WO2019163548A1 - Electrode catalyst for fuel cells and method for producing same - Google Patents

Electrode catalyst for fuel cells and method for producing same Download PDF

Info

Publication number
WO2019163548A1
WO2019163548A1 PCT/JP2019/004509 JP2019004509W WO2019163548A1 WO 2019163548 A1 WO2019163548 A1 WO 2019163548A1 JP 2019004509 W JP2019004509 W JP 2019004509W WO 2019163548 A1 WO2019163548 A1 WO 2019163548A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
fine particles
metal fine
carbon
particles
Prior art date
Application number
PCT/JP2019/004509
Other languages
French (fr)
Japanese (ja)
Inventor
東山 和寿
敏広 宮尾
内田 裕之
明裕 飯山
Original Assignee
国立大学法人山梨大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山梨大学 filed Critical 国立大学法人山梨大学
Priority to JP2020501666A priority Critical patent/JP7214944B2/en
Publication of WO2019163548A1 publication Critical patent/WO2019163548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode catalyst for a fuel cell, and more specifically to a long-life electrode catalyst for a fuel cell in which migration and aggregation of catalyst metal fine particles supported on carbon during use is suppressed and a method for producing the same.
  • an electrode catalyst for a polymer electrolyte fuel cell a catalyst in which an active metal mainly composed of a noble metal such as Pt is supported on a conductive carrier such as carbon is generally used.
  • the performance of this electrocatalyst increases as the active metal loading is the same, the greater the surface area of the active metal, that is, the smaller the particle size and the higher the dispersion on the support.
  • platinum since platinum is expensive, it is required that the active metal be finely divided, alloyed and uniformly supported on the support in order to reduce the amount of platinum used.
  • Non-Patent Document 2 reports a fuel cell electrode catalyst in which durability is improved by coating a carbon nanotube carrying Pt with a thin silica layer.
  • the present invention has been made in view of such circumstances, and provides a long-life electrode catalyst for a fuel cell in which movement and aggregation during use of catalytic metal fine particles supported on carbon are suppressed, and a method for producing the same. It is.
  • the present invention comprises a carbon support, nanopits and / or nanochannels, transition metal fine particles, and a noble metal layer, and the nanopits and / or nanochannels are formed on the carbon support, and the transition metal
  • a fuel cell electrode catalyst in which fine particles are in contact with the carbon support in the nanopits and / or nanochannels, and the noble metal layer is formed on the transition metal fine particles.
  • the method includes a supporting step, a heat treatment step, and a noble metal layer forming step.
  • a transition metal fine particle is supported on a carbon support.
  • a method for producing an electrode catalyst for a fuel cell in which the carbon carrier supporting transition metal fine particles is heated, and in the noble metal layer forming step, a noble metal layer is formed on the transition metal fine particles.
  • FIG. 1A is a perspective view of catalyst particles 2 supported on a graphite base surface by a conventional method.
  • 1B and 1C are perspective views of catalytic metal fine particles 4 carried on nanopits 3 and nanochannels 5 according to the present invention.
  • 2A is an end view showing the internal structure of the catalyst metal fine particles 4 held in the nanopits 3
  • FIG. 2B is an end view showing the internal structure of the catalyst metal fine particles 4 held in the nanochannels 5.
  • 3A to 3D are explanatory views showing an example of the formation process of the catalytic metal fine particles 4 held in the nanopits 3 or nanochannels 5 of the present invention.
  • FIG. 5A is a transmission electron microscope (TEM) image after vacuum heating of Fe particles supported on graphene.
  • FIG. 5B is a schematic cross-sectional view for explaining the structure of the catalyst, and is a schematic view for forming nanopits.
  • the STEM image (a) and STEM image (b) in FIG. 6 are scanning transmission electron microscope (STEM) images of Fe nanopits on graphene by ultrahigh vacuum heating.
  • the SEM image (a) and SEM image (b) in FIG. 7 are scanning electron microscope images (SEM) of Fe particles carried on the HOPG substrate of the production example.
  • the SEM image (a) in FIG. 8 is an SEM image after the Fe particles supported on the HOPG substrate are heated in hydrogen.
  • the SEM image (b) is an enlarged image of the same location.
  • the TEM image (a) and TEM image (b) in FIG. 9 are TEM images of Fe particles supported on graphitized carbon black (GCB) powder after heating in hydrogen.
  • the SEM image (a) in FIG. 10 is an SEM image before the acid treatment of Fe particles on the HOPG substrate heated in Ar (after Ar heating), and the SEM image (b) is on the HOPG substrate heated in Ar. It is a SEM image which shows the SEM image after the acid treatment of Fe particle
  • FIG. 11 are SEM images after the Fe / HOPG vacuum heat-treated product is subjected to acid dissolution treatment.
  • An SEM image (a) in FIG. 12A is an SEM image of the catalyst of the production example, and an SEM image (b) is an SEM image of the same field after further acid dissolution treatment.
  • the SEM image (c) and SEM image (d) in FIG. 12B are high-magnification images of the SEM image (a) and SEM image (b) in FIG. 12A, respectively.
  • FIG. 13A and FIG. 13B (b) are apparatus diagrams used for selective Pt chemical plating in a manufacturing example.
  • FIG. 13C is an enlarged view of the substrate sample.
  • the SEM images (a) and SEM images (b) in FIG. 16 are SEM images before and after applying a potential step cycle of Pt / HOPG.
  • the SEM images (a) and SEM images (b) in FIG. 17 are SEM images before and after applying a potential step cycle of a commercially available electrode catalyst.
  • SEM images before and after applying a potential step cycle of Pt / KB are SEM images before and after applying a potential step cycle of Pt / KB. It is a SEM image after heating of FeNi of various compositions carried on a HOPG substrate. It is a figure which shows the FeNi average particle diameter and carbon solid solution amount of the 900 degreeC heat processing sample of FIG. It is a figure which shows the temperature dependence of the average particle diameter of Fe85Ni15 / HOPG of FIG. It is a SEM image which shows the influence of 850 degreeC heat processing time with respect to the particle diameter of Fe100 and Fe85Ni15 / HOPG. It is a SEM image before and behind the acid treatment of the 900 degreeC heat processing sample of FIG. The SEM images (a) and SEM images (b) in FIG.
  • SEM images before and after acid treatment of Fe85Ni15 / HOPG heat-treated at 850 ° C. for 5 seconds It is a figure which shows the supporting pattern (a), supporting pattern (b), and supporting pattern (c) of Fe and Ni used by the arc plasma vapor deposition method. It is an SEM image after heat treatment of Fe53Ni47 / HOPG carried synchronously at 900 ° C. for 5 seconds.
  • the SEM images (a) and SEM images (b) in FIG. 27 are SEM images before and after acid treatment of Fe70Ni21Pt9 / HOPG heat-treated at 700 ° C. for 10 seconds.
  • Electrocatalyst 100 As shown in FIG. 1 (FIGS. 1A to 1C) and FIG. 2 (FIGS. 2A to 2B), the electrode catalyst 100 includes a carbon support 1, nanopits 3 and / or nanochannels 5, transition metal fine particles 8, and a noble metal layer.
  • the nanopits 3 and / or nanochannels 5 are formed on the carbon support 1, and the transition metal fine particles 8 are in contact with the carbon support 1 in the nanopits 3 and / or nanochannels 5, and the noble metal layer 7 Is formed on the transition metal fine particles 8.
  • FIG. 1A illustrates an electrode catalyst composed of catalyst particles 2 such as Pt particles when supported on a carbon carrier 1 by a generally known method such as an impregnation method.
  • catalyst particles 2 such as Pt particles
  • the carbon support 1 is graphite or graphitized carbon black
  • the basal plane of the graphite crystal is exposed on the surface and is smooth and has low chemical reactivity and low affinity. 2 is very easy to move and aggregate.
  • FIG. 1A illustrates an electrode catalyst composed of catalyst particles 2 such as Pt particles when supported on a carbon carrier 1 by a generally known method such as an impregnation method.
  • the carbon support 1 is graphite or graphitized carbon black
  • the basal plane of the graphite crystal is exposed on the surface and is smooth and has low chemical reactivity and low affinity. 2 is very easy to move and aggregate.
  • FIG. 1 illustrates an electrode catalyst composed of catalyst particles 2 such as Pt particles when supported on a carbon carrier 1 by a generally known method such as an impregnation method.
  • FIG. 1B shows a structure in which nano-level depressions, that is, nanopits 3 are formed on the bottom surface of the graphite when the carbon support 1 is graphite or graphitized carbon black.
  • transition metal fine particles 8 which are nanoanchors in which a transition metal having a strong carbon affinity is in contact with the carbon support 1 with a strong bonding strength.
  • the catalytic metal fine particle 4 in FIG. 1B has the transition metal fine particle 8 as a core, and the outer peripheral portion of the transition metal fine particle 8 other than the transition metal fine particle 8 in contact with the carbon support 1 is completely covered with a noble metal layer 7 with Pt or the like. It has a structure.
  • FIG. 1C shows a case where a nano-sized groove, that is, a nanochannel 5 is formed on the bottom surface of the graphite base when the carbon support 1 is graphite or graphitized carbon black, as shown in FIG. 2B.
  • a transition metal fine particle 8 that is a nano-anchor of a transition metal having a strong carbon affinity and strongly bonded to the carbon support 1, as in the case of the nanopit.
  • Carbon carrier 1 is not particularly limited as long as it is a carbon material for electrodes that can carry metal fine particles. However, in the fuel cell, since the electrode catalyst is continuously exposed to low pH and high potential, and the carbon support 1 having low corrosion resistance is likely to gradually corrode, a graphitized carbon material having high corrosion resistance to acid and high potential is used. It is preferable to use it. Therefore, as the carbon carrier 1, for example, graphite and graphitized carbon black are preferable. In addition, when graphite and graphitized carbon black are used as the carbon support 1, the movement and aggregation of catalyst metal fine particles generally composed of Pt or the like are likely to proceed, and the catalytic activity is decreased more rapidly than other carbon supports. .
  • the activity of the catalyst is maintained even when a graphitized carbon material having high corrosion resistance to acid or high potential is used because the movement and aggregation during use of the catalyst metal fine particles are suppressed. Can be kept high for a long time.
  • Nanopit 3 and / or nanochannel 5 The nanopits 3 and nanochannels 5 are recesses formed on the surface of the carbon support. As will be described later, the concave portion is formed by performing a heat treatment after supporting the transition metal fine particles 8.
  • the shape of the recess formed is a pit shape and a channel shape.
  • the pit shape is, for example, a circular depression such as a circle and an ellipse shown as conceptual diagrams in FIGS. 1B and 2A.
  • the channel shape is, for example, a groove shown as a conceptual diagram in FIGS. 1C and 2B.
  • the shape of the concave portion is not constant because it is formed by the interaction between the transition metal fine particles 8 and the carbon support in the heat treatment process and changes depending on the behavior of the transition metal fine particles 8 that can move on the carbon support at this time.
  • the nanopits 3 and the nanochannels 5 may be present on the surface of the carbon carrier 1 alone or in a mixture.
  • the average diameter of the nanopits 3 is not particularly limited, but is preferably 0.3 to 14 nm, and more preferably 0.3 to 7 nm, for example.
  • the average diameter of the nanopits 3 is, for example, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11, 12, 13, 14 nm, and may be in the range between any two of the numerical values exemplified here.
  • “average diameter” means an arithmetic average obtained by measuring the diameter of a circumscribed circle of nanopits in a TEM image. The number of measurement samples is, for example, 500 or more.
  • the average width of the nanochannel 5 is not particularly limited, but is preferably 0.3 to 14 nm, and more preferably 0.3 to 7 nm, for example.
  • the average width of the nanochannel 5 is, for example, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 nm, and may be within a range between any two of the numerical values exemplified here.
  • the “average width” means an arithmetic average obtained by measuring the width of the groove in the TEM image. The number of measurement samples is, for example, 500 or more.
  • nanopits and / or nanochannels can be formed on the basal plane of the graphite or graphitized carbon black.
  • the present inventors used transition metal nanoparticles forming interstitial carbides such as Fe as the basis of graphene and highly oriented graphite (HOPG). It was formed on the surface and heat-treated under various conditions including air, and pits and grooves formed on the surface were observed in detail with an electron microscope. As a result, it was found that in the heat treatment under an inert gas and in a vacuum, the transition metal particles slightly sink into the basal plane due to carbon solid solution in the metal lattice. Transition metal and carbon existed in this part, and when these were completely dissolved and removed by acid treatment, pits could be confirmed as spaces.
  • HOPG highly oriented graphite
  • the subsidized region and the pit generated by the acid treatment are not particularly distinguished and are called nanopits. Even if the pit generated by the acid treatment is buried with the noble metal layer, the region is continuously called nanopit. That is, even if the subsidized region is completely filled with the noble metal layer (and the transition metal particles), and the subsidence due to nanopits cannot be confirmed directly from the electrode catalyst surface, the subsidized region on the carbon support actually The (recessed portion) remains formed, and the region can still be referred to as nanopits. From the electron microscope image and the calculation of the carbon solid solution amount, the nanopit depth was estimated to be about 15% of the particle diameter, and the nanopit diameter was 60% of the particle diameter.
