WO2019164093A1 - Method for improving ct data and optical data matching performance, and device thereof - Google Patents

Method for improving ct data and optical data matching performance, and device thereof Download PDF

Info

Publication number
WO2019164093A1
WO2019164093A1 PCT/KR2018/013581 KR2018013581W WO2019164093A1 WO 2019164093 A1 WO2019164093 A1 WO 2019164093A1 KR 2018013581 W KR2018013581 W KR 2018013581W WO 2019164093 A1 WO2019164093 A1 WO 2019164093A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
matching
optical data
measure
invalid
Prior art date
Application number
PCT/KR2018/013581
Other languages
French (fr)
Korean (ko)
Inventor
신영길
김동준
송영찬
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2019164093A1 publication Critical patent/WO2019164093A1/en

Links

Images

Classifications

    • G06T5/70
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]

Definitions

  • the present invention relates to a method and apparatus for improving the matching performance of CT data and optical data, and more particularly, to perform data matching between CT and optical data by reconstructing the internal and external structures of an object in three dimensions.
  • the present invention relates to a method and an apparatus capable of reducing the time required for matching, reducing processing complexity, and improving the accuracy of matching results.
  • CT Computer Tomography
  • X-ray apparatus a device that provides information about the structure and tissue state of a product that cannot be obtained by a conventional X-ray apparatus. It is a combination of images obtained by projecting a target product by X-ray from various angles. It is a technology to realize a three-dimensional image.
  • Such CT data has the advantage that the internal and external structures can be reconstructed in three dimensions, but due to the physical properties of the X-ray, the surface is not evenly reconstructed according to material and structural complexity.
  • optical data has an advantage that the three-dimensional surface to be reconstructed compared to CT data is evenly expressed and has high precision, but only the surface of the light reflection area exposed to the scanner can be reconstructed.
  • the ICP Intelligent Closest Point
  • the ICP algorithm calculates scale transformation, rotation, and movement to match the measurement data to the model when there is measurement data for a model.
  • the conventional ICP algorithm uniformly defines the surface vertex data derived without considering the characteristics of the vertex data including the error of the CT data and the optical data in the process of matching the CT data and the optical data.
  • the matching process was very inefficient, as well as the results reflecting the error, as well as computing the vertices that do not need to be considered when performing the algorithm, or disturbing convergence due to outliers.
  • Korean Patent No. 1785326 (2017.09.29.) Relates to a procedure guide information providing system using a surgical guide for dental implants.
  • CT images and oral scan images of the inside of the oral cavity of the subject are obtained,
  • the virtual drill image extracted from the digital drill library is superimposed on the virtually arranged fixture, and the overlapped volume is calculated from the alveolar bone and the fixture from which the portion corresponding to the virtual drill image is removed is compared with the optimal combined volume.
  • the prior art merely has a substrate for obtaining a three-dimensional integrated image by matching the CT scan image and the oral scan image, and the surface vertices extracted when the CT data and the optical data proposed in the present invention are matched.
  • the technical difference is obvious because it does not describe a technical configuration that can reduce accuracy and time by using only reliable vertices without using all the information.
  • Korean Patent Application Publication No. 2013-0098531 (September 5, 2013) relates to a method of reducing metal artifacts of Citi, and reconstructs the projection image into a stereoscopic image and the first step (S100), which is a process of acquiring a projection image by Citi.
  • a second step (S200) which is a process of performing a process
  • a third step (S300) which is a process of matching a reconstructed image and a scan data image
  • a fourth step which is a process of checking three-dimensional coordinates of the metal region in the reconstructed image
  • Technical features include (S400).
  • the above prior arts suggest a configuration of acquiring a three-dimensional integrated image through registration of a CT photographed image and an oral scan image, and a configuration of performing a registration of a CT image and a scan data image.
  • the present invention has been made to solve the above problems, by utilizing the advantages of the CT data and the optical data method for improving the matching performance of the CT data and the optical data to reconstruct the internal and external structure of the object in three dimensions and its It is an object to provide a device.
  • Another object is to provide a method and apparatus for improving the matching performance of CT data and optical data that can improve the accuracy of matching results.
  • the present invention improves the matching performance of the CT data and the optical data when reconstructing the three-dimensional model of the internal and external structure of the object, to derive surface information containing heterogeneous noise, and to calculate the vertices that do not need to be considered.
  • Another object of the present invention is to provide a method and apparatus for improving the matching performance of CT data and optical data, which can solve the problem of disturbing convergence due to an outlier.
  • the present invention improves the matching performance of CT data and optical data to construct a three-dimensional model with high accuracy within a short time, thereby efficiently performing lesion diagnosis, preoperative simulation, and surgical guide using augmented reality using internal and external information of an object.
  • Another object of the present invention is to provide a method and an apparatus for improving the matching performance of CT data and optical data, which can be performed by using the same method.
  • a method of improving matching performance between CT data and optical data includes: an initial matching step of performing initial matching by applying a plurality of corresponding points to CT data and optical data in the matching performance improving device;
  • the surface vertex candidate extraction step of extracting the surface vertex candidates of the CT data and the optical data which has been performed, calculates an error measure of the extracted surface vertex candidates, and for each surface vertex candidates of the CT data and optical data Performing a vertex sampling based on the calculated error value to remove invalid vertices, a matching result calculating step of calculating a matching result based on the sampling result, and performing matching based on the calculated final matching result And a matching performing step of reconstructing the three-dimensional model.
  • the initial matching may be performed by applying three pairs of corresponding points to the CT data and the optical data.
  • Measure 1 is calculated based on a CT value and Measure 2 representing a curvature determined according to a geometric shape of a point set around a corresponding position.
  • the noise is removed, but it is determined that noise has a large change in ambient intensity at each position using Measure 1 and a large change in curvature at each position is measured using Noise Measure 2 as noise, and in the case of the optical data, By using Measure 2, it is determined that the change in the curvature of the surroundings is large at each position as noise and is removed.
  • the reason for determining the vertex with large curvature as noise by using Measure 2 at the optical data surface vertex is that the larger the curvature is, the more difficult the scanner can accurately scan the portion.
  • the matching result calculating step may also include a matching point calculation step of calculating a corresponding point of the optical data surface vertex with respect to the surface vertex candidate of the CT data using the current matching result, and comparing the corresponding pairs of the calculated pairs to invalid matching.
  • a matching result determination step of determining whether to match, a matching pair removing step of removing the corresponding pair if it is an invalid match, and a matching result calculating step of calculating a matching result of the current step using the valid matching pair; Is repeatedly performed until the repetition termination condition is not satisfied.
  • the repetition termination condition is characterized in that there are three or less valid pairs, a predetermined number of repetitions, or a conversion matrix converges.
  • the determination of whether the match is invalid may be performed by comparing Measure 2, a characteristic representing curvature determined by the geometric shape of the point set around the corresponding pair of each corresponding pair, and further comparing the distance between vertices of each corresponding pair. It is characterized by determining whether or not an invalid match.
  • the initial matching unit for performing the initial matching by applying a plurality of corresponding points to the CT data and the optical data
  • CT performing the initial matching
  • a surface vertex extracting unit extracting surface vertex candidates of data and optical data, calculating an error measure of the extracted surface vertex candidates, and calculating the calculated error value for each CT data and surface vertex candidates of the optical data
  • a vertex sampling unit that removes invalid vertices by performing vertex sampling
  • a matching result calculating unit calculating a matching result based on the sampling result, and reconstructing a three-dimensional model by performing matching based on the calculated final matching result
  • a matching processing unit for performing the initial matching by applying a plurality of corresponding points to the CT data and the optical data
  • a surface vertex extracting unit extracting surface vertex candidates of data and optical data, calculating an error measure of the extracted surface vertex candidates, and calculating the calculated error value for each CT data and surface vertex candidates of the optical data
  • a vertex sampling unit that removes invalid vertices by performing vertex sampling
  • the initial matching unit may perform initial matching by applying three pairs of corresponding points to the CT data and the optical data.
  • the vertex sampling unit in the case of the CT data, in the case of the CT data, represents a curvature determined according to Measure 1 calculated based on a CT value and a geometric shape of a point set around a corresponding position. Noise is removed by using Measure 2, and the noise is determined to have a large change in ambient intensity at each location using Measure 1 and a large change in curvature at each location using Measure 2 as noise. In the case of the optical data, it is determined that the change in the curvature of the surroundings at each position is large as noise using Measure 2 to remove the noise.
  • the matching result calculating unit may calculate a corresponding point of the optical data surface vertex with respect to the surface vertex candidate of the CT data by using the current matching result, compare each of the calculated pairs, and determine whether the matching is invalid. If the match is not valid, the method further includes removing the corresponding pair and calculating a matching result of the current step by using the valid matching pair, and performing the repetition until the repetition termination condition is not satisfied. Or 3 or less valid pairs, a predetermined number of repetitions, or a convergence matrix.
  • the matching result calculating unit compares Measure 2, which is a characteristic indicating curvature determined according to the geometric shape of the point set around the corresponding position of each pair when determining whether the match is invalid, and further corresponds to each correspondence. It is characterized by comparing the distance between the vertices of the pair to determine whether an invalid match.
  • the method and apparatus for improving the matching performance of the CT data and the optical data of the present invention when reconstructing the internal and external structures of an object in three dimensions, only some highly reliable vertices are used without using all surface vertex information.
  • the time required for matching can be greatly shortened, the complexity of the matching process can be reduced, and the accuracy of the matching result can be improved.
  • the present invention improves the matching performance of the CT data and the optical data, thereby deriving surface information including the inhomogeneous noise generated in the past, calculating vertices that do not need to be considered, and converging due to outliers. There is an effect that can solve the interruption.
  • the present invention has the effect of performing a lesion diagnosis, pre-operative simulation, a surgical guide using augmented reality using the internal and external information of the object through a three-dimensional model configured with high accuracy within a short time.
  • FIG. 1 is a view for explaining a method that can determine the vertices of high reliability in the CT data and optical data proposed in the present invention.
  • FIG. 2 is a view for explaining an example of a noise removal process using Measure 1 (Uncertainty) proposed in the present invention.
  • FIG 3 is a view for explaining an example of a noise removal process using Measure 2 (Curvature) proposed in the present invention.
  • FIG. 4 is a diagram schematically illustrating a configuration of an apparatus for improving matching performance of CT data and optical data according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing the configuration of the matching performance improving apparatus of FIG. 4 in more detail.
  • FIG. 6 is a flowchart illustrating an operation process of a method of improving matching performance of CT data and optical data according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating an operation process of calculating the matching result of FIG. 6 in more detail.
  • FIG. 8 is a diagram for describing performing a plurality of corresponding point inputs for initial matching.
  • FIG. 9 is a diagram illustrating an example of an initial optical data surface candidate.
  • FIG. 10 illustrates an example of an optical data surface candidate after noise is removed by using Measure 2 (Curvature) proposed in the present invention.
  • FIG. 11 is a diagram illustrating an example of an optical data surface candidate used for calculating an actual matching result.
  • FIG. 12 is a diagram illustrating an example of a final matching result.
  • the necessity of the present invention is applied to a method of determining a vertex with high reliability rather than using all the vertex information extracted as in the conventional matching method.
  • FIG. 1 is a view for explaining a method that can determine the high reliability in the CT data and optical data proposed in the present invention
  • Figures 2 and 3 are Measure 1 (Uncertainty) and Measure 2 proposed in the present invention
  • Measure 1 is calculated based on the CT value (intensity) and measures representing the curvature (Curvature) determined according to the geometric shape of the point set around the position Two ways are suggested.
  • Measure 1 and Measure 2 are used to determine reliable vertices in CT data
  • Measure 2 is used to determine reliable vertices in optical data.
  • FIG. 1 is a view for explaining a method for determining reliable vertices in CT data and optical data proposed in the present invention
  • FIG. 1 (a) shows CT values among point sets extracted from CT data.
  • Figure 1 is a measure of the probability of noise using Measure 1 calculated based on Figure 1 (b)
  • (c) is the geometric of the point set around the corresponding position among the point set or mesh point set extracted from the CT data It is a figure measuring the possibility of noise using Measure 2 which shows the curvature determined according to shape. Highly likely noise means low reliability.
  • Measure 1 is a value calculated based on the CT value (intensity) and can be used only in the CT data.
  • CT data is data having a form in which an intensity is filled in a space divided by a grid. to be.
  • noise is generated due to the physical problem mentioned in the conventional problem, and this noise often occurs suddenly larger in intensity than the surrounding values. That is, Measure 1 represents a large value when a change in intensity is large at each position, and a point having a high probability of noise may be distinguished using the measured value.
  • FIG. 2 is a view for explaining an example of a noise removing process using the Measure 1 (Uncertainty) proposed in the present invention, a point set extracted as iso-value from CT data (the stronger the green the higher the uncertainty (Uncertainty) Figure 1 shows the iso-points after removing points with high uncertainty (Uncertainty) using Measure 1.
  • Measure 2 is a characteristic indicating curvature determined according to the geometric shape of a point set (iso-Point extracted from CT data, a point forming a mesh) around a corresponding position. That is, the degree of bending of the surface around the location is shown. Therefore, Measure 2 may be used as one of criteria for determining whether two points are geometrically similar in shape when determining a correspondence between an input mesh point and an iso-point extracted from CT. In addition, when Measure2 appears very large in a narrow region, it may be determined that the corresponding position is likely to be noise.
  • Measure 2 shows the set of input mesh points after removing noise.
  • the noise is removed using Measure 1 calculated based on the CT value (intensity) and Measure 2 representing the curvature (Curvature) determined according to the geometric shape of the point set around the position in the case of CT data,
  • Measure 2 representing the curvature (Curvature) determined according to the geometric shape of the point set around the position in the case of CT data
  • FIG. 4 is a diagram schematically illustrating a configuration of an apparatus for improving matching performance of CT data and optical data according to an embodiment of the present invention.
  • the present invention includes a matching performance enhancing apparatus 100, an image photographing apparatus 200, a database 300, and a display apparatus 400.
  • the CT image of the object to be photographed in the image recording apparatus 200 is transmitted to the matching performance improving apparatus 100 (1), At the same time, the optical data of the object to be photographed is photographed and transmitted to the matching performance improving apparatus 100 (2).
  • the matching performance enhancing apparatus 100 extracts the surface vertices of the CT data and the optical data input from the image photographing apparatus 200 based on the proposed method (3), and then uses the extracted vertices to generate the CT data and the optical.
  • Data matching is performed (4), the 3D model is reconstructed based on the matching result, and stored in the database 300 (5), and the display apparatus 400 stores the 3D model which is the final matching result. Display it through the user for confirmation (6).
  • the matching performance enhancing apparatus 100 has an advantage of CT data that can reconstruct an internal and external structure in three dimensions when the CT data photographed by the image photographing apparatus 200 and the optical data are matched using an ICP algorithm. It is to improve the matching performance of CT data and optical data by taking advantage of high precision optical data with 3D surface to be reconstructed evenly, and only some highly reliable vertices do not need to use all surface vertex information as conventionally. Because the matching is performed, the time can be reduced while increasing the accuracy of the reconstruction results of the 3D model.
  • the matching performance enhancing apparatus 100 performs initial matching by applying a plurality of corresponding points to the CT data and the optical data received from the image photographing apparatus 200, and performs surface matching from the CT data and the optical data on which the initial matching is performed. Extract the vertex candidates. After sampling the surface vertex candidates of the CT data and the optical data to remove the invalid vertices, the CT data and the optical data are matched only based on the valid vertex information, and based on the matching result, The reconstruction is performed and stored in the database 300 or in a storage device provided by itself, and displayed through the display device 400 when necessary.
  • the matching performance enhancing apparatus 100 derives surface information including heterogeneous noise generated in the conventional matching process, calculates vertices that do not need to be considered, and prevents convergence due to outliers. The problem can be solved. As a result, the time required for matching is greatly reduced, the complexity of the matching process is reduced, and the accuracy of the matching result can be improved.
  • the matching performance enhancing apparatus 100 may improve the matching performance of CT data and optical data to construct a three-dimensional model with high accuracy in a short time, so that lesion diagnosis, preoperative simulation, and augmentation using internal and external information of an object may be performed. Surgery guide using the reality can be performed efficiently.
  • the image capturing apparatus 200 collectively refers to equipment such as a known CT camera, scanner, etc., is connected to the matching performance enhancing apparatus 100, and is obtained by projecting an object to be photographed by X-ray from various angles.
  • the CT data is provided to the matching performance improving device 100, and the optical data of a photographing target object photographed by a scanner or the like is provided to the matching performance improving device 100.
  • the database 300 stores and manages CT data and optical data photographed for each object provided by the image capturing apparatus 200 in the matching performance improving apparatus 100, as well as the matching performance improving apparatus 100. We store and manage the reconstructed 3D model according to the matching result in.
  • the database 300 stores and updates various operation programs for improving the matching performance used in the matching performance improving apparatus 100.
  • the display device 400 is a monitor such as a conventional LCD, LED, etc., and displays a three-dimensional model reconstructed according to the matching result of the CT data and the optical data in the matching performance improving apparatus 100 on a screen so that the user Make sure to check.
  • FIG. 5 is a diagram illustrating the configuration of the matching performance improving apparatus 100 of FIG. 4 in more detail.
  • the matching performance improving apparatus 100 includes a CT data input unit 110, an optical data input unit 120, an initial matching unit 130, a surface vertex extracting unit 140, and a vertex sampling unit ( 150, a matching result calculator 160, a matching processor 170, a storage unit 180, a controller 190, and the like.
  • the matching performance improving apparatus 100 may further include a power supply unit for supplying operation power to each component, an input unit for performing key signal input for setting various functions, and the like.
  • the CT data input unit 110 receives CT data of a specific object photographed by the CT imager from the image capturing apparatus 200 and transmits the CT data to the controller 190.
  • the optical data input unit 120 receives optical data of a specific object photographed using the scanner in the image capturing apparatus 200 and transmits the optical data to the controller 190.
  • each of the CT data input unit 110 and the optical data input unit 120 converts CT data and optical data provided from the image photographing apparatus 200 into data for use in the matching performance enhancing apparatus 100. Perform pretreatment.
  • the initial matching unit 130 performs initial matching by applying a plurality of corresponding points to the CT data provided from the CT data input unit 110 and the optical data provided from the optical data input unit 120.
  • the initial matching unit 130 has been described as an example of performing initial matching by applying three pairs of corresponding points to the CT data and the optical data, but the present invention is not limited thereto. Note that it can be applied.
  • the surface vertex extracting unit 140 extracts the surface vertex candidates of the CT data and the optical data which have been initially matched through the initial matching unit 130. For example, in the case of the CT data, surface vertex candidates are extracted based on an iso-surface based on CT values.
  • the vertex sampling unit 150 calculates an error measure of the surface vertex candidate extracted by the surface vertex extracting unit 140, and calculates the calculated error value for the surface vertex candidates of the CT data and the optical data. Based on the vertex sampling, we remove the invalid vertices.
  • the vertices extracted from the CT data have Measure 1 and Measure 2 calculated from the CT data, and the vertices extracted from the optical data have Measure 2 calculated based on the geometric distribution of the vertices.
  • the vertex sampling unit 150 calculates curvature determined according to Measure 1 calculated based on the CT value and the geometric shape of the point set around the position in the case of the CT data. Remove the noise using Measure 2, which is shown. That is, noise 1 determines that the change in the surrounding value (ie intensity) is large at each position using Measure 1 and the change in the curvature of the surrounding at each position is large using Noise Measure 2 is removed.
  • the vertex sampling unit 150 determines that the change in the curvature of the surroundings is large as noise by using only Measure 2, unlike the CT data. This is because Measure 1 is calculated based on intensity and can only be calculated in CT data.
  • the matching result calculator 160 calculates a matching result based on the sampling result performed by the vertex sampling unit 150 and provides the matching result to the controller 190.
  • the matching result calculating unit 160 calculates the corresponding points of the optical data surface vertices with respect to the surface vertex candidates of the CT data using the current matching results, and then compares the corresponding pairs. To determine if there is an invalid match. If it is determined that the match is invalid, the corresponding pair is removed, and then the matching result of the current step is calculated using the valid pair. The calculation of the matching result is performed repeatedly until the repeat termination condition is not satisfied. In this case, the repetition end condition is that when there are three or less valid pairs (three minimum valid pairs for calculating the transformation matrix (ie, matching result)), and when the predetermined number of iterations is reached, the transformation matrix converges (that is, before This means that the repetition order and the result are the same).
  • the matching result calculating unit 160 determines whether the match is invalid, a measure representing a curvature determined according to a geometric shape of a point set around a corresponding position of each corresponding pair of CT data and optical data is measured. Compare 2 and further compare the distances between the vertices of each pair (ie, determine that they are not valid if the distance between the pairs of pairs is too large) to determine whether they match.
  • the matching processor 170 reconstructs the 3D model by performing matching based on the final matching result calculated by the matching result calculator 160.
  • the storage unit 180 stores various operation programs used in the matching performance improving apparatus 100, and updates the respective operation programs through the database 300.
  • the storage unit 180 stores CT data and optical data photographed by the image capturing apparatus 200, and stores a 3D model reconstructed by the matching processing unit 170.
  • the control unit 190 is a part that collectively controls the operation of the matching performance improving device 100, CT data input and pre-processing in the CT data input unit 110, optical data input in the optical data input unit 120 And pre-processing, and storing the storage unit 170 of the CT data and optical data.
  • control unit 190 is the initial matching of the CT data and the optical data by applying a plurality of corresponding points in the initial matching unit 130, the initial matching of the CT data and the optical data in the surface vertex extraction unit 140 Extracting vertex candidates, performing vertex sampling on surface vertex candidates of respective CT data and optical data in the vertex sampling unit 150, and controlling the elimination of invalid vertices.
  • controller 190 calculates a final matching result using the vertex sampling result in the matching result calculating unit 160, reconstructs and reconstructs a 3D model matched based on the final matching result in the matching processing unit 170. Controls the screen display through the display device 400 of the storage unit 180 or the database 300 for the stored and reconstructed 3D model.
  • FIGS. 6 and 7 are flowcharts showing in detail the operation of the method for improving the matching performance of the CT data and the optical data according to an embodiment of the present invention
  • Figures 8 to 12 are processing results according to the performance of each step of the present invention One example of each drawing.
  • the matching performance enhancing apparatus 100 receives CT data photographed by a CT imager and optical data photographed by a scanner from the image photographing apparatus 200 with respect to the same object.
  • the matching performance enhancing apparatus 100 performs initial matching by applying a plurality of corresponding points to the CT data and the optical data received from the image photographing apparatus 200 (S100). In this case, it is preferable that the matching performance improving apparatus 100 performs initial matching by applying three pairs of corresponding points to the CT data and the optical data. For example, as shown in FIGS. 8A and 8B, three corresponding points required for initial matching are applied.
  • the matching performance enhancing apparatus 100 extracts the surface vertex candidates of the CT data and the optical data that performed the initial matching (S200).
  • FIG. 9 is an example of a surface vertex candidate of initial optical data.
  • the matching performance enhancing apparatus 100 calculates an error measure of the extracted surface vertex candidate (S300). That is, in the case of the CT data, Measure 1, which is calculated based on the CT value (intensity), and Measure 2 which represents the curvature (Curvature) determined according to the geometric shape of the point set around the corresponding position, are identified.
  • the matching performance enhancing apparatus 100 performs vertex sampling based on the error value calculated in step S300 on the respective CT data and the surface vertex candidates of the optical data extracted in step S200 to remove invalid vertices. (S400). That is, in the case of CT data, noise is determined by removing a large change in the surrounding value (ie intensity) at each position using Measure 1 and a large change in the curvature at each position using Measure 2 as noise. In the case of using only Measure 2, it is determined that the change in the curvature of the surroundings at each position is large as noise and removed.
  • FIG. 10 is an optical data surface vertex candidate after noise is removed using Measure 2
  • FIG. 11 is an optical data surface vertex candidate used for calculating the actual matching result to be performed in the next step S500.
  • the matching performance enhancing apparatus 100 calculates a matching result based on the sampling result (S500).
  • the matching performance enhancing apparatus 100 calculates a corresponding point of the optical data surface vertex with respect to the surface vertex candidate of the CT data using the current matching result (S510).
  • the corresponding surface pairing candidate is compared to determine whether the current candidate for surface correction is not valid (S520).
  • the determination of whether the match is invalid in operation S530 may be performed by comparing Measure 2, which is a characteristic representing curvature determined according to the geometric shape of the point set around the corresponding position of each pair, and further vertices of each pair. By comparing the distance between the two to determine whether the match is invalid.
  • the matching performance improving apparatus 100 removes the corresponding pair (S540), and calculates the matching result of the current step using the valid pair. (S550).
  • the matching performance enhancing apparatus 100 determines whether there is a surface vertex candidate for calculating the matching result (S560), and repeats the process after step S510 until there is no vertex candidate for the surface for calculating the matching result. To do it.
  • the matching performance improving apparatus 100 determines whether the repetition termination condition is satisfied (for example, when there are three or less valid pairs, a predetermined number of repetitions, or a transformation matrix converges). S560), and after the step S510 is repeatedly performed until the repetition end condition is not satisfied.
  • the matching performance enhancing apparatus 100 reconstructs the 3D model by performing matching based on the final matching result (S600).
  • FIG. 12 is a diagram illustrating a result of matching performed based on the final matching result.
  • the 3D model reconstructed through the step S600 may be stored in the database 300 or in a storage device provided by itself, and displayed on a screen through the display device 400 so that the user can check it.
  • the matching of CT data and optical data is performed using only some reliable vertices without using all surface vertex information when reconstructing the internal and external structures of an object in three dimensions, the time required for matching is reduced, and the matching is performed. The complexity of the process can be reduced and the accuracy of matching results can be increased.
  • surface information including non-homogeneous noise generated in the related art can be derived, computed to vertices that do not need to be considered, and solve the problem of preventing convergence due to outliers.
  • lesion diagnosis, preoperative simulation, and surgical guide using augmented reality can be performed by using a three-dimensional model configured with high accuracy within a short time.

