WO2019163951A1 - Photosensitive layer, laminate, photosensitive resin composition, and kit - Google Patents

Photosensitive layer, laminate, photosensitive resin composition, and kit Download PDF

Info

Publication number
WO2019163951A1
WO2019163951A1 PCT/JP2019/006811 JP2019006811W WO2019163951A1 WO 2019163951 A1 WO2019163951 A1 WO 2019163951A1 JP 2019006811 W JP2019006811 W JP 2019006811W WO 2019163951 A1 WO2019163951 A1 WO 2019163951A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
photosensitive
layer
photosensitive layer
Prior art date
Application number
PCT/JP2019/006811
Other languages
French (fr)
Japanese (ja)
Inventor
誠也 増田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201980015313.5A priority Critical patent/CN111819494A/en
Priority to JP2020501063A priority patent/JPWO2019163951A1/en
Priority to KR1020207024267A priority patent/KR20200110425A/en
Publication of WO2019163951A1 publication Critical patent/WO2019163951A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen

Definitions

  • the present invention relates to a photosensitive layer, a laminate, a photosensitive resin composition, and a kit.
  • a device using an organic semiconductor has an advantage that it can be manufactured by a simple process as compared with a conventional device using an inorganic semiconductor such as silicon. Furthermore, the organic semiconductor can be easily changed in material properties by changing its molecular structure. In addition, there are a wide variety of materials, and it is thought that functions and elements that could not be achieved with inorganic semiconductors can be realized.
  • Organic semiconductors can be applied to electronic devices such as organic solar cells, organic electroluminescence displays, organic photodetectors, organic field effect transistors, organic electroluminescent elements, gas sensors, organic rectifying elements, organic inverters, information recording elements, etc. There is sex.
  • Patent Document 1 discloses a laminate including a specific water-soluble resin layer and a photosensitive layer in this order on an organic semiconductor layer, and the water-soluble resin layer and the photosensitive layer are in contact with each other. Thus, it is described that a fine pattern by exposure and development of the photosensitive layer can be realized and cracks in the laminate can be suppressed.
  • Patent Documents 2 and 3 are laminates having a water-soluble resin layer and a photosensitive layer on the surface of an organic semiconductor layer, and a specific photoacid generator and a specific resin are blended in the photosensitive resin composition. A laminate is disclosed. Thereby, it is described that a good pattern can be formed on the organic semiconductor.
  • the water-soluble resin layer is interposed between the organic semiconductor layer and the photosensitive layer, thereby ensuring the protection of the organic semiconductor layer.
  • a resin having a high molecular weight for the photosensitive layer. This is to suppress the occurrence of cracks.
  • a thick photosensitive layer is required to suppress the influence of the step.
  • a resin having a high molecular weight has a much slower dissolution rate in a hydrophobic developer. Therefore, it is required to increase the dissolution rate from the viewpoint of production efficiency. In order to increase the dissolution rate, it is conceivable to increase the hydrophobicity of the resin of the photosensitive layer.
  • the present invention aims to solve such problems, and a photosensitive layer, a laminate, a photosensitive resin composition, and a kit that can form a pattern appropriately even when a resin having a high molecular weight is used for the photosensitive layer.
  • the purpose is to provide.
  • the present inventors have studied, improved, and tested various materials and structures.
  • a pattern can be appropriately formed even when a resin having a high molecular weight is used for the photosensitive layer.
  • the present invention has been completed. That is, the present invention provides the following means.
  • a photosensitive layer included in a laminate having a water-soluble resin layer and a photosensitive layer is formed from a photosensitive resin composition containing a compound that generates an acid upon irradiation with actinic rays or radiation, and a resin that changes its dissolution rate with respect to butyl acetate by the action of the acid.
  • the resin in which the dissolution rate changes with respect to the resin has a weight average molecular weight of 10,000 to 50,000, and among all the structural units, 50 mol% to 100 mol% of the group soluble in the alkaline aqueous solution is hydrophobic.
  • the dissolution rate when the unirradiated photosensitive layer is immersed in butyl acetate at 23 ° C. is 20 nm / s or more and 200 nm / s or less,
  • the photosensitive layer whose static contact angle of the said photosensitive resin composition on the said water-soluble resin layer is 60 degrees or less.
  • ⁇ 3> The photosensitive layer according to ⁇ 1> or ⁇ 2>, wherein the water content in the photosensitive resin composition is 0.01% by mass or more and 1% by mass or less.
  • ⁇ 4> The photosensitive layer according to any one of ⁇ 1> to ⁇ 3>, wherein the change in dissolution rate is a decrease in dissolution rate.
  • ⁇ 5> The photosensitive layer according to any one of ⁇ 1> to ⁇ 4>, wherein the resin contained in the photosensitive layer has a structural unit represented by the following formula (1): In the formula, R 8 represents a hydrogen atom or an alkyl group, L 1 represents a carbonyl group or a phenylene group, and R 1 to R 7 each independently represents a hydrogen atom or an alkyl group.
  • ⁇ 6> The photosensitive layer according to any one of ⁇ 1> to ⁇ 5>, wherein the total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is 1 mass ppt to 1000 mass ppb. . ⁇ 7>
  • ⁇ 8> A laminate having the photosensitive layer according to any one of ⁇ 1> to ⁇ 7> and a water-soluble resin layer.
  • ⁇ 9> The laminate according to ⁇ 8>, further comprising an organic semiconductor layer, wherein the organic semiconductor layer, the water-soluble resin layer, and the photosensitive layer are laminated in this order.
  • the resin in which the dissolution rate in butyl acetate is changed by the action of the acid is a mixture of a resin having a high dissolution rate in butyl acetate and a resin having a low dissolution rate in butyl acetate, ⁇ 8> or ⁇ 8>9>.
  • a photosensitive resin composition for forming a photosensitive layer is a layer that forms a laminate in combination with a water-soluble resin layer, and the dissolution rate when the unexposed photosensitive layer is immersed in butyl acetate is 20 nm / s or more and 200 nm / second or less
  • the photosensitive resin composition contains a compound that generates an acid upon irradiation with actinic rays or radiation, and a resin that causes a change in the dissolution rate in butyl acetate by the action of the acid, Resins in which the dissolution rate in butyl acetate is changed by the action of the acid have a weight average molecular weight of 10,000 to 50,000, and 50 mol% to 100 mol% of all structural units are groups soluble in an aqueous alkali solution.
  • object. ⁇ 12> The photosensitive resin composition according to ⁇ 11>, which is used for processing an organic semiconductor layer.
  • ⁇ 13> A kit for forming a water-soluble resin layer and a photosensitive layer in this order, comprising the photosensitive resin composition according to ⁇ 11> or ⁇ 12> and the water-soluble resin composition.
  • the present invention it is possible to provide a photosensitive layer laminate, a photosensitive resin composition, and a kit that can form an appropriate pattern even when a resin having a high molecular weight is used for the photosensitive layer.
  • FIG. 2 is a cross-sectional view schematically showing a process of exposure and development of a photosensitive layer according to a preferred embodiment of the present invention, in which (a) shows a state before development and (b) shows a state after development.
  • the description of the components in the present invention described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent.
  • the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • active light in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like.
  • light means actinic rays or radiation.
  • exposure means not only exposure by far ultraviolet rays, X-rays, EUV light typified by mercury lamps and excimer lasers, but also drawing by particle beams such as electron beams and ion beams, unless otherwise specified.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate represents both and / or acrylate and methacrylate
  • (meth) acryl represents both and / or acryl and “(meth) acrylic”
  • "Acryloyl” represents both and / or acryloyl and methacryloyl.
  • solid content concentration is the percentage of the mass of the other components excluding the solvent with respect to the total mass of the composition.
  • “upper” and “lower” are described, they may be above or below the structure. That is, other structures may be interposed and do not need to be in contact with each other.
  • the photosensitive layer side is referred to as the upper side
  • the substrate or organic semiconductor layer side is referred to as the lower side.
  • the photosensitive layer of the present invention is a photosensitive layer contained in a laminate having a water-soluble resin layer and a photosensitive layer, and this photosensitive layer is a compound that generates an acid upon irradiation with actinic rays or radiation (in this specification, A compound (sometimes referred to as an “acid generator”), and a resin (acid-reactive resin) in which the rate of dissolution in butyl acetate is changed by the action of an acid, having a weight average molecular weight of 10,000 to 50,000
  • photosensitivity including a hydrophobic resin soluble in butyl acetate in which 50 mol% to 100 mol% of all structural units are protected with a hydrophobic protecting group in a group soluble in an alkaline aqueous solution
  • the unexposed photosensitive layer formed from the resin composition is immersed in butyl acetate at 23 ° C., the dissolution rate is 20 nm / second or more and 200 nm / second or less, and the photosensitive layer
  • a pattern can be appropriately formed even when a resin having a high molecular weight is used for the photosensitive layer. That is, a resin having a high molecular weight has a significantly slow dissolution rate in a hydrophobic developer. In order to increase the dissolution rate, it is conceivable to increase the hydrophobicity of the resin. However, if this is done, the adhesiveness with the water-soluble resin layer is lowered, causing pattern peeling and the like. Here, in order to suppress pattern peeling, it can be considered that adjustment is made so as not to include bubbles that are likely to trigger pattern peeling. Therefore, by adjusting the contact angle of the photosensitive resin composition with respect to the water-soluble resin layer to a predetermined range, a pattern can be appropriately formed even when a resin having a large molecular weight is used.
  • the photosensitive layer of the present invention is preferably used in combination with a water-soluble resin layer and disposed in contact with both.
  • an organic semiconductor layer 3 is disposed on a substrate 4 as in the example shown in FIG.
  • a water-soluble resin layer 2 that protects the organic semiconductor layer 3 is disposed on the surface in contact therewith.
  • the photosensitive layer 1 is disposed thereon in contact with the water-soluble resin layer.
  • the improved photosensitive layer 1 is formed, and even if this is exposed and developed with a predetermined mask, no defect occurs in the removal portion 5.
  • the photosensitive layer of the present invention exhibits a particularly high effect when it is laminated on the water-soluble resin layer.
  • FIG. 1B the improved photosensitive layer 1 is formed, and even if this is exposed and developed with a predetermined mask, no defect occurs in the removal portion 5.
  • the form provided on the organic semiconductor layer is shown as an example.
  • a water-soluble resin layer and a photosensitive layer may be used in combination on the surface of another material.
  • the organic semiconductor layer is preferably used for processing.
  • the laminate of the present invention is a laminate having the photosensitive layer of the present invention and a water-soluble resin layer, and preferably further includes an organic semiconductor layer, the organic semiconductor layer, the water-soluble resin layer, and the photosensitive layer. It is the laminated body laminated
  • features of each layer and materials constituting the layer will be described.
  • the organic semiconductor layer is a layer containing an organic material exhibiting semiconductor characteristics.
  • a semiconductor made of an inorganic material there are a p-type organic semiconductor that conducts holes as carriers and an n-type organic semiconductor that conducts electrons as carriers.
  • the ease of carrier flow in the organic semiconductor layer is represented by carrier mobility ⁇ . Although it depends on the application, in general, the mobility should be higher, preferably 10 ⁇ 7 cm 2 / Vs or more, more preferably 10 ⁇ 6 cm 2 / Vs or more, more preferably 10 ⁇ 5 cm 2 / Vs. More preferably, it is Vs or higher.
  • the mobility can be obtained by characteristics when a field effect transistor (FET) element is manufactured or by a time-of-flight measurement (TOF) method.
  • FET field effect transistor
  • TOF time-of-flight measurement
  • the organic semiconductor layer is preferably used after being formed on a substrate. That is, it is preferable to have a substrate on the surface of the organic semiconductor layer far from the water-soluble resin layer.
  • the substrate include various materials such as silicon, quartz, ceramic, glass, polyester film such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), and polyimide film. May be selected.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the thickness of the substrate is not particularly limited.
  • any material of organic semiconductor materials may be used as long as it exhibits a hole (hole) transport property, but preferably a p-type ⁇ -conjugated polymer
  • substituted or unsubstituted polythiophene for example, poly (3-hexylthiophene) (P3HT, Sigma Aldrich Japan GK), etc.
  • polyselenophene polypyrrole, polyparaphenylene, polyparaphenylene vinylene, polythiophene vinylene, polyaniline Etc.
  • condensed polycyclic compounds eg, substituted or unsubstituted anthracene, tetracene, pentacene, anthradithiophene, hexabenzocoronene, etc.
  • triarylamine compounds eg, m-MTDATA (4,4 ′, 4 ′′) -Tris [(3-methylph nyl
  • the n-type semiconductor material that can be used for the organic semiconductor layer may be any organic semiconductor material as long as it has an electron transporting property, but is preferably a fullerene compound, an electron-deficient phthalocyanine compound, or a naphthalene tetracarbonyl compound.
  • the fullerene compound refers to a substituted or unsubstituted fullerene, and the fullerene is C 60 , C 70 , C 76 , C 78 , C 80 , C 82 , C 84 , C 86 , C 88 , C 90.
  • C 96 , C 116 , C 180 , C 240 , C 540 fullerene and the like may be used, preferably substituted or unsubstituted C 60 , C 70 , C 86 fullerene, and particularly preferably PCBM ([6, 6] -Phenyl-C61-butyric acid methyl ester, Sigma-Aldrich Japan GK, etc.) and analogs thereof (substitute the C 60 moiety with C 70 , C 86, etc., the benzene ring of the substituent being another aromatic ring or Substituted with a heterocyclic ring, and methyl ester substituted with n-butyl ester, i-butyl ester, etc.).
  • PCBM [6, 6] -Phenyl-C61-butyric acid methyl ester, Sigma-Aldrich Japan GK, etc.
  • analogs thereof substitute the C 60 moiety with C 70 , C 86, etc., the benz
  • Electron-deficient phthalocyanines are phthalocyanines of various central metals (F 16 MPc, FPc-S8, etc., in which four or more electron withdrawing groups are bonded, where M is a central metal, Pc is phthalocyanine, and S8 is ( n-octylsulfonyl group)), naphthalocyanine, anthracocyanine, substituted or unsubstituted tetrapyrazinoporphyrazine and the like.
  • F 16 MPc, FPc-S8, etc. in which four or more electron withdrawing groups are bonded, where M is a central metal, Pc is phthalocyanine, and S8 is ( n-octylsulfonyl group)), naphthalocyanine, anthracocyanine, substituted or unsubstituted tetrapyrazinoporphyrazine and the like.
  • naphthalene tetracarbonyl compound may be used, but naphthalene tetracarboxylic anhydride (NTCDA), naphthalene bisimide compound (NTCDI), and perinone pigment (Pigment Orange 43, Pigment Red 194, etc.) are preferable.
  • NTCDA naphthalene tetracarboxylic anhydride
  • NTCDI naphthalene bisimide compound
  • perinone pigment Pigment Orange 43, Pigment Red 194, etc.
  • Any perylene tetracarbonyl compound may be used, but perylene tetracarboxylic acid anhydride (PTCDA), perylene bisimide compound (PTCDI), and benzimidazole condensed ring (PV) are preferable.
  • the TCNQ compound is a compound in which a substituted or unsubstituted TCNQ and a benzene ring portion of TCNQ are replaced with another aromatic ring or a heterocyclic ring.
  • TCN3T 2, 2 ′-((2E, 2 ′′ E) -3 ′, 4′-Alkyl substituted-5H, 5 ′′ H- [2,2 ′: 5 ′, 2 ′′ -tertiophene] -5,5 ′′ -Diylidene) dimalononitrile derivative)
  • graphene is also included. Particularly preferred examples of the n-type organic semiconductor material are shown below.
  • R in the formula may be any, but is a hydrogen atom, a substituted or unsubstituted, branched or straight chain alkyl group (preferably having 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 8) and a substituted or unsubstituted aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 to 14 carbon atoms).
  • Me is a methyl group.
  • the organic material showing the characteristics of the semiconductor contained in the organic semiconductor layer may be one type or two or more types.
  • the above materials are usually blended in a solvent, applied in layers on a substrate, dried and formed into a film.
  • the solvent include hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, ethylbenzene, and 1-methylnaphthalene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Halogenated hydrocarbon solvents such as chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, and chlorotoluene; for example, ester solvents such as ethyl acetate, butyl acetate, and amyl acetate; for example
  • the ratio of the organic semiconductor in the composition for forming the organic semiconductor layer is preferably 0.1 to 80% by mass, more preferably 0.1 to 30% by mass. A film having a thickness can be formed.
  • a resin binder may be blended in the composition for forming an organic semiconductor.
  • the material for forming the film and the binder resin can be dissolved or dispersed in the above-mentioned appropriate solvent to form a coating solution, and the thin film can be formed by various coating methods.
  • Resin binders include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, polypropylene, and other insulating polymers, and their co-polymers.
  • Examples thereof include photoconductive polymers such as coalescence, polyvinyl carbazole and polysilane, and conductive polymers such as polythiophene, polypyrrole, polyaniline and polyparaphenylene vinylene.
  • the resin binder may be used alone or in combination. In consideration of the mechanical strength of the thin film, a resin binder having a high glass transition temperature is preferable, and in consideration of charge mobility, a resin binder made of a photoconductive polymer or a conductive polymer having a structure containing no polar group is preferable.
  • the blending amount is preferably 0.1 to 30% by mass in the organic semiconductor layer. Only one type of resin binder may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • a single layer or a mixed solution to which various semiconductor materials and additives are added may be applied onto a substrate or the like to form a blend film composed of a plurality of material types. For example, when a photoelectric conversion layer is manufactured, a mixed solution with another semiconductor material can be used. In film formation, the substrate may be heated or cooled, and the film quality and packing of molecules in the film can be controlled by changing the temperature of the substrate.
  • the temperature of the substrate is not particularly limited, but is preferably ⁇ 200 ° C. to 400 ° C., more preferably ⁇ 100 ° C. to 300 ° C., and further preferably 0 ° C. to 200 ° C.
  • the characteristics of the formed organic semiconductor layer can be adjusted by post-processing. For example, it is possible to improve the characteristics by changing the film morphology and the molecular packing in the film by exposing to a heat treatment or a vaporized solvent. Further, by exposing to an oxidizing or reducing gas, solvent, substance, or the like, or mixing them, an oxidation or reduction reaction can be caused to adjust the carrier density in the film.
  • the thickness of the organic semiconductor layer is not particularly limited and varies depending on the type of electronic device used, but is preferably 5 nm to 50 ⁇ m, more preferably 10 nm to 5 ⁇ m, and still more preferably 20 nm to 500 nm.
  • the water-soluble resin layer preferably contains a water-soluble resin and is formed from a water-soluble resin composition.
  • the water-soluble resin refers to a resin in which the amount of the resin that can be dissolved in 100 g of water at 20 ° C. is 1 g or more, preferably a resin that is 5 g or more, more preferably 10 g or more, and 30 g or more. More preferably. There is no upper limit, but it is practical to be 20 g.
  • water-soluble resin examples include polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), water-soluble polysaccharides (water-soluble cellulose (methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, etc. ), Pullulan or a pullulan derivative, starch, hydroxypropyl starch, carboxymethyl starch, chitosan, cyclodextrin), polyethylene oxide, polyethyloxazoline and the like.
  • PVP and PVA are preferable, and PVA is more preferable. Of these, two or more different main chain structures may be selected and used, or may be used as a copolymer.
  • the weight average molecular weight of the water-soluble resin is not particularly limited, but the weight average molecular weight of the polyvinylpyrrolidone used in the present invention is preferably 50,000 to 400,000.
  • the weight average molecular weight of the polyvinyl alcohol used in the present invention is preferably 15000 to 100,000. For other resins, it is preferably in the range of 10,000 to 300,000.
  • the dispersity (weight average molecular weight / number average molecular weight) of the water-soluble resin (PVP, PVA) used in the present invention is preferably 1.0 to 5.0, more preferably 2.0 to 4.0.
  • the content of the water-soluble resin in the water-soluble resin composition may be appropriately adjusted as necessary, but is preferably 30% by mass or less, more preferably 25% by mass or less, and 20% by mass or less. More preferably it is. As a minimum, it is preferred that it is 1 mass% or more, it is more preferred that it is 2 mass% or more, and it is still more preferred that it is 4 mass% or more.
  • the thickness of the water-soluble resin layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, further preferably 1.0 ⁇ m or more, and further preferably 2.0 ⁇ m or more.
  • As an upper limit of the thickness of a water-soluble resin layer 10 micrometers or less are preferable, 5.0 micrometers or less are more preferable, and 3.0 micrometers or less are further more preferable.
  • the water-soluble resin layer can be formed, for example, by applying a water-soluble resin composition containing one or more of the above water-soluble resins on the organic semiconductor layer and drying it.
  • the water-soluble resin composition contains water as a solvent and may further contain other additives.
  • the solid content concentration of the water-soluble resin composition is preferably 0.5 to 30% by mass, more preferably 1.0 to 20% by mass, and further preferably 2.0 to 14% by mass. preferable. It can apply
  • Application is preferred as the application method.
  • application methods include slit coating, casting, blade coating, wire bar coating, spray coating, dipping (dip) coating, bead coating, air knife coating, curtain coating, ink jet, Examples thereof include a spin coating method and a Langmuir-Blodgett (LB) method. It is more preferable to use a casting method, a spin coating method, and an ink jet method. Such a process makes it possible to produce a water-soluble resin layer having a smooth surface and a large area at a low cost.
  • LB Langmuir-Blodgett
  • the water-soluble resin composition preferably further contains a surfactant for improving coatability.
  • a surfactant any surfactant such as nonionic, anionic, and amphoteric fluorine may be used as long as it reduces the surface tension.
  • the surfactant include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene stearyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and other polyoxyethylene alkyl ethers.
  • Oxyethylene alkyl aryl ethers such as polyoxyethylene stearate, sorbitan monolaurate, sorbitan monostearate, sorbitan distearate, sorbitan monooleate, sorbitan sesquioleate, sorbitan trioleate, etc.
  • Sorbitan alkyl esters such as glyceride alkyl esters such as glycerol monostearate and glycerol monooleate
  • Nonionic surfactants such as oligomers containing fluorine or silicon, acetylene glycol, ethylene oxide adducts of acetylene glycol, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium butyl naphthalene sulfonate, pentyl naphthalene sulfonic acid
  • Alkyl naphthalene sulfonates such as sodium, sodium hexyl naphthalene sulfonate, sodium octyl naphthalene sulfonate
  • alkyl sulfates such as sodium lauryl sulfate
  • alkyl sulfonates such as sodium dodecyl sul
  • the addition amount of the surfactant is preferably 0.001 to 20% by mass, more preferably 0.001 to 5% by mass, and still more preferably 0% in the solid content. .01 to 1% by mass.
  • These surfactants may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the photosensitive layer is formed from a photosensitive layer forming composition containing an acid generator and a resin.
  • the weight average molecular weight of the acid-reactive resin in the photosensitive layer is 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more. As an upper limit, it is 50,000 or less, and it is preferable that it is 45,000 or less.
  • the present invention is highly valuable in that a pattern can be appropriately formed even when such a resin having a large molecular weight is used.
  • the amount of the component having a weight average molecular weight of 1,000 or less contained in the acid-reactive resin is preferably 10% by mass or less, more preferably 5% by mass or less of the total acid-reactive resin component.
  • the dispersity (weight average molecular weight / number average molecular weight) of the acid-reactive resin is preferably 1.0 to 4.0, more preferably 1.1 to 2.5.
  • the value measured by the method shown in the Examples is adopted as the weight molecular weight.
  • the photosensitive resin composition forming the photosensitive layer may contain a solvent.
  • An embodiment in which the amount of the solvent contained in the photosensitive resin composition is 1 to 10% by mass is exemplified.
  • the photosensitive layer is preferably a chemically amplified photosensitive layer. When the photosensitive layer is of a chemical amplification type, high storage stability and fine pattern formation can be achieved.
  • the content of the acid reactive resin in the photosensitive layer is preferably 20 to 99.9% by mass, more preferably 40 to 99% by mass, and further preferably 70 to 99% by mass.
  • 1 type, or 2 or more types of acid reactive resin may be contained. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the acid-reactive resin may be a mixture of a resin having a high dissolution rate in butyl acetate and a resin having a low dissolution rate in butyl acetate.
  • a mixture of an acid-reactive resin having a dissolution rate of less than 20 nm / s and a resin having a dissolution rate of more than 200 nm / s is exemplified.
  • the dissolution rate in this case refers to the dissolution rate measured by the method described in the example described later in Example 1, which will be described later, and the composition in which the acid reactive resin is replaced with the acid reactive resin.
  • the photosensitive layer is preferably hardly soluble in a developing solution containing an organic solvent in the exposed portion. Slightly soluble means that the exposed portion is hardly soluble in the developer, and specifically, 50 mJ / cm in at least one of a wavelength of 365 nm (i-line), a wavelength of 248 nm (KrF line), and a wavelength of 193 nm (ArF line).
  • the polarity changes as described above by exposing at a dose of 50 to 250 mJ / cm 2 at at least one of a wavelength of 365 nm (i-line), a wavelength of 248 nm (KrF line) and a wavelength of 193 nm (ArF line). Is more preferable.
  • the photosensitive layer may be a negative photosensitive layer or a positive photosensitive layer, but a negative photosensitive layer is preferable because it enables formation of finer trenches and hole patterns. .
  • the thickness of the photosensitive layer is preferably 0.5 ⁇ m or more, may exceed 1.0 ⁇ m, may be 1.5 ⁇ m or more, or may be 1.8 ⁇ m or more.
  • the upper limit of the thickness of the photosensitive layer is preferably 10 ⁇ m or less, more preferably 5.0 ⁇ m or less, and may be 3.0 ⁇ m or less.
  • the total thickness of the photosensitive layer and the water-soluble resin layer is preferably 2.0 ⁇ m or more.
  • the upper limit is preferably 20.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, and even more preferably 5.0 ⁇ m or less.
  • the photosensitive layer preferably has photosensitivity to i-ray irradiation.
  • the photosensitivity is a property that a material is altered by irradiation with at least one of actinic rays and radiation (if it has photosensitivity to i-ray irradiation), the material is altered in the present invention. Is accompanied by a change in dissolution rate in butyl acetate.
  • the over development coefficient of the photosensitive layer is preferably from 1.0 to 4.0, more preferably from 1.1 to 1.9. By setting it as such a range, the effect of suppressing pattern footing and undercutting can be exhibited effectively.
  • the over-development coefficient is measured and calculated according to the description in the examples described later.
  • the photosensitive resin composition is preferably a chemically amplified photosensitive resin composition containing at least an acid reactive resin and a photoacid generator.
  • the dissolution rate when the unirradiated photosensitive layer is immersed in butyl acetate at 23 ° C. is defined as 20 nm / second or more and 200 nm / second or less.
  • the dissolution rate is preferably 180 nm / second or less, more preferably 150 nm / second or less, and further preferably 120 nm / second or less.
  • the lower limit is preferably 25 nm / second or more, more preferably 40 nm / second or more, and further preferably 70 nm / second or more.
  • the method for measuring the dissolution rate of the photosensitive layer is based on the method employed in the examples described later.
  • the acid-reactive resin is a resin component constituting the photosensitive resin composition, and the dissolution rate in butyl acetate is changed by the action of an acid from a compound that generates an acid upon irradiation with at least one of actinic rays and radiation.
  • the acid-reactive resin used in the present invention is a hydrophobic resin soluble in butyl acetate at 23 ° C.
  • the acid-reactive resin is a resin component constituting the photosensitive resin composition, and is usually a resin containing a structural unit containing a group dissociated by an acid, and may contain another structural unit.
  • the acid-reactive resin is soluble in an organic solvent having an sp value (solubility parameter value) of 18.0 (MPa) 1/2 or less, and has a tetrahydrofuranyl group in a structural unit represented by the following formula (1).
  • a resin that is hardly soluble in an organic solvent having an sp value of 18.0 (MPa) 1/2 or less when decomposed or dissociated is preferable.
  • “sp value (solubility parameter value) is 18.0 (MPa) soluble in an organic solvent of 1/2” or less means that a solution of a compound (resin) is applied on a substrate, and then at 100 ° C. for 1 minute.
  • the dissolution rate of the coating film (thickness 1 ⁇ m) of the compound (resin) formed by heating with respect to butyl acetate at 23 ° C. is 20 nm / second or more
  • the “sp value is 18.0 (MPa ) “Slightly soluble in 1/2 or less organic solvent” means that a compound (resin) coating film (thickness) is formed by applying a compound (resin) solution on a substrate and heating at 100 ° C. for 1 minute. 1 ⁇ m) at 23 ° C. is less than 0.1 nm / second.
  • the acid-reactive resin preferably has a dissolution rate that changes due to the action of an acid, and this change is more preferably a decrease in the dissolution rate.
  • the rate of dissolution in an organic solvent typically butyl acetate
  • whose sp value of the acid-reactive resin before irradiation with actinic rays or the like is 18.0 (MPa) 1/2 or less is 40 nm / second or more. Is more preferable.
  • the acid-decomposable group of the acid-reactive resin when decomposed by irradiation with actinic rays or the like, it is dissolved in an organic solvent (typically butyl acetate) whose sp value is 18.0 (MPa) 1/2 or less. More preferably, the speed is less than 0.05 nm / second.
  • an organic solvent typically butyl acetate
  • the dissolution rate of the photosensitive layer or acid-reactive resin may be changed by a conventional method.
  • the molecular weight of the polymer constituting the acid-reactive resin the selection of the molecular structure, the selection of the type of the acid protecting group, Depending on the amount of acid and protecting group introduced in the molecule, selection of the type of acid generator, ratio of the amount of acid-reactive resin and acid generator, SP value of the resin, adjustment of the ratio of low-molecular compounds in the solids, etc.
  • the dissolution rate can be adjusted.
  • a resin having a dissolution rate of less than 20 nm / s and a resin having a dissolution rate of more than 200 nm / s may be blended.
  • the group soluble in the alkaline aqueous solution is preferably a structural unit having an acid group.
  • the acid group include hydroxyl groups (including phenolic hydroxyl groups), carboxyl groups, sulfonic acid groups, sulfinic acid groups, phosphoric acid groups, phosphonic acid groups, phosphoric acid groups, and phosphonic acid groups.
  • a structural unit typically refers to a repeating structural unit of a polymer (sometimes simply referred to as a structural unit), but may mean a substituent or a group of several substituents in the structural unit.
  • Protected by a hydrophobic protecting group is typically a state in which a functional group (usually an acid group) of a group soluble in the alkaline aqueous solution is substituted with a hydrophobic substituent.
  • a functional group usually an acid group
  • the phenolic hydroxyl group is substituted with a substituent having an alkyl group to form an ether bond.
  • an example in which a tetrahydropyranyl group is substituted on the carboxyl group to form an ester can be mentioned.
  • the above-mentioned protection by the hydrophobic protective group is based on the ratio of the hydrophobic substituent to the number of functional groups (usually acid groups) of the group soluble in an alkaline aqueous solution present in one molecule. It can be evaluated whether it is a substituent.
  • this ratio is shown on a molar ratio basis, in the present invention, it is 50 mol% or more and 100 mol% or less as described above, preferably 55 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol%.
  • the alkyl group serving as a protective group may be primary, secondary or tertiary, and may be linear or cyclic, and may be linear or branched.
  • This alkyl group may be via an oxygen atom or a carbonyl group in the chain. It may be cyclic to form an oxazine ring or a tetrahydrofuran ring.
  • An aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and further preferably 6 to 10 carbon atoms) may be substituted.
  • the intervening oxygen atom is preferably in a ratio of 1 to 1 to 12 carbon atoms.
  • the acid-reactive resin is preferably an acrylic polymer.
  • Acrylic polymer is an addition polymerization type resin, which is a polymer containing a structural unit derived from (meth) acrylic acid or an ester thereof, and other than a structural unit derived from (meth) acrylic acid or an ester thereof. These structural units may include, for example, structural units derived from styrenes, structural units derived from vinyl compounds, and the like.
  • the acrylic polymer preferably has a structural unit derived from (meth) acrylic acid or an ester thereof in an amount of 50 mol% or more, more preferably 80 mol% or more, based on all the structural units in the polymer. Particularly preferred is a polymer consisting only of structural units derived from (meth) acrylic acid or its ester. Such an acrylic polymer is preferably used for negative development.
  • the acrylic polymer has a structural unit containing a protected carboxyl group or a protected phenolic hydroxyl group.
  • the monomer capable of forming a structural unit containing a protected carboxyl group include (meth) acrylic acid protected with an acid dissociable group.
  • Preferred examples of the monomer having a phenolic hydroxyl group include hydroxystyrenes such as p-hydroxystyrene and ⁇ -methyl-p-hydroxystyrene. Among these, ⁇ -methyl-p-hydroxystyrene is more preferable.
  • the acrylic polymer preferably has a cyclic ether ester structure, and more preferably has a structure represented by the following formula (1).
  • R 8 represents a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and more preferably 1 to 3)
  • L 1 represents a carbonyl group or a phenylene group
  • R 1 R 7 each independently represents a hydrogen atom or an alkyl group.
  • R 8 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
  • L 1 represents a carbonyl group or a phenylene group, and is preferably a carbonyl group.
  • R 1 to R 7 each independently represents a hydrogen atom or an alkyl group.
  • the alkyl group in R 1 to R 7 has the same meaning as R 8 , and the preferred embodiment is also the same. Further, among the R 1 ⁇ R 7, preferably more than one is a hydrogen atom, it is more preferable that all of R 1 ⁇ R 7 are hydrogen atoms.
  • (1-1) and (1-2) are particularly preferable.
  • the radical polymerizable monomer used for forming the structural unit (1) a commercially available one may be used, or one synthesized by a known method may be used. For example, it can be synthesized by reacting (meth) acrylic acid with a dihydrofuran compound in the presence of an acid catalyst. Alternatively, it can be formed by reacting a carboxyl group or a phenolic hydroxyl group with a dihydrofuran compound after polymerization with a precursor monomer.
  • Examples of the structural unit containing a protected phenolic hydroxyl group include the structural unit represented by the following formula (2).
  • A represents a hydrogen atom or a group capable of leaving by the action of an acid.
  • Examples of the group capable of leaving by the action of an acid include an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and more preferably 1 to 3), and an alkoxyalkyl group (preferably having 2 to 12 carbon atoms and 2 To 6 are more preferred, and 2 to 3 are more preferred), an aryloxyalkyl group (preferably having a total carbon number of 7 to 40, more preferably 7 to 30 and even more preferably 7 to 20), an alkoxycarbonyl group (having 2 carbon atoms).
  • A may further have a substituent.
  • R 10 represents a substituent.
  • R 9 represents a group having the same meaning as R 8 in Formula (1).
  • nx represents an integer of 0 to 3.
  • group dissociating by an acid among the compounds described in paragraphs 0039 to 0049 of JP-A-2008-197480, a structural unit having a group dissociating by an acid is preferable, and JP-A-2012-159830 ( The compounds described in paragraph Nos. 0052 to 0056 of Japanese Patent No. 5191567) are also preferable, the contents of which are incorporated herein.
  • the proportion of the structural unit (1) and the structural unit (2) is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, and further preferably 10 to 60 mol%.
  • the acrylic polymer may contain only 1 type of structural unit (1), or may contain 2 or more types. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the acid-reactive resin may contain a structural unit having a crosslinkable group. Details of the crosslinkable group can be referred to the descriptions in paragraph numbers 0032 to 0046 of JP2011-209692A, the contents of which are incorporated herein.
  • the acid-reactive resin may have a configuration that does not substantially contain the structural unit (3) having a crosslinkable group. preferable. With such a configuration, the photosensitive layer can be more effectively removed after patterning.
  • “substantially” means, for example, 3 mol% or less, preferably 1 mol% or less of all structural units of the acid-reactive resin.
  • the acid-reactive resin may contain other structural units (structural unit (4)).
  • structural unit (4) examples of the radical polymerizable monomer used for forming the structural unit (4) include compounds described in paragraph numbers 0021 to 0024 of JP-A No. 2004-264623.
  • structural unit (4) a structural unit derived from at least one selected from the group consisting of a hydroxyl group-containing unsaturated carboxylic acid ester, an alicyclic structure-containing unsaturated carboxylic acid ester, styrene, and an N-substituted maleimide. Is mentioned.
  • the structural unit (4) can be used alone or in combination of two or more.
  • the content of the monomer unit forming the structural unit (4) in the case where the structural unit (4) is included in all monomer units constituting the acrylic polymer is preferably 1 to 60 mol%, and 5 to 50 mol%. Is more preferable, and 5 to 40 mol% is more preferable. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • radical polymerizable monomers used to form at least the structural unit (1), the structural unit (2), etc. can be synthesized by polymerizing a radically polymerizable monomer mixture containing a radical polymerization initiator in an organic solvent.
  • the acid-reactive resin 2,3-dihydrofuran is added at room temperature (in the absence of an acid catalyst) to the acid anhydride group in the precursor copolymer obtained by copolymerizing unsaturated polyvalent carboxylic acid anhydrides.
  • a copolymer obtained by addition at a temperature of about 25 ° C. to 100 ° C. is also preferable.
  • the following resins are also listed as preferred examples of the acid-reactive resin.
  • BzMA / THFMA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA / THFAA / t-BuMA (molar ratio: 20 to 60:35 to 65: 5 to 30)
  • BzMA / THPMA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA / PEES / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
  • BzMA is benzyl methacrylate
  • THFMA is tetrahydrofuran-2-yl methacrylate
  • BuMA is butyl methacrylate
  • THFAA is tetrahydrofuran-2-yl acrylate
  • THPMA is tetrahydro-2H-pyran-2.
  • PEES is p-ethoxyethoxystyrene.
  • Examples of the acid-reactive resin used for positive development include those described in JP2013-011678A, the contents of which are incorporated herein.
  • the content of the acid-reactive resin in the photosensitive resin composition is preferably 20 to 99% by mass and more preferably 40 to 99% by mass with respect to the total solid content of the photosensitive resin composition. Preferably, it is 70 to 99% by mass. When the content is within this range, the pattern formability upon development is good.
  • the acid-reactive resin may contain only 1 type, and may contain 2 or more types. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the acid-reactive resin preferably accounts for 10% by mass or more of the resin component contained in the photosensitive resin composition, more preferably accounts for 50% by mass or more, and more preferably accounts for 90% by mass or more. .
  • the photosensitive resin composition may contain a photoacid generator.
  • the photoacid generator is preferably a photoacid generator having absorption at a wavelength of 365 nm.
  • the photoacid generator is preferably a compound having an oxime sulfonate group (hereinafter also simply referred to as an oxime sulfonate compound).
  • the oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group. However, the following formula (OS-1), formula (OS-103), formula (OS-104), or formula (OS- It is preferable that it is an oxime sulfonate compound represented by 105).
  • X 3 represents an alkyl group, an alkoxyl group, or a halogen atom. When a plurality of X 3 are present, they may be the same or different.
  • the alkyl group and alkoxyl group in X 3 may have a substituent.
  • the alkyl group in X 3 is preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
  • the alkoxyl group in X 3 is preferably a linear or branched alkoxyl group having 1 to 4 carbon atoms.
  • the halogen atom in X 3 is preferably a chlorine atom or a fluorine atom.
  • m3 represents an integer of 0 to 3, preferably 0 or 1. When m3 is 2 or 3, the plurality of X 3 may be the same or different.
  • R 34 represents an alkyl group or an aryl group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxyl group having 1 to 5 carbon atoms.
  • W represents a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxyl group having 1 to 5 carbon atoms.
  • m3 is 3
  • X 3 is a methyl group
  • the substitution position of X 3 is an ortho position
  • R 34 is a linear alkyl group having 1 to 10 carbon atoms, 7,7-dimethyl-2
  • a compound which is an -oxonorbornylmethyl group or a p-toluyl group is particularly preferable.
  • oxime sulfonate compound represented by the formula (OS-1) include the following compounds described in paragraph numbers 0064 to 0068 of JP2011-209692A, the contents of which are described in the present specification. Incorporated into.
  • R 11 represents an alkyl group, an aryl group, or a heteroaryl group
  • a plurality of R 12 s that may be present each independently represent a hydrogen atom, an alkyl group, an aryl group, or a halogen atom
  • a plurality of R 16 s that may be present Each independently represents a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group
  • X represents O or S
  • ns represents 1 or 2
  • ms represents 0 to 6 Represents an integer.
  • the alkyl group, aryl group or heteroaryl group represented by R 11 may have a substituent.
  • the alkyl group represented by R 11 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent.
  • Examples of the substituent that the alkyl group represented by R 11 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
  • alkyl group represented by R 11 examples include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, and n-hexyl.
  • the aryl group represented by R 11 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • Examples of the substituent that the aryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, Examples thereof include an aminocarbonyl group, a sulfonic acid group, an aminosulfonyl group, and an alkoxysulfonyl group.
  • the aryl group represented by R 11 is preferably a phenyl group, a p-methylphenyl group, a p-chlorophenyl group, a pentachlorophenyl group, a pentafluorophenyl group, an o-methoxyphenyl group, or a p-phenoxyphenyl group.
  • the heteroaryl group represented by R 11 is preferably a heteroaryl group having 4 to 30 carbon atoms which may have a substituent.
  • Examples of the substituent that the heteroaryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, and an aryloxycarbonyl group. , An aminocarbonyl group, a sulfonic acid group, an aminosulfonyl group, and an alkoxysulfonyl group.
  • the heteroaryl group represented by R 11 only needs to have at least one heteroaromatic ring. For example, the heteroaromatic ring and the benzene ring may be condensed.
  • heteroaryl group represented by R 11 examples include a thiophene ring, a pyrrole ring, a thiazole ring, an imidazole ring, a furan ring, a benzothiophene ring, a benzothiazole ring, and a benzimidazole ring, which may have a substituent.
  • a group obtained by removing one hydrogen atom from a ring selected from the group consisting of:
  • R 12 is preferably a hydrogen atom, an alkyl group or an aryl group, and more preferably a hydrogen atom or an alkyl group.
  • R 12 which may be present in the compound in two or more, one or two are preferably an alkyl group, an aryl group or a halogen atom, more preferably one is an alkyl group, an aryl group or a halogen atom. It is particularly preferred that one is an alkyl group and the rest are hydrogen atoms.
  • the alkyl group or aryl group represented by R 12 may have a substituent. Examples of the substituent that the alkyl group or aryl group represented by R 12 may have include the above W.
  • the alkyl group represented by R 12 is preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent, and an alkyl group having 1 to 6 carbon atoms which may have a substituent. More preferably, it is a group.
  • Examples of the alkyl group represented by R 12 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, n-hexyl group, allyl group, A chloromethyl group, a bromomethyl group, a methoxymethyl group, and a benzyl group are preferable, and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, an s-butyl group, and an n-hexyl group.
  • a group is more preferable, a methyl group, an ethyl group, an n-propyl group, an n-butyl group and an n-hexyl group are more preferable, and a methyl group is particularly preferable.
  • the aryl group represented by R 12 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
  • the aryl group represented by R 12 is preferably a phenyl group, a p-methylphenyl group, an o-chlorophenyl group, a p-chlorophenyl group, an o-methoxyphenyl group, or a p-phenoxyphenyl group.
  • halogen atom represented by R 12 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a chlorine atom and a bromine atom are preferable.
  • X represents O or S, and is preferably O.
  • the ring containing X as a ring member is a 5-membered ring or a 6-membered ring.
  • ns represents 1 or 2, and when X is O, ns is preferably 1, and when X is S, ns is preferably 2.
  • the alkyl group and alkyloxy group represented by R 16 may have a substituent.
  • the alkyl group represented by R 16 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent. Examples of the substituent that the alkyl group represented by R 16 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
  • Examples of the alkyl group represented by R 16 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, and n-hexyl. Group, n-octyl group, n-decyl group, n-dodecyl group, trifluoromethyl group, perfluoropropyl group, perfluorohexyl group and benzyl group are preferred.
  • the alkyloxy group represented by R 16 is preferably an alkyloxy group having 1 to 30 carbon atoms which may have a substituent.
  • alkyloxy group represented by R 16 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl.
  • the alkyloxy group represented by R 16 is preferably a methyloxy group, an ethyloxy group, a butyloxy group, a hexyloxy group, a phenoxyethyloxy group, a trichloromethyloxy group, or an ethoxyethyloxy group.
  • Examples of the aminosulfonyl group for R 16 include a methylaminosulfonyl group, a dimethylaminosulfonyl group, a phenylaminosulfonyl group, a methylphenylaminosulfonyl group, and an aminosulfonyl group.
  • Examples of the alkoxysulfonyl group represented by R 16 include a methoxysulfonyl group, an ethoxysulfonyl group, a propyloxysulfonyl group, and a butyloxysulfonyl group.
  • ms represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
  • the compound represented by the above formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), (OS-110) or (OS-111).
  • the compound represented by OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the above formula (OS-105) is represented by the following formula (OS-108). ) Or (OS-109) is particularly preferable.
  • R 11 represents an alkyl group, an aryl group or a heteroaryl group
  • R 17 represents a hydrogen atom or a bromine atom
  • R 18 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl Group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group
  • R 19 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group
  • R 20 represents a hydrogen atom or a methyl group.
  • R 17 represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
  • R 18 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group, and an alkyl group having 1 to 8 carbon atoms
  • a halogen atom or a phenyl group is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, an alkyl group having 1 to 6 carbon atoms is further preferable, and a methyl group is particularly preferable.
  • R 19 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
  • R 20 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
  • the oxime steric structure (E, Z) may be either one or a mixture.
  • Specific examples of the oxime sulfonate compounds represented by the above formulas (OS-103) to (OS-105) include the compounds described in paragraph numbers 0088 to 0095 of JP 2011-209692 A, and their contents Are incorporated herein.
  • oxime sulfonate compound having at least one oxime sulfonate group include compounds represented by the following formulas (OS-101) and (OS-102).
  • R 11 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxyl group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group or a heteroaryl group.
  • R 11 is a cyano group or an aryl group is more preferable, and an embodiment in which R 11 is a cyano group, a phenyl group, or a naphthyl group is more preferable.
  • R 12a represents an alkyl group or an aryl group.
  • X is, -O -, - S -, - NH -, - NR 15 -, - CH 2 -, - CR 16 H- or -CR 16 R 17 - represents, in each of R 15 ⁇ R 17 independently, Represents an alkyl group or an aryl group.
  • R 21 to R 24 are each independently a hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxyl group, amino group, alkoxycarbonyl group, alkylcarbonyl group, arylcarbonyl group, amide group, sulfo group, cyano group or aryl. Represents a group.
  • Two of R 21 to R 24 may be bonded to each other to form a ring. At this time, the ring may be condensed to form a condensed ring together with the benzene ring.
  • R 21 to R 24 are preferably a hydrogen atom, a halogen atom or an alkyl group, and an embodiment in which at least two of R 21 to R 24 are bonded to each other to form an aryl group is also preferred. Of these, an embodiment in which R 21 to R 24 are all hydrogen atoms is preferred. Any of the above-described substituents may further have a substituent.
  • the compound represented by the formula (OS-101) is more preferably a compound represented by the formula (OS-102).
  • the steric structure (E, Z, etc.) of the oxime or benzothiazole ring may be either one or a mixture.
  • Specific examples of the compound represented by the formula (OS-101) include compounds described in paragraph numbers 0102 to 0106 of JP2011-209692A, the contents of which are incorporated herein.
  • b-9, b-16, b-31 and b-33 are preferable.
  • Examples of commercially available products include WPAG-336 (manufactured by Wako Pure Chemical Industries, Ltd.), WPAG-443 (manufactured by Wako Pure Chemical Industries, Ltd.), MBZ-101 (manufactured by Midori Chemical Co., Ltd.), and the like. .
  • the photoacid generator sensitive to actinic rays those which do not contain a 1,2-quinonediazide compound are preferred.
  • the 1,2-quinonediazide compound generates a carboxyl group by a sequential photochemical reaction, but its quantum yield is 1 or less and is less sensitive than the oxime sulfonate compound.
  • the oxime sulfonate compound acts as a catalyst for the deprotection of an acid group protected in response to an actinic ray, so that a large number of acids generated by the action of one photon are present.
  • the oxime sulfonate compound has a broad ⁇ -conjugated system, it has absorption up to the long wavelength side, and not only deep ultraviolet rays (DUV), ArF rays, KrF rays, i rays, It shows very high sensitivity even in the g-line.
  • DUV deep ultraviolet rays
  • an acid-decomposability equivalent to or higher than that of an acetal or ketal can be obtained.
  • an acid-decomposable group can be consumed reliably in a shorter post-bake.
  • the oxime sulfonate compound that is a photoacid generator in combination, the sulfonic acid generation rate is increased, so that the generation of acid is accelerated and the decomposition of the acid-decomposable group of the resin is accelerated.
  • the photoacid generator is preferably used in an amount of 0.1 to 20% by mass, more preferably 0.5 to 18% by mass, based on the total solid content of the photosensitive resin composition. It is further preferable to use 10% by mass, more preferably 0.5 to 3% by mass, and still more preferably 0.5 to 1.2% by mass.
  • a photo-acid generator may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the photosensitive resin composition can contain other components.
  • an organic solvent is preferably contained from the viewpoint of coatability.
  • Organic solvent preferably contains an organic solvent, and is preferably prepared as a solution in which an optional component of a photoacid generator and various additives in addition to a reactive resin is dissolved in an organic solvent.
  • known organic solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether.
  • Propylene glycol dialkyl ethers Propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetate , Esters, ketones, amides, lactones and the like.
  • organic solvent examples include (1) ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether; (2) ethylene glycol dimethyl ether, ethylene glycol diethyl Ethylene glycol dialkyl ethers such as ether and ethylene glycol dipropyl ether; (3) ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, and ethylene glycol monobutyl ether acetate Acetates; (4) propylene glycol Propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; (5) Propylene glycol dialkyl
  • these organic solvents may further contain benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, 1-octanol, if necessary.
  • Organic solvents such as nonanol, benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, and propylene carbonate can also be added.
  • the photosensitive resin composition preferably contains a basic compound, and preferably contains a surfactant from the viewpoint of coatability.
  • the photosensitive resin composition contains a basic compound.
  • the basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids. Examples of aliphatic amines include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and dicyclohexylamine. , Dicyclohexylmethylamine and the like.
  • Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
  • Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, cyclohexylmorpholinoethylthiourea, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3
  • Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
  • Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
  • the content of the basic compound is preferably 0.001 to 1 part by mass, and 0.002 to 0 parts per 100 parts by mass of the acid-reactive resin. More preferably, it is 5 parts by mass.
  • the basic compound may be used singly or in combination of two or more, preferably in combination of two or more, more preferably in combination of two, heterocyclic amine More preferably, two of these are used in combination. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the photosensitive resin composition contains a surfactant.
  • a surfactant any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
  • nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, fluorine-based and silicone surfactants. . More preferably, the surfactant contains a fluorine-based surfactant, a silicone-based surfactant, and a combination of both.
  • fluorosurfactants and silicone surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, Surfactants described in JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, and JP-A-2001-330953 Commercially available surfactants can also be used.
  • Examples of commercially available surfactants that can be used include EFTOP EF301, EF303 (above, Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (above, made by Sumitomo 3M Ltd.), MegaFuck F171, F173, F176. , F189, R08 (above, manufactured by DIC Corporation), Surflon S-382, SC101, 102, 103, 104, 105, 106 (above, manufactured by Asahi Glass Co., Ltd.), PF-6320, etc.
  • Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicone surfactant.
  • a surfactant it contains a structural unit A and a structural unit B represented by the following formula (41), and is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent.
  • a preferred example is a copolymer having (Mw) of 1,000 or more and 10,000 or less.
  • R 41 and R 43 each independently represent a hydrogen atom or a methyl group
  • R 42 represents a linear alkylene group having 1 to 4 carbon atoms
  • R 44 represents a hydrogen atom or 1 to 4 carbon atoms.
  • L 4 represents an alkyl group
  • L 4 represents an alkylene group having 3 to 6 carbon atoms
  • p4 and q4 is the mass percentage representing the polymerization ratio
  • p4 represents the following numbers 80 wt% to 10 wt%
  • q4 represents a numerical value of 20% by mass to 90% by mass
  • r4 represents an integer of 1 to 18
  • n4 represents an integer of 1 to 10.
  • L 4 is preferably a branched alkylene group represented by the following formula (42).
  • R 45 in the formula (42) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of wettability with respect to the coated surface, and an alkyl group having 2 or 3 carbon atoms.
  • the weight average molecular weight of the copolymer is more preferably 1,500 or more and 5,000 or less.
  • the addition amount of the surfactant is preferably 10 parts by mass or less, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the acid-reactive resin. More preferably, the content is 0.01 to 1 part by mass.
  • Surfactant can be used individually by 1 type or in mixture of 2 or more types. When using 2 or more types, it is preferable that a total amount becomes the said range.
  • the photosensitive resin composition may contain moisture. It is preferred that the moisture is low or not included, but unavoidable moisture may be included.
  • the moisture content of the photosensitive resin composition is preferably 1% by mass or less, more preferably 0.7% by mass or less, and further preferably 0.4% by mass or less. As a lower limit, it is preferable that it is 0.01 mass% or more, it is more preferable that it is 0.03 mass% or more, and it is more preferable that it is 0.05 mass% or more.
  • the photosensitive resin composition usually inevitably contains a trace amount of metal impurities.
  • salts of alkali metals or alkaline earth metals such as sodium, potassium, calcium and the like can be mentioned.
  • the total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is, for example, in the range of 1 mass ppt to 1000 mass ppb, and further in the range of 50 mass ppt to 900 mass ppb. It is understood that it exists.
  • the amount of metal ions is measured by the method described in Examples described later.
  • the static contact angle of the photosensitive resin composition on a water-soluble resin layer is 60 degrees or less.
  • the static contact angle is preferably 50 ° or less, more preferably 40 ° or less, and further preferably 30 ° or less.
  • the lower limit may be 0 °, but is preferably 2 ° or more, more preferably 5 ° or more, and even more preferably 10 ° or more.
  • the measuring method of the static contact angle of the photosensitive resin composition shall be based on the method employ
  • the static contact angle of the photosensitive resin composition may be changed by a conventional method.
  • the molecular weight of the polymer constituting the acid-reactive resin, the molecular structure, the type and amount of polar groups, and the interface for blending The static contact angle can be adjusted by adjusting the type and amount of the active agent.
  • the photosensitive resin composition may be combined with a water-soluble resin composition containing a water-soluble resin to form a kit for forming a photosensitive layer and a water-soluble resin layer in this order. Furthermore, it is preferably used as a kit for processing an organic semiconductor layer. At this time, it is preferable to apply each component of the photosensitive resin composition and each component of the water-soluble resin composition described above as specific embodiments. In this invention, it is good also as a kit which combined the composition for organic-semiconductor formation further. As a specific aspect of the composition, it is preferable to apply the above-described organic semiconductor and each component of the composition.
  • Patterning methods that can be suitably employed in the present invention include the following forms.
  • processing (patterning) of the organic semiconductor layer will be described as an example, but it can also be used for patterning of layers other than the organic semiconductor layer.
  • the patterning method of the organic semiconductor layer of this embodiment is (1) forming a water-soluble resin layer on the organic semiconductor layer; (2) forming a photosensitive layer on the side of the water-soluble resin layer opposite to the organic semiconductor layer; (3) a step of exposing the photosensitive layer; (4) a step of developing using a developer containing an organic solvent to produce a mask pattern; (5) a step of removing at least the non-masked water-soluble resin layer and the organic semiconductor layer by dry etching treatment; (6) a step of removing the water-soluble resin layer; including.
  • the patterning method of the organic semiconductor layer of this embodiment includes a step of forming a water-soluble resin layer on the organic semiconductor layer. Usually, this process is performed after forming an organic semiconductor layer on a substrate. In this case, the water-soluble resin layer is formed on the surface opposite to the surface of the organic semiconductor on the substrate side.
  • the water-soluble resin layer is usually provided on the surface of the organic semiconductor layer, but other layers may be provided without departing from the spirit of the present invention. Specific examples include a water-soluble undercoat layer. Further, only one water-soluble resin layer may be provided, or two or more layers may be provided. As described above, the water-soluble resin layer is preferably formed using a water-soluble resin composition.
  • a photosensitive layer is formed using a photosensitive resin composition on the side opposite to the surface of the water-soluble resin layer on the organic semiconductor layer side.
  • the photosensitive layer is preferably formed using a photosensitive resin composition, and more preferably formed using a chemically amplified photosensitive resin composition containing an acid-reactive resin and a photoacid generator. Is done.
  • the chemically amplified photosensitive resin composition contains a photoacid generator. When exposed to light, an acid is generated, and the acid-reactive resin contained in the resist reacts to enable patterning and functions as a photosensitive layer.
  • the solid content concentration of the photosensitive resin composition is usually 1.0 to 40% by mass, preferably 10 to 35% by mass, and more preferably 16 to 28% by mass. By setting the solid content concentration in the above range, the photosensitive resin composition can be uniformly applied on the water-soluble resin layer, and further, a resist pattern having a high resolution and a rectangular profile can be formed. It becomes possible.
  • the solid content concentration is a percentage of the mass of other resist components excluding the organic solvent with respect to the total mass of the photosensitive resin composition.
  • Step of exposing photosensitive layer >> (2) After forming the photosensitive layer in the step, the photosensitive layer is exposed. Specifically, the photosensitive layer is irradiated with actinic rays through a mask having a predetermined pattern. Exposure may be performed only once or multiple times. Specifically, actinic rays are irradiated in a predetermined pattern onto a substrate provided with a dry coating film of the photosensitive resin composition. Exposure may be performed through a mask, or a predetermined pattern may be drawn directly.
  • an actinic ray having a wavelength of preferably 180 nm or more and 450 nm or less, more preferably 365 nm (i line), 248 nm (KrF line) or 193 nm (ArF line) can be used.
  • a post-exposure heating step PEB
  • a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a laser generator, a light emitting diode (LED) light source, or the like can be used.
  • actinic rays having wavelengths such as g-line (436 nm), i-line (365 nm), and h-line (405 nm) can be preferably used.
  • i-line because the effect is suitably exhibited.
  • wavelengths of 343 nm and 355 nm are preferably used for a solid (YAG) laser, and 193 nm (ArF line), 248 nm (KrF line), and 351 nm (Xe line) are preferably used for an excimer laser.
  • 375 nm and 405 nm are preferably used in the semiconductor laser.
  • the laser can be applied to the photosensitive layer in one or more times.
  • the exposure amount is preferably 40 to 120 mJ, and more preferably 60 to 100 mJ.
  • the energy density per pulse of the laser is preferably 0.1 mJ / cm 2 or more and 10,000 mJ / cm 2 or less.
  • 0.3 mJ / cm 2 or more is more preferable, and 0.5 mJ / cm 2 or more is more preferable.
  • more preferably 1,000 mJ / cm 2 or less, 100 mJ / cm 2 or less is more preferred.
  • the pulse width is preferably 0.1 nanosecond (hereinafter referred to as “nsec”) or more and 30,000 nsec or less.
  • nsec nanosecond
  • 0.5 nsec or more is more preferable, and 1 nsec or more is more preferable.
  • 1,000 nsec or less is more preferable, and 50 nsec or less is further preferable.
  • the frequency of the laser is preferably 1 Hz or more and 50,000 Hz or less, and more preferably 10 Hz or more and 1,000 Hz or less.
  • the frequency of the laser is more preferably 10 Hz or more, further preferably 100 Hz or more.
  • the laser is preferable in that it can be easily focused as compared with a mercury lamp, and a mask for forming a pattern in the exposure process is unnecessary and the cost can be reduced.
  • the exposure apparatus There are no particular restrictions on the exposure apparatus, but commercially available devices include Calisto (buoy technology), AEGIS (buoy technology), DF2200G (Dainippon Screen Mfg. Co., Ltd.). Etc.) can be used. Further, devices other than those described above are also preferably used. If necessary, the amount of irradiation light can be adjusted through a spectral filter such as a long wavelength cut filter, a short wavelength cut filter, or a band pass filter.
  • a spectral filter such as a long wavelength cut filter, a short wavelength cut filter, or a band pass filter.
  • Step (3) the photosensitive layer is exposed through a mask and then developed using a developer containing an organic solvent (hereinafter also referred to as an organic developer). Development is preferably a negative type. Sp value of the solvent contained in the developer is preferably less than 19 MPa 1/2, and more preferably 18 MPa 1/2 or less.
  • organic solvent contained in the developer polar solvents such as ketone solvents, ester solvents, amide solvents, and hydrocarbon solvents can be used.
  • Examples of the ketone solvent include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 2-heptanone (methyl amyl ketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, Examples include methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, diacetylalcohol, acetylcarbinol, acetophenone, methylnaphthylketone, isophorone, and propylene carbonate.
  • ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl.
  • amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, and the like. Can be used.
  • hydrocarbon solvent examples include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
  • the organic solvent may be used alone or in combination of two or more. Moreover, you may mix and use with organic solvents other than the above.
  • the water content of the whole developer is preferably less than 10% by mass, and more preferably substantially free of moisture.
  • substantially as used herein means, for example, that the water content of the entire developing solution is 3% by mass or less, and more preferably the measurement limit or less.
  • the amount of the organic solvent used relative to the organic developer is preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less with respect to the total amount of the developer.
  • the organic developer preferably contains at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, and amide solvents.
  • the organic developer may contain an appropriate amount of a basic compound as required. Examples of the basic compound include those described in the above basic compound section.
  • the vapor pressure of the organic developer is preferably 5 kPa or less, more preferably 3 kPa or less, and further preferably 2 kPa or less at 20 ° C.
  • the solvent having a vapor pressure of 5 kPa or less include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 2-heptanone (methyl amyl ketone), 4-heptanone, 2-hexanone and diisobutyl.
  • Ketone solvents such as ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylisobutylketone, butyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol Monoethyl ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, Ester solvents such as butyl acid, propyl formate, ethyl lactate, butyl lactate, propyl lactate, amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, toluene, xy
  • the solvent having a vapor pressure of 2 kPa or less which is a particularly preferable range, include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, cyclohexanone, Ketone solvents such as methylcyclohexanone and phenylacetone, butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, Ester solvents such as 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate, N-methyl-2- Pyrrolidone,
  • an appropriate amount of one or more surfactants can be added to the developer as required. Although it does not specifically limit as surfactant, for example, surfactant described in the item of said water-soluble resin composition is used preferably.
  • the blending amount is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, more preferably 0, based on the total amount of the developer. 0.01 to 0.5% by mass.
  • a development method for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc.
  • dip method a method in which a substrate is immersed in a tank filled with a developer for a certain period of time
  • paddle a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time
  • spray method a method of spraying the developer on the substrate surface
  • the discharge pressure of the discharged developer (the flow rate per unit area of the discharged developer) is , Preferably 2 mL / sec / mm 2 or less, more preferably 1.5 mL / sec / mm 2 or less, and even more preferably 1 mL / sec / mm 2 or less.
  • the flow rate Preferably 2 mL / sec / mm 2 or less, more preferably 1.5 mL / sec / mm 2 or less, and even more preferably 1 mL / sec / mm 2 or less.
  • There is no particular lower limit of the flow rate but 0.2 mL / second / mm 2 or more is preferable in consideration of throughput.
  • the details of this mechanism are not clear, but perhaps by setting the discharge pressure in the above range, the pressure applied to the photosensitive layer by the developer is reduced, and the resist pattern on the photosensitive layer is inadvertently scraped or broken. This is considered to be suppressed.
  • the developer discharge pressure (mL / second / mm 2 ) is a value at the developing nozzle outlet in the developing device.
  • Examples of the method for adjusting the discharge pressure of the developer include a method of adjusting the discharge pressure with a pump or the like, and a method of changing the pressure by adjusting the pressure by supply from a pressurized tank.
  • Step of removing at least the non-masked water-soluble resin layer and the organic semiconductor layer by dry etching treatment At least the water-soluble resin layer and the organic semiconductor layer in the non-mask portion are removed by an etching process.
  • the non-mask portion represents a portion where the photosensitive layer has been removed in the development process.
  • at least the water-soluble resin layer and the organic semiconductor layer are dry etched using the resist pattern as an etching mask.
  • Representative examples of dry etching include Japanese Patent Application Laid-Open Nos. 59-126506, 59-46628, 58-9108, 58-2809, and 57-148706.
  • the dry etching is preferably performed in the following manner from the viewpoint of forming the pattern cross section closer to a rectangle and reducing damage to the organic semiconductor layer.
  • a second stage etching is performed in which a mixed gas of (N 2 ) and oxygen gas (O 2 ) is used, and etching is preferably performed to the vicinity of the region (depth) where the organic semiconductor layer is exposed, and after the organic semiconductor layer is exposed
  • a form including overetching to be performed is preferable.
  • Dry etching is performed by obtaining etching conditions in advance by the following method.
  • the etching rate (nm / min) in the first stage etching and the etching rate (nm / min) in the second stage etching are calculated.
  • the time for etching the desired thickness in the first stage etching and the time for etching the desired thickness in the second stage etching are respectively calculated.
  • the first stage etching is performed according to the etching time calculated in (2) above.
  • the second stage etching is performed according to the etching time calculated in (2) above.
  • the etching time may be determined by endpoint detection, and the second stage etching may be performed according to the determined etching time.
  • Overetching time is calculated with respect to the total time of (3) and (4) above, and overetching is performed.
  • the mixed gas used in the first stage etching step preferably contains a fluorine-based gas and an oxygen gas (O 2 ) from the viewpoint of processing the organic material that is the film to be etched into a rectangular shape.
  • the organic semiconductor layer can be prevented from being damaged by etching the region where the organic semiconductor layer is not exposed.
  • the second-stage etching process and the over-etching process may be performed by performing etching to a region where the organic semiconductor layer is not exposed by a mixed gas of fluorine-based gas and oxygen gas in the first-stage etching process. From the viewpoint of avoiding damage, it is preferable to perform the etching process using a mixed gas of nitrogen gas and oxygen gas. It is important to determine the ratio between the etching amount in the first stage etching process and the etching amount in the second stage etching process so as not to impair the rectangularity due to the etching process in the first stage etching process. It is.
  • the latter ratio in the total etching amount (the sum of the etching amount in the first-stage etching process and the etching amount in the second-stage etching process) is preferably in the range of more than 0% and not more than 50%. 10 to 20% is more preferable.
  • the etching amount is an amount calculated from the difference between the remaining film thickness to be etched and the film thickness before etching.
  • Etching preferably includes an over-etching process.
  • the overetching process is preferably performed by setting an overetching ratio. Moreover, it is preferable to calculate the overetching ratio from the etching process time to be performed first.
  • the over-etching ratio can be arbitrarily set, but it is preferably 30% or less of the etching processing time in the etching process, and preferably 5 to 25% from the viewpoint of etching resistance of the photoresist and maintaining the rectangularity of the pattern to be etched. Is more preferable, and 10 to 15% is particularly preferable.
  • Step of removing water-soluble resin layer >> After the etching, it is preferable to remove the water-soluble resin layer using a solvent (usually water).
  • a solvent usually water
  • the method for removing the water-soluble resin layer with water include a method for removing the water-soluble resin layer by spraying cleaning water onto the resist pattern from a spray type or shower type spray nozzle.
  • the washing water pure water can be preferably used.
  • the injection nozzle include an injection nozzle in which the entire substrate is included in the injection range, and an injection nozzle that is a movable injection nozzle and in which the movable range includes the entire substrate.
  • the resist pattern is more effectively removed by spraying the cleaning water by moving from the center of the substrate to the end of the substrate at least twice during the process of removing the water-soluble resin layer. be able to. It is also preferable to perform a process such as drying after removing water.
  • the drying temperature is preferably 80 to 120 ° C.
  • the photosensitive layer of the present invention can be used for production of an electronic device using an organic semiconductor.
  • the electronic device is a device that contains a semiconductor and has two or more electrodes, and a current flowing between the electrodes and a generated voltage are controlled by electricity, light, magnetism, a chemical substance, or the like, or It is a device that generates light, electric field, magnetic field, etc. by applied voltage or current.
  • Examples include organic photoelectric conversion elements, organic field effect transistors, organic electroluminescent elements, gas sensors, organic rectifying elements, organic inverters, information recording elements, and the like.
  • the organic photoelectric conversion element can be used for both optical sensor applications and energy conversion applications (solar cells). Among these, organic field effect transistors, organic photoelectric conversion elements, and organic electroluminescence elements are preferable as applications, more preferably organic field effect transistors and organic photoelectric conversion elements, and particularly preferably organic field effect transistors. .
  • Mw weight average molecular weight
  • Mw weight average molecular weight
  • the Mw of the resin was measured by the following method.
  • Mw weight average molecular weight
  • the molecular weight of the water-soluble resin was measured according to the method described in Paragraphs 0067 to 0071 of International Publication No. WO2015 / 098978.
  • Other resins were measured for molecular weight by gel permeation chromatography (GPC measurement) under the following measurement conditions.
  • Polystyrene equivalent value Device HLC-8220 (manufactured by Tosoh Corporation) Column: Guard column HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation) Eluent: THF (tetrahydrofuran) Detector: UV ray (ultraviolet light), wavelength 254nm
  • the reaction solution was stirred for 2 hours to complete the reaction.
  • the white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-1.
  • the obtained resin had a protection ratio of 65 mol% of the total THFMA and t-BuMA monomers, a weight average molecular weight of 25,000, and a dissolution rate of 100 nm / s.
  • the amount of the component having Mw of 1,000 or less was 3% by mass.
  • the white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-2.
  • the obtained resin had a total protection ratio of 65 mol% of THFMA and t-BuMA monomers, a weight average molecular weight of 57,000, and a dissolution rate of 19 nm / s.
  • the amount of the component having Mw of 1,000 or less was 4% by mass.
  • the white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-3.
  • the obtained resin had a protection ratio of 65 mol% in total of THFMA and t-BuMA monomers, a weight average molecular weight of 9,000, and a dissolution rate of 432 nm / s.
  • the amount of the component having Mw of 1,000 or less was 3% by mass.
  • the obtained resin had a cyclic ether ester protection rate of 50 mol%, a weight average molecular weight of 15,000, and a dissolution rate of 200 nm / s.
  • the amount of the component having Mw of 1,000 or less was 3% by mass.
  • the obtained resin had a protection ratio of 65 mol% of the total THFMA and t-BuMA monomers, a weight average molecular weight of 50,000, and a dissolution rate of 32 nm / s.
  • the amount of the component having Mw of 1,000 or less was 3% by mass.
  • the white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-6.
  • the obtained resin had a protection ratio of 55 mol% of the total THFMA and t-BuMA monomers, a weight average molecular weight of 25,000, and a dissolution rate of 188 nm / s.
  • the amount of the component having Mw of 1,000 or less was 3% by mass.
  • the white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-7.
  • the obtained resin had a protection ratio of 85 mol% for the total THFMA and t-BuMA monomers, a weight average molecular weight of 25,000, and a dissolution rate of 31 nm / s.
  • the amount of the component having Mw of 1,000 or less was 3% by mass.
  • Each component was mixed with the formulation shown in Table 1 or 2 to make a uniform solution, and then filtered using a nylon filter having a pore diameter of 0.45 ⁇ m to prepare a photosensitive resin composition. Details of each component are shown in Table 1 or Table 2.
  • organic semiconductor coating liquid (composition for forming an organic semiconductor) having the following composition was spin-coated on a circular glass substrate and dried at 130 ° C. for 10 minutes to form an organic semiconductor layer. The film thickness was 150 nm.
  • Composition of organic semiconductor coating liquid >> P3HT (Sigma Aldrich Japan GK) 10% by mass PCBM (Sigma Aldrich Japan GK) 10% by mass Chloroform (Wako Pure Chemical Industries, Ltd.) 80% by mass
  • a water-soluble resin composition was spin-coated on the surface of the organic semiconductor layer and dried at 100 ° C. for 1 minute to form a water-soluble resin layer having a thickness of 2 ⁇ m.
  • the total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is measured by adjusting the metal content in the composition from 1 ppt to 1000 ppb by ICP-MS (inductively coupled plasma mass spectrometry) after preparation. Measured in order.
  • ⁇ Measurement of static contact angle> The measurement of the static contact angle of the photosensitive resin composition with respect to the water-soluble resin layer was performed as follows. That is, using a static contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.), a droplet having a droplet size of 10 ⁇ L was deposited with a syringe, and the contact angle of the droplet was measured.
  • Over development coefficient [development processing time (s) / [(photosensitive layer thickness (nm) / dissolution rate (nm / sec)]]
  • a photosensitive resin composition using C-2 (2,6-diisopropylaniline, manufactured by Tokyo Chemical Industry Co., Ltd.), instead of the surfactant D-1 Photosensitive resin composition using D-2 (Megafac F-430, manufactured by DIC Corporation), instead of solvent E-1, E-1: E-2 (ethyl 3-ethoxypropionate) 70: Photosensitive resin composition using mixed solvent of 30 (mass ratio), photosensitive resin composition having a mass ratio of resin and acid generator of 25.18: 0.16 (mass ratio), resin and acid generator A photosensitive resin composition having a mass ratio of 24.98: 0.36 (mass ratio) was prepared. A laminate sample was prepared using each photosensitive resin composition. As a result of evaluating the over-development coefficient, lithographic properties, and adhesion of each sample, good results were obtained for all the substrates.
  • Photosensitive layer 2 Water-soluble resin layer 3 Organic semiconductor layer 4 Substrate 5 Removal part

Abstract

Provided are a photosensitive layer, a laminate, a photosensitive resin composition, and a kit. The photosensitive layer is included in a laminate having a water-soluble resin layer and the photosensitive layer, and is formed from a photosensitive resin composition containing: a compound capable of generating an acid upon irradiation with actinic rays or radiation; and a resin of which the dissolution rate in butyl acetate varies according to the action of an acid. The resin of which the dissolution rate in butyl acetate varies according to the action of an acid has a weight average molecular weight of 10,000-50,000, and is a hydrophobic resin which is soluble in butyl acetate at 23°C and in which 50-100 mol% of units soluble in an aqueous alkali solution among the total constituent units are protected by a hydrophobic protection group. The dissolution rate of the unirradiated photosensitive layer when immersed in butyl acetate at 23°C is 20-200 nm/s. The static contact angle of the photosensitive resin composition on the water-soluble resin layer is 60° or less.

