WO2019163759A1 - Seatbelt retractor and seatbelt winding mechanism - Google Patents

Seatbelt retractor and seatbelt winding mechanism Download PDF

Info

Publication number
WO2019163759A1
WO2019163759A1 PCT/JP2019/006061 JP2019006061W WO2019163759A1 WO 2019163759 A1 WO2019163759 A1 WO 2019163759A1 JP 2019006061 W JP2019006061 W JP 2019006061W WO 2019163759 A1 WO2019163759 A1 WO 2019163759A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
terminal
seat belt
spool
electromotive force
Prior art date
Application number
PCT/JP2019/006061
Other languages
French (fr)
Japanese (ja)
Inventor
雅人 ▲高▼尾
篤 三原
Original Assignee
Joyson Safety Systems Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joyson Safety Systems Japan株式会社 filed Critical Joyson Safety Systems Japan株式会社
Publication of WO2019163759A1 publication Critical patent/WO2019163759A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/34Belt retractors, e.g. reels
    • B60R22/46Reels with means to tension the belt in an emergency by forced winding up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R22/00Safety belts or body harnesses in vehicles
    • B60R22/48Control systems, alarms, or interlock systems, for the correct application of the belt or harness
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to a seat belt retractor and a seat belt winding mechanism.
  • Patent Document 1 a technique for short-circuiting a pair of power feeding terminals of a motor in order to cause a current caused by a counter electromotive force generated in the motor to flow back to the motor.
  • the present disclosure provides a seat belt retractor and a seat belt retracting mechanism that can easily return a current caused by a counter electromotive force to a motor.
  • a spool for winding up the seat belt A motor for rotating the spool; A drive circuit for driving the motor;
  • a seat belt retractor comprising at least one rectifier element that is always connected in parallel to the motor and causes the motor to recirculate a current caused by a counter electromotive force generated in the motor.
  • a spool for winding up the seat belt A motor for rotating the spool;
  • a seat belt retracting mechanism including at least one rectifying element that is always connected in parallel to the motor and causes the motor to recirculate a current caused by a counter electromotive force generated in the motor.
  • FIG. 1 shows an example of a structure of a seatbelt apparatus. It is a figure which shows the 1st structural example of a drive circuit. It is a figure which shows the 2nd structural example of a drive circuit. It is a figure which shows the 3rd structural example of a drive circuit. It is sectional drawing which shows the 1st structural example of a seatbelt winding-up mechanism. It is a disassembled perspective view which shows the 2nd structural example of a seatbelt winding-up mechanism. It is a figure which shows the engagement relationship of a gear. It is a figure which shows a state in case a motor rotates clockwise (CW direction). It is a figure which shows a state in case a motor rotates counterclockwise (CCW direction).
  • FIG. 1 is a configuration diagram schematically showing an example of a seat belt device 100.
  • the seat belt device 100 is a system mounted on a vehicle 13 such as an automobile.
  • the seat belt device 100 includes, for example, a seat belt 2, a shoulder anchor 3, a tongue 4, a buckle 5, and a seat belt retractor (hereinafter simply referred to as “retractor”) 10.
  • the retractor 10 includes a seat belt winding mechanism (hereinafter also simply referred to as “winding mechanism”) 6 and a control device 1.
  • the shoulder anchor 3 is a guide member that guides the seat belt 2 pulled out from the winding mechanism 6 toward the shoulder of the occupant 9, and is fixed to the floor of the vehicle body or the seat 11, for example.
  • the tongue 4 is a member that is slidably attached to the seat belt 2 guided by the shoulder anchor 3.
  • the buckle 5 is an example of a member to which the tongue 4 is detachably engaged, and is fixed to the floor of the vehicle body or the seat 11, for example.
  • the retractor 10 is fixed to, for example, the vehicle body near the seat 11 or the seat 11 itself.
  • the retractor 10 includes a winding mechanism 6 that enables the seat belt 2 to be wound or pulled out, and a control device 1 that controls the operation of the winding mechanism 6.
  • the winding mechanism 6 includes a spool 8 for winding the seat belt 2, a motor 7 that rotates the spool 8, and a power transmission mechanism 17 that transmits power between the motor 7 and the spool 8.
  • One end of the seat belt 2 is fixed to the spool 8.
  • the motor 7 generates a driving force that rotates the spool 8.
  • the rotation shaft of the motor 7 is connected to the rotation shaft of the spool 8 via the power transmission mechanism 17.
  • the controller 1 controls the winding operation (or both the winding operation and the drawing operation) of the seat belt 2 by the winding mechanism 6 by driving the motor 7.
  • the control device 1 includes a drive circuit 14 that drives the motor 7 and a control circuit 15 that controls the drive operation of the drive circuit 14.
  • the drive circuit 14 causes a drive current to drive the motor 7 to flow through the motor 7 in accordance with at least one control signal (for example, a PWM (pulse width modulation) control signal) supplied from the control circuit 15.
  • a control signal for example, a PWM (pulse width modulation) control signal
  • Specific examples of the drive circuit 14 include an H-bridge drive circuit having four switching elements, a half-bridge drive circuit, a high-side drive circuit having only a high-side switching element, and a low-side drive circuit having only a low-side switching element. It is done.
  • the form of the drive circuit 14 is not limited to these, and is determined according to required specifications.
  • the control circuit 15 outputs at least one control signal (for example, a PWM control signal) for controlling the magnitude (or magnitude and direction) of the drive current for driving the motor 7 to the drive circuit 14. To do.
  • a control signal for example, a PWM control signal
  • Each function of the control circuit 15 is realized by operating a CPU (Central Processing Unit) according to a program stored in the memory.
  • a specific example of the control circuit 15 includes a microcomputer having a CPU and a memory.
  • FIG. 2 is a diagram illustrating a first configuration example of the drive circuit 14.
  • the drive circuit 14 ⁇ / b> A shown in FIG. 2 is an H-bridge drive circuit that has four switching elements 21, 22, 23, and 24 and can switch the direction of the drive current that flows to the motor 7.
  • the motor 7 incorporates a coil connected between the first terminal 7a and the second terminal 7b.
  • the drive circuit 14 ⁇ / b> A includes a first connection point 12 connected to the first terminal 7 a of the motor 7 and a second connection point 18 connected to the second terminal 7 b of the motor 7.
  • a drive current is passed through the first connection point 12 and the second connection point 18.
  • the first connection point 12 is an intermediate node to which the switching element 21 and the switching element 22 are connected
  • the second connection point 18 is an intermediate node to which the switching element 23 and the switching element 24 are connected.
  • the drive circuit 14 ⁇ / b> A is connected between the power supply VB and the ground (GND).
  • the high-side switching elements 21 and 23 connected to the power supply VB side with respect to the motor 7 and the ground side with respect to the motor 7.
  • Low-side switching elements 22 and 24 connected to each other.
  • the switching elements 21, 22, 23, and 24 are semiconductor elements that are turned on / off.
  • the switching elements 21, 22, 23, and 24 may be voltage controlled transistors such as MOSFETs (Metal / Oxide / Semiconductor / Field / Effect / Transistors) or current controlled bipolar transistors. Good.
  • FIG. 2 illustrates a mode in which the switching elements 21, 22, 23, and 24 are N-channel MOSFETs.
  • the switching element 21 is an example of a first high-side switching element connected to the first terminal 7a.
  • the switching element 21 includes an electrode (drain or collector) connected to the power supply VB side, an electrode (source or emitter) connected to the first terminal 7 a via the first connection point 12, and the control circuit 15.
  • a high side arm having an electrode (gate or base) to be connected.
  • the switching element 22 is an example of a first low-side switching element connected to the first terminal 7a.
  • the switching element 22 is connected to an electrode (source or emitter) connected to the ground side, an electrode (drain or collector) connected to the first terminal 7 a via the first connection point 12, and the control circuit 15.
  • a low-side arm having an electrode (gate or base) to be operated.
  • the switching element 23 is an example of a second high-side switching element connected to the second terminal 7b.
  • the switching element 23 includes an electrode (drain or collector) connected to the power supply VB side, an electrode (source or emitter) connected to the second terminal 7 b via the second connection point 18, and the control circuit 15.
  • a high side arm having an electrode (gate or base) to be connected.
  • the switching element 24 is an example of a second low-side switching element connected to the second terminal 7b.
  • the switching element 24 is connected to an electrode (source or emitter) connected to the ground side, an electrode (drain or collector) connected to the second terminal 7 b via the second connection point 18, and the control circuit 15.
  • a low-side arm having an electrode (gate or source) to be operated.
  • the diodes 31, 32, 33, and 34 may be body diodes of the switching elements 21, 22, 23, and 24 corresponding to the diodes 31, 32, 33, and 34, respectively.
  • a rectifying element may be used.
  • the current measurement circuit 16 is a current measurement unit that measures the current flowing through the drive circuit 14A and outputs the measurement result to the control circuit 15.
  • the current measurement circuit 16 measures the amount of current flowing through the drive circuit 14A using, for example, a resistor inserted in series in the current path between the low-side switching elements 22 and 24 of the drive circuit 14A and the ground.
  • the current measurement circuit 16 determines the amount of current flowing through the drive circuit 14A by, for example, a resistor inserted in series in the current path between the high-side switching elements 21 and 23 of the drive circuit 14A and the power supply VB. You may measure.
  • the current measurement method is not limited to these.
  • the control circuit 15 is a drive control unit that drives the four switching elements 21, 22, 23, and 24 that constitute the drive circuit 14 ⁇ / b> A using the current measurement result by the current measurement circuit 16.
  • the control circuit 15 In the mode (winding mode) in which the seat belt 2 is wound around the spool 8, the control circuit 15 is driven so that the motor 7 rotates (forward rotation) in the forward rotation direction corresponding to the winding direction of the seat belt 2.
  • Each switching element of the circuit 14A is controlled.
  • the control circuit 15 turns on / off the switching element 23 by PWM control with a predetermined duty ratio, always turns off the switching elements 21, 24, and keeps the switching element 22 always on. Turn it on.
  • the control circuit 15 may turn on the switching element 24 when the switching element 23 is turned off in order to suppress heat generation due to the return current when the switching element 23 is turned off.
  • the control circuit 15 turns on / off the switching element 22 by PWM control with a predetermined duty ratio, always turns off the switching elements 21, 24, and always turns on the switching element 23. It may be turned on. At this time, the control circuit 15 may turn on the switching element 21 when the switching element 22 is turned off in order to suppress heat generation due to the return current when the switching element 22 is turned off.
  • the drive circuit 14A can rotate (forward rotation) the motor 7 in the direction (forward rotation direction) in which the spool 8 rotates in the winding direction of the seat belt 2. it can.
  • the rotation shaft of the motor 7 rotates in the forward direction
  • the driving force for the forward rotation is transmitted to the spool 8 by the power transmission mechanism 17.
  • the spool 8 rotates in the direction in which the seat belt 2 is wound, so that the seat belt 2 is wound around the spool 8.
  • the control circuit 15 drives the driving circuit 14A so that the motor 7 rotates (reversely rotates) in the reverse direction corresponding to the pulling direction of the seat belt 2.
  • Each switching element is controlled.
  • the control circuit 15 turns on / off the switching element 21 by PWM control with a predetermined duty ratio, always turns off the switching elements 22, 23, and always turns on the switching element 24. Let At this time, the control circuit 15 may turn on the switching element 22 when the switching element 21 is turned off in order to suppress heat generation due to the return current when the switching element 21 is turned off.
  • the control circuit 15 turns on / off the switching element 24 by PWM control with a predetermined duty ratio, always turns off the switching elements 22 and 23, and always turns on the switching element 21. You may let them. At this time, the control circuit 15 may turn on the switching element 23 when the switching element 24 is turned off in order to suppress heat generation due to the return current when the switching element 24 is turned off.
  • the drive circuit 14A can rotate (reversely rotate) the motor 7 in the direction (reverse direction) in which the spool 8 is rotated in the pull-out direction of the seat belt 2.
  • the rotation shaft of the motor 7 rotates in the reverse direction
  • the driving force of the reverse rotation is transmitted to the spool 8 by the power transmission mechanism 17.
  • the spool 8 rotates in the direction in which the seat belt 2 is pulled out, so that the seat belt 2 is pulled out from the spool 8.
  • a reflux circuit 40 that is always connected in parallel to the motor 7 is provided.
  • the recirculation circuit 40 recirculates the current caused by the counter electromotive force to the motor 7 to suppress the rotation of the motor 7 and apply a brake.
  • the recirculation circuit 40 suppresses the rotation of the motor 7 so that, for example, it is possible to absorb the collision energy that acts on the occupant 9 when the vehicle collides. Further, since the return circuit 40 is always connected in parallel to the motor 7, it is not necessary to control the current caused by the back electromotive force to flow back to the motor 7. Therefore, the current caused by the back electromotive force can be easily supplied to the motor 7. It can be refluxed.
  • the in-vehicle computer outside the retractor 10 transmits a command signal for starting restraint force control for the occupant 9 of the seat belt 2 in an emergency in which a deceleration of a predetermined value or more is applied to the vehicle 13 or may be applied. .
  • a specific example of an emergency in which a deceleration greater than a predetermined value is applied to the vehicle 13 when a sudden brake that decelerates the vehicle 13 at a deceleration greater than a predetermined value is activated automatically or by a driver's brake operation, the driver's brake operation Even when there is not, there is a case where an automatic brake for automatically decelerating the vehicle 13 at a deceleration greater than a predetermined value is activated.
  • a specific example of an emergency in which a deceleration greater than a predetermined value may be applied to the vehicle 13 includes a time when it is determined that the vehicle 13 may collide.
  • the control circuit 15 controls each switching element of the drive circuit 14A so that the motor 7 rotates (forward rotation) in the forward rotation direction corresponding to the winding direction of the seat belt 2 in order to prepare for an impact at the time of collision. .
  • the rotation shaft of the motor 7 rotates in the forward direction
  • the driving force for the forward rotation is transmitted to the spool 8 by the power transmission mechanism 17.
  • the spool 8 rotates in the direction in which the seat belt 2 is wound, so that the seat belt 2 is wound around the spool 8.
  • the restraining force on the occupant 9 by the seat belt 2 increases.
  • the seat belt 2 is pulled out of the spool 8 by the inertial force of the occupant 9 toward the front of the vehicle.
  • the rotational force is transmitted to the rotating shaft of the motor 7 by the power transmission mechanism 17.
  • the rotating shaft of the motor 7 is rotated in the reverse direction, so that a counter electromotive force is generated in the motor 7. Due to the generation of the counter electromotive force, the potential of the first terminal 7a becomes relatively higher than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b is higher than the potential of the first terminal 7a). Is also relatively low).
  • the reflux circuit 40 can suppress the rotation of the motor 7 in the reverse direction in which the spool 8 is rotated in the pull-out direction of the seat belt 2 by causing the motor 7 to return the current due to the counter electromotive force. .
  • the reflux circuit 40 has a series configuration in which a diode 42, a Zener diode 41, and a resistance element 43 are connected in series.
  • a diode 42, a Zener diode 41, and a resistance element 43 are inserted in series in a current path through which a current caused by the counter electromotive force flows.
  • the positions where the diode 42, the Zener diode 41, and the resistance element 43 are inserted in series may be replaced with each other.
  • the diode 42 is a rectifying element that is always connected in parallel to the motor 7 and causes the motor 7 to return a current caused by the counter electromotive force generated in the motor 7.
  • a diode 42 having an anode on the first terminal 7 a side and a cathode on the second terminal 7 b side is always connected in parallel to the motor 7.
  • the diode 42 connected in this direction can prevent a drive current that rotates the motor 7 in the forward rotation direction corresponding to the winding direction of the seat belt 2 from flowing into the return circuit 40.
  • the zener diode 41 is also always connected in parallel to the motor 7, and is a rectifying element that causes the motor 7 to return current due to the counter electromotive force generated in the motor 7.
  • Zener diode 41 is connected in series to diode 42.
  • a Zener diode 41 having a cathode on the first terminal 7 a side and an anode on the second terminal 7 b side is always connected in parallel to the motor 7.
  • the zener diode 41 connected in this direction can prevent the drive current that rotates the motor 7 in the reverse direction corresponding to the pulling-out direction of the seat belt 2 from flowing into the reflux circuit 40.
  • the Zener voltage of the Zener diode 41 is set to a value larger than the power supply voltage between the power supply VB and the ground.
  • the resistance element 43 is connected to the Zener diode 41 in series. Because the resistance element 43 reduces the return current flowing in the return circuit 40 due to the back electromotive force, the force for suppressing the rotation of the motor 7 can be weakened. That is, the force for suppressing the rotation of the motor 7 can be adjusted by changing the resistance value of the resistance element 43. Note that the resistance element 43 may be omitted.