Abstract

The present invention relates to a method for improving CT data and optical data matching performance, and a device thereof and, more specifically, to: a method using CT data and optical data so as to perform data matching between both types of data when three-dimensionally reconstructing internal/external structures of an object, thereby reducing the time required for matching, reducing processing complexity, and improving the accuracy of match results; and a device thereof.

Description

CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치Method and device for improving matching performance of CT data and optical data
본 발명은 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치에 관한 것으로, 더욱 상세하게는 물체의 내외부 구조를 3차원으로 재구성할 때 CT 데이터와 광학 데이터를 사용하여 양자 사이의 데이터 정합을 수행함으로써, 정합에 소요되는 시간을 줄이고, 처리 복잡도를 줄이며, 정합 결과의 정확도를 향상시킬 수 있는 방법과 그 장치에 관한 것이다.The present invention relates to a method and apparatus for improving the matching performance of CT data and optical data, and more particularly, to perform data matching between CT and optical data by reconstructing the internal and external structures of an object in three dimensions. The present invention relates to a method and an apparatus capable of reducing the time required for matching, reducing processing complexity, and improving the accuracy of matching results.
일반적으로 CT(Computed Tomography)란 종래의 X선 장치로는 얻을 수 없던 제품의 구조나 조직 상태에 대한 정보를 화상으로 구현하는 것으로서, 대상 제품을 여러 각도에서 X-ray로 투사하여 얻은 영상을 조합하여 3차원의 영상으로 구현하는 기술이다.In general, CT (Computed Tomography) is an image that provides information about the structure and tissue state of a product that cannot be obtained by a conventional X-ray apparatus. It is a combination of images obtained by projecting a target product by X-ray from various angles. It is a technology to realize a three-dimensional image.
이러한 CT 데이터는 물체 내외부 구조를 3차원으로 재구성하는 것이 가능한 장점을 가지고 있지만, X-ray의 물리적인 특성으로 인하여 재질 및 구조적 복잡도에 따라 표면이 고르게 재구성되지 않는 단점이 있다.Such CT data has the advantage that the internal and external structures can be reconstructed in three dimensions, but due to the physical properties of the X-ray, the surface is not evenly reconstructed according to material and structural complexity.
또한 광학 데이터는 CT 데이터에 비교하여 재구성되는 3차원 표면이 고르게 표현되고 정밀도가 높은 장점을 가지고 있지만, 스캐너에 노출되는 빛반사 영역의 표면만 재구성이 가능한 단점이 있다.In addition, optical data has an advantage that the three-dimensional surface to be reconstructed compared to CT data is evenly expressed and has high precision, but only the surface of the light reflection area exposed to the scanner can be reconstructed.
한편, CT 데이터와 광학 데이터의 장점을 활용하여 물체의 내외부 구조를 3차원으로 재구성하면, 물체의 내외부 정보를 활용한 병변 진단, 수술 전 시뮬레이션(Image-Guided Surgery), 증강현실을 이용한 수술 가이드 등과 같이 다양하게 활용하는 것이 가능해진다.On the other hand, by reconstructing the internal and external structure of the object in three dimensions by using the advantages of CT data and optical data, it is possible to diagnose lesions using the internal and external information of the object, pre-operative simulation (Image-Guided Surgery), surgical guide using augmented reality It can be used in various ways together.
그러나 기존의 CT 데이터와 광학 데이터는 각각의 장점이 있음에도 불구하고 정합을 수행할 경우 다음과 같은 몇 가지 한계가 있었다.However, although the conventional CT data and the optical data have their respective advantages, there are some limitations when performing matching.
예를 들어, 정합을 위하여 CT 데이터로부터 표면을 추출할 경우에는, X-ray 빔 경화(Beam-Hardening)로 인하여 X-ray가 통과하는 물질의 특성과 거리에 따른 비선형 감쇠(attenuation)가 발생하였으며, 광자 결핍(Photon Starvation)으로 인하여 CT 데이터의 화면 모델 재구성시 밴드나 줄무늬(streak) 형상의 흰색 선이나 그림자, 또는 아티팩트(artifact)가 발생하였다.For example, when extracting the surface from the CT data for matching, non-linear attenuation occurred according to the characteristics and distance of the material through which X-rays pass due to X-ray beam hardening. Photon starvation caused bands, streaks, white lines, shadows, or artifacts to reconstruct the screen model of the CT data.
그리고 충분하지 못한 스캔 영상이나 저해상도 스캔 영상으로 인하여 CT 데이터의 화면 모델 재구성시 경계 부분이 흐리게(blurred) 재구성되는 부분용적효과(PVE, Partial Volume Effect)가 발생하였으며, 특히, 치과 데이터의 경우 다수의 보철로 인한 메탈 노이즈로 인하여 사용 가능한 표면 정보가 매우 제한적인 문제점이 있었다.In addition, due to insufficient scan image or low resolution scan image, a partial volume effect (PVE), in which the boundary part is blurred, is generated when reconstructing the screen model of the CT data. Due to the metal noise caused by the prosthesis, there was a problem that the available surface information is very limited.
상기 설명과 같이 CT 데이터로부터 표면을 추출할 경우의 한계 이외에, 단순히 CT 데이터와 광학 데이터의 정합 과정에서 ICP(Iterative Closest Point) 알고리즘을 적용할 경우에도 다음과 같은 한계가 있었다. 이때 상기 ICP 알고리즘은 어떠한 모델에 대한 측정 데이터가 있을 때 이 측정 데이터를 모델에 매칭하기 위해 스케일 변환, 회전, 이동을 계산하는 방법이다.As described above, in addition to the limitation of extracting the surface from the CT data, the following limitations exist when the ICP (Iterative Closest Point) algorithm is applied in the matching process between the CT data and the optical data. In this case, the ICP algorithm calculates scale transformation, rotation, and movement to match the measurement data to the model when there is measurement data for a model.
즉 종래의 ICP 알고리즘은 CT 데이터와 광학 데이터의 정합 과정에서 CT 데이터와 광학 데이터의 에러가 포함된 정점(vertex) 데이터의 특성을 고려하지 않고 도출된 표면 정점 데이터를 균일하게 규정하여 사용하기 때문에, 에러가 반영된 결과가 도출되는 것은 물론, 알고리즘 수행시 고려할 필요가 없는 정점까지 연산하거나 아웃라이어(outlier)로 인한 수렴 방해가 발생하는 등 정합 처리 과정이 매우 비효율적이었다.That is, the conventional ICP algorithm uniformly defines the surface vertex data derived without considering the characteristics of the vertex data including the error of the CT data and the optical data in the process of matching the CT data and the optical data. The matching process was very inefficient, as well as the results reflecting the error, as well as computing the vertices that do not need to be considered when performing the algorithm, or disturbing convergence due to outliers.
따라서 본 발명에서는 ICP 알고리즘을 이용하여 CT 데이터와 광학 데이터의 정합을 수행하는 과정에서 신뢰도 높은 정점을 추출하고, 추출된 정점의 샘플링을 통해 정합을 수행함으로써, CT 데이터 및 광학 데이터 각각의 표면 정점 정보를 모두 사용할 필요 없이 3차원 모델의 재구성 결과의 정확도를 높이면서 시간을 단축시킬 수 있는 방안을 제시하고자 한다.Therefore, in the present invention, by extracting the vertices with high reliability in the process of matching the CT data and the optical data using the ICP algorithm, and performing matching through sampling of the extracted vertices, the surface vertex information of each of the CT data and optical data This paper proposes a method to reduce the time while increasing the accuracy of the reconstruction results of the 3D model without using all of them.
다음으로 본 발명의 기술분야에 존재하는 선행기술에 대하여 간단하게 설명하고, 이어서 본 발명이 상기 선행기술에 비해서 차별적으로 이루고자 하는 기술적 사항에 대해서 기술하고자 한다.Next, the prior art existing in the technical field of the present invention will be briefly described, and then the technical matters to be made differently from the prior art will be described.
먼저 한국등록특허 제1785326호(2017.09.29.)는 치과 임플란트용 서지컬 가이드를 이용한 시술 안내정보 제공시스템에 관한 것으로, 피시술자의 구강 내부에 대한 CT 촬영 이미지 및 오랄스캔 이미지가 획득되되, 상기 획득된 CT 촬영 이미지 및 오랄스캔 이미지의 정합을 통해 3차원 통합 이미지가 획득되는 제1단계; 상기 획득된 3차원 통합 이미지를 기반으로 기설정된 임플란트 식립위치에 대응되는 픽스츄어가 선택되어 가 상 배치되는 제2단계; 상기 가상 배치된 픽스츄어에 디지털 드릴 라이브러리부터 추출된 가상 드릴 이미지가 중첩 배치되되, 상기 배치된 가상 드릴 이미지에 대응되는 부분이 제거된 치조골 및 상기 픽스츄어로부터 중첩부피가 산출되어 최적결합부피와 비교됨에 따라 시술 드릴 이미지가 선택되는 제3단계; 및 상기 3차원 통합 이미지에 따라 상기 피시술자의 구강 내부를 감싸는 고정홈부가 일면에 형성되되 시술공의 드릴링을 가이드하는 가이드홀이 형성된 서지컬 가이드가 준비되되, 상기 가이드홀별로 상기 시술 드릴 이미지가 매칭되어 표시된 드릴링 리포트가 출력되는 제4단계를 포함하는 것을 기술적 특징으로 한다.First, Korean Patent No. 1785326 (2017.09.29.) Relates to a procedure guide information providing system using a surgical guide for dental implants. CT images and oral scan images of the inside of the oral cavity of the subject are obtained, A first step of obtaining a three-dimensional integrated image through registration of the CT scan image and the oral scan image; A second step of selecting and virtually arranging a fixture corresponding to a predetermined implant placement position based on the obtained three-dimensional integrated image; The virtual drill image extracted from the digital drill library is superimposed on the virtually arranged fixture, and the overlapped volume is calculated from the alveolar bone and the fixture from which the portion corresponding to the virtual drill image is removed is compared with the optimal combined volume. A third step of selecting a procedure drill image accordingly; And a surgical guide having a guide hole for guiding the drilling of the procedure hole is formed on one surface of the fixed groove surrounding the inside of the mouth of the subject according to the 3D integrated image, and the procedure drill image is matched for each guide hole. And a fourth step of outputting the displayed drilling report.
하지만 상기 선행기술에는 단순히 CT 촬영 이미지 및 오랄스캔 이미지의 정합을 통해 3차원 통합 이미지를 획득하는 기재만이 있을 뿐, 본 발명에서 제시하고 있는 CT 데이터와 광학 데이터를 정합할 때, 추출하는 표면 정점 정보를 모두 사용하지 않고 신뢰도 높은 정점만을 사용하여 정확성과 시간을 단축할 수 있는 기술적 구성에 대하여 기재하고 있지 않기 때문에 기술적 차이점이 분명하다.However, the prior art merely has a substrate for obtaining a three-dimensional integrated image by matching the CT scan image and the oral scan image, and the surface vertices extracted when the CT data and the optical data proposed in the present invention are matched. The technical difference is obvious because it does not describe a technical configuration that can reduce accuracy and time by using only reliable vertices without using all the information.
또한 한국공개특허 제2013-0098531호(2013.09.05.)는 씨티의 메탈 아티팩트 감소 방법에 관한 것으로, 씨티에 의한 투영 영상 획득 과정인 제 1 단계(S100)와, 상기 투영 영상을 입체 영상으로 재구성하는 과정인 제 2 단계(S200)와, 재구성 영상과 스캔 데이터 영상의 정합 과정인 제 3 단계(S300) 및 정합 결과를 이용해서 재구성 영상에서 메탈영역의 3차원 좌표를 확인하는 과정인 제 4 단계(S400)를 포함하는 것을 기술적 특징으로 한다.In addition, Korean Patent Application Publication No. 2013-0098531 (September 5, 2013) relates to a method of reducing metal artifacts of Citi, and reconstructs the projection image into a stereoscopic image and the first step (S100), which is a process of acquiring a projection image by Citi. A second step (S200) which is a process of performing a process, a third step (S300) which is a process of matching a reconstructed image and a scan data image, and a fourth step which is a process of checking three-dimensional coordinates of the metal region in the reconstructed image Technical features include (S400).
하지만 비균질의 노이즈가 포함된 표면정보가 도출되고 고려할 필요가 없는 정점까지 연산하거나 아웃라이어로 인한 수렴을 방해하는 문제를 해결하기 위하여, 모든 표면 정점 정보를 사용할 필요없이 일부 신뢰도 높은 정점만을 사용하여 처리하는 본 발명의 기술적 구성은, CT에 의한 영상과 스캔 데이터 영상의 정합을 수행하는 내용의 기재만이 제시된 상기 선행기술과 비교해 볼 때 기술적 특징의 차이점이 분명하다.However, in order to solve the problem that surface information including non-uniform noise is derived and do not need to be considered, or to solve convergence caused by outliers, only some reliable vertices are processed without using all surface vertex information. The technical configuration of the present invention is clearly different from the technical features when compared with the above-described prior art in which only a description of the contents for performing matching between the CT image and the scan data image is presented.
즉 상기 선행기술들은 CT 촬영 이미지 및 오랄스캔 이미지의 정합을 통해 3차원 통합 이미지를 획득하는 구성, CT에 의한 영상과 스캔 데이터 영상의 정합을 수행하는 구성을 제시하고 있지만, 본 발명의 기술적 특징인 CT 데이터 및 광학 데이터로부터 신뢰도 높은 정점을 추출하고, 추출된 정점의 샘플링을 통해 정합을 수행하여, 표면 정점 정보를 모두 사용할 필요 없이 3차원 모델을 재구성하는 구성에 대해서는 구체적인 기재가 없음은 물론, 이를 시사 또는 암시하지도 않으므로 기술적 차이점이 분명한 것이다.That is, the above prior arts suggest a configuration of acquiring a three-dimensional integrated image through registration of a CT photographed image and an oral scan image, and a configuration of performing a registration of a CT image and a scan data image. There is no specific description of the configuration of reconstructing the three-dimensional model without having to use all the surface vertex information by extracting vertices from the CT data and the optical data, and performing matching through sampling of the extracted vertices. No technical implications are evident since they do not suggest or suggest.
본 발명은 상기와 같은 문제점을 해결하기 위해 창작된 것으로서, CT 데이터와 광학 데이터의 장점을 활용하여 물체의 내외부 구조를 3차원으로 재구성할 수 있도록 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치를 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, by utilizing the advantages of the CT data and the optical data method for improving the matching performance of the CT data and the optical data to reconstruct the internal and external structure of the object in three dimensions and its It is an object to provide a device.
