WO2019163741A1 - Wavelength conversion device and lighting device - Google Patents

Wavelength conversion device and lighting device Download PDF

Info

Publication number
WO2019163741A1
WO2019163741A1 PCT/JP2019/005998 JP2019005998W WO2019163741A1 WO 2019163741 A1 WO2019163741 A1 WO 2019163741A1 JP 2019005998 W JP2019005998 W JP 2019005998W WO 2019163741 A1 WO2019163741 A1 WO 2019163741A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength
optical fiber
phosphor layer
substrate
Prior art date
Application number
PCT/JP2019/005998
Other languages
French (fr)
Japanese (ja)
Inventor
正人 山名
昇 飯澤
真太郎 林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020501767A priority Critical patent/JP6827227B2/en
Publication of WO2019163741A1 publication Critical patent/WO2019163741A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/10Arrangement of heat-generating components to reduce thermal damage, e.g. by distancing heat-generating components from other components to be protected
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a wavelength conversion device and an illumination device.
  • Patent Document 1 discloses an optical active connector in which a tapered optical conductor is provided between a plastic optical fiber and a light source. According to this, the light coupling efficiency between the optical fiber and the light source can be increased.
  • the optical active connector disclosed in the above-mentioned Patent Document 1 cannot be used for higher output light although the light coupling efficiency is improved. This is because the light with higher output melts the tip of the plastic optical fiber such as plastic on the light source side by the heat generated by the light.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a wavelength conversion device that can use higher output light and an illumination device using the same.
  • a wavelength conversion device has translucency, and light from a light source that emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light is transmitted.
  • a substrate that is incident on one surface, a phosphor layer that is disposed on the other surface opposite to the one surface of the substrate, converts the wavelength of the light that is transmitted through the substrate and incident on the one surface, and the fluorescence
  • a resinous optical fiber that stands up from the other surface side opposite to the one surface side of the body layer and guides the light wavelength-converted by the phosphor layer, and one end of the optical fiber
  • a spacing member that maintains the position of the end so that the wavelength-converted light is incident, and the melting point of the spacing member is the optical fiber. Higher than the melting point.
  • an illumination device includes the above-described wavelength conversion device and a light source that emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light.
  • the light irradiated from the light source is incident on the wavelength converter.
  • FIG. 1 is a perspective view illustrating an example of a configuration of a lighting device according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing an example of the configuration of the wavelength conversion device according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating another example of the configuration of the wavelength conversion device according to the first embodiment.
  • FIG. 4 is a cross-sectional view showing an example of the configuration of the wavelength conversion device in the comparative example.
  • FIG. 5 is a cross-sectional view showing an example of the configuration of the wavelength conversion device in the comparative example.
  • FIG. 6 is a cross-sectional view illustrating an example of the configuration of a wavelength conversion device according to a modification.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the wavelength conversion device in the second embodiment.
  • FIG. 8 is a diagram for explaining the operation of the illumination light guide device in the comparative example.
  • FIG. 1 is a perspective view showing an example of a configuration of lighting apparatus 1 according to the first embodiment.
  • the illumination device 1 includes a wavelength conversion device 10, a light source 11, and an incident side optical fiber 12.
  • the illuminating device 1 can be used for an endoscope or a fiberscope.
  • the illumination device 1 may not include the incident side optical fiber 12.
  • the light source 11 emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light.
  • the light source 11 is a laser diode or LED that emits blue light.
  • the LED may be a chip-on-board type LED, and its mode is arbitrary.
  • the light source 11 may be other than blue light and may emit light having a predetermined wavelength that can be wavelength-converted by the phosphor layer 14 such as violet light.
  • the incident side optical fiber 12 is composed of a single optical fiber that guides laser light having a predetermined wavelength.
  • the incident side optical fiber 12 is a transmission path that transmits light of a predetermined wavelength emitted from the light source 11 to a remote place.
  • the incident-side optical fiber 12 has a double structure in which a high refractive index core is surrounded by a cladding layer having a lower refractive index than the core. Both the core and the clad layer are made of quartz glass or plastic having a very high light transmittance.
  • the light source 11 is arrange
  • FIG. 2 is a cross-sectional view illustrating an example of the configuration of the wavelength conversion device 10 according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating another example of the configuration of the wavelength conversion device 10 according to the first embodiment. 2 and 3 show cross sections cut along the XY plane of FIG.
  • the XY plane in FIG. 1 assumes a cross section perpendicular to a substrate 13 and a spacing member 15 described later, and is a plane cross section that also passes through the C2 axis, which is the optical axis center of the output side optical fiber 16 described later. is there.
  • the wavelength conversion device 10 includes a substrate 13, a phosphor layer 14, a spacing member 15, and an emission side optical fiber 16.
  • the substrate 13 has translucency, and light from the incident side optical fiber 12 is incident on one surface side.
  • the light transmitted through the substrate 13 is incident on the phosphor layer 14.
  • light from the incident side optical fiber 12 is incident on the left side (one surface side) of the substrate 13 along the C 1 axis and is transmitted through the substrate 13.
  • Light is emitted to the phosphor layer 14 from the left side (the other side) of the substrate 13.
  • the substrate 13 As a material for forming the substrate 13, it is only necessary to have translucency and higher thermal conductivity than the phosphor layer 14.
  • sapphire, ZnO single crystal, AlN, Y 2 O 3 , SiC, polycrystalline Arbitrary materials such as alumina and GaN may be used.
  • a heat sink may be attached to the substrate 13 in contact therewith.
  • the phosphor layer 14 is disposed on the other surface side opposite to the one surface side of the substrate 13, and wavelength-converts the light transmitted through the substrate 13 and incident on the one surface side.
  • the phosphor layer 14 wavelength-converts each of the incident light into light having a color different from that of the light by converting the wavelength of the incident light into a wavelength region different from the wavelength region of the incident light. More specifically, the phosphor layer 14 has a function of converting the wavelength of a part of light incident from the one surface side (incident surface) which is the left surface shown in FIG. Wavelength conversion. That is, the phosphor layer 14 has a wavelength conversion function used as a transmission type.
  • the phosphor layer 14 is incident with the blue light transmitted through the substrate 13 and emits yellow light excited by a part of the incident blue light.
  • the phosphor layer 14 emits (transmits) the other part of the incident blue light.
  • these blue light and yellow light are mixed and emitted, so that the phosphor layer 14 emits white light.
  • the phosphor layer 14 is directly formed, for example, in a flat plate shape on the substrate 13 as shown in FIGS.
  • the phosphor layer 14 includes a phosphor, and is formed by covering the phosphor with a resin such as silicon or epoxy.
  • the phosphor layer 14 is formed in a circular shape when viewed from above.
  • the diameter of the phosphor layer 14 is smaller than the diameter of the emission side optical fiber 16, but is not limited thereto. As shown in FIG. 3, the diameter of the phosphor layer 14 may be formed larger than the diameter of the emission side optical fiber 16.
  • the loss accompanying the wavelength conversion in the phosphor layer 14 changes to heat. Since the phosphor layer 14 has a temperature quenching characteristic in which the wavelength conversion efficiency decreases as the temperature rises, heat dissipation of the phosphor layer 14 is very important. Although not particularly illustrated here, heat dissipation may be enhanced by mixing a material having high thermal conductivity, for example, an inorganic oxide such as ZnO, with the resin forming the phosphor layer 14. Further, a minute structure may be provided on the incident surface of the phosphor layer 14 so that light can easily enter the phosphor layer 14 or heat can be easily radiated from the incident surface.
  • a material having high thermal conductivity for example, an inorganic oxide such as ZnO
  • the spacing member 15 separates one end of the emission-side optical fiber 16 from the other surface side (right side in the drawing) of the phosphor layer 14, and receives light that has been wavelength-converted by the phosphor layer 14. So that the position of the end is maintained.
  • the melting point of the spacing member 15 is higher than the melting point of the emission side optical fiber 16.
  • the spacing member 15 is a spacer, and the thermal conductivity thereof is lower than the thermal conductivity of the substrate 13.
  • the material for forming the spacing member 15 may be any material that is lower than the thermal conductivity of the substrate 13 and higher than the melting point of the emission side optical fiber 16, such as glass.
  • the spacing member 15 is thicker than the phosphor layer 14 and is erected around the phosphor layer 14.
  • the spacing member 15 is thicker than the phosphor layer 14 as shown in FIG. You may stand up and cover the 14 peripheral edge part. Thereby, the space
  • the spacing member 15 maintains the position of the end portion in such a manner that the center of one end of the emission-side optical fiber 16 is positioned at the C 2 axis of C 1 coaxial with the axis direction. That is, the spacing member 15 maintains one end of the emission side optical fiber 16 at a position corresponding to the position of the light incident on the phosphor layer 14. As a result, the light wavelength-converted by the phosphor layer 14 is incident on one end of the emission side optical fiber 16.
  • the spacing member 15 has a shape that easily releases heat transfer from the substrate 13 to the outside air. For this reason, in FIG. 1, the spacing member 15 is drawn as a rectangular thin plate similar to the substrate 13 and similar to a small shape, but is not limited thereto. The spacing member 15 may be formed in a similar shape to one end of the emission side optical fiber 16, for example, as long as the heat transfer from the substrate 13 can be easily released to the outside air.
  • the emission side optical fiber 16 is erected apart from the other surface side (right side in the drawing) opposite to the one surface side of the phosphor layer 14, and is a resinous material that guides the light whose wavelength has been converted by the phosphor layer 14. It is an optical fiber.
  • the emission side optical fiber 16 is erected at a position corresponding to the position of the light incident on the phosphor layer 14. That is, the emission side optical fiber 16 is a transmission path that guides the light whose wavelength has been converted by the phosphor layer 14.
  • the emission side optical fiber 16 may be, for example, an optical fiber made of plastic synthetic resin or an optical fiber made of natural resin.
  • the diameter of the exit side optical fiber 16 is, for example, 1 mm to 10 mm.
  • the emission-side optical fiber 16 is installed to the center of one end portion is positioned at the C 2 axis of C 1 axial direction coaxial ing. Thereby, the output side optical fiber 16 guides the light whose wavelength has been converted by the phosphor layer 14 and emits the light from the other end.
  • the optical fiber constituting the emission side optical fiber 16 is the same as the optical fiber constituting the incident side optical fiber 12. That is, the optical fiber constituting the output side optical fiber 16 has a double structure in which a core having a high refractive index is wrapped with a cladding layer having a lower refractive index than the core.
  • Both the core and the clad layer are made of quartz glass or plastic having a very high transmittance for light.
  • the configuration of the core and the cladding layer may be a polarization-maintaining optical fiber type (two-polarization mode) configuration or a single-polarization optical fiber type (one-polarization mode) configuration.
  • the exit-side optical fiber 16 is not limited to the one whose outer shape is formed in a cylindrical shape, but may be one that is formed in an elliptical cylindrical shape, or one that is formed in a square cylindrical shape. May be.
  • the phosphor layer 14 and the gap 17 are formed in size and shape according to the outer shape of the emission side optical fiber 16.
  • 4 and 5 are cross-sectional views showing an example of the configuration of the wavelength conversion device 90 in the comparative example.
  • the wavelength conversion device 90 includes a substrate 93, a phosphor layer 94, and a resinous emission side optical fiber 96.
  • FIG. 4 shows a comparative example in which the diameter of the phosphor layer 94 is formed smaller than the diameter of the emission side optical fiber 96.
  • FIG. 5 shows a comparative example in which the diameter of the phosphor layer 94 is formed larger than the diameter of the emission side optical fiber 96. That is, the wavelength conversion device 90 of the comparative example does not include an interval holding member for separating the one end portion of the emission side optical fiber 96 and the phosphor layer 94, but the phosphor layer 94 and the emission side optical fiber. 96 is in contact.
  • the light guided to the substrate 93 along the C91 axis is transmitted through the substrate 93 and incident on the phosphor layer 94 to be wavelength-converted.
  • the light wavelength conversion corresponding to the position of one center of the end portion is incident on i.e. the phosphor layer 94 is erected so as to be positioned C 92 axes C 91 coaxial with the axis direction of light
  • the light is incident on one end of the exit-side optical fiber 96 erected at the position, guided, and emitted from the other end.
  • the substrate 93, the phosphor layer 94, and the emission side optical fiber 96 are the same as the substrate 13, the phosphor layer 14, and the emission side optical fiber 16 described in the first embodiment, and thus will be described in detail. Is omitted.
