WO2019163633A1 - Cfrp sheet, frp-metal composite, and method for manufacturing same - Google Patents

Cfrp sheet, frp-metal composite, and method for manufacturing same Download PDF

Info

Publication number
WO2019163633A1
WO2019163633A1 PCT/JP2019/005317 JP2019005317W WO2019163633A1 WO 2019163633 A1 WO2019163633 A1 WO 2019163633A1 JP 2019005317 W JP2019005317 W JP 2019005317W WO 2019163633 A1 WO2019163633 A1 WO 2019163633A1
Authority
WO
WIPO (PCT)
Prior art keywords
cfrp sheet
metal
frp
matrix resin
cfrp
Prior art date
Application number
PCT/JP2019/005317
Other languages
French (fr)
Japanese (ja)
Inventor
金森尚哲
山崎達也
Original Assignee
フクビ化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フクビ化学工業株式会社 filed Critical フクビ化学工業株式会社
Publication of WO2019163633A1 publication Critical patent/WO2019163633A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to an improvement of a CFRP sheet, more specifically, a CFRP sheet excellent in flame retardancy and metal adhesion, an FRP-metal composite using the same and excellent in flame retardancy and adhesion integrity, and the FRP-
  • the present invention relates to an efficient method for producing a metal composite.
  • CFRP fiber reinforced plastics
  • thermosetting resin epoxy resin, etc.
  • thermoplastic resin-based adhesive for laminating and integrating the CFRP and the metal material, but the curing time of the adhesive may be short, but in any case the CFRP or the metal material Since a process of applying an adhesive to the surface and a process of pasting both are required, there is a problem that the number of processes increases and manufacturing cannot be performed efficiently.
  • thermosetting resins epoxy resins, phenol resins, etc.
  • thermoplastic resins polyamide resins, polypropylene, etc.
  • the CFRP sheet 1 is formed by using a fluororesin having a melting point of 170 to 260 ° C. having metal adhesion and flame retardancy as the matrix resin 12 impregnated between the carbon fiber bundles 11 which are reinforcing fiber materials. There is a feature in the point that it constituted.
  • the fluororesin used for the matrix resin 12 it is preferable to use a resin having flame retardancy satisfying at least the determination standard of V-0 in the UL94V combustion test and having a critical oxygen index of 30 or more.
  • ETFE or EFEP is preferably used as the fluororesin used for the matrix resin 12.
  • the ratio of polymerized units based on TFE in ETFE is 50 to 80 mol%.
  • the fiber volume content of the carbon fiber is preferably 20 to 70% in order to secure the bond strength, flame retardancy, and metal adhesion of the carbon fiber bundle 11.
  • the carbon fiber bundle 11 it is preferable to use a sizing agent coated with a polyamide resin in order to increase the bonding strength between the matrix resin and the carbon fiber bundle to improve the bending strength and the tensile strength.
  • the FRP-metal composite 2 can be configured by directly laminating and integrating the FRP layer 21 made of the CFRP sheet and the metal layer 22 made of a metal material directly without using an adhesive layer.
  • the CFRP sheet and the metal material are hot-pressed under the conditions of a heating temperature of 180 to 280 ° C. and a pressure of 1 to 5 MPa, so that the CFRP sheet is converted into a metal material.
  • a method of laminating and integrating the two by heat welding can be employed.
  • the matrix resin impregnated between the carbon fiber bundles of the CFRP sheet a fluororesin having a melting point of 170 to 260 ° C. having metal adhesion is used, and these are laminated and integrated only by heat welding by hot press.
  • the FRP-metal composite can be produced.
  • the adhesive strength between the CFRP sheet and the metal material can be improved.
  • CFRP sheet of the present invention since a fluorine-based resin having excellent flame retardancy is used as the matrix resin impregnated between the carbon fiber bundles, a building material that requires a very high level of flame retardancy is used. It becomes possible to produce an FRP-metal composite that can be suitably used for applications such as industrial materials and industrial parts.
  • the present invention it is possible to produce an FRP-metal composite that is more excellent in flame retardancy and adhesion integrity than in the past, and moreover, a CFRP sheet that can efficiently produce an FRP-metal composite with a small number of steps. Therefore, the practical utility value of the present invention is very high.
  • CFRP sheet 1 “Configuration of CFRP sheet” [1] Basic Configuration of CFRP Sheet First, the basic configuration of the CFRP sheet 1 will be described. In this embodiment, a carbon fiber bundle 11 is used as a reinforcing fiber material, and a matrix resin 12 impregnated between the carbon fiber bundles 11 is used.
  • the sheet body of the CFRP sheet 1 shown in FIG. 1 is formed using a fluorine-based resin having a melting point of 170 to 260 ° C. having metal adhesion and flame retardancy.
  • each component of the CFRP sheet 1 will be described.
  • the carbon fiber bundle 11 in the present embodiment, when carbon fibers having a filament diameter of 3 to 12 ⁇ m (preferably 5 to 7 ⁇ m) are bundled into 5000 to 50000 (preferably 12000 to 15000) carbon fibers to form a thread shape
  • the carbon fiber bundle 11 having a thickness of about 0.1 to 2.0 mm (preferably 0.3 to 0.4 mm) is used, the number of carbon fibers can be appropriately changed according to the thickness of the carbon fiber bundle 11.
  • PAN-based carbon fibers are used, but pitch-based carbon fibers can also be used.
  • the UD sheet in which the orientations of the carbon fiber bundles 11 are aligned in the same direction is used, but the carbon fiber bundles 11 can be arranged in two or more different directions.
  • a method of laminating a plurality of UD sheets by changing the orientation of the carbon fiber bundles, or a method of forming a sheet by weaving the carbon fiber bundles by plain weaving or multiaxial weaving can be adopted.
  • a continuous fiber-like carbon fiber bundle is used.
  • a carbon fiber bundle finely chopped into short fibers can also be used.
  • many UD sheets are cut into strips. These UD sheet pieces can be arranged in a random orientation so as to form a sheet (pseudo isotropic sheet).
  • the carbon fiber bundle 11 applied with a sizing agent is used.
  • a sizing agent an epoxy resin type, a vinyl ester resin type, a polyamide resin type, or the like can be used.
  • the sizing agent has a role of adjusting the bond strength between the carbon fiber bundle 11 and the matrix resin 12 and a role of suppressing damage to the carbon fiber bundle 11 during processing.
  • a CFRP sheet 1 is used by using a polyamide-based resin. The bending strength and tensile strength of can be improved.