또한 본 발명은 CT 데이터와 광학 데이터를 정합할 때, 모든 표면 정점 정보를 사용할 필요 없이 일부 신뢰도 높은 정점만을 사용하여 정합이 이루어지도록 함으로써, 정합에 소요되는 시간을 단축하고, 처리과정의 복잡도를 줄이며, 정합 결과의 정확성을 높일 수 있도록 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치를 제공하는 것을 다른 목적으로 한다.In addition, in the present invention, when the CT data and the optical data are matched, the matching is performed using only some reliable vertices without using all the surface vertex information, thereby reducing the time required for matching and reducing the complexity of the process. Another object is to provide a method and apparatus for improving the matching performance of CT data and optical data that can improve the accuracy of matching results.
또한 본 발명은 물체의 내외부 구조에 대한 3차원 모델을 재구성할 때 CT 데이터와 광학 데이터의 정합성능을 향상시킴으로써, 비균질의 노이즈가 포함된 표면정보가 도출되고, 고려할 필요가 없는 정점까지 연산하며, 아웃라이어(outlier)로 인한 수렴을 방해하는 문제를 해결할 수 있도록 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치를 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention improves the matching performance of the CT data and the optical data when reconstructing the three-dimensional model of the internal and external structure of the object, to derive surface information containing heterogeneous noise, and to calculate the vertices that do not need to be considered, Another object of the present invention is to provide a method and apparatus for improving the matching performance of CT data and optical data, which can solve the problem of disturbing convergence due to an outlier.
또한 본 발명은 CT 데이터와 광학 데이터의 정합성능을 향상시켜 빠른 시간 내에 정확도 높은 3차원 모델을 구성함으로써, 물체의 내외부 정보를 활용한 병변진단, 수술 전 시뮬레이션, 증강현실을 이용한 수술 가이드 등을 효율적으로 수행할 수 있도록 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치를 제공하는 것을 또 다른 목적으로 한다.In addition, the present invention improves the matching performance of CT data and optical data to construct a three-dimensional model with high accuracy within a short time, thereby efficiently performing lesion diagnosis, preoperative simulation, and surgical guide using augmented reality using internal and external information of an object. Another object of the present invention is to provide a method and an apparatus for improving the matching performance of CT data and optical data, which can be performed by using the same method.
본 발명의 일 실시예에 따른 CT 데이터와 광학 데이터의 정합성능 향상 방법은, 정합성능 향상 장치에서, CT 데이터와 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행하는 초기 정합 단계, 상기 초기 정합을 수행한 CT 데이터와 광학 데이터의 표면 정점 후보를 추출하는 표면 정점 후보 추출 단계, 상기 추출한 표면 정점 후보의 에러 값(error measure)을 계산하고, 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 상기 계산한 에러 값을 토대로 정점 샘플링을 수행하여 유효하지 않은 정점을 제거하는 정점 샘플링 단계, 상기 샘플링 결과를 토대로 정합 결과를 산출하는 정합 결과 산출 단계 및 상기 산출된 최종 정합 결과를 토대로 정합을 수행하여 3차원 모델을 재구성하는 정합 수행 단계를 포함하는 것을 특징으로 한다.According to one or more exemplary embodiments, a method of improving matching performance between CT data and optical data includes: an initial matching step of performing initial matching by applying a plurality of corresponding points to CT data and optical data in the matching performance improving device; The surface vertex candidate extraction step of extracting the surface vertex candidates of the CT data and the optical data which has been performed, calculates an error measure of the extracted surface vertex candidates, and for each surface vertex candidates of the CT data and optical data Performing a vertex sampling based on the calculated error value to remove invalid vertices, a matching result calculating step of calculating a matching result based on the sampling result, and performing matching based on the calculated final matching result And a matching performing step of reconstructing the three-dimensional model.
또한 상기 초기 정합 단계는, 상기 CT 데이터와 상기 광학 데이터에 세 쌍의 대응점을 적용하여 초기 정합을 수행하는 것을 특징으로 한다.In the initial matching step, the initial matching may be performed by applying three pairs of corresponding points to the CT data and the optical data.
또한 상기 정점 샘플링 단계는, 상기 CT 데이터의 경우, CT값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈를 제거하되, 상기 Measure 1을 이용하여 각 위치에서 주변의 인텐시티 변화가 큰 것과 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하며, 상기 광학 데이터의 경우, 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하는 것을 특징으로 한다. 이때 광학 데이터 표면 정점에서 Measure 2를 이용하여 곡률이 큰 정점을 노이즈로 판단하는 근거는, 곡률이 클수록 스캐너가 해당 부분을 정밀도 높게 스캔하기 어렵기 때문이다.In the vertex sampling step, for the CT data, Measure 1 is calculated based on a CT value and Measure 2 representing a curvature determined according to a geometric shape of a point set around a corresponding position. The noise is removed, but it is determined that noise has a large change in ambient intensity at each position using Measure 1 and a large change in curvature at each position is measured using Noise Measure 2 as noise, and in the case of the optical data, By using Measure 2, it is determined that the change in the curvature of the surroundings is large at each position as noise and is removed. In this case, the reason for determining the vertex with large curvature as noise by using Measure 2 at the optical data surface vertex is that the larger the curvature is, the more difficult the scanner can accurately scan the portion.
또한 상기 정합 결과 산출 단계는, 현재의 정합 결과를 사용하여 CT 데이터의 표면 정점 후보에 대하여 광학 데이터 표면 정점의 대응점을 계산하는 대응점 계산 단계, 상기 계산한 각각의 대응쌍을 비교하여 유효하지 않은 매칭 여부를 판단하는 매칭여부 판단 단계, 유효하지 않은 매칭이면 해당 대응쌍을 제거하는 대응쌍 제거 단계 및 유효한 대응쌍을 이용하여 현재 단계의 정합 결과를 계산하는 정합 결과 계산 단계를 포함하고, 상기 각 단계는 반복 종료 조건을 만족하지 않을 때까지 반복적으로 수행하며, 상기 반복 종료 조건은, 유효한 대응쌍이 3개 이하이거나, 미리 지정한 반복 횟수에 도달하거나, 변환 행렬이 수렴되는 경우인 것을 특징으로 한다.The matching result calculating step may also include a matching point calculation step of calculating a corresponding point of the optical data surface vertex with respect to the surface vertex candidate of the CT data using the current matching result, and comparing the corresponding pairs of the calculated pairs to invalid matching. A matching result determination step of determining whether to match, a matching pair removing step of removing the corresponding pair if it is an invalid match, and a matching result calculating step of calculating a matching result of the current step using the valid matching pair; Is repeatedly performed until the repetition termination condition is not satisfied. The repetition termination condition is characterized in that there are three or less valid pairs, a predetermined number of repetitions, or a conversion matrix converges.
또한 상기 유효하지 않은 매칭 여부의 판단은, 각 대응쌍의 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성인 Measure 2를 비교하고, 추가로 각 대응쌍의 정점 간 거리를 비교하여 유효하지 않은 매칭 여부를 판단하는 것을 특징으로 한다.In addition, the determination of whether the match is invalid may be performed by comparing Measure 2, a characteristic representing curvature determined by the geometric shape of the point set around the corresponding pair of each corresponding pair, and further comparing the distance between vertices of each corresponding pair. It is characterized by determining whether or not an invalid match.
아울러, 본 발명의 일 실시예에 따른 CT 데이터와 광학 데이터의 정합성능 향상 장치는, CT 데이터와 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행하는 초기 정합부, 상기 초기 정합을 수행한 CT 데이터와 광학 데이터의 표면 정점 후보를 추출하는 표면 정점 추출부, 상기 추출한 표면 정점 후보의 에러 값(error measure)을 계산하고, 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 상기 계산한 에러 값을 토대로 정점 샘플링을 수행하여 유효하지 않은 정점을 제거하는 정점 샘플링부, 상기 샘플링 결과를 토대로 정합 결과를 산출하는 정합 결과 산출부 및 상기 산출된 최종 정합 결과를 토대로 정합을 수행하여 3차원 모델을 재구성하는 정합 처리부를 포함하는 것을 특징으로 한다.In addition, the improved matching performance of the CT data and the optical data according to an embodiment of the present invention, the initial matching unit for performing the initial matching by applying a plurality of corresponding points to the CT data and the optical data, CT performing the initial matching A surface vertex extracting unit extracting surface vertex candidates of data and optical data, calculating an error measure of the extracted surface vertex candidates, and calculating the calculated error value for each CT data and surface vertex candidates of the optical data A vertex sampling unit that removes invalid vertices by performing vertex sampling, a matching result calculating unit calculating a matching result based on the sampling result, and reconstructing a three-dimensional model by performing matching based on the calculated final matching result And a matching processing unit.
또한 상기 초기 정합부는, 상기 CT 데이터와 상기 광학 데이터에 세 쌍의 대응점을 적용하여 초기 정합을 수행하는 것을 특징으로 한다.The initial matching unit may perform initial matching by applying three pairs of corresponding points to the CT data and the optical data.
또한 상기 정점 샘플링부는, 상기 CT 데이터의 경우, 상기 CT 데이터의 경우, CT값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈를 제거하되, 상기 Measure 1을 이용하여 각 위치에서 주변의 인텐시티 변화가 큰 것과 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하며, 상기 광학 데이터의 경우, 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하는 것을 특징으로 한다.In addition, the vertex sampling unit, in the case of the CT data, in the case of the CT data, represents a curvature determined according to Measure 1 calculated based on a CT value and a geometric shape of a point set around a corresponding position. Noise is removed by using Measure 2, and the noise is determined to have a large change in ambient intensity at each location using Measure 1 and a large change in curvature at each location using Measure 2 as noise. In the case of the optical data, it is determined that the change in the curvature of the surroundings at each position is large as noise using Measure 2 to remove the noise.
또한 상기 정합 결과 산출부는, 현재의 정합 결과를 사용하여 CT 데이터의 표면 정점 후보에 대하여 광학 데이터 표면 정점의 대응점을 계산하고, 상기 계산한 각각의 대응쌍을 비교하여 유효하지 않은 매칭 여부를 판단하여 유효하지 않은 매칭이면 해당 대응쌍을 제거하고, 유효한 대응쌍을 이용하여 현재 단계의 정합 결과를 계산하는 것을 더 포함하며, 반복 종료 조건을 만족하지 않을 때까지 반복적으로 수행하며, 상기 반복 종료 조건은, 유효한 대응쌍이 3개 이하이거나, 미리 지정한 반복 횟수에 도달하거나, 변환 행렬이 수렴되는 경우인 것을 특징으로 한다.The matching result calculating unit may calculate a corresponding point of the optical data surface vertex with respect to the surface vertex candidate of the CT data by using the current matching result, compare each of the calculated pairs, and determine whether the matching is invalid. If the match is not valid, the method further includes removing the corresponding pair and calculating a matching result of the current step by using the valid matching pair, and performing the repetition until the repetition termination condition is not satisfied. Or 3 or less valid pairs, a predetermined number of repetitions, or a convergence matrix.
또한 상기 정합 결과 산출부는, 상기 유효하지 않은 매칭 여부를 판단할 때, 각 대응쌍의 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성인 Measure 2를 비교하고, 추가로 각 대응쌍의 정점 간 거리를 비교하여 유효하지 않은 매칭 여부를 판단하는 것을 특징으로 한다.In addition, the matching result calculating unit compares Measure 2, which is a characteristic indicating curvature determined according to the geometric shape of the point set around the corresponding position of each pair when determining whether the match is invalid, and further corresponds to each correspondence. It is characterized by comparing the distance between the vertices of the pair to determine whether an invalid match.
이상에서와 같이 본 발명의 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치에 따르면, 물체의 내외부 구조를 3차원으로 재구성할 때 모든 표면 정점 정보를 사용할 필요 없이 일부 신뢰도 높은 정점만을 사용하여 CT 데이터와 광학 데이터의 정합이 이루어지도록 함으로써, 정합에 소요되는 시간을 크게 단축시키고, 정합처리 과정의 복잡도를 줄일 수 있으며, 정합 결과의 정확성을 높일 수 있는 효과가 있다.As described above, according to the method and apparatus for improving the matching performance of the CT data and the optical data of the present invention, when reconstructing the internal and external structures of an object in three dimensions, only some highly reliable vertices are used without using all surface vertex information. By matching the data with the optical data, the time required for matching can be greatly shortened, the complexity of the matching process can be reduced, and the accuracy of the matching result can be improved.
또한 본 발명은 CT 데이터와 광학 데이터의 정합성능을 향상시킴으로써, 종래에 발생되었던 비균질의 노이즈가 포함된 표면정보가 도출되고, 고려할 필요가 없는 정점까지 연산하며, 아웃라이어(outlier)로 인한 수렴을 방해하는 것을 해결할 수 있는 효과가 있다.In addition, the present invention improves the matching performance of the CT data and the optical data, thereby deriving surface information including the inhomogeneous noise generated in the past, calculating vertices that do not need to be considered, and converging due to outliers. There is an effect that can solve the interruption.