  • the wavelength conversion device 90 in the comparative example since the phosphor layer 94 and the emission side optical fiber 96 are in contact, the light guided to the substrate 93 along the C91 axis has a high output. In the case of light, the tip of the emission side optical fiber 96 that is in contact with the phosphor layer 94 (that is, the light source side) is melted. For this reason, in the wavelength converter 90 in a comparative example, higher output light cannot be used.
  • the wavelength conversion device 10 includes an interval holding member 15 for separating one end of the emission side optical fiber 16 from the phosphor layer 14. Accordingly, even when the light guided to the substrate 13 along the C 1 axis is high output light, it does not dissolve the light source side of the distal end portion of the emission-side optical fiber 16.
  • the spacing member 15 forms a gap 17 between the phosphor layer 14 and the emission side optical fiber 16, so that heat is generated in the phosphor layer 14 due to loss due to wavelength conversion, but this heat is emitted on the emission side. This is because transmission to the optical fiber 16 can be suppressed.
  • the wavelength conversion device 10 can use higher output light. That is, according to the wavelength conversion device 10 of the present embodiment, the heat generated in the phosphor layer 14 is transmitted to the emission side optical fiber 16 even if the energy of the light guided by the incident side optical fiber 12 is increased. Can be suppressed. Thereby, since melting
  • the wavelength conversion device 10 is light from the light source 11 that has translucency and emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light.
  • the phosphor layer 14 that converts the wavelength of light that has passed through the substrate 13 and is incident on the one surface side, and fluorescence
  • a resinous emission-side optical fiber 16 that stands up from the other surface side opposite to the one surface side of the body layer 14 and guides the light whose wavelength has been converted by the phosphor layer 14;
  • An interval holding member 15 that separates one end from the other surface and maintains the position of the end so that the wavelength-converted light is incident is provided.
  • the melting point of the spacing member 15 is higher than the melting point of the emission side optical fiber 16.
  • the spacing member 15 is a spacer, and the thermal conductivity of the spacing member 15 may be lower than the thermal conductivity of the substrate.
  • a gap 17 made of air can be formed between the phosphor layer 14 and the emission side optical fiber 16.
  • FIG. 6 is a cross-sectional view showing an example of the configuration of a wavelength conversion device 10A according to a modification. Elements similar to those in FIG. 2 and the like are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the wavelength conversion device 10 ⁇ / b> A shown in FIG. 6 is such that a part of the substrate 13 ⁇ / b> A constitutes the spacing member 15 ⁇ / b> A, and the phosphor layer 14 ⁇ / b> A is formed on the substrate 13 ⁇ / b> A. It differs from the point arrange
  • a description will be given focusing on differences from the first embodiment.
  • the substrate 13A has translucency, and light from the incident side optical fiber 12 (not shown) is incident on one surface side. The light transmitted through the substrate 13A is incident on the phosphor layer 14A.
  • the substrate 13 ⁇ / b> A has a recess 131 and an edge 132 formed by counterboring.
  • the counterbore is described as counterbore or counterbore in the JIS standard.
  • the recess 131 is formed by digging a part of the substrate 13 by counterboring.
  • the depth of the recess 131 is larger than the thickness of the phosphor layer 14A.
  • the diameter of the recess 131 is substantially the same as or slightly larger than the diameter of the phosphor layer 14. Note that the term “slightly” means, for example, several percent or several tens of percent.
  • the bottom of the recess 131 is substantially flat so that the phosphor layer 14A can be disposed or applied.
  • the edge portion 132 is a portion that is formed above the concave portion 131 formed by counterboring and is stepped from the concave portion 131.
  • the edge 132 may be formed as an inclination (taper) instead of a step.
  • the edge 132 is formed above the recess 131, that is, at a position larger than the thickness of the phosphor layer 14A, and larger than the diameter of the recess 131.
  • the diameter of the edge 132 is larger than the diameter of the recess 131 and the diameter of the phosphor layer 14 and is formed to be substantially the same as or slightly larger than the diameter of the emission side optical fiber 16. In this manner, the edge portion 132 can arrange or maintain the emission side optical fiber 16.
  • the phosphor layer 14A is disposed on the other surface side opposite to the one surface side of the substrate 13A, similarly to the phosphor layer 14 in the first embodiment, and wavelength-converts the light transmitted through the substrate 13 and incident on the one surface side. To do.
  • the diameter of the phosphor layer 14A is formed smaller than the diameter of the emission side optical fiber 16, and is disposed in the recess 131 of the substrate 13A.
  • the phosphor layer 14A converts the wavelength of light incident on one surface side (incident surface) that is the left surface shown in FIG.
  • the spacing member 15A is constituted by a part of the substrate 13A. More specifically, the spacing member 15 ⁇ / b> A corresponds to a portion within the dotted brackets shown in FIG. 6, that is, a part of the substrate 13 ⁇ / b> A including the edge 132. As shown in FIG. 6, the spacing member 15A is thicker than the phosphor layer 14A and is formed around the phosphor layer 14A.
  • the spacing member 15A maintains the position of one end portion of the emission side optical fiber 16 by the edge portion 132, so that one end portion of the emission side optical fiber 16 and the other surface side of the phosphor layer 14A Separate.
  • the spacing member 15A forms a gap 17 made of air between the phosphor layer 14A and the emission side optical fiber 16.
  • the wavelength conversion device 10A has translucency, and light from the light source 11 that emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light is transmitted.
  • One of a resinous emission-side optical fiber 16 that stands upright apart from the other surface side opposite to the one surface side of the layer 14A and guides the light whose wavelength has been converted by the phosphor layer 14A, and one of the emission-side optical fibers 16 And an interval holding member 15A that maintains the position of the end so that the wavelength-converted light is incident.
  • the melting point of the spacing member 15 ⁇ / b> A is higher than the melting point of the emission side optical fiber 16.
  • the substrate 13 has a recess 131 and an edge 132 formed by counterboring, and the height of the recess 131 is larger than the thickness of the phosphor layer 14A.
  • the phosphor layer 14 ⁇ / b> A is disposed in the recess 131.
  • the spacing member 15A is an edge portion 132, and the edge portion 132 maintains the position of one end portion of the emission side optical fiber 16 so that one end portion of the emission side optical fiber 16 and the phosphor layer 14A Separate from the other side.
  • the gap 17 can be formed by separating the phosphor layer 14A and the emission side optical fiber 16, it is possible to realize the wavelength conversion device 10A that can use higher output light.
  • Embodiment 2 In Embodiment 1, the case where the gap 17 is formed by separating the one end portion of the emission-side optical fiber 16 from the other surface side of the phosphor layer 14A by providing the interval holding member has been described. Not exclusively. A reflective film may be further formed on the inner wall portion of the spacing member. In this case, the second embodiment will be described below with a focus on differences from the first embodiment.
  • FIG. 7 is a cross-sectional view showing an example of the configuration of the wavelength conversion device 10B in the second embodiment. Elements similar to those in FIG. 3 and the like are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the spacing member 15B also separates one end portion of the emission-side optical fiber 16 from the other surface side (right side in the drawing) of the phosphor layer 14 and receives light that has been wavelength-converted by the phosphor layer 14. So that the position of the end is maintained.
  • the melting point of the spacing member 15 ⁇ / b> B is higher than the melting point of the emission side optical fiber 16.
  • the spacing member 15 ⁇ / b> B is thicker than the phosphor layer 14 and covers the peripheral end of the phosphor layer 14.
  • any material may be used as long as it is lower than the thermal conductivity of the substrate 13 and higher than the melting point of the emission side optical fiber 16, such as glass.
  • a reflection film 151 that reflects light converted in wavelength by the phosphor layer 14 is further formed on the inner wall of the spacing member 15B.
  • the reflection film 151 may be a metal reflection film or a diffuse reflection film.
  • the reflective film 151 When the reflective film 151 is made of metal, for example, it may be formed of Al, silver, or the like. Further, when the reflection film 151 is a diffuse reflection film, the inner wall of the spacing member 15B may be formed to be white. As a material for forming such a white diffuse reflection film, for example, barium sulfate, Teflon (registered trademark), and Al 2 O 3 , ZrO, TiO 2 , ZnO having a high diffuse reflectance as used in an integrating sphere are used. And ceramic and plastic.
  • the spacing member 15B includes the reflective film 151, more light whose wavelength has been converted by the phosphor layer 14 can be incident on one end of the emission-side optical fiber 16.
  • the diameter of the phosphor layer 14 is formed larger than the diameter of the emission side optical fiber 16, but is not limited thereto.
  • the phosphor layer 14 may have a diameter smaller than that of the emission side optical fiber 16, and the same can be said.
  • FIG. 8 is a diagram for explaining the operation of the wavelength conversion device 10 in the comparative example.
  • the wavelength conversion device 10 in the comparative example shown in FIG. 8 is the wavelength conversion device 10 shown in FIG.
  • the light guided to the substrate 13 along the C 1 axis, passes through the substrate 13 is incident on the phosphor layer 14 is a wavelength conversion.
  • the wavelength-converted light is incident on one end of the emission-side optical fiber 16 erected at a position corresponding to the position of the light incident on the phosphor layer 14, guided, and emitted from the other end.
  • a glass interval holding member 15 separates one end portion of the emission side optical fiber 16 from the phosphor layer 14, so that a part of the wavelength-converted light is in the interval holding member 15.
  • the light is lost due to incident light or leakage light. That is, for example, a part of the light wavelength-converted light such as the light C 21 is incident on one end of the emission-side optical fiber 16, but the glass spacing member 15 is transparent, and thus the light such as the light C 22 is used. A part of the wavelength-converted light is lost. As a result, it is conceivable that the coupling efficiency between the wavelength conversion device 10 and the emission side optical fiber 16 is lowered.
  • the reflection film 151 is formed on the inner wall of the spacing member 15, a part of the light that has been lost in the wavelength conversion device 10 Also, the light can be made incident on the output side optical fiber 16. As a result, the coupling efficiency between the wavelength conversion device 10 ⁇ / b> B and the emission-side optical fiber 16 that are separated can be improved.
  • the reflective film 151 formed on the inner wall of the spacing member 15B becomes a part of the light that leaks or enters the spacing member 15B due to the gap 17 between the phosphor layer 14 and the output side optical fiber 16. This is because the light can be reflected and incident on the exit-side optical fiber 16.
  • the wavelength conversion device 10B in the present embodiment since the coupling efficiency between the wavelength conversion device 10B and the emission side optical fiber 16 can be further improved, higher output can be achieved. .
  • the wavelength conversion device 10B is light from the light source 11 that has translucency and emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light. Is disposed on the other surface side opposite to the one surface side of the substrate 13, the phosphor layer 14 that converts the wavelength of light that has passed through the substrate 13 and is incident on the one surface side, and fluorescence A resinous emission-side optical fiber 16 that stands up from the other surface side opposite to the one surface side of the body layer 14 and guides the light whose wavelength has been converted by the phosphor layer 14; An interval holding member 15B that separates one end from the other surface and maintains the position of the end so that the wavelength-converted light is incident is provided.
  • the melting point of the spacing member 15 ⁇ / b> B is higher than the melting point of the emission side optical fiber 16.
  • a reflection film 151 that reflects light converted in wavelength by the phosphor layer 14 is formed on the inner wall of the spacing member 15B.
  • the gap 17 between the phosphor layer 14 and the emission side optical fiber 16 reflects part of the light that becomes leakage light or enters the spacing member 15B and enters the emission side optical fiber 16. Can be made. Therefore, the coupling efficiency between the wavelength conversion device 10B and the emission side optical fiber 16 can be improved.
  • the reflective film 151 may be a metallic reflective film.
  • the reflective film 151 may be a metallic reflective film.
  • the reflection film 151 may be a diffuse reflection film.
  • the coupling efficiency between the wavelength conversion device 10B and the emission side optical fiber 16 may be lower than that of a metallic reflective film, it can be easily formed by the inner wall of the spacing member 15B.
  • an endoscope apparatus using the illumination apparatus 1 in the above embodiment is also included in the present invention.
  • an endoscope apparatus according to one aspect of the present invention includes an insertion unit that can be inserted into a body cavity of a subject, and the illumination device 1.
  • An objective lens system that forms an image of light from the observation object in the body cavity of the subject and at least a part of the emission side optical fiber are configured at the distal end of the insertion part.
  • the emission side optical fiber illuminates the object to be observed with each of the guided light.
  • the illuminating device 1 in the said embodiment for the camera part of a robot.
  • the camera unit to which the illumination apparatus 1 is attached can be downsized.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Led Device Packages (AREA)

