutralization reaction was performed by mixing at rpm for 10 minutes. The neutralization reaction gave a reaction solution containing aluminosilicate salt (pH 6.2).
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 실시예 2 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Example 2
80 °C 하에서 0.005 M 소듐 실리케이트 (Na2Si03) 수용액과 0.005 M 알루미늄 포타슘 설페이트 (A1K(S04)2) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한 반응 용액 (pH 6.2)을 얻었다. 0.005 M aqueous solution of 0.005 M sodium silicate (Na 2 Si0 3 ) at 80 ° C An aqueous solution of aluminum potassium sulfate (A1K (S0 4 ) 2 ) was mixed to pH 6.2, followed by mixing for 10 minutes at 500 rpm using an overhead stirrer to carry out a neutralization reaction. The neutralization reaction gave a reaction solution (pH 6.2) containing the aluminosilicate salt.
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 실시예 3 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Example 3
75 °C 하에서 0.005 M 소듐 실리케이트 (Na2Si03) 수용액과 0.005 M 알루미늄 나이트레이트 (A1(N03)3;) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한 반응용액 (pH 6.2)을 얻었다. After mixing the aqueous solution of 0.005 M sodium silicate (Na 2 Si0 3 ) and the aqueous solution of 0.005 M aluminum nitrate (A1 (N0 3 ) 3 ) at 75 ° C to pH 6.2, using an overhead stirrer The neutralization reaction was performed by mixing at 500 rpm for 10 minutes. The reaction solution (pH 6. 2 ) containing the aluminosilicate salt was obtained by the said neutralization reaction.
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 실시예 4 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Example 4
85 °C 하에서 0.005 M 소듐 실리케이트 (Na2SiC¾) 수용액과 0.005 M 알루미늄 나이트레이트 (A1(N03)3) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한반응용액 (pH 6.2)을 얻었다. After mixing the aqueous solution of 0.005 M sodium silicate (Na 2 SiC¾) and the aqueous solution of 0.005 M aluminum nitrate (A1 (N0 3 ) 3 ) at 85 ° C to pH 6.2, 500 rpm using an overhead stirrer The neutralization reaction was performed by mixing for 10 minutes at. By the neutralization reaction, a reaction solution containing aluminosilicate salt (pH 6.2) was obtained.
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 실시예 5 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Example 5
90 °C 하에서 0.005 M 소둠 실리케이트 (Na2Si03) 수용액과 0.005 M 알루미늄 나이트레이트 (A1(N03)3) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한반응용액 (pH 6.2)을 얻었다. After mixing 0.005 M sodium silicate (Na 2 Si0 3 ) and 0.005 M aluminum nitrate (A1 (N0 3 ) 3 ) aqueous solution to pH 6.2 at 90 ° C., using an overhead stirrer The neutralization reaction was performed by mixing at rpm for 10 minutes. By the neutralization reaction, a reaction solution containing aluminosilicate salt (pH 6.2) was obtained.
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 비교예 1 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Comparative Example 1
23 은의 KOH (Daejung chemicals & metals) 및 27 은의 colloidal silica (Ludox HS 30 wt%; Sigma-Aldrich 62 m^ 증류수에 넣어 완전히 용해시켰다. 상기 용액에 15 은의 metakaolin (AI2S12O7, Aldrich)을 첨가한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 800 rpm에서 40분 동안믹싱하였다.  23 silver KOH (Daejung chemicals & metals) and 27 silver colloidal silica (Ludox HS 30 wt%; Sigma-Aldrich 62 m ^ in distilled water to dissolve completely. The mixture was mixed at 800 rpm for 40 minutes using an overhead stirrer.
이것을 70 °C의 온도하에서 4시간동안경화 (curing)시켰다. This was cured for 4 hours at a temperature of 70 ° C.
경화에 의해 형성된 고체 생성물을 90 의 증류수에 넣고 12시간동안 교반하고 원심분리하는 방법으로 pH 7수준이 될 때까지 세척하였다.  The solid product formed by curing was put in 90 distilled water, stirred for 12 hours, and washed until reaching a pH of 7 by centrifugation.