또한 본 발명은 빠른 시간 내에 정확도 높게 구성된 3차원 모델을 통해 물체의 내외부 정보를 활용한 병변진단, 수술 전 시뮬레이션, 증강현실을 이용한 수술 가이드 등을 수행할 수 있는 효과가 있다.In addition, the present invention has the effect of performing a lesion diagnosis, pre-operative simulation, a surgical guide using augmented reality using the internal and external information of the object through a three-dimensional model configured with high accuracy within a short time.
도 1은 본 발명에서 제안된 CT 데이터와 광학 데이터에서의 신뢰도 높은 정점을 판별할 수 있는 방식을 설명하기 위한 도면이다.1 is a view for explaining a method that can determine the vertices of high reliability in the CT data and optical data proposed in the present invention.
도 2는 본 발명에서 제안된 Measure 1(Uncertainty)을 이용한 노이즈 제거 과정의 예를 설명하기 위한 도면이다.2 is a view for explaining an example of a noise removal process using Measure 1 (Uncertainty) proposed in the present invention.
도 3은 본 발명에서 제안된 Measure 2(Curvature)를 이용한 노이즈 제거 과정의 예를 설명하기 위한 도면이다.3 is a view for explaining an example of a noise removal process using Measure 2 (Curvature) proposed in the present invention.
도 4는 본 발명의 일 실시예에 따른 CT 데이터와 광학 데이터의 정합성능 향상 장치의 구성을 개략적으로 나타낸 도면이다.4 is a diagram schematically illustrating a configuration of an apparatus for improving matching performance of CT data and optical data according to an embodiment of the present invention.
도 5는 상기 도 4의 정합성능 향상 장치의 구성을 보다 상세하게 나타낸 도면이다.FIG. 5 is a diagram showing the configuration of the matching performance improving apparatus of FIG. 4 in more detail.
도 6은 본 발명의 일 실시예에 따른 CT 데이터와 광학 데이터의 정합성능 향상 방법의 동작과정을 상세하게 나타낸 순서도이다.6 is a flowchart illustrating an operation process of a method of improving matching performance of CT data and optical data according to an embodiment of the present invention.
도 7은 상기 도 6의 정합 결과 산출의 동작과정을 보다 상세하게 나타낸 순서도이다.7 is a flowchart illustrating an operation process of calculating the matching result of FIG. 6 in more detail.
도 8은 초기 정합을 위하여 복수 개의 대응점 입력을 수행하는 것을 설명하기 위한 도면이다.8 is a diagram for describing performing a plurality of corresponding point inputs for initial matching.
도 9는 초기 광학 데이터 표면 후보의 일 예를 나타낸 도면이다.9 is a diagram illustrating an example of an initial optical data surface candidate.
도 10은 본 발명에서 제안된 Measure 2(Curvature)를 이용하여 노이즈를 제거한 후의 광학 데이터 표면 후보의 일 예를 나타낸 도면이다.FIG. 10 illustrates an example of an optical data surface candidate after noise is removed by using Measure 2 (Curvature) proposed in the present invention.
도 11은 실제 정합 결과 계산에 사용하는 광학 데이터 표면 후보의 일 예를 나타낸 도면이다.11 is a diagram illustrating an example of an optical data surface candidate used for calculating an actual matching result.
도 12는 최종 정합 결과의 일 예를 나타낸 도면이다.12 is a diagram illustrating an example of a final matching result.
이하, 첨부한 도면을 참조하여 본 발명의 CT 데이터와 광학 데이터의 정합성능 향상 방법 및 그 장치에 대한 바람직한 실시 예를 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다. 또한 본 발명의 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는 것이 바람직하다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the method and apparatus for improving the matching performance of the CT data and optical data of the present invention. Like reference numerals in the drawings denote like elements. In addition, specific structural to functional descriptions of the embodiments of the present invention are only illustrated for the purpose of describing the embodiments according to the present invention, and unless otherwise defined, all terms used herein including technical or scientific terms These have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined herein. It is preferable not to.
우선 본 발명의 상세한 구성 설명에 앞서, 종래의 정합 방식과 같이 추출하는 모든 정점 정보를 사용하는 것이 아닌 신뢰도 높은 정점을 판별하는 방식을 적용한 본 발명의 필요성에 대하여 설명한다.First, prior to the detailed configuration description of the present invention, the necessity of the present invention is applied to a method of determining a vertex with high reliability rather than using all the vertex information extracted as in the conventional matching method.
도 1은 본 발명에서 제안된 CT 데이터와 광학 데이터에서의 신뢰도 높은 정점을 판별할 수 있는 방식을 설명하기 위한 도면이며, 도 2와 도 3은 본 발명에서 제안된 Measure 1(Uncertainty)과 Measure 2(Curvature)를 이용한 노이즈 제거 과정의 예를 각각 설명하기 위한 도면이다.1 is a view for explaining a method that can determine the high reliability in the CT data and optical data proposed in the present invention, Figures 2 and 3 are Measure 1 (Uncertainty) and Measure 2 proposed in the present invention A diagram for describing an example of a noise removing process using (Curvature).
본 발명에서는 CT 데이터와 광학 데이터로부터 신뢰성 있는 정점을 추출하기 위하여, CT값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2의 두 가지 방식을 제안한다.In the present invention, in order to extract reliable vertices from the CT data and the optical data, Measure 1 is calculated based on the CT value (intensity) and measures representing the curvature (Curvature) determined according to the geometric shape of the point set around the position Two ways are suggested.
또한 본 발명에서는 CT 데이터에서의 신뢰도 높은 정점을 판별하기 위하여 Measure 1과 Measure 2를 사용하며, 광학 데이터에서의 신뢰도 높은 정점을 판별하기 위하여 Measure 2를 사용한다.In addition, in the present invention, Measure 1 and Measure 2 are used to determine reliable vertices in CT data, and Measure 2 is used to determine reliable vertices in optical data.
도 1은 본 발명에서 제안된 CT 데이터와 광학 데이터에서의 신뢰도 높은 정점을 판별할 수 있는 방식을 설명하기 위한 도면으로서, 도 1의 (a)는 CT 데이터에서 추출한 포인트 세트 중 CT값(intensity)을 기반으로 계산되는 Measure 1을 이용하여 노이즈일 가능성을 측정한 도면이며, 도 1의 (b)와 (c)는 CT 데이터에서 추출한 포인트 세트나 Mesh의 포인트 세트 중 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈일 가능성을 측정한 도면이다. 노이즈일 가능성이 높다는 것은 신뢰도가 낮다는 것을 의미한다.FIG. 1 is a view for explaining a method for determining reliable vertices in CT data and optical data proposed in the present invention, and FIG. 1 (a) shows CT values among point sets extracted from CT data. Figure 1 is a measure of the probability of noise using Measure 1 calculated based on Figure 1 (b) and (c) is the geometric of the point set around the corresponding position among the point set or mesh point set extracted from the CT data It is a figure measuring the possibility of noise using Measure 2 which shows the curvature determined according to shape. Highly likely noise means low reliability.
이때 상기 Measure 1은 CT 값(intensity)을 기반으로 계산되는 값이기 때문에 CT 데이터에서만 사용이 가능한 것으로서, 통상적인 CT 데이터는 그리드(grid)로 나누어진 공간에 값(intensity)이 채워진 형태를 가진 데이터이다. 이러한 CT 데이터에서는 종래의 문제점에서 언급한 물리적인 문제로 인한 노이즈가 발생하게 되는데, 이러한 노이즈는 주변 값들에 비하여 값(intensity)이 갑자기 크게 나타나는 경우가 빈번하다. 즉 상기 Measure 1은 각 위치에서 주변 값(intensity)의 변화가 큰 경우, 큰 값을 나타내며 이를 이용하여 노이즈일 가능성이 높은 포인트를 구분할 수 있다.In this case, Measure 1 is a value calculated based on the CT value (intensity) and can be used only in the CT data. In general, CT data is data having a form in which an intensity is filled in a space divided by a grid. to be. In such CT data, noise is generated due to the physical problem mentioned in the conventional problem, and this noise often occurs suddenly larger in intensity than the surrounding values. That is, Measure 1 represents a large value when a change in intensity is large at each position, and a point having a high probability of noise may be distinguished using the measured value.
도 2는 본 발명에서 제안한 상기 Measure 1(Uncertainty)을 이용한 노이즈 제거 과정의 일 예를 설명하기 위한 도면으로서, CT 데이터로부터 iso-value로 추출한 포인트 세트(이때 녹색이 강할수록 불확실성(Uncertainty)이 높음)에서 Measure 1을 이용하여 높은 불확실성(Uncertainty)을 가지는 포인트를 제거한 후의 iso-points를 나타내고 있다.2 is a view for explaining an example of a noise removing process using the Measure 1 (Uncertainty) proposed in the present invention, a point set extracted as iso-value from CT data (the stronger the green the higher the uncertainty (Uncertainty) Figure 1 shows the iso-points after removing points with high uncertainty (Uncertainty) using Measure 1.
또한 상기 Measure 2는 해당 위치 주변의 포인트 세트(CT 데이터로부터 추출한 iso-Point, Mesh를 이루는 Point)의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성이다. 즉 해당 위치 주변의 표면이 얼마나 구부러져 있는지의 정도를 나타내는 것이다. 따라서 상기 Measure 2는 입력 Mesh의 Point와 CT로부터 추출된 iso-point의 대응관계를 결정할 때, 두 점이 기하학적으로 유사한 모양에 있는 점인지 판단하는 기준 중 하나로 사용할 수 있다. 또한, 좁은 영역에서 상기 Measure2가 매우 크게 나타날 경우, 해당 위치는 노이즈일 가능성이 높다고 판단할 수 있다.In addition, Measure 2 is a characteristic indicating curvature determined according to the geometric shape of a point set (iso-Point extracted from CT data, a point forming a mesh) around a corresponding position. That is, the degree of bending of the surface around the location is shown. Therefore, Measure 2 may be used as one of criteria for determining whether two points are geometrically similar in shape when determining a correspondence between an input mesh point and an iso-point extracted from CT. In addition, when Measure2 appears very large in a narrow region, it may be determined that the corresponding position is likely to be noise.
도 3은 본 발명에서 제안한 상기 Measure 2(Curvature)를 이용한 노이즈 제거 과정의 일 예를 설명하기 위한 도면으로서, 입력 Mesh의 포인트 세트(이때 녹색이 강할수록 상기 Measure 2(Curvature)가 높은 값임)에서 Measure 2를 이용하여 노이즈를 제거한 후의 입력 Mesh 포인트 세트를 나타내고 있다.3 is a view for explaining an example of a noise removal process using the Measure 2 (Curvature) proposed in the present invention, in the set of points of the input mesh (the stronger the green the higher the Measure 2 (Curvature) value) Measure 2 shows the set of input mesh points after removing noise.
즉 본 발명에서는 CT 데이터의 경우 CT 값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈를 제거하며, 광학 데이터의 경우 상기 Measure 2를 이용하여 노이즈를 제거함으로써, 결과의 정확성과 시간을 단축하도록 한다.That is, in the present invention, the noise is removed using Measure 1 calculated based on the CT value (intensity) and Measure 2 representing the curvature (Curvature) determined according to the geometric shape of the point set around the position in the case of CT data, In the case of optical data, noise is removed using Measure 2, thereby shortening the accuracy and time of the result.
도 4는 본 발명의 일 실시예에 따른 CT 데이터와 광학 데이터의 정합성능 향상 장치의 구성을 개략적으로 나타낸 도면이다.4 is a diagram schematically illustrating a configuration of an apparatus for improving matching performance of CT data and optical data according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명은 정합성능 향상 장치(100), 영상촬영장치(200), 데이터베이스(300), 디스플레이 장치(400)로 구성된다.As shown in FIG. 4, the present invention includes a matching performance enhancing apparatus 100, an image photographing apparatus 200, a database 300, and a display apparatus 400.
이와 같이 구성된 본 발명의 정합성능 향상 과정에 대하여 보다 상세하게 설명하면, 상기 영상촬영장치(200)에서 촬영대상 물체의 CT 데이터를 촬영하여 상기 정합성능 향상 장치(100)로 전송하고(①), 이와 함께 촬영대상 물체의 광학 데이터를 촬영하여 상기 정합성능 향상 장치(100)로 전송한다(②). 그리고 상기 정합성능 향상 장치(100)는 제안된 방식을 토대로 상기 영상촬영장치(200)로부터 입력받은 CT 데이터와 광학 데이터의 표면 정점을 추출한 후(③), 추출된 정점을 이용하여 CT 데이터와 광학 데이터의 정합을 수행하고(④), 정합 결과를 토대로 3차원 모델을 재구성함과 동시에 상기 데이터베이스(300)에 저장하며(⑤), 최종 정합한 결과인 3차원 모델을 상기 디스플레이 장치(400)를 통해 표시하여 사용자가 확인하도록 한다(⑥).In more detail with respect to the matching performance improvement process of the present invention configured as described above, the CT image of the object to be photographed in the image recording apparatus 200 is transmitted to the matching performance improving apparatus 100 (①), At the same time, the optical data of the object to be photographed is photographed and transmitted to the matching performance improving apparatus 100 (②). The matching performance enhancing apparatus 100 extracts the surface vertices of the CT data and the optical data input from the image photographing apparatus 200 based on the proposed method (③), and then uses the extracted vertices to generate the CT data and the optical. Data matching is performed (④), the 3D model is reconstructed based on the matching result, and stored in the database 300 (⑤), and the display apparatus 400 stores the 3D model which is the final matching result. Display it through the user for confirmation (⑥).
상기 정합성능 향상 장치(100)는 ICP 알고리즘을 이용하여 상기 영상촬영장치(200)에서 촬영한 CT 데이터와 광학 데이터를 정합할 때, 물체 내외부 구조를 3차원으로 재구성하는 것이 가능한 CT 데이터의 장점과 재구성되는 3차원 표면이 고르게 표현되고 정밀도가 높은 광학 데이터의 장점을 활용하여 CT 데이터와 광학 데이터의 정합성능을 향상시키기 위한 것으로서, 종래에서와 같이 모든 표면 정점 정보를 사용할 필요 없이 일부 신뢰도 높은 정점만을 사용하여 정합을 수행하기 때문에 3차원 모델의 재구성 결과의 정확도를 높이면서 시간을 단축시킬 수 있다.The matching performance enhancing apparatus 100 has an advantage of CT data that can reconstruct an internal and external structure in three dimensions when the CT data photographed by the image photographing apparatus 200 and the optical data are matched using an ICP algorithm. It is to improve the matching performance of CT data and optical data by taking advantage of high precision optical data with 3D surface to be reconstructed evenly, and only some highly reliable vertices do not need to use all surface vertex information as conventionally. Because the matching is performed, the time can be reduced while increasing the accuracy of the reconstruction results of the 3D model.