Abstract

A wavelength conversion device according to the present disclosure is provided with: a substrate (13) which has light transmitting properties, and on one surface of which light from a light source (11) that emits light having a specific wavelength within the wavelength range from ultraviolet light to visible light is incident; a phosphor layer (14) which is arranged on the other surface of the substrate (13), said other surface being on the reverse side of the one surface, and which converts the wavelength of the light that has passed through the substrate (13) and is incident on one surface thereof; an exit-side optical fiber (16) which is formed from a resin in an upright manner at a distance from the other surface of the phosphor layer (14), said other surface being on the reverse side of the one surface, and which guides the light that has been wavelength-converted by the phosphor layer (14); and a spacer member (15) which separates one end of the exit-side optical fiber (16) and the other surface of the phosphor layer (14) from each other, while maintaining the end at a position where the wavelength-converted light is incident. The melting point of the spacer member (15) is higher than the melting point of the exit-side optical fiber (16).

Description

波長変換装置及び照明装置Wavelength conversion device and illumination device
 本発明は、波長変換装置及び照明装置に関する。 The present invention relates to a wavelength conversion device and an illumination device.
 例えば特許文献1には、プラスチック製の光ファイバと光源との間にテーパ状の光導体部を設けた光アクティブコネクタが開示されている。これによれば、光ファイバと光源との間の光の結合効率を高めることができる。 For example, Patent Document 1 discloses an optical active connector in which a tapered optical conductor is provided between a plastic optical fiber and a light source. According to this, the light coupling efficiency between the optical fiber and the light source can be increased.
特開昭56-89707号公報JP-A-56-89707
 しかしながら、上記の特許文献1に開示される光アクティブコネクタでは、光の結合効率が向上するものの、より高い出力の光には用いることができない。より高い出力の光は、当該光が発する熱によりプラスチック製など樹脂性の光ファイバの光源側の先端部を溶かしてしまうからである。 However, the optical active connector disclosed in the above-mentioned Patent Document 1 cannot be used for higher output light although the light coupling efficiency is improved. This is because the light with higher output melts the tip of the plastic optical fiber such as plastic on the light source side by the heat generated by the light.
 本発明は、上述の課題を鑑みてなされたもので、より高い出力の光を用いることができる波長変換装置及びそれを用いた照明装置を提供することを目的とする。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a wavelength conversion device that can use higher output light and an illumination device using the same.
 上記目的を達成するために本発明の一態様に係る波長変換装置は、透光性を有し、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源からの光が一面側に入射される基板と、前記基板の前記一面側と反対の他面側に配置され、前記基板を透過して一面側に入射された前記光を波長変換する蛍光体層と、前記蛍光体層の前記一面側と反対の他面側と離間して立設され、前記蛍光体層で波長変換された前記光を導光する樹脂性の光ファイバと、前記光ファイバの一方の端部と前記他面側とを離間し、かつ、波長変換された前記光が入射されるように前記端部の位置を維持する間隔保持部材とを備え、前記間隔保持部材の融点は、前記光ファイバの融点よりも高い。 In order to achieve the above object, a wavelength conversion device according to one embodiment of the present invention has translucency, and light from a light source that emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light is transmitted. A substrate that is incident on one surface, a phosphor layer that is disposed on the other surface opposite to the one surface of the substrate, converts the wavelength of the light that is transmitted through the substrate and incident on the one surface, and the fluorescence A resinous optical fiber that stands up from the other surface side opposite to the one surface side of the body layer and guides the light wavelength-converted by the phosphor layer, and one end of the optical fiber And a spacing member that maintains the position of the end so that the wavelength-converted light is incident, and the melting point of the spacing member is the optical fiber. Higher than the melting point.
 また、上記目的を達成するために本発明の一態様に係る照明装置は、上記記載の波長変換装置と、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源とを備え、前記光源から照射される光を前記波長変換装置に入射させる。 In order to achieve the above object, an illumination device according to one embodiment of the present invention includes the above-described wavelength conversion device and a light source that emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light. The light irradiated from the light source is incident on the wavelength converter.
 本発明の一態様に係る波長変換装置等では、より高い出力の光を用いることができる。 In the wavelength converter or the like according to one embodiment of the present invention, higher output light can be used.
図1は、実施の形態1における照明装置の構成の一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of a configuration of a lighting device according to Embodiment 1. FIG. 図2は、実施の形態1における波長変換装置の構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of the wavelength conversion device according to the first embodiment. 図3は、実施の形態1における波長変換装置の構成の別の一例を示す断面図である。FIG. 3 is a cross-sectional view illustrating another example of the configuration of the wavelength conversion device according to the first embodiment. 図4は、比較例における波長変換装置の構成の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of the configuration of the wavelength conversion device in the comparative example. 図5は、比較例における波長変換装置の構成の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of the configuration of the wavelength conversion device in the comparative example. 図6は、変形例における波長変換装置の構成の一例を示す断面図である。FIG. 6 is a cross-sectional view illustrating an example of the configuration of a wavelength conversion device according to a modification. 図7は、実施の形態2における波長変換装置の構成の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of the configuration of the wavelength conversion device in the second embodiment. 図8は、比較例における照明導光装置の動作を説明するための図である。FIG. 8 is a diagram for explaining the operation of the illumination light guide device in the comparative example.
 以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、及び、構成要素の配置位置や接続形態などは、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described. Each of the embodiments described below shows a preferred specific example of the present invention. Therefore, numerical values, shapes, materials, components, arrangement positions and connection forms of the components, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺等は必ずしも一致していない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Accordingly, the scales and the like do not necessarily match in each drawing. In each figure, substantially the same components are denoted by the same reference numerals, and redundant descriptions are omitted or simplified.
 (実施の形態1)
 以下、本実施の形態における照明装置1について説明する。
(Embodiment 1)
Hereinafter, the illuminating device 1 in this Embodiment is demonstrated.
 [照明装置1]
 図1は、実施の形態1における照明装置1の構成の一例を示す斜視図である。照明装置1は、図1に示すように、波長変換装置10と、光源11と、入射側光ファイバ12とで構成される。照明装置1は、内視鏡またはファイバースコープなどに用いることができる。なお、照明装置1は入射側光ファイバ12を備えなくてもよい。
[Lighting device 1]
FIG. 1 is a perspective view showing an example of a configuration of lighting apparatus 1 according to the first embodiment. As illustrated in FIG. 1, the illumination device 1 includes a wavelength conversion device 10, a light source 11, and an incident side optical fiber 12. The illuminating device 1 can be used for an endoscope or a fiberscope. The illumination device 1 may not include the incident side optical fiber 12.
 [光源11]
 光源11は、紫外光から可視光までの波長領域のうちの所定の波長の光を発する。本実施の形態では、光源11は、青色光を発するレーザーダイオードまたはLEDである。なお、LEDは、チップオンボード方式のLEDでもよくその態様は任意である。また、光源11は、青色光以外であってもよく、例えば紫光など、蛍光体層14で波長変換可能な所定の波長の光を発するのであればよい。
[Light source 11]
The light source 11 emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light. In the present embodiment, the light source 11 is a laser diode or LED that emits blue light. The LED may be a chip-on-board type LED, and its mode is arbitrary. Further, the light source 11 may be other than blue light and may emit light having a predetermined wavelength that can be wavelength-converted by the phosphor layer 14 such as violet light.
 [入射側光ファイバ12]
 入射側光ファイバ12は、所定波長のレーザ光を導光する一本の光ファイバからなる。入射側光ファイバ12は、光源11が発した所定波長の光を離れた場所に伝える伝送路である。入射側光ファイバ12は、高屈折率のコアをコアより低屈折率のクラッド層が包んだ二重構造で構成される。コア及びクラッド層はともに光に対して透過率が非常に高い石英ガラスまたはプラスチックからなる。
[Incoming side optical fiber 12]
The incident side optical fiber 12 is composed of a single optical fiber that guides laser light having a predetermined wavelength. The incident side optical fiber 12 is a transmission path that transmits light of a predetermined wavelength emitted from the light source 11 to a remote place. The incident-side optical fiber 12 has a double structure in which a high refractive index core is surrounded by a cladding layer having a lower refractive index than the core. Both the core and the clad layer are made of quartz glass or plastic having a very high light transmittance.
 なお、照明装置1が入射側光ファイバ12を備えない場合、図1に示す入射側光ファイバ12の位置に光源11を配置し、配置した光源11から直接、波長変換装置10の基板13に青色の光を入射してもよい。つまり、配置した光源11に、空間結合方式で波長変換装置10の基板13に青色の光を入射させてもよい。この場合、光源11と基板13とは照明装置1のサイズを小さくする観点で密着させてもよいし、熱的観点で一定の距離離してもよい。 In addition, when the illuminating device 1 is not provided with the incident side optical fiber 12, the light source 11 is arrange | positioned in the position of the incident side optical fiber 12 shown in FIG. 1, and it is blue on the board | substrate 13 of the wavelength converter 10 directly from the arrange | positioned light source 11. May be incident. That is, blue light may be incident on the substrate 13 of the wavelength conversion device 10 by the spatial coupling method to the arranged light source 11. In this case, the light source 11 and the substrate 13 may be brought into close contact with each other from the viewpoint of reducing the size of the lighting device 1, or may be separated from each other by a certain distance from a thermal viewpoint.
 [波長変換装置10]
 図2は、実施の形態1における波長変換装置10の構成の一例を示す断面図である。図3は、実施の形態1における波長変換装置10の構成の別の一例を示す断面図である。図2及び図3は、図1のXY平面で切断された断面を示している。なお、図1のXY平面は、後述する基板13および間隔保持部材15に垂直な断面を想定したものであり、後述する出射側光ファイバ16の光軸中心であるC2軸をも通る平面断面である。
[Wavelength converter 10]
FIG. 2 is a cross-sectional view illustrating an example of the configuration of the wavelength conversion device 10 according to the first embodiment. FIG. 3 is a cross-sectional view illustrating another example of the configuration of the wavelength conversion device 10 according to the first embodiment. 2 and 3 show cross sections cut along the XY plane of FIG. The XY plane in FIG. 1 assumes a cross section perpendicular to a substrate 13 and a spacing member 15 described later, and is a plane cross section that also passes through the C2 axis, which is the optical axis center of the output side optical fiber 16 described later. is there.
 波長変換装置10は、図1~図3に示すように、基板13と、蛍光体層14と、間隔保持部材15と、出射側光ファイバ16とを備える。 As shown in FIGS. 1 to 3, the wavelength conversion device 10 includes a substrate 13, a phosphor layer 14, a spacing member 15, and an emission side optical fiber 16.
 <基板13>
 基板13は、透光性を有し、入射側光ファイバ12からの光が一面側に入射される。基板13を透過した光は蛍光体層14に入射される。本実施の形態では、図2及び図3に示す例のように、C軸に沿って入射側光ファイバ12からの光が基板13の左側(一面側)に入射され、基板13を透過した光は、基板13の左側(他面側)から蛍光体層14に出射される。
<Substrate 13>
The substrate 13 has translucency, and light from the incident side optical fiber 12 is incident on one surface side. The light transmitted through the substrate 13 is incident on the phosphor layer 14. In the present embodiment, as in the example shown in FIGS. 2 and 3, light from the incident side optical fiber 12 is incident on the left side (one surface side) of the substrate 13 along the C 1 axis and is transmitted through the substrate 13. Light is emitted to the phosphor layer 14 from the left side (the other side) of the substrate 13.
 基板13を形成する材料としては、透光性を有し、かつ、蛍光体層14よりも熱伝導率が高ければよく、例えばサファイア、ZnO単結晶、AlN、Y、SiC、多結晶アルミナ、GaNなど任意のものを用いてもよい。また、より放熱性を高めるべく、基板13に対して、例えばヒートシンクを当接して取り付けていてもよい。 As a material for forming the substrate 13, it is only necessary to have translucency and higher thermal conductivity than the phosphor layer 14. For example, sapphire, ZnO single crystal, AlN, Y 2 O 3 , SiC, polycrystalline Arbitrary materials such as alumina and GaN may be used. Further, in order to further improve heat dissipation, for example, a heat sink may be attached to the substrate 13 in contact therewith.
 <蛍光体層14>
 蛍光体層14は、基板13の一面側と反対の他面側に配置され、基板13を透過して一面側に入射された光を波長変換する。蛍光体層14は、入射された光それぞれの一部を入射された光の波長領域と異なる波長領域に波長変換することで、光のそれぞれを当該光と異なる色の光に波長変換する。より具体的には、蛍光体層14は、図2に示す左面である一面側(入射面)から入射された光の一部を波長変換する機能を有し、一面側に入射された光を波長変換する。つまり、蛍光体層14は、透過型として利用される波長変換機能を有する。
<Phosphor layer 14>