세척된 상기 고체 생성물을 증류수에 분산시켜 콜로이달 용액을 형성한 후 1500 rpm 하에서 5 분 동안 원심 분리하여 미반응 소스를 침강시켰다. 이로부터 알루미노실리케이트 입자가 분산된 상층액을 얻고, 침강된 미반응 소스를 폐기하였다.  The washed solid product was dispersed in distilled water to form a colloidal solution and then centrifuged for 5 minutes at 1500 rpm to settle the unreacted source. This yielded a supernatant in which the aluminosilicate particles were dispersed and discarded the unreacted source that had settled.
상기 알루미노실리케이트 입자가 분산된 상층액을 70 °C의 오븐에서 24 시간동안건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. The supernatant in which the aluminosilicate particles were dispersed was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles.
상기 비교예 1은 강염기 (pH 14)의 수용액 분위기에서 metakaolin을 사용하여 알루미노실리케이트를 합성하는 방법으로, 실시예들에 비하여 합성 공정이 복잡할 뿐 아니라, 강염기 분위기를 조성함에 있어 높은 비용이 요구된다. 비교예 2 Comparative Example 1 is a method of synthesizing aluminosilicate using metakaolin in an aqueous solution of a strong base (pH 14), which is not only complicated in the synthesis process but also requires high cost in forming a strong base atmosphere. do. Comparative Example 2
30 °C 하에서 0.005 M 소듐 실리케이트 (Na2Si03) 수용액과 0.005 M 알루미늄 나이트레이트 (A1(N03)3) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한 반응 용액 (pH 6.2)을 얻었다. After mixing the aqueous solution of 0.005 M sodium silicate (Na 2 Si0 3 ) and the aqueous solution of 0.005 M aluminum nitrate (A1 (N0 3 ) 3 ) at 30 ° C. to pH 6.2, using an overhead stirrer The neutralization reaction was performed by mixing at rpm for 10 minutes. The neutralization reaction gave a reaction solution (pH 6.2) containing the aluminosilicate salt.
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 비교예 3 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Comparative Example 3
70 °C 하에서 0.005 M 소둠 실리케이트 (Na2Si03) 수용액과 0.005 M 알루미늄 나이트레이트 (A1(N03)3) 수용액을 pH 6.2가 되도록 혼합한 후, 오버헤드 교반기 (overhead stirrer)를 이용하여 500 rpm에서 10 분간 믹싱하여 중화 반응을 수행하였다. 상기 중화 반응에 의해 알루미노실리케이트 염을 포함한반응용액 (pH 6.2)을 얻었다. After mixing the aqueous solution of 0.005 M sodium silicate (Na 2 Si0 3 ) and the aqueous solution of 0.005 M aluminum nitrate (A1 (N0 3 ) 3 ) at 70 ° C. to pH 6.2, using an overhead stirrer The neutralization reaction was performed by mixing at rpm for 10 minutes. By the neutralization reaction, a reaction solution containing aluminosilicate salt (pH 6.2) was obtained.
상기 알루미노실리케이트 염을 상온의 증류수에 넣고 12 시간 동안 교반하고 원심분리하는 방법으로 세척하였다.  The aluminosilicate salt was added to distilled water at room temperature, stirred for 12 hours, and washed by centrifugation.
세척된 알루미노실리케이트 염을 70 °C의 오븐에서 24 시간 동안 건조하여 최종적으로 알루미노실리케이트 입자를 얻었다. 비교예 4 The washed aluminosilicate salt was dried in an oven at 70 ° C. for 24 hours to finally obtain aluminosilicate particles. Comparative Example 4
Evonik industries사에서 판매중인 실리카 입자 (ULTRA況 L® 7000 GR)를 준비하였다. 제조예 1 Silica particles (ULTRA® L ® 7000 GR) sold by Evonik industries were prepared. Preparation Example 1
밀폐식 혼합기에 137 g의 디엔 엘라스토머 혼합물 (SSBR 2550, LG화학), 보강재로써 실시예 1에 따른 70 g의 알루미노실리케이트 입자 및 11.2은의 실란 커플링제 (폴리실록산계)를 투입하였다. 이것을 150°c 하에서 5분 동안 혼합한 후,유황과가황촉진제를 첨가하여 90초동안혼합하였다. In a closed mixer, 137 g of diene elastomer mixture (SSBR 2550, LG Chemical), 70 g of aluminosilicate particles according to Example 1 and 11.2 silver silane as reinforcement A coupling agent (polysiloxane system) was added. This was mixed at 150 ° C. for 5 minutes and then mixed for 90 seconds with the addition of sulfur and vulcanization accelerators.