Description

感光層、積層体、感光性樹脂組成物、キットPhotosensitive layer, laminate, photosensitive resin composition, kit
 本発明は、感光層、積層体、感光性樹脂組成物、キットに関する。 The present invention relates to a photosensitive layer, a laminate, a photosensitive resin composition, and a kit.
 近年、有機半導体を用いた電子デバイスが広く用いられている。有機半導体を用いたデバイスは、従来のシリコンなどの無機半導体を用いたデバイスと比べて簡単なプロセスにより製造できるというメリットがある。さらに、有機半導体は、その分子構造を変化させることで容易に材料特性を変化させることが可能である。また、材料のバリエーションが豊富であり、無機半導体では成し得なかったような機能や素子を実現することが可能になると考えられている。有機半導体は、例えば、有機太陽電池、有機エレクトロルミネッセンスディスプレイ、有機光ディテクター、有機電界効果トランジスタ、有機電界発光素子、ガスセンサ、有機整流素子、有機インバータ、情報記録素子等の電子機器に適用される可能性がある。 In recent years, electronic devices using organic semiconductors have been widely used. A device using an organic semiconductor has an advantage that it can be manufactured by a simple process as compared with a conventional device using an inorganic semiconductor such as silicon. Furthermore, the organic semiconductor can be easily changed in material properties by changing its molecular structure. In addition, there are a wide variety of materials, and it is thought that functions and elements that could not be achieved with inorganic semiconductors can be realized. Organic semiconductors can be applied to electronic devices such as organic solar cells, organic electroluminescence displays, organic photodetectors, organic field effect transistors, organic electroluminescent elements, gas sensors, organic rectifying elements, organic inverters, information recording elements, etc. There is sex.
 有機半導体のパターニングは、これまで印刷技術により行われてきた。しかし、印刷技術によるパターニングでは微細加工に限界がある。また、有機半導体はダメージを受けやすいという問題もある。 The patterning of organic semiconductors has been performed by printing techniques so far. However, patterning by printing technology has a limit in fine processing. Another problem is that organic semiconductors are easily damaged.
 そこで、水溶性樹脂を保護膜として用いた有機半導体のパターニング方法が検討されている。例えば、特許文献1は、有機半導体層上に、特定の水溶性樹脂層と感光層とをこの順に含み、かつ、水溶性樹脂層と感光層が接している積層体を開示する。これにより、感光層の露光現像による微細パターンを実現し、かつ、積層体のクラックを抑制できると記載されている。特許文献2および3には、有機半導体層の表面に水溶性樹脂層および感光層を有する積層体であって、その感光性樹脂組成物に特定の光酸発生剤と特定の樹脂とを配合した積層体が開示されている。これにより、有機半導体上に良好なパターンを形成することができると記載されている。 Therefore, an organic semiconductor patterning method using a water-soluble resin as a protective film has been studied. For example, Patent Document 1 discloses a laminate including a specific water-soluble resin layer and a photosensitive layer in this order on an organic semiconductor layer, and the water-soluble resin layer and the photosensitive layer are in contact with each other. Thus, it is described that a fine pattern by exposure and development of the photosensitive layer can be realized and cracks in the laminate can be suppressed. Patent Documents 2 and 3 are laminates having a water-soluble resin layer and a photosensitive layer on the surface of an organic semiconductor layer, and a specific photoacid generator and a specific resin are blended in the photosensitive resin composition. A laminate is disclosed. Thereby, it is described that a good pattern can be formed on the organic semiconductor.
国際公開WO2016/175220号パンフレットInternational Publication WO2016 / 175220 Pamphlet 特開2015-194674号公報Japanese Patent Laying-Open No. 2015-194673 特開2015-087609号公報Japanese Patent Laying-Open No. 2015-087609
 上述のような技術により、有機半導体層と感光層との間に、水溶性樹脂層を介在させることで、有機半導体層の保護性の確保は実現される。
 ここで、厚さが厚い感光層を製造する場合などには、感光層に分子量の大きい樹脂を用いることが求められる。これは、クラックの発生を抑止するためである。また、複数回のパターニングを行なうような場合においては、段差の影響を抑制すべく厚い感光層が求められる。
 しかしながら、分子量の大きい樹脂は、疎水性の現像液に対する溶解速度が格段に遅くなってしまう。そのため、生産効率の観点から溶解速度を高めることが求められる。溶解速度を高めるためには、感光層の樹脂の疎水性を高めることが考えられるが、そうすると、感光層と水溶性樹脂層との密着性が低くなり、パターン剥がれなどを引き起こしてしまう。本発明はかかる課題を解決することを目的とするものであって、分子量の大きい樹脂を感光層に用いても、適切にパターンが形成できる感光層、積層体、感光性樹脂組成物、およびキットの提供を目的とする。
By the above-described technique, the water-soluble resin layer is interposed between the organic semiconductor layer and the photosensitive layer, thereby ensuring the protection of the organic semiconductor layer.
Here, when producing a thick photosensitive layer, it is required to use a resin having a high molecular weight for the photosensitive layer. This is to suppress the occurrence of cracks. Further, when patterning is performed a plurality of times, a thick photosensitive layer is required to suppress the influence of the step.
However, a resin having a high molecular weight has a much slower dissolution rate in a hydrophobic developer. Therefore, it is required to increase the dissolution rate from the viewpoint of production efficiency. In order to increase the dissolution rate, it is conceivable to increase the hydrophobicity of the resin of the photosensitive layer. However, if this is done, the adhesion between the photosensitive layer and the water-soluble resin layer will be reduced, causing pattern peeling and the like. SUMMARY OF THE INVENTION The present invention aims to solve such problems, and a photosensitive layer, a laminate, a photosensitive resin composition, and a kit that can form a pattern appropriately even when a resin having a high molecular weight is used for the photosensitive layer. The purpose is to provide.
 上記の課題を解決するために、本発明者らは様々な材料や構造の検討、改良、試験を重ねた。その結果、感光層の溶解速度と感光性樹脂組成物の水溶性樹脂層に対する静止接触角とをバランスよく設計することで、分子量が大きい樹脂を感光層に用いても、適切にパターンを形成できることを見出し、本発明を完成するに至った。すなわち、本発明は以下の手段を提供する。 In order to solve the above-mentioned problems, the present inventors have studied, improved, and tested various materials and structures. As a result, by designing the dissolution rate of the photosensitive layer and the static contact angle of the photosensitive resin composition with respect to the water-soluble resin layer in a well-balanced manner, a pattern can be appropriately formed even when a resin having a high molecular weight is used for the photosensitive layer. As a result, the present invention has been completed. That is, the present invention provides the following means.
<1>水溶性樹脂層と感光層とを有する積層体に含まれる感光層であって、
 上記感光層は活性光線または放射線の照射により酸を発生する化合物と酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂とを含む感光性樹脂組成物から形成され、上記酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂は、重量平均分子量が10,000~50,000であり、かつ、全構成単位のうち、50モル%から100モル%がアルカリ水溶液に可溶な基が疎水性保護基により保護されている、23℃の酢酸ブチルに可溶な疎水性の樹脂であり、
 未照射の上記感光層を23℃の酢酸ブチルに浸漬した場合の溶解速度が20nm/s以上200nm/s以下であり、
 上記水溶性樹脂層上における、上記感光性樹脂組成物の静止接触角が60°以下である、感光層。
<2>上記感光層がi線照射に対して感光能を有する、<1>に記載の感光層。
<3>上記感光性樹脂組成物中の水の含有量が0.01質量%以上1質量%以下である、<1>または<2>に記載の感光層。
<4>上記溶解速度の変化が溶解速度の低下である、<1>~<3>のいずれか1つに記載の感光層。
<5>上記感光層に含まれる樹脂が下記式(1)で表される構成単位を有する、<1>~<4>のいずれか1つに記載の感光層;
Figure JPOXMLDOC01-appb-C000002
式中、Rは水素原子またはアルキル基を表し、Lはカルボニル基またはフェニレン基を表し、R~Rはそれぞれ独立に水素原子またはアルキル基を表す。
<6>上記感光性樹脂組成物のナトリウムイオン、カリウムイオンおよびカルシウムイオンの合計含有量が1質量ppt~1000質量ppbである、<1>~<5>のいずれか1つに記載の感光層。
<7>有機半導体層加工用である、<1>~<6>のいずれか1つに記載の感光層。
<8><1>~<7>のいずれか1つに記載の感光層と水溶性樹脂層とを有する積層体。
<9>さらに、有機半導体層を有し、上記有機半導体層、上記水溶性樹脂層および上記感光層の順に積層している、<8>に記載の積層体。
<10>上記酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂が、上記酢酸ブチルに対する溶解速度が大きい樹脂と上記酢酸ブチルに対する溶解速度が小さい樹脂との混合物である、<8>または<9>に記載の積層体。
<11> 感光層を形成するための感光性樹脂組成物であって、
 上記感光層は水溶性樹脂層と組み合わせて積層体をなす層であり、未露光の上記感光層を酢酸ブチルに浸漬した場合の溶解速度が20nm/s以上200nm/秒以下であり、
 上記感光性樹脂組成物は活性光線または放射線の照射により酸を発生する化合物と酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂とを含有し、
 上記酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂は、重量平均分子量が10,000~50,000であり、全構成単位の50モル%から100モル%がアルカリ水溶液に可溶な基が疎水性保護基により保護されている、酢酸ブチルに可溶な疎水性の樹脂であり、かつ、上記水溶性樹脂層上における静止接触角が60°以下となる樹脂である、感光性樹脂組成物。
<12>有機半導体層加工用である、<11>に記載の感光性樹脂組成物。
<13>水溶性樹脂層と感光層とをこの順に形成するためのキットであって、<11>または<12>に記載の感光性樹脂組成物と水溶性樹脂組成物とを有するキット。
<14>有機半導体層加工用である、<13>に記載のキット。
<1> a photosensitive layer included in a laminate having a water-soluble resin layer and a photosensitive layer,
The photosensitive layer is formed from a photosensitive resin composition containing a compound that generates an acid upon irradiation with actinic rays or radiation, and a resin that changes its dissolution rate with respect to butyl acetate by the action of the acid. The resin in which the dissolution rate changes with respect to the resin has a weight average molecular weight of 10,000 to 50,000, and among all the structural units, 50 mol% to 100 mol% of the group soluble in the alkaline aqueous solution is hydrophobic. A hydrophobic resin soluble in butyl acetate at 23 ° C., protected by a protecting group,
The dissolution rate when the unirradiated photosensitive layer is immersed in butyl acetate at 23 ° C. is 20 nm / s or more and 200 nm / s or less,
The photosensitive layer whose static contact angle of the said photosensitive resin composition on the said water-soluble resin layer is 60 degrees or less.
<2> The photosensitive layer according to <1>, wherein the photosensitive layer has photosensitivity to i-ray irradiation.
<3> The photosensitive layer according to <1> or <2>, wherein the water content in the photosensitive resin composition is 0.01% by mass or more and 1% by mass or less.
<4> The photosensitive layer according to any one of <1> to <3>, wherein the change in dissolution rate is a decrease in dissolution rate.
<5> The photosensitive layer according to any one of <1> to <4>, wherein the resin contained in the photosensitive layer has a structural unit represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000002
In the formula, R 8 represents a hydrogen atom or an alkyl group, L 1 represents a carbonyl group or a phenylene group, and R 1 to R 7 each independently represents a hydrogen atom or an alkyl group.
<6> The photosensitive layer according to any one of <1> to <5>, wherein the total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is 1 mass ppt to 1000 mass ppb. .
<7> The photosensitive layer according to any one of <1> to <6>, which is used for processing an organic semiconductor layer.
<8> A laminate having the photosensitive layer according to any one of <1> to <7> and a water-soluble resin layer.
<9> The laminate according to <8>, further comprising an organic semiconductor layer, wherein the organic semiconductor layer, the water-soluble resin layer, and the photosensitive layer are laminated in this order.
<10> The resin in which the dissolution rate in butyl acetate is changed by the action of the acid is a mixture of a resin having a high dissolution rate in butyl acetate and a resin having a low dissolution rate in butyl acetate, <8> or <8>9>.
<11> A photosensitive resin composition for forming a photosensitive layer,
The photosensitive layer is a layer that forms a laminate in combination with a water-soluble resin layer, and the dissolution rate when the unexposed photosensitive layer is immersed in butyl acetate is 20 nm / s or more and 200 nm / second or less,
The photosensitive resin composition contains a compound that generates an acid upon irradiation with actinic rays or radiation, and a resin that causes a change in the dissolution rate in butyl acetate by the action of the acid,
Resins in which the dissolution rate in butyl acetate is changed by the action of the acid have a weight average molecular weight of 10,000 to 50,000, and 50 mol% to 100 mol% of all structural units are groups soluble in an aqueous alkali solution. Is a hydrophobic resin soluble in butyl acetate and protected by a hydrophobic protecting group, and having a static contact angle of 60 ° or less on the water-soluble resin layer. object.
<12> The photosensitive resin composition according to <11>, which is used for processing an organic semiconductor layer.
<13> A kit for forming a water-soluble resin layer and a photosensitive layer in this order, comprising the photosensitive resin composition according to <11> or <12> and the water-soluble resin composition.
<14> The kit according to <13>, which is for processing an organic semiconductor layer.
 本発明によれば、分子量の大きい樹脂を感光層に用いても、適切にパターンが形成できる感光層積層体、感光性樹脂組成物、およびキットを提供可能になった。 According to the present invention, it is possible to provide a photosensitive layer laminate, a photosensitive resin composition, and a kit that can form an appropriate pattern even when a resin having a high molecular weight is used for the photosensitive layer.
本発明の好ましい実施形態に係る感光層の露光および現像の過程を模式的に示す断面図であり、(a)は現像前の状態であり、(b)は現像後の状態である。FIG. 2 is a cross-sectional view schematically showing a process of exposure and development of a photosensitive layer according to a preferred embodiment of the present invention, in which (a) shows a state before development and (b) shows a state after development.
 以下に記載する本発明における構成要素の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 本明細書における基(原子団)の表記において、置換および無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書における「活性光線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、電子線等を意味する。また、本発明において光とは、活性光線または放射線を意味する。本明細書における「露光」とは、特に断らない限り、水銀灯、エキシマレーザに代表される遠紫外線、X線、EUV光などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も含む。
 本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 また、本明細書において、“(メタ)アクリレート”はアクリレートおよびメタクリレートの双方、または、いずれかを表し、“(メタ)アクリル”はアクリルおよびメタクリルの双方、または、いずれかを表し、“(メタ)アクリロイル”はアクリロイルおよびメタクリロイルの双方、または、いずれかを表す。
 本明細書において「工程」との語は、独立した工程を意味するだけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、その工程は本用語に含まれる。
 本明細書において固形分濃度とは、組成物の総質量に対する、溶剤を除く他の成分の質量の百分率である。
 本明細書において、「上」「下」と記載したときには、その構造の上側または下側であればよい。すなわち、他の構造を介在していてもよく、接している必要はない。なお、特に断らない限り、感光層側を上とし基板ないし有機半導体層側を下と称する。
The description of the components in the present invention described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the description of the group (atomic group) in this specification, the description which does not describe substitution and non-substitution includes what does not have a substituent and what has a substituent. For example, the “alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In addition, “active light” in the present specification means, for example, an emission line spectrum of a mercury lamp, far ultraviolet rays represented by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. In the present invention, light means actinic rays or radiation. In this specification, “exposure” means not only exposure by far ultraviolet rays, X-rays, EUV light typified by mercury lamps and excimer lasers, but also drawing by particle beams such as electron beams and ion beams, unless otherwise specified. Including.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, “(meth) acrylate” represents both and / or acrylate and methacrylate, “(meth) acryl” represents both and / or acryl and “(meth) acrylic” ) "Acryloyl" represents both and / or acryloyl and methacryloyl.
In this specification, the term “process” not only means an independent process, but if the intended action of the process is achieved even if it cannot be clearly distinguished from other processes, the process Is included in this term.
In this specification, solid content concentration is the percentage of the mass of the other components excluding the solvent with respect to the total mass of the composition.
In this specification, when “upper” and “lower” are described, they may be above or below the structure. That is, other structures may be interposed and do not need to be in contact with each other. Unless otherwise specified, the photosensitive layer side is referred to as the upper side, and the substrate or organic semiconductor layer side is referred to as the lower side.
 本発明の感光層は水溶性樹脂層と感光層とを有する積層体に含まれる感光層であって、この感光層は、活性光線または放射線の照射により酸を発生する化合物(本明細書ではこの化合物を「酸発生剤」ということがある)、および酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂(酸反応性樹脂)であって、重量平均分子量が10,000~50,000であり、かつ、全構成単位のうち、50モル%から100モル%がアルカリ水溶液に可溶な基が疎水性保護基により保護されている、酢酸ブチルに可溶な疎水性の樹脂を含む感光性樹脂組成物から形成され、未露光の上記感光層を23℃の酢酸ブチルに浸漬した場合の溶解速度が20nm/秒以上200nm/秒以下であり、上記感光層形成用組成物は上記水溶性樹脂層上における静止接触角が60°以下であることを特徴とする。
 このような構成とすることにより、感光層に分子量の大きい樹脂を用いても、適切にパターンが形成できる。
 すなわち、分子量の大きい樹脂は、疎水性の現像液に対する溶解速度が格段に遅くなってしまう。溶解速度を高めるためには、樹脂の疎水性を高めることが考えられるが、そうすると、水溶性樹脂層との密着性が低くなり、パターン剥がれなどを引き起こす。ここで、パターン剥がれを抑制するには、パターン剥がれのきっかけとなりやすい泡などを含まないように調整することが考えられる。そこで、水溶性樹脂層に対する感光性樹脂組成物の接触角を所定の範囲に調整することにより、分子量の大きい樹脂を用いても、適切にパターンを形成することに成功したものである。
The photosensitive layer of the present invention is a photosensitive layer contained in a laminate having a water-soluble resin layer and a photosensitive layer, and this photosensitive layer is a compound that generates an acid upon irradiation with actinic rays or radiation (in this specification, A compound (sometimes referred to as an “acid generator”), and a resin (acid-reactive resin) in which the rate of dissolution in butyl acetate is changed by the action of an acid, having a weight average molecular weight of 10,000 to 50,000 And photosensitivity including a hydrophobic resin soluble in butyl acetate in which 50 mol% to 100 mol% of all structural units are protected with a hydrophobic protecting group in a group soluble in an alkaline aqueous solution When the unexposed photosensitive layer formed from the resin composition is immersed in butyl acetate at 23 ° C., the dissolution rate is 20 nm / second or more and 200 nm / second or less, and the photosensitive layer forming composition is the water-soluble resin. On the layer Definitive static contact angles being between 60 ° or less.
With such a configuration, a pattern can be appropriately formed even when a resin having a high molecular weight is used for the photosensitive layer.
That is, a resin having a high molecular weight has a significantly slow dissolution rate in a hydrophobic developer. In order to increase the dissolution rate, it is conceivable to increase the hydrophobicity of the resin. However, if this is done, the adhesiveness with the water-soluble resin layer is lowered, causing pattern peeling and the like. Here, in order to suppress pattern peeling, it can be considered that adjustment is made so as not to include bubbles that are likely to trigger pattern peeling. Therefore, by adjusting the contact angle of the photosensitive resin composition with respect to the water-soluble resin layer to a predetermined range, a pattern can be appropriately formed even when a resin having a large molecular weight is used.
 本発明の感光層は水溶性樹脂層と組み合わせて用い、両者を接した状態で配置することが好ましい。本発明の一実施形態を示すと、図1(a)に示した例のように、基板4の上に有機半導体層3が配設されている。さらに、有機半導体層3を保護する水溶性樹脂層2が接する形でその上に配設されている。次いで、この水溶性樹脂層に接する形でその上に感光層1が配置されている。図1(b)に示した例では、改良された感光層1が形成されており、これを所定のマスクで露光現像しても、除去部5にディフェクトを生じていない。このように本発明の感光層は水溶性樹脂層に積層した状態で特に高い効果を発揮する。
 図1では、有機半導体層の上に設ける形態を例に示したが、他の材料の表面に水溶性樹脂層と感光層を組み合わせて用いてもよい。本発明では、有機半導体層加工用であることが好ましい。
 本発明の積層体は、本発明の感光層と水溶性樹脂層とを有する積層体であり、好ましくは、さらに、有機半導体層を有し、上記有機半導体層、上記水溶性樹脂層および上記感光層の順に積層している積層体である。そして、これらの層は互いに接していることが好ましい。
 以下、各層の特徴およびこれを構成する材料等について説明する。
The photosensitive layer of the present invention is preferably used in combination with a water-soluble resin layer and disposed in contact with both. In an embodiment of the present invention, an organic semiconductor layer 3 is disposed on a substrate 4 as in the example shown in FIG. Further, a water-soluble resin layer 2 that protects the organic semiconductor layer 3 is disposed on the surface in contact therewith. Next, the photosensitive layer 1 is disposed thereon in contact with the water-soluble resin layer. In the example shown in FIG. 1B, the improved photosensitive layer 1 is formed, and even if this is exposed and developed with a predetermined mask, no defect occurs in the removal portion 5. Thus, the photosensitive layer of the present invention exhibits a particularly high effect when it is laminated on the water-soluble resin layer.
In FIG. 1, the form provided on the organic semiconductor layer is shown as an example. However, a water-soluble resin layer and a photosensitive layer may be used in combination on the surface of another material. In the present invention, the organic semiconductor layer is preferably used for processing.
The laminate of the present invention is a laminate having the photosensitive layer of the present invention and a water-soluble resin layer, and preferably further includes an organic semiconductor layer, the organic semiconductor layer, the water-soluble resin layer, and the photosensitive layer. It is the laminated body laminated | stacked in order of the layer. These layers are preferably in contact with each other.
Hereinafter, features of each layer and materials constituting the layer will be described.
<有機半導体層>
 有機半導体層は、半導体の特性を示す有機材料を含む層である。有機半導体には、無機材料からなる半導体の場合と同様に、正孔をキャリアとして伝導するp型有機半導体と、電子をキャリアとして伝導するn型有機半導体がある。有機半導体層中のキャリアの流れやすさはキャリア移動度μで表される。用途にもよるが、一般に移動度は高い方がよく、10-7cm/Vs以上であることが好ましく、10-6cm/Vs以上であることがより好ましく、10-5cm/Vs以上であることがさらに好ましい。移動度は電界効果トランジスタ(FET)素子を作製したときの特性や飛行時間計測(TOF)法により求めることができる。
<Organic semiconductor layer>
The organic semiconductor layer is a layer containing an organic material exhibiting semiconductor characteristics. As in the case of a semiconductor made of an inorganic material, there are a p-type organic semiconductor that conducts holes as carriers and an n-type organic semiconductor that conducts electrons as carriers. The ease of carrier flow in the organic semiconductor layer is represented by carrier mobility μ. Although it depends on the application, in general, the mobility should be higher, preferably 10 −7 cm 2 / Vs or more, more preferably 10 −6 cm 2 / Vs or more, more preferably 10 −5 cm 2 / Vs. More preferably, it is Vs or higher. The mobility can be obtained by characteristics when a field effect transistor (FET) element is manufactured or by a time-of-flight measurement (TOF) method.
 有機半導体層は、上述のとおり、基板上に製膜して用いることが好ましい。すなわち、有機半導体層の
水溶性樹脂層から遠い側の面に基板を有することが好ましい。基板としては、例えば、シリコン、石英、セラミック、ガラス、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、ポリイミドフィルムなどの種々の材料を挙げることができ、用途に応じていかなる基板を選択してもよい。例えば、フレキシブルな素子に用いる場合にはフレキシブル基板を用いることができる。また、基板の厚さは特に限定されない。
As described above, the organic semiconductor layer is preferably used after being formed on a substrate. That is, it is preferable to have a substrate on the surface of the organic semiconductor layer far from the water-soluble resin layer. Examples of the substrate include various materials such as silicon, quartz, ceramic, glass, polyester film such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET), and polyimide film. May be selected. For example, when used for a flexible element, a flexible substrate can be used. Further, the thickness of the substrate is not particularly limited.
 有機半導体層に使用し得るp型半導体材料としては、ホール(正孔)輸送性を示す材料であれば有機半導体材料のうちいかなる材料を用いてもよいが、好ましくはp型π共役高分子(例えば、置換または無置換のポリチオフェン(例えば、ポリ(3-ヘキシルチオフェン)(P3HT、シグマ アルドリッチ ジャパン合同会社製)など)、ポリセレノフェン、ポリピロール、ポリパラフェニレン、ポリパラフェニレンビニレン、ポリチオフェンビニレン、ポリアニリンなど)、縮合多環化合物(例えば、置換または無置換のアントラセン、テトラセン、ペンタセン、アントラジチオフェン、ヘキサベンゾコロネンなど)、トリアリールアミン化合物(例えば、m-MTDATA(4,4’,4’’-Tris[(3- methylphenyl)phenylamino] triphenylamine)、2-TNATA(4,4’,4’’-Tris[2-naphthyl(phenyl) amino] triphenylamine)、NPD(N,N’-Di[(1-naphthyl)-N,N’-diphenyl]-1,1’-biphenyl)-4,4’- diamine)、TPD(N,N’-Diphenyl-N,N’-di(m-tolyl)benzidine、mCP(1,3-bis(9-carbazolyl)benzene)、CBP(4,4’-bis(9-carbazolyl)-2,2’-biphenyl)など)、ヘテロ5員環化合物(例えば、置換または無置換のオリゴチオフェン、TTF(Tetrathiafulvalene)など)、フタロシアニン化合物(置換または無置換の各種中心金属のフタロシアニン、ナフタロシアニン、アントラシアニン、テトラピラジノポルフィラジン)、ポルフィリン化合物(置換または無置換の各種中心金属のポルフィリン)、カーボンナノチューブ、半導体ポリマーを修飾したカーボンナノチューブ、グラフェンのいずれかであり、より好ましくはp型π共役高分子、縮合多環化合物、トリアリールアミン化合物、ヘテロ5員環化合物、フタロシアニン化合物、ポルフィリン化合物のいずれかであり、さらに好ましくは、p型π共役高分子である。 As a p-type semiconductor material that can be used for the organic semiconductor layer, any material of organic semiconductor materials may be used as long as it exhibits a hole (hole) transport property, but preferably a p-type π-conjugated polymer ( For example, substituted or unsubstituted polythiophene (for example, poly (3-hexylthiophene) (P3HT, Sigma Aldrich Japan GK), etc.), polyselenophene, polypyrrole, polyparaphenylene, polyparaphenylene vinylene, polythiophene vinylene, polyaniline Etc.), condensed polycyclic compounds (eg, substituted or unsubstituted anthracene, tetracene, pentacene, anthradithiophene, hexabenzocoronene, etc.), triarylamine compounds (eg, m-MTDATA (4,4 ′, 4 ″) -Tris [(3-methylph nyl) phenylamino] triphenylamine), 2-TNATA (4,4 ′, 4 ″ -Tris [2-naphthyl (phenyl) amino] triphenylamine), NPD (N, N′-Di [(1-naphthyl) -N, N′-diphenyl] -1,1′-biphenyl) -4,4′-diaminine), TPD (N, N′-Diphenyl-N, N′-di (m-tolyl) benzidine, mCP (1,3- bis (9-carbazolyl) benzene), CBP (4,4′-bis (9-carbazolyl) -2,2′-biphenyl), etc.), hetero 5-membered ring compounds (eg, substituted or unsubstituted oligothiophene, TTF) (Tetrath iafulvalene), etc.), phthalocyanine compounds (substituted or unsubstituted central metal phthalocyanines, naphthalocyanines, anthracocyanines, tetrapyrazinoporphyrazine), porphyrin compounds (substituted or unsubstituted various central metal porphyrins), carbon nanotubes, Either a carbon nanotube or graphene modified with a semiconductor polymer, more preferably a p-type π-conjugated polymer, a condensed polycyclic compound, a triarylamine compound, a hetero 5-membered ring compound, a phthalocyanine compound, or a porphyrin compound And more preferably a p-type π-conjugated polymer.
 有機半導体層に使用し得るn型半導体材料としては、電子輸送性を有するものであれば有機半導体材料のうち、いかなるものでもよいが、好ましくはフラーレン化合物、電子欠乏性フタロシアニン化合物、ナフタレンテトラカルボニル化合物、ペリレンテトラカルボニル化合物、TCNQ化合物(テトラシアノキノジメタン化合物)、n型π共役高分子であり、より好ましくはフラーレン化合物、電子欠乏性フタロシアニン化合物、ナフタレンテトラカルボニル化合物、ペリレンテトラカルボニル化合物、n型π共役高分子であり、特に好ましくはフラーレン化合物、n型π共役高分子である。本発明において、フラーレン化合物とは、置換または無置換のフラーレンを指し、フラーレンとしてはC60、C70、C76、C78、C80、C82、C84、C86、C88、C90、C96、C116、C180、C240、C540フラーレンなどのいずれでもよいが、好ましくは置換または無置換のC60、C70、C86フラーレンであり、特に好ましくはPCBM([6,6]-フェニル-C61-酪酸メチルエステル、シグマ アルドリッチ ジャパン合同会社製など)およびその類縁体(C60部分をC70、C86等に置換したもの、置換基のベンゼン環を他の芳香環またはヘテロ環に置換したもの、メチルエステルをn-ブチルエステル、i-ブチルエステル等に置換したもの)である。電子欠乏性フタロシアニン類とは、電子求引基が4つ以上結合した各種中心金属のフタロシアニン(F16MPc、FPc-S8など、ここで、Mは中心金属を、Pcはフタロシアニンを、S8は(n-octylsulfonyl基)を表す)、ナフタロシアニン、アントラシアニン、置換または無置換のテトラピラジノポルフィラジンなどである。ナフタレンテトラカルボニル化合物としてはいかなるものでもよいが、好ましくはナフタレンテトラカルボン酸無水物(NTCDA)、ナフタレンビスイミド化合物(NTCDI)、ペリノン顔料(Pigment Orange 43、Pigment Red 194など)である。ペリレンテトラカルボニル化合物としてはいかなるものでもよいが、好ましくはペリレンテトラカルボン酸無水物(PTCDA)、ペリレンビスイミド化合物(PTCDI)、ベンゾイミダゾール縮環体(PV)である。TCNQ化合物とは、置換または無置換のTCNQおよび、TCNQのベンゼン環部分を別の芳香環やヘテロ環に置き換えたものであり、例えば、TCNQ、TCAQ(テトラシアノキノジメタン)、TCN3T(2,2’-((2E,2’’E)-3’,4’-Alkyl substituted-5H,5’’H- [2,2’:5’,2’’-terthiophene]-5,5’’-diylidene)dimalononitrile derivatives)などである。さらにグラフェンも挙げられる。n型有機半導体材料の特に好ましい例を以下に示す。 The n-type semiconductor material that can be used for the organic semiconductor layer may be any organic semiconductor material as long as it has an electron transporting property, but is preferably a fullerene compound, an electron-deficient phthalocyanine compound, or a naphthalene tetracarbonyl compound. Perylene tetracarbonyl compound, TCNQ compound (tetracyanoquinodimethane compound), n-type π-conjugated polymer, more preferably fullerene compound, electron-deficient phthalocyanine compound, naphthalene tetracarbonyl compound, perylene tetracarbonyl compound, n-type π-conjugated polymers, particularly preferably fullerene compounds and n-type π-conjugated polymers. In the present invention, the fullerene compound refers to a substituted or unsubstituted fullerene, and the fullerene is C 60 , C 70 , C 76 , C 78 , C 80 , C 82 , C 84 , C 86 , C 88 , C 90. , C 96 , C 116 , C 180 , C 240 , C 540 fullerene and the like may be used, preferably substituted or unsubstituted C 60 , C 70 , C 86 fullerene, and particularly preferably PCBM ([6, 6] -Phenyl-C61-butyric acid methyl ester, Sigma-Aldrich Japan GK, etc.) and analogs thereof (substitute the C 60 moiety with C 70 , C 86, etc., the benzene ring of the substituent being another aromatic ring or Substituted with a heterocyclic ring, and methyl ester substituted with n-butyl ester, i-butyl ester, etc.). Electron-deficient phthalocyanines are phthalocyanines of various central metals (F 16 MPc, FPc-S8, etc., in which four or more electron withdrawing groups are bonded, where M is a central metal, Pc is phthalocyanine, and S8 is ( n-octylsulfonyl group)), naphthalocyanine, anthracocyanine, substituted or unsubstituted tetrapyrazinoporphyrazine and the like. Any naphthalene tetracarbonyl compound may be used, but naphthalene tetracarboxylic anhydride (NTCDA), naphthalene bisimide compound (NTCDI), and perinone pigment (Pigment Orange 43, Pigment Red 194, etc.) are preferable. Any perylene tetracarbonyl compound may be used, but perylene tetracarboxylic acid anhydride (PTCDA), perylene bisimide compound (PTCDI), and benzimidazole condensed ring (PV) are preferable. The TCNQ compound is a compound in which a substituted or unsubstituted TCNQ and a benzene ring portion of TCNQ are replaced with another aromatic ring or a heterocyclic ring. For example, TCNQ, TCAQ (tetracyanoquinodimethane), TCN3T (2, 2 ′-((2E, 2 ″ E) -3 ′, 4′-Alkyl substituted-5H, 5 ″ H- [2,2 ′: 5 ′, 2 ″ -tertiophene] -5,5 ″ -Diylidene) dimalononitrile derivative)) and the like. In addition, graphene is also included. Particularly preferred examples of the n-type organic semiconductor material are shown below.
 なお、式中のRとしては、いかなるものでも構わないが、水素原子、置換または無置換で分岐または直鎖のアルキル基(好ましくは炭素数1~18、より好ましくは1~12、さらに好ましくは1~8のもの)、置換または無置換のアリール基(好ましくは炭素数6~30、より好ましくは6~20、さらに好ましくは6~14のもの)のいずれかであることが好ましい。Meはメチル基である。 R in the formula may be any, but is a hydrogen atom, a substituted or unsubstituted, branched or straight chain alkyl group (preferably having 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 8) and a substituted or unsubstituted aryl group (preferably having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, still more preferably 6 to 14 carbon atoms). Me is a methyl group.
Figure JPOXMLDOC01-appb-C000003
 有機半導体層に含まれる半導体の特性を示す有機材料は、1種でもよいし、2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000003
The organic material showing the characteristics of the semiconductor contained in the organic semiconductor layer may be one type or two or more types.
 上記材料は、通常、溶剤中に配合し、基板上に層状に適用して乾燥し、製膜する。適用方法としては、後述する水溶性樹脂層の記載を参酌できる。
 溶剤としては、例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、エチルベンゼン、1-メチルナフタレン等の炭化水素系溶剤;例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤;例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン化炭化水素系溶剤;例えば、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶剤;例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶剤;例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶剤;例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン、ジメチルスルフォキサイド等の極性溶剤などが挙げられる。これらの溶剤は1種のみを用いてもよいし、2種以上を用いてもよい。
 有機半導体層を形成する組成物(有機半導体形成用組成物)における有機半導体の割合は、好ましくは0.1~80質量%、より好ましくは0.1~30質量%であり、これにより任意の厚さの膜を形成できる。
The above materials are usually blended in a solvent, applied in layers on a substrate, dried and formed into a film. As an application method, description of a water-soluble resin layer described later can be referred to.
Examples of the solvent include hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, ethylbenzene, and 1-methylnaphthalene; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; Halogenated hydrocarbon solvents such as chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, and chlorotoluene; for example, ester solvents such as ethyl acetate, butyl acetate, and amyl acetate; for example, methanol, propanol Alcohol solvents such as butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol; Ether solvents such as tetrahydrofuran, dioxane and anisole; for example, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, 1-methyl-2-imidazolidinone, dimethylsulfoxide Examples include polar solvents such as side. These solvent may use only 1 type and may use 2 or more types.
The ratio of the organic semiconductor in the composition for forming the organic semiconductor layer (composition for forming an organic semiconductor) is preferably 0.1 to 80% by mass, more preferably 0.1 to 30% by mass. A film having a thickness can be formed.
 また、有機半導体形成用組成物には、樹脂バインダーを配合してもよい。この場合、膜を形成する材料とバインダー樹脂とを前述の適当な溶剤に溶解させ、または分散させて塗布液とし、各種の塗布法により薄膜を形成することができる。樹脂バインダーとしては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン、ポリプロピレン等の絶縁性ポリマー、およびこれらの共重合体、ポリビニルカルバゾール、ポリシラン等の光伝導性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレン等の導電性ポリマーなどを挙げることができる。樹脂バインダーは、単独で使用してもよく、あるいは複数併用しても良い。薄膜の機械的強度を考慮するとガラス転移温度の高い樹脂バインダーが好ましく、電荷移動度を考慮すると極性基を含まない構造の光伝導性ポリマーまたは導電性ポリマーよりなる樹脂バインダーが好ましい。 Moreover, a resin binder may be blended in the composition for forming an organic semiconductor. In this case, the material for forming the film and the binder resin can be dissolved or dispersed in the above-mentioned appropriate solvent to form a coating solution, and the thin film can be formed by various coating methods. Resin binders include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, polypropylene, and other insulating polymers, and their co-polymers. Examples thereof include photoconductive polymers such as coalescence, polyvinyl carbazole and polysilane, and conductive polymers such as polythiophene, polypyrrole, polyaniline and polyparaphenylene vinylene. The resin binder may be used alone or in combination. In consideration of the mechanical strength of the thin film, a resin binder having a high glass transition temperature is preferable, and in consideration of charge mobility, a resin binder made of a photoconductive polymer or a conductive polymer having a structure containing no polar group is preferable.
 樹脂バインダーを配合する場合、その配合量は、有機半導体層中、好ましくは0.1~30質量%で用いられる。樹脂バインダーは、1種のみ用いても、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 用途によっては単独および種々の半導体材料や添加剤を添加した混合溶液を基板等の上に塗布し、複数の材料種からなるブレンド膜としてもよい。例えば、光電変換層を作製する場合、別の半導体材料との混合溶液を用いることなどができる。