  • the potential of the first terminal 7a becomes relatively lower than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b becomes the potential of the first terminal 7a). May be assumed to be relatively higher).
  • the diode 42 it is preferable to replace the diode 42 with a Zener diode having the first terminal 7a side as an anode and the second terminal 7b side as a cathode.
  • the diode 42 is replaced with a Zener diode
  • the current due to the back electromotive force is The terminal 7 b, the reflux circuit 40, the first terminal 7 a, and the motor 7 are circulated in the normal path.
  • the Zener voltage of the replaced Zener diode is set to a value larger than the power supply voltage between the power supply VB and the ground.
  • the diode 42 is also changed to a Zener diode, whereby a more preferable configuration can be realized in that it can cope with generation of counter electromotive force in both directions.
  • FIG. 3 is a diagram illustrating a second configuration example of the drive circuit 14. The description of the same points as in the first configuration example is omitted.
  • the drive circuit 14B shown in FIG. 3 has a high-side switching element 25 and is a high-side drive circuit capable of supplying a drive current only in one direction to the motor 7.
  • the drive circuit 14B is used when, for example, it is not necessary to rotate the motor 7 in the reverse rotation direction corresponding to the pulling direction of the seat belt 2, and the motor 7 is rotated in the forward rotation direction corresponding to the winding direction of the seat belt 2.
  • the driving current to be supplied can be supplied to the motor 7.
  • the drive circuit 14B is connected between the power supply VB and the ground (GND), and includes a high-side switching element 25 connected to the power supply VB side with respect to the motor 7.
  • the switching element 25 includes an electrode (drain or collector) connected to the power supply VB side, an electrode (source or emitter) connected to the second terminal 7b, and an electrode (gate or base) connected to the control circuit 15 And a high side arm.
  • the first terminal 7a is connected to the ground.
  • the diode 35 may be a body diode of the switching element 25 or a rectifying element additionally connected to the switching element 25 in parallel.
  • the control circuit 15 In the mode (winding mode) in which the seat belt 2 is wound around the spool 8, the control circuit 15 is driven so that the motor 7 rotates (forward rotation) in the forward rotation direction corresponding to the winding direction of the seat belt 2.
  • the switching element 25 of the circuit 14B is controlled.
  • the control circuit 15 turns on / off the switching element 25 by PWM control with a predetermined duty ratio.
  • the drive circuit 14B can rotate (forward rotation) the motor 7 in the direction (forward rotation direction) in which the spool 8 rotates in the winding direction of the seat belt 2. it can.
  • the rotation shaft of the motor 7 rotates in the forward direction
  • the driving force for the forward rotation is transmitted to the spool 8 by the power transmission mechanism 17.
  • the spool 8 rotates in the direction in which the seat belt 2 is wound, so that the seat belt 2 is wound around the spool 8.
  • a reflux circuit 45 that is always connected in parallel to the motor 7 is provided.
  • the potential of the first terminal 7a becomes relatively higher than the potential of the second terminal 7b due to the occurrence of the back electromotive force (in other words, the potential of the second terminal 7b is the first potential). It becomes relatively lower than the potential of the terminal 7a). Therefore, when the potential difference between the first terminal 7a and the second terminal 7b exceeds the forward voltage of the Zener diode 44, the current caused by the back electromotive force is changed to the first terminal 7a, the reflux circuit 45, the second The terminal 7b and the motor 7 are recirculated in the normal path.
  • the return circuit 45 can suppress the rotation of the motor 7 in the reverse direction that rotates the spool 8 in the pull-out direction of the seat belt 2 by returning the current due to the counter electromotive force to the motor 7. . As a result, it is possible to absorb the collision energy that acts on the occupant 9 when the vehicle collides.
  • the reflux circuit 45 has a Zener diode 44.
  • a Zener diode 44 is inserted in series in a current path through which a current caused by the counter electromotive force flows.
  • the Zener diode 44 is a rectifying element that is always connected in parallel to the motor 7 and causes the motor 7 to return a current caused by the counter electromotive force generated in the motor 7.
  • a Zener diode 44 having the first terminal 7 a side as an anode and the second terminal 7 b side as a cathode is always connected to the motor 7 in parallel.
  • the zener diode 44 connected in such a direction can prevent the drive current that rotates the motor 7 in the forward rotation direction corresponding to the winding direction of the seat belt 2 from flowing into the reflux circuit 45.
  • the potential of the first terminal 7a becomes relatively lower than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b becomes the potential of the first terminal 7a). May be assumed to be relatively higher).
  • the potential difference between the first terminal 7a and the second terminal 7b exceeds the Zener voltage of the Zener diode 44, the current caused by the back electromotive force is changed to the second terminal 7b, the reflux circuit 40, the first The terminal 7a and the motor 7 are recirculated in the normal path.
  • the Zener voltage of the Zener diode 44 is set to a value larger than the power supply voltage between the power supply VB and the ground. Therefore, according to the drive circuit 14B shown in FIG. 3, it is possible to cope with the counter electromotive force in both directions.
  • FIG. 4 is a diagram illustrating a third configuration example of the drive circuit 14. The description of the same points as in the first and second configuration examples will be omitted.
  • a reflux circuit 49 that is always connected in parallel to the motor 7 is provided.
  • the reflux circuit 49 has a configuration in which a Zener diode 47 and a resistance element 48 are added to the reflux circuit 45 of FIG.
  • the zener diode 47 is always connected in parallel to the motor 7 and is a rectifying element that causes the motor 7 to return a current caused by the counter electromotive force generated in the motor 7.
  • Zener diode 47 is connected in series with diode 46.
  • a Zener diode 47 having the first terminal 7 a side as a cathode and the second terminal 7 b side as an anode is always connected to the motor 7 in parallel.
  • the Zener voltage of the Zener diode 47 is set to a value larger than the power supply voltage between the power supply VB and the ground.
  • the return circuit 49 can suppress the rotation of the motor 7 in the reverse direction that rotates the spool 8 in the pull-out direction of the seat belt 2 by returning the current due to the counter electromotive force to the motor 7. .
  • the resistance element 48 is connected to the Zener diode 47 in series.
  • the resistance element 48 reduces the return current flowing in the return circuit 49 due to the back electromotive force, so that the force for suppressing the rotation of the motor 7 can be weakened. That is, the force for suppressing the rotation of the motor 7 can be adjusted by changing the resistance value of the resistance element 48. Note that the resistance element 48 may be omitted.
  • the potential of the first terminal 7a becomes relatively lower than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b becomes the potential of the first terminal 7a). May be assumed to be relatively higher).
  • the diode 46 having the first terminal 7a side as an anode and the second terminal 7b side as a cathode is replaced with a Zener diode having the first terminal 7a side as an anode and the second terminal 7b side as a cathode. It is preferable.
  • the diode 42 is replaced with a Zener diode
  • the current due to the back electromotive force is The terminal 7 b, the reflux circuit 40, the first terminal 7 a, and the motor 7 are circulated in the normal path.
  • the Zener voltage of the replaced Zener diode is set to a value larger than the power supply voltage between the power supply VB and the ground.
  • the diode 46 is also changed to a Zener diode, whereby a more preferable configuration can be realized in that it can cope with generation of counter electromotive force in both directions.
  • FIG. 5 is a cross-sectional view showing a first configuration example of the seat belt retracting mechanism.
  • the winding mechanism 6A is an example of the above-described winding mechanism 6 and includes the following components.
  • Spool 101 for winding webbing (not shown)
  • Torsion bar (spool shaft) 102 fitted as a spool shaft and twisted by a predetermined load (3)
  • Internal gear (internal gear) 104 fixed integrally to the retractor base 103 with screws or the like.
  • Three planetary gears (planetary gears) 105 engaged with the internal teeth of the internal gear 104 (only one is shown in the figure) (6)
  • a carrier (output shaft) 106 that is a rotation center shaft of the planetary gear 105 and is integrally fitted to the torsion bar 102.
  • Sun gear (sun gear) 107 engaged with the planetary gear 105 (8)
  • a ring-shaped magnet 109 that is affixed to the inner surface of the cylindrical peripheral portion of the rotor 108 with an adhesive or the like and constitutes the main part of the brushless motor 7A.
  • a plurality of drive coils 110 constituting the main part of the brushless motor 7A in proximity to the magnet 109 (10) A plurality of drive coils 110 constituting the main part of the brushless motor 7A in proximity to the magnet 109 (11) Cover 111 covering brushless motor 7A (12) A cylindrical bush shaft 112 provided outside the cover 111 and fitted to the torsion bar 102. (13) A return spring 113 that has one end fixed to the bush shaft 112 and wound in layers, and transmits a driving force to the torsion bar 102. (14) The other end of the return spring 113 is fixed, and the spring cover 114 is fixed integrally with the cover 111 and covers the return spring 113.
  • the brushless motor 7A is an example of the motor 7 described above, and includes a rotor 108, a magnet 109, and a drive coil 110.
  • the planetary gear mechanism 17 ⁇ / b> A is an example of the power transmission mechanism 17 described above, and includes a planetary gear 105, a carrier 106, and a sun gear 107.
  • the configuration of the winding mechanism 6A will be described in more detail.
  • the take-up mechanism 6A is provided with a mechanical EA (EA means energy absorption; hereinafter, this term is used in unison) and an electric EA mechanism.
  • EA means energy absorption; hereinafter, this term is used in unison
  • the mechanical EA mechanism absorbs energy by a twisting phenomenon of the torsion bar 102 when a torque exceeding a predetermined limit load is applied.
  • the electric EA mechanism is performed by applying an assist force by the brushless motor 7A. These two mechanisms are used so as to complement each other.
  • the rotation of the planetary gear 105 causes the carrier 106 that is the rotation shaft of the planetary gear 105 to rotate with the rotation of the planetary gear 105 to rotate the torsion bar 102 that is integral with the carrier 106.
  • the spool 101 also rotates integrally.
  • the bush shaft 112 integrally provided at the end of the torsion bar 102 rotates with the rotation of the torsion bar 102, and winds up the return spring 113 in the urging direction or the urging force releasing direction. Since the other configuration is the same as that of the conventional retractor, the description of the configuration is omitted.
  • the EA mechanism of the torsion bar 102 and the EA mechanism of the motor assist load.
  • a positive motor assist load is applied by rotating the spool 101 in a direction opposite to the twisting rotation direction of the torsion bar 102 by the brushless motor 7A.
  • the brushless motor 7A rotates the spool 101 both in the same forward direction as the torsional rotation direction of the torsion bar 102 and in the opposite direction to the torsional rotation direction, thereby giving negative and positive motor assist loads.
  • the brushless motor 7A can be rotationally controlled by the control device 1.
  • the motor assist in a direction opposite to the torsional rotation direction of the torsion bar 102 by the rotation control in the first method. Assume that a load is applied from 0 to 3 kN. Accordingly, when the EA effect of the motor assist load is added to the EA effect of the torsion bar 102, an EA effect from 2.5 kN to 5.5 kN as a whole can be expected.
  • FIG. 6 is an exploded perspective view showing a second configuration example of the seat belt retracting mechanism.
  • FIG. 7 is a diagram showing a gear engagement relationship of the winding mechanism 6B shown in FIG. In FIG. 7, the explosive pretensioning mechanism is omitted in the drawing.
  • the winding mechanism 6B is an example of the above-described winding mechanism 6 and includes the following components.
  • Retainer 220 (2) DC motor 221 mounted integrally with retainer 220 (3) Motor gear 222 provided integrally with the motor shaft of DC motor 221 (4) A first gear 223 that is pivotally supported by a protrusion provided on the retainer 220 and engages with the motor gear 222 (specifically, the first gear 223 is an integral two-stage gear (a large gear 223a and a small gear).
  • a second gear 224 (specifically, the second gear 224 is integrated with the first gear 223 (specifically, the small gear 223b), which is pivotally supported by a protrusion provided on the retainer 220, Step gear (consisting of a large gear 224a and a small gear 224b), and the small gear 223b engages with the large gear 224a) (6)
  • a third gear 225 (specifically, the third gear 225, which is engaged with the second gear 224 (specifically, the small gear 224b) is composed of an integral two-stage gear (a large gear 225a and a small gear 225b), (The small gear 224b engages with the large gear 225a) (7)
  • Three planetary gears 226 engaged with the third gear 225 (specifically, the small gear 225b) (8)
  • An internal gear 227 that engages with the three planetary gears 226 on the inner teeth 227a formed on the inner side.
  • External teeth 227b formed on the outer peripheral surface of the internal gear 227 (10) A locking piece 230 that engages with the external tooth 227b and locks the clockwise rotation of the internal gear 227.
  • a lever 231 made of a spring that supports the locking piece 230 at one end.
  • a ring member 232 in which the other end of the lever 231 is curled.
  • a convex annular member 233 around which the ring member 232 is wound note that the annular member 233 is integrally formed at the same rotation center as the first gear 223).
  • a friction piece 234 that protrudes from the periphery of the top surface of the annular member 233 and applies a frictional force by pressing the ring member 232.
  • Carrier 235 for placing three planetary gears 226 (16) Three pins 236 fixed to the carrier 235 by rotatably supporting the three planetary gears 226 on the carrier 235 (17) Deceleration plate 237 inserted between the three pins 236 and the three planetary gears 226 in a swingable manner (18)
  • the tip 238a is passed through the rotation center hole of the carrier 235 and is integrally fitted at the root of the tip 238a, and the tip 238a is slidably rotatable in the rotation center hole of the third gear 225.
  • the DC motor 221 is an example of the motor 7 described above.
  • the planetary gear mechanism 17B is an example of the power transmission mechanism 17 described above, and includes the above-described components (3) to (17) of the winding mechanism 6B. Hereinafter, the operation of the winding mechanism 6B will be described in more detail.
  • the control device 1 controls the operation so as to rotate the rotating shaft of the DC motor 221 clockwise or counterclockwise.
  • 8 and 9 are diagrams illustrating the operation of the present embodiment.
  • FIG. 8 is a diagram illustrating a state where the motor rotates in the clockwise direction (CW direction).
  • FIG. 9 illustrates the motor in the counterclockwise direction ( It is a figure which shows the state in the case of rotating in a (CCW direction).
  • the take-up mechanism 6B is normally separated from the external teeth 227b as shown in FIG. 7 and FIG.
  • the gear 227 is not restrained. Therefore, due to the characteristics of the planetary gear, the rotational force of the carrier 235 is not transmitted to the third gear 225. Therefore, the rotational force of the spool 238 that is integrally fitted to the carrier 235 is not transmitted to the rotational shaft of the DC motor 221 that engages with the third gear 225.
  • a command signal is output from an in-vehicle computer such as an ABS (anti-lock brake system) mechanism or a collision prediction device.
  • the pretensioning mechanism (mechanism for winding up the webbing W and increasing the tension prior to the explosive pretensioning mechanism) is actuated to rotate the rotating shaft of the DC motor 221 clockwise as shown in FIG. Rotate in the direction of the arrow).
  • the clockwise rotational force of the motor gear 222 is transmitted to the first gear 223 as the counterclockwise rotational direction (arrow direction), and the locking piece 230 engages with the external teeth 227b of the internal gear 227, and the internal gear 227 is engaged.
  • the rotation of the gear 227 in the clockwise direction (arrow direction) is locked.
  • the rotational force of the third gear 225 can be transmitted to the carrier 235 with which the spool 238 is integrally fitted.
  • the rotational force of the first gear 223 is transmitted to the second gear 224 as a rotational force in the clockwise direction (arrow direction), and the rotational force in the counterclockwise direction (arrow direction) is transmitted to the third gear 225.
  • the counterclockwise rotation of the third gear 225 causes the small gear 225b integrated with the third gear 225 to rotate counterclockwise, and causes the three planetary gears 226 to rotate clockwise (arrow direction).
  • the three planetary gears 226 rotate around the small gear 225b in a counterclockwise direction (arrow direction) like a planet while engaging with the internal teeth 227a of the internal gear 227 whose rotation is restricted by the locking piece 230.
  • the three planetary gears 226 rotate the carrier 235 that pivotally supports the three planetary gears 226 in the counterclockwise direction (arrow direction). Therefore, the spool 238 fitted to the carrier 235 rotates counterclockwise and winds up the webbing W (arrow B direction). Therefore, the clockwise rotational force of the DC motor 221 is transmitted as a rotational force for winding the webbing W.
  • an impact force is transmitted to the vehicle body due to the collision, and an impact detection signal is output from an acceleration sensor (not shown) or a crash sensor (not shown), an explosive pretension mechanism (not shown) is activated, and the webbing W is drawn into the take-up mechanism 6B. This ensures the initial restraint of the passenger.
  • the webbing W is pulled out by the forward inertial force of the occupant (arrow A in FIG. 8).
  • the present invention is not limited to the above embodiment.
  • Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Automotive Seat Belt Assembly (AREA)
  • Control Of Direct Current Motors (AREA)
  • Electronic Switches (AREA)