  • Transition metal fine particles 8 As shown in FIG. 2 (FIGS. 2A to 2B), the transition metal fine particles 8 are in contact with the carbon support 1 in the nanopits 3 and / or the nanochannels 5. With such a catalyst structure, movement / aggregation of the catalyst metal fine particles 4 composed of the transition metal fine particles 8 and the noble metal layer 7 is suppressed. This is because the catalyst metal fine particles 4 are supported in the nanopits 3 or the nanochannels 5. In addition, the transition metal fine particles 8 come into contact with the carbon support 1 and have an effect as an anchor for fixing the catalyst metal fine particles to the carbon support 1. Therefore, in the present invention, the transition metal fine particles 8 can be said to be nano-sized anchors for fixing the catalyst metal fine particles, that is, “nano-anchors”.
  • the position where the transition metal fine particle 8 is in contact with the carbon support 1 is not particularly limited as long as it is in the nanopit 3 and / or the nanochannel 5, and even on the bottom surface in the nanopit 3 and / or nanochannel 5, There may be.
  • the transition metal fine particle 8 is formed by the movement and forms the nanochannel 5 and stops at the end of the nanochannel 5, the transition metal fine particle 8 is inclined to the step portion of the nanochannel 5. There are many.
  • the transition metal fine particles 8 are supported on the carbon support 1 by a support process, and a recess (nanopit 3 and / or nanochannel 5) is formed by a subsequent heat treatment process. It is necessary to contact and fix the carbon carrier 1 in the nanochannel 5.
  • a recess nanopit 3 and / or nanochannel 5
  • the transition metal fine particles used as the transition metal fine particles 8 preferably contain a metal element having a strong carbon affinity.
  • transition metals such as Fe are possible as the nano-anchor material.
  • metal elements having strong carbon affinity include Fe, Ni, Co, Mn, Cr, Mo, V, Ta, and W. Carbon easily dissolves in metals such as Fe, Ni, Co, Mn, Cr, Mo, V, Ta, and W, and easily forms interstitial carbides in which carbon atoms enter the crystal lattice. Since these metals having a strong affinity for carbon diffuse with graphite, the metal particles 4 can act as a strong anchor that stops the movement of the catalyst metal fine particles 4 and stays at a specific position of the graphite. The same applies to alloys containing these metals.
  • the content of the metal element having strong carbon affinity in the transition metal fine particles 8 is preferably 1 to 100 atm%, more preferably 10 to 100 atm%, and further preferably 50 to 100 atm%.
  • the content of the metal element having strong carbon affinity in the transition metal fine particles 8 is, for example, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 atm%, and may be within a range between any two of the numerical values exemplified here.
  • the transition metal fine particles 8 contain Fe, Ni, and Cr. That is, the transition metal fine particles 8 are preferably austenitic stainless steel containing Fe, Ni, and Cr.
  • the Fe—B binary alloy forms an eutectic of Fe and Fe 2 B, so that a fine grain boundary is formed inside the nanoparticle, and solid solution carbon can be precipitated there. It may be desirable as well as steel.
  • the transition metal fine particles 8 preferably contain Fe and B. That is, the transition metal fine particles 8 are preferably an Fe—B binary alloy.
  • the amount of carbon solid solution in the FeNi alloy in which Ni is added to Fe in a large number of temperature ranges is larger than that in the case of pure Fe. Therefore, by applying the Fe—Ni alloy as the transition metal, larger nanopits 3 and / or nanochannels 5 can be formed even under the same heat treatment conditions, and the transition metal particle surface that becomes an obstacle in the acid treatment or noble metal layer formation process can be formed. In some cases, the deposition of a dense and thick carbon layer can be suppressed. Further, the nanopits 3 and / or the nanochannels 5 can be formed even at a relatively low temperature, which contributes to the formation of fine particles. From such a viewpoint, it may be preferable to include Fe and Ni as a metal element having a strong carbon affinity.
  • the Ni content in the transition metal fine particles 8 is, for example, preferably 1 to 90 atm%, more preferably 5 to 80 atm%, and further preferably 10 to 50 atm%.
  • the Ni content is, for example, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80. , 85, 90 atm%, and may be within a range between any two of the numerical values exemplified here.
  • the carbon solid solution amount of the metal (pure metal / alloy) constituting the transition metal fine particles 8 Is preferably 1.2 to 4.5 atm%.
  • the noble metal similar to the noble metal layer 7 such as Pt covering the surface is mixed in advance with the metal (pure metal / alloy) constituting the transition metal fine particles 8, the mutual affinity is increased, and the catalytic activity is increased. It is preferable in the manufacturing process. Further, it may be possible to form the noble metal layer 7 by acid dissolution treatment regardless of plating treatment or the like.
  • the alloy constituting the transition metal fine particles 8 is preferably a ternary alloy of Fe—Ni—Pt. There is a case. *
  • the transition metal fine particles 8 are fixed on the carbon support 1 by contacting the transition metal fine particles 8 with the carbon support 1.
  • nanopit 3 when nanopit 3 is formed on graphite, nanopit 3 is considered to be a region in which a transition metal such as Fe diffuses on the bottom surface of the graphite, and the bonding strength between the metal and carbon is expected to be high. Therefore, if these transition metal particles, or particles obtained by dissolving and removing a part of them, are used as the core to form a noble metal layer such as Pt and form catalytic metal fine particles, the transition metal such as Fe in the nanopit region has just hit the ground. It functions like an anchor bolt and can firmly hold the catalytic metal fine particles coated with Pt.
  • the average particle diameter of the transition metal fine particles 8 is not particularly limited, but is, for example, 0.5 to 10 nm, and particularly preferably 0.5 to 5 nm. Transition metal fine particles having an average particle size that is too small are difficult to produce and may not function sufficiently as nanoanchors. If the average particle size is too large, the average particle size of the catalytic metal fine particles obtained by forming the noble metal layer also increases accordingly, and the mass activity (catalytic activity per unit mass) tends to decrease.
  • the average particle diameter of the transition metal fine particles 8 is, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 nm, and may be within a range between any two of the numerical values exemplified here.
  • the “average particle diameter” means an arithmetic average obtained by measuring the diameter of the circumscribed circle of each particle in the TEM image. The number of measurement samples is, for example, 500 or more.
  • the average channel width is preferably from 0.3 to 1.4, more preferably from 0.5 to 1.0.
  • the transition metal fine particles 8 are formed of Fe as a representative transition metal
  • the average particle size is around 10 nm.
  • the carbon solid solution amount at that time is 1.5 wt%.
  • the size of the subduction of the Fe particles (the size of the nanopits 3) can be calculated.
  • the diameter of the nanopit is about 7 nm, which is about 69% of the Fe particle diameter, and its maximum depth is 1.4 nm, which is 14% of the diameter.
  • the Pt particle diameter of the catalytic metal fine particles 4 is usually preferably 2 to 3 nm, so that the size of the nanoanchor serving as the core is preferably suppressed to about 2 nm.
  • the ratio of the average particle diameter of the transition metal fine particles 8 which are nano-anchors to the average diameter of the nanopits 3 is 2 nm / 7 nm ⁇ 0.3.
  • the production of the catalyst according to the present invention can include an acid treatment step in which the nanoanchor is acid-dissolved and reduced in volume as will be described later. The process may be omitted.
  • the ratio of the average particle diameter of the transition metal fine particles 8 which are nano-anchors to the average diameter of the nanopits 3 is 10 nm / 7 nm ⁇ 1.4.
  • the noble metal layer 7 is a part that directly acts as a catalyst, and is formed on the transition metal fine particles 8.
  • the noble metal layer 7 preferably has a structure in which the surface of the transition metal fine particle 8 other than the portion in contact with the carbon support 1 is completely covered.
  • the noble metal layer 7 is not particularly limited as long as it is a metal layer containing a noble metal having catalytic activity, but preferably contains at least one metal selected from, for example, Pt, Pd, Rh, In, Ru, and Au.
  • the noble metal layer 7 particularly preferably contains Pt. More preferably, the noble metal layer 7 is preferably made of only Pt.
  • the thickness of the noble metal layer 7 is not particularly limited, but is, for example, 0.5 to 2 nm. In order to suppress the elution of the transition metal, the thickness is preferably 0.5 nm or more. Further, the thickness of the noble metal layer 7 is preferably 2 nm or less so that mass activity (catalytic activity per unit mass) is not reduced.
  • the average particle diameter of the catalytic metal fine particles 4 is not particularly limited, but is preferably 1 to 5 nm, and more preferably 2 to 3 nm. This is because catalyst metal fine particles having an average particle size that is too small are not easy to produce stably, and if the average particle size is too large, the mass activity (catalytic activity per unit mass) decreases.
  • the average particle diameter of the catalyst metal fine particles 4 is, for example, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5. 0 nm, which may be in the range between any two of the numerical values exemplified here.
  • the “average particle diameter” means an arithmetic average obtained by measuring the diameter of the circumscribed circle of each particle in the TEM image. The number of measurement samples is, for example, 500 or more.
  • a method for producing an electrode catalyst for a fuel cell includes a supporting step, a heat treatment step, and a noble metal layer forming step.
  • the transition metal fine particles 8 are supported on the carbon carrier 1
  • the heat treatment step the carbon carrier 1 supporting the transition metal fine particles 8 is heated
  • the noble metal layer is formed on the transition metal fine particles 8. 7 is formed.
  • fine transition metal fine particles 8 are supported on the carbon support 1 as shown in FIG. 3A.
  • the supporting method is not limited as long as the transition metal fine particles 8 can be supported.
  • vapor deposition, impregnation, reverse micelle method and the like are performed.
  • carrying is performed by vapor deposition using an arc plasma vapor deposition APD apparatus as shown in FIG.
  • the vapor deposition is preferably performed under vacuum exhaust.
  • the transition metal used in the supporting step is the same as in “1-3. Transition metal fine particles 8”.
  • Fe nanoparticles are single crystal grains, so there are no grain boundaries where Fe 3 C is naturally stably deposited, and all solid solution carbon is dense on the Fe particle surface. It was found that it was deposited as a carbon coating layer. That is, depending on the composition of the transition metal fine particles 8 and the heat treatment conditions, the carbon coating layer may be a barrier for noble metal layer formation and acid dissolution. Therefore, it is preferable to appropriately adjust the treatment temperature and the composition of the metal particles.
  • the heat treatment process is not particularly limited as long as the nanopits 3 and / or nanochannels 5 can be formed.
  • at least one selected from oxygen gas, hydrogen, water vapor, and carbon dioxide is selected under an inert gas flow or vacuum exhaust. It is preferable to carry out under the gas distribution containing.
  • the heating temperature is preferably 500 to 1140 ° C, more preferably 550 to 1000 ° C, and further preferably 580 to 800 ° C.
  • the heating temperature is, for example, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 911, 920, 940, 960, 980, 1000, 1020, 1040, 1060, 1080, 1100, 1120, 1140 ° C., and may be within a range between any two of the numerical values exemplified here. .
  • the heat treatment step When the heat treatment step is performed under a gas flow including at least one selected from oxygen, hydrogen, water vapor, and carbon dioxide, channel-shaped recesses are easily formed, and the transition metal fine particles 8 are the step portions of the nanochannel 5. A state of being inclined to can be formed.
  • the heating temperature is preferably 300 to 950 ° C., more preferably 350 to 850 ° C., 380 to 820 ° C. is more preferable.
  • the heating temperature is, for example, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 950 ° C., and may be within the range between any two of the numerical values exemplified here. .
  • the heating temperature is too high, the carbon film formed on the transition metal fine particles 8 at the time of cooling as described above may be thick and have a dense crystal structure. It is not preferable because it may be difficult to peel off.
  • the temperature is too low, solid dissolution of the carbon carrier in the transition metal fine particles does not occur, nanopits or nanochannels are not formed, and further, the effect of the transition metal fine particles as nanoanchors cannot be expected. Therefore, the above temperature range is preferable.
  • the method for forming the noble metal layer 7 is not particularly limited as long as the noble metal layer 7 can be formed.
  • the noble metal layer 7 is formed by plating.
  • Plating treatment includes, for example, chemical plating, bubbling of a reaction gas containing hydrogen gas in a state where a sample in a dispersed state and a water-soluble noble metal precursor coexist in a water-containing solvent (eg, water) (hereinafter referred to as “hydrogen bubbling”). Or by placing a droplet of a noble metal solution on the sample and circulating hydrogen on the surface of the droplet, the noble metal precursor is reduced on the surface of the transition metal, and the transition metal fine particles 8 are converted into noble metal.
  • a reaction gas containing hydrogen gas in a state where a sample in a dispersed state and a water-soluble noble metal precursor coexist in a water-containing solvent (eg, water)
  • hydrogen bubbling e.g, water
  • the noble metal precursor is reduced on the surface of the transition metal, and the transition metal fine
  • the noble metal layer 7 can be formed also by an acid treatment process described later. That is, the acid treatment process can be regarded as a noble metal layer forming process. Note that the noble metal layer 7 can be formed by the acid treatment process because transition metals such as Fe are more easily dissolved in acid than noble metals, and selective dissolution progresses, and the remaining noble metal atoms aggregate together and become more stable. This is to form a simple layered structure.