  • Vf fiber volume content of carbon fiber
  • the fiber volume content (Vf) of carbon fiber in the CFRP sheet if the carbon fiber content is too low, sufficient flame retardancy cannot be obtained. If the fiber content is too high, the proportion of the resin decreases and the bond strength and metal adhesion between the carbon fiber bundles 11 decrease, so it is preferable to adjust within the range of Vf 20% to 70%.
  • the proportion of polymerized units based on TFE as the fluororesin is 50 to 80 mol%, and the proportion of polymerized units based on ethylene is 50 to 80 mol. % ETFE (tetrafluoroethylene / ethylene copolymer) is used, but fluorine resins other than ETFE can also be used.
  • ETFE tetrafluoroethylene / ethylene copolymer
  • fluorine resins other than ETFE can also be used.
  • the impregnation method of the matrix resin As for the impregnation method of the matrix resin 12 with respect to the carbon fiber bundle 11, in this embodiment, the planar spread yarn groups in which the carbon fiber bundles are arranged in one direction are arranged vertically, Further, a matrix resin in the form of a film is inserted between them, and the resin film and the upper and lower spread yarn groups are thermocompression bonded by a roll, so that the matrix resin 12 is semi-impregnated between the carbon fiber bundles 11 as shown in FIG. I am letting. In addition, as an impregnation method, a granular or short fiber matrix resin can be laminated and impregnated.
  • the impregnation ratio of the matrix resin 12 may be impregnated to such an extent that the carbon fiber bundles 11 are bonded and integrated, and as shown in FIG. 2, all the carbon fiber bundles 11 are completely buried in the matrix resin. It may be impregnated.
  • the FRP-metal composite 2 is configured by laminating and integrating the FRP layer 21 made of the CFRP sheet of the first embodiment and the metal layer 22 made of a metal material. Further, the FRP layer 21 and the metal layer 22 of the FRP-metal composite 2 are directly integrated by thermal welding without using an adhesive layer. Thereby, the FRP-metal composite 2 excellent in adhesion integrity and flame retardancy is obtained.
  • metal layer Also, in this embodiment, an aluminum plate is used as the metal material used for the metal layer 22, but the metal material is not limited to this, and other metal materials (for example, iron-based materials). Materials, etc.) can also be used. Further, the thickness and shape of the metal layer 22 can be appropriately changed according to the use of the FRP-metal composite 2.
  • metal layers are formed on both upper and lower sides of the FRP layer (dimensions: width 25 mm ⁇ length 100 mm ⁇ thickness 0.5 mm).
  • a part that protrudes to the left and right is formed on the metal layer, and the protruding part of the metal layer is 1 mm / min in an environment of temperature 25 ° C. and humidity 50% using a test device (manufactured by Shimadzu Corporation: universal testing machine I-0108). It was measured how much the FRP layer and the metal layer were peeled off by pulling outward at a speed.
  • Example 1 In this example, ETFE is used for the matrix resin of the CFRP sheet constituting the FRP layer, and the CFRP sheet and the aluminum plate are hot pressed for 3 minutes under conditions of a heating temperature of 250 ° C. and a pressure of 5 MPa.
  • the FRP layer and the metal layer were laminated and integrated by thermally welding the sheet to the metal material.
  • Comparative Example 1 PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) is used as a matrix resin of the CFRP sheet constituting the FRP layer, and the CFRP sheet and the aluminum plate are heated at a heating temperature of 340 ° C. and an applied pressure.
  • the CFRP sheet was thermally welded to the metal plate by hot pressing for 3 minutes under the condition of 5 MPa to integrate the FRP layer and the metal layer.
  • Comparative Example 2 PA6 (polyamide resin) is used as a matrix resin of the CFRP sheet constituting the FRP layer, and this CFRP sheet and an aluminum plate are hot pressed for 3 minutes under the conditions of a heating temperature of 270 ° C. and a pressure of 5 MPa. As a result, the CFRP sheet was thermally welded to the metal plate to integrate the FRP layer and the metal layer.
  • PA6 polyamide resin
  • “Comparative Example 3” In this example, PP (polypropylene resin) is used as the matrix resin of the CFRP sheet constituting the FRP layer, and the CFRP sheet and the aluminum plate are hot pressed for 3 minutes under the conditions of a heating temperature of 180 ° C. and a pressure of 5 MPa. As a result, the CFRP sheet was thermally welded to the metal plate to integrate the FRP layer and the metal layer.
  • PP polypropylene resin
  • CFRP sheet 11 Carbon fiber 12 Matrix resin 2
  • Metal-FRP composite 21 FRP layer 22 Metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing: a CFRP sheet having excellent fire resistance and metal adherence; an FRP-metal composite having excellent fire resistance and bonding integrity that uses the same; and a method for efficiently manufacturing the FRP-metal composite. A CFRP sheet is composed by using a fluorine resin having metal adherence and fire resistance and a melting point of 170 to 260°C as a matrix resin for impregnating carbon fiber bundles, these being a fiber-reinforced material, and the FRP-metal composite is composed by directly laminating together, without an intervening adhesive layer, an FRP layer comprising the CFRP sheet and a metal layer comprising a metal material.

Description

CFRPシート、FRP-金属複合体及びその製造方法CFRP sheet, FRP-metal composite and production method thereof
 本発明は、CFRPシートの改良、詳しくは、難燃性と金属接着性に優れたCFRPシート、及びそれを用いた難燃性と接着一体性に優れたFRP-金属複合体、及びそのFRP-金属複合体の効率的な製造方法に関するものである。 The present invention relates to an improvement of a CFRP sheet, more specifically, a CFRP sheet excellent in flame retardancy and metal adhesion, an FRP-metal composite using the same and excellent in flame retardancy and adhesion integrity, and the FRP- The present invention relates to an efficient method for producing a metal composite.
 近年、強化繊維材料である炭素繊維にマトリックス樹脂を含浸させた繊維強化プラスチック(以下、「CFRP」と記載)が、その優れた機能性(曲げ強度や引張り強度、軽量性等)から工業分野や建築分野などの多くの分野で利用が進んでいる。特にCFRPシートは、他の材料に貼り合わせて使用できるため、様々な用途に利用できる。 In recent years, fiber reinforced plastics (hereinafter referred to as “CFRP”) obtained by impregnating a carbon fiber, which is a reinforced fiber material, with a matrix resin, have been used in industrial fields due to their superior functionality (bending strength, tensile strength, light weight, etc.). The use is progressing in many fields such as the construction field. In particular, the CFRP sheet can be used by being bonded to other materials, and thus can be used for various purposes.