Abstract

Provided is a seatbelt retractor comprising: a spool for winding a seatbelt; a motor for rotating the spool; a drive circuit for driving the motor; and at least one rectifier element which is always connected in parallel to the motor and which returns an electric current to the motor, the electric current having been generated in the motor by a counter-electromotive force. Also provided is a seatbelt winding mechanism comprising: a spool for winding a seatbelt; a motor for rotating the spool; and at least one rectifier element which is always connected in parallel to the motor and which returns an electric current to the motor, the electric current having been generated in the motor by a counter-electromotive force.

Description

シートベルトリトラクタ及びシートベルト巻き取り機構Seat belt retractor and seat belt retractor
 本発明は、シートベルトリトラクタ及びシートベルト巻き取り機構に関する。 The present invention relates to a seat belt retractor and a seat belt winding mechanism.
 従来、シートベルトをモータの動力によって巻き取るシートベルトリトラクタにおいて、モータに発生する逆起電力による電流をモータに還流させるため、モータの一対の給電端子を短絡する技術が知られている(例えば、特許文献1参照)。 2. Description of the Related Art Conventionally, in a seat belt retractor that winds up a seat belt with the power of a motor, a technique for short-circuiting a pair of power feeding terminals of a motor in order to cause a current caused by a counter electromotive force generated in the motor to flow back to the motor is known (for example, Patent Document 1).
特開2011-093431号公報JP 2011-093431 A
 しかしながら、従来の技術では、モータの一対の給電端子を短絡するための信号を制御部から出力しなければならないため、逆起電力による電流をモータに還流させるための複雑な制御が必要となる。 However, in the conventional technique, since a signal for short-circuiting the pair of power supply terminals of the motor must be output from the control unit, complicated control for returning the current caused by the counter electromotive force to the motor is required.
 そこで、本開示は、逆起電力による電流を容易にモータに還流させることが可能なシートベルトリトラクタ及びシートベルト巻き取り機構を提供する。 Therefore, the present disclosure provides a seat belt retractor and a seat belt retracting mechanism that can easily return a current caused by a counter electromotive force to a motor.
 本開示は、
 シートベルトを巻き取るためのスプールと、
 前記スプールを回転させるモータと、
 前記モータを駆動する駆動回路と、
 前記モータに並列に常時接続されており、前記モータに発生する逆起電力による電流を前記モータに還流させる少なくとも一つの整流素子とを備える、シートベルトリトラクタを提供する。
This disclosure
A spool for winding up the seat belt;
A motor for rotating the spool;
A drive circuit for driving the motor;
Provided is a seat belt retractor comprising at least one rectifier element that is always connected in parallel to the motor and causes the motor to recirculate a current caused by a counter electromotive force generated in the motor.
 また、本開示は、
 シートベルトを巻き取るためのスプールと、
 前記スプールを回転させるモータと、
 前記モータに並列に常時接続されており、前記モータに発生する逆起電力による電流を前記モータに還流させる少なくとも一つの整流素子とを備える、シートベルト巻き取り機構を提供する。
In addition, this disclosure
A spool for winding up the seat belt;
A motor for rotating the spool;
There is provided a seat belt retracting mechanism including at least one rectifying element that is always connected in parallel to the motor and causes the motor to recirculate a current caused by a counter electromotive force generated in the motor.
 本開示によれば、逆起電力による電流を容易にモータに還流させることが可能となる。 According to the present disclosure, it is possible to easily return the current due to the back electromotive force to the motor.
シートベルト装置の構成の一例を示す図である。It is a figure which shows an example of a structure of a seatbelt apparatus. 駆動回路の第1の構成例を示す図である。It is a figure which shows the 1st structural example of a drive circuit. 駆動回路の第2の構成例を示す図である。It is a figure which shows the 2nd structural example of a drive circuit. 駆動回路の第3の構成例を示す図である。It is a figure which shows the 3rd structural example of a drive circuit. シートベルト巻き取り機構の第1の構成例を示す断面図である。It is sectional drawing which shows the 1st structural example of a seatbelt winding-up mechanism. シートベルト巻き取り機構の第2の構成例を示す分解斜視図である。It is a disassembled perspective view which shows the 2nd structural example of a seatbelt winding-up mechanism. ギヤの係合関係を示す図である。It is a figure which shows the engagement relationship of a gear. モータが時計方向(CW方向)に回転する場合の状態を示す図である。It is a figure which shows a state in case a motor rotates clockwise (CW direction). モータが反時計方向(CCW方向)に回転する場合の状態を示す図である。It is a figure which shows a state in case a motor rotates counterclockwise (CCW direction).
 以下、本開示に係る実施形態を図面を参照して説明する。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings.
 図1は、シートベルト装置100の一例を模式的に示す構成図である。シートベルト装置100は、自動車等の車両13に搭載されるシステムである。シートベルト装置100は、例えば、シートベルト2と、ショルダーアンカー3と、タング4と、バックル5と、シートベルトリトラクタ(以下、単に「リトラクタ」とも称する)10とを備える。リトラクタ10は、シートベルト巻き取り機構(以下、単に「巻き取り機構」とも称する)6と、制御装置1とを備える。 FIG. 1 is a configuration diagram schematically showing an example of a seat belt device 100. The seat belt device 100 is a system mounted on a vehicle 13 such as an automobile. The seat belt device 100 includes, for example, a seat belt 2, a shoulder anchor 3, a tongue 4, a buckle 5, and a seat belt retractor (hereinafter simply referred to as “retractor”) 10. The retractor 10 includes a seat belt winding mechanism (hereinafter also simply referred to as “winding mechanism”) 6 and a control device 1.
 シートベルト2は、車両13のシート11に座る乗員9を拘束する帯状部材の一例であり、巻き取り機構6から引き出し可能に巻き取り機構6に巻き取られる。シートベルト2の一方の端部は、巻き取り機構6に接続され、シートベルト2のもう一方の端部は、車体、プリテンショナ装置又はシート11などに固定される。シートベルトは、ウェビングとも称される。 The seat belt 2 is an example of a belt-like member that restrains the occupant 9 sitting on the seat 11 of the vehicle 13, and is wound around the winding mechanism 6 so that it can be pulled out from the winding mechanism 6. One end of the seat belt 2 is connected to the take-up mechanism 6, and the other end of the seat belt 2 is fixed to the vehicle body, the pretensioner device, the seat 11, or the like. The seat belt is also referred to as webbing.
 ショルダーアンカー3は、巻き取り機構6から引き出されたシートベルト2を乗員9の肩部の方へガイドするガイド部材であり、例えば、車体の床又はシート11に固定される。 The shoulder anchor 3 is a guide member that guides the seat belt 2 pulled out from the winding mechanism 6 toward the shoulder of the occupant 9, and is fixed to the floor of the vehicle body or the seat 11, for example.
 タング4は、ショルダーアンカー3によりガイドされたシートベルト2にスライド可能に取り付けられる部材である。 The tongue 4 is a member that is slidably attached to the seat belt 2 guided by the shoulder anchor 3.
 バックル5は、タング4が着脱可能に係合される部材の一例であり、例えば、車体の床又はシート11に固定される。 The buckle 5 is an example of a member to which the tongue 4 is detachably engaged, and is fixed to the floor of the vehicle body or the seat 11, for example.
 リトラクタ10は、例えば、シート11の近傍の車体又はシート11自体に固定される。リトラクタ10は、シートベルト2の巻き取り又は引き出しを可能にする巻き取り機構6と、巻き取り機構6の動作を制御する制御装置1とを備える。 The retractor 10 is fixed to, for example, the vehicle body near the seat 11 or the seat 11 itself. The retractor 10 includes a winding mechanism 6 that enables the seat belt 2 to be wound or pulled out, and a control device 1 that controls the operation of the winding mechanism 6.
 巻き取り機構6は、シートベルト2を巻き取るためのスプール8と、スプール8を回転させるモータ7と、モータ7とスプール8との間で動力を伝達する動力伝達機構17とを備える。スプール8には、シートベルト2の一端が固定される。モータ7は、スプール8を回転させる駆動力を発生する。モータ7の回転軸は、動力伝達機構17を介して、スプール8の回転軸と連結する。 The winding mechanism 6 includes a spool 8 for winding the seat belt 2, a motor 7 that rotates the spool 8, and a power transmission mechanism 17 that transmits power between the motor 7 and the spool 8. One end of the seat belt 2 is fixed to the spool 8. The motor 7 generates a driving force that rotates the spool 8. The rotation shaft of the motor 7 is connected to the rotation shaft of the spool 8 via the power transmission mechanism 17.
 制御装置1は、モータ7を駆動することによって、巻き取り機構6によるシートベルト2の巻き取り動作(又は、巻き取り動作と引き出し動作の両方)を制御する。制御装置1は、モータ7を駆動する駆動回路14と、駆動回路14の駆動動作を制御する制御回路15とを備える。 The controller 1 controls the winding operation (or both the winding operation and the drawing operation) of the seat belt 2 by the winding mechanism 6 by driving the motor 7. The control device 1 includes a drive circuit 14 that drives the motor 7 and a control circuit 15 that controls the drive operation of the drive circuit 14.
 駆動回路14は、制御回路15から供給される少なくとも一つの制御信号(例えば、PWM(パルス幅変調)の制御信号)に従って、モータ7を駆動する駆動電流をモータ7に流す。駆動回路14の具体例として、4つのスイッチング素子を有するHブリッジ駆動回路、ハーフブリッジ駆動回路、ハイサイドのスイッチング素子のみを有するハイサイド駆動回路、ローサイドのスイッチング素子のみを有するローサイド駆動回路などが挙げられる。駆動回路14の形態は、これらに限られず、要求される仕様に応じて、決められる。 The drive circuit 14 causes a drive current to drive the motor 7 to flow through the motor 7 in accordance with at least one control signal (for example, a PWM (pulse width modulation) control signal) supplied from the control circuit 15. Specific examples of the drive circuit 14 include an H-bridge drive circuit having four switching elements, a half-bridge drive circuit, a high-side drive circuit having only a high-side switching element, and a low-side drive circuit having only a low-side switching element. It is done. The form of the drive circuit 14 is not limited to these, and is determined according to required specifications.
 制御回路15は、モータ7を駆動する駆動電流の大きさ(又は、駆動電流の大きさと向き)を制御する少なくとも一つの制御信号(例えば、PWMの制御信号)を、駆動回路14に対して出力する。制御回路15の各機能は、メモリに記憶されたプログラムに従ってCPU(Central Processing Unit)が動作することにより実現される。制御回路15の具体例として、CPUとメモリとを備えるマイクロコンピュータなどが挙げられる。 The control circuit 15 outputs at least one control signal (for example, a PWM control signal) for controlling the magnitude (or magnitude and direction) of the drive current for driving the motor 7 to the drive circuit 14. To do. Each function of the control circuit 15 is realized by operating a CPU (Central Processing Unit) according to a program stored in the memory. A specific example of the control circuit 15 includes a microcomputer having a CPU and a memory.
 図2は、駆動回路14の第1の構成例を示す図である。図2に示される駆動回路14Aは、4つのスイッチング素子21,22,23,24を有し、モータ7に流す駆動電流の方向を切り替え可能なHブリッジ駆動回路である。モータ7は、第1の端子7aと第2の端子7bとの間に接続されるコイルを内蔵する。 FIG. 2 is a diagram illustrating a first configuration example of the drive circuit 14. The drive circuit 14 </ b> A shown in FIG. 2 is an H-bridge drive circuit that has four switching elements 21, 22, 23, and 24 and can switch the direction of the drive current that flows to the motor 7. The motor 7 incorporates a coil connected between the first terminal 7a and the second terminal 7b.
 駆動回路14Aは、モータ7の第1の端子7aに接続される第1の接続点12と、モータ7の第2の端子7bに接続される第2の接続点18とを有し、モータ7に第1の接続点12及び第2の接続点18を介して駆動電流を流す。第1の接続点12は、スイッチング素子21とスイッチング素子22とが接続される中間ノードであり、第2の接続点18は、スイッチング素子23とスイッチング素子24とが接続される中間ノードである。 The drive circuit 14 </ b> A includes a first connection point 12 connected to the first terminal 7 a of the motor 7 and a second connection point 18 connected to the second terminal 7 b of the motor 7. A drive current is passed through the first connection point 12 and the second connection point 18. The first connection point 12 is an intermediate node to which the switching element 21 and the switching element 22 are connected, and the second connection point 18 is an intermediate node to which the switching element 23 and the switching element 24 are connected.
 駆動回路14Aは、電源VBとグランド(GND)との間に接続されており、モータ7に対して電源VB側に接続されるハイサイドのスイッチング素子21,23と、モータ7に対してグランド側に接続されるローサイドのスイッチング素子22,24とを備える。スイッチング素子21,22,23,24は、オン/オフ動作する半導体素子であり、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の電圧制御型のトランジスタでもよいし、電流制御型のバイポーラトランジスタでもよい。図2には、スイッチング素子21,22,23,24がNチャネル型のMOSFETである形態が例示されている。 The drive circuit 14 </ b> A is connected between the power supply VB and the ground (GND). The high- side switching elements 21 and 23 connected to the power supply VB side with respect to the motor 7 and the ground side with respect to the motor 7. Low- side switching elements 22 and 24 connected to each other. The switching elements 21, 22, 23, and 24 are semiconductor elements that are turned on / off. For example, the switching elements 21, 22, 23, and 24 may be voltage controlled transistors such as MOSFETs (Metal / Oxide / Semiconductor / Field / Effect / Transistors) or current controlled bipolar transistors. Good. FIG. 2 illustrates a mode in which the switching elements 21, 22, 23, and 24 are N-channel MOSFETs.
 スイッチング素子21は、第1の端子7aに接続される第1のハイサイドスイッチング素子の一例である。スイッチング素子21は、電源VB側に接続される電極(ドレイン又はコレクタ)と、第1の端子7aに第1の接続点12を介して接続される電極(ソース又はエミッタ)と、制御回路15に接続される電極(ゲート又はベース)とを有するハイサイドアームである。 The switching element 21 is an example of a first high-side switching element connected to the first terminal 7a. The switching element 21 includes an electrode (drain or collector) connected to the power supply VB side, an electrode (source or emitter) connected to the first terminal 7 a via the first connection point 12, and the control circuit 15. A high side arm having an electrode (gate or base) to be connected.
 スイッチング素子22は、第1の端子7aに接続される第1のローサイドスイッチング素子の一例である。スイッチング素子22は、グランド側に接続される電極(ソース又はエミッタ)と、第1の端子7aに第1の接続点12を介して接続される電極(ドレイン又はコレクタ)と、制御回路15に接続される電極(ゲート又はベース)とを有するローサイドアームである。 The switching element 22 is an example of a first low-side switching element connected to the first terminal 7a. The switching element 22 is connected to an electrode (source or emitter) connected to the ground side, an electrode (drain or collector) connected to the first terminal 7 a via the first connection point 12, and the control circuit 15. A low-side arm having an electrode (gate or base) to be operated.
 スイッチング素子23は、第2の端子7bに接続される第2のハイサイドスイッチング素子の一例である。スイッチング素子23は、電源VB側に接続される電極(ドレイン又はコレクタ)と、第2の端子7bに第2の接続点18を介して接続される電極(ソース又はエミッタ)と、制御回路15に接続される電極(ゲート又はベース)とを有するハイサイドアームである。 The switching element 23 is an example of a second high-side switching element connected to the second terminal 7b. The switching element 23 includes an electrode (drain or collector) connected to the power supply VB side, an electrode (source or emitter) connected to the second terminal 7 b via the second connection point 18, and the control circuit 15. A high side arm having an electrode (gate or base) to be connected.
 スイッチング素子24は、第2の端子7bに接続される第2のローサイドスイッチング素子の一例である。スイッチング素子24は、グランド側に接続される電極(ソース又はエミッタ)と、第2の端子7bに第2の接続点18を介して接続される電極(ドレイン又はコレクタ)と、制御回路15に接続される電極(ゲート又はソース)とを有するローサイドアームである。 The switching element 24 is an example of a second low-side switching element connected to the second terminal 7b. The switching element 24 is connected to an electrode (source or emitter) connected to the ground side, an electrode (drain or collector) connected to the second terminal 7 b via the second connection point 18, and the control circuit 15. A low-side arm having an electrode (gate or source) to be operated.
 ダイオード31,32,33,34は、それぞれに対応するスイッチング素子21,22,23,24のボディダイオードでもよいし、それぞれに対応するスイッチング素子21,22,23,24に並列に追加接続された整流素子でもよい。 The diodes 31, 32, 33, and 34 may be body diodes of the switching elements 21, 22, 23, and 24 corresponding to the diodes 31, 32, 33, and 34, respectively. A rectifying element may be used.
 電流測定回路16は、駆動回路14Aに流れる電流を測定し、その測定結果を制御回路15に対して出力する電流測定部である。電流測定回路16は、例えば、駆動回路14Aのローサイドのスイッチング素子22,24とグランドとの間の電流経路に直列に挿入された抵抗によって、駆動回路14Aに流れる電流の電流量を測定する。 The current measurement circuit 16 is a current measurement unit that measures the current flowing through the drive circuit 14A and outputs the measurement result to the control circuit 15. The current measurement circuit 16 measures the amount of current flowing through the drive circuit 14A using, for example, a resistor inserted in series in the current path between the low- side switching elements 22 and 24 of the drive circuit 14A and the ground.
 なお、電流測定回路16は、例えば、駆動回路14Aのハイサイドのスイッチング素子21,23と電源VBとの間の電流経路に直列に挿入された抵抗によって、駆動回路14Aに流れる電流の電流量を測定してもよい。電流測定方式は、これらに限られない。 Note that the current measurement circuit 16 determines the amount of current flowing through the drive circuit 14A by, for example, a resistor inserted in series in the current path between the high- side switching elements 21 and 23 of the drive circuit 14A and the power supply VB. You may measure. The current measurement method is not limited to these.
 制御回路15は、電流測定回路16による電流測定結果等を用いて、駆動回路14Aを構成する4つのスイッチング素子21,22,23,24を駆動する駆動制御部である。 The control circuit 15 is a drive control unit that drives the four switching elements 21, 22, 23, and 24 that constitute the drive circuit 14 </ b> A using the current measurement result by the current measurement circuit 16.