얻어진 혼합물을 두께 2 내지 3 _의 시트 형태로 압출하였고, 이것을 160 °C에서 vulcanization하여 고무 성형물을 얻었다. 이때, 가황 시간은 상기 혼합물을 160 °C에서 MDR (moving die rheometer)를 이용하여 즉정한 데이터를 참고로조절되었다. 제조예 2 The resulting mixture was extruded in the form of a sheet of thickness 2-3, which was vulcanized at 160 ° C. to obtain a rubber molding. At this time, the vulcanization time was adjusted with reference to the data immediately obtained by using the moving die rheometer (MDR) at 160 ° C. Preparation Example 2
보강재로 실시예 1의 알루미노실리케이트 입자 대신 실시예 2에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로 고무조성물과성형물을 얻었다. 제조예 3  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Example 2 were added instead of the aluminosilicate particles of Example 1 as the reinforcing material. Preparation Example 3
보강재로 실시예 1의 알루미노실리케이트 입자 대신 실시예 3에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로 고무조성물과성형물을 얻었다. 제조예 4  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Example 3 were added instead of the aluminosilicate particles of Example 1 as a reinforcing material. Preparation Example 4
보강재로 실시예 1의 알루미노실리케이트 입자 대신 실시예 4에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로고무조성물과성형물을 얻었다. 제조예 5  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Example 4 were added instead of the aluminosilicate particles of Example 1 as a reinforcing material. Preparation Example 5
보강재로 실시예 1의 알루미노실리케이트 입자 대신 실시예 5에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로 고무조성물과성형물을 얻었다. 제조예 6  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Example 5 were added instead of the aluminosilicate particles of Example 1 as a reinforcing material. Preparation Example 6
보강재로 실시예 1의 알루미노실리케이트 입자 대신 비교예 1에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 2019/164154 1»(:1^1{2019/001383 Same as Preparation Example 1, except that the aluminosilicate particles according to Comparative Example 1 were added instead of the aluminosilicate particles of Example 1 as the reinforcing material. 2019/164154 1 » (: 1 ^ 1 {2019/001383
방법으로 고무 조성물과 성형물을 얻었다. 제조예 7 The rubber composition and the molded product were obtained by the method. Preparation Example 7
보강재로 실시예 1의 알루미노실리케이트 입자 대신 비교예 2에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로 고무 조성물과 성형물을 얻었다. 제조예 8  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Comparative Example 2 were added instead of the aluminosilicate particles of Example 1 as the reinforcing material. Preparation Example 8
보강재로 실시예 1의 알루미노실리케이트 입자 대신 비교예 3에 따른 알루미노실리케이트 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로 고무 조성물과 성형물을 얻었다. 제조예 9  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that the aluminosilicate particles according to Comparative Example 3 were added instead of the aluminosilicate particles of Example 1 as the reinforcing material. Preparation Example 9
보강재로 실시예 1의 알루미노실리케이트 입자 대신 비교예 4에 따른 실리카 입자를 첨가한 것을 제외하고, 제조예 1과 동일한 방법으로 고무 조성물과 성형물을 얻었다. 시험예 1  A rubber composition and a molded product were obtained in the same manner as in Preparation Example 1, except that silica particles according to Comparative Example 4 were added instead of the aluminosilicate particles of Example 1 as the reinforcing material. Test Example 1
X-ray fluorescence (XRF, Rigaku zsx primus II, wavelength dispersive type)를 이용하여 상기 실시예들과 비교예들에 따른 입자의 성분 조성을 확인하였다. 상기 XRF측정은 Rh target을 활용하였으며 , 30_ 직경의 홀더에 입자 분말을 장착하여 측정하였다.  X-ray fluorescence (XRF, Rigaku zsx primus II, wavelength dispersive type) was used to confirm the composition of the particles according to the examples and comparative examples. The XRF measurement was performed using the Rh target, and was measured by mounting the particle powder in a holder of 30_ diameter.