The phosphor layer 14 is disposed on the other surface side opposite to the one surface side of the substrate 13, and wavelength-converts the light transmitted through the substrate 13 and incident on the one surface side. The phosphor layer 14 wavelength-converts each of the incident light into light having a color different from that of the light by converting the wavelength of the incident light into a wavelength region different from the wavelength region of the incident light. More specifically, the phosphor layer 14 has a function of converting the wavelength of a part of light incident from the one surface side (incident surface) which is the left surface shown in FIG. Wavelength conversion. That is, the phosphor layer 14 has a wavelength conversion function used as a transmission type.
 本実施の形態では、蛍光体層14は、青色光が基板13を透過して入射され、入射された青色光の一部により励起された黄色光を出射する。また、蛍光体層14は、入射された青色光の他部を出射(透過)する。蛍光体層14では、これら青色光及び黄色光が混色されて出射されることになるので、蛍光体層14は白色光を出射することになる。 In the present embodiment, the phosphor layer 14 is incident with the blue light transmitted through the substrate 13 and emits yellow light excited by a part of the incident blue light. The phosphor layer 14 emits (transmits) the other part of the incident blue light. In the phosphor layer 14, these blue light and yellow light are mixed and emitted, so that the phosphor layer 14 emits white light.
 蛍光体層14は、図2及び図3に示すように基板13上に例えば平板状に直接形成される。蛍光体層14は、蛍光体を含み、当該蛍光体をシリコン、エポキシ等の樹脂で覆って形成される。図2及び図3に示す例では、蛍光体層14は、上面視では円形状に形成されている。 The phosphor layer 14 is directly formed, for example, in a flat plate shape on the substrate 13 as shown in FIGS. The phosphor layer 14 includes a phosphor, and is formed by covering the phosphor with a resin such as silicon or epoxy. In the example shown in FIGS. 2 and 3, the phosphor layer 14 is formed in a circular shape when viewed from above.
 なお、図2では、蛍光体層14の径は、出射側光ファイバ16の径よりも小さく形成されているが、これに限らない。図3に示すように蛍光体層14の径は、出射側光ファイバ16の径よりも大きく形成されているとしてもよい。 In FIG. 2, the diameter of the phosphor layer 14 is smaller than the diameter of the emission side optical fiber 16, but is not limited thereto. As shown in FIG. 3, the diameter of the phosphor layer 14 may be formed larger than the diameter of the emission side optical fiber 16.
 また、蛍光体層14において波長変換に伴う損失は熱に変わる。蛍光体層14は温度が高くなると波長変換効率が下がる温度消光特性を有するため、蛍光体層14の放熱は非常に重要である。ここでは特に図示しないが、蛍光体層14を形成する樹脂に熱伝導率の高い材料、例えばZnO等の無機酸化物を混合することで放熱性を高めてもよい。また、蛍光体層14の入射面に微小構造を設け、蛍光体層14に光が入射しやすいように、または入射面から放熱されやすいようにしてもよい。 In addition, the loss accompanying the wavelength conversion in the phosphor layer 14 changes to heat. Since the phosphor layer 14 has a temperature quenching characteristic in which the wavelength conversion efficiency decreases as the temperature rises, heat dissipation of the phosphor layer 14 is very important. Although not particularly illustrated here, heat dissipation may be enhanced by mixing a material having high thermal conductivity, for example, an inorganic oxide such as ZnO, with the resin forming the phosphor layer 14. Further, a minute structure may be provided on the incident surface of the phosphor layer 14 so that light can easily enter the phosphor layer 14 or heat can be easily radiated from the incident surface.
 <間隔保持部材15>
 間隔保持部材15は、出射側光ファイバ16の一方の端部と蛍光体層14の他面側(図で右側)とを離間し、かつ、蛍光体層14で波長変換された光が入射されるように当該端部の位置を維持する。間隔保持部材15の融点は、出射側光ファイバ16の融点よりも高い。
<Spacing member 15>
The spacing member 15 separates one end of the emission-side optical fiber 16 from the other surface side (right side in the drawing) of the phosphor layer 14, and receives light that has been wavelength-converted by the phosphor layer 14. So that the position of the end is maintained. The melting point of the spacing member 15 is higher than the melting point of the emission side optical fiber 16.
 本実施の形態では、間隔保持部材15は、スペーサであり、その熱伝導率は、基板13の熱伝導率よりも低い。間隔保持部材15を形成する材料としては、例えばガラスなど、基板13の熱伝導率よりも低く、出射側光ファイバ16の融点よりも高いものであればよい。 In the present embodiment, the spacing member 15 is a spacer, and the thermal conductivity thereof is lower than the thermal conductivity of the substrate 13. The material for forming the spacing member 15 may be any material that is lower than the thermal conductivity of the substrate 13 and higher than the melting point of the emission side optical fiber 16, such as glass.
 また、間隔保持部材15は、図2に示すように、その厚みが蛍光体層14よりも厚く、かつ、蛍光体層14の周囲に立設されている。なお、蛍光体層14の径が出射側光ファイバ16の径よりも大きい場合、間隔保持部材15は、図3に示すように、その厚みが蛍光体層14よりも厚く、かつ、蛍光体層14の周端部を覆って立設してもよい。これにより、間隔保持部材15は、蛍光体層14と出射側光ファイバ16との間に空気からなる空隙17を形成することができる。 Further, as shown in FIG. 2, the spacing member 15 is thicker than the phosphor layer 14 and is erected around the phosphor layer 14. When the diameter of the phosphor layer 14 is larger than the diameter of the emission-side optical fiber 16, the spacing member 15 is thicker than the phosphor layer 14 as shown in FIG. You may stand up and cover the 14 peripheral edge part. Thereby, the space | interval holding member 15 can form the space | gap 17 which consists of air between the fluorescent substance layer 14 and the output side optical fiber 16. FIG.
 また、間隔保持部材15は、出射側光ファイバ16の一方の端部の中心がC軸と同軸方向のC軸に位置するように当該端部の位置を維持する。つまり、間隔保持部材15は、出射側光ファイバ16の一方の端部を、蛍光体層14に入射された光の位置に対応した位置に維持する。これにより、蛍光体層14で波長変換された光が出射側光ファイバ16の一方の端部に入射されることになる。 Moreover, the spacing member 15 maintains the position of the end portion in such a manner that the center of one end of the emission-side optical fiber 16 is positioned at the C 2 axis of C 1 coaxial with the axis direction. That is, the spacing member 15 maintains one end of the emission side optical fiber 16 at a position corresponding to the position of the light incident on the phosphor layer 14. As a result, the light wavelength-converted by the phosphor layer 14 is incident on one end of the emission side optical fiber 16.
 また、間隔保持部材15は、基板13からの伝熱を外気に放出し易い形状であるのが望ましい。このため、図1では間隔保持部材15を基板13に相似かつ小さい形状に例えて方形の薄板状のものとして描画したが、これに限られるものでない。間隔保持部材15は、基板13からの伝熱を外気に放出し易ければ、例えば、出射側光ファイバ16の一方の端部に相似な形状に形成されていてもよい。 It is desirable that the spacing member 15 has a shape that easily releases heat transfer from the substrate 13 to the outside air. For this reason, in FIG. 1, the spacing member 15 is drawn as a rectangular thin plate similar to the substrate 13 and similar to a small shape, but is not limited thereto. The spacing member 15 may be formed in a similar shape to one end of the emission side optical fiber 16, for example, as long as the heat transfer from the substrate 13 can be easily released to the outside air.
 <出射側光ファイバ16>
 出射側光ファイバ16は、蛍光体層14の一面側と反対の他面側(図で右側)と離間して立設され、蛍光体層14で波長変換された光を導光する樹脂性の光ファイバである。出射側光ファイバ16は、蛍光体層14に入射された光の位置に対応した位置に立設されている。つまり、出射側光ファイバ16は、蛍光体層14で波長変換された光を導光する伝送路である。ここで、出射側光ファイバ16は、例えばプラスチックの合成樹脂からなる光ファイバであってもよく、天然樹脂からなる光ファイバであってもよい。また、出射側光ファイバ16の径は、例えば1mm~10mmである。
<Emission-side optical fiber 16>
The emission side optical fiber 16 is erected apart from the other surface side (right side in the drawing) opposite to the one surface side of the phosphor layer 14, and is a resinous material that guides the light whose wavelength has been converted by the phosphor layer 14. It is an optical fiber. The emission side optical fiber 16 is erected at a position corresponding to the position of the light incident on the phosphor layer 14. That is, the emission side optical fiber 16 is a transmission path that guides the light whose wavelength has been converted by the phosphor layer 14. Here, the emission side optical fiber 16 may be, for example, an optical fiber made of plastic synthetic resin or an optical fiber made of natural resin. The diameter of the exit side optical fiber 16 is, for example, 1 mm to 10 mm.
 本実施の形態では、図2及び図3に示す例のように、出射側光ファイバ16は、一方の端部の中心がC軸と同軸方向のC軸に位置するように立設されている。これにより、出射側光ファイバ16は、蛍光体層14で波長変換された光を導光して、他方の端部より出射する。 In this embodiment, as in the example shown in FIGS. 2 and 3, the emission-side optical fiber 16 is installed to the center of one end portion is positioned at the C 2 axis of C 1 axial direction coaxial ing. Thereby, the output side optical fiber 16 guides the light whose wavelength has been converted by the phosphor layer 14 and emits the light from the other end.
 なお、出射側光ファイバ16を構成する光ファイバは、入射側光ファイバ12を構成する光ファイバと同様である。すなわち、出射側光ファイバ16を構成する光ファイバは、高屈折率のコアをコアより低屈折率のクラッド層が包んだ二重構造で構成される。 Note that the optical fiber constituting the emission side optical fiber 16 is the same as the optical fiber constituting the incident side optical fiber 12. That is, the optical fiber constituting the output side optical fiber 16 has a double structure in which a core having a high refractive index is wrapped with a cladding layer having a lower refractive index than the core.
 コア及びクラッド層は共に光に対して透過率が非常に高い石英ガラスまたはプラスチックからなる。コアおよびクラッド層の構成については、偏波保持光ファイバ式(2偏波モード)の構成のものでもよいし、単一偏波光ファイバ式(1偏波モード)の構成のものでもよい。そして、出射側光ファイバ16は、外形が円筒形状に形成されてあるものに限らず、楕円筒形状に形成されてあるものであってもよいし、角筒形状に形成されてあるものであってもよい。蛍光体層14と空隙17とは、出射側光ファイバ16の外形に応じてサイズや形状を形成される。 Both the core and the clad layer are made of quartz glass or plastic having a very high transmittance for light. The configuration of the core and the cladding layer may be a polarization-maintaining optical fiber type (two-polarization mode) configuration or a single-polarization optical fiber type (one-polarization mode) configuration. The exit-side optical fiber 16 is not limited to the one whose outer shape is formed in a cylindrical shape, but may be one that is formed in an elliptical cylindrical shape, or one that is formed in a square cylindrical shape. May be. The phosphor layer 14 and the gap 17 are formed in size and shape according to the outer shape of the emission side optical fiber 16.
 [効果等]
 ここで、比較例について説明する。
[Effects]
Here, a comparative example will be described.
 図4及び図5は、比較例における波長変換装置90の構成の一例を示す断面図である。 4 and 5 are cross-sectional views showing an example of the configuration of the wavelength conversion device 90 in the comparative example.
 波長変換装置90は、図4及び図5に示すように、基板93と、蛍光体層94と、樹脂性の出射側光ファイバ96とを備える。図4には、蛍光体層94の径が、出射側光ファイバ96の径よりも小さく形成されている場合の比較例が示されている。図5には、蛍光体層94の径が、出射側光ファイバ96の径よりも大きく形成されている場合の比較例が示されている。つまり、比較例の波長変換装置90は、出射側光ファイバ96の一方の端部と蛍光体層94とを離間するための間隔保持部材を備えておらず、蛍光体層94と出射側光ファイバ96とが接触している。 As shown in FIGS. 4 and 5, the wavelength conversion device 90 includes a substrate 93, a phosphor layer 94, and a resinous emission side optical fiber 96. FIG. 4 shows a comparative example in which the diameter of the phosphor layer 94 is formed smaller than the diameter of the emission side optical fiber 96. FIG. 5 shows a comparative example in which the diameter of the phosphor layer 94 is formed larger than the diameter of the emission side optical fiber 96. That is, the wavelength conversion device 90 of the comparative example does not include an interval holding member for separating the one end portion of the emission side optical fiber 96 and the phosphor layer 94, but the phosphor layer 94 and the emission side optical fiber. 96 is in contact.
 また、比較例における波長変換装置90では、C91軸に沿って基板93に導光された光は、基板93を透過して蛍光体層94に入射され、波長変換される。そして、波長変換された光は、一方の端部の中心がC91軸と同軸方向のC92軸に位置するように立設されるすなわち蛍光体層94に入射された光の位置に対応した位置に立設される出射側光ファイバ96の一端に入射され、導光されて他端から出射される。 Further, in the wavelength conversion device 90 in the comparative example, the light guided to the substrate 93 along the C91 axis is transmitted through the substrate 93 and incident on the phosphor layer 94 to be wavelength-converted. The light wavelength conversion corresponding to the position of one center of the end portion is incident on i.e. the phosphor layer 94 is erected so as to be positioned C 92 axes C 91 coaxial with the axis direction of light The light is incident on one end of the exit-side optical fiber 96 erected at the position, guided, and emitted from the other end.
 なお、基板93と、蛍光体層94と、出射側光ファイバ96とは、実施の形態1で説明した基板13と、蛍光体層14と、出射側光ファイバ16と同様であるので詳細な説明は省略する。 The substrate 93, the phosphor layer 94, and the emission side optical fiber 96 are the same as the substrate 13, the phosphor layer 14, and the emission side optical fiber 16 described in the first embodiment, and thus will be described in detail. Is omitted.
 このように、比較例における波長変換装置90では、蛍光体層94と、出射側光ファイバ96とが接触しているため、C91軸に沿って基板93に導光された光が出力の高い光である場合には、出射側光ファイバ96における蛍光体層94と接触している(つまり光源側の)先端部を溶かしてしまう。このため、比較例における波長変換装置90では、より高い出力の光を用いることができない。 Thus, in the wavelength conversion device 90 in the comparative example, since the phosphor layer 94 and the emission side optical fiber 96 are in contact, the light guided to the substrate 93 along the C91 axis has a high output. In the case of light, the tip of the emission side optical fiber 96 that is in contact with the phosphor layer 94 (that is, the light source side) is melted. For this reason, in the wavelength converter 90 in a comparative example, higher output light cannot be used.