 また上記CFRPと他の材料を一体化した複合材料に関しては、従来、CFRPと金属材料を熱硬化性樹脂系(エポキシ樹脂等)の接着剤により一体化したものが公知となっているが(特許文献1参照)、熱硬化性樹脂系の接着剤を使用すると塗布してから硬化するまでに時間がかかるため、短時間で製造を行うことが難しいという欠点がある。 As for the composite material in which the above CFRP and other materials are integrated, conventionally, a material in which CFRP and a metal material are integrated with a thermosetting resin (epoxy resin, etc.) adhesive is known (patents). If a thermosetting resin-based adhesive is used, it takes a long time to apply and cure, and thus there is a drawback that it is difficult to manufacture in a short time.
 またCFRPと金属材料を積層一体化するための接着剤として、熱可塑性樹脂系のものを使用することも考えられるが、接着剤の硬化時間は短くて済むものの、どちらにせよCFRPまたは金属材料の表面に接着剤を塗布する工程と両者を貼り付ける工程が必要となるため、工程数が増えて効率的に製造を行えないという問題がある。 In addition, it is conceivable to use a thermoplastic resin-based adhesive for laminating and integrating the CFRP and the metal material, but the curing time of the adhesive may be short, but in any case the CFRP or the metal material Since a process of applying an adhesive to the surface and a process of pasting both are required, there is a problem that the number of processes increases and manufacturing cannot be performed efficiently.
 また従来においては、CFRPのマトリックス樹脂に様々な熱硬化性樹脂(エポキシ樹脂やフェノール樹脂等)や熱可塑性樹脂(ポリアミド系樹脂やポリプロピレン等)を使用する技術は知られていたものの、金属接着性と難燃性の観点からマトリックス樹脂の材料選択を行う技術については一般的に知られていなかった。 In the past, although techniques using various thermosetting resins (epoxy resins, phenol resins, etc.) and thermoplastic resins (polyamide resins, polypropylene, etc.) for the matrix resin of CFRP have been known, metal adhesion From the viewpoint of flame retardancy, a technique for selecting a matrix resin material has not been generally known.
特開2009-191186号公報JP 2009-191186 A
 本発明は、上記問題に鑑みて為されたものであり、その目的とするところは、難燃性と金属接着性に優れたCFRPシート、及びそれを用いた難燃性と接着一体性に優れたFRP-金属複合体、及びそのFRP-金属複合体の効率的な製造方法を提供することにある。 The present invention has been made in view of the above problems, and its object is a CFRP sheet excellent in flame retardancy and metal adhesion, and excellent in flame retardancy and adhesion integrity using the same. Another object of the present invention is to provide an FRP-metal composite and an efficient method for producing the FRP-metal composite.
 本発明者が上記課題を解決するために採用した手段を添付図面を参照して説明すれば次のとおりである。 <Means adopted by the present inventor for solving the above-mentioned problems will be described with reference to the accompanying drawings.
 即ち、本発明は、強化繊維材料である炭素繊維束11間に含浸させるマトリックス樹脂12として、金属接着性及び難燃性を有する融点170~260℃のフッ素系樹脂を使用してCFRPシート1を構成した点に特徴がある。 That is, according to the present invention, the CFRP sheet 1 is formed by using a fluororesin having a melting point of 170 to 260 ° C. having metal adhesion and flame retardancy as the matrix resin 12 impregnated between the carbon fiber bundles 11 which are reinforcing fiber materials. There is a feature in the point that it constituted.
 また上記マトリックス樹脂12に使用するフッ素系樹脂については、難燃性がUL94V燃焼試験における少なくともV-0の判定基準を満たし、かつ、限界酸素指数が30以上のものを使用するのが好ましい。 As the fluororesin used for the matrix resin 12, it is preferable to use a resin having flame retardancy satisfying at least the determination standard of V-0 in the UL94V combustion test and having a critical oxygen index of 30 or more.
 また上記マトリックス樹脂12に用いるフッ素系樹脂としては、ETFEまたはEFEPを使用するのが好ましく、特にマトリックス樹脂12にETFEを用いる場合には、ETFE中におけるTFEに基づく重合単位の割合が50~80mol%、かつ、エチレンに基づく重合単位の割合が50~80mol%のものを使用するのが好ましい。 As the fluororesin used for the matrix resin 12, ETFE or EFEP is preferably used. Particularly, when ETFE is used for the matrix resin 12, the ratio of polymerized units based on TFE in ETFE is 50 to 80 mol%. In addition, it is preferable to use those having a polymer unit ratio of 50 to 80 mol% based on ethylene.
 また上記炭素繊維の繊維体積含有率については、炭素繊維束11の結合強度や難燃性、金属接着性を確保するために20~70%とするのが好ましい。 The fiber volume content of the carbon fiber is preferably 20 to 70% in order to secure the bond strength, flame retardancy, and metal adhesion of the carbon fiber bundle 11.
 また上記炭素繊維束11については、マトリックス樹脂と炭素繊維束の結合強度を高めて曲げ強度や引張り強度を向上させるためにポリアミド系樹脂から成るサイジング剤を塗布したものを使用するのが好ましい。 Further, as the carbon fiber bundle 11, it is preferable to use a sizing agent coated with a polyamide resin in order to increase the bonding strength between the matrix resin and the carbon fiber bundle to improve the bending strength and the tensile strength.
 また上記シート本体の難燃性については、UL94V燃焼試験におけるV-0またはV-1の判定基準を満たし、かつ、UL94-5V燃焼試験における5V-Aまたは5V-Bの判定基準を満たすようにするのが好ましい。 In addition, regarding the flame retardancy of the above-mentioned seat body, meet the criteria for V-0 or V-1 in the UL94V combustion test, and meet the criteria for 5V-A or 5V-B in the UL94-5V combustion test. It is preferable to do this.
 また本発明においては、上記CFRPシートから成るFRP層21と金属材料から成る金属層22とを接着剤層を介さず直接、積層一体化してFRP-金属複合体2を構成することができる。 In the present invention, the FRP-metal composite 2 can be configured by directly laminating and integrating the FRP layer 21 made of the CFRP sheet and the metal layer 22 made of a metal material directly without using an adhesive layer.
 また本発明では、上記FRP-金属複合体の製造方法として、CFRPシートと金属材料とを、加熱温度180~280℃、加圧力1~5MPaの条件下で熱プレスしてCFRPシートを金属材料に熱溶着させることにより両者を積層一体化する方法を採用できる。 In the present invention, as a method for producing the FRP-metal composite, the CFRP sheet and the metal material are hot-pressed under the conditions of a heating temperature of 180 to 280 ° C. and a pressure of 1 to 5 MPa, so that the CFRP sheet is converted into a metal material. A method of laminating and integrating the two by heat welding can be employed.