【표 11 Table 11
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000021_0001
Figure imgf000022_0001
상기 표 1을 참고하면, 비교예 1의 알루미노실리케이트 입자는 바람직한 범위를 충족하지 못하는 상기 八 값을 갖는 것으로 확인되었다. 시험예 2  Referring to Table 1, it was confirmed that the aluminosilicate particles of Comparative Example 1 had the above eight values that did not satisfy the preferred range. Test Example 2
X-선 회절 분석기 (Bmker AXS D4-Endeavor XRD)를 이용하여, 40 kV의 인가전압 및 40 이쇼의 인가전류 하에서, 상기 실시예들 및 비교예들의 입자에 대한 X-선 회절 분석을 실시하였다.  Using an X-ray diffractometer (Bmker AXS D4-Endeavor XRD), an X-ray diffraction analysis was carried out on the particles of the above examples and comparative examples under an applied voltage of 40 kV and an applied current of 40 iso.
측정한 20의 범위는 10° 내지 90° 이고, 0.05° 의 간격으로 스캔하였다. 이때/ 슬릿 (slit)은 variable divergence slit 6 mm를 이용하였고 , PMMA 홀더에 의한 백그라운드 노이즈 (background noise)를 없애기 위해 크기가 큰 PMMA 홀더 (직경 =20 mm)를 이용하였다. The range of 20 measured was 10 degrees- 90 degrees, and it scanned at the interval of 0.05 degrees . In this case, a variable divergence slit 6 mm / slit was used, and a large PMMA holder (diameter = 20 mm) was used to eliminate background noise caused by the PMMA holder.
X-선 회절에 의해 수득된 데이터 그래프에서 20의 20° 내지 37° 범위에서의 최대 피크인 약^ 9° 피크의 반가폭 (full width at half maximum, FWHM)을 계산하였다. The data up to the peak of about ^ 9 ° half-value width of a peak of 20 in the 20 ° to 37 ° range on the graph (full width at half maximum, FWHM ) obtained by the X- ray diffraction was calculated.
【표 2】 Table 2
Figure imgf000022_0002
시험예 3
Figure imgf000022_0002
Test Example 3
(1) Scanning electron microscopy(SEM)를 이용하여 상기 실시예들 및 비교예들에 따른 입자의 평균 일차 입경을측정하였다.  (1) Scanning electron microscopy (SEM) was used to measure the average primary particle diameter of the particles according to the examples and comparative examples.
상기 평균 일차 입경의 측정시, 입경은 Feret직경을 의미한 것이며 여러 방향에서의 입자의 지름을 측정하여 얻은 평균 값으로 계산되었다. 구체적으로는 입자가 100 개 이상 관찰되는 SEM 이미지를 얻은 후, 랜덤한 직선을 도식 후, 해당 직선의 길이 및 직선에 포함된 입자 수, 배율을 통해 입자의 일차 입경을 계산할 수 있으며, 이러한 직선을 20 개 이상으로 하여 평균 일차 입경을구하였다.  In the measurement of the average primary particle diameter, the particle diameter means the Feret diameter and was calculated as an average value obtained by measuring the diameters of particles in various directions. Specifically, after obtaining an SEM image in which 100 or more particles are observed, after plotting a random straight line, the primary particle diameter of the particle can be calculated by the length of the straight line, the number of particles included in the straight line, and the magnification. The average primary particle diameter was calculated | required as 20 or more.
(2) 비표면적 분석기 (BEL Japan Inc., BELSORP-max)를 이용하여 상기 실시예들 및 비교예들에 따른 입자에 대한 질소 흡착/탈착 브루너-에미트-텔러 비표면적 (SBET) 및 2 ran 미만의 미세기공을 제외한 외부 비표면적 (SEXT)을 측정하였다. 그리고, 상기 SBET로부터 t-플롯법에 의해 2 nm 미만의 기공 크기를 갖는 미세기공의 체적 (VmicrO)을 계산하였다. (2) Nitrogen adsorption / desorption Brunner-Emit-Teller specific surface area (S BET ) and 2 for particles according to the examples and comparative examples using a specific surface area analyzer (BEL Japan Inc., BELSORP-max). External specific surface area (S EXT ) excluding micropores less than ran was measured. From the S BET , the volume (Vmicr O ) of micropores having a pore size of less than 2 nm was calculated by a t-plot method.