 一方、波長変換装置10では、出射側光ファイバ16の一方の端部と蛍光体層14とを離間するための間隔保持部材15を備える。これにより、C軸に沿って基板13に導光された光が出力の高い光である場合でも、出射側光ファイバ16の光源側の先端部を溶かすことはない。間隔保持部材15は、蛍光体層14と出射側光ファイバ16との間に空隙17を形成しているので、蛍光体層14において波長変換に伴う損失等により発熱するものの、この熱が出射側光ファイバ16に伝わることを抑制できるからである。 On the other hand, the wavelength conversion device 10 includes an interval holding member 15 for separating one end of the emission side optical fiber 16 from the phosphor layer 14. Accordingly, even when the light guided to the substrate 13 along the C 1 axis is high output light, it does not dissolve the light source side of the distal end portion of the emission-side optical fiber 16. The spacing member 15 forms a gap 17 between the phosphor layer 14 and the emission side optical fiber 16, so that heat is generated in the phosphor layer 14 due to loss due to wavelength conversion, but this heat is emitted on the emission side. This is because transmission to the optical fiber 16 can be suppressed.
 これにより、波長変換装置10では、より高い出力の光を用いることができる。つまり、本実施の形態における波長変換装置10によれば、入射側光ファイバ12により導光される光のエネルギーを大きくしても蛍光体層14で発生する熱の出射側光ファイバ16への伝達を抑制できる。これにより、出射側光ファイバ16の先端部の融解を抑制でき十分な光を取り込めるので、高出力化を図ることができる。 Thereby, the wavelength conversion device 10 can use higher output light. That is, according to the wavelength conversion device 10 of the present embodiment, the heat generated in the phosphor layer 14 is transmitted to the emission side optical fiber 16 even if the energy of the light guided by the incident side optical fiber 12 is increased. Can be suppressed. Thereby, since melting | dissolving of the front-end | tip part of the output side optical fiber 16 can be suppressed and sufficient light can be taken in, high output can be achieved.
 より具体的には、本発明の一態様に係る波長変換装置10は、透光性を有し、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源11からの光が一面側に入射される基板13と、基板13の一面側と反対の他面側に配置され、基板13を透過して一面側に入射された光を波長変換する蛍光体層14と、蛍光体層14の一面側と反対の他面側と離間して立設され、蛍光体層14で波長変換された光を導光する樹脂性の出射側光ファイバ16と、出射側光ファイバ16の一方の端部と当該他面側とを離間し、かつ、波長変換された光が入射されるように当該端部の位置を維持する間隔保持部材15とを備える。そして、間隔保持部材15の融点は、出射側光ファイバ16の融点よりも高い。 More specifically, the wavelength conversion device 10 according to one embodiment of the present invention is light from the light source 11 that has translucency and emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light. Is disposed on the other surface side opposite to the one surface side of the substrate 13, the phosphor layer 14 that converts the wavelength of light that has passed through the substrate 13 and is incident on the one surface side, and fluorescence A resinous emission-side optical fiber 16 that stands up from the other surface side opposite to the one surface side of the body layer 14 and guides the light whose wavelength has been converted by the phosphor layer 14; An interval holding member 15 that separates one end from the other surface and maintains the position of the end so that the wavelength-converted light is incident is provided. The melting point of the spacing member 15 is higher than the melting point of the emission side optical fiber 16.
 これにより、より高い出力の光を用いることができる波長変換装置10を実現できる。 Thereby, it is possible to realize the wavelength conversion device 10 that can use higher output light.
 ここで、例えば、間隔保持部材15は、スペーサであり、間隔保持部材15の熱伝導率は、前記基板の熱伝導率よりも低くてもよい。 Here, for example, the spacing member 15 is a spacer, and the thermal conductivity of the spacing member 15 may be lower than the thermal conductivity of the substrate.
 これにより、蛍光体層14と出射側光ファイバ16との間に空気からなる空隙17を形成することができる。 Thereby, a gap 17 made of air can be formed between the phosphor layer 14 and the emission side optical fiber 16.
 (変形例)
 実施の形態1では、間隔保持部材15がスペーサである場合について説明したが、これに限らない。間隔保持部材15は、基板13の一部であってもよい。以下、この場合を変形例として説明する。
(Modification)
In Embodiment 1, although the case where the space | interval holding member 15 was a spacer was demonstrated, it does not restrict to this. The spacing member 15 may be a part of the substrate 13. Hereinafter, this case will be described as a modification.
 図6は、変形例における波長変換装置10Aの構成の一例を示す断面図である。図2等と同様の要素には同一の符号を付しており、詳細な説明は省略する。 FIG. 6 is a cross-sectional view showing an example of the configuration of a wavelength conversion device 10A according to a modification. Elements similar to those in FIG. 2 and the like are denoted by the same reference numerals, and detailed description thereof is omitted.
 図6に示す波長変換装置10Aは、図2に示す波長変換装置10と比較して、基板13Aの一部が間隔保持部材15Aを構成する点と、蛍光体層14Aが基板13Aに形成された凹部に配置されている点とが異なる。以下、実施の形態1と異なる点を中心に説明する。 Compared with the wavelength conversion device 10 shown in FIG. 2, the wavelength conversion device 10 </ b> A shown in FIG. 6 is such that a part of the substrate 13 </ b> A constitutes the spacing member 15 </ b> A, and the phosphor layer 14 </ b> A is formed on the substrate 13 </ b> A. It differs from the point arrange | positioned at a recessed part. Hereinafter, a description will be given focusing on differences from the first embodiment.
 <基板13A>
 基板13Aは、透光性を有し、入射側光ファイバ12(不図示)からの光が一面側に入射される。基板13Aを透過した光は蛍光体層14Aに入射される。本実施の形態では、図6に示す例のように、基板13Aは、ザグリ加工により形成された凹部131と縁部132とを有する。ここで、ザグリは、JIS規格においてざぐりまたは座ぐりと表記されるものである。
<Substrate 13A>
The substrate 13A has translucency, and light from the incident side optical fiber 12 (not shown) is incident on one surface side. The light transmitted through the substrate 13A is incident on the phosphor layer 14A. In the present embodiment, as in the example shown in FIG. 6, the substrate 13 </ b> A has a recess 131 and an edge 132 formed by counterboring. Here, the counterbore is described as counterbore or counterbore in the JIS standard.
 凹部131は、ザグリ加工により基板13の一部を掘りこんで形成される。凹部131の深さは、蛍光体層14Aの厚みよりも大きい。凹部131の径は、蛍光体層14の径と略同一または若干大きい。なお、若干とは、例えば数%であり、数十%であってもよい。また、凹部131の底は、略平面であり、蛍光体層14Aが配置または塗布できるようになっている。 The recess 131 is formed by digging a part of the substrate 13 by counterboring. The depth of the recess 131 is larger than the thickness of the phosphor layer 14A. The diameter of the recess 131 is substantially the same as or slightly larger than the diameter of the phosphor layer 14. Note that the term “slightly” means, for example, several percent or several tens of percent. In addition, the bottom of the recess 131 is substantially flat so that the phosphor layer 14A can be disposed or applied.
 縁部132は、ザグリ加工により形成される凹部131の上方に形成され、凹部131と段差になっている部分である。なお、縁部132は、段差ではなく傾斜(テーパ)として形成されていてもよい。いずれにせよ、縁部132は、凹部131の上方すなわち蛍光体層14Aの厚みよりも大きい位置に、凹部131の径よりも大きく形成される。また、縁部132の径は、凹部131の径及び蛍光体層14の径よりも大きく、かつ、出射側光ファイバ16の径と略同一か若干大きくなるように形成される。このようにして、縁部132は、出射側光ファイバ16を配置または維持できるようになっている。 The edge portion 132 is a portion that is formed above the concave portion 131 formed by counterboring and is stepped from the concave portion 131. The edge 132 may be formed as an inclination (taper) instead of a step. In any case, the edge 132 is formed above the recess 131, that is, at a position larger than the thickness of the phosphor layer 14A, and larger than the diameter of the recess 131. The diameter of the edge 132 is larger than the diameter of the recess 131 and the diameter of the phosphor layer 14 and is formed to be substantially the same as or slightly larger than the diameter of the emission side optical fiber 16. In this manner, the edge portion 132 can arrange or maintain the emission side optical fiber 16.
 <蛍光体層14A>
 蛍光体層14Aは、実施の形態1における蛍光体層14と同様に、基板13Aの一面側と反対の他面側に配置され、基板13を透過して一面側に入射された光を波長変換する。本実施の形態では、蛍光体層14Aの径は、出射側光ファイバ16の径よりも小さく形成されており、基板13Aの凹部131に配置される。蛍光体層14Aは、実施の形態1と同様に、図6に示す左面である一面側(入射面)に入射された光を波長変換する。
<Phosphor layer 14A>
The phosphor layer 14A is disposed on the other surface side opposite to the one surface side of the substrate 13A, similarly to the phosphor layer 14 in the first embodiment, and wavelength-converts the light transmitted through the substrate 13 and incident on the one surface side. To do. In the present embodiment, the diameter of the phosphor layer 14A is formed smaller than the diameter of the emission side optical fiber 16, and is disposed in the recess 131 of the substrate 13A. As in the first embodiment, the phosphor layer 14A converts the wavelength of light incident on one surface side (incident surface) that is the left surface shown in FIG.
 <間隔保持部材15A>
 間隔保持部材15Aは、基板13Aの一部により構成される。より具体的には、間隔保持部材15Aは、図6に示す点線括弧内の部分に該当する、すなわち、縁部132を含む基板13Aの一部である。間隔保持部材15Aは、図6に示すように、その厚みが蛍光体層14Aよりも厚く、かつ、蛍光体層14Aの周囲に構成されている。
<Spacing member 15A>
The spacing member 15A is constituted by a part of the substrate 13A. More specifically, the spacing member 15 </ b> A corresponds to a portion within the dotted brackets shown in FIG. 6, that is, a part of the substrate 13 </ b> A including the edge 132. As shown in FIG. 6, the spacing member 15A is thicker than the phosphor layer 14A and is formed around the phosphor layer 14A.
 また、間隔保持部材15Aは、縁部132により、出射側光ファイバ16の一方の端部の位置を維持することで出射側光ファイバ16の一方の端部と蛍光体層14Aの他面側とを離間する。 Further, the spacing member 15A maintains the position of one end portion of the emission side optical fiber 16 by the edge portion 132, so that one end portion of the emission side optical fiber 16 and the other surface side of the phosphor layer 14A Separate.
 このようにして、間隔保持部材15Aは、蛍光体層14Aと出射側光ファイバ16との間に空気からなる空隙17を形成する。 In this way, the spacing member 15A forms a gap 17 made of air between the phosphor layer 14A and the emission side optical fiber 16.
 [効果等]
 以上のように、本発明の一態様に係る波長変換装置10Aは、透光性を有し、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源11からの光が一面側に入射される基板13Aと、基板13Aの一面側と反対の他面側に配置され、基板13Aを透過して一面側に入射された光を波長変換する蛍光体層14Aと、蛍光体層14Aの一面側と反対の他面側と離間して立設され、蛍光体層14Aで波長変換された光を導光する樹脂性の出射側光ファイバ16と、出射側光ファイバ16の一方の端部と当該他面側とを離間し、かつ、波長変換された光が入射されるように当該端部の位置を維持する間隔保持部材15Aとを備える。間隔保持部材15Aの融点は、出射側光ファイバ16の融点よりも高い。
[Effects]
As described above, the wavelength conversion device 10A according to one embodiment of the present invention has translucency, and light from the light source 11 that emits light having a predetermined wavelength in a wavelength region from ultraviolet light to visible light is transmitted. A substrate 13A that is incident on one surface, a phosphor layer 14A that is disposed on the other surface opposite to the one surface of the substrate 13A, converts the wavelength of light that is transmitted through the substrate 13A and incident on the one surface, and a phosphor. One of a resinous emission-side optical fiber 16 that stands upright apart from the other surface side opposite to the one surface side of the layer 14A and guides the light whose wavelength has been converted by the phosphor layer 14A, and one of the emission-side optical fibers 16 And an interval holding member 15A that maintains the position of the end so that the wavelength-converted light is incident. The melting point of the spacing member 15 </ b> A is higher than the melting point of the emission side optical fiber 16.
 これにより、より高い出力の光を用いることができる波長変換装置10を実現できる。 Thereby, it is possible to realize the wavelength conversion device 10 that can use higher output light.
 さらに、基板13は、ザグリ加工により形成された凹部131と縁部132とを有し、凹部131の高さは、蛍光体層14Aの厚みよりも大きい。蛍光体層14Aは、凹部131に配置される。間隔保持部材15Aは、縁部132であり、縁部132により出射側光ファイバ16の一方の端部の位置を維持することで、出射側光ファイバ16の一方の端部と蛍光体層14Aの他面側とを離間する。 Furthermore, the substrate 13 has a recess 131 and an edge 132 formed by counterboring, and the height of the recess 131 is larger than the thickness of the phosphor layer 14A. The phosphor layer 14 </ b> A is disposed in the recess 131. The spacing member 15A is an edge portion 132, and the edge portion 132 maintains the position of one end portion of the emission side optical fiber 16 so that one end portion of the emission side optical fiber 16 and the phosphor layer 14A Separate from the other side.
 これにより、蛍光体層14Aと出射側光ファイバ16との間を離間させ空隙17を形成することができるので、より高い出力の光を用いることができる波長変換装置10Aを実現できる。 Thereby, since the gap 17 can be formed by separating the phosphor layer 14A and the emission side optical fiber 16, it is possible to realize the wavelength conversion device 10A that can use higher output light.
 (実施の形態2)
 実施の形態1では、間隔保持部材を備えることで、出射側光ファイバ16の一方の端部と蛍光体層14Aの他面側とを離間させ空隙17を形成する場合について説明したが、これに限らない。間隔保持部材の内壁部分に反射膜をさらに形成してもよい。この場合について、以下、実施の形態2として実施の形態1と異なるところを中心に説明する。
(Embodiment 2)
In Embodiment 1, the case where the gap 17 is formed by separating the one end portion of the emission-side optical fiber 16 from the other surface side of the phosphor layer 14A by providing the interval holding member has been described. Not exclusively. A reflective film may be further formed on the inner wall portion of the spacing member. In this case, the second embodiment will be described below with a focus on differences from the first embodiment.