 本発明では、CFRPシートの炭素繊維束間に含浸させるマトリックス樹脂として、金属接着性を有する融点170~260℃のフッ素系樹脂を使用したことにより、熱プレスによる熱溶着だけでこれらを積層一体化してFRP-金属複合体を製造することが可能となる。またCFRPシートと金属材料の接着強度も改善できる。 In the present invention, as the matrix resin impregnated between the carbon fiber bundles of the CFRP sheet, a fluororesin having a melting point of 170 to 260 ° C. having metal adhesion is used, and these are laminated and integrated only by heat welding by hot press. Thus, the FRP-metal composite can be produced. Also, the adhesive strength between the CFRP sheet and the metal material can be improved.
 また本発明のCFRPシートにおいては、上記炭素繊維束間に含浸させるマトリックス樹脂として難燃性に優れたフッ素系樹脂を使用しているため、非常に高いレベルの難燃性が求められる建築材料や産業資材、工業部品等の用途に好適に利用できるFRP-金属複合体を製造することが可能となる。 In the CFRP sheet of the present invention, since a fluorine-based resin having excellent flame retardancy is used as the matrix resin impregnated between the carbon fiber bundles, a building material that requires a very high level of flame retardancy is used. It becomes possible to produce an FRP-metal composite that can be suitably used for applications such as industrial materials and industrial parts.
 したがって、本発明により、従来よりも難燃性と接着一体性に優れたFRP-金属複合体を製造することができ、しかも、FRP-金属複合体を少ない工程数で効率的に製造できるCFRPシートを提供できることから、本発明の実用的利用価値は頗る高い。 Therefore, according to the present invention, it is possible to produce an FRP-metal composite that is more excellent in flame retardancy and adhesion integrity than in the past, and moreover, a CFRP sheet that can efficiently produce an FRP-metal composite with a small number of steps. Therefore, the practical utility value of the present invention is very high.
本発明の第一実施形態のCFRPシートを表す説明断面図である。It is explanatory sectional drawing showing the CFRP sheet of 1st embodiment of this invention. 本発明のCFRPシートの変更例を表す説明断面図である。It is explanatory sectional drawing showing the example of a change of the CFRP sheet of this invention. 本発明の第二実施形態の金属-FRP複合体を表す説明断面図である。It is explanatory sectional drawing showing the metal-FRP composite_body | complex of 2nd embodiment of this invention. 接着性の試験方法を表す説明図である。It is explanatory drawing showing the test method of adhesiveness.
 『第一実施形態』
 本発明の第一実施形態について図1に基づいて説明する。なお図中、符号1で指示するのものは、CFRPシートである。
"First embodiment"
A first embodiment of the present invention will be described with reference to FIG. In the figure, a CFRP sheet is designated by reference numeral 1.
 「CFRPシートの構成」
 [1]CFRPシートの基本構成について
 まずCFRPシート1の基本構成について説明すると、本実施形態では、強化繊維材料として炭素繊維束11を使用すると共に、この炭素繊維束11間に含浸させるマトリックス樹脂12として金属接着性及び難燃性を有する融点170~260℃のフッ素系樹脂を使用して図1に示すCFRPシート1のシート本体を構成している。
“Configuration of CFRP sheet”
[1] Basic Configuration of CFRP Sheet First, the basic configuration of the CFRP sheet 1 will be described. In this embodiment, a carbon fiber bundle 11 is used as a reinforcing fiber material, and a matrix resin 12 impregnated between the carbon fiber bundles 11 is used. The sheet body of the CFRP sheet 1 shown in FIG. 1 is formed using a fluorine-based resin having a melting point of 170 to 260 ° C. having metal adhesion and flame retardancy.
 [2]炭素繊維束について
 次にCFRPシート1の各構成要素について説明する。まず上記炭素繊維束11については、本実施形態では、フィラメント径が3~12μm(好ましくは5~7μm)の炭素繊維を5000~50000本(好ましくは12000~15000本)束ねて糸状にした際の厚みが0.1~2.0mm(好ましくは0.3~0.4mm)程度の炭素繊維束11を使用しているが、炭素繊維の本数は炭素繊維束11の太さに応じて適宜変更することができる。また本実施形態では、PAN系の炭素繊維を使用しているが、ピッチ系の炭素繊維を使用することもできる。
[2] Carbon fiber bundle Next, each component of the CFRP sheet 1 will be described. First, with respect to the carbon fiber bundle 11, in the present embodiment, when carbon fibers having a filament diameter of 3 to 12 μm (preferably 5 to 7 μm) are bundled into 5000 to 50000 (preferably 12000 to 15000) carbon fibers to form a thread shape Although the carbon fiber bundle 11 having a thickness of about 0.1 to 2.0 mm (preferably 0.3 to 0.4 mm) is used, the number of carbon fibers can be appropriately changed according to the thickness of the carbon fiber bundle 11. In the present embodiment, PAN-based carbon fibers are used, but pitch-based carbon fibers can also be used.
 また本実施形態では、炭素繊維束11の向きを同じ方向に揃えたUDシートを使用しているが、炭素繊維束11を二方向以上の異なる向きに配列することもできる。具体的には複数のUDシートを炭素繊維束の向きを変えて積層する方法や、炭素繊維束を平織りや多軸織りすることによりシート化する方法を採用できる。また本実施形態では、連続繊維状の炭素繊維束を使用しているが、短繊維状に細かく刻んだ炭素繊維束を使用することもでき、具体的にはUDシートを短冊状に刻んだ多数のUDシート片を向きがランダムになるように並べてシート化(疑似等方シート)することもできる。 In this embodiment, the UD sheet in which the orientations of the carbon fiber bundles 11 are aligned in the same direction is used, but the carbon fiber bundles 11 can be arranged in two or more different directions. Specifically, a method of laminating a plurality of UD sheets by changing the orientation of the carbon fiber bundles, or a method of forming a sheet by weaving the carbon fiber bundles by plain weaving or multiaxial weaving can be adopted. In this embodiment, a continuous fiber-like carbon fiber bundle is used. However, a carbon fiber bundle finely chopped into short fibers can also be used. Specifically, many UD sheets are cut into strips. These UD sheet pieces can be arranged in a random orientation so as to form a sheet (pseudo isotropic sheet).