  • the method for producing a fuel cell electrode catalyst according to an embodiment of the present invention may further include an acid treatment step after the heat treatment step.
  • the acid treatment has several purposes.
  • One purpose of the acid treatment step is to remove the carbon film that can be formed on the transition metal fine particles 8.
  • carbon may be deposited on the surface of the transition metal that is being cooled after heating to form a carbon film. If such a carbon film is left behind, it may cause a problem in the formation of the noble metal layer. Therefore, it is preferably removed.
  • the acid treatment step is to dissolve the transition metal fine particles 8 and control the particle size of the transition metal fine particles 8 to be nano-anchors.
  • fine transition metal fine particles are aggregated to form transition metal fine particles 8, and at this time, the particle diameter of the transition metal fine particles 8 increases. If the average particle size of the transition metal fine particles serving as nano-anchors is too large, the average particle size of the catalytic metal fine particles obtained by forming the noble metal layer also increases accordingly, and the mass activity (catalytic activity per unit mass) decreases. Therefore, it is preferable to dissolve to an appropriate size.
  • the method for producing a fuel cell electrode catalyst according to the embodiment of the present invention includes, for example, a supporting step (FIG. 3A), a heat treatment step, as shown in FIG. 3 (FIGS. 3A to 3D). (FIG. 3B), an acid treatment process (FIG. 3C), and a noble metal layer formation process (FIG. 3D).
  • Another purpose of the acid treatment process is the formation of a noble metal layer.
  • the transition metal material used in the supporting step includes a noble metal
  • the noble metal layer can be formed also by an acid treatment step described later. Therefore, it may be preferable because the noble metal layer can be formed without performing a treatment such as plating.
  • the acid treatment method is not particularly limited as long as the purpose of the acid treatment can be achieved, and examples thereof include treatment with sulfuric acid, nitric acid, hydrochloric acid and the like.
  • a fuel cell electrode catalyst was produced by the following method and subjected to various evaluations.
  • Production Example 1 (Supporting and heat treatment of transition metal fine particles having a strong carbon affinity on the graphite substrate)
  • transition metal nanoparticles such as Fe
  • it is suitable to directly observe with a SEM, TEM, or STEM using a substrate sample.
  • a method for producing a substrate sample used for observing nanopits, nanochannels, nanoanchors formed on the graphite base surface by transition metal fine particles will be described.
  • the temperature was room temperature and the substrate was not rotated.
  • FE-SEM manufactured by Hitachi High-Technologies Corporation, SU9000
  • Fe particles are not observed, but in XPS, Fe2p3 / 2 peaks are observed at binding energies 711 and 707 eV. It is presumed that the partially oxidized Fe clusters of 0.5 nm or less are dispersed on the graphite base surface of the HOPG substrate surface.
  • the other is a graphene thin layer (6-8 sheets) that is thinner than graphene nanoplatelets, and this is a sample (manufactured by EM Japan Co., Ltd.) that is formed in advance on a perforated silicon nitride support film of a meshed TEM grid. GN-6-10) was purchased and used. The TEM grid diameter is 3 mm ⁇ .
  • the APD apparatus was used for the formation of Fe particles as in (1).
  • a dedicated sample holder on which the above two types of graphene samples were fixed was placed in a vacuum vessel, and after vacuum evacuation, Fe was pulse-deposited 20 times under the conditions of 70 V and 360 ⁇ F.
  • the Fe / HOPG samples of (1) to (3) were heat-treated in a vacuum or in an Ar stream.
  • a high frequency induction heating furnace (Miwa Seisakusho, MU- ⁇ IV-YUNFO2) was used for the heat treatment.
  • This apparatus can raise the temperature of the sample to 2000 ° C. in one minute in a vacuum or Ar flow.
  • the Fe / HOPG sample was put into a graphite crucible, and a lid with a hole was placed, and then placed in a quartz vacuum vessel. The inside of the vacuum vessel was evacuated with a turbo molecular pump, and the temperature was raised after the pressure became 5 ⁇ 10 ⁇ 2 Pa or less.
  • the temperature was raised to 600 to 1100 ° C. in 1 to 2 minutes, held for a predetermined time, and then allowed to cool naturally while continuing to exhaust.
  • the cooling rate during natural cooling was approximately 50 to 100 ° C./min.
  • Ar was introduced into the container and a sample was taken out.
  • the evacuation is stopped and the temperature is raised after flowing Ar of purity 5N at 1 L / min. Started.
  • the substrate sample of (1) above is set in the reaction tube cooling section, and after purging the reaction tube with N 2 , H 2 is circulated at 500 cc / min.
  • H 2 is circulated at 500 cc / min.
  • the sample boat is inserted into the heating unit at a stretch, held for a predetermined time, and then quickly pulled back to the cooling unit.
  • the rate of temperature rise measured by a thermocouple at the tip of the boat is about 100 ° C./min, and the rate of temperature drop is 50-100 ° C./min.
  • H 2 was sufficiently purged with N 2 and a sample was taken out.
  • hydrogen gas was used in this example is that the gasification rate is smaller than that of other gases, so that the nanochannel is not too long, and the Fe particles are not oxidized.
  • H 2 , O 2 , CO 2 , H 2 O and a mixed gas thereof can be used as well.
  • Production Example 2 (Supporting and heat treatment of transition metal fine particles having a strong carbon affinity in carbon powder)
  • model graphite materials such as HOPG and graphene were used, and the APD method was also used for supporting transition metals with a simple operation and less carbon contamination from the raw materials.
  • the production of the electrode catalyst can be carried out using a normal carbon powder raw material or a general metal loading method.
  • Fe support on GCB powder by impregnation method (Preparation of 10 wt% Fe / GCB powder) 5.29 g of iron (III) nitrate nonahydrate (Kanto Chemical) was added to 44.56 g of dehydrated ethanol and stirred at room temperature to completely dissolve it.
  • a suspension was prepared by adding 5.04 g of GCB powder to 150.11 g of dehydrated ethanol, and 37.77 g of the above iron nitrate solution was added, followed by stirring at room temperature for 1 hour.
  • the obtained mixed liquid was transferred to an eggplant-shaped flask and distilled under reduced pressure at 40 ° C. using an evaporator to remove ethanol and obtain a black powder. This powder was dried in air at 110 ° C. for 5 hours using an electric furnace and then calcined in air at 200 ° C. for 2 hours to obtain an Fe oxide / GCB powder.
  • Fe loading on GCB powder by reverse micelle method (Preparation of 20 wt% Fe / GCB powder) Fe / GCB was also produced by the reverse micelle method characterized by the formation of a uniform particle size.
  • the synthesis was performed using a 100 mL glass reaction tube with stirring in an N 2 atmosphere.
  • Iron acetylacetonate, Fe (acac) 3, (Ardrich), 1,2-hexadecanediol (260 mg, Tokyo Kasei) were dissolved in diphenyl ether (12.5 mL, Kanto Chemical). After the solution was stirred at 110 ° C.
  • Example 3 (acid dissolution) The acid treatment after forming nanopits and nanochannels in Example 1 or Example 2 was performed by the following method.
  • the treated powder sample was collected by filtration.
  • the powder sample was dried under reduced pressure after repeated washing with distilled water and filtration. Since the acid treatment time, temperature, and sulfuric acid concentration vary depending on the sample to be treated and the purpose, it is desirable to determine appropriate conditions by preliminary tests. In this example, during the acid treatment, a small amount of H 2 SO 4 suspension was extracted with a pipette, and the particle dissolution state of the washed powder was observed with an SEM to determine the acid treatment end point.
  • Production Example 4 Selective Pt Chemical Plating on Nano Anchor
  • the following chemical plating was performed.
  • Pt selective chemical plating on powder sample As a method of selective Pt chemical plating on a powder sample, the method described in Patent WO2014 / 178283A1 was applied. Tetraammine platinum hydroxide aqueous solution (Tanaka Kikinzoku Co., Ltd., Pt concentration 20.97 g / L) 6.00 ml (equivalent to Pt 0.126 g) and distilled water 20 ml were acid-treated in Production Example 3 (2) Each of Fe / GCB powder and Fe / KB powder of 0.5 g was put into a sealed glass container with a nozzle shown in FIG. 13A. The amount of Pt supported when all of the charged Pt is deposited on the catalyst is 20 wt%.
  • the suspension was boiled for 2 minutes with a heater while stirring with a magnetic stirrer and bubbling with N 2 gas at 200 cc / min. After cooling to 20 ° C. with ice water, the N 2 gas was stopped and bubbling was performed for 3 hours with 100% H 2 gas at 100 cc / min. In the course of 3 hours, tetraammineplatinum hydrate is reduced by hydrogen, and Pt selective precipitation using nanoanchors as seed crystals occurs. When the treatment was completed, the powder was collected by filtration and washed with warm water sufficiently, and then dried under reduced pressure for 1 hour to obtain a Pt-plated sample.
  • Comparative Example A sample in which Pt is singly supported on a HOPG or KB powder carrier without nanopits, nanochannels and nanoanchors was prepared according to the method of Production Example 1 or a commercial product was obtained and compared with the catalyst of the present invention. Used for. The manufacturing method is shown below.
  • Pt / HOPG substrate sample (arc plasma deposition method) A HOPG having a 5 mm square and a 0.5 mm thickness immediately after cleaving was installed in an APD apparatus in the same manner as in Production Example 1 (1), and applied with an applied voltage of 100 V and a capacitor capacity of 1080 ⁇ F from an arc plasma gun 12 on which a Pt target was installed. Pt was pulsed twice. The pressure was 3 ⁇ 10 ⁇ 4 Pa or less, the temperature was room temperature, and the substrate was not rotated. Also in the case of Pt, Pt particles are not observed by SEM in this state. Since Pt hardly dissolves carbon and does not form carbides, it is considered that no pits are formed regardless of the heating temperature. Heating was performed at 600 ° C. for 1 hour in an ultra high vacuum of 10 ⁇ 5 Pa so that the Pt particle size became an observable particle size in an infrared image furnace.
  • FIG. 5A The Fe particles are dispersed on the graphene base bottom as spherical particles (black) of 5 to 10 nm. A substantially circular white region can be confirmed around some black particles. This is a nanopit formed on the graphene base bottom surface by Fe particles.
  • FIG. 5B is an end view schematically showing the nanopit structure.
  • the Fe particles 9 not only sink immediately below the graphene, but also rotate or vibrate to form nanopits 3 that are slightly larger than their own particle diameter. This is because the atmosphere during the heat treatment is not always as clean as 5 ⁇ 10 ⁇ 2 Pa, and it seems that a very small amount of oxygen present in the atmosphere partially gasifies carbon in which Fe is dissolved. In fact, in the sample heat-treated under a high vacuum of the order of 10 ⁇ 5 Pa, no clear white color was observed around the particles. An example is given below.
  • FIG. 6A and FIG. 6B show the results of observation with a scanning transmission electron microscope (STEM, manufactured by Hitachi High-Technologies, HD-2700). Each shows an approximately 10 nm Fe particle and its graphene interface. In FIG. 6A, an Fe diffusion layer formed in the graphene layer from the Fe particles is observed. In FIG.
  • the Fe-supported HOPG sample (APD, 70V-360 ⁇ F, 2shot) produced in Production Example 1 (1) was 750 ° C. under the vacuum exhaust of Production Example 1 (4).
  • the sample was observed with a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, SU-9000) after heating for nano-pit formation for 15 minutes.
  • the surface of the HOPG substrate is composed of a graphite basal plane, but unlike the graphene sample described above, it is a polycrystalline body, and therefore there are grain boundaries and steps on the surface. Representative surface images are shown in FIGS. 7A and 7B. In FIG. 7B, the grain boundaries run diagonally.
  • Fe particles of 10 to 15 nm are uniformly dispersed on the HOPG surface. Although it cannot be determined from the surface whether each Fe particle sinks into the HOPG and forms pits, the particle diameter around a part of the particles in FIG. 7B is slightly larger than the particle diameter seen in FIG. 5A. A pit can be observed as well. From this, it is considered that each Fe particle is also submerged due to the solid solution of carbon. The details will be described later in the acid-dissolved sample.
  • FIG. 8B is the high-magnification image of FIG.
  • Both Fe particles A and Fe particles B appear to sink their bottoms on the graphite base surface of HOPG. The only difference between them is that there is a nanochannel behind the particle A.
  • Fe particles in contact with the graphite crystal step form nanochannels.
  • the heating temperature is increased, not only the step particles but also the particles existing on the bottom surface of the smooth base such as the particles B form nanochannels.
  • the Fe particles in the step mainly form nanochannels.
  • FIG. 10A is an SEM image of the sample surface before the sulfuric acid treatment. This was treated with sulfuric acid according to the method of Production Example 3 (1).
  • FIG. 10B shows the same field of view observed after processing. All the white spherical Fe particles observed in FIG. 10A are dissolved and removed, and a circular trace can be clearly confirmed at the place where each particle is present. This is a nanopit formed by each Fe particle formed by dissolving carbon on the bottom surface of the graphite.
  • Example 3 (1) was immediately added thereto, and then immediately after the acid dissolution treatment of Example 3 (1) (0.1 MH 2 SO 4 , 95 ° C. for 3 hours).
  • 12A is a SEM image of the sample surface before the acid treatment
  • FIG. 12A (b) is an SEM image of the same visual field after the acid treatment.