즉 상기 정합성능 향상 장치(100)는 상기 영상촬영장치(200)로부터 입력받은 CT 데이터와 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행하고, 초기 정합을 수행한 CT 데이터와 광학 데이터로부터 표면 정점 후보를 추출한다. 그리고 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 샘플링을 수행하여 유효하지 않은 정점을 제거한 후, 유효한 정점 정보만을 토대로 CT 데이터와 광학 데이터의 정합을 수행하고, 정합 결과를 토대로 3차원 모델의 재구성을 수행하여 데이터베이스(300)에 저장하거나 자체적으로 구비된 저장장치에 저장하며, 필요시 상기 디스플레이 장치(400)를 통해 표시한다.That is, the matching performance enhancing apparatus 100 performs initial matching by applying a plurality of corresponding points to the CT data and the optical data received from the image photographing apparatus 200, and performs surface matching from the CT data and the optical data on which the initial matching is performed. Extract the vertex candidates. After sampling the surface vertex candidates of the CT data and the optical data to remove the invalid vertices, the CT data and the optical data are matched only based on the valid vertex information, and based on the matching result, The reconstruction is performed and stored in the database 300 or in a storage device provided by itself, and displayed through the display device 400 when necessary.
이에 따라 상기 정합성능 향상 장치(100)는 종래의 정합 과정에서 발생하였던 비균질의 노이즈가 포함된 표면정보가 도출되고, 고려할 필요가 없는 정점까지 연산하며, 아웃라이어(outlier)로 인한 수렴을 방해하는 문제를 해결할 수 있게 되었으며, 결과적으로 정합에 소요되는 시간이 크게 단축됨은 물론, 정합처리 과정의 복잡도가 줄어들었으며, 정합 결과의 정확성을 높일 수 있다.Accordingly, the matching performance enhancing apparatus 100 derives surface information including heterogeneous noise generated in the conventional matching process, calculates vertices that do not need to be considered, and prevents convergence due to outliers. The problem can be solved. As a result, the time required for matching is greatly reduced, the complexity of the matching process is reduced, and the accuracy of the matching result can be improved.
또한 상기 정합성능 향상 장치(100)는 CT 데이터와 광학 데이터의 정합성능을 향상시켜 빠른 시간 내에 정확도 높은 3차원 모델을 구성할 수 있기 때문에 물체의 내외부 정보를 활용한 병변진단, 수술 전 시뮬레이션, 증강현실을 이용한 수술 가이드 등을 효율적으로 수행할 수 있다.In addition, the matching performance enhancing apparatus 100 may improve the matching performance of CT data and optical data to construct a three-dimensional model with high accuracy in a short time, so that lesion diagnosis, preoperative simulation, and augmentation using internal and external information of an object may be performed. Surgery guide using the reality can be performed efficiently.
상기 영상촬영장치(200)는 공지의 CT 촬영기, 스캐너 등의 장비를 통칭하는 것으로서, 상기 정합성능 향상 장치(100)와 통신 접속되어 있고, 촬영대상 물체를 여러 각도에서 X-ray로 투사하여 얻은 CT 데이터를 상기 정합성능 향상 장치(100)로 제공하며, 스캐너 등으로 촬영한 촬영대상 물체의 광학 데이터를 상기 정합성능 향상 장치(100)로 제공한다.The image capturing apparatus 200 collectively refers to equipment such as a known CT camera, scanner, etc., is connected to the matching performance enhancing apparatus 100, and is obtained by projecting an object to be photographed by X-ray from various angles. The CT data is provided to the matching performance improving device 100, and the optical data of a photographing target object photographed by a scanner or the like is provided to the matching performance improving device 100.
상기 데이터베이스(300)는 상기 정합성능 향상 장치(100)에서 상기 영상촬영장치(200)로부터 제공받은 각 물체별로 촬영한 CT 데이터와 광학 데이터를 저장하여 관리함은 물론, 상기 정합성능 향상 장치(100)에서의 정합 결과에 따라 재구성한 3차원 모델을 저장하여 관리한다.The database 300 stores and manages CT data and optical data photographed for each object provided by the image capturing apparatus 200 in the matching performance improving apparatus 100, as well as the matching performance improving apparatus 100. We store and manage the reconstructed 3D model according to the matching result in.
또한 상기 데이터베이스(300)는 상기 정합성능 향상 장치(100)에서 사용하는 정합성능 향상을 위한 각종 동작프로그램의 저장과 업데이트 관리를 수행한다.In addition, the database 300 stores and updates various operation programs for improving the matching performance used in the matching performance improving apparatus 100.
상기 디스플레이 장치(400)는 통상적인 LCD, LED 등의 모니터로서, 상기 정합성능 향상 장치(100)에서의 CT 데이터와 광학 데이터의 정합 결과에 따라 재구성한 3차원 모델을 화면상에 표시하여 사용자가 확인할 수 있도록 한다.The display device 400 is a monitor such as a conventional LCD, LED, etc., and displays a three-dimensional model reconstructed according to the matching result of the CT data and the optical data in the matching performance improving apparatus 100 on a screen so that the user Make sure to check.
도 5는 상기 도 4의 정합성능 향상 장치(100)의 구성을 보다 상세하게 나타낸 도면이다.5 is a diagram illustrating the configuration of the matching performance improving apparatus 100 of FIG. 4 in more detail.
도 5에 도시된 바와 같이, 상기 정합성능 향상 장치(100)는 CT 데이터 입력부(110), 광학 데이터 입력부(120), 초기 정합부(130), 표면 정점 추출부(140), 정점 샘플링부(150), 정합 결과 산출부(160), 정합 처리부(170), 저장부(180), 제어부(190) 등으로 구성된다.As shown in FIG. 5, the matching performance improving apparatus 100 includes a CT data input unit 110, an optical data input unit 120, an initial matching unit 130, a surface vertex extracting unit 140, and a vertex sampling unit ( 150, a matching result calculator 160, a matching processor 170, a storage unit 180, a controller 190, and the like.
또한 상기 정합성능 향상 장치(100)는 도면에 도시하지는 않았지만, 각 구성 부분에 동작전원을 공급하는 전원부, 각종 기능 설정을 위하여 키신호 입력을 수행하는 입력부 등을 추가로 포함할 수 있다.In addition, although not shown in the drawing, the matching performance improving apparatus 100 may further include a power supply unit for supplying operation power to each component, an input unit for performing key signal input for setting various functions, and the like.
CT 데이터 입력부(110)는 상기 영상촬영장치(200)에서 CT 촬영기를 사용하여 촬영한 특정 물체의 CT 데이터를 입력받아 상기 제어부(190)로 전달한다.The CT data input unit 110 receives CT data of a specific object photographed by the CT imager from the image capturing apparatus 200 and transmits the CT data to the controller 190.
광학 데이터 입력부(120)는 상기 영상촬영장치(200)에서 스캐너를 사용하여 촬영한 특정 물체의 광학 데이터를 입력받아 상기 제어부(190)로 전달한다.The optical data input unit 120 receives optical data of a specific object photographed using the scanner in the image capturing apparatus 200 and transmits the optical data to the controller 190.
또한 상기 CT 데이터 입력부(110)와 상기 광학 데이터 입력부(120) 각각은 상기 영상촬영장치(200)로부터 제공받은 CT 데이터와 광학 데이터를 상기 정합성능 향상 장치(100)에서 사용하기 위한 데이터로 변환하는 전처리 과정을 수행한다.In addition, each of the CT data input unit 110 and the optical data input unit 120 converts CT data and optical data provided from the image photographing apparatus 200 into data for use in the matching performance enhancing apparatus 100. Perform pretreatment.
초기 정합부(130)는 상기 CT 데이터 입력부(110)로부터 제공받은 CT 데이터와 상기 광학 데이터 입력부(120)로부터 제공받은 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행한다.The initial matching unit 130 performs initial matching by applying a plurality of corresponding points to the CT data provided from the CT data input unit 110 and the optical data provided from the optical data input unit 120.
여기서 상기 초기 정합부(130)는 상기 CT 데이터와 상기 광학 데이터에 세 쌍의 대응점을 적용하여 초기 정합을 수행하는 것을 예로 하여 설명하고 있지만 이에 한정되는 것은 아니며, 사용 환경에 따라 대응점의 수량을 달리하여 적용할 수 있음을 밝혀둔다.Here, the initial matching unit 130 has been described as an example of performing initial matching by applying three pairs of corresponding points to the CT data and the optical data, but the present invention is not limited thereto. Note that it can be applied.
표면 정점 추출부(140)는 상기 초기 정합부(130)를 통해 초기 정합을 수행한 CT 데이터와 광학 데이터의 표면 정점 후보를 추출한다. 예를 들어 상기 CT 데이터의 경우 CT 값을 기반으로 하는 등위면(iso-surface)을 토대로 표면 정점 후보를 추출한다.The surface vertex extracting unit 140 extracts the surface vertex candidates of the CT data and the optical data which have been initially matched through the initial matching unit 130. For example, in the case of the CT data, surface vertex candidates are extracted based on an iso-surface based on CT values.
정점 샘플링부(150)는 상기 표면 정점 추출부(140)에서 추출한 표면 정점 후보의 에러 값(error measure)을 계산하고, 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 상기 계산한 에러 값을 토대로 정점 샘플링을 수행하여 유효하지 않은 정점을 제거한다.The vertex sampling unit 150 calculates an error measure of the surface vertex candidate extracted by the surface vertex extracting unit 140, and calculates the calculated error value for the surface vertex candidates of the CT data and the optical data. Based on the vertex sampling, we remove the invalid vertices.
이때 상기 CT 데이터로부터 추출된 정점은 CT 데이터로부터 계산된 Measure 1과 Measure 2를 가지며, 상기 광학 데이터로부터 추출된 정점은 정점의 기하학적 분포를 기반으로 계산된 Measure 2를 갖는다.The vertices extracted from the CT data have Measure 1 and Measure 2 calculated from the CT data, and the vertices extracted from the optical data have Measure 2 calculated based on the geometric distribution of the vertices.
보다 구체적으로 설명하면, 상기 정점 샘플링부(150)는 상기 CT 데이터의 경우 CT 값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈를 제거한다. 즉 상기 Measure 1을 이용하여 각 위치에서 주변의 값(즉 intensity) 변화가 큰 것과 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하는 것이다.In more detail, the vertex sampling unit 150 calculates curvature determined according to Measure 1 calculated based on the CT value and the geometric shape of the point set around the position in the case of the CT data. Remove the noise using Measure 2, which is shown. That is, noise 1 determines that the change in the surrounding value (ie intensity) is large at each position using Measure 1 and the change in the curvature of the surrounding at each position is large using Noise Measure 2 is removed.
또한 상기 정점 샘플링부(150)는 상기 광학 데이터의 경우 상기 CT 데이터와는 달리 상기 Measure 2만을 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거한다. 왜냐 하면 Measure 1은 인텐시티(intensity)를 기반으로 계산되는 값으로서 CT 데이터에서만 계산이 가능하기 때문이다.In addition, unlike the CT data, the vertex sampling unit 150 determines that the change in the curvature of the surroundings is large as noise by using only Measure 2, unlike the CT data. This is because Measure 1 is calculated based on intensity and can only be calculated in CT data.
정합 결과 산출부(160)는 상기 정점 샘플링부(150)에서 수행한 샘플링 결과를 토대로 정합 결과를 산출하여 제어부(190)로 제공한다.The matching result calculator 160 calculates a matching result based on the sampling result performed by the vertex sampling unit 150 and provides the matching result to the controller 190.
보다 구체적으로 설명하면, 상기 정합 결과 산출부(160)는 현재의 정합 결과를 사용하여 CT 데이터의 표면 정점 후보에 대하여 광학 데이터 표면 정점의 대응점을 계산한 후, 상기 계산한 각각의 대응쌍을 비교하여 유효하지 않은 매칭 여부를 판단한다. 판단결과 유효하지 않은 매칭이면, 해당 대응쌍을 제거한 다음, 유효한 대응쌍을 이용하여 현재 단계의 정합 결과를 계산한다. 이러한 정합 결과의 계산은 반복 종료 조건을 만족하지 않을 때까지 반복적으로 수행한다. 이때 상기 반복 종료 조건은, 유효한 대응쌍이 3개 이하인 경우(변환 행렬(즉 정합 결과)을 계산하기 위한 최소 유효 대응쌍이 3개), 미리 지정한 반복 횟수에 도달하는 경우, 변환 행렬이 수렴(즉 이전 반복차수와 결과가 동일할 경우를 의미)되는 경우이다.More specifically, the matching result calculating unit 160 calculates the corresponding points of the optical data surface vertices with respect to the surface vertex candidates of the CT data using the current matching results, and then compares the corresponding pairs. To determine if there is an invalid match. If it is determined that the match is invalid, the corresponding pair is removed, and then the matching result of the current step is calculated using the valid pair. The calculation of the matching result is performed repeatedly until the repeat termination condition is not satisfied. In this case, the repetition end condition is that when there are three or less valid pairs (three minimum valid pairs for calculating the transformation matrix (ie, matching result)), and when the predetermined number of iterations is reached, the transformation matrix converges (that is, before This means that the repetition order and the result are the same).
이때 상기 정합 결과 산출부(160)는 상기 유효하지 않은 매칭 여부를 판단할 때, CT 데이터와 광학 데이터의 각 대응쌍의 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성인 Measure 2를 비교하고, 추가로 각 대응쌍의 정점 간 거리를 비교(즉 대응쌍의 점 간 거리가 매우 클 경우 유효하지 않다고 판단함)하여 유효하지 않은 매칭 여부를 판단한다.In this case, when the matching result calculating unit 160 determines whether the match is invalid, a measure representing a curvature determined according to a geometric shape of a point set around a corresponding position of each corresponding pair of CT data and optical data is measured. Compare 2 and further compare the distances between the vertices of each pair (ie, determine that they are not valid if the distance between the pairs of pairs is too large) to determine whether they match.
정합 처리부(170)는 상기 정합 결과 산출부(160)에서 산출된 최종 정합 결과를 토대로 정합을 수행하여 3차원 모델을 재구성한다.The matching processor 170 reconstructs the 3D model by performing matching based on the final matching result calculated by the matching result calculator 160.