 また、製膜の際、基板を加熱または冷却してもよく、基板の温度を変化させることで膜質や膜中での分子のパッキングを制御することが可能である。基板の温度としては特に制限はないが、好ましくは-200℃~400℃、より好ましくは-100℃~300℃、さらに好ましくは0℃~200℃である。
 形成された有機半導体層は、後処理により特性を調整することができる。例えば、加熱処理や蒸気化した溶剤を暴露することにより膜のモルホロジーや膜中での分子のパッキングを変化させることで特性を向上させることが可能である。また、酸化性または還元性のガスや溶剤、物質などにさらす、あるいはこれらを混合することで酸化あるいは還元反応を起こし、膜中でのキャリア密度を調整することができる。
 有機半導体層の膜厚は、特に制限されず、用いられる電子デバイスの種類などにより異なるが、好ましくは5nm~50μm、より好ましくは10nm~5μm、さらに好ましくは20nm~500nmである。
When the resin binder is blended, the blending amount is preferably 0.1 to 30% by mass in the organic semiconductor layer. Only one type of resin binder may be used, or two or more types may be used. When using 2 or more types, it is preferable that a total amount becomes the said range.
Depending on the application, a single layer or a mixed solution to which various semiconductor materials and additives are added may be applied onto a substrate or the like to form a blend film composed of a plurality of material types. For example, when a photoelectric conversion layer is manufactured, a mixed solution with another semiconductor material can be used.
In film formation, the substrate may be heated or cooled, and the film quality and packing of molecules in the film can be controlled by changing the temperature of the substrate. The temperature of the substrate is not particularly limited, but is preferably −200 ° C. to 400 ° C., more preferably −100 ° C. to 300 ° C., and further preferably 0 ° C. to 200 ° C.
The characteristics of the formed organic semiconductor layer can be adjusted by post-processing. For example, it is possible to improve the characteristics by changing the film morphology and the molecular packing in the film by exposing to a heat treatment or a vaporized solvent. Further, by exposing to an oxidizing or reducing gas, solvent, substance, or the like, or mixing them, an oxidation or reduction reaction can be caused to adjust the carrier density in the film.
The thickness of the organic semiconductor layer is not particularly limited and varies depending on the type of electronic device used, but is preferably 5 nm to 50 μm, more preferably 10 nm to 5 μm, and still more preferably 20 nm to 500 nm.
<水溶性樹脂層(水溶性樹脂組成物)>
 水溶性樹脂層は水溶性樹脂を含み、水溶性樹脂組成物から形成されることが好ましい。水溶性樹脂とは、20℃における水100gに対して溶解可能な樹脂の量が1g以上である樹脂をいい、5g以上である樹脂が好ましく、10g以上であることがより好ましく、30g以上であることがさらに好ましい。上限はないが、20gであることが実際的である。
<Water-soluble resin layer (water-soluble resin composition)>
The water-soluble resin layer preferably contains a water-soluble resin and is formed from a water-soluble resin composition. The water-soluble resin refers to a resin in which the amount of the resin that can be dissolved in 100 g of water at 20 ° C. is 1 g or more, preferably a resin that is 5 g or more, more preferably 10 g or more, and 30 g or more. More preferably. There is no upper limit, but it is practical to be 20 g.
 水溶性樹脂としては、具体的には、ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、水溶性多糖類(水溶性のセルロース(メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等)、プルランまたはプルラン誘導体、デンプン、ヒドロキシプロピルデンプン、カルボキシメチルデンプン、キトサン、シクロデキストリン)、ポリエチレンオキシド、ポリエチルオキサゾリン等を挙げることができ、PVP、PVAが好ましく、PVAがより好ましい。また、これらの中から、主鎖構造が相違する2種以上を選択して使用してもよく、共重合体として使用してもよい。 Specific examples of the water-soluble resin include polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), water-soluble polysaccharides (water-soluble cellulose (methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, etc. ), Pullulan or a pullulan derivative, starch, hydroxypropyl starch, carboxymethyl starch, chitosan, cyclodextrin), polyethylene oxide, polyethyloxazoline and the like. PVP and PVA are preferable, and PVA is more preferable. Of these, two or more different main chain structures may be selected and used, or may be used as a copolymer.
 水溶性樹脂の重量平均分子量は特に限定されないが、本発明で用いるポリビニルピロリドンの重量平均分子量は、50,000~400,000が好ましい。本発明で用いるポリビニルアルコールの重量平均分子量は、15000~100,000であることが好ましい。その他の樹脂に置いては10,000~300,000の範囲内であることが好ましい。
 また、本発明で用いる水溶性樹脂(上記PVP、PVA)の分散度(重量平均分子量/数平均分子量)は、1.0~5.0が好ましく、2.0~4.0がより好ましい。
The weight average molecular weight of the water-soluble resin is not particularly limited, but the weight average molecular weight of the polyvinylpyrrolidone used in the present invention is preferably 50,000 to 400,000. The weight average molecular weight of the polyvinyl alcohol used in the present invention is preferably 15000 to 100,000. For other resins, it is preferably in the range of 10,000 to 300,000.
Further, the dispersity (weight average molecular weight / number average molecular weight) of the water-soluble resin (PVP, PVA) used in the present invention is preferably 1.0 to 5.0, more preferably 2.0 to 4.0.
 水溶性樹脂組成物における水溶性樹脂の含有量は必要に応じて適宜調節すればよいが、30質量%以下であることが好ましく、25質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。下限としては、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、4質量%以上であることがさらに好ましい。 The content of the water-soluble resin in the water-soluble resin composition may be appropriately adjusted as necessary, but is preferably 30% by mass or less, more preferably 25% by mass or less, and 20% by mass or less. More preferably it is. As a minimum, it is preferred that it is 1 mass% or more, it is more preferred that it is 2 mass% or more, and it is still more preferred that it is 4 mass% or more.
 水溶性樹脂層の厚さは、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1.0μm以上であることがさらに好ましく、2.0μm以上が一層好ましい。水溶性樹脂層の厚さの上限値としては、10μm以下が好ましく、5.0μm以下がより好ましく、3.0μm以下がさらに好ましい。
 水溶性樹脂層は、例えば、1種または2種以上の上記水溶性樹脂を含む水溶性樹脂組成物を有機半導体層の上に適用し、乾燥させることよって形成することができる。通常は、水溶性樹脂組成物は、溶剤として水を含み、さらに他の添加剤を含んでいてもよい。
 水溶性樹脂組成物の固形分濃度は、0.5~30質量%であることが好ましく、1.0~20質量%であることがより好ましく、2.0~14質量%であることがさらに好ましい。固形分濃度を上記範囲とすることでより均一に塗布することができる。
The thickness of the water-soluble resin layer is preferably 0.1 μm or more, more preferably 0.5 μm or more, further preferably 1.0 μm or more, and further preferably 2.0 μm or more. As an upper limit of the thickness of a water-soluble resin layer, 10 micrometers or less are preferable, 5.0 micrometers or less are more preferable, and 3.0 micrometers or less are further more preferable.
The water-soluble resin layer can be formed, for example, by applying a water-soluble resin composition containing one or more of the above water-soluble resins on the organic semiconductor layer and drying it. Usually, the water-soluble resin composition contains water as a solvent and may further contain other additives.
The solid content concentration of the water-soluble resin composition is preferably 0.5 to 30% by mass, more preferably 1.0 to 20% by mass, and further preferably 2.0 to 14% by mass. preferable. It can apply | coat more uniformly by making solid content concentration into the said range.
 適用方法としては、塗布が好ましい。適用方法の例としては、スリットコート法、キャスト法、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、ディッピング(浸漬)コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法、インクジェット法、スピンコート法、ラングミュア-ブロジェット(Langmuir-Blodgett)(LB)法などを挙げることができる。キャスト法、スピンコート法、およびインクジェット法を用いることがさらに好ましい。このようなプロセスにより、表面が平滑で大面積の水溶性樹脂層を低コストで生産することが可能となる。 Application is preferred as the application method. Examples of application methods include slit coating, casting, blade coating, wire bar coating, spray coating, dipping (dip) coating, bead coating, air knife coating, curtain coating, ink jet, Examples thereof include a spin coating method and a Langmuir-Blodgett (LB) method. It is more preferable to use a casting method, a spin coating method, and an ink jet method. Such a process makes it possible to produce a water-soluble resin layer having a smooth surface and a large area at a low cost.
 水溶性樹脂組成物にはさらに塗布性を向上させるための界面活性剤を含有させることが好ましい。
 界面活性剤としては、表面張力を低下させるものであれば、ノニオン系、アニオン系、両性フッ素系など、どのようなものでもかまわない。界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンステアレート等のポリオキシエチレンアルキルエステル類、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタンモノオレエート、ソルビタンセスキオレエート、ソルビタントリオレエート等のソルビタンアルキルエステル類、グリセロールモノステアレート、グリセロールモノオレエート等のモノグリセリドアルキルエステル類等、フッ素あるいはケイ素を含有するオリゴマー等、アセチレングリコール、アセチレングリコールのエチレンオキシド付加物等の、ノニオン系界面活性剤;ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩類、ブチルナフタレンスルホン酸ナトリウム、ペンチルナフタレンスルホン酸ナトリウム、ヘキシルナフタレンスルホン酸ナトリウム、オクチルナフタレンスルホン酸ナトリウム等のアルキルナフタレンスルホン酸塩類、ラウリル硫酸ナトリウム等のアルキル硫酸塩類、ドデシルスルホン酸ナトリウム等のアルキルスルホン酸塩類、ジラウリルスルホコハク酸ナトリウム等のスルホコハク酸エステル塩類等の、アニオン系界面活性剤;ラウリルベタイン、ステアリルベタイン等のアルキルベタイン類、アミノ酸類等の、両性界面活性剤が使用可能である。
The water-soluble resin composition preferably further contains a surfactant for improving coatability.
As the surfactant, any surfactant such as nonionic, anionic, and amphoteric fluorine may be used as long as it reduces the surface tension. Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene alkyl ethers such as polyoxyethylene stearyl ether, polyoxyethylene octyl phenyl ether, polyoxyethylene nonyl phenyl ether, and other polyoxyethylene alkyl ethers. Oxyethylene alkyl aryl ethers, polyoxyethylene alkyl esters such as polyoxyethylene stearate, sorbitan monolaurate, sorbitan monostearate, sorbitan distearate, sorbitan monooleate, sorbitan sesquioleate, sorbitan trioleate, etc. Sorbitan alkyl esters, monoglyceride alkyl esters such as glycerol monostearate and glycerol monooleate Nonionic surfactants such as oligomers containing fluorine or silicon, acetylene glycol, ethylene oxide adducts of acetylene glycol, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, sodium butyl naphthalene sulfonate, pentyl naphthalene sulfonic acid Alkyl naphthalene sulfonates such as sodium, sodium hexyl naphthalene sulfonate, sodium octyl naphthalene sulfonate, alkyl sulfates such as sodium lauryl sulfate, alkyl sulfonates such as sodium dodecyl sulfonate, sulfosuccinic acid such as sodium dilauryl sulfosuccinate Anionic surfactants such as ester salts; alkylbetaines such as lauryl betaine and stearyl betaine, amino Classes such as the amphoteric surfactant can be used.
 水溶性樹脂組成物が界面活性剤を含む場合、界面活性剤の添加量は、固形分中、好ましくは0.001~20質量%、より好ましくは0.001~5質量%、さらに好ましくは0.01~1質量%の割合で含まれる量である。これらの界面活性剤は、1種のみを用いてもよいし、2種以上を用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。 When the water-soluble resin composition contains a surfactant, the addition amount of the surfactant is preferably 0.001 to 20% by mass, more preferably 0.001 to 5% by mass, and still more preferably 0% in the solid content. .01 to 1% by mass. These surfactants may be used alone or in combination of two or more. When using 2 or more types, it is preferable that a total amount becomes the said range.
<感光層(感光性樹脂組成物)>
 感光層が酸発生剤と樹脂を含む感光層形成用組成物から形成される。感光層における酸反応性樹脂の重量平均分子量は、10,000以上であり、15,000以上であることが好ましく、20,000以上であることがさらに好ましい。上限値としては、50,000以下であり、45,000以下であることが好ましい。本発明においては、このような分子量の大きい樹脂を用いても適切にパターンが形成できる点で価値が高い。
 また、酸反応性樹脂に含まれる重量平均分子量1,000以下の成分の量が、全酸反応性樹脂成分の10質量%以下であることが好ましく、5質量%以下であることがより好ましい。このような構成とすることにより、樹脂製造ロット間の感度変動を低減することができる。
 酸反応性樹脂の分散度(重量平均分子量/数平均分子量)は、1.0~4.0が好ましく、1.1~2.5がより好ましい。
 なお、本発明において重量分子量は実施例に示した方法で測定した値を採用する。
<Photosensitive layer (photosensitive resin composition)>
The photosensitive layer is formed from a photosensitive layer forming composition containing an acid generator and a resin. The weight average molecular weight of the acid-reactive resin in the photosensitive layer is 10,000 or more, preferably 15,000 or more, and more preferably 20,000 or more. As an upper limit, it is 50,000 or less, and it is preferable that it is 45,000 or less. The present invention is highly valuable in that a pattern can be appropriately formed even when such a resin having a large molecular weight is used.
Further, the amount of the component having a weight average molecular weight of 1,000 or less contained in the acid-reactive resin is preferably 10% by mass or less, more preferably 5% by mass or less of the total acid-reactive resin component. By adopting such a configuration, it is possible to reduce fluctuations in sensitivity between resin production lots.
The dispersity (weight average molecular weight / number average molecular weight) of the acid-reactive resin is preferably 1.0 to 4.0, more preferably 1.1 to 2.5.
In the present invention, the value measured by the method shown in the Examples is adopted as the weight molecular weight.
 感光層を形成する感光性樹脂組成物は溶剤を含んでいてもよい。感光性樹脂組成物に含まれる溶剤量が1~10質量%である態様が例示される。感光層は、好ましくは、化学増幅型感光層である。感光層が化学増幅型であることにより、高い保存安定性と微細なパターン形成性を達成することができる。 The photosensitive resin composition forming the photosensitive layer may contain a solvent. An embodiment in which the amount of the solvent contained in the photosensitive resin composition is 1 to 10% by mass is exemplified. The photosensitive layer is preferably a chemically amplified photosensitive layer. When the photosensitive layer is of a chemical amplification type, high storage stability and fine pattern formation can be achieved.
 感光層中の酸反応性樹脂の含有量は、20~99.9質量%であることが好ましく、40~99質量%であることがより好ましく、70~99質量%であることがさらに好ましい。1種または2種以上の酸反応性樹脂が含まれていてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 本発明においては、酸反応性樹脂が、酢酸ブチルに対する溶解速度が大きい樹脂と酢酸ブチルに対する溶解速度が小さい樹脂との混合物であってもよい。例えば、溶解速度が20nm/s未満の酸反応性樹脂と、溶解速度が200nm/sを超える樹脂の混合物が例示される。この場合の溶解速度とは、後述する実施例1において、酸反応性樹脂を上記酸反応性樹脂に置き換えた組成物を後述する実施例に記載の方法で測定した溶解速度をいう。
 感光層は、その露光部が有機溶剤を含む現像液に対して難溶であることが好ましい。難溶とは、露光部が現像液に溶けにくいことをいい、具体的には、波長365nm(i線)、波長248nm(KrF線)および波長193nm(ArF線)の少なくとも一つにおいて50mJ/cm以上の照射量で露光することによって極性が変化し、sp値(溶解パラメータ値)が19(MPa)1/2未満の溶剤に対して難溶となることが好ましく、18.5(MPa)1/2以下の溶剤に対して難溶となることがより好ましく、18.0(MPa)1/2以下の溶剤に対して難溶となることがさらに好ましい。さらに、波長365nm(i線)、波長248nm(KrF線)および波長193nm(ArF線)の少なくとも一つにおいて50~250mJ/cmの照射量で露光することによって、上記のとおり極性が変化することがより好ましい。
The content of the acid reactive resin in the photosensitive layer is preferably 20 to 99.9% by mass, more preferably 40 to 99% by mass, and further preferably 70 to 99% by mass. 1 type, or 2 or more types of acid reactive resin may be contained. When using 2 or more types, it is preferable that a total amount becomes the said range.
In the present invention, the acid-reactive resin may be a mixture of a resin having a high dissolution rate in butyl acetate and a resin having a low dissolution rate in butyl acetate. For example, a mixture of an acid-reactive resin having a dissolution rate of less than 20 nm / s and a resin having a dissolution rate of more than 200 nm / s is exemplified. The dissolution rate in this case refers to the dissolution rate measured by the method described in the example described later in Example 1, which will be described later, and the composition in which the acid reactive resin is replaced with the acid reactive resin.
The photosensitive layer is preferably hardly soluble in a developing solution containing an organic solvent in the exposed portion. Slightly soluble means that the exposed portion is hardly soluble in the developer, and specifically, 50 mJ / cm in at least one of a wavelength of 365 nm (i-line), a wavelength of 248 nm (KrF line), and a wavelength of 193 nm (ArF line). It is preferable that the polarity changes due to exposure at an irradiation dose of 2 or more, and the sp value (solubility parameter value) is hardly soluble in a solvent of less than 19 (MPa) 1/2 , and 18.5 (MPa) It is more preferable that it is hardly soluble in a solvent of 1/2 or less, and it is more preferable that it is hardly soluble in a solvent of 18.0 (MPa) 1/2 or less. Furthermore, the polarity changes as described above by exposing at a dose of 50 to 250 mJ / cm 2 at at least one of a wavelength of 365 nm (i-line), a wavelength of 248 nm (KrF line) and a wavelength of 193 nm (ArF line). Is more preferable.
 感光層は、ネガ型感光層であっても、ポジ型感光層であってもよいが、ネガ型感光層であることが、より微細なトレンチやホールパターンを形成することが可能になり、好ましい。
 感光層の厚さは、解像力向上の観点から、0.5μm以上が好ましく、1.0μm超えであってもよく、1.5μm以上であってもよく、1.8μm以上であってもよい。感光層の厚さの上限値としては、10μm以下が好ましく、5.0μm以下がより好ましく、3.0μm以下であってもよい。
 さらに、感光層と水溶性樹脂層との厚さの合計が、2.0μm以上であることが好ましい。上限値としては、20.0μm以下であることが好ましく、10.0μm以下であることがより好ましく、5.0μm以下であることがさらに好ましい。
The photosensitive layer may be a negative photosensitive layer or a positive photosensitive layer, but a negative photosensitive layer is preferable because it enables formation of finer trenches and hole patterns. .
From the viewpoint of improving resolution, the thickness of the photosensitive layer is preferably 0.5 μm or more, may exceed 1.0 μm, may be 1.5 μm or more, or may be 1.8 μm or more. The upper limit of the thickness of the photosensitive layer is preferably 10 μm or less, more preferably 5.0 μm or less, and may be 3.0 μm or less.
Furthermore, the total thickness of the photosensitive layer and the water-soluble resin layer is preferably 2.0 μm or more. The upper limit is preferably 20.0 μm or less, more preferably 10.0 μm or less, and even more preferably 5.0 μm or less.
 感光層は、i線の照射に対して感光能を有することが好ましい。感光能とは、活性光線および放射線の少なくとも一方の照射(i線の照射に対して感光能を有する場合は、i線の照射により)材料が変質する性質であり、本発明においては材料の変質が酢酸ブチルに対する溶解速度の変化を伴う。
 感光層のオーバー現像係数は、1.0~4.0が好ましく、1.1~1.9がより好ましい。このような範囲とすることにより、パターンのフッティングやアンダーカットの抑止という効果を効果的に発揮できる。オーバー現像係数は後述する実施例の記載に従って測定・算出される。
The photosensitive layer preferably has photosensitivity to i-ray irradiation. The photosensitivity is a property that a material is altered by irradiation with at least one of actinic rays and radiation (if it has photosensitivity to i-ray irradiation), the material is altered in the present invention. Is accompanied by a change in dissolution rate in butyl acetate.
The over development coefficient of the photosensitive layer is preferably from 1.0 to 4.0, more preferably from 1.1 to 1.9. By setting it as such a range, the effect of suppressing pattern footing and undercutting can be exhibited effectively. The over-development coefficient is measured and calculated according to the description in the examples described later.
 感光性樹脂組成物は、酸反応性樹脂および光酸発生剤を少なくとも含有する化学増幅型感光性樹脂組成物であることが好ましい。 The photosensitive resin composition is preferably a chemically amplified photosensitive resin composition containing at least an acid reactive resin and a photoacid generator.
<<溶解速度>>
 本発明においては、未照射の感光層を23℃の酢酸ブチルに浸漬した場合の溶解速度が20nm/秒以上200nm/秒以下であると規定する。この溶解速度は180nm/秒以下であることが好ましく、150nm/秒以下であることがより好ましく、120nm/秒以下であることがさらに好ましい。下限としては、25nm/秒以上であることが好ましく、40nm/秒以上であることがより好ましく、70nm/秒以上であることがさらに好ましい。この溶解速度を上記の範囲とすることで、下記で感光性樹脂組成物の静止接触角を規定したことと相まって、感光層のアンダーカットの発生を抑制ないし防止し、これに起因するパターンの倒れを防止し、またこれだけでなく感光層の剥がれをも効果的に抑止しうる。なお、本明細書において感光層の溶解速度の測定方法は、後記実施例で採用した方法によるものとする。
<< Dissolution rate >>
In the present invention, the dissolution rate when the unirradiated photosensitive layer is immersed in butyl acetate at 23 ° C. is defined as 20 nm / second or more and 200 nm / second or less. The dissolution rate is preferably 180 nm / second or less, more preferably 150 nm / second or less, and further preferably 120 nm / second or less. The lower limit is preferably 25 nm / second or more, more preferably 40 nm / second or more, and further preferably 70 nm / second or more. By setting the dissolution rate within the above range, in combination with the definition of the static contact angle of the photosensitive resin composition described below, the occurrence of undercut of the photosensitive layer is suppressed or prevented, and the pattern collapse resulting therefrom. In addition to this, peeling of the photosensitive layer can be effectively suppressed as well. In this specification, the method for measuring the dissolution rate of the photosensitive layer is based on the method employed in the examples described later.
<<酸反応性樹脂>>
 酸反応性樹脂は、感光性樹脂組成物を構成する樹脂成分であり、活性光線および放射線の少なくとも一方の照射により酸を発生する化合物からの酸の作用により酢酸ブチルに対する溶解速度が変化する。本発明に用いられる酸反応性樹脂は、23℃の酢酸ブチルに可溶な疎水性の樹脂である。
<< Acid reactive resin >>
The acid-reactive resin is a resin component constituting the photosensitive resin composition, and the dissolution rate in butyl acetate is changed by the action of an acid from a compound that generates an acid upon irradiation with at least one of actinic rays and radiation. The acid-reactive resin used in the present invention is a hydrophobic resin soluble in butyl acetate at 23 ° C.
 酸反応性樹脂は、感光性樹脂組成物を構成する樹脂成分であり、通常、酸によって解離する基を含む構成単位を含む樹脂であり、他の構成単位を含んでいてもよい。
 酸反応性樹脂は、sp値(溶解パラメータ値)が18.0(MPa)1/2以下の有機溶剤に可溶で、かつ、下記式(1)で表される構成単位におけるテトラヒドロフラニル基が分解または解離したときにsp値が18.0(MPa)1/2以下の有機溶剤に難溶となる樹脂であることが好ましい。
 ここで、「sp値(溶解パラメータ値)が18.0(MPa)1/2以下の有機溶剤に可溶」とは、化合物(樹脂)の溶液を基板上に塗布し、100℃で1分間加熱することによって形成される化合物(樹脂)の塗膜(厚さ1μm)の、23℃における酢酸ブチルに対する溶解速度が、20nm/秒以上であることをいい、「sp値が18.0(MPa)1/2以下の有機溶剤に難溶」とは、化合物(樹脂)の溶液を基板上に塗布し、100℃で1分間加熱することによって形成される化合物(樹脂)の塗膜(厚さ1μm)の、23℃における酢酸ブチルに対する溶解速度が、0.1nm/秒未満であることをいう。
The acid-reactive resin is a resin component constituting the photosensitive resin composition, and is usually a resin containing a structural unit containing a group dissociated by an acid, and may contain another structural unit.
The acid-reactive resin is soluble in an organic solvent having an sp value (solubility parameter value) of 18.0 (MPa) 1/2 or less, and has a tetrahydrofuranyl group in a structural unit represented by the following formula (1). A resin that is hardly soluble in an organic solvent having an sp value of 18.0 (MPa) 1/2 or less when decomposed or dissociated is preferable.
Here, “sp value (solubility parameter value) is 18.0 (MPa) soluble in an organic solvent of 1/2” or less means that a solution of a compound (resin) is applied on a substrate, and then at 100 ° C. for 1 minute. The dissolution rate of the coating film (thickness 1 μm) of the compound (resin) formed by heating with respect to butyl acetate at 23 ° C. is 20 nm / second or more, and the “sp value is 18.0 (MPa ) “Slightly soluble in 1/2 or less organic solvent” means that a compound (resin) coating film (thickness) is formed by applying a compound (resin) solution on a substrate and heating at 100 ° C. for 1 minute. 1 μm) at 23 ° C. is less than 0.1 nm / second.
 本発明において、酸反応性樹脂は、酸の作用により溶解速度が変化することが好ましく、この変化が溶解速度の低下であることがより好ましい。活性光線等を照射する前の酸反応性樹脂のsp値が18.0(MPa)1/2以下の有機溶剤(典型的には酢酸ブチル)への溶解速度は、40nm/秒以上であることがより好ましい。また、活性光線等を照射して酸反応性樹脂の酸分解性基が分解したときには、sp値が18.0(MPa)1/2以下の有機溶剤(典型的には酢酸ブチル)への溶解速度は0.05nm/秒未満であることがより好ましい。 In the present invention, the acid-reactive resin preferably has a dissolution rate that changes due to the action of an acid, and this change is more preferably a decrease in the dissolution rate. The rate of dissolution in an organic solvent (typically butyl acetate) whose sp value of the acid-reactive resin before irradiation with actinic rays or the like is 18.0 (MPa) 1/2 or less is 40 nm / second or more. Is more preferable. Further, when the acid-decomposable group of the acid-reactive resin is decomposed by irradiation with actinic rays or the like, it is dissolved in an organic solvent (typically butyl acetate) whose sp value is 18.0 (MPa) 1/2 or less. More preferably, the speed is less than 0.05 nm / second.
 感光層ないし酸反応性樹脂の溶解速度を変化させるのは常法によればよいが、例えば、酸反応性樹脂を構成するポリマーの分子量、分子構造の選定、酸の保護基の種類の選定、分子内の酸および保護基の導入量、酸発生剤の種類の選定、酸反応性樹脂と酸発生剤の量の比率、樹脂のSP値、固形分中の低分子化合物の比率の調節などにより上記溶解速度を調節することができる。具体的には、溶解速度を上げるには、樹脂の分子量を低下させる、樹脂のSP値を酢酸ブチルのものに近付ける、固形分中の低分子比率を増やすなどの手段が例示される。逆に下げるには、樹脂の分子量を高くする、樹脂のSP値を酢酸ブチルのものから遠ざける、固形分中の低分子比率を減らすなどの手段が例示される。また、溶解速度が20nm/s未満の樹脂と溶解速度が200nm/sを超える樹脂をブレンドしてもよい。 The dissolution rate of the photosensitive layer or acid-reactive resin may be changed by a conventional method. For example, the molecular weight of the polymer constituting the acid-reactive resin, the selection of the molecular structure, the selection of the type of the acid protecting group, Depending on the amount of acid and protecting group introduced in the molecule, selection of the type of acid generator, ratio of the amount of acid-reactive resin and acid generator, SP value of the resin, adjustment of the ratio of low-molecular compounds in the solids, etc. The dissolution rate can be adjusted. Specifically, in order to increase the dissolution rate, means such as decreasing the molecular weight of the resin, bringing the SP value of the resin closer to that of butyl acetate, and increasing the low molecular ratio in the solid content are exemplified. On the other hand, to lower it, there are exemplified means such as increasing the molecular weight of the resin, keeping the SP value of the resin away from that of butyl acetate, and reducing the low molecular ratio in the solid content. Further, a resin having a dissolution rate of less than 20 nm / s and a resin having a dissolution rate of more than 200 nm / s may be blended.
<<保護基>>
 本発明において、酸反応性樹脂は、全構成単位のうち、50モル%から100モル%がアルカリ水溶液に可溶な基が疎水性保護基により保護されている。ここで、アルカリ水溶液に可溶な基とは、酸基を有する構成単位であることが好ましい。酸基としては、水酸基(フェノール性水酸基を含む)、カルボキシル基、スルホン酸基、スルフィン酸基、リン酸基、ホスホン酸基、リン酸基、ホスホン酸基などが挙げられる。構成単位とは典型的にはポリマーの繰り返し構成単位(単に構成単位ということがある)を指すが、構成単位中の置換基もしくは幾つかの置換基のまとまりを意味することもある。疎水性保護基により保護されるとは、上記アルカリ水溶液に可溶な基がもつ官能基(通常は酸基)が疎水性の置換基により置換されている状態が典型例である。例えば、フェノール性水酸基にアルキル基を有する置換基が置換し、エーテル結合を形成している態様などが挙げられる。あるいは、カルボキシル基にテトラヒドロピラニル基が置換しエステルを形成している例が挙げられる。上記疎水性保護基による保護は、疎水性の置換基が、一分子内に存在するアルカリ水溶液に可溶な基がもつ官能基(通常は酸基)の数に対して、どの程度の割合で置換基しているかで評価することができる。
 この割合をモル比基準で示すと、本発明においては、上記のとおり50モル%以上100モル%以下であり、55モル%以上100モル%以下であることが好ましく、60モル%以上100モル%以下であることがより好ましい。保護基となるアルキル基としては、第一級でも第二級でも第三級でもよく、鎖状でも環状でもよく、直鎖でも分岐でもよい。このアルキル基は鎖中に酸素原子やカルボニル基を介していてもよい。環状になってオキサジン環やテトラヒドロフラン環になっていてもよい。また、アリール基(炭素数6~22が好ましく、6~18がより好ましく、6~10がさらに好ましい)が置換していてもよい。介在する酸素原子は炭素原子1~12個に対して1個の割合であることが好ましい。あるいは、後記式(2)の置換基Aの例が挙げられる。
 なかでも、酸反応性樹脂はアクリル系重合体であることが好ましい。
<< Protecting group >>
In the present invention, in the acid-reactive resin, 50 mol% to 100 mol% of all the structural units are protected with a hydrophobic protecting group in a group soluble in an alkaline aqueous solution. Here, the group soluble in the alkaline aqueous solution is preferably a structural unit having an acid group. Examples of the acid group include hydroxyl groups (including phenolic hydroxyl groups), carboxyl groups, sulfonic acid groups, sulfinic acid groups, phosphoric acid groups, phosphonic acid groups, phosphoric acid groups, and phosphonic acid groups. A structural unit typically refers to a repeating structural unit of a polymer (sometimes simply referred to as a structural unit), but may mean a substituent or a group of several substituents in the structural unit. Protected by a hydrophobic protecting group is typically a state in which a functional group (usually an acid group) of a group soluble in the alkaline aqueous solution is substituted with a hydrophobic substituent. For example, the phenolic hydroxyl group is substituted with a substituent having an alkyl group to form an ether bond. Alternatively, an example in which a tetrahydropyranyl group is substituted on the carboxyl group to form an ester can be mentioned. The above-mentioned protection by the hydrophobic protective group is based on the ratio of the hydrophobic substituent to the number of functional groups (usually acid groups) of the group soluble in an alkaline aqueous solution present in one molecule. It can be evaluated whether it is a substituent.
When this ratio is shown on a molar ratio basis, in the present invention, it is 50 mol% or more and 100 mol% or less as described above, preferably 55 mol% or more and 100 mol% or less, preferably 60 mol% or more and 100 mol%. The following is more preferable. The alkyl group serving as a protective group may be primary, secondary or tertiary, and may be linear or cyclic, and may be linear or branched. This alkyl group may be via an oxygen atom or a carbonyl group in the chain. It may be cyclic to form an oxazine ring or a tetrahydrofuran ring. An aryl group (preferably having 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, and further preferably 6 to 10 carbon atoms) may be substituted. The intervening oxygen atom is preferably in a ratio of 1 to 1 to 12 carbon atoms. Or the example of the substituent A of postscript Formula (2) is mentioned.
Of these, the acid-reactive resin is preferably an acrylic polymer.
<<アクリル系重合体>>
 「アクリル系重合体」は、付加重合型の樹脂であり、(メタ)アクリル酸またはそのエステルに由来する構成単位を含む重合体であり、(メタ)アクリル酸またはそのエステルに由来する構成単位以外の構成単位、例えば、スチレン類に由来する構成単位やビニル化合物に由来する構成単位等を含んでいてもよい。アクリル系重合体は、(メタ)アクリル酸またはそのエステルに由来する構成単位を、重合体における全構成単位に対し、50モル%以上有することが好ましく、80モル%以上有することがより好ましく、(メタ)アクリル酸またはそのエステルに由来する構成単位のみからなる重合体であることが特に好ましい。このようなアクリル系重合体は、ネガ型現像に好ましく用いられる。
<< Acrylic polymer >>
“Acrylic polymer” is an addition polymerization type resin, which is a polymer containing a structural unit derived from (meth) acrylic acid or an ester thereof, and other than a structural unit derived from (meth) acrylic acid or an ester thereof. These structural units may include, for example, structural units derived from styrenes, structural units derived from vinyl compounds, and the like. The acrylic polymer preferably has a structural unit derived from (meth) acrylic acid or an ester thereof in an amount of 50 mol% or more, more preferably 80 mol% or more, based on all the structural units in the polymer. Particularly preferred is a polymer consisting only of structural units derived from (meth) acrylic acid or its ester. Such an acrylic polymer is preferably used for negative development.
 アクリル系重合体は、保護されたカルボキシル基または保護されたフェノール性水酸基を含有する構成単位を有するものであることも好ましい。保護されたカルボキシル基を含有する構成単位を形成することができるモノマーとしては、例えば、酸解離性基で保護された(メタ)アクリル酸を挙げることができる。 It is also preferable that the acrylic polymer has a structural unit containing a protected carboxyl group or a protected phenolic hydroxyl group. Examples of the monomer capable of forming a structural unit containing a protected carboxyl group include (meth) acrylic acid protected with an acid dissociable group.
 フェノール性水酸基を有するモノマーとしては、p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン等のヒドロキシスチレン類等を好ましいものとして挙げることができる。これらの中でも、α-メチル-p-ヒドロキシスチレンがより好ましい。 Preferred examples of the monomer having a phenolic hydroxyl group include hydroxystyrenes such as p-hydroxystyrene and α-methyl-p-hydroxystyrene. Among these, α-methyl-p-hydroxystyrene is more preferable.
 アクリル系重合体は、環状エーテルエステル構造を有することが好ましく、下記式(1)で表される構造を有することがより好ましい。
Figure JPOXMLDOC01-appb-C000004
 式中、Rは水素原子またはアルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)を表し、Lはカルボニル基またはフェニレン基を表し、R~Rはそれぞれ独立に、水素原子またはアルキル基を表す。Rは、水素原子またはメチル基であることが好ましく、メチル基であることがより好ましい。
 Lは、カルボニル基またはフェニレン基を表し、カルボニル基であることが好ましい。
 R~Rはそれぞれ独立に、水素原子またはアルキル基を表す。R~Rにおけるアルキル基は、Rと同義であり、好ましい態様も同様である。また、R~Rのうち、1つ以上が水素原子であることが好ましく、R~Rの全てが水素原子であることがより好ましい。
The acrylic polymer preferably has a cyclic ether ester structure, and more preferably has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
In the formula, R 8 represents a hydrogen atom or an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and more preferably 1 to 3), L 1 represents a carbonyl group or a phenylene group, and R 1 R 7 each independently represents a hydrogen atom or an alkyl group. R 8 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group.
L 1 represents a carbonyl group or a phenylene group, and is preferably a carbonyl group.
R 1 to R 7 each independently represents a hydrogen atom or an alkyl group. The alkyl group in R 1 to R 7 has the same meaning as R 8 , and the preferred embodiment is also the same. Further, among the R 1 ~ R 7, preferably more than one is a hydrogen atom, it is more preferable that all of R 1 ~ R 7 are hydrogen atoms.
 構成単位(1)として、特に、(1-1)および(1-2)が好ましい。
Figure JPOXMLDOC01-appb-C000005
 構成単位(1)を形成するために用いられるラジカル重合性単量体は、市販のものを用いてもよいし、公知の方法で合成したものを用いることもできる。例えば、(メタ)アクリル酸を酸触媒の存在下でジヒドロフラン化合物と反応させることにより合成することができる。あるいは、前駆体モノマーと重合した後に、カルボキシル基またはフェノール性水酸基をジヒドロフラン化合物と反応させることによっても形成することができる。
As the structural unit (1), (1-1) and (1-2) are particularly preferable.
Figure JPOXMLDOC01-appb-C000005
As the radical polymerizable monomer used for forming the structural unit (1), a commercially available one may be used, or one synthesized by a known method may be used. For example, it can be synthesized by reacting (meth) acrylic acid with a dihydrofuran compound in the presence of an acid catalyst. Alternatively, it can be formed by reacting a carboxyl group or a phenolic hydroxyl group with a dihydrofuran compound after polymerization with a precursor monomer.
 保護されたフェノール性水酸基を含有する構成単位としては、下記の式(2)の構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 Aは、水素原子または酸の作用により脱離する基を表す。酸の作用により脱離する基としては、アルキル基(炭素数1~12が好ましく、1~6がより好ましく、1~3がさらに好ましい)、アルコキシアルキル基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、アリールオキシアルキル基(総炭素数7~40が好ましく、7~30がより好ましく、7~20がさらに好ましい)、アルコキシカルボニル基(炭素数2~12が好ましく、2~6がより好ましく、2~3がさらに好ましい)、アリールオキシカルボニル基(炭素数7~23が好ましく、7~19がより好ましく、7~11がさらに好ましい)が好ましい。Aはさらに置換基を有していてもよい。R10は置換基を表す。Rは式(1)におけるRと同義の基を表す。nxは、0~3の整数を表す。
Examples of the structural unit containing a protected phenolic hydroxyl group include the structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000006
A represents a hydrogen atom or a group capable of leaving by the action of an acid. Examples of the group capable of leaving by the action of an acid include an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 6 and more preferably 1 to 3), and an alkoxyalkyl group (preferably having 2 to 12 carbon atoms and 2 To 6 are more preferred, and 2 to 3 are more preferred), an aryloxyalkyl group (preferably having a total carbon number of 7 to 40, more preferably 7 to 30 and even more preferably 7 to 20), an alkoxycarbonyl group (having 2 carbon atoms). To 12, preferably 2 to 6, more preferably 2 to 3, and an aryloxycarbonyl group (preferably having a carbon number of 7 to 23, more preferably 7 to 19, and still more preferably 7 to 11). A may further have a substituent. R 10 represents a substituent. R 9 represents a group having the same meaning as R 8 in Formula (1). nx represents an integer of 0 to 3.