 また本実施形態では、上記炭素繊維束11にサイジング剤を塗布したものを使用している。なおサイジング剤としては、エポキシ樹脂系やビニルエステル樹脂系、ポリアミド樹脂系などのものを使用することができる。またサイジング剤に関しては、炭素繊維束11とマトリックス樹脂12の結合強度を調節する役割や加工時に炭素繊維束11の損傷を抑制する役割があり、好ましくはポリアミド系樹脂を使用することでCFRPシート1の曲げ強度や引張り強度を向上させることができる。 In the present embodiment, the carbon fiber bundle 11 applied with a sizing agent is used. In addition, as a sizing agent, an epoxy resin type, a vinyl ester resin type, a polyamide resin type, or the like can be used. The sizing agent has a role of adjusting the bond strength between the carbon fiber bundle 11 and the matrix resin 12 and a role of suppressing damage to the carbon fiber bundle 11 during processing. Preferably, a CFRP sheet 1 is used by using a polyamide-based resin. The bending strength and tensile strength of can be improved.
 [3]炭素繊維の繊維体積含有率について
 また上記CFRPシートにおける炭素繊維の繊維体積含有率(Vf)に関しては、炭素繊維の含有率が低過ぎると充分な難燃性が得られず、また炭素繊維の含有率が高過ぎると樹脂の割合が少なくなって炭素繊維束11同士の結合強度や金属接着性が低下するため、Vf20%~70%の範囲内で調整するのが好ましい。
[3] Regarding the fiber volume content of carbon fiber As for the fiber volume content (Vf) of carbon fiber in the CFRP sheet, if the carbon fiber content is too low, sufficient flame retardancy cannot be obtained. If the fiber content is too high, the proportion of the resin decreases and the bond strength and metal adhesion between the carbon fiber bundles 11 decrease, so it is preferable to adjust within the range of Vf 20% to 70%.
 [4]マトリックス樹脂について
 一方、上記マトリックス樹脂12については、本実施形態では、フッ素系樹脂としてTFEに基づく重合単位の割合が50~80mol%、かつ、エチレンに基づく重合単位の割合が50~80mol%のETFE(テトラフルオロエチレン・エチレン共重合体)を使用しているが、ETFE以外のフッ素系樹脂を使用することもできる。なおフッ素系樹脂としては、難燃性がUL94V燃焼試験における少なくともV-0の判定基準を満たし、かつ、限界酸素指数が30以上のものを選択するのが好ましく、特にこのようなフッ素系樹脂としては、ETFEやEFEPの使用が好ましい。
[4] Matrix Resin On the other hand, with respect to the matrix resin 12, in this embodiment, the proportion of polymerized units based on TFE as the fluororesin is 50 to 80 mol%, and the proportion of polymerized units based on ethylene is 50 to 80 mol. % ETFE (tetrafluoroethylene / ethylene copolymer) is used, but fluorine resins other than ETFE can also be used. In addition, it is preferable to select a fluororesin that has a flame retardancy that satisfies at least the determination criteria of V-0 in the UL94V combustion test and has a critical oxygen index of 30 or more. Is preferably ETFE or EFEP.
 <UL94V燃焼試験(ASTM D3801)の説明>
 上記UL94V燃焼試験について簡単に説明すると、短冊状の試験片(寸法:125±5mm×13±0.5×t mm)をクランプに垂直に取付け、20mm炎による10秒間の接炎を2回行い、その燃焼挙動により“V-0”“V-1”“V-2”“Not”の判定を行う。具体的な判定基準については下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
<Description of UL94V Combustion Test (ASTM D3801)>
Briefly explaining the above UL94V combustion test, a strip-shaped test piece (dimension: 125 ± 5mm × 13 ± 0.5 × t mm) is mounted vertically on the clamp and flame contact is performed twice for 10 seconds with a 20mm flame. “V-0”, “V-1”, “V-2” and “Not” are judged by the combustion behavior. Specific determination criteria are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 <限界酸素指数(ASTM D2863)の説明>
 「限界酸素指数」とは、材料が燃焼を持続するのに必要な最低酸素濃度であり、燃焼時間が180秒継続するか、または接炎後の燃焼長さが50mm以上燃え続けるのに必要な酸素濃度から算出される。限界酸素指数が高いほど難燃性は高くなる。
<Explanation of limiting oxygen index (ASTM D2863)>
The “Limited Oxygen Index” is the minimum oxygen concentration required for a material to continue to burn. Calculated from the oxygen concentration. The higher the critical oxygen index, the higher the flame retardancy.
 [5]マトリックス樹脂の含浸方法について
 また炭素繊維束11に対するマトリックス樹脂12の含浸方法に関しては、本実施形態では、炭素繊維束を一方向に配列した面状の開繊糸群を上下に配置し、更にその間にフィルム状のマトリックス樹脂を挿入して、この樹脂フィルムと上下の開繊糸群とをロールにより熱圧着することによって、図1に示すようにマトリックス樹脂12を炭素繊維束11間に半含浸させている。なお含浸方法としては、粒状または短繊維状のマトリックス樹脂を積層して含浸させることもできる。またマトリックス樹脂12の含浸率に関しては、炭素繊維束11同士が結合一体化される程度に含浸させればよく、図2に示すように全ての炭素繊維束11がマトリックス樹脂中に埋もれるように完全含浸させてもよい。
[5] About the impregnation method of the matrix resin As for the impregnation method of the matrix resin 12 with respect to the carbon fiber bundle 11, in this embodiment, the planar spread yarn groups in which the carbon fiber bundles are arranged in one direction are arranged vertically, Further, a matrix resin in the form of a film is inserted between them, and the resin film and the upper and lower spread yarn groups are thermocompression bonded by a roll, so that the matrix resin 12 is semi-impregnated between the carbon fiber bundles 11 as shown in FIG. I am letting. In addition, as an impregnation method, a granular or short fiber matrix resin can be laminated and impregnated. Further, the impregnation ratio of the matrix resin 12 may be impregnated to such an extent that the carbon fiber bundles 11 are bonded and integrated, and as shown in FIG. 2, all the carbon fiber bundles 11 are completely buried in the matrix resin. It may be impregnated.
 [6]CFRPシートの難燃性について
 また上記CFRPシート1の難燃性については、本実施形態では、UL94V燃焼試験におけるV-0またはV-1の判定基準を満たし、かつ、UL94-5V燃焼試験における5V-Aまたは5V-Bの判定基準を満たすようにしている。
[6] Flame Retardancy of CFRP Sheet Further, regarding the flame retardancy of the CFRP sheet 1, in this embodiment, it satisfies the criteria of V-0 or V-1 in the UL94V combustion test and UL94-5V combustion. Meet the 5V-A or 5V-B criteria for testing.