저장부(180)는 상기 정합성능 향상 장치(100)에서 사용하는 각종 동작프로그램을 저장하고 있으며, 데이터베이스(300)를 통해 각각의 동작프로그램에 대한 업데이트를 수행한다.The storage unit 180 stores various operation programs used in the matching performance improving apparatus 100, and updates the respective operation programs through the database 300.
또한 상기 저장부(180)는 상기 영상촬영장치(200)에서 촬영한 CT 데이터와 광학 데이터를 저장하며, 상기 정합 처리부(170)를 통해 재구성된 3차원 모델을 저장한다.In addition, the storage unit 180 stores CT data and optical data photographed by the image capturing apparatus 200, and stores a 3D model reconstructed by the matching processing unit 170.
제어부(190)는 상기 정합성능 향상 장치(100)의 동작을 총괄적으로 제어하는 부분으로서, 상기 CT 데이터 입력부(110)에서의 CT 데이터 입력 및 전처리, 상기 광학 데이터 입력부(120)에서의 광학 데이터 입력 및 전처리, 상기 CT 데이터와 광학 데이터의 상기 저장부(170) 저장을 제어한다.The control unit 190 is a part that collectively controls the operation of the matching performance improving device 100, CT data input and pre-processing in the CT data input unit 110, optical data input in the optical data input unit 120 And pre-processing, and storing the storage unit 170 of the CT data and optical data.
또한 상기 제어부(190)는 상기 초기 정합부(130)에서의 복수의 대응점 적용을 통한 CT 데이터와 광학 데이터의 초기 정합, 상기 표면 정점 추출부(140)에서의 초기 정합한 CT 데이터와 광학 데이터의 표면 정점 후보 추출, 상기 정점 샘플링부(150)에서의 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대한 정점 샘플링의 수행 및 유효하지 않은 정점의 제거를 제어한다.In addition, the control unit 190 is the initial matching of the CT data and the optical data by applying a plurality of corresponding points in the initial matching unit 130, the initial matching of the CT data and the optical data in the surface vertex extraction unit 140 Extracting vertex candidates, performing vertex sampling on surface vertex candidates of respective CT data and optical data in the vertex sampling unit 150, and controlling the elimination of invalid vertices.
또한 상기 제어부(190)는 상기 정합 결과 산출부(160)에서의 정점 샘플링 결과를 이용한 최종 정합 결과 산출, 상기 정합 처리부(170)에서의 최종 정합 결과를 토대로 정합한 3차원 모델의 재구성, 재구성 결과에 대한 상기 저장부(180) 또는 상기 데이터베이스(300)의 저장, 재구성된 3차원 모델의 상기 디스플레이 장치(400)를 통한 화면 표시를 제어한다. In addition, the controller 190 calculates a final matching result using the vertex sampling result in the matching result calculating unit 160, reconstructs and reconstructs a 3D model matched based on the final matching result in the matching processing unit 170. Controls the screen display through the display device 400 of the storage unit 180 or the database 300 for the stored and reconstructed 3D model.
다음에는, 이와 같이 구성된 본 발명에 따른 CT 데이터와 광학 데이터의 정합성능 향상 방법의 일 실시예를 도 6 내지 도 12를 참조하여 상세하게 설명한다. 이때 본 발명의 방법에 따른 각 단계는 사용 환경이나 당업자에 의해 순서가 변경될 수 있다.Next, an embodiment of a method for improving matching performance of CT data and optical data according to the present invention configured as described above will be described in detail with reference to FIGS. 6 to 12. At this time, each step according to the method of the present invention can be changed in order by the environment or those skilled in the art.
도 6과 도 7은 본 발명의 일 실시예에 따른 CT 데이터와 광학 데이터의 정합성능 향상 방법의 동작과정을 상세하게 나타낸 순서도이고, 도 8 내지 도 12는 본 발명의 각 단계별 수행에 따른 처리결과의 일 예를 각각 나타낸 도면이다.6 and 7 are flowcharts showing in detail the operation of the method for improving the matching performance of the CT data and the optical data according to an embodiment of the present invention, Figures 8 to 12 are processing results according to the performance of each step of the present invention One example of each drawing.
도 6에 도시된 바와 같이, 정합성능 향상 장치(100)는 영상촬영장치(200)로부터 동일 물체에 대하여 CT 촬영기를 통해 촬영한 CT 데이터와 스캐너로 촬영한 광학 데이터를 입력받는다.As shown in FIG. 6, the matching performance enhancing apparatus 100 receives CT data photographed by a CT imager and optical data photographed by a scanner from the image photographing apparatus 200 with respect to the same object.
그리고 상기 정합성능 향상 장치(100)는 상기 영상촬영장치(200)로부터 입력받은 CT 데이터와 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행한다(S100). 이때 상기 정합성능 향상 장치(100)는 상기 CT 데이터와 광학 데이터에 세 쌍의 대응점을 적용하여 초기 정합을 수행하는 것이 바람직하다. 예를 들어 도 8의 (a)와 (b)에 각각 나타낸 바와 같이 초기 정합에 필요한 세 개의 대응점을 적용하는 것이다.The matching performance enhancing apparatus 100 performs initial matching by applying a plurality of corresponding points to the CT data and the optical data received from the image photographing apparatus 200 (S100). In this case, it is preferable that the matching performance improving apparatus 100 performs initial matching by applying three pairs of corresponding points to the CT data and the optical data. For example, as shown in FIGS. 8A and 8B, three corresponding points required for initial matching are applied.
상기 S100 단계를 통해 초기 정합을 수행한 이후, 상기 정합성능 향상 장치(100)는 초기 정합을 수행한 CT 데이터와 광학 데이터의 표면 정점 후보를 추출한다(S200). 예를 들어 도 9는 초기 광학 데이터의 표면 정점 후보의 일 예이다.After performing the initial matching through the step S100, the matching performance enhancing apparatus 100 extracts the surface vertex candidates of the CT data and the optical data that performed the initial matching (S200). For example, FIG. 9 is an example of a surface vertex candidate of initial optical data.
상기 S200 단계를 통해 표면 정점 후보를 추출한 이후, 상기 정합성능 향상 장치(100)는 추출한 표면 정점 후보의 에러 값(error measure)을 계산한다(S300). 즉 상기 CT 데이터의 경우 CT 값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 확인하는 것이다.After extracting the surface vertex candidate through the step S200, the matching performance enhancing apparatus 100 calculates an error measure of the extracted surface vertex candidate (S300). That is, in the case of the CT data, Measure 1, which is calculated based on the CT value (intensity), and Measure 2 which represents the curvature (Curvature) determined according to the geometric shape of the point set around the corresponding position, are identified.
이후 상기 정합성능 향상 장치(100)는 상기 S200 단계에서 추출한 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 상기 S300 단계에서 계산한 에러 값을 토대로 정점 샘플링을 수행하여 유효하지 않은 정점을 제거한다(S400). 즉 CT 데이터의 경우 상기 Measure 1을 이용하여 각 위치에서 주변의 값(즉 intensity) 변화가 큰 것과 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하며, 광학 데이터의 경우 상기 Measure 2만을 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하는 것이다. 예를 들어 도 10은 이와 같이 Measure 2를 이용하여 노이즈를 제거한 후의 광학 데이터 표면 정점 후보이며, 도 11은 다음의 S500 단계에서 수행할 실제 정합 결과 계산에 사용하는 광학 데이터 표면 정점 후보이다.Thereafter, the matching performance enhancing apparatus 100 performs vertex sampling based on the error value calculated in step S300 on the respective CT data and the surface vertex candidates of the optical data extracted in step S200 to remove invalid vertices. (S400). That is, in the case of CT data, noise is determined by removing a large change in the surrounding value (ie intensity) at each position using Measure 1 and a large change in the curvature at each position using Measure 2 as noise. In the case of using only Measure 2, it is determined that the change in the curvature of the surroundings at each position is large as noise and removed. For example, FIG. 10 is an optical data surface vertex candidate after noise is removed using Measure 2, and FIG. 11 is an optical data surface vertex candidate used for calculating the actual matching result to be performed in the next step S500.
이제, 상기 S400 단계를 통해 표면 정점 후보의 정점 샘플링을 통해 유효하지 않은 정점을 제거한 이후, 상기 정합성능 향상 장치(100)는 샘플링 결과를 토대로 정합 결과를 산출한다(S500).Now, after removing the invalid vertex through the vertex sampling of the surface vertex candidate through the step S400, the matching performance enhancing apparatus 100 calculates a matching result based on the sampling result (S500).
상기 S500 단계를 도 7을 참조하여 보다 상세하게 설명하면, 상기 정합성능 향상 장치(100)는 현재의 정합 결과를 사용하여 CT 데이터의 표면 정점 후보에 대하여 광학 데이터 표면 정점의 대응점을 계산하고(S510), 상기 계산한 각각의 대응쌍을 비교하여 현재의 표면 정정 후보가 유효하지 않은 매칭 여부를 확인하며(S520), 확인결과를 토대로 유효하지 않은 매칭인지를 판단한다(S530).Referring to FIG. 7 in more detail with reference to FIG. 7, the matching performance enhancing apparatus 100 calculates a corresponding point of the optical data surface vertex with respect to the surface vertex candidate of the CT data using the current matching result (S510). In operation S520, the corresponding surface pairing candidate is compared to determine whether the current candidate for surface correction is not valid (S520).
이때 상기 S530 단계에서의 유효하지 않은 매칭 여부의 판단은, 각 대응쌍의 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성인 Measure 2를 비교하고, 추가로 각 대응쌍의 정점 간 거리를 비교하는 것으로 유효하지 않은 매칭 여부를 판단한다.In this case, the determination of whether the match is invalid in operation S530 may be performed by comparing Measure 2, which is a characteristic representing curvature determined according to the geometric shape of the point set around the corresponding position of each pair, and further vertices of each pair. By comparing the distance between the two to determine whether the match is invalid.
상기 S530 단계의 판단결과 현재의 표면 정정 후보가 유효하지 않은 매칭이면, 상기 정합성능 향상 장치(100)는 해당 대응쌍을 제거하고(S540), 유효한 대응쌍을 이용하여 현재 단계의 정합 결과를 계산한다(S550).If the determination result of the step S530 is that the current surface correction candidate is invalid, the matching performance improving apparatus 100 removes the corresponding pair (S540), and calculates the matching result of the current step using the valid pair. (S550).
그리고 상기 정합성능 향상 장치(100)는 정합 결과를 계산한 표면 정점 후보가 존재하는지의 여부를 판단하여(S560), 정합 결과를 계산할 표면의 정점 후보가 존재하지 않을 때까지 상기 S510 단계 이후를 반복적으로 수행한다.The matching performance enhancing apparatus 100 determines whether there is a surface vertex candidate for calculating the matching result (S560), and repeats the process after step S510 until there is no vertex candidate for the surface for calculating the matching result. To do it.
그리고 상기 정합성능 향상 장치(100)는 반복 종료 조건(예를 들어, 유효한 대응쌍이 3개 이하이거나, 미리 지정한 반복 횟수에 도달하거나, 변환 행렬이 수렴되는 경우)을 만족하는지의 여부를 판단하여(S560), 반복 종료 조건을 만족하지 않을 때까지 상기 S510 단계 이후를 반복적으로 수행한다.The matching performance improving apparatus 100 determines whether the repetition termination condition is satisfied (for example, when there are three or less valid pairs, a predetermined number of repetitions, or a transformation matrix converges). S560), and after the step S510 is repeatedly performed until the repetition end condition is not satisfied.
상기 S500 단계를 통해 최종 정합 결과가 산출되면, 상기 정합성능 향상 장치(100)는 최종 정합 결과를 토대로 정합을 수행하여 3차원 모델을 재구성한다(S600). 예를 들어 도 12는 이와 같이 최종 정합 결과를 토대로 정합을 수행한 결과를 나타낸 도면이다.When the final matching result is calculated through the step S500, the matching performance enhancing apparatus 100 reconstructs the 3D model by performing matching based on the final matching result (S600). For example, FIG. 12 is a diagram illustrating a result of matching performed based on the final matching result.
상기 S600 단계를 통해 재구성된 3차원 모델은 상기 데이터베이스(300)에 저장하거나 또는 자체적으로 구비된 저장장치에 저장할 수 있으며, 상기 디스플레이 장치(400)를 통해 화면상에 표시하여 사용자가 확인하도록 한다.The 3D model reconstructed through the step S600 may be stored in the database 300 or in a storage device provided by itself, and displayed on a screen through the display device 400 so that the user can check it.
이상에서와 같이 본 발명은 도면에 도시된 실시예를 참고로 하여 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 판단되어야 할 것이다.As described above, the present invention has been described with reference to the embodiment shown in the drawings, but this is merely exemplary, and those skilled in the art to which the art belongs, various modifications and equivalent other embodiments therefrom I understand that it is possible. Therefore, the technical protection scope of the present invention will be determined by the claims below.
본 발명은 물체의 내외부 구조를 3차원으로 재구성할 때 모든 표면 정점 정보를 사용할 필요 없이 일부 신뢰도 높은 정점만을 사용하여 CT 데이터와 광학 데이터의 정합을 수행하기 때문에, 정합에 소요되는 시간이 줄어들고, 정합처리 과정의 복잡도를 줄일 수 있으며, 정합 결과의 정확성을 높일 수 있다.In the present invention, since the matching of CT data and optical data is performed using only some reliable vertices without using all surface vertex information when reconstructing the internal and external structures of an object in three dimensions, the time required for matching is reduced, and the matching is performed. The complexity of the process can be reduced and the accuracy of matching results can be increased.
또한 종래에 발생되었던 비균질의 노이즈가 포함된 표면정보가 도출되고, 고려할 필요가 없는 정점까지 연산하며, 아웃라이어로 인한 수렴을 방해하는 것을 해결할 수 있다.In addition, surface information including non-homogeneous noise generated in the related art can be derived, computed to vertices that do not need to be considered, and solve the problem of preventing convergence due to outliers.
또한 빠른 시간 내에 정확도 높게 구성된 3차원 모델을 사용하여 물체의 내외부 정보를 활용한 병변진단, 수술 전 시뮬레이션, 증강현실을 이용한 수술 가이드 등을 수행할 수 있다.In addition, lesion diagnosis, preoperative simulation, and surgical guide using augmented reality can be performed by using a three-dimensional model configured with high accuracy within a short time.