 酸によって解離する基としては、特開2008-197480号公報の段落番号0039~0049に記載の化合物のうち、酸によって解離する基を有する構成単位も好ましく、また、特開2012-159830号公報(特許第5191567号)の段落番号0052~0056に記載の化合物も好ましく、これらの内容は本明細書に組み込まれる。 As the group dissociating by an acid, among the compounds described in paragraphs 0039 to 0049 of JP-A-2008-197480, a structural unit having a group dissociating by an acid is preferable, and JP-A-2012-159830 ( The compounds described in paragraph Nos. 0052 to 0056 of Japanese Patent No. 5191567) are also preferable, the contents of which are incorporated herein.
 構成単位(2)の具体的な例を示すが、本発明がこれにより限定して解釈されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Specific examples of the structural unit (2) are shown below, but the present invention is not construed as being limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 アクリル系重合体中、構成単位(1)および構成単位(2)に割合は、5~80モル%が好ましく、10~70モル%がより好ましく、10~60モル%がさらに好ましい。アクリル系重合体は、構成単位(1)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。 In the acrylic polymer, the proportion of the structural unit (1) and the structural unit (2) is preferably 5 to 80 mol%, more preferably 10 to 70 mol%, and further preferably 10 to 60 mol%. The acrylic polymer may contain only 1 type of structural unit (1), or may contain 2 or more types. When using 2 or more types, it is preferable that a total amount becomes the said range.
 酸反応性樹脂は、架橋性基を有する構成単位を含有してもよい。架橋性基の詳細については、特開2011-209692号公報の段落番号0032~0046の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 酸反応性樹脂は、架橋性基を有する構成単位(構成単位(3))を含んでいる態様も好ましいが、架橋性基を有する構成単位(3)を実質的に含まない構成とすることが好ましい。このような構成とすることにより、パターニング後に、感光層をより効果的に除去することが可能になる。ここで、実質的にとは、例えば、酸反応性樹脂の全構成単位の3モル%以下をいい、好ましくは1モル%以下をいう。
The acid-reactive resin may contain a structural unit having a crosslinkable group. Details of the crosslinkable group can be referred to the descriptions in paragraph numbers 0032 to 0046 of JP2011-209692A, the contents of which are incorporated herein.
Although the aspect in which the acid-reactive resin contains the structural unit (structural unit (3)) having a crosslinkable group is also preferable, the acid-reactive resin may have a configuration that does not substantially contain the structural unit (3) having a crosslinkable group. preferable. With such a configuration, the photosensitive layer can be more effectively removed after patterning. Here, “substantially” means, for example, 3 mol% or less, preferably 1 mol% or less of all structural units of the acid-reactive resin.
 酸反応性樹脂は、その他の構成単位(構成単位(4))を含有してもよい。構成単位(4)を形成するために用いられるラジカル重合性単量体としては、例えば、特開2004-264623号公報の段落番号0021~0024に記載の化合物を挙げることができる。構成単位(4)の好ましい例としては、水酸基含有不飽和カルボン酸エステル、脂環構造含有不飽和カルボン酸エステル、スチレン、および、N置換マレイミドからなる群から選ばれる少なくとも1種に由来する構成単位が挙げられる。これらの中でも、ベンジル(メタ)アクリレート、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、(メタ)アクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルオキシエチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-メチルシクロヘキシルのような脂環構造含有の(メタ)アクリル酸エステル類、または、スチレンのような疎水性のモノマーが好ましい。
 構成単位(4)は、1種または2種以上を組み合わせて使用することができる。アクリル系重合体を構成する全モノマー単位中、構成単位(4)を含有させる場合における構成単位(4)を形成するモノマー単位の含有率は、1~60モル%が好ましく、5~50モル%がより好ましく、5~40モル%がさらに好ましい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
The acid-reactive resin may contain other structural units (structural unit (4)). Examples of the radical polymerizable monomer used for forming the structural unit (4) include compounds described in paragraph numbers 0021 to 0024 of JP-A No. 2004-264623. As a preferred example of the structural unit (4), a structural unit derived from at least one selected from the group consisting of a hydroxyl group-containing unsaturated carboxylic acid ester, an alicyclic structure-containing unsaturated carboxylic acid ester, styrene, and an N-substituted maleimide. Is mentioned. Among these, benzyl (meth) acrylate, (meth) acrylic acid tricyclo [5.2.1.02,6] decan-8-yl, (meth) acrylic acid tricyclo [5.2.1.02,6] (Meth) acrylic acid esters containing alicyclic structures such as decan-8-yloxyethyl, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methylcyclohexyl (meth) acrylate, or styrene Hydrophobic monomers such as are preferred.
The structural unit (4) can be used alone or in combination of two or more. The content of the monomer unit forming the structural unit (4) in the case where the structural unit (4) is included in all monomer units constituting the acrylic polymer is preferably 1 to 60 mol%, and 5 to 50 mol%. Is more preferable, and 5 to 40 mol% is more preferable. When using 2 or more types, it is preferable that a total amount becomes the said range.
 アクリル系重合体の合成法については様々な方法が知られているが、一例を挙げると、少なくとも構成単位(1)、構成単位(2)等を形成するために用いられるラジカル重合性単量体を含むラジカル重合性単量体混合物を、有機溶剤中、ラジカル重合開始剤を用いて重合することにより合成することができる。
 酸反応性樹脂としては、不飽和多価カルボン酸無水物類を共重合させた前駆共重合体中の酸無水物基に、2,3-ジヒドロフランを、酸触媒の不存在下、室温(25℃)~100℃程度の温度で付加させることにより得られる共重合体も好ましい。
 以下の樹脂も酸反応性樹脂の好ましい例として挙げられる。
BzMA/THFMA/t-BuMA(モル比:20~60:35~65:5~30)
BzMA/THFAA/t-BuMA(モル比:20~60:35~65:5~30)
BzMA/THPMA/t-BuMA(モル比:20~60:35~65:5~30)
BzMA/PEES/t-BuMA(モル比:20~60:35~65:5~30)
 BzMAは、ベンジルメタクリレートであり、THFMAは、テトラヒドロフラン-2-イル メタクリレートであり、BuMAは、ブチルメタクリレートであり、THFAAは、テトラヒドロフラン-2-イル アクリレートであり、THPMAは、テトラヒドロ-2H-ピラン-2-イル メタクリレートであり、PEESは、p-エトキシエトキシスチレンである。
Various methods are known for synthesizing acrylic polymers. For example, radical polymerizable monomers used to form at least the structural unit (1), the structural unit (2), etc. It can be synthesized by polymerizing a radically polymerizable monomer mixture containing a radical polymerization initiator in an organic solvent.
As the acid-reactive resin, 2,3-dihydrofuran is added at room temperature (in the absence of an acid catalyst) to the acid anhydride group in the precursor copolymer obtained by copolymerizing unsaturated polyvalent carboxylic acid anhydrides. A copolymer obtained by addition at a temperature of about 25 ° C. to 100 ° C. is also preferable.
The following resins are also listed as preferred examples of the acid-reactive resin.
BzMA / THFMA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
BzMA / THFAA / t-BuMA (molar ratio: 20 to 60:35 to 65: 5 to 30)
BzMA / THPMA / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
BzMA / PEES / t-BuMA (molar ratio: 20-60: 35-65: 5-30)
BzMA is benzyl methacrylate, THFMA is tetrahydrofuran-2-yl methacrylate, BuMA is butyl methacrylate, THFAA is tetrahydrofuran-2-yl acrylate, and THPMA is tetrahydro-2H-pyran-2. -Yl methacrylate, PEES is p-ethoxyethoxystyrene.
 ポジ型現像に用いられる酸反応性樹脂としては、特開2013-011678号公報に記載のものが例示され、これらの内容は本明細書に組み込まれる。 Examples of the acid-reactive resin used for positive development include those described in JP2013-011678A, the contents of which are incorporated herein.
 感光性樹脂組成物中の酸反応性樹脂の含有量は、感光性樹脂組成物の全固形分に対して、20~99質量%であることが好ましく、40~99質量%であることがより好ましく、70~99質量%であることがさらに好ましい。含有量がこの範囲であると、現像した際のパターン形成性が良好となる。酸反応性樹脂は1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
 また、酸反応性樹脂は、感光性樹脂組成物に含まれる樹脂成分の10質量%以上を占めることが好ましく、50質量%以上を占めることがより好ましく、90質量%以上を占めることがさらに好ましい。
The content of the acid-reactive resin in the photosensitive resin composition is preferably 20 to 99% by mass and more preferably 40 to 99% by mass with respect to the total solid content of the photosensitive resin composition. Preferably, it is 70 to 99% by mass. When the content is within this range, the pattern formability upon development is good. The acid-reactive resin may contain only 1 type, and may contain 2 or more types. When using 2 or more types, it is preferable that a total amount becomes the said range.
The acid-reactive resin preferably accounts for 10% by mass or more of the resin component contained in the photosensitive resin composition, more preferably accounts for 50% by mass or more, and more preferably accounts for 90% by mass or more. .
<<光酸発生剤>>
 感光性樹脂組成物は、光酸発生剤を含んでもよい。光酸発生剤は、波長365nmに吸収を有する光酸発生剤であることが好ましい。
 光酸発生剤は、オキシムスルホネート基を有する化合物(以下、単にオキシムスルホネート化合物ともいう)であることが好ましい。
<< Photoacid generator >>
The photosensitive resin composition may contain a photoacid generator. The photoacid generator is preferably a photoacid generator having absorption at a wavelength of 365 nm.
The photoacid generator is preferably a compound having an oxime sulfonate group (hereinafter also simply referred to as an oxime sulfonate compound).
 オキシムスルホネート化合物は、オキシムスルホネート基を有していれば特に制限はないが、下記式(OS-1)、後述する式(OS-103)、式(OS-104)、または、式(OS-105)で表されるオキシムスルホネート化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
 Xは、アルキル基、アルコキシル基、または、ハロゲン原子を表す。Xが複数存在する場合は、それぞれ同一であってもよいし、異なっていてもよい。上記Xにおけるアルキル基およびアルコキシル基は、置換基を有していてもよい。上記Xにおけるアルキル基としては、炭素数1~4の、直鎖状または分岐状アルキル基が好ましい。上記Xにおけるアルコキシル基としては、炭素数1~4の直鎖状または分岐状アルコキシル基が好ましい。上記Xにおけるハロゲン原子としては、塩素原子またはフッ素原子が好ましい。
 m3は、0~3の整数を表し、0または1が好ましい。m3が2または3であるとき、複数のXは同一でも異なっていてもよい。
 R34は、アルキル基またはアリール基を表し、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数1~5のハロゲン化アルキル基、炭素数1~5のハロゲン化アルコキシル基、Wで置換されていてもよいフェニル基、Wで置換されていてもよいナフチル基またはWで置換されていてもよいアントラニル基であることが好ましい。Wは、ハロゲン原子、シアノ基、ニトロ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシル基、炭素数1~5のハロゲン化アルキル基または炭素数1~5のハロゲン化アルコキシル基、炭素数6~20のアリール基、炭素数6~20のハロゲン化アリール基を表す。
The oxime sulfonate compound is not particularly limited as long as it has an oxime sulfonate group. However, the following formula (OS-1), formula (OS-103), formula (OS-104), or formula (OS- It is preferable that it is an oxime sulfonate compound represented by 105).
Figure JPOXMLDOC01-appb-C000009
X 3 represents an alkyl group, an alkoxyl group, or a halogen atom. When a plurality of X 3 are present, they may be the same or different. The alkyl group and alkoxyl group in X 3 may have a substituent. The alkyl group in X 3 is preferably a linear or branched alkyl group having 1 to 4 carbon atoms. The alkoxyl group in X 3 is preferably a linear or branched alkoxyl group having 1 to 4 carbon atoms. The halogen atom in X 3 is preferably a chlorine atom or a fluorine atom.
m3 represents an integer of 0 to 3, preferably 0 or 1. When m3 is 2 or 3, the plurality of X 3 may be the same or different.
R 34 represents an alkyl group or an aryl group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxyl group having 1 to 5 carbon atoms. And a phenyl group which may be substituted with W, a naphthyl group which may be substituted with W, or an anthranyl group which may be substituted with W. W represents a halogen atom, a cyano group, a nitro group, an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 5 carbon atoms, or a halogenated alkoxyl group having 1 to 5 carbon atoms. Group, an aryl group having 6 to 20 carbon atoms, and a halogenated aryl group having 6 to 20 carbon atoms.
 式中、m3が3であり、Xがメチル基であり、Xの置換位置がオルト位であり、R34が炭素数1~10の直鎖状アルキル基、7,7-ジメチル-2-オキソノルボルニルメチル基、または、p-トルイル基である化合物が特に好ましい。 In the formula, m3 is 3, X 3 is a methyl group, the substitution position of X 3 is an ortho position, R 34 is a linear alkyl group having 1 to 10 carbon atoms, 7,7-dimethyl-2 A compound which is an -oxonorbornylmethyl group or a p-toluyl group is particularly preferable.
 式(OS-1)で表されるオキシムスルホネート化合物の具体例としては、特開2011-209692号公報の段落番号0064~0068に記載された以下の化合物が例示され、これらの内容は本明細書に組み込まれる。
Figure JPOXMLDOC01-appb-C000010
 R11はアルキル基、アリール基またはヘテロアリール基を表し、複数存在する場合のあるR12はそれぞれ独立に、水素原子、アルキル基、アリール基またはハロゲン原子を表し、複数存在する場合のあるR16はそれぞれ独立に、ハロゲン原子、アルキル基、アルキルオキシ基、スルホン酸基、アミノスルホニル基またはアルコキシスルホニル基を表し、XはOまたはSを表し、nsは1または2を表し、msは0~6の整数を表す。
 R11で表されるアルキル基、アリール基またはヘテロアリール基は、置換基を有していてもよい。R11で表されるアルキル基としては、置換基を有していてもよい総炭素数1~30のアルキル基であることが好ましい。R11で表されるアルキル基が有していてもよい置換基としては、ハロゲン原子、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基が挙げられる。R11で表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、トリフルオロメチル基、パーフルオロプロピル基、パーフルオロヘキシル基、ベンジル基などが挙げられる。
 また、R11で表されるアリール基としては、置換基を有してもよい総炭素数6~30のアリール基が好ましい。R11で表されるアリール基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基、スルホン酸基、アミノスルホニル基、アルコキシスルホニル基が挙げられる。R11で表されるアリール基としては、フェニル基、p-メチルフェニル基、p-クロロフェニル基、ペンタクロロフェニル基、ペンタフルオロフェニル基、o-メトキシフェニル基、p-フェノキシフェニル基が好ましい。また、R11で表されるヘテロアリール基としては、置換基を有してもよい総炭素数4~30のヘテロアリール基が好ましい。R11で表されるヘテロアリール基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基、スルホン酸基、アミノスルホニル基、アルコキシスルホニル基が挙げられる。R11で表されるヘテロアリール基は、少なくとも1つの複素芳香環を有していればよく、例えば、複素芳香環とベンゼン環とが縮環していてもよい。R11で表されるヘテロアリール基としては、置換基を有していてもよい、チオフェン環、ピロール環、チアゾール環、イミダゾール環、フラン環、ベンゾチオフェン環、ベンゾチアゾール環、および、ベンゾイミダゾール環よりなる群から選ばれた環から1つの水素原子を除いた基が挙げられる。
Specific examples of the oxime sulfonate compound represented by the formula (OS-1) include the following compounds described in paragraph numbers 0064 to 0068 of JP2011-209692A, the contents of which are described in the present specification. Incorporated into.
Figure JPOXMLDOC01-appb-C000010
R 11 represents an alkyl group, an aryl group, or a heteroaryl group, and a plurality of R 12 s that may be present each independently represent a hydrogen atom, an alkyl group, an aryl group, or a halogen atom, and a plurality of R 16 s that may be present Each independently represents a halogen atom, an alkyl group, an alkyloxy group, a sulfonic acid group, an aminosulfonyl group or an alkoxysulfonyl group, X represents O or S, ns represents 1 or 2, and ms represents 0 to 6 Represents an integer.
The alkyl group, aryl group or heteroaryl group represented by R 11 may have a substituent. The alkyl group represented by R 11 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent. Examples of the substituent that the alkyl group represented by R 11 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned. Examples of the alkyl group represented by R 11 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, and n-hexyl. Group, n-octyl group, n-decyl group, n-dodecyl group, trifluoromethyl group, perfluoropropyl group, perfluorohexyl group, benzyl group and the like.
In addition, the aryl group represented by R 11 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent. Examples of the substituent that the aryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, Examples thereof include an aminocarbonyl group, a sulfonic acid group, an aminosulfonyl group, and an alkoxysulfonyl group. The aryl group represented by R 11 is preferably a phenyl group, a p-methylphenyl group, a p-chlorophenyl group, a pentachlorophenyl group, a pentafluorophenyl group, an o-methoxyphenyl group, or a p-phenoxyphenyl group. The heteroaryl group represented by R 11 is preferably a heteroaryl group having 4 to 30 carbon atoms which may have a substituent. Examples of the substituent that the heteroaryl group represented by R 11 may have include a halogen atom, an alkyl group, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, and an aryloxycarbonyl group. , An aminocarbonyl group, a sulfonic acid group, an aminosulfonyl group, and an alkoxysulfonyl group. The heteroaryl group represented by R 11 only needs to have at least one heteroaromatic ring. For example, the heteroaromatic ring and the benzene ring may be condensed. Examples of the heteroaryl group represented by R 11 include a thiophene ring, a pyrrole ring, a thiazole ring, an imidazole ring, a furan ring, a benzothiophene ring, a benzothiazole ring, and a benzimidazole ring, which may have a substituent. And a group obtained by removing one hydrogen atom from a ring selected from the group consisting of:
 R12は、水素原子、アルキル基またはアリール基であることが好ましく、水素原子またはアルキル基であることがより好ましい。
 化合物中に2以上存在する場合のあるR12のうち、1つまたは2つがアルキル基、アリール基またはハロゲン原子であることが好ましく、1つがアルキル基、アリール基またはハロゲン原子であることがより好ましく、1つがアルキル基であり、かつ残りが水素原子であることが特に好ましい。
 R12で表されるアルキル基またはアリール基は、置換基を有していてもよい。
 R12で表されるアルキル基またはアリール基が有していてもよい置換基としては、上記Wを例示することができる。
 R12で表されるアルキル基としては、置換基を有してもよい総炭素数1~12のアルキル基であることが好ましく、置換基を有してもよい総炭素数1~6のアルキル基であることがより好ましい。
 R12で表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、n-ヘキシル基、アリル基、クロロメチル基、ブロモメチル基、メトキシメチル基、ベンジル基が好ましく、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、n-ヘキシル基がより好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ヘキシル基がさらに好ましく、メチル基が特に好ましい。
 R12で表されるアリール基としては、置換基を有してもよい総炭素数6~30のアリール基であることが好ましい。
 R12で表されるアリール基としては、フェニル基、p-メチルフェニル基、o-クロロフェニル基、p-クロロフェニル基、o-メトキシフェニル基、p-フェノキシフェニル基が好ましい。
 R12で表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。これらの中でも、塩素原子、臭素原子が好ましい。
 XはOまたはSを表し、Oであることが好ましい。上記式(OS-103)~(OS-105)において、Xを環員として含む環は、5員環または6員環である。
R 12 is preferably a hydrogen atom, an alkyl group or an aryl group, and more preferably a hydrogen atom or an alkyl group.
Of R 12 which may be present in the compound in two or more, one or two are preferably an alkyl group, an aryl group or a halogen atom, more preferably one is an alkyl group, an aryl group or a halogen atom. It is particularly preferred that one is an alkyl group and the rest are hydrogen atoms.
The alkyl group or aryl group represented by R 12 may have a substituent.
Examples of the substituent that the alkyl group or aryl group represented by R 12 may have include the above W.
The alkyl group represented by R 12 is preferably an alkyl group having 1 to 12 carbon atoms which may have a substituent, and an alkyl group having 1 to 6 carbon atoms which may have a substituent. More preferably, it is a group.
Examples of the alkyl group represented by R 12 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, n-hexyl group, allyl group, A chloromethyl group, a bromomethyl group, a methoxymethyl group, and a benzyl group are preferable, and a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an i-butyl group, an s-butyl group, and an n-hexyl group. A group is more preferable, a methyl group, an ethyl group, an n-propyl group, an n-butyl group and an n-hexyl group are more preferable, and a methyl group is particularly preferable.
The aryl group represented by R 12 is preferably an aryl group having 6 to 30 carbon atoms which may have a substituent.
The aryl group represented by R 12 is preferably a phenyl group, a p-methylphenyl group, an o-chlorophenyl group, a p-chlorophenyl group, an o-methoxyphenyl group, or a p-phenoxyphenyl group.
Examples of the halogen atom represented by R 12 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Among these, a chlorine atom and a bromine atom are preferable.
X represents O or S, and is preferably O. In the above formulas (OS-103) to (OS-105), the ring containing X as a ring member is a 5-membered ring or a 6-membered ring.
 nsは1または2を表し、XがOである場合、nsは1であることが好ましく、また、XがSである場合、nsは2であることが好ましい。
 R16で表されるアルキル基およびアルキルオキシ基は、置換基を有していてもよい。
 R16で表されるアルキル基としては、置換基を有していてもよい総炭素数1~30のアルキル基であることが好ましい。
 R16で表されるアルキル基が有していてもよい置換基としては、ハロゲン原子、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基が挙げられる。
 R16で表されるアルキル基としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、トリフルオロメチル基、パーフルオロプロピル基、パーフルオロヘキシル基、ベンジル基が好ましい。
 R16で表されるアルキルオキシ基としては、置換基を有してもよい総炭素数1~30のアルキルオキシ基であることが好ましい。
 R16で表されるアルキルオキシ基が有していてもよい置換基としては、ハロゲン原子、アルキルオキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アミノカルボニル基が挙げられる。
 R16で表されるアルキルオキシ基としては、メチルオキシ基、エチルオキシ基、ブチルオキシ基、ヘキシルオキシ基、フェノキシエチルオキシ基、トリクロロメチルオキシ基、または、エトキシエチルオキシ基が好ましい。
 R16におけるアミノスルホニル基としては、メチルアミノスルホニル基、ジメチルアミノスルホニル基、フェニルアミノスルホニル基、メチルフェニルアミノスルホニル基、アミノスルホニル基が挙げられる。
 R16で表されるアルコキシスルホニル基としては、メトキシスルホニル基、エトキシスルホニル基、プロピルオキシスルホニル基、ブチルオキシスルホニル基が挙げられる。
 msは0~6の整数を表し、0~2の整数であることが好ましく、0または1であることがより好ましく、0であることが特に好ましい。
ns represents 1 or 2, and when X is O, ns is preferably 1, and when X is S, ns is preferably 2.
The alkyl group and alkyloxy group represented by R 16 may have a substituent.
The alkyl group represented by R 16 is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent.
Examples of the substituent that the alkyl group represented by R 16 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl group. Is mentioned.
Examples of the alkyl group represented by R 16 include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, and n-hexyl. Group, n-octyl group, n-decyl group, n-dodecyl group, trifluoromethyl group, perfluoropropyl group, perfluorohexyl group and benzyl group are preferred.
The alkyloxy group represented by R 16 is preferably an alkyloxy group having 1 to 30 carbon atoms which may have a substituent.
Examples of the substituent that the alkyloxy group represented by R 16 may have include a halogen atom, an alkyloxy group, an aryloxy group, an alkylthio group, an arylthio group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and an aminocarbonyl. Groups.
The alkyloxy group represented by R 16 is preferably a methyloxy group, an ethyloxy group, a butyloxy group, a hexyloxy group, a phenoxyethyloxy group, a trichloromethyloxy group, or an ethoxyethyloxy group.
Examples of the aminosulfonyl group for R 16 include a methylaminosulfonyl group, a dimethylaminosulfonyl group, a phenylaminosulfonyl group, a methylphenylaminosulfonyl group, and an aminosulfonyl group.
Examples of the alkoxysulfonyl group represented by R 16 include a methoxysulfonyl group, an ethoxysulfonyl group, a propyloxysulfonyl group, and a butyloxysulfonyl group.
ms represents an integer of 0 to 6, preferably an integer of 0 to 2, more preferably 0 or 1, and particularly preferably 0.
 また、上記式(OS-103)で表される化合物は、下記式(OS-106)、(OS-110)または(OS-111)で表される化合物であることが特に好ましく、上記式(OS-104)で表される化合物は、下記式(OS-107)で表される化合物であることが特に好ましく、上記式(OS-105)で表される化合物は、下記式(OS-108)または(OS-109)で表される化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000011
 R11はアルキル基、アリール基またはヘテロアリール基を表し、R17は、水素原子または臭素原子を表し、R18は水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基またはクロロフェニル基を表し、R19は水素原子、ハロゲン原子、メチル基またはメトキシ基を表し、R20は水素原子またはメチル基を表す。
 R17は、水素原子または臭素原子を表し、水素原子であることが好ましい。
 R18は、水素原子、炭素数1~8のアルキル基、ハロゲン原子、クロロメチル基、ブロモメチル基、ブロモエチル基、メトキシメチル基、フェニル基またはクロロフェニル基を表し、炭素数1~8のアルキル基、ハロゲン原子またはフェニル基であることが好ましく、炭素数1~8のアルキル基であることがより好ましく、炭素数1~6のアルキル基であることがさらに好ましく、メチル基であることが特に好ましい。
 R19は、水素原子、ハロゲン原子、メチル基またはメトキシ基を表し、水素原子であることが好ましい。
 R20は、水素原子またはメチル基を表し、水素原子であることが好ましい。
 また、上記オキシムスルホネート化合物において、オキシムの立体構造(E,Z)については、どちらか一方であっても、混合物であってもよい。
 上記式(OS-103)~(OS-105)で表されるオキシムスルホネート化合物の具体例としては、特開2011-209692号公報の段落番号0088~0095に記載の化合物が例示され、これらの内容は本明細書に組み込まれる。
The compound represented by the above formula (OS-103) is particularly preferably a compound represented by the following formula (OS-106), (OS-110) or (OS-111). The compound represented by OS-104) is particularly preferably a compound represented by the following formula (OS-107), and the compound represented by the above formula (OS-105) is represented by the following formula (OS-108). ) Or (OS-109) is particularly preferable.
Figure JPOXMLDOC01-appb-C000011
R 11 represents an alkyl group, an aryl group or a heteroaryl group, R 17 represents a hydrogen atom or a bromine atom, R 18 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl Group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group, R 19 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and R 20 represents a hydrogen atom or a methyl group.
R 17 represents a hydrogen atom or a bromine atom, and is preferably a hydrogen atom.
R 18 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a halogen atom, a chloromethyl group, a bromomethyl group, a bromoethyl group, a methoxymethyl group, a phenyl group or a chlorophenyl group, and an alkyl group having 1 to 8 carbon atoms, A halogen atom or a phenyl group is preferable, an alkyl group having 1 to 8 carbon atoms is more preferable, an alkyl group having 1 to 6 carbon atoms is further preferable, and a methyl group is particularly preferable.
R 19 represents a hydrogen atom, a halogen atom, a methyl group or a methoxy group, and is preferably a hydrogen atom.
R 20 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
In the oxime sulfonate compound, the oxime steric structure (E, Z) may be either one or a mixture.
Specific examples of the oxime sulfonate compounds represented by the above formulas (OS-103) to (OS-105) include the compounds described in paragraph numbers 0088 to 0095 of JP 2011-209692 A, and their contents Are incorporated herein.
 オキシムスルホネート基を少なくとも1つを有するオキシムスルホネート化合物の好適な他の態様としては、下記式(OS-101)、(OS-102)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 R11は、水素原子、アルキル基、アルケニル基、アルコキシル基、アルコキシカルボニル基、アシル基、カルバモイル基、スルファモイル基、スルホ基、シアノ基、アリール基またはヘテロアリール基を表す。R11がシアノ基またはアリール基である態様がより好ましく、R11がシアノ基、フェニル基またはナフチル基である態様がさらに好ましい。
 R12aは、アルキル基またはアリール基を表す。
 Xは、-O-、-S-、-NH-、-NR15-、-CH-、-CR16H-または-CR1617-を表し、R15~R17はそれぞれ独立に、アルキル基またはアリール基を表す。
 R21~R24はそれぞれ独立に、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルコキシル基、アミノ基、アルコキシカルボニル基、アルキルカルボニル基、アリールカルボニル基、アミド基、スルホ基、シアノ基またはアリール基を表す。R21~R24のうちの2つがそれぞれ互いに結合して環を形成してもよい。このとき、環が縮環してベンゼン環ともに縮合環を形成していてもよい。
 R21~R24としては、水素原子、ハロゲン原子またはアルキル基が好ましく、また、R21~R24のうちの少なくとも2つが互いに結合してアリール基を形成する態様も好ましい。中でも、R21~R24がいずれも水素原子である態様が好ましい。
 上記した置換基は、いずれも、さらに置換基を有していてもよい。
 上記式(OS-101)で表される化合物は、式(OS-102)で表される化合物であることがより好ましい。
 また、上記オキシムスルホネート化合物において、オキシムやベンゾチアゾール環の立体構造(E,Z等)についてはそれぞれ、どちらか一方であっても、混合物であってもよい。
 式(OS-101)で表される化合物の具体例としては、特開2011-209692号公報の段落番号0102~0106に記載の化合物が例示され、これらの内容は本明細書に組み込まれる。
 上記化合物の中でも、b-9、b-16、b-31、b-33が好ましい。
 市販品としては、WPAG-336(和光純薬工業(株)製)、WPAG-443(和光純薬工業(株)製)、MBZ-101(みどり化学(株)製)等を挙げることができる。
Other preferred embodiments of the oxime sulfonate compound having at least one oxime sulfonate group include compounds represented by the following formulas (OS-101) and (OS-102).
Figure JPOXMLDOC01-appb-C000012
R 11 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkoxyl group, an alkoxycarbonyl group, an acyl group, a carbamoyl group, a sulfamoyl group, a sulfo group, a cyano group, an aryl group or a heteroaryl group. An embodiment in which R 11 is a cyano group or an aryl group is more preferable, and an embodiment in which R 11 is a cyano group, a phenyl group, or a naphthyl group is more preferable.
R 12a represents an alkyl group or an aryl group.
X is, -O -, - S -, - NH -, - NR 15 -, - CH 2 -, - CR 16 H- or -CR 16 R 17 - represents, in each of R 15 ~ R 17 independently, Represents an alkyl group or an aryl group.
R 21 to R 24 are each independently a hydrogen atom, halogen atom, alkyl group, alkenyl group, alkoxyl group, amino group, alkoxycarbonyl group, alkylcarbonyl group, arylcarbonyl group, amide group, sulfo group, cyano group or aryl. Represents a group. Two of R 21 to R 24 may be bonded to each other to form a ring. At this time, the ring may be condensed to form a condensed ring together with the benzene ring.
R 21 to R 24 are preferably a hydrogen atom, a halogen atom or an alkyl group, and an embodiment in which at least two of R 21 to R 24 are bonded to each other to form an aryl group is also preferred. Of these, an embodiment in which R 21 to R 24 are all hydrogen atoms is preferred.
Any of the above-described substituents may further have a substituent.
The compound represented by the formula (OS-101) is more preferably a compound represented by the formula (OS-102).
In the oxime sulfonate compound, the steric structure (E, Z, etc.) of the oxime or benzothiazole ring may be either one or a mixture.
Specific examples of the compound represented by the formula (OS-101) include compounds described in paragraph numbers 0102 to 0106 of JP2011-209692A, the contents of which are incorporated herein.
Among the above compounds, b-9, b-16, b-31 and b-33 are preferable.
Examples of commercially available products include WPAG-336 (manufactured by Wako Pure Chemical Industries, Ltd.), WPAG-443 (manufactured by Wako Pure Chemical Industries, Ltd.), MBZ-101 (manufactured by Midori Chemical Co., Ltd.), and the like. .
 活性光線に感応する光酸発生剤として1,2-キノンジアジド化合物を含まないものが好ましい。その理由は、1,2-キノンジアジド化合物は、逐次型光化学反応によりカルボキシル基を生成するが、その量子収率は1以下であり、オキシムスルホネート化合物に比べて感度が低いためである。
 これに対して、オキシムスルホネート化合物は、活性光線に感応して生成する酸が保護された酸基の脱保護に対して触媒として作用するので、1個の光量子の作用で生成した酸が、多数の脱保護反応に寄与し、量子収率は1を超え、例えば、10の数乗のような大きい値となり、いわゆる化学増幅の結果として、高感度が得られると推測される。
 また、オキシムスルホネート化合物は、広がりのあるπ共役系を有しているため、長波長側にまで吸収を有しており、遠紫外線(DUV)、ArF線、KrF線、i線のみならず、g線においても非常に高い感度を示す。
 上記酸反応性樹脂における酸分解性基としてテトラヒドロフラニル基を用いることにより、アセタールまたはケタールに比べ同等またはそれ以上の酸分解性を得ることができる。これにより、より短時間のポストベークで確実に酸分解性基を消費することができる。さらに、光酸発生剤であるオキシムスルホネート化合物を組み合わせて用いることで、スルホン酸発生速度が上がるため、酸の生成が促進され、樹脂の酸分解性基の分解が促進される。また、オキシムスルホネート化合物が分解することで得られる酸は、分子の小さいスルホン酸であることから、硬化膜中での拡散性も高く、より高感度化することができる。
 光酸発生剤は、感光性樹脂組成物の全固形分に対して、0.1~20質量%使用することが好ましく、0.5~18質量%使用することがより好ましく、0.5~10質量%使用することがさらに好ましく、0.5~3質量%使用することが一層好ましく、0.5~1.2質量%使用することがより一層好ましい。
 光酸発生剤は、1種を単独で使用しても、2種以上を併用してもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
As the photoacid generator sensitive to actinic rays, those which do not contain a 1,2-quinonediazide compound are preferred. The reason is that the 1,2-quinonediazide compound generates a carboxyl group by a sequential photochemical reaction, but its quantum yield is 1 or less and is less sensitive than the oxime sulfonate compound.
In contrast, the oxime sulfonate compound acts as a catalyst for the deprotection of an acid group protected in response to an actinic ray, so that a large number of acids generated by the action of one photon are present. It contributes to the deprotection reaction, and the quantum yield exceeds 1, for example, a large value such as a power of 10, and it is estimated that high sensitivity is obtained as a result of so-called chemical amplification.
In addition, since the oxime sulfonate compound has a broad π-conjugated system, it has absorption up to the long wavelength side, and not only deep ultraviolet rays (DUV), ArF rays, KrF rays, i rays, It shows very high sensitivity even in the g-line.
By using a tetrahydrofuranyl group as an acid-decomposable group in the acid-reactive resin, an acid-decomposability equivalent to or higher than that of an acetal or ketal can be obtained. Thereby, an acid-decomposable group can be consumed reliably in a shorter post-bake. Furthermore, by using the oxime sulfonate compound that is a photoacid generator in combination, the sulfonic acid generation rate is increased, so that the generation of acid is accelerated and the decomposition of the acid-decomposable group of the resin is accelerated. Moreover, since the acid obtained by decomposing | disassembling an oxime sulfonate compound is a sulfonic acid with a small molecule | numerator, the diffusibility in a cured film is also high, and it can make more highly sensitive.
The photoacid generator is preferably used in an amount of 0.1 to 20% by mass, more preferably 0.5 to 18% by mass, based on the total solid content of the photosensitive resin composition. It is further preferable to use 10% by mass, more preferably 0.5 to 3% by mass, and still more preferably 0.5 to 1.2% by mass.
A photo-acid generator may be used individually by 1 type, or may use 2 or more types together. When using 2 or more types, it is preferable that a total amount becomes the said range.
<<その他の成分>>
 感光性樹脂組成物には、その他の成分を含有することができる。
 その他の成分としては、塗布性の観点から有機溶剤を含有することが好ましい。
<<有機溶剤>>
 感光性樹脂組成物は、有機溶剤を含有することが好ましく、反応性樹脂の他、光酸発生剤、および、各種添加剤の任意成分を、有機溶剤に溶解した溶液として調製されることが好ましい。
 感光性樹脂組成物に使用される有機溶剤としては、公知の有機溶剤を用いることができ、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテルアセテート類、ジプロピレングリコールモノアルキルエーテル類、ジプロピレングリコールジアルキルエーテル類、ジプロピレングリコールモノアルキルエーテルアセテート類、エステル類、ケトン類、アミド類、ラクトン類等が例示できる。
 有機溶剤としては、例えば、(1)エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;(2)エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル等のエチレングリコールジアルキルエーテル類;(3)エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;(4)プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;(5)プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル等のプロピレングリコールジアルキルエーテル類;(6)プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;(7)ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等のジエチレングリコールジアルキルエーテル類;(8)ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート等のジエチレングリコールモノアルキルエーテルアセテート類;(9)ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル等のジプロピレングリコールモノアルキルエーテル類;(10)ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールエチルメチルエーテル等のジプロピレングリコールジアルキルエーテル類;(11)ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノプロピルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート等のジプロピレングリコールモノアルキルエーテルアセテート類;(12)乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸イソプロピル、乳酸n-ブチル、乳酸イソブチル、乳酸n-アミル、乳酸イソアミル等の乳酸エステル類;(13)酢酸n-ブチル、酢酸イソブチル、酢酸n-アミル、酢酸イソアミル、酢酸n-ヘキシル、酢酸2-エチルヘキシル、プロピオン酸エチル、プロピオン酸n-プロピル、プロピオン酸イソプロピル、プロピオン酸n-ブチル、プロピオン酸イソブチル、酪酸メチル、酪酸エチル、酪酸n-プロピル、酪酸イソプロピル、酪酸n-ブチル、酪酸イソブチル等の脂肪族カルボン酸エステル類;(14)ヒドロキシ酢酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、2-ヒドロキシ-3-メチル酪酸エチル、メトキシ酢酸エチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;(15)メチルエチルケトン、メチルプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロヘキサノン等のケトン類;(16)N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;(17)γ-ブチロラクトン等のラクトン類等を挙げることができる。
 また、これらの有機溶剤にさらに必要に応じて、ベンジルエチルエーテル、ジヘキシルエーテル、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、イソホロン、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、アニソール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、炭酸エチレン、炭酸プロピレン等の有機溶剤を添加することもできる。
 上記した有機溶剤のうち、プロピレングリコールモノアルキルエーテルアセテート類、および/または、ジエチレングリコールジアルキルエーテル類が好ましく、ジエチレングリコールエチルメチルエーテル、および/または、プロピレングリコールモノメチルエーテルアセテートが特に好ましい。
 これら有機溶剤は、1種を単独で、または2種以上を混合して使用することができる。
 2種以上用いる場合、合計量が上記範囲となることが好ましい。
 さらに、液保存安定性の観点から、感光性樹脂組成物は、塩基性化合物を含有することが好ましく、塗布性の観点から界面活性剤を含有することが好ましい。
<< Other ingredients >>
The photosensitive resin composition can contain other components.
As other components, an organic solvent is preferably contained from the viewpoint of coatability.
<< Organic solvent >>
The photosensitive resin composition preferably contains an organic solvent, and is preferably prepared as a solution in which an optional component of a photoacid generator and various additives in addition to a reactive resin is dissolved in an organic solvent. .