 <UL94-5V燃焼試験(ASTM D5048)の説明>
 上記UL94-5V燃焼試験について簡単に説明すると、短冊状の試験片(寸法:125±5mm×13±0.5×t mm)をクランプに垂直に取付け、125mm炎による5秒間の接炎を5回行い、その燃焼挙動により“5V-A”“5V-B”“Not”の判定を行う。具体的な判定基準については下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
<Description of UL94-5V Combustion Test (ASTM D5048)>
Briefly explaining the above UL94-5V combustion test, a strip-shaped test piece (dimension: 125 ± 5mm × 13 ± 0.5 × t mm) is mounted vertically on the clamp, and 5 seconds of flame contact with 125mm flame is performed 5 times. Based on the combustion behavior, “5V-A”, “5V-B” and “Not” are determined. Specific determination criteria are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
 『第二実施形態』
 「FRP-金属複合体の構成」
 [1]FRP-金属複合体の基本構成について
 次に本発明の第二実施形態について図3に基づいて説明する。本実施形態では、上記第一実施形態のCFRPシートから成るFRP層21と、金属材料から成る金属層22とを積層一体化してFRP-金属複合体2を構成している。またFRP-金属複合体2のFRP層21と金属層22とは、接着剤層を介さず熱溶着により直接一体化している。これにより接着一体性及び難燃性に優れたFRP-金属複合体2が得られる。
“Second Embodiment”
"Structure of FRP-metal composite"
[1] Basic configuration of FRP-metal composite Next, a second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the FRP-metal composite 2 is configured by laminating and integrating the FRP layer 21 made of the CFRP sheet of the first embodiment and the metal layer 22 made of a metal material. Further, the FRP layer 21 and the metal layer 22 of the FRP-metal composite 2 are directly integrated by thermal welding without using an adhesive layer. Thereby, the FRP-metal composite 2 excellent in adhesion integrity and flame retardancy is obtained.
 [2]金属層について
 また上記金属層22に用いる金属材料としては、本実施形態では、アルミニウム板を使用しているが、金属材料としてはこれに限らず他の金属材料(例えば、鉄系の材料等)を使用することもできる。また金属層22の厚みや形状についてもFRP-金属複合体2の用途に応じて適宜変更することができる。
[2] Metal layer Also, in this embodiment, an aluminum plate is used as the metal material used for the metal layer 22, but the metal material is not limited to this, and other metal materials (for example, iron-based materials). Materials, etc.) can also be used. Further, the thickness and shape of the metal layer 22 can be appropriately changed according to the use of the FRP-metal composite 2.
 「FRP-金属複合体の製造方法」
 次に上記FRP-金属複合体2の製造方法について説明すると、本実施形態では、CFRPシートと金属材料とを、加熱温度180~280℃、加圧力1~5MPaの条件下で熱プレスしてCFRPシートを金属材料に熱溶着させることにより両者を積層一体化している。これにより熱プレスだけで簡単にFRP-金属複合体を製造できる。なお熱プレスの加熱温度や加圧力に関しては、炭素繊維の繊維体積含有率やCFRPシートに使用されているマトリックス樹脂の材料に応じて適宜調整できる。
"Production method of FRP-metal composite"
Next, a method for producing the FRP-metal composite 2 will be described. In this embodiment, a CFRP sheet and a metal material are hot-pressed under the conditions of a heating temperature of 180 to 280 ° C. and a pressing force of 1 to 5 MPa. The two are laminated and integrated by thermally welding the sheet to a metal material. As a result, the FRP-metal composite can be easily produced only by hot pressing. The heating temperature and pressure of the hot press can be appropriately adjusted according to the fiber volume content of the carbon fibers and the matrix resin material used for the CFRP sheet.
 [効果の実証試験]
 次に本発明の効果の実証試験について説明する。本試験では、金属層にアルミニウム板を用いたFRP-金属複合体から成るサンプルを、CFRPシートのマトリックス樹脂の材料を変えて複数作製し、これら各サンプル(下記の実施例1及び比較例1~3)のFRP層と金属層の接着性を、FRP層と金属層の剥離が生じる剪断応力の大きさによって評価した。
[Effectiveness test]
Next, a verification test of the effect of the present invention will be described. In this test, a plurality of samples made of an FRP-metal composite using an aluminum plate as a metal layer were prepared by changing the material of the matrix resin of the CFRP sheet, and each of these samples (the following Example 1 and Comparative Examples 1 to The adhesion between the FRP layer and the metal layer in 3) was evaluated by the magnitude of the shear stress at which peeling of the FRP layer and the metal layer occurred.
 <試験方法>
 図4に示すようにFRP層(寸法:幅25mm×長さ100mm×厚さ0.5mm)の上下両側に金属層(寸法:幅25mm×長さ250mm×厚さ2mm)を形成すると共に、上下の金属層に左右に突出する部位を形成して、この金属層の突出部位を試験装置(島津製作所製:万能試験機I-0108)によって温度25℃、湿度50%の環境下で1mm/minの速度で外側に引っ張ることにより、FRP層と金属層とがどの程度の剪断荷重で剥離するかを測定した。
<Test method>
As shown in FIG. 4, metal layers (dimensions: width 25 mm × length 250 mm × thickness 2 mm) are formed on both upper and lower sides of the FRP layer (dimensions: width 25 mm × length 100 mm × thickness 0.5 mm). A part that protrudes to the left and right is formed on the metal layer, and the protruding part of the metal layer is 1 mm / min in an environment of temperature 25 ° C. and humidity 50% using a test device (manufactured by Shimadzu Corporation: universal testing machine I-0108). It was measured how much the FRP layer and the metal layer were peeled off by pulling outward at a speed.
 「実施例1」
 本実施例では、FRP層を構成するCFRPシートのマトリックス樹脂にETFEを使用すると共に、このCFRPシートとアルミニウム板を、加熱温度250℃、加圧力5MPaの条件下で3分間熱プレスすることによりCFRPシートを金属材料に熱溶着させてFRP層と金属層を積層一体化した。
"Example 1"
In this example, ETFE is used for the matrix resin of the CFRP sheet constituting the FRP layer, and the CFRP sheet and the aluminum plate are hot pressed for 3 minutes under conditions of a heating temperature of 250 ° C. and a pressure of 5 MPa. The FRP layer and the metal layer were laminated and integrated by thermally welding the sheet to the metal material.