Claims (10)

  1. 정합성능 향상 장치에서, CT 데이터와 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행하는 초기 정합 단계;An initial matching step of performing an initial matching by applying a plurality of corresponding points to the CT data and the optical data in the matching performance improving apparatus;
    상기 초기 정합을 수행한 CT 데이터와 광학 데이터의 표면 정점 후보를 추출하는 표면 정점 후보 추출 단계;A surface vertex candidate extraction step of extracting surface vertex candidates of the CT data and the optical data on which the initial matching is performed;
    상기 추출한 표면 정점 후보의 에러 값(error measure)을 계산하고, 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 상기 계산한 에러 값을 토대로 정점 샘플링을 수행하여 유효하지 않은 정점을 제거하는 정점 샘플링 단계;Calculate an error measure of the extracted surface vertex candidates, and perform vertex sampling on the surface vertex candidates of the CT data and the optical data based on the calculated error value to remove invalid vertices. step;
    상기 샘플링 결과를 토대로 정합 결과를 산출하는 정합 결과 산출 단계; 및A matching result calculating step of calculating a matching result based on the sampling result; And
    상기 산출된 최종 정합 결과를 토대로 정합을 수행하여 3차원 모델을 재구성하는 정합 수행 단계;를 포함하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법.And a matching step of reconstructing a 3D model by performing matching based on the calculated final matching result.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 초기 정합 단계는,The initial matching step,
    상기 CT 데이터와 상기 광학 데이터에 세 쌍의 대응점을 적용하여 초기 정합을 수행하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법.And performing initial matching by applying three pairs of corresponding points to the CT data and the optical data.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 정점 샘플링 단계는,The vertex sampling step,
    상기 CT 데이터의 경우, CT값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈를 제거하되, 상기 Measure 1을 이용하여 각 위치에서 주변의 인텐시티 변화가 큰 것과 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하며,In the case of the CT data, noise is removed using Measure 1, which is calculated based on the CT value, and Measure 2, which represents a curvature determined according to the geometric shape of the point set around the corresponding position. By using 1, the change in the intensity of the surroundings at each position is large and the change in the curvature of the surroundings at each position is large using the Measure 2 is determined as noise and removed.
    상기 광학 데이터의 경우, 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법.In the case of the optical data, the measure 2 improves the coherence performance of the CT data and the optical data, by using the Measure 2 to determine that noise has a large change in the surrounding curvature at each position.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 정합 결과 산출 단계는,The matching result calculating step,
    현재의 정합 결과를 사용하여 CT 데이터의 표면 정점 후보에 대하여 광학 데이터 표면 정점의 대응점을 계산하는 대응점 계산 단계;A correspondence point calculation step of calculating a correspondence point of the optical data surface vertex with respect to the surface vertex candidate of the CT data using the current matching result;
    상기 계산한 각각의 대응쌍을 비교하여 유효하지 않은 매칭 여부를 판단하는 매칭여부 판단 단계;A matching determination step of determining whether or not an invalid match is made by comparing the calculated pairs;
    유효하지 않은 매칭이면 해당 대응쌍을 제거하는 대응쌍 제거 단계; 및A corresponding pair removing step of removing the corresponding pair if it is an invalid match; And
    유효한 대응쌍을 이용하여 현재 단계의 정합 결과를 계산하는 정합 결과 계산 단계;를 더 포함하고,And a matching result calculating step of calculating a matching result of the current step using a valid pair.
    상기 각 단계는 반복 종료 조건을 만족하지 않을 때까지 반복적으로 수행하며,Each step is performed repeatedly until the repeat end condition is not satisfied.
    상기 반복 종료 조건은, 유효한 대응쌍이 3개 이하이거나, 미리 지정한 반복 횟수에 도달하거나, 변환 행렬이 수렴되는 경우인 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법.The repetition termination condition is a method of improving the matching performance of CT data and optical data, characterized in that the number of valid pairs is three or less, a predetermined number of repetitions is reached, or a conversion matrix is converged.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 유효하지 않은 매칭 여부의 판단은,The determination of whether the match is invalid,
    각 대응쌍의 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성인 Measure 2를 비교하고, 추가로 각 대응쌍의 정점 간 거리를 비교하여 유효하지 않은 매칭 여부를 판단하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 방법.Compare Measure 2, a characteristic representing curvature determined by the geometric shape of a set of points around a corresponding position of each pair, and further compare distances between vertices of each pair to determine invalid matching A method of improving the matching performance between CT data and optical data.
  6. CT 데이터와 광학 데이터에 복수 개의 대응점을 적용하여 초기 정합을 수행하는 초기 정합부;An initial matching unit configured to perform initial matching by applying a plurality of corresponding points to the CT data and the optical data;
    상기 초기 정합을 수행한 CT 데이터와 광학 데이터의 표면 정점 후보를 추출하는 표면 정점 추출부;A surface vertex extracting unit extracting surface vertex candidates of the CT data and the optical data on which the initial matching is performed;
    상기 추출한 표면 정점 후보의 에러 값(error measure)을 계산하고, 각각의 CT 데이터와 광학 데이터의 표면 정점 후보들에 대하여 상기 계산한 에러 값을 토대로 정점 샘플링을 수행하여 유효하지 않은 정점을 제거하는 정점 샘플링부;Calculate an error measure of the extracted surface vertex candidates, and perform vertex sampling on the surface vertex candidates of the CT data and the optical data based on the calculated error value to remove invalid vertices. part;
    상기 샘플링 결과를 토대로 정합 결과를 산출하는 정합 결과 산출부; 및A matching result calculator for calculating a matching result based on the sampling result; And
    상기 산출된 최종 정합 결과를 토대로 정합을 수행하여 3차원 모델을 재구성하는 정합 처리부;를 포함하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 장치.And a matching processor configured to reconstruct a three-dimensional model by performing matching based on the calculated final matching result. 2.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 초기 정합부는,The initial matching portion,
    상기 CT 데이터와 상기 광학 데이터에 세 쌍의 대응점을 적용하여 초기 정합을 수행하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 장치.And an initial matching operation by applying three pairs of corresponding points to the CT data and the optical data.
  8. 청구항 6에 있어서,The method according to claim 6,
    상기 정점 샘플링부는,The vertex sampling unit,
    상기 CT 데이터의 경우, CT값(intensity)을 기반으로 계산되는 Measure 1과 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률(Curvature)을 나타내는 Measure 2를 이용하여 노이즈를 제거하되, 상기 Measure 1을 이용하여 각 위치에서 주변의 인텐시티 변화가 큰 것과 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하며,In the case of the CT data, noise is removed using Measure 1, which is calculated based on the CT value, and Measure 2, which represents a curvature determined according to the geometric shape of the point set around the corresponding position. By using 1, the change in the intensity of the surroundings at each position is large and the change in the curvature of the surroundings at each position is large using the Measure 2 is determined as noise and removed.
    상기 광학 데이터의 경우, 상기 Measure 2를 이용하여 각 위치에서 주변의 곡률 변화가 큰 것을 노이즈로 판단하여 제거하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 장치.In the case of the optical data, by using Measure 2, it is determined that the change in the curvature of the surroundings is large at each position as noise to remove the matching performance of the CT data and the optical data.
  9. 청구항 6에 있어서,The method according to claim 6,
    상기 정합 결과 산출부는,The matching result calculation unit,
    현재의 정합 결과를 사용하여 CT 데이터의 표면 정점 후보에 대하여 광학 데이터 표면 정점의 대응점을 계산하고, 상기 계산한 각각의 대응쌍을 비교하여 유효하지 않은 매칭 여부를 판단하여 유효하지 않은 매칭이면 해당 대응쌍을 제거하고, 유효한 대응쌍을 이용하여 현재 단계의 정합 결과를 계산하는 것을 더 포함하고,Compute the corresponding points of the optical data surface vertices with respect to the surface vertex candidates in the CT data using the current matching results, compare each of the calculated pairs, determine whether an invalid match is found, and if it is an invalid match, Removing the pair, and calculating the matching result of the current step using the valid corresponding pair,
    반복 종료 조건을 만족하지 않을 때까지 반복적으로 수행하며,Iteratively executes until the iteration termination condition is not satisfied.
    상기 반복 종료 조건은, 유효한 대응쌍이 3개 이하이거나, 미리 지정한 반복 횟수에 도달하거나, 변환 행렬이 수렴되는 경우인 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 장치.The repetition termination condition is a case where there are three or more valid corresponding pairs, a predetermined number of repetitions is reached, or a conversion matrix is converged.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 정합 결과 산출부는,The matching result calculation unit,
    상기 유효하지 않은 매칭 여부를 판단할 때, 각 대응쌍의 해당 위치 주변의 포인트 세트의 기하학적 모양에 따라 결정되는 곡률을 나타내는 특성인 Measure 2를 비교하고, 추가로 각 대응쌍의 정점 간 거리를 비교하여 유효하지 않은 매칭 여부를 판단하는 것을 특징으로 하는 CT 데이터와 광학 데이터의 정합성능 향상 장치.In determining whether the match is invalid, Measure 2, a characteristic representing curvature determined according to the geometric shape of a set of points around a corresponding position of each pair of pairs, is further compared, and the distance between vertices of each pair is further compared. And determining an invalid match to determine match performance of CT data and optical data.
PCT/KR2018/013581 2018-02-23 2018-11-09 Method for improving ct data and optical data matching performance, and device thereof WO2019164093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180022007A KR102099415B1 (en) 2018-02-23 2018-02-23 Method and apparatus for improving matching performance between ct data and optical data
KR10-2018-0022007 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019164093A1 true WO2019164093A1 (en) 2019-08-29