 図7は、実施の形態2における波長変換装置10Bの構成の一例を示す断面図である。図3等と同様の要素には同一の符号を付しており、詳細な説明は省略する。 FIG. 7 is a cross-sectional view showing an example of the configuration of the wavelength conversion device 10B in the second embodiment. Elements similar to those in FIG. 3 and the like are denoted by the same reference numerals, and detailed description thereof is omitted.
 図7に示す波長変換装置10Bは、図3に示す波長変換装置10と比較して、間隔保持部材15Aの内壁に反射膜151が形成されて点で構成が異なる。以下、実施の形態1と異なる点を中心に説明する。 7 is different from the wavelength conversion device 10 shown in FIG. 3 in that a reflection film 151 is formed on the inner wall of the spacing member 15A. Hereinafter, a description will be given focusing on differences from the first embodiment.
 <間隔保持部材15B>
 間隔保持部材15Bも、出射側光ファイバ16の一方の端部と蛍光体層14の他面側(図で右側)とを離間し、かつ、蛍光体層14で波長変換された光が入射されるように当該端部の位置を維持する。間隔保持部材15Bの融点は、出射側光ファイバ16の融点よりも高い。
<Spacing member 15B>
The spacing member 15B also separates one end portion of the emission-side optical fiber 16 from the other surface side (right side in the drawing) of the phosphor layer 14 and receives light that has been wavelength-converted by the phosphor layer 14. So that the position of the end is maintained. The melting point of the spacing member 15 </ b> B is higher than the melting point of the emission side optical fiber 16.
 間隔保持部材15Bは、図7に示すように、その厚みが蛍光体層14よりも厚く、かつ、蛍光体層14の周端部を覆って立設している。間隔保持部材15Bを形成する材料としては、例えばガラスなど、基板13の熱伝導率よりも低く、出射側光ファイバ16の融点よりも高いものであればよい。 As shown in FIG. 7, the spacing member 15 </ b> B is thicker than the phosphor layer 14 and covers the peripheral end of the phosphor layer 14. As a material for forming the spacing member 15B, any material may be used as long as it is lower than the thermal conductivity of the substrate 13 and higher than the melting point of the emission side optical fiber 16, such as glass.
 本実施の形態では、さらに、間隔保持部材15Bの内壁には、蛍光体層14で波長変換された光を反射する反射膜151が形成されている。ここで、反射膜151は、金属製の反射膜であってもよいし、拡散反射膜であってもよい。 In the present embodiment, a reflection film 151 that reflects light converted in wavelength by the phosphor layer 14 is further formed on the inner wall of the spacing member 15B. Here, the reflection film 151 may be a metal reflection film or a diffuse reflection film.
 反射膜151が金属製である場合、例えば、Al、銀などで形成されればよい。また、反射膜151が拡散反射膜である場合、間隔保持部材15Bの内壁を白色とするよう形成されればよい。このような白色の拡散反射膜として形成する材料としては、例えば、積分球で用いられるような拡散反射率の高い硫酸バリウム、テフロン(登録商標)、並びにAl2O3、ZrO、TiO2、ZnOといったセラミック及びプラスチックを挙げることができる。 When the reflective film 151 is made of metal, for example, it may be formed of Al, silver, or the like. Further, when the reflection film 151 is a diffuse reflection film, the inner wall of the spacing member 15B may be formed to be white. As a material for forming such a white diffuse reflection film, for example, barium sulfate, Teflon (registered trademark), and Al 2 O 3 , ZrO, TiO 2 , ZnO having a high diffuse reflectance as used in an integrating sphere are used. And ceramic and plastic.
 このように、間隔保持部材15Bが反射膜151を備えることで、蛍光体層14で波長変換された光をより多く、出射側光ファイバ16の一方の端部に入射させることができる。 As described above, since the spacing member 15B includes the reflective film 151, more light whose wavelength has been converted by the phosphor layer 14 can be incident on one end of the emission-side optical fiber 16.
 なお、図7に示す例では、蛍光体層14の径は、出射側光ファイバ16の径よりも大きく形成されているが、これに限らない。蛍光体層14の径が、出射側光ファイバ16の径よりも小さく形成されているとしてもよく、同様のことがいえる。 In the example shown in FIG. 7, the diameter of the phosphor layer 14 is formed larger than the diameter of the emission side optical fiber 16, but is not limited thereto. The phosphor layer 14 may have a diameter smaller than that of the emission side optical fiber 16, and the same can be said.
 [効果等]
 図8は、比較例における波長変換装置10の動作を説明するための図である。
[Effects]
FIG. 8 is a diagram for explaining the operation of the wavelength conversion device 10 in the comparative example.
 図8に示す比較例における波長変換装置10は、図3に示す波長変換装置10である。比較例における波長変換装置10では、C軸に沿って基板13に導光された光は、基板13を透過して蛍光体層14に入射され、波長変換される。そして、波長変換された光は、蛍光体層14に入射された光の位置に対応した位置に立設される出射側光ファイバ16の一端に入射され、導光されて他端から出射される。この際、例えばガラス製の間隔保持部材15が出射側光ファイバ16の一方の端部と蛍光体層14とを離間しているので、波長変換された光の一部は、間隔保持部材15内に入射したり、漏れ光となったりしてロスしてしまうことが考えられる。つまり、例えば光C21など光波長変換された光のうちの一部は出射側光ファイバ16の一端に入射されるが、ガラス製の間隔保持部材15は透明であるので例えば光C22など光波長変換された光のうちの一部をロスしてしまう。その結果、波長変換装置10と出射側光ファイバ16との結合効率が低下してしまうことが考えられる。 The wavelength conversion device 10 in the comparative example shown in FIG. 8 is the wavelength conversion device 10 shown in FIG. In the wavelength converter 10 in the comparative example, the light guided to the substrate 13 along the C 1 axis, passes through the substrate 13 is incident on the phosphor layer 14 is a wavelength conversion. Then, the wavelength-converted light is incident on one end of the emission-side optical fiber 16 erected at a position corresponding to the position of the light incident on the phosphor layer 14, guided, and emitted from the other end. . At this time, for example, a glass interval holding member 15 separates one end portion of the emission side optical fiber 16 from the phosphor layer 14, so that a part of the wavelength-converted light is in the interval holding member 15. It is possible that the light is lost due to incident light or leakage light. That is, for example, a part of the light wavelength-converted light such as the light C 21 is incident on one end of the emission-side optical fiber 16, but the glass spacing member 15 is transparent, and thus the light such as the light C 22 is used. A part of the wavelength-converted light is lost. As a result, it is conceivable that the coupling efficiency between the wavelength conversion device 10 and the emission side optical fiber 16 is lowered.
 これに対して、図7に示す本実施の形態の波長変換装置10Bでは、間隔保持部材15の内壁に反射膜151を形成するので、波長変換装置10においてロスしてしまっていた光の一部も、出射側光ファイバ16に入射させることができる。これにより、離間している波長変換装置10Bと出射側光ファイバ16との結合効率を向上させることができる。間隔保持部材15Bの内壁に形成された反射膜151は、蛍光体層14と出射側光ファイバ16との間の空隙17により、漏れ光となったり間隔保持部材15Bに入射してしまう一部の光を反射して出射側光ファイバ16に入射させることができるからである。 On the other hand, in the wavelength conversion device 10B of the present embodiment shown in FIG. 7, since the reflection film 151 is formed on the inner wall of the spacing member 15, a part of the light that has been lost in the wavelength conversion device 10 Also, the light can be made incident on the output side optical fiber 16. As a result, the coupling efficiency between the wavelength conversion device 10 </ b> B and the emission-side optical fiber 16 that are separated can be improved. The reflective film 151 formed on the inner wall of the spacing member 15B becomes a part of the light that leaks or enters the spacing member 15B due to the gap 17 between the phosphor layer 14 and the output side optical fiber 16. This is because the light can be reflected and incident on the exit-side optical fiber 16.
 このように、本実施の形態における波長変換装置10Bによれば、さらに、波長変換装置10Bと出射側光ファイバ16との結合効率を向上させることができるので、より高出力化を図ることができる。 As described above, according to the wavelength conversion device 10B in the present embodiment, since the coupling efficiency between the wavelength conversion device 10B and the emission side optical fiber 16 can be further improved, higher output can be achieved. .
 より具体的には、本発明の一態様に係る波長変換装置10Bは、透光性を有し、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源11からの光が一面側に入射される基板13と、基板13の一面側と反対の他面側に配置され、基板13を透過して一面側に入射された光を波長変換する蛍光体層14と、蛍光体層14の一面側と反対の他面側と離間して立設され、蛍光体層14で波長変換された光を導光する樹脂性の出射側光ファイバ16と、出射側光ファイバ16の一方の端部と当該他面側とを離間し、かつ、波長変換された光が入射されるように当該端部の位置を維持する間隔保持部材15Bとを備える。そして、間隔保持部材15Bの融点は、出射側光ファイバ16の融点よりも高い。 More specifically, the wavelength conversion device 10B according to one embodiment of the present invention is light from the light source 11 that has translucency and emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light. Is disposed on the other surface side opposite to the one surface side of the substrate 13, the phosphor layer 14 that converts the wavelength of light that has passed through the substrate 13 and is incident on the one surface side, and fluorescence A resinous emission-side optical fiber 16 that stands up from the other surface side opposite to the one surface side of the body layer 14 and guides the light whose wavelength has been converted by the phosphor layer 14; An interval holding member 15B that separates one end from the other surface and maintains the position of the end so that the wavelength-converted light is incident is provided. The melting point of the spacing member 15 </ b> B is higher than the melting point of the emission side optical fiber 16.
 これにより、より高い出力の光を用いることができる波長変換装置10Bを実現できる。 Thereby, it is possible to realize the wavelength conversion device 10B that can use higher output light.
 さらに、間隔保持部材15Bの内壁には、蛍光体層14で波長変換された光を反射する反射膜151が形成されている。 Further, a reflection film 151 that reflects light converted in wavelength by the phosphor layer 14 is formed on the inner wall of the spacing member 15B.
 これにより、蛍光体層14と出射側光ファイバ16との間の空隙17により、漏れ光となったり間隔保持部材15Bに入射してしまう一部の光を反射して出射側光ファイバ16に入射させることができる。よって、波長変換装置10Bと出射側光ファイバ16との結合効率を向上させることができる。 As a result, the gap 17 between the phosphor layer 14 and the emission side optical fiber 16 reflects part of the light that becomes leakage light or enters the spacing member 15B and enters the emission side optical fiber 16. Can be made. Therefore, the coupling efficiency between the wavelength conversion device 10B and the emission side optical fiber 16 can be improved.
 ここで、例えば、反射膜151は、金属製の反射膜であってもよい。これにより、漏れ光となったり間隔保持部材15Bに入射してしまう一部の光の大半を反射して出射側光ファイバ16に入射させることができるので、波長変換装置10Bと出射側光ファイバ16との結合効率を向上させることができる。 Here, for example, the reflective film 151 may be a metallic reflective film. As a result, most of the part of the light that becomes leakage light or enters the spacing member 15B can be reflected and incident on the exit-side optical fiber 16, so that the wavelength conversion device 10B and the exit-side optical fiber 16 are reflected. And the coupling efficiency can be improved.
 また、例えば、反射膜151は、拡散反射膜であってもよい。金属製の反射膜と比較して波長変換装置10Bと出射側光ファイバ16との結合効率が低い可能性があるものの、間隔保持部材15Bの内壁により容易に形成できる。 Further, for example, the reflection film 151 may be a diffuse reflection film. Although the coupling efficiency between the wavelength conversion device 10B and the emission side optical fiber 16 may be lower than that of a metallic reflective film, it can be easily formed by the inner wall of the spacing member 15B.
 (他の実施の形態等)
 上述した実施の形態は一例にすぎず、各種の変更、付加、省略等が可能であることは言うまでもない。
(Other embodiments, etc.)
The embodiment described above is merely an example, and it goes without saying that various modifications, additions, omissions, and the like are possible.
 また、上述した実施の形態で示した構成要素及び機能を任意に組み合わせることで実現される形態も本発明の範囲に含まれる。その他、上記実施の形態に対して当業者が思い付く各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 Further, embodiments realized by arbitrarily combining the components and functions shown in the above-described embodiments are also included in the scope of the present invention. In addition, it is realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or the form obtained by making various modifications conceived by those skilled in the art to the above embodiment. Forms are also included in the present invention.
 例えば、上記実施の形態における照明装置1を用いた内視鏡装置も本発明に含まれる。具体的には、本発明の一態様に係る内視鏡装置は、被検体の体腔に挿入可能な挿入部と、照明装置1とを備える。挿入部の先端部には、被検体の体腔における被観察体からの光を結像する対物レンズ系と、出射側光ファイバの少なくとも一部とが構成されている。出射側光ファイバは、導光した光のそれぞれを被観察体に照明する。 For example, an endoscope apparatus using the illumination apparatus 1 in the above embodiment is also included in the present invention. Specifically, an endoscope apparatus according to one aspect of the present invention includes an insertion unit that can be inserted into a body cavity of a subject, and the illumination device 1. An objective lens system that forms an image of light from the observation object in the body cavity of the subject and at least a part of the emission side optical fiber are configured at the distal end of the insertion part. The emission side optical fiber illuminates the object to be observed with each of the guided light.
 また、上記実施の形態における照明装置1は、ロボットのカメラ部に用いてもよい。内視鏡装置に用いる場合と同様に、照明装置1が取りつけられるカメラ部を小型化できる。 Moreover, you may use the illuminating device 1 in the said embodiment for the camera part of a robot. As in the case of using the endoscope apparatus, the camera unit to which the illumination apparatus 1 is attached can be downsized.
 1 照明装置
 10、10A、10B 波長変換装置
 11 光源
 13、13A 基板
 14、14A 蛍光体層
 15、15A 間隔保持部材
 16 出射側光ファイバ
DESCRIPTION OF SYMBOLS 1 Illuminating device 10, 10A, 10B Wavelength converter 11 Light source 13, 13A Substrate 14, 14A Phosphor layer 15, 15A Space | interval holding member 16 Output side optical fiber