 制御回路15は、シートベルト2をスプール8に巻き取らせるモード(巻き取りモード)では、シートベルト2の巻き取り方向に対応する正転方向にモータ7が回転(正回転)するように、駆動回路14Aの各スイッチング素子を制御する。例えば、制御回路15は、モータ7を正回転させる巻き取りモードでは、スイッチング素子23を所定のデューティ比のPWM制御でオン/オフさせ、スイッチング素子21,24を常時オフさせ、スイッチング素子22を常時オンさせる。このとき、スイッチング素子23のオフ時の還流電流による発熱を抑えるため、制御回路15は、スイッチング素子23のオフ時にスイッチング素子24をオンさせてもよい。あるいは、制御回路15は、モータ7を正回転させる巻き取りモードでは、スイッチング素子22を所定のデューティ比のPWM制御でオン/オフさせ、スイッチング素子21,24を常時オフさせ、スイッチング素子23を常時オンさせてもよい。このとき、スイッチング素子22のオフ時の還流電流による発熱を抑えるため、制御回路15は、スイッチング素子22のオフ時にスイッチング素子21をオンさせてもよい。 In the mode (winding mode) in which the seat belt 2 is wound around the spool 8, the control circuit 15 is driven so that the motor 7 rotates (forward rotation) in the forward rotation direction corresponding to the winding direction of the seat belt 2. Each switching element of the circuit 14A is controlled. For example, in the winding mode in which the motor 7 is normally rotated, the control circuit 15 turns on / off the switching element 23 by PWM control with a predetermined duty ratio, always turns off the switching elements 21, 24, and keeps the switching element 22 always on. Turn it on. At this time, the control circuit 15 may turn on the switching element 24 when the switching element 23 is turned off in order to suppress heat generation due to the return current when the switching element 23 is turned off. Alternatively, in the winding mode in which the motor 7 is rotated forward, the control circuit 15 turns on / off the switching element 22 by PWM control with a predetermined duty ratio, always turns off the switching elements 21, 24, and always turns on the switching element 23. It may be turned on. At this time, the control circuit 15 may turn on the switching element 21 when the switching element 22 is turned off in order to suppress heat generation due to the return current when the switching element 22 is turned off.
 各スイッチング素子がこのように制御されることにより、駆動回路14Aは、シートベルト2の巻き取り方向にスプール8を回転させる方向(正転方向)に、モータ7を回転(正回転)させることができる。モータ7の回転軸が正回転すると、その正回転の駆動力は、動力伝達機構17によって、スプール8に伝達される。これにより、スプール8は、シートベルト2を巻き取る方向に回転するので、シートベルト2はスプール8に巻き取られる。 By controlling each switching element in this way, the drive circuit 14A can rotate (forward rotation) the motor 7 in the direction (forward rotation direction) in which the spool 8 rotates in the winding direction of the seat belt 2. it can. When the rotation shaft of the motor 7 rotates in the forward direction, the driving force for the forward rotation is transmitted to the spool 8 by the power transmission mechanism 17. As a result, the spool 8 rotates in the direction in which the seat belt 2 is wound, so that the seat belt 2 is wound around the spool 8.
 一方、制御回路15は、シートベルト2をスプール8から引き出させるモード(引き出しモード)では、シートベルト2の引き出し方向に対応する逆転方向にモータ7が回転(逆回転)するように、駆動回路14Aの各スイッチング素子を制御する。例えば、制御回路15は、モータ7を逆回転させる引き出しモードでは、スイッチング素子21を所定のデューティ比のPWM制御でオン/オフさせ、スイッチング素子22,23を常時オフさせ、スイッチング素子24を常時オンさせる。このとき、スイッチング素子21のオフ時の還流電流による発熱を抑えるため、制御回路15は、スイッチング素子21のオフ時にスイッチング素子22をオンさせてもよい。あるいは、制御回路15は、モータ7を逆回転させる引き出しモードでは、スイッチング素子24を所定のデューティ比のPWM制御でオン/オフさせ、スイッチング素子22,23を常時オフさせ、スイッチング素子21を常時オンさせてもよい。このとき、スイッチング素子24のオフ時の還流電流による発熱を抑えるため、制御回路15は、スイッチング素子24のオフ時にスイッチング素子23をオンさせてもよい。 On the other hand, in the mode (drawing mode) in which the seat belt 2 is pulled out from the spool 8, the control circuit 15 drives the driving circuit 14A so that the motor 7 rotates (reversely rotates) in the reverse direction corresponding to the pulling direction of the seat belt 2. Each switching element is controlled. For example, in the drawer mode in which the motor 7 rotates in the reverse direction, the control circuit 15 turns on / off the switching element 21 by PWM control with a predetermined duty ratio, always turns off the switching elements 22, 23, and always turns on the switching element 24. Let At this time, the control circuit 15 may turn on the switching element 22 when the switching element 21 is turned off in order to suppress heat generation due to the return current when the switching element 21 is turned off. Alternatively, in the pull-out mode in which the motor 7 is rotated in the reverse direction, the control circuit 15 turns on / off the switching element 24 by PWM control with a predetermined duty ratio, always turns off the switching elements 22 and 23, and always turns on the switching element 21. You may let them. At this time, the control circuit 15 may turn on the switching element 23 when the switching element 24 is turned off in order to suppress heat generation due to the return current when the switching element 24 is turned off.
 各スイッチング素子がこのように制御されることにより、駆動回路14Aは、シートベルト2の引き出し方向にスプール8を回転させる方向(逆転方向)に、モータ7を回転(逆回転)させることができる。モータ7の回転軸が逆回転すると、その逆回転の駆動力は、動力伝達機構17によって、スプール8に伝達される。これにより、スプール8は、シートベルト2を引き出す方向に回転するので、シートベルト2はスプール8から引き出される。 By controlling each switching element in this way, the drive circuit 14A can rotate (reversely rotate) the motor 7 in the direction (reverse direction) in which the spool 8 is rotated in the pull-out direction of the seat belt 2. When the rotation shaft of the motor 7 rotates in the reverse direction, the driving force of the reverse rotation is transmitted to the spool 8 by the power transmission mechanism 17. As a result, the spool 8 rotates in the direction in which the seat belt 2 is pulled out, so that the seat belt 2 is pulled out from the spool 8.
 ところで、図2に示される構成では、モータ7に並列に常時接続される還流回路40が設けられている。モータ7の回転軸とスプール8の回転軸とが動力伝達機構17によって連結されている状態において、スプール8に加えられる外力によってモータ7が回されると、モータ7に逆起電力が発生する。還流回路40は、この逆起電力による電流をモータ7に還流させることで、モータ7の回転を抑制しブレーキをかけるものである。 Incidentally, in the configuration shown in FIG. 2, a reflux circuit 40 that is always connected in parallel to the motor 7 is provided. In a state where the rotation shaft of the motor 7 and the rotation shaft of the spool 8 are connected by the power transmission mechanism 17, when the motor 7 is rotated by an external force applied to the spool 8, a counter electromotive force is generated in the motor 7. The recirculation circuit 40 recirculates the current caused by the counter electromotive force to the motor 7 to suppress the rotation of the motor 7 and apply a brake.
 還流回路40がモータ7の回転を抑制することで、例えば、車両衝突時に乗員9に作用する衝突エネルギーを吸収することが可能となる。また、還流回路40がモータ7に並列に常時接続されていることにより、逆起電力による電流をモータ7に還流させるための制御が不要となるので、逆起電力による電流を容易にモータ7に還流させることが可能となる。 The recirculation circuit 40 suppresses the rotation of the motor 7 so that, for example, it is possible to absorb the collision energy that acts on the occupant 9 when the vehicle collides. Further, since the return circuit 40 is always connected in parallel to the motor 7, it is not necessary to control the current caused by the back electromotive force to flow back to the motor 7. Therefore, the current caused by the back electromotive force can be easily supplied to the motor 7. It can be refluxed.
 さらに、逆起電力による電流をモータ7に還流させるための制御が必要な構成では、電源VBが衝突等により失陥すると、当該制御を継続することが難しくなり、その結果、逆起電力による電流をモータ7に還流させることも難しくなる。これに対し、本実施形態では、逆起電力による電流をモータ7に還流させるための制御が不要である。よって、電源VBが衝突等により失陥しても、逆起電力による電流をモータ7に還流させることができ、車両衝突時に乗員9に作用する衝突エネルギーを吸収することが可能となる。 Further, in a configuration that requires control for returning the current due to the counter electromotive force to the motor 7, if the power supply VB fails due to a collision or the like, it becomes difficult to continue the control. It is also difficult to return the motor to the motor 7. On the other hand, in the present embodiment, there is no need for control for returning the current caused by the counter electromotive force to the motor 7. Therefore, even if the power supply VB is lost due to a collision or the like, the current caused by the counter electromotive force can be returned to the motor 7 and the collision energy acting on the occupant 9 at the time of the vehicle collision can be absorbed.
 例えば、リトラクタ10外部の車載コンピュータは、所定値以上の減速度が車両13に加わる又は加わる可能性がある緊急時に、シートベルト2の乗員9に対する拘束力制御を開始するための指令信号を送信する。 For example, the in-vehicle computer outside the retractor 10 transmits a command signal for starting restraint force control for the occupant 9 of the seat belt 2 in an emergency in which a deceleration of a predetermined value or more is applied to the vehicle 13 or may be applied. .
 所定値以上の減速度が車両13に加わる緊急時の具体例として、自動又は運転者のブレーキ操作で車両13を所定値以上の減速度で減速させる急ブレーキが作動する時、運転者のブレーキ操作が無くても車両13を所定値以上の減速度で自動で減速させる自動ブレーキが作動する時などが挙げられる。所定値以上の減速度が車両13に加わる可能性がある緊急時の具体例として、車両13が衝突する可能性があると判定される時などが挙げられる。 As a specific example of an emergency in which a deceleration greater than a predetermined value is applied to the vehicle 13, when a sudden brake that decelerates the vehicle 13 at a deceleration greater than a predetermined value is activated automatically or by a driver's brake operation, the driver's brake operation Even when there is not, there is a case where an automatic brake for automatically decelerating the vehicle 13 at a deceleration greater than a predetermined value is activated. A specific example of an emergency in which a deceleration greater than a predetermined value may be applied to the vehicle 13 includes a time when it is determined that the vehicle 13 may collide.
 制御回路15は、タング4がバックル5に係合されシートベルト2が乗員9に装着された状態において、リトラクタ10外部の車載コンピュータからの指令信号を受信する等の条件が成立すると、シートベルト2の乗員9に対する拘束力制御を開始する。 When a condition such as receiving a command signal from an in-vehicle computer outside the retractor 10 is satisfied in a state where the tongue 4 is engaged with the buckle 5 and the seat belt 2 is attached to the occupant 9, the control circuit 15 The restraint force control for the passenger 9 is started.
 制御回路15は、衝突時の衝撃に準備するため、シートベルト2の巻き取り方向に対応する正転方向にモータ7が回転(正回転)するように、駆動回路14Aの各スイッチング素子を制御する。モータ7の回転軸が正回転すると、その正回転の駆動力は、動力伝達機構17によって、スプール8に伝達される。これにより、スプール8は、シートベルト2を巻き取る方向に回転するので、シートベルト2はスプール8に巻き取られる。その結果、シートベルト2による乗員9に対する拘束力は上がる。 The control circuit 15 controls each switching element of the drive circuit 14A so that the motor 7 rotates (forward rotation) in the forward rotation direction corresponding to the winding direction of the seat belt 2 in order to prepare for an impact at the time of collision. . When the rotation shaft of the motor 7 rotates in the forward direction, the driving force for the forward rotation is transmitted to the spool 8 by the power transmission mechanism 17. As a result, the spool 8 rotates in the direction in which the seat belt 2 is wound, so that the seat belt 2 is wound around the spool 8. As a result, the restraining force on the occupant 9 by the seat belt 2 increases.
 その後、乗員9が衝突時の慣性により車両前方に移動すると、乗員9の車両前方への慣性力により、シートベルト2がスプール8から引き出される。シートベルト2がスプール8から引き出される方向にスプール8が回転すると、その回転力は、動力伝達機構17によって、モータ7の回転軸に伝達される。これにより、モータ7の回転軸は、逆転方向に回されるので、モータ7に逆起電力が発生する。この逆起電力の発生によって、第1の端子7aの電位が第2の端子7bの電位よりも相対的に高くなる(言い換えれば、第2の端子7bの電位が第1の端子7aの電位よりも相対的に低くなる)。 Thereafter, when the occupant 9 moves forward of the vehicle due to inertia at the time of the collision, the seat belt 2 is pulled out of the spool 8 by the inertial force of the occupant 9 toward the front of the vehicle. When the spool 8 rotates in the direction in which the seat belt 2 is pulled out from the spool 8, the rotational force is transmitted to the rotating shaft of the motor 7 by the power transmission mechanism 17. As a result, the rotating shaft of the motor 7 is rotated in the reverse direction, so that a counter electromotive force is generated in the motor 7. Due to the generation of the counter electromotive force, the potential of the first terminal 7a becomes relatively higher than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b is higher than the potential of the first terminal 7a). Is also relatively low).
 図2の構成では、第1の端子7aと第2の端子7bとの間の電位差が、ダイオード42の順方向電圧とツェナーダイオード41のツェナー電圧との和を超えると、逆起電力による電流は、第1の端子7a、還流回路40、第2の端子7b、モータ7の順路で還流する。このように、還流回路40は、逆起電力による電流をモータ7に還流させることで、シートベルト2の引き出し方向にスプール8を回転させる逆転方向にモータ7が回転することを抑制することができる。その結果、車両衝突時に乗員9に作用する衝突エネルギーを吸収することが可能となる。 In the configuration of FIG. 2, when the potential difference between the first terminal 7a and the second terminal 7b exceeds the sum of the forward voltage of the diode 42 and the Zener voltage of the Zener diode 41, the current due to the back electromotive force is The first terminal 7 a, the reflux circuit 40, the second terminal 7 b, and the motor 7 circulate in the normal path. In this way, the reflux circuit 40 can suppress the rotation of the motor 7 in the reverse direction in which the spool 8 is rotated in the pull-out direction of the seat belt 2 by causing the motor 7 to return the current due to the counter electromotive force. . As a result, it is possible to absorb the collision energy that acts on the occupant 9 when the vehicle collides.
 還流回路40は、ダイオード42と、ツェナーダイオード41と、抵抗素子43とが直列に接続される直列構成を有する。ダイオード42と、ツェナーダイオード41と、抵抗素子43とが、逆起電力による電流が流れる電流経路に直列に挿入されている。ダイオード42と、ツェナーダイオード41と、抵抗素子43とが直列に挿入されている位置は、互いに置換されてもよい。 The reflux circuit 40 has a series configuration in which a diode 42, a Zener diode 41, and a resistance element 43 are connected in series. A diode 42, a Zener diode 41, and a resistance element 43 are inserted in series in a current path through which a current caused by the counter electromotive force flows. The positions where the diode 42, the Zener diode 41, and the resistance element 43 are inserted in series may be replaced with each other.
 ダイオード42は、モータ7に並列に常時接続されており、モータ7に発生する逆起電力による電流をモータ7に還流させる整流素子である。第1の端子7a側をアノードとし、第2の端子7b側をカソードとするダイオード42が、モータ7に並列に常時接続されている。この向きに接続されるダイオード42により、シートベルト2の巻き取り方向に対応する正転方向にモータ7を回転させる駆動電流が還流回路40に流れることを防止することができる。 The diode 42 is a rectifying element that is always connected in parallel to the motor 7 and causes the motor 7 to return a current caused by the counter electromotive force generated in the motor 7. A diode 42 having an anode on the first terminal 7 a side and a cathode on the second terminal 7 b side is always connected in parallel to the motor 7. The diode 42 connected in this direction can prevent a drive current that rotates the motor 7 in the forward rotation direction corresponding to the winding direction of the seat belt 2 from flowing into the return circuit 40.
 ツェナーダイオード41も、モータ7に並列に常時接続されており、モータ7に発生する逆起電力による電流をモータ7に還流させる整流素子である。ツェナーダイオード41は、ダイオード42に直列に接続されている。第1の端子7a側をカソードとし、第2の端子7b側をアノードとするツェナーダイオード41が、モータ7に並列に常時接続されている。この向きに接続されるツェナーダイオード41により、シートベルト2の引き出し方向に対応する逆転方向にモータ7を回転させる駆動電流が還流回路40に流れることを防止することができる。ツェナーダイオード41のツェナー電圧は、電源VBとグランドとの間の電源電圧よりも大きな値に設定される。 The zener diode 41 is also always connected in parallel to the motor 7, and is a rectifying element that causes the motor 7 to return current due to the counter electromotive force generated in the motor 7. Zener diode 41 is connected in series to diode 42. A Zener diode 41 having a cathode on the first terminal 7 a side and an anode on the second terminal 7 b side is always connected in parallel to the motor 7. The zener diode 41 connected in this direction can prevent the drive current that rotates the motor 7 in the reverse direction corresponding to the pulling-out direction of the seat belt 2 from flowing into the reflux circuit 40. The Zener voltage of the Zener diode 41 is set to a value larger than the power supply voltage between the power supply VB and the ground.
 抵抗素子43は、ツェナーダイオード41に直列に接続されている。抵抗素子43により、還流回路40に逆起電力により流れる還流電流が小さくなるので、モータ7の回転を抑制する力を弱めることができる。つまり、抵抗素子43の抵抗値を変えることによって、モータ7の回転を抑制する力を調整することができる。なお、抵抗素子43は、無くてもよい。 The resistance element 43 is connected to the Zener diode 41 in series. Because the resistance element 43 reduces the return current flowing in the return circuit 40 due to the back electromotive force, the force for suppressing the rotation of the motor 7 can be weakened. That is, the force for suppressing the rotation of the motor 7 can be adjusted by changing the resistance value of the resistance element 43. Note that the resistance element 43 may be omitted.
 また、逆起電力の発生によって、第1の端子7aの電位が第2の端子7bの電位よりも相対的に低くなる(言い換えれば、第2の端子7bの電位が第1の端子7aの電位よりも相対的に高くなる)ことが想定される場合がある。この場合、ダイオード42を、第1の端子7a側をアノードとし第2の端子7b側をカソードとするツェナーダイオードに置換することが好ましい。ダイオード42をツェナーダイオードに置換した構成では、第1の端子7aの電位が第2の端子7bの電位よりも相対的に低くなる逆起電力が発生すると、その逆起電力による電流は、第2の端子7b、還流回路40、第1の端子7a、モータ7の順路で還流する。この置換したツェナーダイオードのツェナー電圧は、電源VBとグランドとの間の電源電圧よりも大きな値に設定される。このように、図2に示される駆動回路14Aにおいて、ダイオード42もツェナーダイオードに変更することによって、両方向の逆起電力の発生に対応できる点で、より好適な構成を実現できる。 Further, due to the occurrence of the back electromotive force, the potential of the first terminal 7a becomes relatively lower than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b becomes the potential of the first terminal 7a). May be assumed to be relatively higher). In this case, it is preferable to replace the diode 42 with a Zener diode having the first terminal 7a side as an anode and the second terminal 7b side as a cathode. In the configuration in which the diode 42 is replaced with a Zener diode, when a back electromotive force is generated in which the potential of the first terminal 7a is relatively lower than the potential of the second terminal 7b, the current due to the back electromotive force is The terminal 7 b, the reflux circuit 40, the first terminal 7 a, and the motor 7 are circulated in the normal path. The Zener voltage of the replaced Zener diode is set to a value larger than the power supply voltage between the power supply VB and the ground. In this way, in the drive circuit 14A shown in FIG. 2, the diode 42 is also changed to a Zener diode, whereby a more preferable configuration can be realized in that it can cope with generation of counter electromotive force in both directions.