상기 특성의 측정에 있어서, 대상 입자를 250 °G 하에서 4 시간 동안 가열하여 전처리하였고, 상기 분석기에 장착된 에어 오븐의 온도는 40 °C로 유지되었다. 【표 3】 In the measurement of this characteristic, the particles of interest were pretreated by heating for 4 hours under 250 ° G, the temperature of the air oven mounted to the analyzer was maintained at 40 ° C. Table 3
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000023_0001
Figure imgf000024_0001
상기 표 3을 참고하면, 상기 실시예들에서는 응집체의 형성 없이 20 _ 수준의 평균 일차 입경과 우수한 비표면적 특성을 갖는 알루미노실리케이트 입자를 얻을 수 있음이 확인된다. 시험예 4  Referring to Table 3, it is confirmed that in the above examples, aluminosilicate particles having an average primary particle size of 20_ and excellent specific surface area characteristics can be obtained without formation of aggregates. Test Example 4
10 ml의 증류수에 상기 실시예들 및 비교예들에 따른 0.1 은의 입자를 첨가하여 1 중량%의 입자를 포함한 용액을 준비하였다. 상기 용액을 100W pulsed ultrasonication 장비에서 90% power로 5분 동안 sonication하였다. 이때 sonication에 의한 에너지는 고무 조성물의 배합시 조성물에 가해지는 mechanical force와 유사한 물리적 에너지로 작용하여, 고무 조성물 내 분산되어 존재하는 응집체 (aggregates)의 크기 분포를 간접적으로 확인할 수 있다.  A solution containing 1% by weight of particles was prepared by adding particles of 0.1 silver according to the Examples and Comparative Examples to 10 ml of distilled water. The solution was sonicated at 100% pulsed ultrasonication equipment at 90% power for 5 minutes. At this time, the energy due to sonication acts as a physical energy similar to the mechanical force applied to the composition when the rubber composition is blended, thereby indirectly confirming the size distribution of aggregates (aggregates) present in the rubber composition.
얻어진 분산액을 입도 분석기 (HORIBA 사, 모델명 LA-960, laser diffraction type)를 이용하여 추가로 2 분 동안 sonication한 후, 상기 입자의 응집체 (aggregates)의 크기 분포, 체적 평균 입경 (Dmean, m), 기하 표준 편차 (geometric standard deviation; Std. Dev., im), 및 체적 분포의 누적 입경 (Dio, D50, D90, _)을 즉정하였다. The obtained dispersion was sonicated for 2 minutes using a particle size analyzer (HORIBA, model name LA-960, laser diffraction type), and then the size distribution of the aggregates of the particles and the volume average particle diameter (D mean , m) , Geometric standard deviation (Std. Dev., Im), and cumulative particle diameters (Dio, D50, D90, _) of the volume distribution were instantaneated.
【표 4】 Table 4
Figure imgf000024_0002
상기 표 4를 참고하면, 상기 실시예들에 따른 알루미노실리케이트 입자의 이차 입자는 고무 보강재로써 적합한 범위의 입자 크기 분포를 나타냄이 확인된다. 시험예 5
Figure imgf000024_0002
Referring to Table 4, it is confirmed that the secondary particles of the aluminosilicate particles according to the embodiments exhibit a particle size distribution in a suitable range as a rubber reinforcing material. Test Example 5
점탄성 측정기 (DMTS 500N, Gabo, 독일)를 이용하여 dynamic strain 3% 및 static strain 3% 하에서 제조예들에 따른 고무 성형물에 대한 동적 손실계수 (tan 5)를 측정하였다. 측정된 값은 상기 제조예 9의 고무 성형물의 값을 기준으로 normalization하여 함께 나타내었다.  The viscoelasticity meter (DMTS 500N, Gabo, Germany) was used to measure the dynamic loss factor (tan 5) for rubber moldings according to the examples under dynamic strain 3% and static strain 3%. The measured values were normalized based on the values of the rubber moldings of Preparation Example 9 and shown together.
참고로, (TC에서의 동적 손실계수 (tan 5 @0 는 타이어의 wet grip 특성과 연관되어 있으며, 그 절대값이 높을수록 wet grip 특성이 우수한 것으로 평가된다. 그리고, 60 °C에서의 동적 손실계수 (tan 8 @60°C)는 타이어의 rolling resistance 특성과 연관되아 있으며, 그 절대값이 낮을수록 rolling resistance 특성이 우수한 것으로 평가된다. For reference, the dynamic loss factor (tan 5 @ 0 at TC is associated with the wet grip characteristics of the tire, and the higher the absolute value is, the better the wet grip characteristic is, and the dynamic loss at 60 ° C. The coefficient (tan 8 @ 60 ° C) is associated with the rolling resistance properties of the tire, and the lower the absolute value, the better the rolling resistance properties.