As the organic solvent used in the photosensitive resin composition, known organic solvents can be used, such as ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, ethylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether. , Propylene glycol dialkyl ethers, propylene glycol monoalkyl ether acetates, diethylene glycol dialkyl ethers, diethylene glycol monoalkyl ether acetates, dipropylene glycol monoalkyl ethers, dipropylene glycol dialkyl ethers, dipropylene glycol monoalkyl ether acetate , Esters, ketones, amides, lactones and the like.
Examples of the organic solvent include (1) ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether; (2) ethylene glycol dimethyl ether, ethylene glycol diethyl Ethylene glycol dialkyl ethers such as ether and ethylene glycol dipropyl ether; (3) ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monopropyl ether acetate, and ethylene glycol monobutyl ether acetate Acetates; (4) propylene glycol Propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; (5) Propylene glycol dialkyl ethers such as propylene glycol dimethyl ether and propylene glycol diethyl ether; (6) Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate; (7) diethylene glycol dimethyl ether, diethylene glycol diethyl ether, die Diethylene glycol dialkyl ethers such as lenglycol ethyl methyl ether; (8) diethylene glycol monoalkyl ether acetates such as diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monobutyl ether acetate; (9) dipropylene Dipropylene glycol monoalkyl ethers such as glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monobutyl ether; (10) dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene (11) Dipropylene such as dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, dipropylene glycol monopropyl ether acetate, dipropylene glycol monobutyl ether acetate (12) Lactic acid esters such as methyl lactate, ethyl lactate, n-propyl lactate, isopropyl lactate, n-butyl lactate, isobutyl lactate, n-amyl lactate, isoamyl lactate; (13) n acetate -Butyl, isobutyl acetate, n-amyl acetate, isoamyl acetate, n-hexyl acetate, 2-ethylhexyl acetate, ethyl propionate, n-propyl propionate, Aliphatic carboxylic acid esters such as isopropyl lopionate, n-butyl propionate, isobutyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, n-butyl butyrate, isobutyl butyrate; (14) ethyl hydroxyacetate , Ethyl 2-hydroxy-2-methylpropionate, ethyl 2-hydroxy-3-methylbutyrate, ethyl methoxyacetate, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate , Ethyl 3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutylpropionate, 3-methyl-3-methoxybutyl butyrate, methyl acetoacetate Acetoacetic acid Other esters such as chill, methyl pyruvate, ethyl pyruvate; (15) such as methyl ethyl ketone, methyl propyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, 2-heptanone, 3-heptanone, 4-heptanone, cyclohexanone Ketones; (16) amides such as N-methylformamide, N, N-dimethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-methylpyrrolidone; (17) lactones such as γ-butyrolactone, etc. Can be mentioned.
In addition, these organic solvents may further contain benzyl ethyl ether, dihexyl ether, ethylene glycol monophenyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, isophorone, caproic acid, caprylic acid, 1-octanol, 1-octanol, if necessary. Organic solvents such as nonanol, benzyl alcohol, anisole, benzyl acetate, ethyl benzoate, diethyl oxalate, diethyl maleate, ethylene carbonate, and propylene carbonate can also be added.
Of the organic solvents described above, propylene glycol monoalkyl ether acetates and / or diethylene glycol dialkyl ethers are preferred, and diethylene glycol ethyl methyl ether and / or propylene glycol monomethyl ether acetate are particularly preferred.
These organic solvents can be used individually by 1 type or in mixture of 2 or more types.
When using 2 or more types, it is preferable that a total amount becomes the said range.
Furthermore, from the viewpoint of liquid storage stability, the photosensitive resin composition preferably contains a basic compound, and preferably contains a surfactant from the viewpoint of coatability.
<<塩基性化合物>>
 感光性樹脂組成物は塩基性化合物を含有することが好ましい。
 塩基性化合物としては、化学増幅レジストで用いられるものの中から任意に選択して使用することができる。例えば、脂肪族アミン、芳香族アミン、複素環式アミン、第四級アンモニウムヒドロキシド、および、カルボン酸の第四級アンモニウム塩等が挙げられる。
 脂肪族アミンとしては、例えば、トリメチルアミン、ジエチルアミン、トリエチルアミン、ジ-n-プロピルアミン、トリ-n-プロピルアミン、ジ-n-ペンチルアミン、トリ-n-ペンチルアミン、ジエタノールアミン、トリエタノールアミン、ジシクロヘキシルアミン、ジシクロヘキシルメチルアミンなどが挙げられる。
 芳香族アミンとしては、例えば、アニリン、ベンジルアミン、N,N-ジメチルアニリン、ジフェニルアミンなどが挙げられる。
 複素環式アミンとしては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、4-ジメチルアミノピリジン、イミダゾール、ベンズイミダゾール、4-メチルイミダゾール、2-フェニルベンズイミダゾール、2,4,5-トリフェニルイミダゾール、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、ピラジン、ピラゾール、ピリダジン、プリン、ピロリジン、ピペリジン、シクロヘキシルモルホリノエチルチオウレア、ピペラジン、モルホリン、4-メチルモルホリン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.3.0]-7-ウンデセンなどが挙げられる。
 第四級アンモニウムヒドロキシドとしては、例えば、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラ-n-ブチルアンモニウムヒドロキシド、テトラ-n-ヘキシルアンモニウムヒドロキシドなどが挙げられる。
 カルボン酸の第四級アンモニウム塩としては、例えば、テトラメチルアンモニウムアセテート、テトラメチルアンモニウムベンゾエート、テトラ-n-ブチルアンモニウムアセテート、テトラ-n-ブチルアンモニウムベンゾエートなどが挙げられる。
 感光性樹脂組成物が塩基性化合物を含む場合、塩基性化合物の含有量は、酸反応性樹脂100質量部に対して、0.001~1質量部であることが好ましく、0.002~0.5質量部であることがより好ましい。
 塩基性化合物は、1種を単独で使用しても、2種以上を併用してもよいが、2種以上を併用することが好ましく、2種を併用することがより好ましく、複素環式アミンを2種併用することがさらに好ましい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
<< basic compound >>
It is preferable that the photosensitive resin composition contains a basic compound.
The basic compound can be arbitrarily selected from those used in chemically amplified resists. Examples thereof include aliphatic amines, aromatic amines, heterocyclic amines, quaternary ammonium hydroxides, and quaternary ammonium salts of carboxylic acids.
Examples of aliphatic amines include trimethylamine, diethylamine, triethylamine, di-n-propylamine, tri-n-propylamine, di-n-pentylamine, tri-n-pentylamine, diethanolamine, triethanolamine, and dicyclohexylamine. , Dicyclohexylmethylamine and the like.
Examples of the aromatic amine include aniline, benzylamine, N, N-dimethylaniline, diphenylamine and the like.
Examples of the heterocyclic amine include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, N-methyl-4-phenylpyridine, 4-dimethylaminopyridine, imidazole, benzimidazole, 4-methylimidazole, 2-phenylbenzimidazole, 2,4,5-triphenylimidazole, nicotine, nicotinic acid, nicotinamide, quinoline, 8-oxyquinoline, pyrazine, Pyrazole, pyridazine, purine, pyrrolidine, piperidine, cyclohexylmorpholinoethylthiourea, piperazine, morpholine, 4-methylmorpholine, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5.3 .0] Such as 7-undecene and the like.
Examples of the quaternary ammonium hydroxide include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-butylammonium hydroxide, tetra-n-hexylammonium hydroxide, and the like.
Examples of the quaternary ammonium salt of carboxylic acid include tetramethylammonium acetate, tetramethylammonium benzoate, tetra-n-butylammonium acetate, tetra-n-butylammonium benzoate and the like.
When the photosensitive resin composition includes a basic compound, the content of the basic compound is preferably 0.001 to 1 part by mass, and 0.002 to 0 parts per 100 parts by mass of the acid-reactive resin. More preferably, it is 5 parts by mass.
The basic compound may be used singly or in combination of two or more, preferably in combination of two or more, more preferably in combination of two, heterocyclic amine More preferably, two of these are used in combination. When using 2 or more types, it is preferable that a total amount becomes the said range.
<<界面活性剤>>
 感光性樹脂組成物は、界面活性剤を含有することが好ましい。
 界面活性剤としては、アニオン系、カチオン系、ノニオン系、または、両性のいずれでも使用することができるが、好ましい界面活性剤はノニオン系界面活性剤である。
 ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリオキシエチレングリコールの高級脂肪酸ジエステル類、フッ素系、シリコーン系界面活性剤を挙げることができる。
 界面活性剤として、フッ素系界面活性剤、シリコーン系界面活性剤、および両者の組合せを含有することがより好ましい。
 これらのフッ素系界面活性剤、シリコーン系界面活性剤として、例えば、特開昭62-36663号、特開昭61-226746号、特開昭61-226745号、特開昭62-170950号、特開昭63-34540号、特開平7-230165号、特開平8-62834号、特開平9-54432号、特開平9-5988号、特開2001-330953号の各公報に記載の界面活性剤を挙げることができ、市販の界面活性剤を用いることもできる。
 使用できる市販の界面活性剤として、例えば、エフトップEF301、EF303(以上、新秋田化成(株)製)、フロラードFC430、431(以上、住友スリーエム(株)製)、メガファックF171、F173、F176、F189、R08(以上、DIC(株)製)、サーフロンS-382、SC101、102、103、104、105、106(以上、旭硝子(株)製)、PF-6320等のPolyFoxシリーズ(OMNOVA社製)などのフッ素系界面活性剤またはシリコーン系界面活性剤を挙げることができる。また、ポリシロキサンポリマーKP-341(信越化学工業(株)製)も、シリコーン系界面活性剤として用いることができる。
<< Surfactant >>
It is preferable that the photosensitive resin composition contains a surfactant.
As the surfactant, any of anionic, cationic, nonionic, or amphoteric surfactants can be used, but a preferred surfactant is a nonionic surfactant.
Examples of nonionic surfactants include polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, higher fatty acid diesters of polyoxyethylene glycol, fluorine-based and silicone surfactants. .
More preferably, the surfactant contains a fluorine-based surfactant, a silicone-based surfactant, and a combination of both.
Examples of these fluorosurfactants and silicone surfactants include, for example, JP-A-62-36663, JP-A-61-226746, JP-A-61-226745, JP-A-62-170950, Surfactants described in JP-A-63-34540, JP-A-7-230165, JP-A-8-62834, JP-A-9-54432, JP-A-9-5988, and JP-A-2001-330953 Commercially available surfactants can also be used.
Examples of commercially available surfactants that can be used include EFTOP EF301, EF303 (above, Shin-Akita Kasei Co., Ltd.), Florard FC430, 431 (above, made by Sumitomo 3M Ltd.), MegaFuck F171, F173, F176. , F189, R08 (above, manufactured by DIC Corporation), Surflon S-382, SC101, 102, 103, 104, 105, 106 (above, manufactured by Asahi Glass Co., Ltd.), PF-6320, etc. PolyFox series (OMNOVA) Fluorine-based surfactant or silicone-based surfactant. Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.) can also be used as a silicone surfactant.
 また、界面活性剤として、下記式(41)で表される構成単位Aおよび構成単位Bを含み、テトラヒドロフラン(THF)を溶剤とした場合のゲルパーミエーションクロマトグラフィで測定されるポリスチレン換算の重量平均分子量(Mw)が1,000以上10,000以下である共重合体を好ましい例として挙げることができる。
Figure JPOXMLDOC01-appb-C000013
(式中、R41およびR43はそれぞれ独立に、水素原子またはメチル基を表し、R42は炭素数1以上4以下の直鎖アルキレン基を表し、R44は水素原子または炭素数1以上4以下のアルキル基を表し、Lは炭素数3以上6以下のアルキレン基を表し、p4およびq4は重合比を表す質量百分率であり、p4は10質量%以上80質量%以下の数値を表し、q4は20質量%以上90質量%以下の数値を表し、r4は1以上18以下の整数を表し、n4は1以上10以下の整数を表す。)
 上記Lは、下記式(42)で表される分岐アルキレン基であることが好ましい。式(42)におけるR45は、炭素数1以上4以下のアルキル基を表し、被塗布面に対する濡れ性の点で、炭素数1以上3以下のアルキル基が好ましく、炭素数2または3のアルキル基がより好ましい。
 -CH-CH(R45)-   (42)
 上記共重合体の重量平均分子量は、1,500以上5,000以下であることがより好ましい。
 界面活性剤を含む場合、界面活性剤の添加量は、酸反応性樹脂100質量部に対して、10質量部以下であることが好ましく、0.01~10質量部であることがより好ましく、0.01~1質量部であることがさらに好ましい。
 界面活性剤は、1種を単独で、または2種以上を混合して使用することができる。2種以上用いる場合、合計量が上記範囲となることが好ましい。
In addition, as a surfactant, it contains a structural unit A and a structural unit B represented by the following formula (41), and is a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography using tetrahydrofuran (THF) as a solvent. A preferred example is a copolymer having (Mw) of 1,000 or more and 10,000 or less.
Figure JPOXMLDOC01-appb-C000013
(In the formula, R 41 and R 43 each independently represent a hydrogen atom or a methyl group, R 42 represents a linear alkylene group having 1 to 4 carbon atoms, and R 44 represents a hydrogen atom or 1 to 4 carbon atoms. represents an alkyl group, L 4 represents an alkylene group having 3 to 6 carbon atoms, p4 and q4 is the mass percentage representing the polymerization ratio, p4 represents the following numbers 80 wt% to 10 wt%, q4 represents a numerical value of 20% by mass to 90% by mass, r4 represents an integer of 1 to 18 and n4 represents an integer of 1 to 10.
L 4 is preferably a branched alkylene group represented by the following formula (42). R 45 in the formula (42) represents an alkyl group having 1 to 4 carbon atoms, and is preferably an alkyl group having 1 to 3 carbon atoms in terms of wettability with respect to the coated surface, and an alkyl group having 2 or 3 carbon atoms. Groups are more preferred.
—CH 2 —CH (R 45 ) — (42)
The weight average molecular weight of the copolymer is more preferably 1,500 or more and 5,000 or less.
When the surfactant is included, the addition amount of the surfactant is preferably 10 parts by mass or less, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the acid-reactive resin. More preferably, the content is 0.01 to 1 part by mass.
Surfactant can be used individually by 1 type or in mixture of 2 or more types. When using 2 or more types, it is preferable that a total amount becomes the said range.
<<水分量>>
 感光性樹脂組成物は水分を含んでいてもよい。水分は少ないかまたは含まれていないことが好ましいが、不可避的な水分が含まれうる。感光性樹脂組成物の水分は1質量%以下であることが好ましく、0.7質量%以下であることがより好ましく、0.4質量%以下であることがさらに好ましい。下限値としては、0.01質量%以上であることが好ましく、0.03質量%以上であることがより好ましく、0.05質量%以上であることがさらに好ましい。
<< Moisture content >>
The photosensitive resin composition may contain moisture. It is preferred that the moisture is low or not included, but unavoidable moisture may be included. The moisture content of the photosensitive resin composition is preferably 1% by mass or less, more preferably 0.7% by mass or less, and further preferably 0.4% by mass or less. As a lower limit, it is preferable that it is 0.01 mass% or more, it is more preferable that it is 0.03 mass% or more, and it is more preferable that it is 0.05 mass% or more.
<<金属不純物>>
感光性樹脂組成物には、通常、不可避的に微量の金属不純物が含まれている。たとえば、ナトリウム、カリウム、カルシウム等のアルカリ金属またはアルカリ土類金属の塩が挙げられる。本発明では、感光性樹脂組成物中のナトリウムイオン、カリウムイオンおよびカルシウムイオンの合計含有量が、例えば、1質量ppt~1000質量ppbの範囲で、さらには50質量ppt~900質量ppbの範囲で存在するものと解される。
 金属イオン量は、後述する実施例に記載の方法で測定される。
<< metal impurities >>
The photosensitive resin composition usually inevitably contains a trace amount of metal impurities. For example, salts of alkali metals or alkaline earth metals such as sodium, potassium, calcium and the like can be mentioned. In the present invention, the total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is, for example, in the range of 1 mass ppt to 1000 mass ppb, and further in the range of 50 mass ppt to 900 mass ppb. It is understood that it exists.
The amount of metal ions is measured by the method described in Examples described later.
<<その他>>
 さらに、必要に応じて、酸化防止剤、可塑剤、熱ラジカル発生剤、熱酸発生剤、酸増殖剤、紫外線吸収剤、増粘剤、および、有機または無機の沈殿防止剤などの公知の添加剤を、それぞれ、1種または2種以上加えることができる。これらの詳細は、特開2011-209692号公報の段落番号0143~0148の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<< Other >>
Furthermore, known additions such as antioxidants, plasticizers, thermal radical generators, thermal acid generators, acid multipliers, UV absorbers, thickeners, and organic or inorganic suspending agents are added as necessary. One or more agents can be added, respectively. Details of these can be referred to the description of paragraph numbers 0143 to 0148 of JP2011-209692A, the contents of which are incorporated herein.
<<静止接触角>>
 本発明においては、水溶性樹脂層上における感光性樹脂組成物の静止接触角が60°以下であると規定する。この静止接触角は50°以下であることが好ましく、40°以下であることがより好ましく、30°以下であることがさらに好ましい。下限としては、0°であってもよいが、2°以上であることが好ましく、5°以上であることがより好ましく、10°以上であることがさらに好ましい。下限値以上とすることにより、スピンコート時の膜厚面内均一性がより効果的に達成され、上限値以下とすることにより、塗布時の泡がみ抑止される。
 なお、本明細書において感光性樹脂組成物の静止接触角の測定方法は、後記実施例で採用した方法によるものとする。
<< Static contact angle >>
In this invention, it defines that the static contact angle of the photosensitive resin composition on a water-soluble resin layer is 60 degrees or less. The static contact angle is preferably 50 ° or less, more preferably 40 ° or less, and further preferably 30 ° or less. The lower limit may be 0 °, but is preferably 2 ° or more, more preferably 5 ° or more, and even more preferably 10 ° or more. By setting it to the lower limit value or more, the in-plane film thickness uniformity at the time of spin coating is more effectively achieved, and by setting it to the upper limit value or less, foaming at the time of coating is suppressed.
In addition, in this specification, the measuring method of the static contact angle of the photosensitive resin composition shall be based on the method employ | adopted in the postscript Example.
 感光性樹脂組成物の静止接触角を変化させるのは常法によればよいが、例えば、酸反応性樹脂を構成するポリマーの分子量、分子構造、極性基の種類や量の調節、配合する界面活性剤の種類や量の調節などにより上記静止接触角を調節することができる。 The static contact angle of the photosensitive resin composition may be changed by a conventional method. For example, the molecular weight of the polymer constituting the acid-reactive resin, the molecular structure, the type and amount of polar groups, and the interface for blending The static contact angle can be adjusted by adjusting the type and amount of the active agent.
<キット>
 感光性樹脂組成物は、水溶性樹脂を含む水溶性樹脂組成物と組み合わせて、それぞれ感光層および水溶性樹脂層をこの順に形成するためのキットにしてもよい。さらには、有機半導体層加工用のキットとして用いることが好ましい。このとき、具体的態様として上述した感光性樹脂組成物の各成分および水溶性樹脂組成物の各成分を適用することが好ましい。本発明においては、さらに有機半導体形成用組成物を組み合わせたキットとしてもよい。組成物の具体的態様としては、上述した有機半導体およびその組成物の各成分を適用することが好ましい。
<Kit>
The photosensitive resin composition may be combined with a water-soluble resin composition containing a water-soluble resin to form a kit for forming a photosensitive layer and a water-soluble resin layer in this order. Furthermore, it is preferably used as a kit for processing an organic semiconductor layer. At this time, it is preferable to apply each component of the photosensitive resin composition and each component of the water-soluble resin composition described above as specific embodiments. In this invention, it is good also as a kit which combined the composition for organic-semiconductor formation further. As a specific aspect of the composition, it is preferable to apply the above-described organic semiconductor and each component of the composition.
<有機半導体層のパターニング方法>
 本発明において好適に採用できるパターニング方法として下記の形態を挙げることができる。以下有機半導体層の加工(パターニング)を例にとって示すが、有機半導体層以外の層のパターニングにも利用できる。
 本実施形態の有機半導体層のパターニング方法は、
(1)有機半導体層の上に、水溶性樹脂層を製膜する工程、
(2)水溶性樹脂層の有機半導体層と反対側の上に、感光層を製膜する工程、
(3)感光層を露光する工程、
(4)有機溶剤を含む現像液を用いて現像しマスクパターンを作製する工程、
(5)ドライエッチング処理にて少なくとも非マスク部の水溶性樹脂層および有機半導体層を除去する工程、
(6)水溶性樹脂層を除去する工程、
を含む。
<Organic semiconductor layer patterning method>
Examples of patterning methods that can be suitably employed in the present invention include the following forms. Hereinafter, processing (patterning) of the organic semiconductor layer will be described as an example, but it can also be used for patterning of layers other than the organic semiconductor layer.
The patterning method of the organic semiconductor layer of this embodiment is
(1) forming a water-soluble resin layer on the organic semiconductor layer;
(2) forming a photosensitive layer on the side of the water-soluble resin layer opposite to the organic semiconductor layer;
(3) a step of exposing the photosensitive layer;
(4) a step of developing using a developer containing an organic solvent to produce a mask pattern;
(5) a step of removing at least the non-masked water-soluble resin layer and the organic semiconductor layer by dry etching treatment;
(6) a step of removing the water-soluble resin layer;
including.
<<(1)有機半導体層の上に、水溶性樹脂層を製膜する工程>>
 本実施形態の有機半導体層のパターニング方法は、有機半導体層の上に水溶性樹脂層を製膜する工程を含む。通常は、基板の上に有機半導体層を製膜した後に、本工程を行う。この場合、水溶性樹脂層は、有機半導体の基板側の面と反対側の面に製膜する。水溶性樹脂層は、通常、有機半導体層の表面に設けられるが、本発明の趣旨を逸脱しない範囲で他の層を設けてもよい。具体的には、水溶性の下塗り層等が挙げられる。また、水溶性樹脂層は1層のみ設けられていてもよいし、2層以上設けられていてもよい。水溶性樹脂層は、上述のとおり、好ましくは、水溶性樹脂組成物を用いて形成される。
<< (1) Step of forming a water-soluble resin layer on the organic semiconductor layer >>
The patterning method of the organic semiconductor layer of this embodiment includes a step of forming a water-soluble resin layer on the organic semiconductor layer. Usually, this process is performed after forming an organic semiconductor layer on a substrate. In this case, the water-soluble resin layer is formed on the surface opposite to the surface of the organic semiconductor on the substrate side. The water-soluble resin layer is usually provided on the surface of the organic semiconductor layer, but other layers may be provided without departing from the spirit of the present invention. Specific examples include a water-soluble undercoat layer. Further, only one water-soluble resin layer may be provided, or two or more layers may be provided. As described above, the water-soluble resin layer is preferably formed using a water-soluble resin composition.
<<(2)水溶性樹脂層の有機半導体層と反対側の上に、感光層を製膜する工程>>
 上記(1)の工程後、(2)水溶性樹脂層の有機半導体層側の面と反対側の上に、感光性樹脂組成物を用いて感光層を形成する。感光層は、上述のとおり、好ましくは、感光性樹脂組成物を用いて形成され、より好ましくは、酸反応性樹脂と光酸発生剤を含む、化学増幅型感光性樹脂組成物を用いて形成される。
 化学増幅型感光性樹脂組成物は、光酸発生剤を含み、露光すると酸が発生し、レジストに含まれる酸反応性樹脂が反応し、パターニングが可能となり感光層として機能する。
 感光性樹脂組成物の固形分濃度は、通常1.0~40質量%であり、好ましくは、10~35質量%であり、より好ましくは16~28質量%である。固形分濃度を上記範囲とすることで、感光性樹脂組成物を水溶性樹脂層上に均一に塗布することができ、さらには高解像性および矩形なプロファイルを有するレジストパターンを形成することが可能になる。固形分濃度とは、感光性樹脂組成物の総質量に対する、有機溶剤を除く他のレジスト成分の質量の百分率である。
<< (2) Step of forming a photosensitive layer on the side opposite to the organic semiconductor layer of the water-soluble resin layer >>
After the step (1), a photosensitive layer is formed using a photosensitive resin composition on the side opposite to the surface of the water-soluble resin layer on the organic semiconductor layer side. As described above, the photosensitive layer is preferably formed using a photosensitive resin composition, and more preferably formed using a chemically amplified photosensitive resin composition containing an acid-reactive resin and a photoacid generator. Is done.
The chemically amplified photosensitive resin composition contains a photoacid generator. When exposed to light, an acid is generated, and the acid-reactive resin contained in the resist reacts to enable patterning and functions as a photosensitive layer.
The solid content concentration of the photosensitive resin composition is usually 1.0 to 40% by mass, preferably 10 to 35% by mass, and more preferably 16 to 28% by mass. By setting the solid content concentration in the above range, the photosensitive resin composition can be uniformly applied on the water-soluble resin layer, and further, a resist pattern having a high resolution and a rectangular profile can be formed. It becomes possible. The solid content concentration is a percentage of the mass of other resist components excluding the organic solvent with respect to the total mass of the photosensitive resin composition.
<<(3)感光層を露光する工程>>
 (2)工程で感光層を製膜後、上記感光層を露光する。具体的には、感光層に所定のパターンを有するマスクを介して活性光線を照射する。露光は1回のみ行ってもよく、複数回行ってもよい。
 具体的には、感光性樹脂組成物の乾燥塗膜を設けた基板に、活性光線を所定のパターンで照射する。露光はマスクを介して行ってもよいし、所定のパターンを直接描画してもよい。活性光線は、好ましくは180nm以上450nm以下の波長、より好ましくは365nm(i線)、248nm(KrF線)または193nm(ArF線)の波長を有する活性光線を使用することができる。この工程の後、必要に応じて露光後加熱工程(PEB)を行ってもよい。
 活性光線による露光には、低圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、レーザ発生装置、発光ダイオード(LED)光源などを用いることができる。
 水銀灯を用いる場合には、g線(436nm)、i線(365nm)、h線(405nm)などの波長を有する活性光線を好ましく使用することができる。本発明においては、i線を用いることがその効果が好適に発揮されるため好ましい。
 レーザを用いる場合には、固体(YAG)レーザでは343nm、355nmの波長が好適に用いられ、エキシマレーザでは、193nm(ArF線)、248nm(KrF線)、351nm(Xe線)が好適に用いられ、さらに半導体レーザでは375nm、405nmが好適に用いられる。この中でも、安定性、コスト等の点から355nm、405nmがより好ましい。レーザは、1回あるいは複数回に分けて、感光層に照射することができる。
 露光量は、40~120mJが好ましく、60~100mJがより好ましい。
 レーザの1パルス当たりのエネルギー密度は、0.1mJ/cm以上10,000mJ/cm以下であることが好ましい。塗膜を十分に硬化させるには、0.3mJ/cm以上がより好ましく、0.5mJ/cm以上がさらに好ましい。アブレーション現象により塗膜を分解させないようにするには、1,000mJ/cm以下がより好ましく、100mJ/cm以下がさらに好ましい。
 また、パルス幅は、0.1ナノ秒(以下、「nsec」と称する)以上30,000nsec以下であることが好ましい。アブレーション現象により色塗膜を分解させないようにするには、0.5nsec以上がより好ましく、1nsec以上が一層好ましい。スキャン露光の際に合わせ精度を向上させるには、1,000nsec以下がより好ましく、50nsec以下がさらに好ましい。
 レーザの周波数は、1Hz以上50,000Hz以下が好ましく、10Hz以上1,000Hz以下がより好ましい。
 さらに、露光処理時間を短くするには、レーザの周波数は、10Hz以上がより好ましく、100Hz以上がさらに好ましく、スキャン露光の際に合わせ精度を向上させるには、10,000Hz以下がより好ましく、1,000Hz以下がさらに好ましい。
 レーザは、水銀灯と比べると焦点を絞ることが容易であり、露光工程でのパターン形成のマスクが不要でコストダウンできるという点で好ましい。
 露光装置としては、特に制限はないが、市販されているものとしては、Callisto((株)ブイ・テクノロジー製)、AEGIS((株)ブイ・テクノロジー製)、DF2200G(大日本スクリーン製造(株)製)などを使用することが可能である。また上記以外の装置も好適に用いられる。
 また、必要に応じて、長波長カットフィルタ、短波長カットフィルタ、バンドパスフィルタのような分光フィルタを通して、照射光量を調整することもできる。
<< (3) Step of exposing photosensitive layer >>
(2) After forming the photosensitive layer in the step, the photosensitive layer is exposed. Specifically, the photosensitive layer is irradiated with actinic rays through a mask having a predetermined pattern. Exposure may be performed only once or multiple times.
Specifically, actinic rays are irradiated in a predetermined pattern onto a substrate provided with a dry coating film of the photosensitive resin composition. Exposure may be performed through a mask, or a predetermined pattern may be drawn directly. As the actinic ray, an actinic ray having a wavelength of preferably 180 nm or more and 450 nm or less, more preferably 365 nm (i line), 248 nm (KrF line) or 193 nm (ArF line) can be used. After this step, a post-exposure heating step (PEB) may be performed as necessary.
For exposure with actinic rays, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a laser generator, a light emitting diode (LED) light source, or the like can be used.
When a mercury lamp is used, actinic rays having wavelengths such as g-line (436 nm), i-line (365 nm), and h-line (405 nm) can be preferably used. In the present invention, it is preferable to use i-line because the effect is suitably exhibited.
In the case of using a laser, wavelengths of 343 nm and 355 nm are preferably used for a solid (YAG) laser, and 193 nm (ArF line), 248 nm (KrF line), and 351 nm (Xe line) are preferably used for an excimer laser. Further, 375 nm and 405 nm are preferably used in the semiconductor laser. Among these, 355 nm and 405 nm are more preferable from the viewpoints of stability and cost. The laser can be applied to the photosensitive layer in one or more times.
The exposure amount is preferably 40 to 120 mJ, and more preferably 60 to 100 mJ.
The energy density per pulse of the laser is preferably 0.1 mJ / cm 2 or more and 10,000 mJ / cm 2 or less. In order to sufficiently cure the coating film, 0.3 mJ / cm 2 or more is more preferable, and 0.5 mJ / cm 2 or more is more preferable. To prevent to decompose the coating film by ablation phenomenon, more preferably 1,000 mJ / cm 2 or less, 100 mJ / cm 2 or less is more preferred.
The pulse width is preferably 0.1 nanosecond (hereinafter referred to as “nsec”) or more and 30,000 nsec or less. In order to prevent the color coating film from being decomposed by the ablation phenomenon, 0.5 nsec or more is more preferable, and 1 nsec or more is more preferable. In order to improve the alignment accuracy at the time of scan exposure, 1,000 nsec or less is more preferable, and 50 nsec or less is further preferable.
The frequency of the laser is preferably 1 Hz or more and 50,000 Hz or less, and more preferably 10 Hz or more and 1,000 Hz or less.
Furthermore, in order to shorten the exposure processing time, the frequency of the laser is more preferably 10 Hz or more, further preferably 100 Hz or more. More preferably, it is not more than 1,000 Hz.
The laser is preferable in that it can be easily focused as compared with a mercury lamp, and a mask for forming a pattern in the exposure process is unnecessary and the cost can be reduced.
There are no particular restrictions on the exposure apparatus, but commercially available devices include Calisto (buoy technology), AEGIS (buoy technology), DF2200G (Dainippon Screen Mfg. Co., Ltd.). Etc.) can be used. Further, devices other than those described above are also preferably used.
If necessary, the amount of irradiation light can be adjusted through a spectral filter such as a long wavelength cut filter, a short wavelength cut filter, or a band pass filter.
<<(4)有機溶剤を含む現像液を用いて現像しマスクパターンを作製する工程>>
 (3)工程で感光層をマスクを介して露光後、有機溶剤を含む現像液(以下、有機系現像液と表すこともある)を用いて現像する。現像はネガ型が好ましい。現像液に含まれる溶剤のsp値は、19MPa1/2未満であることが好ましく、18MPa1/2以下であることがより好ましい。
 現像液が含む有機溶剤としては、ケトン系溶剤、エステル系溶剤、アミド系溶剤等の極性溶剤、および炭化水素系溶剤を用いることができる。
 ケトン系溶剤としては、例えば、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、1-ヘキサノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート等を挙げることができる。
 エステル系溶剤としては、例えば、酢酸メチル、酢酸ブチル、酢酸エチル、酢酸イソプロピル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等を挙げることができる。
 アミド系溶剤としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3-ジメチル-2-イミダゾリジノン等を使用することができる。
 炭化水素系溶剤としては、例えば、トルエン、キシレン等の芳香族炭化水素系溶剤、ペンタン、ヘキサン、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 上記有機溶剤は、1種のみでも、2種以上用いてもよい。また、上記以外の有機溶剤と混合し使用してもよい。但し、現像液全体としての含水率が10質量%未満であることが好ましく、実質的に水分を含有しないことがより好ましい。ここでの実質的とは、例えば、現像液全体としての含水率が3質量%以下であり、より好ましくは測定限界以下であることをいう。
 すなわち、有機系現像液に対する有機溶剤の使用量は、現像液の全量に対して、90質量%以上100質量%以下であることが好ましく、95質量%以上100質量%以下であることがより好ましい。
 特に、有機系現像液は、ケトン系溶剤、エステル系溶剤およびアミド系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有することが好ましい。
 また、有機系現像液は、必要に応じて塩基性化合物を適当量含有していてもよい。塩基性化合物の例としては、上記の塩基性化合物の項で述べたものを挙げることができる。
 有機系現像液の蒸気圧は、20℃において、5kPa以下であることが好ましく、3kPa以下がより好ましく、2kPa以下がさらに好ましい。有機系現像液の蒸気圧を5kPa以下にすることにより、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が改善する。
 5kPa以下の蒸気圧を有する溶剤の具体的な例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、2-ヘプタノン(メチルアミルケトン)、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルイソブチルケトン等のケトン系溶剤、酢酸ブチル、酢酸ペンチル、酢酸イソペンチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤、トルエン、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 特に好ましい範囲である2kPa以下の蒸気圧を有する溶剤の具体的な例としては、1-オクタノン、2-オクタノン、1-ノナノン、2-ノナノン、4-ヘプタノン、2-ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン等のケトン系溶剤、酢酸ブチル、酢酸アミル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシプロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸エチル、乳酸ブチル、乳酸プロピル等のエステル系溶剤、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤、キシレン等の芳香族炭化水素系溶剤、オクタン、デカン等の脂肪族炭化水素系溶剤が挙げられる。
 現像液には、必要に応じて1種または2種以上の界面活性剤を適当量添加することができる。
 界面活性剤としては特に限定されないが、例えば、上記の水溶性樹脂組成物の項で述べた界面活性剤が好ましく用いられる。
 現像液に界面活性剤を配合する場合、その配合量は現像液の全量に対して、通常0.001~5質量%であり、好ましくは0.005~2質量%であり、より好ましくは0.01~0.5質量%である。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
 上記各種の現像方法が、現像装置の現像ノズルから現像液を感光層に向けて吐出する工程を含む場合、吐出される現像液の吐出圧(吐出される現像液の単位面積あたりの流速)は、好ましくは2mL/秒/mm以下、より好ましくは1.5mL/秒/mm以下、さらに好ましくは1mL/秒/mm以下である。流速の下限は特に無いが、スループットを考慮すると0.2mL/秒/mm以上が好ましい。吐出される現像液の吐出圧を上記の範囲とすることにより、現像後のレジスト残渣に由来するパターンの欠陥を著しく低減することができる。
 このメカニズムの詳細は定かではないが、恐らくは、吐出圧を上記範囲とすることで、現像液が感光層に与える圧力が小さくなり、感光層上のレジストパターンが不用意に削られたり崩れたりすることが抑制されるためと考えられる。
 なお、現像液の吐出圧(mL/秒/mm)は、現像装置中の現像ノズル出口における値である。
 現像液の吐出圧を調整する方法としては、例えば、ポンプなどで吐出圧を調整する方法や、加圧タンクからの供給で圧力を調整することで変える方法などを挙げることができる。
 また、有機溶剤を含む現像液を用いて現像する工程の後に、他の有機溶剤に置換しながら、現像を停止する工程を実施してもよい。
<< (4) Step of developing mask pattern by developing using developer containing organic solvent >>
In the step (3), the photosensitive layer is exposed through a mask and then developed using a developer containing an organic solvent (hereinafter also referred to as an organic developer). Development is preferably a negative type. Sp value of the solvent contained in the developer is preferably less than 19 MPa 1/2, and more preferably 18 MPa 1/2 or less.
As the organic solvent contained in the developer, polar solvents such as ketone solvents, ester solvents, amide solvents, and hydrocarbon solvents can be used.
Examples of the ketone solvent include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 2-heptanone (methyl amyl ketone), 4-heptanone, 1-hexanone, 2-hexanone, diisobutyl ketone, cyclohexanone, Examples include methylcyclohexanone, phenylacetone, methylethylketone, methylisobutylketone, acetylacetone, acetonylacetone, ionone, diacetylalcohol, acetylcarbinol, acetophenone, methylnaphthylketone, isophorone, and propylene carbonate.
Examples of ester solvents include methyl acetate, butyl acetate, ethyl acetate, isopropyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl. Ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl formate, ethyl formate, butyl formate, propyl formate, ethyl lactate, butyl lactate, propyl lactate, etc. Can be mentioned.
Examples of amide solvents include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolidinone, and the like. Can be used.
Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents such as pentane, hexane, octane and decane.
The organic solvent may be used alone or in combination of two or more. Moreover, you may mix and use with organic solvents other than the above. However, the water content of the whole developer is preferably less than 10% by mass, and more preferably substantially free of moisture. The term “substantially” as used herein means, for example, that the water content of the entire developing solution is 3% by mass or less, and more preferably the measurement limit or less.
That is, the amount of the organic solvent used relative to the organic developer is preferably 90% by mass or more and 100% by mass or less, and more preferably 95% by mass or more and 100% by mass or less with respect to the total amount of the developer. .
In particular, the organic developer preferably contains at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, and amide solvents.
The organic developer may contain an appropriate amount of a basic compound as required. Examples of the basic compound include those described in the above basic compound section.
The vapor pressure of the organic developer is preferably 5 kPa or less, more preferably 3 kPa or less, and further preferably 2 kPa or less at 20 ° C. By setting the vapor pressure of the organic developer to 5 kPa or less, evaporation of the developer on the substrate or in the developing cup is suppressed, and the temperature uniformity in the wafer surface is improved. As a result, the dimensions in the wafer surface are uniform. Improves.