 図3は、駆動回路14の第2の構成例を示す図である。第1の構成例と同様の点については、その説明を省略する。図3に示される駆動回路14Bは、ハイサイドのスイッチング素子25を有し、モータ7に一方向のみの駆動電流を供給可能なハイサイド駆動回路である。駆動回路14Bは、例えば、シートベルト2の引き出し方向に対応する逆転方向にモータ7を回転させる必要がない場合に使用され、シートベルト2の巻き取り方向に対応する正転方向にモータ7を回転させる駆動電流をモータ7に供給できる。 FIG. 3 is a diagram illustrating a second configuration example of the drive circuit 14. The description of the same points as in the first configuration example is omitted. The drive circuit 14B shown in FIG. 3 has a high-side switching element 25 and is a high-side drive circuit capable of supplying a drive current only in one direction to the motor 7. The drive circuit 14B is used when, for example, it is not necessary to rotate the motor 7 in the reverse rotation direction corresponding to the pulling direction of the seat belt 2, and the motor 7 is rotated in the forward rotation direction corresponding to the winding direction of the seat belt 2. The driving current to be supplied can be supplied to the motor 7.
 駆動回路14Bは、電源VBとグランド(GND)との間に接続されており、モータ7に対して電源VB側に接続されるハイサイドのスイッチング素子25を備える。スイッチング素子25は、電源VB側に接続される電極(ドレイン又はコレクタ)と、第2の端子7bに接続される電極(ソース又はエミッタ)と、制御回路15に接続される電極(ゲート又はベース)とを有するハイサイドアームである。第1の端子7aは、グランドに接続される。ダイオード35は、スイッチング素子25のボディダイオードでもよいし、スイッチング素子25に並列に追加接続された整流素子でもよい。 The drive circuit 14B is connected between the power supply VB and the ground (GND), and includes a high-side switching element 25 connected to the power supply VB side with respect to the motor 7. The switching element 25 includes an electrode (drain or collector) connected to the power supply VB side, an electrode (source or emitter) connected to the second terminal 7b, and an electrode (gate or base) connected to the control circuit 15 And a high side arm. The first terminal 7a is connected to the ground. The diode 35 may be a body diode of the switching element 25 or a rectifying element additionally connected to the switching element 25 in parallel.
 制御回路15は、シートベルト2をスプール8に巻き取らせるモード(巻き取りモード)では、シートベルト2の巻き取り方向に対応する正転方向にモータ7が回転(正回転)するように、駆動回路14Bのスイッチング素子25を制御する。例えば、制御回路15は、モータ7を正回転させる巻き取りモードでは、スイッチング素子25を所定のデューティ比のPWM制御でオン/オフさせる。 In the mode (winding mode) in which the seat belt 2 is wound around the spool 8, the control circuit 15 is driven so that the motor 7 rotates (forward rotation) in the forward rotation direction corresponding to the winding direction of the seat belt 2. The switching element 25 of the circuit 14B is controlled. For example, in the winding mode in which the motor 7 is rotated forward, the control circuit 15 turns on / off the switching element 25 by PWM control with a predetermined duty ratio.
 スイッチング素子25がこのように制御されることにより、駆動回路14Bは、シートベルト2の巻き取り方向にスプール8を回転させる方向(正転方向)に、モータ7を回転(正回転)させることができる。モータ7の回転軸が正回転すると、その正回転の駆動力は、動力伝達機構17によって、スプール8に伝達される。これにより、スプール8は、シートベルト2を巻き取る方向に回転するので、シートベルト2はスプール8に巻き取られる。 By controlling the switching element 25 in this way, the drive circuit 14B can rotate (forward rotation) the motor 7 in the direction (forward rotation direction) in which the spool 8 rotates in the winding direction of the seat belt 2. it can. When the rotation shaft of the motor 7 rotates in the forward direction, the driving force for the forward rotation is transmitted to the spool 8 by the power transmission mechanism 17. As a result, the spool 8 rotates in the direction in which the seat belt 2 is wound, so that the seat belt 2 is wound around the spool 8.
 図3に示される構成では、モータ7に並列に常時接続される還流回路45が設けられている。図3の構成では、逆起電力の発生によって、第1の端子7aの電位が第2の端子7bの電位よりも相対的に高くなる(言い換えれば、第2の端子7bの電位が第1の端子7aの電位よりも相対的に低くなる)。したがって、第1の端子7aと第2の端子7bとの間の電位差が、ツェナーダイオード44の順方向電圧を超えると、逆起電力による電流は、第1の端子7a、還流回路45、第2の端子7b、モータ7の順路で還流する。このように、還流回路45は、逆起電力による電流をモータ7に還流させることで、シートベルト2の引き出し方向にスプール8を回転させる逆転方向にモータ7が回転することを抑制することができる。その結果、車両衝突時に乗員9に作用する衝突エネルギーを吸収することが可能となる。 3, a reflux circuit 45 that is always connected in parallel to the motor 7 is provided. In the configuration of FIG. 3, the potential of the first terminal 7a becomes relatively higher than the potential of the second terminal 7b due to the occurrence of the back electromotive force (in other words, the potential of the second terminal 7b is the first potential). It becomes relatively lower than the potential of the terminal 7a). Therefore, when the potential difference between the first terminal 7a and the second terminal 7b exceeds the forward voltage of the Zener diode 44, the current caused by the back electromotive force is changed to the first terminal 7a, the reflux circuit 45, the second The terminal 7b and the motor 7 are recirculated in the normal path. In this way, the return circuit 45 can suppress the rotation of the motor 7 in the reverse direction that rotates the spool 8 in the pull-out direction of the seat belt 2 by returning the current due to the counter electromotive force to the motor 7. . As a result, it is possible to absorb the collision energy that acts on the occupant 9 when the vehicle collides.
 還流回路45は、ツェナーダイオード44を有する。ツェナーダイオード44が、逆起電力による電流が流れる電流経路に直列に挿入されている。ツェナーダイオード44は、モータ7に並列に常時接続されており、モータ7に発生する逆起電力による電流をモータ7に還流させる整流素子である。第1の端子7a側をアノードとし、第2の端子7b側をカソードとするツェナーダイオード44が、モータ7に並列に常時接続されている。このような向きで接続されたツェナーダイオード44により、シートベルト2の巻き取り方向に対応する正転方向にモータ7を回転させる駆動電流が還流回路45に流れることを防止することができる。 The reflux circuit 45 has a Zener diode 44. A Zener diode 44 is inserted in series in a current path through which a current caused by the counter electromotive force flows. The Zener diode 44 is a rectifying element that is always connected in parallel to the motor 7 and causes the motor 7 to return a current caused by the counter electromotive force generated in the motor 7. A Zener diode 44 having the first terminal 7 a side as an anode and the second terminal 7 b side as a cathode is always connected to the motor 7 in parallel. The zener diode 44 connected in such a direction can prevent the drive current that rotates the motor 7 in the forward rotation direction corresponding to the winding direction of the seat belt 2 from flowing into the reflux circuit 45.
 また、逆起電力の発生によって、第1の端子7aの電位が第2の端子7bの電位よりも相対的に低くなる(言い換えれば、第2の端子7bの電位が第1の端子7aの電位よりも相対的に高くなる)ことが想定される場合がある。この場合、第1の端子7aと第2の端子7bとの間の電位差が、ツェナーダイオード44のツェナー電圧を超えると、逆起電力による電流は、第2の端子7b、還流回路40、第1の端子7a、モータ7の順路で還流する。ツェナーダイオード44のツェナー電圧は、電源VBとグランドとの間の電源電圧よりも大きな値に設定される。したがって、図3に示される駆動回路14Bによれば、両方向の逆起電力に対応することも可能である。 Further, due to the occurrence of the back electromotive force, the potential of the first terminal 7a becomes relatively lower than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b becomes the potential of the first terminal 7a). May be assumed to be relatively higher). In this case, when the potential difference between the first terminal 7a and the second terminal 7b exceeds the Zener voltage of the Zener diode 44, the current caused by the back electromotive force is changed to the second terminal 7b, the reflux circuit 40, the first The terminal 7a and the motor 7 are recirculated in the normal path. The Zener voltage of the Zener diode 44 is set to a value larger than the power supply voltage between the power supply VB and the ground. Therefore, according to the drive circuit 14B shown in FIG. 3, it is possible to cope with the counter electromotive force in both directions.
 図4は、駆動回路14の第3の構成例を示す図である。第1及び第2の構成例と同様の点については、その説明を省略する。図4に示される駆動回路14Cでは、モータ7に並列に常時接続される還流回路49が設けられている。還流回路49は、図3の還流回路45に対して、ツェナーダイオード47と抵抗素子48とが追加された構成を有する。 FIG. 4 is a diagram illustrating a third configuration example of the drive circuit 14. The description of the same points as in the first and second configuration examples will be omitted. In the drive circuit 14 </ b> C shown in FIG. 4, a reflux circuit 49 that is always connected in parallel to the motor 7 is provided. The reflux circuit 49 has a configuration in which a Zener diode 47 and a resistance element 48 are added to the reflux circuit 45 of FIG.
 ツェナーダイオード47は、モータ7に並列に常時接続されており、モータ7に発生する逆起電力による電流をモータ7に還流させる整流素子である。ツェナーダイオード47は、ダイオード46に直列に接続されている。第1の端子7a側をカソードとし、第2の端子7b側をアノードとするツェナーダイオード47が、モータ7に並列に常時接続されている。ツェナーダイオード47のツェナー電圧は、電源VBとグランドとの間の電源電圧よりも大きな値に設定される。 The zener diode 47 is always connected in parallel to the motor 7 and is a rectifying element that causes the motor 7 to return a current caused by the counter electromotive force generated in the motor 7. Zener diode 47 is connected in series with diode 46. A Zener diode 47 having the first terminal 7 a side as a cathode and the second terminal 7 b side as an anode is always connected to the motor 7 in parallel. The Zener voltage of the Zener diode 47 is set to a value larger than the power supply voltage between the power supply VB and the ground.
 図4の構成では、第1の端子7aと第2の端子7bとの間の電位差が、ダイオード46の順方向電圧とツェナーダイオード47のツェナー電圧との和を超えると、逆起電力による電流は、第1の端子7a、還流回路40、第2の端子7b、モータ7の順路で還流する。このように、還流回路49は、逆起電力による電流をモータ7に還流させることで、シートベルト2の引き出し方向にスプール8を回転させる逆転方向にモータ7が回転することを抑制することができる。その結果、車両衝突時に乗員9に作用する衝突エネルギーを吸収することが可能となる。 In the configuration of FIG. 4, if the potential difference between the first terminal 7 a and the second terminal 7 b exceeds the sum of the forward voltage of the diode 46 and the Zener voltage of the Zener diode 47, the current due to the back electromotive force is The first terminal 7 a, the reflux circuit 40, the second terminal 7 b, and the motor 7 circulate in the normal path. In this way, the return circuit 49 can suppress the rotation of the motor 7 in the reverse direction that rotates the spool 8 in the pull-out direction of the seat belt 2 by returning the current due to the counter electromotive force to the motor 7. . As a result, it is possible to absorb the collision energy that acts on the occupant 9 when the vehicle collides.
 また、図4の構成では、逆起電力の発生によって、第1の端子7aの電位が第2の端子7bの電位よりも相対的に高くなる場合、逆起電力による電流の還流時に、第1の端子7aと第2の端子7bとの間の電位差は、図3の構成に比べて高い電圧でクランプされる。したがって、還流回路の発熱を抑制でき、エネルギー吸収する期間を短縮できる。 Further, in the configuration of FIG. 4, when the potential of the first terminal 7 a becomes relatively higher than the potential of the second terminal 7 b due to the generation of the counter electromotive force, the first electromotive force is generated when the current flows back by the counter electromotive force. The potential difference between the terminal 7a and the second terminal 7b is clamped at a higher voltage than the configuration of FIG. Therefore, the heat generation in the reflux circuit can be suppressed, and the energy absorption period can be shortened.
 抵抗素子48は、ツェナーダイオード47に直列に接続されている。抵抗素子48により、還流回路49に逆起電力により流れる還流電流が小さくなるので、モータ7の回転を抑制する力を弱めることができる。つまり、抵抗素子48の抵抗値を変えることによって、モータ7の回転を抑制する力を調整することができる。なお、抵抗素子48は、無くてもよい。 The resistance element 48 is connected to the Zener diode 47 in series. The resistance element 48 reduces the return current flowing in the return circuit 49 due to the back electromotive force, so that the force for suppressing the rotation of the motor 7 can be weakened. That is, the force for suppressing the rotation of the motor 7 can be adjusted by changing the resistance value of the resistance element 48. Note that the resistance element 48 may be omitted.
 また、逆起電力の発生によって、第1の端子7aの電位が第2の端子7bの電位よりも相対的に低くなる(言い換えれば、第2の端子7bの電位が第1の端子7aの電位よりも相対的に高くなる)ことが想定される場合がある。この場合、第1の端子7a側をアノードとし第2の端子7b側をカソードとするダイオード46を、第1の端子7a側をアノードとし第2の端子7b側をカソードとするツェナーダイオードに置換することが好ましい。ダイオード42をツェナーダイオードに置換した構成では、第1の端子7aの電位が第2の端子7bの電位よりも相対的に低くなる逆起電力が発生すると、その逆起電力による電流は、第2の端子7b、還流回路40、第1の端子7a、モータ7の順路で還流する。この置換したツェナーダイオードのツェナー電圧は、電源VBとグランドとの間の電源電圧よりも大きな値に設定される。このように、図4に示される駆動回路14Cにおいて、ダイオード46もツェナーダイオードに変更することによって、両方向の逆起電力の発生に対応できる点で、より好適な構成を実現できる。 Further, due to the occurrence of the back electromotive force, the potential of the first terminal 7a becomes relatively lower than the potential of the second terminal 7b (in other words, the potential of the second terminal 7b becomes the potential of the first terminal 7a). May be assumed to be relatively higher). In this case, the diode 46 having the first terminal 7a side as an anode and the second terminal 7b side as a cathode is replaced with a Zener diode having the first terminal 7a side as an anode and the second terminal 7b side as a cathode. It is preferable. In the configuration in which the diode 42 is replaced with a Zener diode, when a back electromotive force is generated in which the potential of the first terminal 7a is relatively lower than the potential of the second terminal 7b, the current due to the back electromotive force is The terminal 7 b, the reflux circuit 40, the first terminal 7 a, and the motor 7 are circulated in the normal path. The Zener voltage of the replaced Zener diode is set to a value larger than the power supply voltage between the power supply VB and the ground. As described above, in the drive circuit 14C shown in FIG. 4, the diode 46 is also changed to a Zener diode, whereby a more preferable configuration can be realized in that it can cope with generation of counter electromotive force in both directions.
 図5は、シートベルト巻き取り機構の第1の構成例を示す断面図である。 FIG. 5 is a cross-sectional view showing a first configuration example of the seat belt retracting mechanism.
 この巻き取り機構6Aは、上述の巻き取り機構6の一例であり、以下の構成要素を有する。
(1)ウェビング(図示せず)を巻き取るスプール101
(2)スプール軸として嵌合された所定の荷重で捻れるトーションバー(スプール軸)102
(3)スプール101とトーションバー102を回転自在に支持するリトラクタベース103
(4)リトラクタベース103にネジ等で一体的に固定されたインターナルギヤ(内歯歯車)104
(5)インターナルギヤ104の内歯に係合する3つのプラネタリーギヤ(遊星歯車)105(図上では1つのみ図示)
(6)プラネタリーギヤ105の回転中心軸であって、トーションバー102に一体的に嵌合装着されたキャリヤー(出力軸)106
(7)プラネタリーギヤ105と係合するサンギヤ(太陽歯車)107
(8)サンギヤ107が同一回転中心で一体的に形成された円筒状のローター108
(9)ローター108の円筒周縁部の内側面に接着剤等で貼設されていて、ブラシレスモータ7Aの主要部を構成するリング状のマグネット109
(10)マグネット109と近接してブラシレスモータ7Aの主要部を構成する複数の駆動コイル110
(11)ブラシレスモータ7Aを被覆するカバー111
(12)カバー111の外側に設けられていてトーションバー102に嵌合装着される円柱状のブッシュシャフト112
(13)ブッシュシャフト112に一端が固定され幾重にも巻かれていて、トーションバー102に駆動力を伝達するリターンスプリング113
(14)リターンスプリング113の他端が固定され、カバー111に一体的に固定されていてリターンスプリング113を被覆するスプリングカバー114
The winding mechanism 6A is an example of the above-described winding mechanism 6 and includes the following components.
(1) Spool 101 for winding webbing (not shown)
(2) Torsion bar (spool shaft) 102 fitted as a spool shaft and twisted by a predetermined load
(3) Retractor base 103 that rotatably supports the spool 101 and the torsion bar 102
(4) Internal gear (internal gear) 104 fixed integrally to the retractor base 103 with screws or the like.
(5) Three planetary gears (planetary gears) 105 engaged with the internal teeth of the internal gear 104 (only one is shown in the figure)
(6) A carrier (output shaft) 106 that is a rotation center shaft of the planetary gear 105 and is integrally fitted to the torsion bar 102.
(7) Sun gear (sun gear) 107 engaged with the planetary gear 105
(8) A cylindrical rotor 108 in which the sun gear 107 is integrally formed at the same rotation center.
(9) A ring-shaped magnet 109 that is affixed to the inner surface of the cylindrical peripheral portion of the rotor 108 with an adhesive or the like and constitutes the main part of the brushless motor 7A.
(10) A plurality of drive coils 110 constituting the main part of the brushless motor 7A in proximity to the magnet 109
(11) Cover 111 covering brushless motor 7A
(12) A cylindrical bush shaft 112 provided outside the cover 111 and fitted to the torsion bar 102.
(13) A return spring 113 that has one end fixed to the bush shaft 112 and wound in layers, and transmits a driving force to the torsion bar 102.
(14) The other end of the return spring 113 is fixed, and the spring cover 114 is fixed integrally with the cover 111 and covers the return spring 113.
 ブラシレスモータ7Aは、上述のモータ7の一例であり、ローター108と、マグネット109と、駆動コイル110とを有する。遊星歯車機構17Aは、上述の動力伝達機構17の一例であり、プラネタリーギヤ105と、キャリヤー106と、サンギヤ107とを有する。以下、巻き取り機構6Aの構成につき更に詳細に説明する。 The brushless motor 7A is an example of the motor 7 described above, and includes a rotor 108, a magnet 109, and a drive coil 110. The planetary gear mechanism 17 </ b> A is an example of the power transmission mechanism 17 described above, and includes a planetary gear 105, a carrier 106, and a sun gear 107. Hereinafter, the configuration of the winding mechanism 6A will be described in more detail.
 巻き取り機構6Aには、機械式EA(EAは、エネルギー吸収を意味し、以下この用語を統一して用いる)機構と電気式EA機構とを両用した機構を備えている。機械式EA機構は、所定のリミット荷重を超えるトルクが負荷された場合にトーションバー102の捻れ現象によってエネルギー吸収が行われる。 The take-up mechanism 6A is provided with a mechanical EA (EA means energy absorption; hereinafter, this term is used in unison) and an electric EA mechanism. The mechanical EA mechanism absorbs energy by a twisting phenomenon of the torsion bar 102 when a torque exceeding a predetermined limit load is applied.
 一方、電気式EA機構は、ブラシレスモータ7Aによるアシスト力を与えることによって行われる。これら2つの機構を相互補完するようにして用いられる。 On the other hand, the electric EA mechanism is performed by applying an assist force by the brushless motor 7A. These two mechanisms are used so as to complement each other.
 以下、巻き取り機構6Aの全体の動作につき説明する。 Hereinafter, the overall operation of the winding mechanism 6A will be described.