  • FIG. 12B and (d) in FIG. 12B are high-magnification images of (a) in FIG. 12A and (b) in FIG. 12A. It can be confirmed that the diameter of each Fe particle before the acid treatment is reduced by the acid treatment, and all of the Fe particles are greatly submerged in the nanopits.
  • FIG. 15 is a graph (a), graph (b), and graph (c) showing changes in the Pt4f peak by the X-ray photoelectron spectrometer (XPS).
  • XPS X-ray photoelectron spectrometer
  • Pt is selectively deposited on the particles, and no precipitation of Pt can be confirmed on the substrate.
  • the Pt concentration on the particle surface measured by XPS is as high as 82 atm% and 99 atm%, the increase in the Pt intensity of XPS after plating is large.
  • Pt plating can be performed using a different metal as a core, it is understood that it is better to partially mix Pt in advance for practical plating in a short time. It was shown that the presence of Pt at an appropriate concentration on the transition metal surface facilitates the aforementioned acid dissolution and the subsequent Pt selective chemical plating process.
  • Catalyst migration aggregation test In order to verify the effect of the present invention, the potential of the catalyst for each sample of Comparative Examples (1), (2), and (3) and the Pt / HOPG sample with nano-anchor in FIG. The resistance to migration aggregation due to fluctuation was compared and evaluated. Using a glass electrochemical cell, an evaluation sample fixed with an Au wire was suspended in an N 2 saturated 0.1 M HClO 4 electrolyte, a Pt plate was used as a counter electrode, and a reversible hydrogen electrode (RHE) was used as a reference electrode.
  • RHE reversible hydrogen electrode
  • APD method Pt / HOPG without nanoanchors The SEM image (a) and SEM image (b) in FIG. 16 are applied to the Pt / HOPG sample of Comparative Example (1), which compares the changes in Pt particles when the potential fluctuation is applied 1000 times at room temperature. It is a SEM image before and behind.
  • FIG. 16A before the cycle application the Pt particles were almost spherical, and the measured Pt particle size was 2.4 ⁇ 0.6 nm.
  • FIG. 16 (b) after 1000 times of application it is possible to confirm elongated particles that are apparently combined with a plurality of particles, and the measured average particle size is as large as 2.8 ⁇ 0.8 nm. Yes.
  • APD method Pt / KB powder The SEM image (a) and SEM image (b) in FIG. 18 are 3000 potential steps at a temperature of 65 ° C. with respect to the Pt / KB catalyst powder of Comparative Example (3). It is a SEM image before and after the application which applied the cycle and compared the Pt particle change before and after that.
  • the carrier of this sample is the same KB powder as the commercially available catalyst in (2), but Pt is supported by the same APD as in (1). In the commercially available catalyst, Pt particles are supported on the pores of KB. However, due to the nature of the APD method in this sample, Pt particles are not supported in the pores and exist only on the outer surface of KB.
  • the above effect is taken as an example in the case where the nanopit forming heat treatment (4) is performed on the sample carrying Fe and Ni on the HOPG substrate by the two arc plasma guns in (2) of Production Example 1 respectively.
  • the arc plasma deposition conditions for Fe and Ni were an applied voltage of 70 V and a capacitor capacity of 360 ⁇ F in a vacuum degree of 3 ⁇ 10 ⁇ 4 Pa or more.
  • Samples having different compositions were prepared by changing the number of pulse depositions of Fe and Ni while keeping the amount of Fe + Ni supported constant.
  • the Ni concentration Ni / (Fe + Ni) determined from XPS after loading was 15, 26, and 44 atm%.
  • the total supported amount of Fe + Ni was confirmed to be in the range of 0.3 to 0.4 ⁇ g / cm 2 from the particle size distribution result of the SEM image after the heat treatment for forming nanopits.
  • the nano pit formation heat treatment of the sample was carried out in a high-frequency induction heating furnace at a temperature of 800, 850, and 900 ° C. in an Ar stream for 30 seconds, held for 5 seconds, and then naturally cooled.
  • FIG. 19 shows a representative SEM image of the surface of each sample after heat treatment in comparison with the case of Fe 100%.
  • the particles At a heat treatment temperature of 900 ° C., the particles have a spherical shape regardless of the Ni concentration, but at low temperatures of 850 ° C. and 800 ° C., the particle shape tends to be slightly flat due to the addition of Ni. From the spot analysis of each particle by EDX, all the particles were FeNi alloy although there was a composition variation.
  • the average particle diameter of FeNi alloy particles was determined from each SEM image at a heat treatment temperature of 900 ° C., and the results plotted against the Ni concentration are shown in FIG. Here, the result of Ni 100% is also shown.
  • the average particle size was 9-12 nm and the standard deviation was relatively close to ⁇ 4-5 nm.
  • the average particle size was nearly doubled to 19 nm and the standard deviation was ⁇ 6 nm. It showed a large value specifically.
  • the curve indicated by the broken line in FIG. 20 indicates the amount of carbon that can be dissolved in the austenite phase of each FeNi composition at 900 ° C.
  • the carbon amount is obtained from the Fe—Ni—C ternary phase diagram at 900 ° C. It was. Both tendencies for the Ni concentration are in good agreement, and in the dynamic process in which carbon atoms diffuse and dissolve in the transition metal lattice, the metal particles easily move on the carbon surface and the collision frequency between the particles increases. The particle size may increase.
  • the average diameter of the transition metal particles is 0.5 to 10 nm, particularly preferably 0.5 to 5 nm.
  • the transition metal particles are increased to 19 nm, not only the step of reducing the particle size by acid treatment increases, but also noble metals.
  • the number density of the catalyst metal fine particles after the layer formation is lowered, and the performance per unit weight of the catalyst is lowered.
  • Such remarkable grain growth occurring in a specific Ni concentration region can be easily avoided by lowering the heat treatment temperature.
  • FIG. 21 shows the change in the average particle diameter of the FeNi alloy particles after a sample having a Ni concentration of 15 atm% is lowered from 900 ° C. to 850 ° C. and 800 ° C. and heated in the same manner for 5 seconds.
  • both the average particle diameter and the standard deviation can be reduced to 19 ⁇ 6 nm at 900 ° C., 11 ⁇ 6 nm at 850 ° C., and 12 ⁇ 4 nm at 800 ° C.
  • the amount of carbon solid solution at both temperatures in this composition is unknown because no Fe-Ni-C ternary phase diagram has been reported so far. Along with this, it is expected to gradually decrease. Nevertheless, as shown in FIG. 22, when heated at 850 ° C. for 60 minutes, the particle size of Fe 100 atm% did not increase significantly compared to heating for 5 seconds, but with Ni 15 atm%, particle growth progressed and the average particle size was rather than Fe 100 atm%. It is increasing. As for the heating conditions in the FeNi alloy system, it is necessary to select a proper heating time at a low temperature in consideration of the amount of carbon solid solution.
  • FIG. 23 shows SEM images of the same visual field before and after acid treatment of each sample. Except for the sample having a Ni concentration of 15 atm%, most of the Fe or FeNi alloy particles present on the HOPG before the acid treatment are dissolved. Further, pits and / or fine particles remaining without being dissolved can be confirmed at the positions where the particles existed. In particular, when the Ni concentration was 26 atm%, pits could be confirmed most clearly in the sample. This is presumably because the amount of carbon solid solution is the second largest after the Ni concentration 15 atm% sample, as expected from the carbon solid solution amount curve in FIG.
  • SEM images (a) and SEM images (b) in FIG. 24 are obtained by examining the solubility when a sample having the same Ni concentration of 15 atm% is heat-treated at 850 ° C. Although the same field of view was not found and comparison was made between different fields of view, the FeNi particles that were flat before acid treatment have rounded corners and a hemisphere after acid treatment. Similar to the 900 ° C. heat-treated sample, the FeNi alloy particles are not completely dissolved, but the effect of lowering the amount of carbon solid solution by lowering the temperature is obtained. Moreover, when the Ni concentration of the sample after acid treatment was analyzed by XPS, it increased from 15 atm% before acid treatment to 38 atm%.
  • the dissolution rate of Fe is large and Ni concentration occurs on the particle surface. Since Ni has a smaller lattice misfit with Pt than Fe, the selective Pt chemical plating step after acid treatment becomes easier. It is important for ensuring the stability of battery performance that the formation of a dense Pt layer on Ni can suppress the elution of transition metal ions during actual operation as compared with the case of Fe alone.
  • FIG. 25 shows an outline of a transition metal support pattern by an arc plasma deposition method.
  • (A) is the pattern used when carrying only Fe alone.
  • An applied voltage of 70 V and a capacitor capacity of 360 ⁇ F are applied 10 times at 1 minute intervals to an arc plasma gun provided with an Fe target, and 10 shots of pulse deposition are performed. An interval of 10 to 15 minutes was provided for every 10 shots in order to cool the tip of the arc plasma gun and obtain stable plasma emission. This operation was repeated so as to meet the target Fe loading.
  • (B) and (c) are patterns used for supporting the FeNi binary system.
  • (B) Alternating support is a method in which, after 10 shots of Fe deposition are performed by the arc plasma gun 11, Ni deposition is performed from another arc plasma gun 12, and pulse deposition of Fe and Ni is alternately repeated without synchronization. It is. All of the above-described FeNi support by arc plasma deposition was performed in this (b) alternating support pattern.
  • FIG. 26 is an SEM image after a sample having a Ni concentration of 47 atm% produced using this supporting pattern was heated in an Ar air flow at 900 ° C. for 5 seconds.
  • the number of shots of Fe was 30 and Ni was 20 shots, 10 shots of Fe were vapor-deposited first, and then 20 shots of Fe and Ni were synchronously carried.
  • a characteristic point of this sample is that it can be confirmed that many FeNi alloy particles have already been buried in deep pits on the HOPG substrate in the heating stage.
  • the average particle size is also as small as 9 ⁇ 4 nm and aggregation is suppressed.
  • Fe, Ni, and Pt targets were installed on three arc plasma guns, respectively, and alternately supported on the HOPG substrate with an applied voltage of 70 V and a capacitor capacity of 360 ⁇ F.
  • the Fe: Ni: Pt composition analyzed by XPS was 62:28:10 atm%.
  • FIG. 27 is a typical SEM image of the sample surface after being heated up to 700 ° C. in an Ar air flow for 30 seconds and held for 10 seconds by a high-frequency induction heating furnace.
  • (B) in FIG. 27 is an SEM image after (a) is subjected to acid treatment with 0.005M-H 2 SO 4 for 10 minutes at room temperature, washed with boiling water and heated at 300 ° C. for 30 minutes in a hydrogen stream. is there. Both observed the same visual field, and the change before and after acid treatment can be clearly seen.
  • the FeNiPt particles are in the form of a flat plate by heat treatment at 700 ° C. for 10 seconds in FIG. 27A, but after acid treatment, all of these particles are greatly reduced in size due to dissolution.
  • One or a plurality of white grains can be confirmed at the same location where each tabular grain is present.
  • peaks of Pt4f5 / 2 and Pt4f7 / 2 are clearly recognized.
  • the peaks of Fe and Ni were noise levels.
  • FIG. 27A it can be confirmed that pits are clearly formed in the portion where the particles exist.
  • the portion indicated by the arrow in FIG. 27B is particularly remarkable, and it can be confirmed that small white particles of several nm have fallen into the pit.
  • Fe and Ni are almost completely dissolved even under mild acid treatment conditions at 0.005M-H 2 SO 4 at room temperature of 10 minutes.
  • Pt is also known as an element having an effect of extending the austenite phase of Fe. It can be seen from the Fe—Pt phase diagram that the austenite phase is stabilized to near room temperature by the addition of Pt.
  • the phase diagrams of the current Fe-Ni-Pt ternary system and Fe-Ni-Pt-C quaternary system There are few reports on the phase diagrams of the current Fe-Ni-Pt ternary system and Fe-Ni-Pt-C quaternary system, and the stable region of the austenite phase and the amount of carbon solid solution are unknown. From the results, it has been confirmed that the Fe—Ni—Pt system is a material system that is extremely suitable for the stable electrode catalyst to which the transition metal of the present invention is applied and the production method thereof.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

Provided are: an electrode catalyst for fuel cells, which is suppressed in movement/aggregation of catalyst metal fine particles when in use, said catalyst metal fine particles being supported by carbon, and which has a long service life; and a method for producing this electrode catalyst for fuel cells. The present invention provides an electrode catalyst for fuel cells, which is provided with a carbon carrier, nanopits and/or nanochannels, transition metal fine particles and a noble metal layer, and which is configured such that: the nanopits and/or the nanochannels are formed on the carbon carrier; the transition metal fine particles are in contact with the carbon carrier within the nanopits and/or the nanochannels; and the noble metal layer is formed on the transition metal fine particles.

Description

燃料電池用電極触媒及びその製造方法Fuel cell electrode catalyst and method for producing the same
 本発明は、燃料電池用電極触媒に関し、具体的にはカーボンに担持した触媒金属微粒子の使用中の移動・凝集が抑制された長寿命の燃料電池用電極触媒及びその製造方法に関する。 The present invention relates to an electrode catalyst for a fuel cell, and more specifically to a long-life electrode catalyst for a fuel cell in which migration and aggregation of catalyst metal fine particles supported on carbon during use is suppressed and a method for producing the same.