Specific examples of the solvent having a vapor pressure of 5 kPa or less include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 2-heptanone (methyl amyl ketone), 4-heptanone, 2-hexanone and diisobutyl. Ketone solvents such as ketone, cyclohexanone, methylcyclohexanone, phenylacetone, methylisobutylketone, butyl acetate, pentyl acetate, isopentyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol Monoethyl ether acetate, ethyl-3-ethoxypropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, Ester solvents such as butyl acid, propyl formate, ethyl lactate, butyl lactate, propyl lactate, amide solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, toluene, xylene And aromatic hydrocarbon solvents such as octane and decane.
Specific examples of the solvent having a vapor pressure of 2 kPa or less, which is a particularly preferable range, include 1-octanone, 2-octanone, 1-nonanone, 2-nonanone, 4-heptanone, 2-hexanone, diisobutyl ketone, cyclohexanone, Ketone solvents such as methylcyclohexanone and phenylacetone, butyl acetate, amyl acetate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl-3-ethoxypropionate, Ester solvents such as 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, ethyl lactate, butyl lactate, propyl lactate, N-methyl-2- Pyrrolidone, N, N- dimethylacetamide, N, amide solvents such as N- dimethylformamide, aromatic hydrocarbon solvents such as xylene, octane, aliphatic hydrocarbon solvents decane.
An appropriate amount of one or more surfactants can be added to the developer as required.
Although it does not specifically limit as surfactant, For example, surfactant described in the item of said water-soluble resin composition is used preferably.
When a surfactant is blended in the developer, the blending amount is usually 0.001 to 5% by mass, preferably 0.005 to 2% by mass, more preferably 0, based on the total amount of the developer. 0.01 to 0.5% by mass.
As a development method, for example, a method in which a substrate is immersed in a tank filled with a developer for a certain period of time (dip method), a method in which the developer is raised on the surface of the substrate by surface tension and is left stationary for a certain time (paddle) Method), a method of spraying the developer on the substrate surface (spray method), a method of continuously discharging the developer while scanning the developer discharge nozzle on the substrate rotating at a constant speed (dynamic dispensing method) Etc. can be applied.
When the above-mentioned various development methods include a step of discharging the developer from the developing nozzle of the developing device toward the photosensitive layer, the discharge pressure of the discharged developer (the flow rate per unit area of the discharged developer) is , Preferably 2 mL / sec / mm 2 or less, more preferably 1.5 mL / sec / mm 2 or less, and even more preferably 1 mL / sec / mm 2 or less. There is no particular lower limit of the flow rate, but 0.2 mL / second / mm 2 or more is preferable in consideration of throughput. By setting the discharge pressure of the discharged developer to be in the above range, pattern defects derived from the resist residue after development can be remarkably reduced.
The details of this mechanism are not clear, but perhaps by setting the discharge pressure in the above range, the pressure applied to the photosensitive layer by the developer is reduced, and the resist pattern on the photosensitive layer is inadvertently scraped or broken. This is considered to be suppressed.
The developer discharge pressure (mL / second / mm 2 ) is a value at the developing nozzle outlet in the developing device.
Examples of the method for adjusting the discharge pressure of the developer include a method of adjusting the discharge pressure with a pump or the like, and a method of changing the pressure by adjusting the pressure by supply from a pressurized tank.
Moreover, you may implement the process of stopping image development, after substituting with another organic solvent after the process developed using the developing solution containing the organic solvent.
<<(5)ドライエッチング処理にて少なくとも非マスク部の水溶性樹脂層および有機半導体層を除去する工程>>
 感光層を現像してマスクパターンを作製した後、エッチング処理にて少なくとも非マスク部の上記水溶性樹脂層および上記有機半導体層を除去する。非マスク部とは、上記現像工程において感光層が除去された箇所を表す。
 具体的には、ドライエッチングは、レジストパターンをエッチングマスクとして、少なくとも水溶性樹脂層および有機半導体層をドライエッチングする。ドライエッチングの代表的な例としては、特開昭59-126506号公報、特開昭59-46628号公報、特開58-9108号公報、特開58-2809号公報、特開57-148706号公報、特開61-41102号公報に記載の方法がある。
 ドライエッチングとしては、パターン断面をより矩形に近く形成する観点や有機半導体層へのダメージをより低減する観点から、以下の形態で行なうのが好ましい。
 フッ素系ガスと酸素ガス(O)との混合ガスを用い、有機半導体層が露出しない領域(深さ)までエッチングを行なう第1段階のエッチングと、この第1段階のエッチングの後に、窒素ガス(N)と酸素ガス(O)との混合ガスを用い、好ましくは有機半導体層が露出する領域(深さ)付近までエッチングを行なう第2段階のエッチングと、有機半導体層が露出した後に行なうオーバーエッチングとを含む形態が好ましい。以下、ドライエッチングの具体的手法、並びに第1段階のエッチング、第2段階のエッチング、およびオーバーエッチングについて説明する。
 ドライエッチングは、下記手法により事前にエッチング条件を求めて行なう。
 (1)第1段階のエッチングにおけるエッチングレート(nm/分)と、第2段階のエッチングにおけるエッチングレート(nm/分)とをそれぞれ算出する。(2)第1段階のエッチングで所望の厚さをエッチングする時間と、第2段階のエッチングで所望の厚さをエッチングする時間とをそれぞれ算出する。(3)上記(2)で算出したエッチング時間に従って第1段階のエッチングを実施する。(4)上記(2)で算出したエッチング時間に従って第2段階のエッチングを実施する。あるいはエンドポイント検出でエッチング時間を決定し、決定したエッチング時間に従って第2段階のエッチングを実施してもよい。(5)上記(3)、(4)の合計時間に対してオーバーエッチング時間を算出し、オーバーエッチングを実施する。
 上記第1段階のエッチング工程で用いる混合ガスとしては、被エッチング膜である有機材料を矩形に加工する観点から、フッ素系ガスおよび酸素ガス(O)を含むことが好ましい。また、第1段階のエッチング工程は、有機半導体層が露出しない領域までエッチングすることで、有機半導体層のダメージを回避することができる。また、上記第2段階のエッチング工程および上記オーバーエッチング工程は、第1段階のエッチング工程でフッ素系ガスおよび酸素ガスの混合ガスにより有機半導体層が露出しない領域までエッチングを実施した後、有機半導体層のダメージ回避の観点から、窒素ガスおよび酸素ガスの混合ガスを用いてエッチング処理を行なうのが好ましい。
 第1段階のエッチング工程でのエッチング量と、第2段階のエッチング工程でのエッチング量との比率は、第1段階のエッチング工程でのエッチング処理による矩形性を損なわないように決定することが重要である。なお、全エッチング量(第1段階のエッチング工程でのエッチング量と第2段階のエッチング工程でのエッチング量との総和)中における後者の比率は、0%より大きく50%以下である範囲が好ましく、10~20%がより好ましい。エッチング量とは、被エッチング膜の残存する膜厚とエッチング前の膜厚との差から算出される量のことをいう。
 また、エッチングは、オーバーエッチング処理を含むことが好ましい。オーバーエッチング処理は、オーバーエッチング比率を設定して行なうことが好ましい。また、オーバーエッチング比率は、初めに行なうエッチング処理時間より算出することが好ましい。オーバーエッチング比率は任意に設定できるが、フォトレジストのエッチング耐性と被エッチングパターンの矩形性維持の点で、エッチング工程におけるエッチング処理時間の30%以下であることが好ましく、5~25%であることがより好ましく、10~15%であることが特に好ましい。
<< (5) Step of removing at least the non-masked water-soluble resin layer and the organic semiconductor layer by dry etching treatment >>
After developing the photosensitive layer to produce a mask pattern, at least the water-soluble resin layer and the organic semiconductor layer in the non-mask portion are removed by an etching process. The non-mask portion represents a portion where the photosensitive layer has been removed in the development process.
Specifically, in the dry etching, at least the water-soluble resin layer and the organic semiconductor layer are dry etched using the resist pattern as an etching mask. Representative examples of dry etching include Japanese Patent Application Laid-Open Nos. 59-126506, 59-46628, 58-9108, 58-2809, and 57-148706. There are methods described in Japanese Patent Laid-Open No. 61-41102.
The dry etching is preferably performed in the following manner from the viewpoint of forming the pattern cross section closer to a rectangle and reducing damage to the organic semiconductor layer.
A first stage etching using a mixed gas of fluorine-based gas and oxygen gas (O 2 ) to perform etching up to a region (depth) where the organic semiconductor layer is not exposed, and after this first stage etching, nitrogen gas A second stage etching is performed in which a mixed gas of (N 2 ) and oxygen gas (O 2 ) is used, and etching is preferably performed to the vicinity of the region (depth) where the organic semiconductor layer is exposed, and after the organic semiconductor layer is exposed A form including overetching to be performed is preferable. Hereinafter, a specific method of dry etching and the first stage etching, second stage etching, and over-etching will be described.
Dry etching is performed by obtaining etching conditions in advance by the following method.
(1) The etching rate (nm / min) in the first stage etching and the etching rate (nm / min) in the second stage etching are calculated. (2) The time for etching the desired thickness in the first stage etching and the time for etching the desired thickness in the second stage etching are respectively calculated. (3) The first stage etching is performed according to the etching time calculated in (2) above. (4) The second stage etching is performed according to the etching time calculated in (2) above. Alternatively, the etching time may be determined by endpoint detection, and the second stage etching may be performed according to the determined etching time. (5) Overetching time is calculated with respect to the total time of (3) and (4) above, and overetching is performed.
The mixed gas used in the first stage etching step preferably contains a fluorine-based gas and an oxygen gas (O 2 ) from the viewpoint of processing the organic material that is the film to be etched into a rectangular shape. In the first step, the organic semiconductor layer can be prevented from being damaged by etching the region where the organic semiconductor layer is not exposed. The second-stage etching process and the over-etching process may be performed by performing etching to a region where the organic semiconductor layer is not exposed by a mixed gas of fluorine-based gas and oxygen gas in the first-stage etching process. From the viewpoint of avoiding damage, it is preferable to perform the etching process using a mixed gas of nitrogen gas and oxygen gas.
It is important to determine the ratio between the etching amount in the first stage etching process and the etching amount in the second stage etching process so as not to impair the rectangularity due to the etching process in the first stage etching process. It is. The latter ratio in the total etching amount (the sum of the etching amount in the first-stage etching process and the etching amount in the second-stage etching process) is preferably in the range of more than 0% and not more than 50%. 10 to 20% is more preferable. The etching amount is an amount calculated from the difference between the remaining film thickness to be etched and the film thickness before etching.
Etching preferably includes an over-etching process. The overetching process is preferably performed by setting an overetching ratio. Moreover, it is preferable to calculate the overetching ratio from the etching process time to be performed first. The over-etching ratio can be arbitrarily set, but it is preferably 30% or less of the etching processing time in the etching process, and preferably 5 to 25% from the viewpoint of etching resistance of the photoresist and maintaining the rectangularity of the pattern to be etched. Is more preferable, and 10 to 15% is particularly preferable.
<<(6)水溶性樹脂層を除去する工程>>
 エッチング後、溶剤(通常は、水)を用いて水溶性樹脂層を除去することが好ましい。
 水溶性樹脂層を水で除去する方法としては、例えば、スプレー式またはシャワー式の噴射ノズルからレジストパターンに洗浄水を噴射して、水溶性樹脂層を除去する方法を挙げることができる。洗浄水としては、純水を好ましく用いることができる。また、噴射ノズルとしては、その噴射範囲内に基板全体が包含される噴射ノズルや、可動式の噴射ノズルであってその可動範囲が基板全体を包含する噴射ノズルを挙げることができる。
 噴射ノズルが可動式の場合、水溶性樹脂層を除去する工程中に基板中心部から基板端部までを2回以上移動して洗浄水を噴射することで、より効果的にレジストパターンを除去することができる。
 水を除去した後、乾燥等の工程を行うことも好ましい。乾燥温度としては、80~120℃とすることが好ましい。
<< (6) Step of removing water-soluble resin layer >>
After the etching, it is preferable to remove the water-soluble resin layer using a solvent (usually water).
Examples of the method for removing the water-soluble resin layer with water include a method for removing the water-soluble resin layer by spraying cleaning water onto the resist pattern from a spray type or shower type spray nozzle. As the washing water, pure water can be preferably used. Examples of the injection nozzle include an injection nozzle in which the entire substrate is included in the injection range, and an injection nozzle that is a movable injection nozzle and in which the movable range includes the entire substrate.
When the spray nozzle is movable, the resist pattern is more effectively removed by spraying the cleaning water by moving from the center of the substrate to the end of the substrate at least twice during the process of removing the water-soluble resin layer. be able to.
It is also preferable to perform a process such as drying after removing water. The drying temperature is preferably 80 to 120 ° C.
<用途>
 本発明の感光層は、有機半導体を利用した電子デバイスの製造に用いることができる。ここで、電子デバイスとは、半導体を含有し、かつ2つ以上の電極を有し、その電極間に流れる電流や生じる電圧を、電気、光、磁気、化学物質などにより制御するデバイス、あるいは、印加した電圧や電流により、光や電場、磁場などを発生させるデバイスである。例としては、有機光電変換素子、有機電界効果トランジスタ、有機電界発光素子、ガスセンサ、有機整流素子、有機インバータ、情報記録素子などが挙げられる。有機光電変換素子は光センサ用途、エネルギー変換用途(太陽電池)のいずれにも用いることができる。これらの中で、用途として好ましくは有機電界効果トランジスタ、有機光電変換素子、有機電界発光素子であり、より好ましくは有機電界効果トランジスタ、有機光電変換素子であり、特に好ましくは有機電界効果トランジスタである。
<Application>
The photosensitive layer of the present invention can be used for production of an electronic device using an organic semiconductor. Here, the electronic device is a device that contains a semiconductor and has two or more electrodes, and a current flowing between the electrodes and a generated voltage are controlled by electricity, light, magnetism, a chemical substance, or the like, or It is a device that generates light, electric field, magnetic field, etc. by applied voltage or current. Examples include organic photoelectric conversion elements, organic field effect transistors, organic electroluminescent elements, gas sensors, organic rectifying elements, organic inverters, information recording elements, and the like. The organic photoelectric conversion element can be used for both optical sensor applications and energy conversion applications (solar cells). Among these, organic field effect transistors, organic photoelectric conversion elements, and organic electroluminescence elements are preferable as applications, more preferably organic field effect transistors and organic photoelectric conversion elements, and particularly preferably organic field effect transistors. .
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。なお、特に断りのない限り、「%」および「部」は質量基準である。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Unless otherwise specified, “%” and “parts” are based on mass.
<重量平均分子量(Mw)の測定方法>
 樹脂のMwは以下の方法によって測定した。
<重量平均分子量(Mw)の測定方法>
 水溶性樹脂の分子量は国際公開第WO2015/098978号パンフレットの段落0067~0071に記載の方法に従って測定した。
 その他の樹脂は、下記の測定条件のゲル浸透クロマトグラフィ(GPC測定)により分子量を測定した。
 ポリスチレン換算値
 装置:HLC-8220(東ソー(株)製)
 カラム:ガードカラムHZ-L、TSKgel Super HZM-M、TSKgel Super HZ4000、TSKgel Super HZ3000およびTSKgel Super HZ2000(東ソー(株)製)
 溶離液:THF(テトラヒドロフラン)
 検出器:UV線(紫外線) 波長254nm
<Measurement method of weight average molecular weight (Mw)>
The Mw of the resin was measured by the following method.
<Measurement method of weight average molecular weight (Mw)>
The molecular weight of the water-soluble resin was measured according to the method described in Paragraphs 0067 to 0071 of International Publication No. WO2015 / 098978.
Other resins were measured for molecular weight by gel permeation chromatography (GPC measurement) under the following measurement conditions.
Polystyrene equivalent value Device: HLC-8220 (manufactured by Tosoh Corporation)
Column: Guard column HZ-L, TSKgel Super HZM-M, TSKgel Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation)
Eluent: THF (tetrahydrofuran)
Detector: UV ray (ultraviolet light), wavelength 254nm
実施例1~11および比較例1~3
<水溶性樹脂組成物の調製>
 以下の処方で、各成分を混合して均一な溶液とした後、0.8μmの孔径を有するナイロン製フィルタを用いてろ過して水溶性樹脂組成物を調製した。
<<PVA-1>>
下記PVA                    15.0質量部
界面活性剤D-1(下記)            0.008質量部
水                        84.9質量部
 PVA(クラレ社製 PVA-203 ケン化度 88.0% 重合度300)
<<PVP-1>>
下記PVP                     7.9質量部
界面活性剤D-1(下記)            0.008質量部
水                        92.1質量部
 PVP(Mw=360,000 東京化成社製 ポリビニルピロリドン K90)
<比較例の非水溶性樹脂組成物の調製>
<<FR-1>>
 以下の処方で、各成分を混合して均一な溶液とした後、0.6μmの孔径を有するポリプロピレン製フィルタを用いてろ過して非水溶性樹脂組成物を調製した。
CYTOP(登録商標)CTL-809AP2:旭硝子社製 4.0質量部
住友3M フロリナート FC77           96.0質量部
Examples 1 to 11 and Comparative Examples 1 to 3
<Preparation of water-soluble resin composition>
In the following formulation, each component was mixed to make a uniform solution, and then filtered using a nylon filter having a pore size of 0.8 μm to prepare a water-soluble resin composition.
<< PVA-1 >>
The following PVA 15.0 parts by mass Surfactant D-1 (described below) 0.008 parts by mass Water 84.9 parts by mass PVA (Kuraray PVA-203 Saponification degree 88.0% Degree of polymerization 300)
<< PVP-1 >>
The following PVP 7.9 parts by mass Surfactant D-1 (described below) 0.008 parts by mass Water 92.1 parts by mass PVP (Mw = 360,000 Polyvinylpyrrolidone K90 manufactured by Tokyo Chemical Industry Co., Ltd.)
<Preparation of water-insoluble resin composition of comparative example>
<< FR-1 >>
In the following formulation, each component was mixed to make a uniform solution, and then filtered using a polypropylene filter having a pore size of 0.6 μm to prepare a water-insoluble resin composition.
CYTOP (registered trademark) CTL-809AP2: Asahi Glass Co., Ltd. 4.0 parts by mass Sumitomo 3M Fluorinert FC77 96.0 parts by mass
<感光性樹脂組成物の調製>
 以下のようにして、各酸反応性樹脂を合成した。
<<酸反応性樹脂A-1の合成>>
<酸反応性樹脂A-1(Mw=25,000)の合成>
 窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(プロピレングリコールモノメチルエーテルアセテート)(32.62g)を入れ、86℃に昇温した。ここに、BzMA(16.65g)、THFMA(21.08g)、t-BuMA(5.76g)、およびV-601(1.0686g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-1を得た。得られた樹脂は、THFMAとt-BuMAモノマー合計の保護率は65モル%であり、重量平均分子量が25,000であり、溶解速度が100nm/sであった。Mwが1,000以下の成分の量は、3質量%であった。
<Preparation of photosensitive resin composition>
Each acid-reactive resin was synthesized as follows.
<< Synthesis of Acid Reactive Resin A-1 >>
<Synthesis of Acid Reactive Resin A-1 (Mw = 25,000)>
PGMEA (propylene glycol monomethyl ether acetate) (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (16.65 g), THFMA (21.08 g), t-BuMA (5.76 g), and V-601 (1.0686 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-1. The obtained resin had a protection ratio of 65 mol% of the total THFMA and t-BuMA monomers, a weight average molecular weight of 25,000, and a dissolution rate of 100 nm / s. The amount of the component having Mw of 1,000 or less was 3% by mass.
<<酸反応性樹脂A-2の合成>>
<酸反応性樹脂A-2(Mw=57,000)の合成>
窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(32.62g)を入れ、86℃に昇温した。ここに、BzMA(16.65g)、THFMA(21.08g)、t-BuMA(5.76g)、およびV-601(0.2157g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-2を得た。得られた樹脂は、THFMAとt-BuMAモノマー合計の保護率は65モル%であり、重量平均分子量が57,000であり、溶解速度が19nm/sであった。Mwが1,000以下の成分の量は、4質量%であった。
<< Synthesis of Acid Reactive Resin A-2 >>
<Synthesis of Acid Reactive Resin A-2 (Mw = 57,000)>
PGMEA (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (16.65 g), THFMA (21.08 g), t-BuMA (5.76 g), and V-601 (0.2157 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-2. The obtained resin had a total protection ratio of 65 mol% of THFMA and t-BuMA monomers, a weight average molecular weight of 57,000, and a dissolution rate of 19 nm / s. The amount of the component having Mw of 1,000 or less was 4% by mass.
<<酸反応性樹脂A-3の合成>>
<酸反応性樹脂A-3(Mw=9,000)の合成>
 窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(32.62g)を入れ、86℃に昇温した。ここに、BzMA(16.65g)、THFMA(21.08g)、t-BuMA(5.76g)、およびV-601(2.2622g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-3を得た。得られた樹脂は、THFMAとt-BuMAモノマー合計の保護率は65モル%であり、重量平均分子量が9,000であり、溶解速度が432nm/sであった。Mwが1,000以下の成分の量は、3質量%であった。
<< Synthesis of Acid-Reactive Resin A-3 >>
<Synthesis of Acid Reactive Resin A-3 (Mw = 9,000)>
PGMEA (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (16.65 g), THFMA (21.08 g), t-BuMA (5.76 g), and V-601 (2.2622 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-3. The obtained resin had a protection ratio of 65 mol% in total of THFMA and t-BuMA monomers, a weight average molecular weight of 9,000, and a dissolution rate of 432 nm / s. The amount of the component having Mw of 1,000 or less was 3% by mass.
<<酸反応性樹脂A-4の合成>>
 窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(32.62g)を入れ、86℃に昇温した。ここに、BzMA(16.65g)、THFMA(21.08g)、t-BuMA(5.76g)、およびV-601(1.9329g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-4を得た。得られた樹脂は、環状エーテルエステル保護率は50モル%であり、重量平均分子量が15,000であり、溶解速度が200nm/sであった。Mwが1,000以下の成分の量は、3質量%であった。
<< Synthesis of Acid Reactive Resin A-4 >>
PGMEA (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (16.65 g), THFMA (21.08 g), t-BuMA (5.76 g), and V-601 (1.9329 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-4. The obtained resin had a cyclic ether ester protection rate of 50 mol%, a weight average molecular weight of 15,000, and a dissolution rate of 200 nm / s. The amount of the component having Mw of 1,000 or less was 3% by mass.
<<酸反応性樹脂A-5の合成>>
 窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(32.62g)を入れ、86℃に昇温した。ここに、BzMA(16.65g)、THFMA(21.08g)、t-BuMA(5.76g)、およびV-601(0.3060g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-5を得た。得られた樹脂は、THFMAとt-BuMAモノマー合計の保護率は65モル%であり、重量平均分子量が50,000であり、溶解速度が32nm/sであった。Mwが1,000以下の成分の量は、3質量%であった。
<< Synthesis of Acid Reactive Resin A-5 >>
PGMEA (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (16.65 g), THFMA (21.08 g), t-BuMA (5.76 g), and V-601 (0.3060 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-5. The obtained resin had a protection ratio of 65 mol% of the total THFMA and t-BuMA monomers, a weight average molecular weight of 50,000, and a dissolution rate of 32 nm / s. The amount of the component having Mw of 1,000 or less was 3% by mass.
<<酸反応性樹脂A-6の合成>>
 窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(プロピレングリコールモノメチルエーテルアセテート)(32.62g)を入れ、86℃に昇温した。ここに、BzMA(21.41g)、THFMA(18.97g)、t-BuMA(3.84g)、およびV-601(1.0686g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-6を得た。得られた樹脂は、THFMAとt-BuMAモノマー合計の保護率は55モル%であり、重量平均分子量が25,000であり、溶解速度が188nm/sであった。Mwが1,000以下の成分の量は、3質量%であった。
<< Synthesis of Acid Reactive Resin A-6 >>
PGMEA (propylene glycol monomethyl ether acetate) (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (21.41 g), THFMA (18.97 g), t-BuMA (3.84 g), and V-601 (1.0686 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-6. The obtained resin had a protection ratio of 55 mol% of the total THFMA and t-BuMA monomers, a weight average molecular weight of 25,000, and a dissolution rate of 188 nm / s. The amount of the component having Mw of 1,000 or less was 3% by mass.
<<酸反応性樹脂A-7の合成>>
 窒素導入管および、冷却管を取り付けた200mL三口フラスコにPGMEA(プロピレングリコールモノメチルエーテルアセテート)(32.62g)を入れ、86℃に昇温した。ここに、BzMA(7.14g)、THFMA(27.41g)、t-BuMA(7.68g)、およびV-601(1.0686g)をPGMEA(32.62g)に溶解したものを2時間かけて滴下した。その後、反応液を2時間攪拌し、反応を終了させた。反応液をヘプタン中に再沈することで生じた白色粉体をろ過により回収することで、酸反応性樹脂A-7を得た。得られた樹脂は、THFMAとt-BuMAモノマー合計の保護率は85モル%であり、重量平均分子量が25,000であり、溶解速度が31nm/sであった。Mwが1,000以下の成分の量は、3質量%であった。
<< Synthesis of Acid-Reactive Resin A-7 >>
PGMEA (propylene glycol monomethyl ether acetate) (32.62 g) was placed in a 200 mL three-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the temperature was raised to 86 ° C. Here, BzMA (7.14 g), THFMA (27.41 g), t-BuMA (7.68 g), and V-601 (1.0686 g) dissolved in PGMEA (32.62 g) were taken over 2 hours. And dripped. Thereafter, the reaction solution was stirred for 2 hours to complete the reaction. The white powder produced by reprecipitation of the reaction solution in heptane was collected by filtration to obtain acid-reactive resin A-7. The obtained resin had a protection ratio of 85 mol% for the total THFMA and t-BuMA monomers, a weight average molecular weight of 25,000, and a dissolution rate of 31 nm / s. The amount of the component having Mw of 1,000 or less was 3% by mass.
 表1または表2に記載の処方で、各成分を混合して均一な溶液とした後、0.45μmの孔径を有するナイロン製フィルタを用いてろ過して感光性樹脂組成物を調製した。なお、各成分の詳細は表1または表2に示している。 Each component was mixed with the formulation shown in Table 1 or 2 to make a uniform solution, and then filtered using a nylon filter having a pore diameter of 0.45 μm to prepare a photosensitive resin composition. Details of each component are shown in Table 1 or Table 2.
<有機半導体基板の作製>
 円形のガラス基板上に、以下の組成からなる有機半導体塗布液(有機半導体形成用組成物)をスピンコートし、130℃で10分乾燥させることで有機半導体層を形成した。膜厚は150nmであった。
<<有機半導体塗布液の組成>>
P3HT(シグマ アルドリッチ ジャパン合同会社製) 10質量%
PCBM(シグマ アルドリッチ ジャパン合同会社製) 10質量%
クロロホルム(和光純薬工業(株)製) 80質量%
<Production of organic semiconductor substrate>
An organic semiconductor coating liquid (composition for forming an organic semiconductor) having the following composition was spin-coated on a circular glass substrate and dried at 130 ° C. for 10 minutes to form an organic semiconductor layer. The film thickness was 150 nm.
<< Composition of organic semiconductor coating liquid >>
P3HT (Sigma Aldrich Japan GK) 10% by mass
PCBM (Sigma Aldrich Japan GK) 10% by mass
Chloroform (Wako Pure Chemical Industries, Ltd.) 80% by mass
<水溶性樹脂層の形成>
 上記有機半導体層の表面に、水溶性樹脂組成物をスピンコートし、100℃で1分乾燥させることで、厚さ2μmの水溶性樹脂層を形成した。
<Formation of water-soluble resin layer>
A water-soluble resin composition was spin-coated on the surface of the organic semiconductor layer and dried at 100 ° C. for 1 minute to form a water-soluble resin layer having a thickness of 2 μm.
<溶解速度の評価>
 感光性樹脂組成物を基材としての水晶振動子マイクロバランス(QCMの電極)上に塗布し、100℃で1分間加熱することによって厚さ2μmの膜(感光層)を形成した。23℃における酢酸ブチルに対する溶解速度については、QCM法を用い、2μm膜厚の塗膜が溶ける時間から算出した(相対的指標)。
A:秒速50nm以上秒速150nm以下
B:秒速20nm以上50nm未満、もしくは、秒速150nm超200nm以下
C:秒速20nm未満、もしくは、秒速200nm超
<Evaluation of dissolution rate>
The photosensitive resin composition was applied onto a quartz crystal microbalance (QCM electrode) as a base material and heated at 100 ° C. for 1 minute to form a 2 μm thick film (photosensitive layer). About the dissolution rate with respect to butyl acetate at 23 degreeC, it calculated from the time when the coating film with a film thickness of 2 micrometers melt | dissolves using the QCM method (relative parameter | index).
A: 50 nm or more per second, 150 nm or less per second B: 20 nm or more per second, less than 50 nm, or more than 150 nm per second, 200 nm or less C: less than 20 nm per second, or more than 200 nm per second
<金属イオン量の測定>
 感光性樹脂組成物中のナトリウムイオン、カリウムイオンおよびカルシウムイオンの合計含有量の測定は、調液後に組成物中の金属含有量をICP-MS(誘導結合プラズマ質量分析法)によって1pptから1000ppbのオーダーで測定した。
<Measurement of metal ion content>
The total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is measured by adjusting the metal content in the composition from 1 ppt to 1000 ppb by ICP-MS (inductively coupled plasma mass spectrometry) after preparation. Measured in order.
<水分量の測定>
 調液後に組成物中のカ―ルフィッシャー水分計を用いて組成物中の水分量を計測した。
<Measurement of water content>
After the preparation, the amount of water in the composition was measured using a Karl Fischer moisture meter in the composition.
<静止接触角の測定>
 水溶性樹脂層に対する、感光性樹脂組成物の静止接触角の測定は下記のようにして行った。すなわち、静止接触角計(協和界面科学社製)を用い、シリンジで、液滴サイズ10μLの水滴を着滴させ、液滴の接触角を測定した。
<Measurement of static contact angle>
The measurement of the static contact angle of the photosensitive resin composition with respect to the water-soluble resin layer was performed as follows. That is, using a static contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.), a droplet having a droplet size of 10 μL was deposited with a syringe, and the contact angle of the droplet was measured.
<ラインパターンのリソグラフィ性>
 上記で作製した水溶性樹脂層上に感光性樹脂組成物(レジスト)を塗布し、100℃で1分間乾燥(プリベーク)し、感光層を形成した。膜厚は2μmであった。次に、平行露光機を用い、マスクサイズ2μm、ハーフピッチ2μmを有する石英ガラス製のバイナリマスクを介して、表1または表2に示す光源で表1または表2に示す露光量となるように露光した。その後、表1または表2に示す条件でポストベーク(PEB)し、酢酸ブチルで表1または表2に示す現像処理時間で現像した。現像後、幅2μmのラインアンドスペースパターン(L/S)4本のうちオーバー現像により消失したラインの本数をカウントした。
 結果を表1または表2に示した。ここで、パターンなしとは、2μmパターンが溶解速度が低いために解像していないことを意味する。剥がれなしとはパターン消失が無いことを意味する。
<Lithography of line pattern>
A photosensitive resin composition (resist) was applied on the water-soluble resin layer prepared above and dried (prebaked) at 100 ° C. for 1 minute to form a photosensitive layer. The film thickness was 2 μm. Next, using a parallel exposure machine, the exposure dose shown in Table 1 or Table 2 is obtained with the light source shown in Table 1 or 2 through a quartz glass binary mask having a mask size of 2 μm and a half pitch of 2 μm. Exposed. Then, it post-baked (PEB) on the conditions shown in Table 1 or Table 2, and developed with the development processing time shown in Table 1 or Table 2 with butyl acetate. After development, the number of lines disappeared by over-development among 4 line and space patterns (L / S) having a width of 2 μm was counted.
The results are shown in Table 1 or Table 2. Here, “no pattern” means that the 2 μm pattern is not resolved due to the low dissolution rate. “No peeling” means no pattern disappearance.
<オーバー現像係数>
 上記ラインパターンのリソグラフィ性におけるオーバー現像係数を測定した。
オーバー現像係数を、下記式に従って算出した。
 オーバー現像係数 = [現像処理時間(s)/[(感光層の膜厚(nm)/溶解速度(nm/秒))]
<Over development coefficient>
The over development coefficient in the lithography property of the line pattern was measured.
The over development coefficient was calculated according to the following formula.
Over-development coefficient = [development processing time (s) / [(photosensitive layer thickness (nm) / dissolution rate (nm / sec)]]
<アイランドパターンの密着性評価>
 上記で作製した水溶性樹脂層上に感光性樹脂組成物(レジスト)を塗布し、100℃で1分間乾燥(プリベーク)し、感光層を形成した。膜厚は2μmであった。次に、平行露光機を用い、1μm角のパターンが25個形成されるような露光量で、表1または表2に示す光源で露光した。その後、表1または表2に示す条件でポストベーク(PEB)し、酢酸ブチルで表1または表2に示す現像処理時間で現像した。得られた25個のパターンのうち、剥がれが生じた個数を確認した。
<Evaluation of adhesion of island pattern>
A photosensitive resin composition (resist) was applied on the water-soluble resin layer prepared above and dried (prebaked) at 100 ° C. for 1 minute to form a photosensitive layer. The film thickness was 2 μm. Next, it exposed with the light source shown in Table 1 or Table 2 with the exposure amount that 25 patterns of 1 micrometer square were formed using a parallel exposure machine. Then, it post-baked (PEB) on the conditions shown in Table 1 or Table 2, and developed with the development processing time shown in Table 1 or Table 2 with butyl acetate. Of the 25 patterns obtained, the number of peeled patterns was confirmed.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
上記表における詳細は以下のとおりである。
PEB:ポストベークの処理条件
露光:現像時の露光光源を記載している。
採用:該当するものを採用したことを意味する
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Details in the above table are as follows.
PEB: Post-baking processing conditions Exposure: Describes an exposure light source during development.
Adopted: means that the applicable item was adopted
<酸発生剤>
B-1
Figure JPOXMLDOC01-appb-C000016
<Acid generator>
B-1
Figure JPOXMLDOC01-appb-C000016
<塩基性化合物>
C-1
Figure JPOXMLDOC01-appb-C000017
C-2
2,6-ジイソプロピルアニリン(1級アミン、東京化成工業(株)製)
<Basic compound>
C-1
Figure JPOXMLDOC01-appb-C000017
C-2
2,6-diisopropylaniline (primary amine, manufactured by Tokyo Chemical Industry Co., Ltd.)
<界面活性剤>
D-1:OMNOVA社製、PF6320
Figure JPOXMLDOC01-appb-C000018
D-2
メガファックF-430、DIC(株)製
<Surfactant>
D-1: OMNOVA, PF6320
Figure JPOXMLDOC01-appb-C000018
D-2
Megafuck F-430, manufactured by DIC Corporation
<溶剤>
E-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
E-2:3-エトキシプロピオン酸エチル
<Solvent>
E-1: Propylene glycol monomethyl ether acetate (PGMEA)
E-2: Ethyl 3-ethoxypropionate
 上記の結果から、感光層の溶解速度が高すぎるものは、パターンの倒れが顕著であった(比較例1)。また、感光層の溶解速度が低すぎるものでは、パターンが形成されなかった(比較例2)。水溶性樹脂層に対する感光性樹脂組成物の静止接触角が大きすぎるものは、溶解速度が所定の範囲内であっても、ラインそのものと周辺が現像後に剥がれてしまった(比較例3)。これらに対し、感光層の溶解速度を適度な範囲としたことで、アンダーカットが低減され、パターン倒れが抑制され、かつ、密着性にも優れていた。 From the above results, when the photosensitive layer was dissolved too quickly, the pattern collapsed significantly (Comparative Example 1). Further, when the dissolution rate of the photosensitive layer was too low, no pattern was formed (Comparative Example 2). When the static contact angle of the photosensitive resin composition with respect to the water-soluble resin layer was too large, the line itself and the periphery were peeled off after development even if the dissolution rate was within a predetermined range (Comparative Example 3). On the other hand, by setting the dissolution rate of the photosensitive layer in an appropriate range, undercut was reduced, pattern collapse was suppressed, and adhesion was excellent.
 実施例1の塩基性化合物C-1に代えてC-2(2,6-ジイソプロピルアニリン、東京化成工業(株)製)を用いた感光性樹脂組成物、界面活性剤D-1に代えてD-2(メガファックF-430、DIC(株)製)を用いた感光性樹脂組成物、溶剤E-1に代えてE-1:E-2(3-エトキシプロピオン酸エチル)=70:30(質量比)の混合溶剤を用いた感光性樹脂組成物、樹脂と酸発生剤の質量比を25.18:0.16(質量比)にした感光性樹脂組成物、樹脂と酸発生剤の質量比を24.98:0.36(質量比)にした感光性樹脂組成物をそれぞれ調製した。各感光性樹脂組成物を用いて積層体の試料を作製した。各試料についてオーバー現像係数、リソグラフィ性、密着性の評価を行った結果、いずれの基板においても良好な結果が得られた。 Instead of the basic compound C-1 of Example 1, a photosensitive resin composition using C-2 (2,6-diisopropylaniline, manufactured by Tokyo Chemical Industry Co., Ltd.), instead of the surfactant D-1 Photosensitive resin composition using D-2 (Megafac F-430, manufactured by DIC Corporation), instead of solvent E-1, E-1: E-2 (ethyl 3-ethoxypropionate) = 70: Photosensitive resin composition using mixed solvent of 30 (mass ratio), photosensitive resin composition having a mass ratio of resin and acid generator of 25.18: 0.16 (mass ratio), resin and acid generator A photosensitive resin composition having a mass ratio of 24.98: 0.36 (mass ratio) was prepared. A laminate sample was prepared using each photosensitive resin composition. As a result of evaluating the over-development coefficient, lithographic properties, and adhesion of each sample, good results were obtained for all the substrates.
1 感光層
2 水溶性樹脂層
3 有機半導体層
4 基板
5 除去部
1 Photosensitive layer 2 Water-soluble resin layer 3 Organic semiconductor layer 4 Substrate 5 Removal part