【표 5】 Table 5
Figure imgf000025_0001
Figure imgf000025_0001
상기 표 5를 참고하면, 제조예 1 내지 5에 따른 고무 성형물은 제조예 6 및 9의 고무 성형물과 대비하여 우수한 rolling resistance 특성 및 wet grip 특성을 나타내는 것으로 확인되었다. Referring to Table 5, the rubber molding according to Preparation Examples 1 to 5 has excellent rolling resistance characteristics and wet grip in comparison with the rubber molding of Preparation Examples 6 and 9. It was confirmed to exhibit characteristics.
제조예 7 및 제조예 8에서는 고무 성형물(시트)의 성형이 불가능하였기 때문에, 이에 대한 물성을 측정할 수 없었다. 시험예 6  In Production Example 7 and Production Example 8, molding of the rubber molded article (sheet) was impossible, and thus physical properties thereof could not be measured. Test Example 6
상기 제조예들의 고무 성형물에 대해, 내마모성 측정기(abrasion tester, Bareiss GmbH)를 이용하여 DIN ISO 4649의 기준에 따라 테스트 대상 물질과 기준 물질의 mass loss 및 비중을 즉정하여 마모 저항 지수(abrasion resistance index)를 계산하고 내마모성을 평가하였다.  For the rubber moldings of the above production examples, the abrasion resistance index was determined by using the abrasion tester (Bareiss GmbH) to immediately determine the mass loss and specific gravity of the material to be tested and the reference material according to the standard of DIN ISO 4649. Was calculated and the wear resistance was evaluated.
상기 마모 저항 지수는 {[(기준 물질의 loss weight) X (기준 물질의 비중)]/[(테스트 대상 물질의 loss weight) X (테스트 대상 물질의 비중)]} 父 100으로 계산되었다 (기준 물질: neutral rubber).  The wear resistance index was calculated as {[(loss weight of reference material) X (specific gravity of reference material)] / [(loss weight of test material) X (specific gravity of test material)] 물질 父 100 (reference material : neutral rubber).
【표 6】 Table 6
Figure imgf000026_0001
Figure imgf000026_0001
상기 표 6을 참고하면, 제조예 1 내지 5에 따른 고무 성형물은 제조예 Referring to Table 6, the rubber molded article according to Preparation Examples 1 to 5
6의 고무 성형물과 대비하여 현저히 우수한 내마모성을 나타내는 것으로 확인되었다. In comparison with the rubber molding of 6, it was confirmed that it shows remarkably excellent wear resistance.
상기 표 5 및 표 6을 참고하면, 제조예 6의 고무 성형물은 제조예 9의 고무 성형물과 대비하여 우수한 rolling resistance 특성 및 wet grip 특성을 나타내었지만, 현저히 낮은 내마모성을 갖는 것으로 확인되었다.  Referring to Tables 5 and 6 above, the rubber molding of Preparation Example 6 exhibited excellent rolling resistance and wet grip characteristics compared to the rubber molding of Preparation Example 9, but was found to have a significantly low wear resistance.

Claims

【청구범위】 【청구항 1] 하기 화학식 1의 조성을 갖는 비정질의 알루미노실리케이트 입자를 포함한 고무 보강재로서; 상기 알루미노실리케이트 입자는 X-선 회절 (XRD)에 의해 수득된 데이터 그래프에서, 20의 23° 내지 37° 범위에서의 최대 피크의 반가폭 (full width at half maximum, FWHM)이 5° 내지 7° 이고, 23° 이상 26° 미만의 20 범위에서 최대 피크 강도 (maximum peak intensity, Imax)를 가지는, 고무 보강재: [Claim 1] As a rubber reinforcing material comprising amorphous aluminosilicate particles having a composition of the following formula (1); The aluminosilicate particles have a full width at half maximum (FWHM) of 5 ° to 7 in the range of 23 ° to 37 ° of 20 in a data graph obtained by X-ray diffraction (XRD). Rubber reinforcement having a maximum peak intensity (I max) in the range of 20 to 23 ° and less than 26 °:
[화학식 1]  [Formula 1]
[(MaAlxOsx) · (Siy02y)] - m(H20) [(MaAlxOsx) · (Si y 0 2 y)]-m (H 2 0)
상기 화학식 1에서,  In Chemical Formula 1,
상기 은 Li, Na, K, Rb, Cs, Be, Fr, Ca, Zn, 및 Mg로 이루어진 군에서 선택된 원소 또는 이들의 이온이고,  Is an element selected from the group consisting of Li, Na, K, Rb, Cs, Be, Fr, Ca, Zn, and Mg or ions thereof,
a ³ 0, x ñ 0, y ñ 0, 및 m ³ 0 이고,  a ³ 0, x 0 0, y ñ 0, and m ³ 0,
a/x < 1. a / x <1.