 固体高分子形燃料電池の電極触媒は、カーボン等の導電性担体にPt等の貴金属を主体とする活性金属を担持したものが一般に使用される。この電極触媒の性能は、活性金属の担持量が同一であれば、活性金属の表面積が大きいほど、即ちその粒子径が小さく担体上に高分散しているほど高くなる。また、白金は高価であるため、その使用量を低減するためにも活性金属の微粒子化、合金化および担体上に均一に分散担持されていることが求められる。 As an electrode catalyst for a polymer electrolyte fuel cell, a catalyst in which an active metal mainly composed of a noble metal such as Pt is supported on a conductive carrier such as carbon is generally used. The performance of this electrocatalyst increases as the active metal loading is the same, the greater the surface area of the active metal, that is, the smaller the particle size and the higher the dispersion on the support. In addition, since platinum is expensive, it is required that the active metal be finely divided, alloyed and uniformly supported on the support in order to reduce the amount of platinum used.
 活性金属の微粒子化と高分散担持を確保した初期活性の高い電極触媒であっても、例えば、燃料電池自動車(FCV)の負荷変動を模擬した電位変化を繰り返し印加すると、活性金属の粒子径は次第に増加し、それと共に触媒性能も低下する。この活性金属微粒子の増大は、粒子の「溶解・再析出(Ostwald熟成)」とカーボン担体上の「移動・凝集」の二つの経路で進行することが知られている。 Even if an electrocatalyst with high initial activity that ensures active metal atomization and high dispersion support is applied repeatedly, for example, when a potential change simulating a load variation of a fuel cell vehicle (FCV) is applied, the particle diameter of the active metal is The catalyst performance gradually decreases with the increase. It is known that the increase of the active metal fine particles proceeds through two paths of “dissolution / reprecipitation (Ostwald ripening)” and “migration / aggregation” on the carbon support.
 最近、活性金属の粒子径を精密に制御し、微細かつ粒径分布の小さい触媒を合成したところ、電位変化による「溶解・再析出」が抑えられ、触媒性能の低下が大幅に抑制できることが非特許文献1により報告された。このことは、もう一つの「移動・凝集」が抑制できれば、粒子径の増大の無い耐久性を極限まで高めた電極触媒が可能になることを意味しており、その実現が期待されている。 Recently, when the active metal particle size was precisely controlled and a fine catalyst with a small particle size distribution was synthesized, “dissolution / re-precipitation” due to potential change was suppressed, and it was not possible to greatly reduce catalyst performance degradation. It was reported by patent document 1. This means that if another “movement / aggregation” can be suppressed, an electrode catalyst having an extremely high durability without increasing the particle diameter can be obtained, and its realization is expected.
 活性金属微粒子の移動・凝集抑制を狙った触媒としては、例えば特許文献1に示されるように、カーボンナノチューブやカーボンナノホーン、カップスタック型カーボン等の特殊カーボン材が持つ黒鉛結晶エッジ面で囲われた窪み部に、そのエッジ面の含酸素官能基の吸着効果でRu、Pt粒子を保持したアルコール脱水素触媒が知られている。また、非特許文献2では、Ptを担持したカーボンナノチューブをさらにシリカ薄層で被覆することで耐久性を改善した燃料電池の電極触媒が報告されている。 As a catalyst aiming at the movement / aggregation suppression of the active metal fine particles, for example, as disclosed in Patent Document 1, it is surrounded by a graphite crystal edge surface possessed by a special carbon material such as a carbon nanotube, a carbon nanohorn, or a cup stack type carbon. There is known an alcohol dehydrogenation catalyst in which Ru and Pt particles are held in the depression due to the adsorption effect of the oxygen-containing functional group on the edge surface. Non-Patent Document 2 reports a fuel cell electrode catalyst in which durability is improved by coating a carbon nanotube carrying Pt with a thin silica layer.
特開2004-82007JP2004-82007
 しかし、特許文献1に開示されている触媒では、含酸素官能基は高電位で脱離しやすく、燃料電池の過酷な環境下で長期の安定性を期待するのは困難である。また、非特許文献2のような被覆層を有する触媒ではガス拡散抵抗による触媒活性の低下が問題となる。 However, in the catalyst disclosed in Patent Document 1, the oxygen-containing functional group is easily detached at a high potential, and it is difficult to expect long-term stability in the harsh environment of the fuel cell. Moreover, in the catalyst which has a coating layer like a nonpatent literature 2, the fall of the catalyst activity by gas diffusion resistance becomes a problem.
 本発明はこのような事情に鑑みてなされたものであり、カーボンに担持した触媒金属微粒子の使用中の移動・凝集を抑制された長寿命の燃料電池用電極触媒及びその製造方法を提供するものである。 The present invention has been made in view of such circumstances, and provides a long-life electrode catalyst for a fuel cell in which movement and aggregation during use of catalytic metal fine particles supported on carbon are suppressed, and a method for producing the same. It is.
 本発明によれば、カーボン担体と、ナノピット及び/又はナノチャネルと、遷移金属微粒子と、貴金属層と、を備え、前記ナノピット及び/又はナノチャネルは、前記カーボン担体上に形成され、前記遷移金属微粒子は、前記ナノピット及び/又はナノチャネル内で前記カーボン担体と接触し、前記貴金属層は、前記遷移金属微粒子上に形成されている、燃料電池用電極触媒が提供される。 According to the present invention, it comprises a carbon support, nanopits and / or nanochannels, transition metal fine particles, and a noble metal layer, and the nanopits and / or nanochannels are formed on the carbon support, and the transition metal There is provided a fuel cell electrode catalyst in which fine particles are in contact with the carbon support in the nanopits and / or nanochannels, and the noble metal layer is formed on the transition metal fine particles.
 本発明者が鋭意検討を行ったところ、上記のような触媒の構成とすることにより、カーボンに担持した触媒金属微粒子の移動・凝集の抑制が可能であり、燃料電池用電極触媒の長寿命化ができることを見出し、本発明の完成に到った。 As a result of intensive studies by the present inventors, it is possible to suppress the movement / aggregation of catalyst metal fine particles supported on carbon by using the catalyst configuration as described above, and to extend the life of the electrode catalyst for fuel cells. As a result, the present invention has been completed.
 また、本発明の他の観点によれば、担持工程と、熱処理工程と、貴金属層形成工程と、を含み、前記担持工程では、カーボン担体に遷移金属微粒子を担持し、前記熱処理工程では、前記遷移金属微粒子を担持した前記カーボン担体を加熱し、前記貴金属層形成工程では、前記遷移金属微粒子上に貴金属層を形成する、燃料電池用電極触媒の製造方法が提供される。 According to another aspect of the present invention, the method includes a supporting step, a heat treatment step, and a noble metal layer forming step. In the supporting step, a transition metal fine particle is supported on a carbon support. There is provided a method for producing an electrode catalyst for a fuel cell, in which the carbon carrier supporting transition metal fine particles is heated, and in the noble metal layer forming step, a noble metal layer is formed on the transition metal fine particles.
図1Aは従来の通常方法で黒鉛基底面上に担持された触媒粒子2の斜視図である。図1B、図1Cは本発明によるナノピット3、ナノチャネル5に担持された触媒金属微粒子4の斜視図である。FIG. 1A is a perspective view of catalyst particles 2 supported on a graphite base surface by a conventional method. 1B and 1C are perspective views of catalytic metal fine particles 4 carried on nanopits 3 and nanochannels 5 according to the present invention. 図2Aはナノピット3に保持された触媒金属微粒子4、図2Bはナノチャネル5に保持された触媒金属微粒子4の内部構造を示す端面図である。2A is an end view showing the internal structure of the catalyst metal fine particles 4 held in the nanopits 3, and FIG. 2B is an end view showing the internal structure of the catalyst metal fine particles 4 held in the nanochannels 5. 図3A~図3Dは、本発明のナノピット3又はナノチャネル5に保持された触媒金属微粒子4の形成工程の一例を示す説明図である。3A to 3D are explanatory views showing an example of the formation process of the catalytic metal fine particles 4 held in the nanopits 3 or nanochannels 5 of the present invention. 製造例においてカーボン担体に貴金属あるいは遷移金属の微粒子を形成するための一例として使用したアークプラズマ蒸着装置の構成図である。It is a block diagram of the arc plasma vapor deposition apparatus used as an example for forming the noble metal or transition metal fine particles on the carbon support in the production example. 図5Aはグラフェンに担持したFe粒子の真空加熱後の透過型電子顕微鏡(TEM)像である。図5Bは触媒の構造を説明する断面模式図であり、ナノピットの形成模式図である。FIG. 5A is a transmission electron microscope (TEM) image after vacuum heating of Fe particles supported on graphene. FIG. 5B is a schematic cross-sectional view for explaining the structure of the catalyst, and is a schematic view for forming nanopits. 図6中のSTEM像(a)、STEM像(b)は超高真空加熱によるグラフェン上のFeナノピットの走査透過型電子顕微鏡(STEM)像である。The STEM image (a) and STEM image (b) in FIG. 6 are scanning transmission electron microscope (STEM) images of Fe nanopits on graphene by ultrahigh vacuum heating. 図7中のSEM像(a)、SEM像(b)は製造例のHOPG基板に担持したFe粒子の走査型電子顕微鏡像(SEM)である。The SEM image (a) and SEM image (b) in FIG. 7 are scanning electron microscope images (SEM) of Fe particles carried on the HOPG substrate of the production example. 図8中のSEM像(a)はHOPG基板に担持したFe粒子の水素中加熱後のSEM像である。SEM像(b)は同一箇所の拡大像である。The SEM image (a) in FIG. 8 is an SEM image after the Fe particles supported on the HOPG substrate are heated in hydrogen. The SEM image (b) is an enlarged image of the same location. 図9中のTEM像(a)、TEM像(b)は黒鉛化カーボンブラック(GCB)粉末に担持したFe粒子の水素中加熱後のTEM像である。The TEM image (a) and TEM image (b) in FIG. 9 are TEM images of Fe particles supported on graphitized carbon black (GCB) powder after heating in hydrogen. 図10中のSEM像(a)は、Ar中加熱したHOPG基板上のFe粒子の酸処理前(Ar加熱後)のSEM像であり、SEM像(b)はAr中加熱したHOPG基板上のFe粒子の酸処理後のSEM像を示すSEM像である。The SEM image (a) in FIG. 10 is an SEM image before the acid treatment of Fe particles on the HOPG substrate heated in Ar (after Ar heating), and the SEM image (b) is on the HOPG substrate heated in Ar. It is a SEM image which shows the SEM image after the acid treatment of Fe particle | grains. 図11中のSEM像(a),SEM像(b)はFe/HOPG真空熱処理品を酸溶解処理した後のSEM像である。The SEM image (a) and SEM image (b) in FIG. 11 are SEM images after the Fe / HOPG vacuum heat-treated product is subjected to acid dissolution treatment. 図12A中のSEM像(a)は製造例の触媒のSEM像であり、SEM像(b)はさらに酸溶解処理を加えた後の同一視野のSEM像である。An SEM image (a) in FIG. 12A is an SEM image of the catalyst of the production example, and an SEM image (b) is an SEM image of the same field after further acid dissolution treatment. 図12B中のSEM像(c)、SEM像(d)はそれぞれ図12AのSEM像(a)、SEM像(b)の高倍率像である。The SEM image (c) and SEM image (d) in FIG. 12B are high-magnification images of the SEM image (a) and SEM image (b) in FIG. 12A, respectively. 図13A、図13B(b)は製造例の選択Pt化学メッキに使用した装置図である。図13Cは基板試料の拡大図である。FIG. 13A and FIG. 13B (b) are apparatus diagrams used for selective Pt chemical plating in a manufacturing example. FIG. 13C is an enlarged view of the substrate sample. 製造例の触媒のPt化学メッキ前後のSEM像である。It is a SEM image before and behind Pt chemical plating of the catalyst of a manufacture example. 図14の触媒のX線光電子分光装置(XPS)によるPt4fピークの変化をグラフ(a)、グラフ(b)、グラフ(c)により示す図である。It is a figure which shows the change of the Pt4f peak by the X-ray photoelectron spectrometer (XPS) of the catalyst of FIG. 14 with a graph (a), a graph (b), and a graph (c). 図16中のSEM像(a),SEM像(b)はPt/HOPGの電位ステップサイクル印加前後のSEM像である。The SEM images (a) and SEM images (b) in FIG. 16 are SEM images before and after applying a potential step cycle of Pt / HOPG. 図17中のSEM像(a),SEM像(b)は市販電極触媒の電位ステップサイクル印加前後のSEM像である。The SEM images (a) and SEM images (b) in FIG. 17 are SEM images before and after applying a potential step cycle of a commercially available electrode catalyst. 図18中のSEM像(a),SEM像(b)はPt/KBの電位ステップサイクル印加前後のSEM像である。The SEM images (a) and SEM images (b) in FIG. 18 are SEM images before and after applying a potential step cycle of Pt / KB. HOPG基板に担持した各種組成のFeNiの加熱後のSEM像である。It is a SEM image after heating of FeNi of various compositions carried on a HOPG substrate. 図19の900℃熱処理試料のFeNi平均粒径と炭素固溶量を示す図である。It is a figure which shows the FeNi average particle diameter and carbon solid solution amount of the 900 degreeC heat processing sample of FIG. 図19のFe85Ni15/HOPGの平均粒径の温度依存性を示す図である。It is a figure which shows the temperature dependence of the average particle diameter of Fe85Ni15 / HOPG of FIG. Fe100及びFe85Ni15/HOPGの粒子径に対する850℃熱処理時間の影響を示すSEM像である。It is a SEM image which shows the influence of 850 degreeC heat processing time with respect to the particle diameter of Fe100 and Fe85Ni15 / HOPG. 図19の900℃熱処理試料の酸処理前後のSEM像である。It is a SEM image before and behind the acid treatment of the 900 degreeC heat processing sample of FIG. 図24中のSEM像(a),SEM像(b)は、850℃5秒熱処理したFe85Ni15/HOPGの酸処理前後のSEM像である。The SEM images (a) and SEM images (b) in FIG. 24 are SEM images before and after acid treatment of Fe85Ni15 / HOPG heat-treated at 850 ° C. for 5 seconds. アークプラズマ蒸着法で使用されたFeとNiの担持パターン(a)、担持パターン(b)、担持パターン(c)を示す図である。It is a figure which shows the supporting pattern (a), supporting pattern (b), and supporting pattern (c) of Fe and Ni used by the arc plasma vapor deposition method. 同期担持したFe53Ni47/HOPGの900℃-5秒熱処理後のSEM像である。It is an SEM image after heat treatment of Fe53Ni47 / HOPG carried synchronously at 900 ° C. for 5 seconds. 図27中のSEM像(a)、SEM像(b)は、700℃-10sec熱処理したFe70Ni21Pt9/HOPGの酸処理前後のSEM像である。The SEM images (a) and SEM images (b) in FIG. 27 are SEM images before and after acid treatment of Fe70Ni21Pt9 / HOPG heat-treated at 700 ° C. for 10 seconds.