Claims (14)

  1.  水溶性樹脂層と感光層とを有する積層体に含まれる感光層であって、
     前記感光層は活性光線または放射線の照射により酸を発生する化合物と酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂とを含む感光性樹脂組成物から形成され、前記酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂は、重量平均分子量が10,000~50,000であり、かつ、全構成単位のうち、50モル%から100モル%がアルカリ水溶液に可溶な基が疎水性保護基により保護されている、23℃の酢酸ブチルに可溶な疎水性の樹脂であり、
     未照射の前記感光層を23℃の酢酸ブチルに浸漬した場合の溶解速度が20nm/s以上200nm/s以下であり、
     前記水溶性樹脂層上における、前記感光性樹脂組成物の静止接触角が60°以下である、感光層。
    A photosensitive layer included in a laminate having a water-soluble resin layer and a photosensitive layer,
    The photosensitive layer is formed from a photosensitive resin composition containing a compound that generates an acid upon irradiation with actinic rays or radiation, and a resin that changes its dissolution rate with respect to butyl acetate by the action of the acid. The resin in which the dissolution rate changes with respect to the resin has a weight average molecular weight of 10,000 to 50,000, and among all the structural units, 50 mol% to 100 mol% of the group soluble in the alkaline aqueous solution is hydrophobic. A hydrophobic resin soluble in butyl acetate at 23 ° C., protected by a protecting group,
    The dissolution rate when the unirradiated photosensitive layer is immersed in butyl acetate at 23 ° C. is 20 nm / s or more and 200 nm / s or less,
    The photosensitive layer whose static contact angle of the said photosensitive resin composition on the said water-soluble resin layer is 60 degrees or less.
  2.  前記感光層がi線照射に対して感光能を有する、請求項1に記載の感光層。 The photosensitive layer according to claim 1, wherein the photosensitive layer has photosensitivity to i-ray irradiation.
  3.  前記感光性樹脂組成物中の水の含有量が0.01質量%以上1質量%以下である、請求項1または2に記載の感光層。 The photosensitive layer according to claim 1 or 2, wherein a content of water in the photosensitive resin composition is 0.01% by mass or more and 1% by mass or less.
  4.  前記溶解速度の変化が溶解速度の低下である、請求項1~3のいずれか1項に記載の感光層。 4. The photosensitive layer according to claim 1, wherein the change in dissolution rate is a decrease in dissolution rate.
  5.  前記感光層に含まれる樹脂が下記式(1)で表される構成単位を有する、請求項1~4のいずれか1項に記載の感光層;
    Figure JPOXMLDOC01-appb-C000001
     式中、Rは水素原子またはアルキル基を表し、Lはカルボニル基またはフェニレン基を表し、R~Rはそれぞれ独立に水素原子またはアルキル基を表す。
    The photosensitive layer according to any one of claims 1 to 4, wherein the resin contained in the photosensitive layer has a structural unit represented by the following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In the formula, R 8 represents a hydrogen atom or an alkyl group, L 1 represents a carbonyl group or a phenylene group, and R 1 to R 7 each independently represents a hydrogen atom or an alkyl group.
  6.  前記感光性樹脂組成物のナトリウムイオン、カリウムイオンおよびカルシウムイオンの合計含有量が1質量ppt~1000質量ppbである、請求項1~5のいずれか1項に記載の感光層。 6. The photosensitive layer according to claim 1, wherein a total content of sodium ion, potassium ion and calcium ion in the photosensitive resin composition is 1 mass ppt to 1000 mass ppb.
  7.  有機半導体層加工用である、請求項1~6のいずれか1項に記載の感光層。 The photosensitive layer according to any one of claims 1 to 6, which is used for processing an organic semiconductor layer.
  8.  請求項1~7のいずれか1項に記載の感光層と水溶性樹脂層とを有する積層体。 A laminate comprising the photosensitive layer according to any one of claims 1 to 7 and a water-soluble resin layer.
  9.  さらに、有機半導体層を有し、前記有機半導体層、前記水溶性樹脂層および前記感光層の順に積層している、請求項8に記載の積層体。 The laminate according to claim 8, further comprising an organic semiconductor layer, wherein the organic semiconductor layer, the water-soluble resin layer, and the photosensitive layer are laminated in this order.
  10.  前記酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂が、前記酢酸ブチルに対する溶解速度が大きい樹脂と前記酢酸ブチルに対する溶解速度が小さい樹脂との混合物である、請求項8または9に記載の積層体。 The resin in which the dissolution rate in butyl acetate is changed by the action of the acid is a mixture of a resin having a high dissolution rate in butyl acetate and a resin having a low dissolution rate in butyl acetate. Laminated body.
  11.  感光層を形成するための感光性樹脂組成物であって、
     前記感光層は水溶性樹脂層と組み合わせて積層体をなす層であり、未露光の前記感光層を酢酸ブチルに浸漬した場合の溶解速度が20nm/s以上200nm/秒以下であり、
     前記感光性樹脂組成物は活性光線または放射線の照射により酸を発生する化合物と酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂とを含有し、
     前記酸の作用により酢酸ブチルに対する溶解速度の変化が生じる樹脂は、重量平均分子量が10,000~50,000であり、全構成単位の50モル%から100モル%がアルカリ水溶液に可溶な基が疎水性保護基により保護されている、酢酸ブチルに可溶な疎水性の樹脂であり、かつ、前記水溶性樹脂層上における静止接触角が60°以下となる樹脂である、感光性樹脂組成物。
    A photosensitive resin composition for forming a photosensitive layer,
    The photosensitive layer is a layer that forms a laminate in combination with a water-soluble resin layer, and the dissolution rate when the unexposed photosensitive layer is immersed in butyl acetate is 20 nm / s or more and 200 nm / second or less,
    The photosensitive resin composition contains a compound that generates an acid upon irradiation with actinic rays or radiation, and a resin that causes a change in the dissolution rate in butyl acetate by the action of the acid,
    The resin in which the dissolution rate changes in butyl acetate by the action of the acid has a weight average molecular weight of 10,000 to 50,000, and 50 mol% to 100 mol% of all the structural units are groups soluble in an alkaline aqueous solution. Is a hydrophobic resin that is protected by a hydrophobic protecting group and is soluble in butyl acetate, and has a static contact angle of 60 ° or less on the water-soluble resin layer. object.
  12.  有機半導体層加工用である、請求項11に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 11, which is used for processing an organic semiconductor layer.
  13.  水溶性樹脂層と感光層とをこの順に形成するためのキットであって、請求項11または12に記載の感光性樹脂組成物と水溶性樹脂組成物とを有するキット。 A kit for forming a water-soluble resin layer and a photosensitive layer in this order, the kit comprising the photosensitive resin composition according to claim 11 or 12 and a water-soluble resin composition.
  14.  有機半導体層加工用である、請求項13に記載のキット。 The kit according to claim 13, which is used for processing an organic semiconductor layer.
PCT/JP2019/006811 2018-02-26 2019-02-22 Photosensitive layer, laminate, photosensitive resin composition, and kit WO2019163951A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980015313.5A CN111819494A (en) 2018-02-26 2019-02-22 Photosensitive layer, laminate, photosensitive resin composition, and kit
JP2020501063A JPWO2019163951A1 (en) 2018-02-26 2019-02-22 Photosensitive layer, laminate, photosensitive resin composition, kit
KR1020207024267A KR20200110425A (en) 2018-02-26 2019-02-22 Photosensitive layer, laminate, photosensitive resin composition, kit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-031585 2018-02-26
JP2018031585 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163951A1 true WO2019163951A1 (en) 2019-08-29