 この巻き取り機構6Aでは、駆動回路14により駆動コイル110に駆動電流が送られると、駆動コイル110に磁場が生じてマグネット109に反発力が生じ、ブラシレスモータ7Aのローター108に回転力が発生される。このローター108の回転力により、サンギヤ107は、トーションバー102の周りを回転し、サンギヤ107に係合する3つのプラネタリーギヤ105は、回転力を与えられる。また、3つのプラネタリーギヤ105は、リトラクタベース103に固定された不動のインターナルギヤ104の内歯に係合しているため、インターナルギヤ104内を遊星のように回動する(図6,7の符号226,227を参照)。プラネタリーギヤ105の回動によって、プラネタリーギヤ105の回転軸であるキャリヤー106は、プラネタリーギヤ105の回動と共に回動し、キャリヤー106と一体のトーションバー102を回転させる。トーションバー102が回転するとスプール101も一体的に回転することになる。 In the winding mechanism 6A, when a drive current is sent to the drive coil 110 by the drive circuit 14, a magnetic field is generated in the drive coil 110, a repulsive force is generated in the magnet 109, and a rotational force is generated in the rotor 108 of the brushless motor 7A. The Due to the rotational force of the rotor 108, the sun gear 107 rotates around the torsion bar 102, and the three planetary gears 105 engaged with the sun gear 107 are given rotational force. Further, since the three planetary gears 105 are engaged with the internal teeth of the stationary internal gear 104 fixed to the retractor base 103, the planetary gears 105 rotate like planets (FIG. 6). , 7 (see symbols 226, 227). The rotation of the planetary gear 105 causes the carrier 106 that is the rotation shaft of the planetary gear 105 to rotate with the rotation of the planetary gear 105 to rotate the torsion bar 102 that is integral with the carrier 106. When the torsion bar 102 rotates, the spool 101 also rotates integrally.
 また、トーションバー102の端部に一体的に設けられたブッシュシャフト112は、トーションバー102の回転に伴って回転し、リターンスプリング113を付勢方向又は付勢力解放方向に巻きあげる。その他の構成は、従来のリトラクタと同一なので構成の説明は省略する。 Also, the bush shaft 112 integrally provided at the end of the torsion bar 102 rotates with the rotation of the torsion bar 102, and winds up the return spring 113 in the urging direction or the urging force releasing direction. Since the other configuration is the same as that of the conventional retractor, the description of the configuration is omitted.
 次に、巻き取り機構6AのEA機構のみの構成および動作について説明する。トーションバー102のEA機構とモータアシスト負荷のEA機構との2つのEA機構を相互補完する方法には大きく分けて2つある。第1の方式は、ブラシレスモータ7Aによってトーションバー102の捻れ回転方向とは逆方向に、スプール101を回転させてプラスのモータアシスト負荷を与える。第2の方式は、ブラシレスモータ7Aによってトーションバー102の捻れ回転方向と同じ順方向と捻れ回転方向とは逆方向との双方にスプール101を回転させてマイナス及びプラスのモータアシスト負荷を与える。ブラシレスモータ7Aは、制御装置1によって回転制御できる。 Next, the configuration and operation of only the EA mechanism of the winding mechanism 6A will be described. There are roughly two methods for mutually complementing the two EA mechanisms, that is, the EA mechanism of the torsion bar 102 and the EA mechanism of the motor assist load. In the first method, a positive motor assist load is applied by rotating the spool 101 in a direction opposite to the twisting rotation direction of the torsion bar 102 by the brushless motor 7A. In the second method, the brushless motor 7A rotates the spool 101 both in the same forward direction as the torsional rotation direction of the torsion bar 102 and in the opposite direction to the torsional rotation direction, thereby giving negative and positive motor assist loads. The brushless motor 7A can be rotationally controlled by the control device 1.
 例えば、2.5kN(キロニュートン)のリミット荷重のトーションバー102を用いた巻き取り機構の場合、第1の方式での回転制御によって、トーションバー102の捻れ回転方向とは逆方向に、モータアシスト負荷を0から3kNまで与えたとする。これにより、トーションバー102のEA効果にモータアシスト負荷のEA効果を加えると、全体で2.5kNから5.5kNまでのEA効果が期待できる。 For example, in the case of a winding mechanism using a torsion bar 102 with a limit load of 2.5 kN (kilonewtons), the motor assist in a direction opposite to the torsional rotation direction of the torsion bar 102 by the rotation control in the first method. Assume that a load is applied from 0 to 3 kN. Accordingly, when the EA effect of the motor assist load is added to the EA effect of the torsion bar 102, an EA effect from 2.5 kN to 5.5 kN as a whole can be expected.
 一方、例えば、4kNのリミット荷重のトーションバー102を用いた巻き取り機構の場合、第2の方式での回転制御によって、トーションバー102の捻れ回転方向とは逆方向の-1.5kNから順方向の+1.5kNまでのモータアシスト負荷を与えたとする。これにより、全体で同様に2.5kNから5.5kNまでのEA効果が期待できる。この場合、巻き取り機構6Aに搭載するモータの小型化を図る場合は、第2の方式の方が出力の小さなモータが活用できるので好ましい。また、駆動コイル110周辺にホール素子を配置すれば、ローター108の回転状態をセンシングすることができる。 On the other hand, for example, in the case of a winding mechanism using a torsion bar 102 with a limit load of 4 kN, the forward direction from −1.5 kN in the direction opposite to the torsional rotation direction of the torsion bar 102 by the rotation control in the second method. Suppose that a motor assist load up to +1.5 kN is applied. Thereby, the EA effect from 2.5 kN to 5.5 kN can be similarly expected as a whole. In this case, when downsizing the motor mounted on the winding mechanism 6A, the second method is preferable because a motor with a smaller output can be used. Further, if a Hall element is arranged around the drive coil 110, the rotational state of the rotor 108 can be sensed.
 図6は、シートベルト巻き取り機構の第2の構成例を示す分解斜視図である。図7は、図6に示される巻き取り機構6Bのギヤの係合関係を示す図である。なお、図7では、火薬式プリテンション機構については図面上省略されている。以下、図6,7を用いて巻き取り機構6Bの構成につき説明する。この巻き取り機構6Bは、上述の巻き取り機構6の一例であり、以下の構成要素を有する。 FIG. 6 is an exploded perspective view showing a second configuration example of the seat belt retracting mechanism. FIG. 7 is a diagram showing a gear engagement relationship of the winding mechanism 6B shown in FIG. In FIG. 7, the explosive pretensioning mechanism is omitted in the drawing. Hereinafter, the configuration of the winding mechanism 6B will be described with reference to FIGS. The winding mechanism 6B is an example of the above-described winding mechanism 6 and includes the following components.
(1)リテーナ220
(2)リテーナ220に一体的に装着されたDCモータ221
(3)DCモータ221のモータ軸に一体的に設けられたモータギヤ222
(4)リテーナ220に設けられた突片に軸支されていて、モータギヤ222と係合する第1ギヤ223(詳しくは第1ギヤ223は、一体的な2段ギヤ(大ギヤ223aと小ギヤ223b)から構成され、モータギヤ222は大ギヤ223aと係合する)
(5)リテーナ220に設けられた突片に軸支されていて、第1ギヤ223(詳しくは小ギヤ223b)と係合する第2ギヤ224(詳しくは第2ギヤ224は、一体的な2段ギヤ(大ギヤ224aと小ギヤ224b)から構成され、小ギヤ223bは大ギヤ224aと係合する)
(6)第2ギヤ224(詳しくは小ギヤ224b)と係合する第3ギヤ225(詳しくは第3ギヤ225は、一体的な2段ギヤ(大ギヤ225aと小ギヤ225b)から構成され、小ギヤ224bは大ギヤ225aと係合する)
(7)第3ギヤ225(詳しくは小ギヤ225b)と係合する3つのプラネタリーギヤ226
(8)内側に形成された内歯227aに3つのプラネタリーギヤ226と係合するインターナルギヤ227
(9)インターナルギヤ227の外周面に形成された外歯227b
(10)外歯227bに嵌合してインターナルギヤ227の時計方向の回転を係止する係止片230
(11)係止片230を一端で支持するバネからなるレバー231
(12)レバー231の他端をカール状に形成したリング部材232
(13)リング部材232が巻き付く凸状の環状部材233(なお、環状部材233は第1ギヤ223と同一回転中心に一体形成されている)
(14)環状部材233の頂面の周縁部に突設されていて、リング部材232を押圧して摩擦力を与える摩擦片234
(15)3つのプラネタリーギヤ226を載置するためのキャリヤー235
(16)3つのプラネタリーギヤ226をキャリヤー235に回転自在に支持してキャリヤー235に固着する3つのピン236
(17)3つのピン236と3つのプラネタリーギヤ226との間に揺動自在に挿入される減速プレート237
(18)キャリヤー235の回転中心穴に先端部238aを貫通させて先端部238aの根元部で一体的に嵌合させ、更に先端部238aが第3ギヤ225の回転中心穴に摺動回転自在に挿入されるスプール238
(19)スプール238に一端が固定された身体を拘束するためのウェビングW(矢印AはウェビングWの引き出し方向、矢印BはウェビングWの引き込み方向)
(20)ギヤ群全体を被覆するカバー239
(21)カバー239をリテーナ220に装着する複数のネジ240
(1) Retainer 220
(2) DC motor 221 mounted integrally with retainer 220
(3) Motor gear 222 provided integrally with the motor shaft of DC motor 221
(4) A first gear 223 that is pivotally supported by a protrusion provided on the retainer 220 and engages with the motor gear 222 (specifically, the first gear 223 is an integral two-stage gear (a large gear 223a and a small gear). 223b), and the motor gear 222 engages with the large gear 223a)
(5) A second gear 224 (specifically, the second gear 224 is integrated with the first gear 223 (specifically, the small gear 223b), which is pivotally supported by a protrusion provided on the retainer 220, Step gear (consisting of a large gear 224a and a small gear 224b), and the small gear 223b engages with the large gear 224a)
(6) A third gear 225 (specifically, the third gear 225, which is engaged with the second gear 224 (specifically, the small gear 224b) is composed of an integral two-stage gear (a large gear 225a and a small gear 225b), (The small gear 224b engages with the large gear 225a)
(7) Three planetary gears 226 engaged with the third gear 225 (specifically, the small gear 225b)
(8) An internal gear 227 that engages with the three planetary gears 226 on the inner teeth 227a formed on the inner side.
(9) External teeth 227b formed on the outer peripheral surface of the internal gear 227
(10) A locking piece 230 that engages with the external tooth 227b and locks the clockwise rotation of the internal gear 227.
(11) A lever 231 made of a spring that supports the locking piece 230 at one end.
(12) A ring member 232 in which the other end of the lever 231 is curled.
(13) A convex annular member 233 around which the ring member 232 is wound (note that the annular member 233 is integrally formed at the same rotation center as the first gear 223).
(14) A friction piece 234 that protrudes from the periphery of the top surface of the annular member 233 and applies a frictional force by pressing the ring member 232.
(15) Carrier 235 for placing three planetary gears 226
(16) Three pins 236 fixed to the carrier 235 by rotatably supporting the three planetary gears 226 on the carrier 235
(17) Deceleration plate 237 inserted between the three pins 236 and the three planetary gears 226 in a swingable manner
(18) The tip 238a is passed through the rotation center hole of the carrier 235 and is integrally fitted at the root of the tip 238a, and the tip 238a is slidably rotatable in the rotation center hole of the third gear 225. Spool 238 to be inserted
(19) Webbing W for constraining the body, one end of which is fixed to spool 238 (arrow A is the pulling direction of webbing W, arrow B is the pulling direction of webbing W)
(20) Cover 239 covering the entire gear group
(21) A plurality of screws 240 for attaching the cover 239 to the retainer 220
 DCモータ221は、上述のモータ7の一例である。遊星歯車機構17Bは、上述の動力伝達機構17の一例であり、巻き取り機構6Bの上述の構成要素(3)~(17)を有する。以下、巻き取り機構6Bの動作につき更に詳細に説明する。 The DC motor 221 is an example of the motor 7 described above. The planetary gear mechanism 17B is an example of the power transmission mechanism 17 described above, and includes the above-described components (3) to (17) of the winding mechanism 6B. Hereinafter, the operation of the winding mechanism 6B will be described in more detail.
 制御装置1は、DCモータ221の回転軸を時計方向又は反時計方向に回転させるように動作制御する。図8,9は、本実施例の動作を示す図であって、図8はモータが時計方向(CW方向)に回転する場合の状態を示す図であり、図9はモータが反時計方向(CCW方向)に回転する場合の状態を示す図である。 The control device 1 controls the operation so as to rotate the rotating shaft of the DC motor 221 clockwise or counterclockwise. 8 and 9 are diagrams illustrating the operation of the present embodiment. FIG. 8 is a diagram illustrating a state where the motor rotates in the clockwise direction (CW direction). FIG. 9 illustrates the motor in the counterclockwise direction ( It is a figure which shows the state in the case of rotating in a (CCW direction).
 この巻き取り機構6Bは、通常時(急ブレーキ時や衝突時等の緊急時以外)は、図7及び図9に示すように、係止片230は外歯227bから離間していて、インターナルギヤ227は拘束されない。よって、遊星歯車の特性上、キャリヤー235の回転力は、第3ギヤ225には伝達されなくなる。したがって、キャリヤー235に一体的に嵌合されたスプール238の回転力は、第3ギヤ225に係合するDCモータ221の回転軸には伝達されなくなる。 As shown in FIGS. 7 and 9, the take-up mechanism 6B is normally separated from the external teeth 227b as shown in FIG. 7 and FIG. The gear 227 is not restrained. Therefore, due to the characteristics of the planetary gear, the rotational force of the carrier 235 is not transmitted to the third gear 225. Therefore, the rotational force of the spool 238 that is integrally fitted to the carrier 235 is not transmitted to the rotational shaft of the DC motor 221 that engages with the third gear 225.
 次に、急ブレーキ時や衝突時等の緊急時には、ABS(アンチロックブレーキシステム)機構や衝突予知装置等の車載コンピュータから指令信号が出力される。出力される指令信号によって、プリテンション機構(火薬式プリテンション機構に先だってウェビングWを巻き上げてテンションを増加させる機構)を作動させて、DCモータ221の回転軸を図8に示すように時計方向(矢印方向)に回転させる。 Next, in the event of an emergency such as a sudden braking or a collision, a command signal is output from an in-vehicle computer such as an ABS (anti-lock brake system) mechanism or a collision prediction device. In response to the output command signal, the pretensioning mechanism (mechanism for winding up the webbing W and increasing the tension prior to the explosive pretensioning mechanism) is actuated to rotate the rotating shaft of the DC motor 221 clockwise as shown in FIG. Rotate in the direction of the arrow).
 するとモータギヤ222の時計方向の回転力が第1ギヤ223に反時計方向(矢印方向)の回転力として伝達されて、係止片230がインターナルギヤ227の外歯227bに係合してインターナルギヤ227の時計方向(矢印方向)の回転を係止する。これによって、第3ギヤ225の回転力は、スプール238が一体的に嵌合されているキャリヤー235に伝達可能となる。また、第1ギヤ223の回転力は、第2ギヤ224に時計方向(矢印方向)の回転力として伝達され、第3ギヤ225に反時計方向(矢印方向)の回転力が伝達される。 Then, the clockwise rotational force of the motor gear 222 is transmitted to the first gear 223 as the counterclockwise rotational direction (arrow direction), and the locking piece 230 engages with the external teeth 227b of the internal gear 227, and the internal gear 227 is engaged. The rotation of the gear 227 in the clockwise direction (arrow direction) is locked. As a result, the rotational force of the third gear 225 can be transmitted to the carrier 235 with which the spool 238 is integrally fitted. Further, the rotational force of the first gear 223 is transmitted to the second gear 224 as a rotational force in the clockwise direction (arrow direction), and the rotational force in the counterclockwise direction (arrow direction) is transmitted to the third gear 225.
 したがって、第3ギヤ225に反時計方向の回転は、第3ギヤ225と一体の小ギヤ225bを反時計方向に回転させ、3つのプラネタリーギヤ226のそれぞれに時計方向(矢印方向)の回転力を伝達させる。3つのプラネタリーギヤ226は、係止片230によって回転が拘束されたインターナルギヤ227の内歯227aに係合しながら小ギヤ225bの周囲を遊星のように反時計方向(矢印方向)に回動する。3つのプラネタリーギヤ226は、3つのプラネタリーギヤ226を軸支するキャリヤー235を反時計方向(矢印方向)に回転させる。よって、キャリヤー235に嵌合するスプール238は反時計方向に回転し、ウェビングWを巻き取る(矢印B方向)。したがって、DCモータ221の時計方向の回転力は、ウェビングWを巻き取る回転力として伝達される。 Accordingly, the counterclockwise rotation of the third gear 225 causes the small gear 225b integrated with the third gear 225 to rotate counterclockwise, and causes the three planetary gears 226 to rotate clockwise (arrow direction). To communicate. The three planetary gears 226 rotate around the small gear 225b in a counterclockwise direction (arrow direction) like a planet while engaging with the internal teeth 227a of the internal gear 227 whose rotation is restricted by the locking piece 230. Move. The three planetary gears 226 rotate the carrier 235 that pivotally supports the three planetary gears 226 in the counterclockwise direction (arrow direction). Therefore, the spool 238 fitted to the carrier 235 rotates counterclockwise and winds up the webbing W (arrow B direction). Therefore, the clockwise rotational force of the DC motor 221 is transmitted as a rotational force for winding the webbing W.
 次に、衝突によって車体に衝撃力が伝わり、図示しない加速度センサーや図示しないクラッシュセンサーから衝撃検知信号が出力され、図示しない火薬式のプリテンション機構が作動しウェビングWが巻き取り機構6Bに引き込まれて乗員の初期拘束が確保される。次に、乗員の前方への慣性力によりウェビングWが引き出される(図8の矢印A)。 Next, an impact force is transmitted to the vehicle body due to the collision, and an impact detection signal is output from an acceleration sensor (not shown) or a crash sensor (not shown), an explosive pretension mechanism (not shown) is activated, and the webbing W is drawn into the take-up mechanism 6B. This ensures the initial restraint of the passenger. Next, the webbing W is pulled out by the forward inertial force of the occupant (arrow A in FIG. 8).
 この際、図8に示すように、係止片230が外歯227bを係止した状態にあるので、スプール238からウェビングWが引き出される力は、DCモータ221の回転軸に反時計方向(矢印と反対方向)に回転力が伝達される。DCモータ221は、通電状態あるいは短絡状態にあれば、回転軸の回転によって逆起電力が発生し、回転を妨げるような回転抗力を生ずる。巻き取り機構6Bは、この回転抗力をロック機構やEA機構に積極的に活用しようとするものである。 At this time, as shown in FIG. 8, since the locking piece 230 is in a state of locking the external teeth 227b, the force with which the webbing W is pulled out from the spool 238 is counterclockwise (arrowed) to the rotating shaft of the DC motor 221. Rotational force is transmitted in the opposite direction). If the DC motor 221 is in an energized state or a short-circuited state, a counter electromotive force is generated by the rotation of the rotating shaft, and a rotational drag force that prevents the rotation is generated. The take-up mechanism 6B is intended to actively utilize this rotational drag for the lock mechanism and the EA mechanism.
 以上、シートベルトリトラクタ及びシートベルト巻き取り機構を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。 As mentioned above, although the seat belt retractor and the seat belt retracting mechanism have been described in the embodiment, the present invention is not limited to the above embodiment. Various modifications and improvements such as combinations and substitutions with some or all of the other embodiments are possible within the scope of the present invention.
 本国際出願は、2018年2月26日に出願した日本国特許出願第2018-032289号に基づく優先権を主張するものであり、日本国特許出願第2018-032289号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2018-032289 filed on February 26, 2018. The entire contents of Japanese Patent Application No. 2018-032289 are hereby incorporated by reference. Incorporated into.
1 制御装置
2 シートベルト
6 シートベルト巻き取り機構
7 モータ
8 スプール
10 シートベルトリトラクタ
14,14A,14B 駆動回路
15 制御回路
17 動力伝達機構
40,45,49 還流回路
100 シートベルト装置
DESCRIPTION OF SYMBOLS 1 Control apparatus 2 Seat belt 6 Seat belt winding mechanism 7 Motor 8 Spool 10 Seat belt retractor 14,14A, 14B Drive circuit 15 Control circuit 17 Power transmission mechanism 40,45,49 Reflux circuit 100 Seat belt apparatus