 「比較例1」
 本実施例では、FRP層を構成するCFRPシートのマトリックス樹脂としてPFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)を使用すると共に、このCFRPシートとアルミニウム板を、加熱温度340℃、加圧力5MPaの条件下で3分間熱プレスすることによりCFRPシートを金属板に熱溶着させてFRP層と金属層を一体化した。
"Comparative Example 1"
In this example, PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer) is used as a matrix resin of the CFRP sheet constituting the FRP layer, and the CFRP sheet and the aluminum plate are heated at a heating temperature of 340 ° C. and an applied pressure. The CFRP sheet was thermally welded to the metal plate by hot pressing for 3 minutes under the condition of 5 MPa to integrate the FRP layer and the metal layer.
 「比較例2」
 本実施例では、FRP層を構成するCFRPシートのマトリックス樹脂としてPA6(ポリアミド樹脂)を使用すると共に、このCFRPシートとアルミニウム板を、加熱温度270℃、加圧力5MPaの条件下で3分間熱プレスすることによりCFRPシートを金属板に熱溶着させてFRP層と金属層を一体化した。
"Comparative Example 2"
In this example, PA6 (polyamide resin) is used as a matrix resin of the CFRP sheet constituting the FRP layer, and this CFRP sheet and an aluminum plate are hot pressed for 3 minutes under the conditions of a heating temperature of 270 ° C. and a pressure of 5 MPa. As a result, the CFRP sheet was thermally welded to the metal plate to integrate the FRP layer and the metal layer.
 「比較例3」
 本実施例では、FRP層を構成するCFRPシートのマトリックス樹脂としてPP(ポリプロピレン樹脂)を使用すると共に、このCFRPシートとアルミニウム板を、加熱温度180℃、加圧力5MPaの条件下で3分間熱プレスすることによりCFRPシートを金属板に熱溶着させてFRP層と金属層を一体化した。
“Comparative Example 3”
In this example, PP (polypropylene resin) is used as the matrix resin of the CFRP sheet constituting the FRP layer, and the CFRP sheet and the aluminum plate are hot pressed for 3 minutes under the conditions of a heating temperature of 180 ° C. and a pressure of 5 MPa. As a result, the CFRP sheet was thermally welded to the metal plate to integrate the FRP layer and the metal layer.
 <試験結果>
 上記実施例1及び比較例1~3のサンプルについて剪断方向の引張り試験を行ったところ、比較例1~3のサンプルが剥離時の剪断荷重(最大荷重)が5kN未満と接着性が低かったのに対し、実施例1のサンプルは剥離時の剪断荷重が5kN以上の高い接着性を示した。各サンプルの金属層とFRP層の材質と寸法、及び各サンプルの試験結果をまとめた表を以下に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
<Test results>
When the tensile test in the shear direction was performed on the samples of Example 1 and Comparative Examples 1 to 3, the samples of Comparative Examples 1 to 3 had a low adhesive force with a shear load (maximum load) of less than 5 kN during peeling. On the other hand, the sample of Example 1 exhibited high adhesion with a shear load of 5 kN or more during peeling. A table summarizing the materials and dimensions of the metal layer and FRP layer of each sample and the test results of each sample is shown below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 1 CFRPシート
  11 炭素繊維 
  12 マトリックス樹脂
 2 金属-FRP複合体
  21 FRP層
  22 金属層
1 CFRP sheet 11 Carbon fiber
12 Matrix resin 2 Metal-FRP composite 21 FRP layer 22 Metal layer

Claims (9)

  1.  強化繊維材料である炭素繊維束(11)間に含浸させるマトリックス樹脂(12)として、金属接着性及び難燃性を有する融点170~260℃のフッ素系樹脂が使用されていることを特徴とするCFRPシート。 The matrix resin (12) to be impregnated between the carbon fiber bundles (11), which is a reinforcing fiber material, is characterized by using a fluororesin having a melting point of 170 to 260 ° C. having metal adhesion and flame retardancy. CFRP sheet.
  2.  マトリックス樹脂(12)に用いられるフッ素系樹脂の難燃性が、UL94V燃焼試験における少なくともV-0の判定基準を満たし、かつ、限界酸素指数が30以上であることを特徴とする請求項1記載のCFRPシート。 The flame retardancy of the fluororesin used for the matrix resin (12) satisfies at least the determination criteria of V-0 in the UL94V combustion test, and the limiting oxygen index is 30 or more. CFRP sheet.
  3.  マトリックス樹脂(12)に用いられるフッ素系樹脂が、ETFEまたはEFEPであることを特徴とする請求項1または2に記載のCFRPシート。 The CFRP sheet according to claim 1 or 2, wherein the fluororesin used for the matrix resin (12) is ETFE or EFEP.
  4.  マトリックス樹脂(12)にETFEが用いられると共に、ETFE中におけるTFEに基づく重合単位の割合が50~80mol%、かつ、エチレンに基づく重合単位の割合が50~80mol%であることを特徴とする請求項3記載のCFRPシート。 ETFE is used for the matrix resin (12), the proportion of polymerized units based on TFE in ETFE is 50 to 80 mol%, and the proportion of polymerized units based on ethylene is 50 to 80 mol%. Item 4. A CFRP sheet according to Item 3.
  5.  炭素繊維の繊維体積含有率が20~70%であることを特徴とする請求項1~4の何れか一つに記載のCFRPシート。 The CFRP sheet according to any one of claims 1 to 4, wherein the fiber volume content of the carbon fibers is 20 to 70%.
  6.  ポリアミド系樹脂から成るサイジング剤が塗布された炭素繊維束(11)が使用されていることを特徴とする請求項1~5の何れか一つに記載のCFRPシート。 The CFRP sheet according to any one of claims 1 to 5, wherein a carbon fiber bundle (11) coated with a sizing agent comprising a polyamide-based resin is used.
  7.  シート本体の難燃性が、UL94V燃焼試験におけるV-0またはV-1の判定基準を満たし、かつ、UL94-5V燃焼試験における5V-Aまたは5V-Bの判定基準を満たすことを特徴とする請求項1~6の何れか一つに記載のCFRPシート。 The flame retardancy of the seat body meets the criteria for V-0 or V-1 in the UL94V combustion test and the criteria for 5V-A or 5V-B in the UL94-5V combustion test. The CFRP sheet according to any one of claims 1 to 6.
  8.  請求項1記載のCFRPシートから成るFRP層(21)と金属材料から成る金属層(22)とが接着剤層を介さず直接、積層一体化されていることを特徴とするFRP-金属複合体。 The FRP-metal composite comprising the FRP layer (21) made of the CFRP sheet according to claim 1 and the metal layer (22) made of a metal material, which are directly laminated and integrated without an adhesive layer. .