2 이고, 2,
3.0 < y/x < 20.0 이다.  3.0 <y / x <20.0.
【청구항 2】 [Claim 2]
제 1 항에 있어서,  The method of claim 1,
상기 알루미노실리케이트 입자는,  The aluminosilicate particles,
질소 흡착/탈착 분석에 의한 110 내지 260 m2/g의 브루너-에메트-텔러 비표면적 (SBET) 및 90 내지 220 m2/g의 외부 비표면적 (SExT)을 가지며, Having a Brunner-Emmett-Teller specific surface area (S BET ) of 110 to 260 m 2 / g and an external specific surface area (S E x T ) of 90 to 220 m 2 / g by nitrogen adsorption / desorption analysis,
상기 SBET로부터 t-플롯법에 의해 계산된 2 nm 미만의 기공 크기를 갖는 미세기공의 체적 (VmiCro)이 0.05 cmVg 미만인, The volume of the micropores (Vmi Cro ) having a pore size of less than 2 nm calculated by the t-plot method from the S BET is less than 0.05 cmVg,
고무 보강재. 【청구항 3】 Rubber stiffeners. [Claim 3]
제 1 항에 있어서,  The method of claim 1,
상기 알루미노실리케이트 입자는, 증류수 하에서 측정된 1 내지 25 _의 체적 평균 입경 (Dmean), 1 내지 20 _의 기하 표준 편차 (geometric standard deviation), 및 1 내지 50 _의 90% 누적 입경 (D90)을 나타내는 이차 입자크기 분포를 가지는, The aluminosilicate particles, 1 to 25 _ volume-average particle size (Dmean) of measured under distilled water, 1 to 20 the geometric standard deviation of _ (geometric standard deviation), and 1 to 50 _ 90% cumulative particle diameter of the (D 90 With a secondary particle size distribution,
고무보강재.  Rubber reinforcement.
【청구항 4] [Claim 4]
제 1 항에 따른 고무보강재를포함하는타이어용고무조성물.  A rubber composition for tires comprising the rubber reinforcement according to claim 1.
【청구항 5] [Claim 5]
제 4항에 있어서,  The method of claim 4, wherein
상기 고무 보강재 및 적어도 1 종의 디엔 엘라스토머를 포함하는 타이어용 고무조성물.  A rubber composition for a tire comprising the rubber reinforcing material and at least one diene elastomer.
【청구항 6】 [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 디엔 엘라스토머는 천연 고무, 폴리부타디엔, 폴리이소프렌, 부타디엔/스티렌 코폴리머, 부타디엔/이소프렌 코폴리머, 부타디엔/아크릴로니트릴 코폴리머, 이소프텐/스티렌 코폴리머, 및 부타디엔/스티텐/이소프렌 코폴리머로 이루어진 군에서 선택된 1종 이상의 화합물인,타이어용 고무 조성물.  The diene elastomers include natural rubber, polybutadiene, polyisoprene, butadiene / styrene copolymers, butadiene / isoprene copolymers, butadiene / acrylonitrile copolymers, isoptene / styrene copolymers, and butadiene / styreneten / isoprene copolymers. At least one compound selected from the group consisting of, Rubber composition for the tire.
PCT/KR2019/001383 2018-02-21 2019-01-31 Rubber reinforcer comprising aluminosilicate particles, and tire rubber composition comprising same WO2019164154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019553239A JP6862016B2 (en) 2018-02-21 2019-01-31 A rubber reinforcing material containing aluminosilicate particles and a rubber composition for a tire containing the same.