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Various characteristic items shown in the following embodiments can be combined with each other. In addition, the invention is independently established for each feature.
1.電極触媒100
 図1(図1A~1C)及び図2(図2A~2B)に示すように、電極触媒100は、カーボン担体1と、ナノピット3及び/又はナノチャネル5と、遷移金属微粒子8と、貴金属層7と、を備え、ナノピット3及び/又はナノチャネル5は、カーボン担体1上に形成され、遷移金属微粒子8は、ナノピット3及び/又はナノチャネル5内でカーボン担体1と接触し、貴金属層7は、遷移金属微粒子8上に形成されている。
1. Electrocatalyst 100
As shown in FIG. 1 (FIGS. 1A to 1C) and FIG. 2 (FIGS. 2A to 2B), the electrode catalyst 100 includes a carbon support 1, nanopits 3 and / or nanochannels 5, transition metal fine particles 8, and a noble metal layer. The nanopits 3 and / or nanochannels 5 are formed on the carbon support 1, and the transition metal fine particles 8 are in contact with the carbon support 1 in the nanopits 3 and / or nanochannels 5, and the noble metal layer 7 Is formed on the transition metal fine particles 8.
 ここで、図1(図1A~1C)を用いて、本発明の一実施形態に係る電極触媒の典型例の構造上の特徴について説明する。図1Aは、カーボン担体1に、例えば含浸法等、通常知られる方法により担持した場合のPt粒子等の触媒粒子2により構成される電極触媒を例示している。例えば、カーボン担体1が黒鉛や黒鉛化カーボンブラックである場合、黒鉛結晶の基底面が表面に出ており、平滑でかつ化学的反応性や親和性も低いため、この上に担持された触媒粒子2は極めて移動・凝集しやすい。
 一方、図1Bは、カーボン担体1が黒鉛や黒鉛化カーボンブラックである場合に、黒鉛基底面にナノレベルの窪み、すなわちナノピット3が形成された構造を示し、図2Aに示す様に、その内部にはカーボン親和性の強い遷移金属が強い接合強度でカーボン担体1と接しているナノアンカーである遷移金属微粒子8がある。図1Bの触媒金属微粒子4はこの遷移金属微粒子8をコアに、遷移金属微粒子8がカーボン担体1と接している以外の遷移金属微粒子8の外周部をPt等が貴金属層7として完全に被覆した構造になっている。図1Cは、カーボン担体1が黒鉛や黒鉛化カーボンブラックである場合に、黒鉛基底面上にナノサイズの幅と深さの溝、すなわちナノチャネル5が形成されたもので、図2Bに示す様に、ナノチャネル先端の触媒金属微粒子4の内部にはナノピットの場合と同様、カーボン担体1と強く結合したカーボン親和性の強い遷移金属のナノアンカーである遷移金属微粒子8が存在する。
 以下、各構成について説明する。
Here, the structural features of a typical example of an electrode catalyst according to an embodiment of the present invention will be described with reference to FIG. 1 (FIGS. 1A to 1C). FIG. 1A illustrates an electrode catalyst composed of catalyst particles 2 such as Pt particles when supported on a carbon carrier 1 by a generally known method such as an impregnation method. For example, when the carbon support 1 is graphite or graphitized carbon black, the basal plane of the graphite crystal is exposed on the surface and is smooth and has low chemical reactivity and low affinity. 2 is very easy to move and aggregate.
On the other hand, FIG. 1B shows a structure in which nano-level depressions, that is, nanopits 3 are formed on the bottom surface of the graphite when the carbon support 1 is graphite or graphitized carbon black. As shown in FIG. Includes transition metal fine particles 8 which are nanoanchors in which a transition metal having a strong carbon affinity is in contact with the carbon support 1 with a strong bonding strength. The catalytic metal fine particle 4 in FIG. 1B has the transition metal fine particle 8 as a core, and the outer peripheral portion of the transition metal fine particle 8 other than the transition metal fine particle 8 in contact with the carbon support 1 is completely covered with a noble metal layer 7 with Pt or the like. It has a structure. FIG. 1C shows a case where a nano-sized groove, that is, a nanochannel 5 is formed on the bottom surface of the graphite base when the carbon support 1 is graphite or graphitized carbon black, as shown in FIG. 2B. In addition, in the interior of the catalyst metal fine particle 4 at the tip of the nanochannel, there is a transition metal fine particle 8 that is a nano-anchor of a transition metal having a strong carbon affinity and strongly bonded to the carbon support 1, as in the case of the nanopit.
Each configuration will be described below.
1-1.カーボン担体1
 カーボン担体1は、金属微粒子を担持可能な電極用炭素材料であれば特に制限されない。しかし、燃料電池では電極触媒は低pH、高電位に継続的に曝され、耐食性の低いカーボン担体1では次第に腐食が進み易いため、酸や高電位への耐食性が高い黒鉛化された炭素材料を用いることが好ましい。従って、カーボン担体1としては、例えば、黒鉛及び黒鉛化カーボンブラックが好ましい。
 なお、黒鉛及び黒鉛化カーボンブラックをカーボン担体1として用いた場合には、一般にPt等により構成される触媒金属微粒子の移動・凝集が進行しやすく、他のカーボン担体よりも触媒活性の低下は速い。しかし、本発明に係る実施形態においては、触媒金属微粒子の使用中の移動・凝集が抑制されるため酸や高電位への耐食性が高い黒鉛化された炭素材料を用いた場合でも触媒の活性を長期間高く維持し得る。
1-1. Carbon carrier 1
The carbon carrier 1 is not particularly limited as long as it is a carbon material for electrodes that can carry metal fine particles. However, in the fuel cell, since the electrode catalyst is continuously exposed to low pH and high potential, and the carbon support 1 having low corrosion resistance is likely to gradually corrode, a graphitized carbon material having high corrosion resistance to acid and high potential is used. It is preferable to use it. Therefore, as the carbon carrier 1, for example, graphite and graphitized carbon black are preferable.
In addition, when graphite and graphitized carbon black are used as the carbon support 1, the movement and aggregation of catalyst metal fine particles generally composed of Pt or the like are likely to proceed, and the catalytic activity is decreased more rapidly than other carbon supports. . However, in the embodiment according to the present invention, the activity of the catalyst is maintained even when a graphitized carbon material having high corrosion resistance to acid or high potential is used because the movement and aggregation during use of the catalyst metal fine particles are suppressed. Can be kept high for a long time.
1-2.ナノピット3及び/又はナノチャネル5
 ナノピット3及びナノチャネル5は、カーボン担体の表面に形成された凹部である。当該凹部は後述するように遷移金属微粒子8の担持後に熱処理を行うことにより形成される。形成される凹部の形状は、ピット形状及びチャネル形状である。ピット形状とは、例えば、図1B及び図2Aに概念図として示されている円及び楕円等の円形の窪みである。また、チャネル形状とは、例えば、図1C及び図2Bに概念図として示されている溝である。なお、熱処理工程における遷移金属微粒子8とカーボン担体の相互作用により形成され、この際のカーボン担体上を移動し得る遷移金属微粒子8の挙動により変化するため、当該凹部の形状は一定ではない。また、ナノピット3及びナノチャネル5は、カーボン担体1の表面にそれぞれ単独で存在しても、混合して存在しても良い。
1-2. Nanopit 3 and / or nanochannel 5
The nanopits 3 and nanochannels 5 are recesses formed on the surface of the carbon support. As will be described later, the concave portion is formed by performing a heat treatment after supporting the transition metal fine particles 8. The shape of the recess formed is a pit shape and a channel shape. The pit shape is, for example, a circular depression such as a circle and an ellipse shown as conceptual diagrams in FIGS. 1B and 2A. The channel shape is, for example, a groove shown as a conceptual diagram in FIGS. 1C and 2B. Note that the shape of the concave portion is not constant because it is formed by the interaction between the transition metal fine particles 8 and the carbon support in the heat treatment process and changes depending on the behavior of the transition metal fine particles 8 that can move on the carbon support at this time. Further, the nanopits 3 and the nanochannels 5 may be present on the surface of the carbon carrier 1 alone or in a mixture.
 また、ナノピット3の平均直径は、特に限定されないが、例えば、0.3~14nmが好ましく、0.3~7nmがより好ましい。ナノピット3の平均直径は、具体的には例えば、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10、11、12、13、14nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、本明細書において、「平均直径」とは、TEM像において、ナノピットの外接円の直径を測定して算術平均したものを意味する。測定サンプル数は、例えば500個以上である。
 また、ナノチャネル5の平均幅は、特に限定されないが、例えば、0.3~14nmが好ましく、0.3~7nmがより好ましい。ナノチャネル5の平均幅は、具体的には例えば、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10、11、12、13、14nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、本明細書において、「平均幅」とは、TEM像において、溝の幅を測定して算術平均したものを意味する。測定サンプル数は、例えば500個以上である。
Further, the average diameter of the nanopits 3 is not particularly limited, but is preferably 0.3 to 14 nm, and more preferably 0.3 to 7 nm, for example. Specifically, the average diameter of the nanopits 3 is, for example, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5 6, 7, 8, 9, 10, 11, 12, 13, 14 nm, and may be in the range between any two of the numerical values exemplified here. In this specification, “average diameter” means an arithmetic average obtained by measuring the diameter of a circumscribed circle of nanopits in a TEM image. The number of measurement samples is, for example, 500 or more.
Further, the average width of the nanochannel 5 is not particularly limited, but is preferably 0.3 to 14 nm, and more preferably 0.3 to 7 nm, for example. Specifically, the average width of the nanochannel 5 is, for example, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 nm, and may be within a range between any two of the numerical values exemplified here. In the present specification, the “average width” means an arithmetic average obtained by measuring the width of the groove in the TEM image. The number of measurement samples is, for example, 500 or more.
 また、黒鉛及び黒鉛化カーボンブラックをカーボン担体1として用いた場合には、ナノピット及び/又はナノチャネルは黒鉛又は黒鉛化カーボンブラックの基底面上に形成され得る。 Further, when graphite and graphitized carbon black are used as the carbon support 1, nanopits and / or nanochannels can be formed on the basal plane of the graphite or graphitized carbon black.