Claims (7)

  1.  透光性を有し、紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源からの光が一面側に入射される基板と、
     前記基板の前記一面側と反対の他面側に配置され、前記基板を透過して一面側に入射された前記光を波長変換する蛍光体層と、
     前記蛍光体層の前記一面側と反対の他面側と離間して立設され、前記蛍光体層で波長変換された前記光を導光する樹脂性の光ファイバと、
     前記光ファイバの一方の端部と前記他面側とを離間し、かつ、波長変換された前記光が入射されるように前記端部の位置を維持する間隔保持部材とを備え、
     前記間隔保持部材の融点は、前記光ファイバの融点よりも高い、
     波長変換装置。
    A substrate having light transmissivity, and a light from a light source emitting light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light is incident on one side;
    A phosphor layer disposed on the other surface opposite to the one surface side of the substrate, and wavelength-converting the light transmitted through the substrate and incident on the one surface side;
    A resinous optical fiber that is erected apart from the other surface side opposite to the one surface side of the phosphor layer and guides the light wavelength-converted by the phosphor layer;
    A spacing member that separates one end of the optical fiber from the other surface and maintains the position of the end so that the wavelength-converted light is incident thereon;
    The melting point of the spacing member is higher than the melting point of the optical fiber,
    Wavelength converter.
  2.  前記基板は、ザグリ加工により形成された凹部と縁部とを有し、
     前記凹部の深さは、前記蛍光体層の厚みよりも大きく、
     前記蛍光体層は、前記凹部に配置され、
     前記間隔保持部材は、前記縁部であり、前記縁部により前記端部の位置を維持することで前記光ファイバの一方の端部と前記他面側とを離間する、
     請求項1に記載の波長変換装置。
    The substrate has a recess and an edge formed by counterboring,
    The depth of the recess is larger than the thickness of the phosphor layer,
    The phosphor layer is disposed in the recess,
    The spacing member is the edge, and the one end of the optical fiber is separated from the other surface side by maintaining the position of the end by the edge.
    The wavelength conversion device according to claim 1.
  3.  前記間隔保持部材は、スペーサであり、
     前記間隔保持部材の熱伝導率は、前記基板の熱伝導率よりも低い、
     請求項1に記載の波長変換装置。
    The spacing member is a spacer,
    The thermal conductivity of the spacing member is lower than the thermal conductivity of the substrate,
    The wavelength conversion device according to claim 1.
  4.  前記間隔保持部材の内壁には、
     前記蛍光体層で波長変換された前記光を反射する反射膜が形成されている、
     請求項1~3のいずれか1項に記載の波長変換装置。
    On the inner wall of the spacing member,
    A reflective film that reflects the light wavelength-converted by the phosphor layer is formed;
    The wavelength converter according to any one of claims 1 to 3.
  5.  前記反射膜は、金属製の反射膜である、
     請求項4に記載の波長変換装置。
    The reflective film is a metallic reflective film,
    The wavelength converter of Claim 4.
  6.  前記反射膜は、拡散反射膜である、
     請求項4に記載の波長変換装置。
    The reflective film is a diffuse reflective film.
    The wavelength converter of Claim 4.
  7.  請求項1~6のいずれか1項に記載の波長変換装置と、
     紫外光から可視光までの波長領域のうちの所定の波長の光を発する光源とを備え、
     前記光源から照射される光を前記波長変換装置に入射させる、
     照明装置。
    A wavelength converter according to any one of claims 1 to 6,
    A light source that emits light of a predetermined wavelength in a wavelength region from ultraviolet light to visible light,
    Making the light emitted from the light source incident on the wavelength converter,
    Lighting device.
PCT/JP2019/005998 2018-02-22 2019-02-19 Wavelength conversion device and lighting device WO2019163741A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501767A JP6827227B2 (en) 2018-02-22 2019-02-19 Wavelength converter and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029597 2018-02-22
JP2018029597 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163741A1 true WO2019163741A1 (en) 2019-08-29