US16/497,756 US10889702B2 (en) 2018-02-21 2019-01-31 Reinforcing material for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180020651 2018-02-21
KR10-2018-0020651 2018-02-21
KR1020190011316A KR102151066B1 (en) 2018-02-21 2019-01-29 A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
KR10-2019-0011316 2019-01-29

Publications (1)

Publication Number Publication Date
WO2019164154A1 true WO2019164154A1 (en) 2019-08-29

Family

ID=67688281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001383 WO2019164154A1 (en) 2018-02-21 2019-01-31 Rubber reinforcer comprising aluminosilicate particles, and tire rubber composition comprising same

Country Status (1)

Country Link
WO (1) WO2019164154A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960034289A (en) * 1995-03-14 1996-10-22 캐쓸린 엠. 이스터링 Silica reinforced rubber composition and its use in tires
WO2004056915A1 (en) * 2002-12-19 2004-07-08 Societe De Technologie Michelin Rubber composition for tyres, based on reinforcing aluminosilicate
KR20070086876A (en) * 2004-12-01 2007-08-27 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Rubber formulation and methods for manufacturing same
WO2015191817A1 (en) * 2014-06-12 2015-12-17 Arizona Board Of Regents On Behalf Of Arizona State University Geopolymer aggregates
KR20170048851A (en) * 2015-10-27 2017-05-10 주식회사 엘지화학 A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960034289A (en) * 1995-03-14 1996-10-22 캐쓸린 엠. 이스터링 Silica reinforced rubber composition and its use in tires
WO2004056915A1 (en) * 2002-12-19 2004-07-08 Societe De Technologie Michelin Rubber composition for tyres, based on reinforcing aluminosilicate
KR20070086876A (en) * 2004-12-01 2007-08-27 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Rubber formulation and methods for manufacturing same
WO2015191817A1 (en) * 2014-06-12 2015-12-17 Arizona Board Of Regents On Behalf Of Arizona State University Geopolymer aggregates
KR20170048851A (en) * 2015-10-27 2017-05-10 주식회사 엘지화학 A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same

Similar Documents

Publication Publication Date Title
CN108602980B (en) Reinforcing material for rubber containing aluminosilicate particles and rubber composition for tire containing the same
JP6866002B2 (en) A method for producing aluminosilicate nanoparticles having excellent dispersibility, a rubber reinforcing material containing the aluminosilicate nanoparticles, and a rubber composition for a tire containing the aluminosilicate nanoparticles.
CN109071242B (en) Process for preparing aluminosilicate particles, reinforcing material and rubber composition
KR102151066B1 (en) A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
KR102155270B1 (en) Method for preparing aluminosilicate particles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate particles, and rubber composition for tires comprising the reinforcing materials
WO2019164154A1 (en) Rubber reinforcer comprising aluminosilicate particles, and tire rubber composition comprising same
WO2019059594A1 (en) Method for manufacturing aluminosilicate nanoparticles having excellent dispersibility, rubber reinforcing member comprising aluminosilicate nanoparticles, and rubber composition comprising same for tire
KR102348152B1 (en) A reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
CN110191917B (en) Organic-inorganic composite material for rubber reinforcement, method for preparing the same, and rubber composition for tire comprising the same
KR102150645B1 (en) Method for preparing aluminosilicate nanoparticles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate nanoparticles, and rubber composition for tires comprising the reinforcing materials
KR102150646B1 (en) Method for preparing aluminosilicate nanoparticles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate nanoparticles, and rubber composition for tires comprising the reinforcing materials
KR102567067B1 (en) Method for preparing aluminosilicate nanoparticles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate nanoparticles, and rubber composition for tires comprising the reinforcing materials
KR102123011B1 (en) Method for preparing aluminosilicate particles having excellent dispersion, a reinforcing materials for rubber comprising the aluminosilicate particles, and rubber composition for tires comprising the reinforcing materials
CN110199187B (en) Method for predicting rubber reinforcing effect of organic-inorganic composite material for rubber reinforcement
KR102361619B1 (en) Aluminosilicate nanoparticles for rubber reinforcement, a method for preparing the aluminosilicate nanoparticles, and a rubber composition for a tire including the aluminosilicate nanoparticles
KR20190036336A (en) Method for preparing aluminosilicate particles, a reinforcing materials for rubber comprising the aluminosilicate particles, and rubber composition for tires comprising the reinforcing materials
KR102684258B1 (en) Reinforcing materials for rubber comprising aluminosilicate particles and rubber composition for tires comprising the same
WO2018048158A1 (en) Rubber reinforcement comprising aluminosilicate particles, and tire rubber composition containing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553239

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757406

Country of ref document: EP

Kind code of ref document: A1