 本発明の一実施形態に係る検討として、本発明者らは、Feをはじめとする侵入型炭化物を形成する遷移金属のナノ粒子をグラフェンや高配向性黒鉛(Highly oriented pyrolytic graphite, HOPG)の基底面上に形成し、空気をはじめ種々の条件下で熱処理を行い、その表面に形成されるピットや溝を電子顕微鏡で詳細に観察した。その結果、不活性ガスと真空下での熱処理では、金属格子中への炭素固溶により遷移金属粒子は、相対的に基底面内にわずかに沈み込みを生じる事を見出した。この部分には遷移金属とカーボンが存在し、酸処理でこれらを完全に溶解除去するとピットが空間として確認できた。本明細書では、沈み込んだ領域と酸処理により生じるピットを特に区別せずナノピットと呼ぶ。また酸処理により生じたピットが貴金属層で埋もれた場合でもその領域を引き続きナノピットと呼ぶ。すなわち、貴金属層(および遷移金属粒子)により沈み込んだ領域が完全に埋められ、電極触媒表面からはナノピットによる沈み込みが直接確認出来ない場合でも、実際にはカーボン担体上には沈み込んだ領域(凹部)が形成されたままであり、その領域を引き続きナノピットと呼ぶことができる。電子顕微鏡像とカーボン固溶量の計算からナノピット深さは、最大に見積もっても粒子直径の15%程度、ナノピット直径は粒子直径の60%であった。
 一方、酸素や水素、水蒸気、二酸化炭素などの炭素ガス化剤の共存下で加熱した場合、ナノピットの他に、一部の粒子は、固溶炭素を金属表面でガス化しながら基底面上を特定方位(n x 60deg)に動き、その跡に炭素が消失した溝を残す。以下、これを特にナノチャネルと呼ぶ。粒子の移動長さは条件により異なるが、溝の深さと幅はナノピットと同じく、それぞれ粒子直径の約15%と約60%であることが判明した。直径10nmの遷移金属粒子で形成されるナノピット、ナノチャネルの深さは、大きくても1.5nmに過ぎない。直径3nmのPtナノ粒子の移動凝集を完全に抑制するためには、ナノピットあるいはナノチャネルの低い障壁を更に補う機構が必要である。
As a study according to an embodiment of the present invention, the present inventors used transition metal nanoparticles forming interstitial carbides such as Fe as the basis of graphene and highly oriented graphite (HOPG). It was formed on the surface and heat-treated under various conditions including air, and pits and grooves formed on the surface were observed in detail with an electron microscope. As a result, it was found that in the heat treatment under an inert gas and in a vacuum, the transition metal particles slightly sink into the basal plane due to carbon solid solution in the metal lattice. Transition metal and carbon existed in this part, and when these were completely dissolved and removed by acid treatment, pits could be confirmed as spaces. In this specification, the subsidized region and the pit generated by the acid treatment are not particularly distinguished and are called nanopits. Even if the pit generated by the acid treatment is buried with the noble metal layer, the region is continuously called nanopit. That is, even if the subsidized region is completely filled with the noble metal layer (and the transition metal particles), and the subsidence due to nanopits cannot be confirmed directly from the electrode catalyst surface, the subsidized region on the carbon support actually The (recessed portion) remains formed, and the region can still be referred to as nanopits. From the electron microscope image and the calculation of the carbon solid solution amount, the nanopit depth was estimated to be about 15% of the particle diameter, and the nanopit diameter was 60% of the particle diameter.
On the other hand, when heated in the presence of carbon gasifying agents such as oxygen, hydrogen, water vapor, and carbon dioxide, in addition to nanopits, some particles identify the base surface while gasifying solute carbon on the metal surface. It moves in the azimuth (n x 60 deg), leaving a groove where carbon has disappeared in the trace. Hereinafter, this is particularly called a nanochannel. Although the moving length of the particles varies depending on the conditions, the depth and width of the grooves were found to be about 15% and about 60% of the particle diameter, as in the nanopits. The depth of nanopits and nanochannels formed by transition metal particles having a diameter of 10 nm is only 1.5 nm at most. In order to completely suppress the migration aggregation of Pt nanoparticles having a diameter of 3 nm, a mechanism for further supplementing the low barrier of nanopits or nanochannels is necessary.
1-3.遷移金属微粒子8
 図2(図2A~2B)に示すように、遷移金属微粒子8は、ナノピット3及び/又はナノチャネル5内でカーボン担体1と接触している。このような触媒構造により、遷移金属微粒子8及び貴金属層7により構成される触媒金属微粒子4の移動・凝集が抑制される。なぜなら、触媒金属微粒子4がナノピット3又はナノチャネル5内に担持されるからである。また、遷移金属微粒子8がカーボン担体1と接触し、触媒金属微粒子をカーボン担体1に固定するアンカーとしての効果を有するからである。従って、本願発明において、遷移金属微粒子8は、触媒金属微粒子を固定するナノサイズのアンカー、すなわち「ナノアンカー」であると言える。
1-3. Transition metal fine particles 8
As shown in FIG. 2 (FIGS. 2A to 2B), the transition metal fine particles 8 are in contact with the carbon support 1 in the nanopits 3 and / or the nanochannels 5. With such a catalyst structure, movement / aggregation of the catalyst metal fine particles 4 composed of the transition metal fine particles 8 and the noble metal layer 7 is suppressed. This is because the catalyst metal fine particles 4 are supported in the nanopits 3 or the nanochannels 5. In addition, the transition metal fine particles 8 come into contact with the carbon support 1 and have an effect as an anchor for fixing the catalyst metal fine particles to the carbon support 1. Therefore, in the present invention, the transition metal fine particles 8 can be said to be nano-sized anchors for fixing the catalyst metal fine particles, that is, “nano-anchors”.
 このようなナノアンカーがない場合でも、ピットやチャネル等内に触媒金属微粒子が担持されることにより一定の移動・凝集抑制効果が期待できる。しかし、そもそも上記ナノアンカーなどのコアとなるものがなければピットやチャネル等内に担持することは困難である。例えば、通常知られる方法でPt粒子を担持した場合、それぞれのピットやチャネルには複数個のPt粒子が担持されたり、ピットや溝以外の領域にも多数のPt粒子が担持されたりするのは避けられない。その場合、各領域での粒子の移動凝集により、想定される凝集抑制効果はほとんど期待できない。また、ピットやチャネルが十分な深さを有し、ピットやチャネルの内に存在する触媒金属微粒子の移動・凝集の障壁となり得る場合にしか十分な抑制効果は得られない。 Even if there is no such nanoanchor, a certain effect of suppressing migration / aggregation can be expected by supporting catalytic metal fine particles in pits and channels. However, in the first place, it is difficult to carry in the pit, channel or the like unless there is a core such as the nano anchor. For example, when Pt particles are carried by a generally known method, a plurality of Pt particles are carried in each pit or channel, or a large number of Pt particles are carried in regions other than pits and grooves. Unavoidable. In that case, the expected aggregation suppressing effect can hardly be expected due to the movement and aggregation of particles in each region. In addition, a sufficient suppression effect can be obtained only when the pits and channels have a sufficient depth and can serve as a barrier for movement and aggregation of the catalytic metal fine particles existing in the pits and channels.
 遷移金属微粒子8がカーボン担体1と接触している位置は、ナノピット3及び/又はナノチャネル5内であれば特に制限されず、ナノピット3及び/又はナノチャネル5内の底面であっても側面であってもよい。ナノチャネル5の場合、遷移金属微粒子8が移動することによりナノチャネル5を形成し、ナノチャネル5の終端で停止した結果、遷移金属微粒子8がナノチャネル5のステップ部に傾いて付いている場合が多い。 The position where the transition metal fine particle 8 is in contact with the carbon support 1 is not particularly limited as long as it is in the nanopit 3 and / or the nanochannel 5, and even on the bottom surface in the nanopit 3 and / or nanochannel 5, There may be. In the case of the nanochannel 5, when the transition metal fine particle 8 is formed by the movement and forms the nanochannel 5 and stops at the end of the nanochannel 5, the transition metal fine particle 8 is inclined to the step portion of the nanochannel 5. There are many.
 遷移金属微粒子8は、後述するように担持工程によりカーボン担体1上に担持され、その後の熱処理工程により凹部(ナノピット3及び/又はナノチャネル5)を形成し、且つ遷移金属微粒子8がナノピット3及び/又はナノチャネル5内でカーボン担体1に接触し、固定される必要がある。この凹部の形成及び固定化の一因は、熱処理工程における加熱によって、担持された金属微粒子にカーボン担体が固溶した結果であると推測される。従って、遷移金属微粒子8として用いる遷移金属微粒子には、カーボン親和性の強い金属元素を含むことが好ましい。本発明では、ナノアンカー材料として、Feをはじめとした遷移金属が可能である。一般の化学用語ではこれらは「侵入型炭化物を形成する遷移金属」として表記する方が理解し易いが、後述の通り、本発明の系では金属に固溶はするものの炭化物を形成しないと考えられるため、誤解を避ける意味で「カーボン親和性の強い遷移金属」という用語を使用している。 As will be described later, the transition metal fine particles 8 are supported on the carbon support 1 by a support process, and a recess (nanopit 3 and / or nanochannel 5) is formed by a subsequent heat treatment process. It is necessary to contact and fix the carbon carrier 1 in the nanochannel 5. One reason for the formation and immobilization of the recesses is presumed to be the result of the solid dissolution of the carbon support in the supported metal fine particles by heating in the heat treatment step. Therefore, the transition metal fine particles used as the transition metal fine particles 8 preferably contain a metal element having a strong carbon affinity. In the present invention, transition metals such as Fe are possible as the nano-anchor material. In general chemical terms, these are easier to understand as "transition metals that form interstitial carbides", but, as will be described later, in the system of the present invention, it is considered that they form a solid solution but do not form carbides. Therefore, the term “transition metal with strong carbon affinity” is used to avoid misunderstanding.
 カーボン親和性の強い金属元素としては、例えば、Fe、Ni、Co、Mn、Cr、Mo、V、Ta、Wが挙げられる。Fe、Ni、Co、Mn、Cr、Mo、V、Ta、Wの金属にはカーボンが固溶し易く、結晶格子にカーボン原子が入り込んだ侵入型炭化物を形成し易い。カーボンとの親和性の強いこれら金属は黒鉛とも拡散するため、触媒金属微粒子4の動きを止め黒鉛の特定位置に留める強いアンカーとしての作用を発揮できる。またこれら金属を含む合金も同様である。遷移金属微粒子8中のカーボン親和性の強い金属元素の含有量は、好ましくは1~100atm%であり、より好ましくは10~100atm%であり、さらに好ましくは50~100atm%である。遷移金属微粒子8中のカーボン親和性の強い金属元素の含有量は、具体的には例えば、1,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100atm%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Examples of metal elements having strong carbon affinity include Fe, Ni, Co, Mn, Cr, Mo, V, Ta, and W. Carbon easily dissolves in metals such as Fe, Ni, Co, Mn, Cr, Mo, V, Ta, and W, and easily forms interstitial carbides in which carbon atoms enter the crystal lattice. Since these metals having a strong affinity for carbon diffuse with graphite, the metal particles 4 can act as a strong anchor that stops the movement of the catalyst metal fine particles 4 and stays at a specific position of the graphite. The same applies to alloys containing these metals. The content of the metal element having strong carbon affinity in the transition metal fine particles 8 is preferably 1 to 100 atm%, more preferably 10 to 100 atm%, and further preferably 50 to 100 atm%. Specifically, the content of the metal element having strong carbon affinity in the transition metal fine particles 8 is, for example, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 atm%, and may be within a range between any two of the numerical values exemplified here.
 通常の鉄は、低温のフェライト相では炭素の固溶量はそれほど大きくないが、900℃を越えてオーステナイト相に変わると最大で1~2wt%近いカーボンを固溶する。固溶量が多いほど遷移金属粒子を黒鉛基底面に深く沈み込ませることができるが、冷却後、固溶していたカーボンは遷移金属粒子の表面に析出するため、製造上の障害になる場合もある。例えば、オーステナイト系ステンレス鋼は、冷却後も室温でオーステナイト相が安定に存在するため一気に固溶炭素を粒子外に析出することを防げて好ましい。このような観点からは、遷移金属微粒子8には、Fe、Ni、Crを含むことが好ましい。すなわち、遷移金属微粒子8は、Fe、Ni、Crを含むオーステナイト系ステンレス鋼であることが好ましい。 Ordinary iron does not have a large amount of carbon in the low-temperature ferrite phase, but when it changes to the austenite phase above 900 ° C., it dissolves a maximum of 1 to 2 wt% of carbon. The more the amount of solid solution, the deeper the transition metal particles can sink into the bottom surface of the graphite base. However, after cooling, the solid solution of carbon precipitates on the surface of the transition metal particles, which may hinder manufacturing. There is also. For example, austenitic stainless steel is preferable because it can prevent precipitation of solute carbon from the particles all at once because the austenite phase is stably present at room temperature even after cooling. From such a viewpoint, it is preferable that the transition metal fine particles 8 contain Fe, Ni, and Cr. That is, the transition metal fine particles 8 are preferably austenitic stainless steel containing Fe, Ni, and Cr.
 また、Fe-Bの2元合金は、FeとFeBの共晶を形成するため、ナノ粒子内部に微細な粒界を形成し、そこに固溶したカーボンを析出できるため、オーステナイト系ステンレス鋼と同様に望ましい場合がある。このような観点からは、遷移金属微粒子8には、Fe及びBを含むことが好ましい。すなわち、遷移金属微粒子8はFe-Bの2元合金であることが好ましい。 In addition, the Fe—B binary alloy forms an eutectic of Fe and Fe 2 B, so that a fine grain boundary is formed inside the nanoparticle, and solid solution carbon can be precipitated there. It may be desirable as well as steel. From such a viewpoint, the transition metal fine particles 8 preferably contain Fe and B. That is, the transition metal fine particles 8 are preferably an Fe—B binary alloy.