Family

ID=67687266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006811 WO2019163951A1 (en) 2018-02-26 2019-02-22 Photosensitive layer, laminate, photosensitive resin composition, and kit

Country Status (5)

Country Link
JP (1) JPWO2019163951A1 (en)
KR (1) KR20200110425A (en)
CN (1) CN111819494A (en)
TW (1) TW201936396A (en)
WO (1) WO2019163951A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343704A (en) * 2004-09-28 2006-12-21 Jsr Corp Positive-radiation-sensitive resin composition
WO2012008546A1 (en) * 2010-07-16 2012-01-19 Jsr株式会社 Radiation-sensitive resin composition, polymer, and resist pattern forming method
JP2014098889A (en) * 2012-10-19 2014-05-29 Fujifilm Corp Resin composition for forming protective film, protective film, pattern forming method, method for manufacturing electronic device, and electronic device
JP2015087609A (en) * 2013-10-31 2015-05-07 富士フイルム株式会社 Laminate, organic-semiconductor manufacturing kit, and resist composition for manufacturing organic semiconductor
JP2015194674A (en) * 2013-08-23 2015-11-05 富士フイルム株式会社 laminate
WO2016175220A1 (en) * 2015-04-28 2016-11-03 富士フイルム株式会社 Laminate and kit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343704A (en) * 2004-09-28 2006-12-21 Jsr Corp Positive-radiation-sensitive resin composition
WO2012008546A1 (en) * 2010-07-16 2012-01-19 Jsr株式会社 Radiation-sensitive resin composition, polymer, and resist pattern forming method
JP2014098889A (en) * 2012-10-19 2014-05-29 Fujifilm Corp Resin composition for forming protective film, protective film, pattern forming method, method for manufacturing electronic device, and electronic device
JP2015194674A (en) * 2013-08-23 2015-11-05 富士フイルム株式会社 laminate
JP2015087609A (en) * 2013-10-31 2015-05-07 富士フイルム株式会社 Laminate, organic-semiconductor manufacturing kit, and resist composition for manufacturing organic semiconductor
WO2016175220A1 (en) * 2015-04-28 2016-11-03 富士フイルム株式会社 Laminate and kit

Also Published As

Publication number Publication date
TW201936396A (en) 2019-09-16
JPWO2019163951A1 (en) 2021-02-04
KR20200110425A (en) 2020-09-23
CN111819494A (en) 2020-10-23

Similar Documents

Publication Publication Date Title
JP6514770B2 (en) Laminates and kits
JP6284849B2 (en) Laminate
KR101841992B1 (en) Laminate, organic-semiconductor manufacturing kit, and resist composition for manufacturing organic semiconductor
JP6261285B2 (en) Laminate, organic semiconductor manufacturing kit and organic semiconductor manufacturing resist composition
JP6591579B2 (en) Laminated body
WO2019167914A1 (en) Multilayer body, water-soluble resin composition, and kit
WO2019163951A1 (en) Photosensitive layer, laminate, photosensitive resin composition, and kit
WO2019163859A1 (en) Photosensitive layer, laminate, photosensitive resin composition, kit, and production method for photosensitive resin composition
WO2020184406A1 (en) Laminated body, composition, and laminated-body formation kit
WO2020196362A1 (en) Multilayer body, composition, and kit for forming multilayer body
WO2021020361A1 (en) Protective layer forming composition, layered film, protective layer, laminate, and method for manufacturing semiconductor device
JP2021110796A (en) Photosensitive resin composition, layered film, photosensitive layer, laminate, kit and semiconductor device
JP2021110839A (en) Laminate, composition for forming protective layer, kit and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757396

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501063

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207024267

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757396

Country of ref document: EP

Kind code of ref document: A1