Family

ID=67686826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005998 WO2019163741A1 (en) 2018-02-22 2019-02-19 Wavelength conversion device and lighting device

Country Status (2)

Country Link
JP (1) JP6827227B2 (en)
WO (1) WO2019163741A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306510A (en) * 2020-03-25 2020-06-19 浙江光塔节能科技有限公司 Optical fiber light guide device
JP2021086744A (en) * 2019-11-28 2021-06-03 パナソニックIpマネジメント株式会社 Light emitting device
JPWO2022092270A1 (en) * 2020-10-30 2022-05-05

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255296A (en) * 2005-03-18 2006-09-28 Kyocera Corp Light source for fiber, fiber light source device, and endoscope using the device
US20070153541A1 (en) * 2004-09-17 2007-07-05 Optim, Inc. LED endoscope illuminator with thermally conductive handle
JP2018022781A (en) * 2016-08-03 2018-02-08 パナソニックIpマネジメント株式会社 Optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070153541A1 (en) * 2004-09-17 2007-07-05 Optim, Inc. LED endoscope illuminator with thermally conductive handle
JP2006255296A (en) * 2005-03-18 2006-09-28 Kyocera Corp Light source for fiber, fiber light source device, and endoscope using the device
JP2018022781A (en) * 2016-08-03 2018-02-08 パナソニックIpマネジメント株式会社 Optical device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021086744A (en) * 2019-11-28 2021-06-03 パナソニックIpマネジメント株式会社 Light emitting device
CN111306510A (en) * 2020-03-25 2020-06-19 浙江光塔节能科技有限公司 Optical fiber light guide device
JPWO2022092270A1 (en) * 2020-10-30 2022-05-05
WO2022092270A1 (en) * 2020-10-30 2022-05-05 京セラ株式会社 Optical connection structure and illumination system
JP7465991B2 (en) 2020-10-30 2024-04-11 京セラ株式会社 Optical connection structure and lighting system

Also Published As

Publication number Publication date
JP6827227B2 (en) 2021-02-10
JPWO2019163741A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019163741A1 (en) Wavelength conversion device and lighting device
JP4375270B2 (en) Light emitting device
JP2010160948A (en) Light source device
WO2010085516A1 (en) Detachable illumination system
JP5358872B2 (en) Light emitting device
JP2005347223A (en) Light source device
CN108720796B (en) Illumination light guide device and endoscope device
JP2018195627A (en) Light-source device and luminaire
US10362931B2 (en) Optical device
US11280949B2 (en) Light-emitting device
JP2007258466A (en) Illuminating device, and light-emitting device
US20230417395A1 (en) Light source
JP5998507B2 (en) Lighting device
JP2010017305A (en) Light source apparatus and endoscopic apparatus using the same
US20210167255A1 (en) Light-emitting device and connection method
JP2009238990A (en) Light source device
JP2007103704A (en) Light emitting device, laser display and endoscope
US11493185B2 (en) Illuminating device
US10352545B2 (en) Wavelength conversion device and lighting apparatus
CN215492063U (en) Light source device
US10849487B2 (en) Illumination unit and endoscope system
US11480317B2 (en) Light source device with sensor for detecting anomaly in wavelength converting member
WO2017195303A1 (en) Illuminating device
CN211293329U (en) Lighting device
JP2018205548A (en) Wavelength conversion body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757592

Country of ref document: EP

Kind code of ref document: A1