  9.  請求項1記載のCFRPシートと金属材料とを、加熱温度180~280℃、加圧力1~5MPaの条件下で熱プレスしてCFRPシートを金属材料に熱溶着させることにより両者を積層一体化することを特徴とする金属-FRP複合体の製造方法。 The CFRP sheet according to claim 1 and the metal material are heat-pressed under the conditions of a heating temperature of 180 to 280 ° C. and a pressing force of 1 to 5 MPa, and the CFRP sheet is thermally welded to the metal material to laminate and integrate them. A method for producing a metal-FRP composite characterized by the above.
PCT/JP2019/005317 2018-02-23 2019-02-14 Cfrp sheet, frp-metal composite, and method for manufacturing same WO2019163633A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030444A JP7043290B2 (en) 2018-02-23 2018-02-23 CFRP sheet, FRP-metal composite and its manufacturing method
JP2018-030444 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163633A1 true WO2019163633A1 (en) 2019-08-29

Family

ID=67687586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005317 WO2019163633A1 (en) 2018-02-23 2019-02-14 Cfrp sheet, frp-metal composite, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP7043290B2 (en)
WO (1) WO2019163633A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215162A1 (en) * 2020-04-21 2021-10-28 フクビ化学工業株式会社 Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
JP7390279B2 (en) 2020-12-24 2023-12-01 フクビ化学工業株式会社 Fiber-reinforced resin chopped materials, fiber-reinforced resin composites, and resin molded products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7455689B2 (en) 2019-08-20 2024-03-26 フクビ化学工業株式会社 CFRP sheet, FRP-metal composite and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192718A1 (en) * 2013-05-31 2014-12-04 住友電気工業株式会社 Metal-resin composite body, wiring material, and method for producing metal-resin composite body
JP2015136926A (en) * 2014-01-24 2015-07-30 旭硝子株式会社 Fiber-reinforced resin laminate and production method thereof
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same
WO2017122743A1 (en) * 2016-01-14 2017-07-20 旭硝子株式会社 Curable composition, cured product, prepreg and fiber-reinforced molded article
WO2018212285A1 (en) * 2017-05-18 2018-11-22 Agc株式会社 Fluorocarbon resin film and laminate, and production method for thermally-pressed laminate
JP2019043134A (en) * 2017-08-31 2019-03-22 スターライト工業株式会社 Non-adhesive sheet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192718A1 (en) * 2013-05-31 2014-12-04 住友電気工業株式会社 Metal-resin composite body, wiring material, and method for producing metal-resin composite body
JP2015136926A (en) * 2014-01-24 2015-07-30 旭硝子株式会社 Fiber-reinforced resin laminate and production method thereof
WO2016017801A1 (en) * 2014-08-01 2016-02-04 旭硝子株式会社 Resin powder, method for producing same, complex, molded article, method for producing ceramic molded article, metal laminated plate, print substrate, and prepreg
WO2017030190A1 (en) * 2015-08-20 2017-02-23 旭硝子株式会社 Multilayer base and method for producing molded body of same
WO2017122743A1 (en) * 2016-01-14 2017-07-20 旭硝子株式会社 Curable composition, cured product, prepreg and fiber-reinforced molded article
WO2018212285A1 (en) * 2017-05-18 2018-11-22 Agc株式会社 Fluorocarbon resin film and laminate, and production method for thermally-pressed laminate
JP2019043134A (en) * 2017-08-31 2019-03-22 スターライト工業株式会社 Non-adhesive sheet

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASAHI GLASS CO. LTD., FLUON LM- ETFE, 22 May 2015 (2015-05-22), Retrieved from the Internet <URL:http://www.fluon.jp/products/lm/index.html> *
ASAHI GLASS CO. LTD.: "Fluon ETFE", FLUON PRODUCT INFORMATION, 9 July 2015 (2015-07-09), XP055633528, Retrieved from the Internet <URL:http://www.fluon.jp/products/etfe/index.html> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215162A1 (en) * 2020-04-21 2021-10-28 フクビ化学工業株式会社 Fiber-reinforced resin composite sheet, fiber-reinforced resin composite material, and molded resin article including same
JP7390279B2 (en) 2020-12-24 2023-12-01 フクビ化学工業株式会社 Fiber-reinforced resin chopped materials, fiber-reinforced resin composites, and resin molded products

Also Published As

Publication number Publication date
JP7043290B2 (en) 2022-03-29
JP2019143087A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2019163633A1 (en) Cfrp sheet, frp-metal composite, and method for manufacturing same
US20140144568A1 (en) Bonding of composite materials
US20090004460A1 (en) Nanoparticle-Containing Thermoplastic Composites and Methods of Preparing Same
US20210402730A1 (en) Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs
US20150165731A1 (en) Composite structure with reinforced thermoplastic adhesive laminate and method of manufacture
US20150275051A1 (en) Adherable flexible composite systems
JPWO2018203552A1 (en) LAMINATE CONTAINING FIBER REINFORCED RESIN, FIBER REINFORCED COMPOSITE RESIN MATERIAL, AND PROCESS FOR PRODUCING THEM
JP6000497B1 (en) Fiber-reinforced composite material and method for producing the same
CN106881931A (en) Thermoplas tic resin composite and the preparation method of thermoplas tic resin composite
JPWO2018147331A1 (en) Fiber reinforced resin sheet
JP4164572B2 (en) Composite material and manufacturing method thereof
JPH0575575B2 (en)
JP7455689B2 (en) CFRP sheet, FRP-metal composite and manufacturing method thereof
JP2007260930A (en) Preform base material and preform manufacturing method
WO2020031771A1 (en) Reinforced fiber tape material and production method therefor, fiber reinforced resin molded body and reinforced fiber layered body using reinforced fiber tape material
CN207916217U (en) A kind of fiber reinforcement type high performance composite film
JP6131779B2 (en) Thermoplastic prepreg and method for producing thermoplastic prepreg
WO2020246440A1 (en) Fiber reinforced resin molded body
JP7196006B2 (en) Metal foil-CFRP laminated sheet
JP7337509B2 (en) fiber reinforced resin sheet
JP2021528275A (en) Ultra-thin prepreg sheet and its composite material
KR101594655B1 (en) Method for preparing still wire and continuous fiber reinforced composite
JP7194845B2 (en) Composite material manufacturing method
JP2024062758A (en) Fiber-reinforced resin sheet and fiber-reinforced laminate using same
JP2022053263A (en) Joint structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756705

Country of ref document: EP

Kind code of ref document: A1