Claims (10)

  1.  シートベルトを巻き取るためのスプールと、
     前記スプールを回転させるモータと、
     前記モータを駆動する駆動回路と、
     前記モータに並列に常時接続されており、前記モータに発生する逆起電力による電流を前記モータに還流させる少なくとも一つの整流素子とを備える、シートベルトリトラクタ。
    A spool for winding up the seat belt;
    A motor for rotating the spool;
    A drive circuit for driving the motor;
    A seat belt retractor, comprising: at least one rectifier element that is always connected in parallel to the motor and causes the motor to recirculate a current caused by a counter electromotive force generated in the motor.
  2.  前記モータは、第1の端子と、前記逆起電力の発生によって前記第1の端子よりも電位が相対的に低くなる第2の端子とを有し、
     前記整流素子は、前記第1の端子側をアノードとし、前記第2の端子側をカソードとするダイオードを含む、請求項1に記載のシートベルトリトラクタ。
    The motor has a first terminal and a second terminal whose potential is relatively lower than the first terminal due to the generation of the counter electromotive force,
    2. The seat belt retractor according to claim 1, wherein the rectifying element includes a diode having the first terminal side as an anode and the second terminal side as a cathode.
  3.  前記整流素子は、前記ダイオードに直列に接続されており、前記第1の端子側をカソードとし、前記第2の端子側をアノードとするツェナーダイオードを含む、請求項2に記載のシートベルトリトラクタ。 3. The seat belt retractor according to claim 2, wherein the rectifier element is connected in series to the diode, and includes a Zener diode having the first terminal side as a cathode and the second terminal side as an anode.
  4.  前記ツェナーダイオードに直列に接続される抵抗素子を更に備える、請求項3に記載のシートベルトリトラクタ。 The seat belt retractor according to claim 3, further comprising a resistance element connected in series to the Zener diode.
  5.  前記駆動回路は、前記第1の端子に接続される第1のハイサイドスイッチング素子と、前記第1の端子に接続される第1のローサイドスイッチング素子と、前記第2の端子に接続される第2のハイサイドスイッチング素子と、前記第2の端子に接続される第2のローサイドスイッチング素子とを有する、請求項3に記載のシートベルトリトラクタ。 The drive circuit includes a first high-side switching element connected to the first terminal, a first low-side switching element connected to the first terminal, and a first terminal connected to the second terminal. 4. The seat belt retractor according to claim 3, comprising two high-side switching elements and a second low-side switching element connected to the second terminal.
  6.  前記第1の端子側をアノードとし、前記第2の端子側をカソードとする前記ダイオードは、ツェナーダイオードである、請求項5に記載のシートベルトリトラクタ。 The seat belt retractor according to claim 5, wherein the diode having the first terminal side as an anode and the second terminal side as a cathode is a Zener diode.
  7.  前記モータは、第1の端子と、前記逆起電力の発生によって前記第1の端子よりも電位が相対的に高くなる第2の端子とを有し、
     前記整流素子は、前記第1の端子側をアノードとし、前記第2の端子側をカソードとするツェナーダイオードを含む、請求項1に記載のシートベルトリトラクタ。
    The motor has a first terminal and a second terminal whose potential is relatively higher than the first terminal due to generation of the counter electromotive force,
    2. The seat belt retractor according to claim 1, wherein the rectifying element includes a Zener diode having the first terminal side as an anode and the second terminal side as a cathode.
  8.  前記逆起電力による電流が前記モータに還流することで、前記モータの回転を抑制する、請求項1に記載のシートベルトリトラクタ。 The seat belt retractor according to claim 1, wherein a current due to the counter electromotive force is returned to the motor, thereby suppressing rotation of the motor.
  9.  前記逆起電力による電流が前記モータに還流することで、前記シートベルトの引き出し方向に前記スプールを回転させる逆転方向に前記モータが回転することを抑制する、請求項8に記載のシートベルトリトラクタ。 The seat belt retractor according to claim 8, wherein the motor is prevented from rotating in a reverse rotation direction in which the spool is rotated in the pull-out direction of the seat belt as a result of the current caused by the counter electromotive force returning to the motor.
  10.  シートベルトを巻き取るためのスプールと、
     前記スプールを回転させるモータと、
     前記モータに並列に常時接続されており、前記モータに発生する逆起電力による電流を前記モータに還流させる少なくとも一つの整流素子とを備える、シートベルト巻き取り機構。
    A spool for winding up the seat belt;
    A motor for rotating the spool;
    A seat belt retracting mechanism, comprising: at least one rectifying element that is always connected in parallel to the motor and causes the motor to recirculate a current caused by a counter electromotive force generated in the motor.
PCT/JP2019/006061 2018-02-26 2019-02-19 Seatbelt retractor and seatbelt winding mechanism WO2019163759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032289 2018-02-26
JP2018032289A JP7060983B2 (en) 2018-02-26 2018-02-26 Seatbelt retractor and seatbelt take-up mechanism