Family

ID=67688199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/013581 WO2019164093A1 (en) 2018-02-23 2018-11-09 Method for improving ct data and optical data matching performance, and device thereof

Country Status (2)

Country Link
KR (1) KR102099415B1 (en)
WO (1) WO2019164093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110796693A (en) * 2019-09-11 2020-02-14 重庆大学 Method for directly generating two-dimensional finite element model from industrial CT slice image

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311388B1 (en) 2019-09-26 2021-10-13 주식회사 메디트 Apparatus and method for aligning 3-dimensional data
KR102441485B1 (en) * 2020-05-29 2022-09-07 주식회사 메디트 METHOD AND APPARATUS FOR OBTAINING THREE Dimensional Data AND COMPUTER READABLE MEDIUM STORING A PROGRAM FOR PERFORMING THE SAME METHOD
CN114437844B (en) * 2020-11-03 2022-12-09 中国石油化工股份有限公司 Automatic optimization method for parameters of selective denitrification process of natural gas by computer
EP4272636A1 (en) * 2020-12-30 2023-11-08 Neurophet Inc. Medical image analysis method, medical image analysis device and medical image analysis system
KR102273437B1 (en) * 2021-01-20 2021-07-07 주식회사 에이치디엑스윌 apparatus and method for 3-dimensional oral scan data registration using Computed Tomography image
KR102273438B1 (en) * 2021-01-27 2021-07-07 주식회사 에이치디엑스윌 Apparatus and method for automatic registration of oral scan data and computed tomography image using crown segmentation of oral scan data
WO2022203305A1 (en) * 2021-03-24 2022-09-29 주식회사 메디트 Data processing device and data processing method
KR102533659B1 (en) * 2022-02-28 2023-05-18 이마고웍스 주식회사 Automated registration method of 3d facial scan data and 3d volumetric medical image data using deep learning and computer readable medium having program for performing the method
WO2023204509A1 (en) * 2022-04-20 2023-10-26 주식회사 메디트 Electronic apparatus, method, and recording medium for generating and aligning three-dimensional image model of three-dimensional scanner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031040A (en) * 2009-07-31 2011-02-17 Medison Co Ltd System and method for providing two-dimensional ct image corresponding to two-dimensional ultrasonic image
JP2013236750A (en) * 2012-05-15 2013-11-28 Denso Corp Image processing apparatus, imaging system and program
KR20140100648A (en) * 2013-02-06 2014-08-18 삼성전자주식회사 Method, apparatus and system for generating model representing deformation of shape and location of organ in respiration cycle
WO2014167935A1 (en) * 2013-04-08 2014-10-16 株式会社 日立メディコ X-ray ct device, reconstruction operation device and reconstruction operation method
WO2016195401A1 (en) * 2015-06-05 2016-12-08 주식회사 메드릭스 3d glasses system for surgical operation using augmented reality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011031040A (en) * 2009-07-31 2011-02-17 Medison Co Ltd System and method for providing two-dimensional ct image corresponding to two-dimensional ultrasonic image
JP2013236750A (en) * 2012-05-15 2013-11-28 Denso Corp Image processing apparatus, imaging system and program
KR20140100648A (en) * 2013-02-06 2014-08-18 삼성전자주식회사 Method, apparatus and system for generating model representing deformation of shape and location of organ in respiration cycle
WO2014167935A1 (en) * 2013-04-08 2014-10-16 株式会社 日立メディコ X-ray ct device, reconstruction operation device and reconstruction operation method
WO2016195401A1 (en) * 2015-06-05 2016-12-08 주식회사 메드릭스 3d glasses system for surgical operation using augmented reality

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110796693A (en) * 2019-09-11 2020-02-14 重庆大学 Method for directly generating two-dimensional finite element model from industrial CT slice image
CN110796693B (en) * 2019-09-11 2023-03-21 重庆大学 Method for directly generating two-dimensional finite element model from industrial CT slice image

Also Published As

Publication number Publication date
KR102099415B1 (en) 2020-04-09
KR20190101694A (en) 2019-09-02

Similar Documents

Publication Publication Date Title
WO2019164093A1 (en) Method for improving ct data and optical data matching performance, and device thereof
CN109069097B (en) Dental three-dimensional data processing device and method thereof
JP6483273B2 (en) Automatic selection and locking of intraoral images
WO2018056544A1 (en) Augmented reality system for dental surgery and implementation method therefor
WO2016003257A2 (en) Tooth model generation method for dental procedure simulation
WO2020151119A1 (en) Augmented reality method and apparatus for dental operation
US20040218792A1 (en) Probe position measurement to facilitate image registration and image manipulation in a medical application
US20030169913A1 (en) Dental image processing method and system
WO2013095032A1 (en) Method for automatically detecting mid-sagittal plane by using ultrasound image and apparatus thereof
WO2013105815A1 (en) Fetus modeling method and image processing apparatus therefor
KR20210000942A (en) Apparatus And Method For Dental Image Registration
WO2023274690A1 (en) Non-invasive periodontal examination
Revilla-León et al. Accuracy of the 3-dimensional virtual patient representation obtained by using 4 different techniques: An in vitro study
WO2020209496A1 (en) Dental object detection method, and image matching method and device using dental object
WO2021054700A1 (en) Method for providing tooth lesion information, and device using same
WO2013165111A1 (en) Checking method and compensation method for conformation of surgical images
CN116807452A (en) Scoliosis 3D detection method, system, equipment and medium
WO2015072807A1 (en) Device and method for generating dental three-dimensional surface image
WO2020209568A1 (en) System and method for evaluating motion of radiation diagnosis and treatment device
JP2022068043A (en) Medical image processing device and medical image processing system
WO2022191575A1 (en) Simulation device and method based on face image matching
WO2020159276A1 (en) Surgical analysis apparatus, and system, method, and program for analyzing and recognizing surgical image
CN110164529A (en) A kind of information processing method, device, electronic equipment and storage medium
WO2023229152A1 (en) Automatic three-dimensional face scan matching device having artificial intelligence applied thereto, method for driving same, and computer program stored in medium
JP2001087283A (en) Calibration method and operative calibration device using the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907075

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907075

Country of ref document: EP

Kind code of ref document: A1