Publications (1)

Publication Number Publication Date
WO2019163759A1 true WO2019163759A1 (en) 2019-08-29

Family

ID=67687773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006061 WO2019163759A1 (en) 2018-02-26 2019-02-19 Seatbelt retractor and seatbelt winding mechanism

Country Status (2)

Country Link
JP (1) JP7060983B2 (en)
WO (1) WO2019163759A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999109A (en) * 1975-05-09 1976-12-21 General Electric Company D-C motor control circuit
JP2000318574A (en) * 1999-05-06 2000-11-21 Takata Corp Seat belt driving device
JP2010028878A (en) * 2008-07-15 2010-02-04 Hitachi Ltd Motor controller, motor controller for seat belt retractor, and motor controller for electronic control throttle
JP2011031644A (en) * 2009-07-30 2011-02-17 Hitachi Automotive Systems Ltd Vehicle seat belt retractor control device
WO2016048315A1 (en) * 2014-09-25 2016-03-31 Siemens Industry, Inc. Systems and methods for damper actuator without microcontroller
JP6039433B2 (en) * 2013-01-10 2016-12-07 タカタ株式会社 Seat belt motor control device and seat belt device including the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4207129B2 (en) * 2004-07-29 2009-01-14 ブラザー工業株式会社 Image forming apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3999109A (en) * 1975-05-09 1976-12-21 General Electric Company D-C motor control circuit
JP2000318574A (en) * 1999-05-06 2000-11-21 Takata Corp Seat belt driving device
JP2010028878A (en) * 2008-07-15 2010-02-04 Hitachi Ltd Motor controller, motor controller for seat belt retractor, and motor controller for electronic control throttle
JP2011031644A (en) * 2009-07-30 2011-02-17 Hitachi Automotive Systems Ltd Vehicle seat belt retractor control device
JP6039433B2 (en) * 2013-01-10 2016-12-07 タカタ株式会社 Seat belt motor control device and seat belt device including the same
WO2016048315A1 (en) * 2014-09-25 2016-03-31 Siemens Industry, Inc. Systems and methods for damper actuator without microcontroller

Also Published As

Publication number Publication date
JP7060983B2 (en) 2022-04-27
JP2019147438A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP3786577B2 (en) Belt retractor for passenger restraint system
JP4632302B2 (en) Seat belt retractor and seat belt device provided with the same
JP5450131B2 (en) Seat belt retractor and seat belt device provided with the same
JP4640963B2 (en) Seat belt retractor and seat belt device provided with the same
US20040069891A1 (en) Motorized seat belt retractor
JP2006089037A (en) Belt retractor
JP2011230691A (en) Control device of seat belt retractor, and seat belt device including the same
JP2009262811A (en) Webbing retracting device
WO2019163759A1 (en) Seatbelt retractor and seatbelt winding mechanism
JP4618659B2 (en) Motorized seat belt retractor
JP2011183873A (en) Webbing winding device
JP5765138B2 (en) Restraint device
US8783725B2 (en) Restraint device
JP5216247B2 (en) Seat belt retractor and seat belt device provided with the same
JP5604264B2 (en) Seat belt device
WO2020095709A1 (en) Seatbelt retractor and seatbelt device
WO2019163445A1 (en) Webbing winding device
JP2007176343A (en) Seat belt retractor and seat belt device therewith
JP5879330B2 (en) Seat belt device
JP2022035300A (en) Seat belt retractor, seat belt device, and controlling method
US20100127554A1 (en) Seatbelt Retractor and Seatbelt Apparatus Having the Same
JP2011037299A (en) Webbing winding device
KR20220097242A (en) Motor Operated Pre-Tensioner Having Driving Motor
WO2018047675A1 (en) Seat belt take-up device
JP5557696B2 (en) Seat belt device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758084

Country of ref document: EP

Kind code of ref document: A1