 また、多くの温度領域でFeにNiを添加したFeNi合金への炭素固溶量は純Feの場合よりも大きい値を示す。そのため、遷移金属としてFe-Ni合金を適用する事で、同一熱処理条件でもより大きなナノピット3及び/又はナノチャネル5を形成でき、かつ酸処理や貴金属層形成工程で障害となる遷移金属粒子表面への緻密で厚い炭素層の析出を抑制できる場合がある。また、比較的低温でも、ナノピット3及び/又はナノチャネル5の形成が可能であり、微粒子化にも資する。このような観点からは、カーボン親和性の強い金属元素として、Fe及びNiを含むことが好ましい場合がある。遷移金属微粒子8中のNi含有量は、例えば、好ましくは1~90atm%であり、より好ましくは5~80atm%であり、さらに好ましくは10~50atm%である。Ni含有量は、具体的には例えば、1、2、3、4、5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90atm%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 Moreover, the amount of carbon solid solution in the FeNi alloy in which Ni is added to Fe in a large number of temperature ranges is larger than that in the case of pure Fe. Therefore, by applying the Fe—Ni alloy as the transition metal, larger nanopits 3 and / or nanochannels 5 can be formed even under the same heat treatment conditions, and the transition metal particle surface that becomes an obstacle in the acid treatment or noble metal layer formation process can be formed. In some cases, the deposition of a dense and thick carbon layer can be suppressed. Further, the nanopits 3 and / or the nanochannels 5 can be formed even at a relatively low temperature, which contributes to the formation of fine particles. From such a viewpoint, it may be preferable to include Fe and Ni as a metal element having a strong carbon affinity. The Ni content in the transition metal fine particles 8 is, for example, preferably 1 to 90 atm%, more preferably 5 to 80 atm%, and further preferably 10 to 50 atm%. Specifically, the Ni content is, for example, 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80. , 85, 90 atm%, and may be within a range between any two of the numerical values exemplified here.
 また、ナノピット3及び/又はナノチャネル5の形成と、酸処理による遷移金属微粒子8の溶解との両立の観点からは、遷移金属微粒子8を構成する金属(純金属/合金)の炭素固溶量が1.2~4.5atm%であることが好ましい場合がある。 Further, from the viewpoint of coexistence of formation of the nanopits 3 and / or nanochannels 5 and dissolution of the transition metal fine particles 8 by acid treatment, the carbon solid solution amount of the metal (pure metal / alloy) constituting the transition metal fine particles 8 Is preferably 1.2 to 4.5 atm%.
 また、遷移金属微粒子8を構成する金属(純金属/合金)に予め表面を覆うPt等の貴金属層7と同様の貴金属を混合しておけば相互の親和性を高めることに繋がり、触媒活性と製造工程上好ましい。また、メッキ処理等によらず酸溶解処理によって貴金属層7を形成することが可能な場合がある。 Moreover, if the noble metal similar to the noble metal layer 7 such as Pt covering the surface is mixed in advance with the metal (pure metal / alloy) constituting the transition metal fine particles 8, the mutual affinity is increased, and the catalytic activity is increased. It is preferable in the manufacturing process. Further, it may be possible to form the noble metal layer 7 by acid dissolution treatment regardless of plating treatment or the like.
 また、比較的低い温度でのナノピット3及び/又はナノチャネル5の形成、酸処理の容易さという観点からは、遷移金属微粒子8を構成する合金としてはFe-Ni-Ptの3元合金が好ましい場合がある。  Further, from the viewpoint of formation of nanopits 3 and / or nanochannels 5 at a relatively low temperature and ease of acid treatment, the alloy constituting the transition metal fine particles 8 is preferably a ternary alloy of Fe—Ni—Pt. There is a case. *
 本発明においては、遷移金属微粒子8がカーボン担体1と接触することにより、遷移金属微粒子8がカーボン担体1上に固定されている。 In the present invention, the transition metal fine particles 8 are fixed on the carbon support 1 by contacting the transition metal fine particles 8 with the carbon support 1.
 例えば、黒鉛に対しナノピット3を形成した場合、ナノピット3は黒鉛基底面にFe等の遷移金属が拡散した領域であると考えられ、金属とカーボンの接合強度は高いと予想される。よって、これら遷移金属粒子、あるいはその一部を溶解除去した粒子をコアとして、Pt等の貴金属層を形成し触媒金属微粒子を形成すれば、ナノピット領域のFe等の遷移金属はちょうど地面に打ち込んだアンカーボルトのような機能を発揮し、Ptによって被覆された触媒金属微粒子を強固に保持できる。 For example, when nanopit 3 is formed on graphite, nanopit 3 is considered to be a region in which a transition metal such as Fe diffuses on the bottom surface of the graphite, and the bonding strength between the metal and carbon is expected to be high. Therefore, if these transition metal particles, or particles obtained by dissolving and removing a part of them, are used as the core to form a noble metal layer such as Pt and form catalytic metal fine particles, the transition metal such as Fe in the nanopit region has just hit the ground. It functions like an anchor bolt and can firmly hold the catalytic metal fine particles coated with Pt.
 また、ここで遷移金属微粒子8の平均粒径は、特に限定されないが、例えば、0.5~10nmであり、特に望ましくは0.5~5nmである。平均粒径が小さすぎる遷移金属微粒子は製造が困難でありまたナノアンカーとして十分に機能しない可能性がある。平均粒径が大きすぎると、貴金属層を形成して得られる触媒金属微粒子の平均粒径もその分大きくなり、質量活性(単位質量当たりの触媒活性)が低下しやすい。遷移金属微粒子8の平均粒径は、具体的には例えば、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、本明細書において、「平均粒径」とは、TEM像において、各粒子の外接円の直径を測定して算術平均したものを意味する。測定サンプル数は、例えば500個以上である。 Here, the average particle diameter of the transition metal fine particles 8 is not particularly limited, but is, for example, 0.5 to 10 nm, and particularly preferably 0.5 to 5 nm. Transition metal fine particles having an average particle size that is too small are difficult to produce and may not function sufficiently as nanoanchors. If the average particle size is too large, the average particle size of the catalytic metal fine particles obtained by forming the noble metal layer also increases accordingly, and the mass activity (catalytic activity per unit mass) tends to decrease. Specifically, the average particle diameter of the transition metal fine particles 8 is, for example, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 nm, and may be within a range between any two of the numerical values exemplified here. In the present specification, the “average particle diameter” means an arithmetic average obtained by measuring the diameter of the circumscribed circle of each particle in the TEM image. The number of measurement samples is, for example, 500 or more.
 ナノアンカーである遷移金属微粒子8の平均粒径とナノピット3の平均直径の比(遷移金属微粒子平均粒径/ナノピット平均直径)、あるいはナノチャル5の平均幅の比(遷移金属微粒子平均粒径/ナノチャネル平均幅)は、0.3~1.4が好ましく、0.5~1.0がより好ましい。 Ratio of average particle diameter of transition metal fine particles 8 as nano-anchors to average diameter of nanopits 3 (average particle diameter of transition metal fine particles / average diameter of nanopits) or ratio of average width of nanochar 5 (average particle diameter of transition metal fine particles / nano The average channel width is preferably from 0.3 to 1.4, more preferably from 0.5 to 1.0.
 本発明の一実施形態においては、例えば、代表的な遷移金属としてFeにより遷移金属微粒子8を形成することを考えると、これを黒鉛基板上で最高1000℃に加熱するとFe担持量により多少変動するが平均粒子径は10nm前後である。またその時の炭素固溶量は1.5wt%となる。これらを考慮してFe粒子の下部への沈み込みのサイズ(ナノピット3のサイズ)を算出することができる。概算の結果、ナノピットの直径はFe粒子直径の約69%の約7nmで、その最大深さは直径の14%の1.4nmである。Fe上にPtによる貴金属層7を形成した場合、触媒金属微粒子4のPt粒子径は、通常2~3nmが望ましいことからそのコアとなるナノアンカーのサイズは2nm程度に抑える事が望まれる。この結果、ナノアンカーである遷移金属微粒子8の平均粒径とナノピット3の平均直径の比(遷移金属微粒子平均粒径/ナノピット平均直径)は、2nm/7nm≒0.3となる。本発明による触媒の製造には後述するようにナノアンカーを酸溶解し減容する酸処理工程を含めることが出来るが、触媒活性を多少犠牲にしても製造コストを抑える場合には、この酸処理工程を省略しても良い。その場合、ナノアンカーである遷移金属微粒子8の平均粒径とナノピット3の平均直径の比(遷移金属微粒子平均粒径/ナノピット平均直径)は、10nm/7nm≒1.4である。 In one embodiment of the present invention, for example, considering that the transition metal fine particles 8 are formed of Fe as a representative transition metal, when this is heated to a maximum of 1000 ° C. on a graphite substrate, it slightly varies depending on the amount of Fe supported. However, the average particle size is around 10 nm. Moreover, the carbon solid solution amount at that time is 1.5 wt%. Taking these into consideration, the size of the subduction of the Fe particles (the size of the nanopits 3) can be calculated. As a result of the estimation, the diameter of the nanopit is about 7 nm, which is about 69% of the Fe particle diameter, and its maximum depth is 1.4 nm, which is 14% of the diameter. When the noble metal layer 7 made of Pt is formed on Fe, the Pt particle diameter of the catalytic metal fine particles 4 is usually preferably 2 to 3 nm, so that the size of the nanoanchor serving as the core is preferably suppressed to about 2 nm. As a result, the ratio of the average particle diameter of the transition metal fine particles 8 which are nano-anchors to the average diameter of the nanopits 3 (transition metal fine particle average particle diameter / nanopit average diameter) is 2 nm / 7 nm≈0.3. The production of the catalyst according to the present invention can include an acid treatment step in which the nanoanchor is acid-dissolved and reduced in volume as will be described later. The process may be omitted. In that case, the ratio of the average particle diameter of the transition metal fine particles 8 which are nano-anchors to the average diameter of the nanopits 3 (transition metal fine particle average particle diameter / nanopit average diameter) is 10 nm / 7 nm≈1.4.
1-4.貴金属層7
 貴金属層7は、直接触媒として作用する部位であり、遷移金属微粒子8上に形成されている。貴金属層7は、カーボン担体1と接している部分以外の遷移金属微粒子8の表面を完全に被覆した構造であることが好ましい。貴金属層7は、触媒活性を有する貴金属を含む金属層であれば特に制限されないが、例えば、Pt、Pd、Rh、In、Ru、Auから選択される少なくとも一種の金属を含むことが好ましい。貴金属層7は、Ptを含むことが特に好ましい。さらに好ましくは、貴金属層7はPtのみからなることが好ましい。
1-4. Precious metal layer 7
The noble metal layer 7 is a part that directly acts as a catalyst, and is formed on the transition metal fine particles 8. The noble metal layer 7 preferably has a structure in which the surface of the transition metal fine particle 8 other than the portion in contact with the carbon support 1 is completely covered. The noble metal layer 7 is not particularly limited as long as it is a metal layer containing a noble metal having catalytic activity, but preferably contains at least one metal selected from, for example, Pt, Pd, Rh, In, Ru, and Au. The noble metal layer 7 particularly preferably contains Pt. More preferably, the noble metal layer 7 is preferably made of only Pt.
 貴金属層7の厚さは、特に制限されないが、例えば、0.5~2nmである。遷移金属の溶出を抑えるために、0.5nm以上であることが好ましい。また、貴金属層7の厚さは、質量活性(単位質量当たりの触媒活性)が小さくならないよう2nm以下であることが好ましい。 The thickness of the noble metal layer 7 is not particularly limited, but is, for example, 0.5 to 2 nm. In order to suppress the elution of the transition metal, the thickness is preferably 0.5 nm or more. Further, the thickness of the noble metal layer 7 is preferably 2 nm or less so that mass activity (catalytic activity per unit mass) is not reduced.
1-5.その他
 また、触媒金属微粒子4の平均粒径は、特に限定されないが、例えば、1~5nmが好ましく、2~3nmがより好ましい。平均粒径が小さすぎる触媒金属微粒子は、安定に製造することが容易ではなく、平均粒径が大きすぎると、質量活性(単位質量当たりの触媒活性)が小さくなるからである。触媒金属微粒子4の平均粒径は、具体的には例えば、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。なお、本明細書において、「平均粒径」とは、TEM像において、各粒子の外接円の直径を測定して算術平均したものを意味する。測定サンプル数は、例えば500個以上である。
1-5. Others The average particle diameter of the catalytic metal fine particles 4 is not particularly limited, but is preferably 1 to 5 nm, and more preferably 2 to 3 nm. This is because catalyst metal fine particles having an average particle size that is too small are not easy to produce stably, and if the average particle size is too large, the mass activity (catalytic activity per unit mass) decreases. Specifically, the average particle diameter of the catalyst metal fine particles 4 is, for example, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5. 0 nm, which may be in the range between any two of the numerical values exemplified here. In the present specification, the “average particle diameter” means an arithmetic average obtained by measuring the diameter of the circumscribed circle of each particle in the TEM image. The number of measurement samples is, for example, 500 or more.
2.電極触媒の製造方法
 図3(図3A~3D)に示すように、本発明の実施形態に係る燃料電池用電極触媒の製造方法は、担持工程と、熱処理工程と、貴金属層形成工程と、を含み、担持工程では、カーボン担体1に遷移金属微粒子8を担持し、熱処理工程では、遷移金属微粒子8を担持したカーボン担体1を加熱し、貴金属層形成工程では、遷移金属微粒子8上に貴金属層7を形成する。以下、各工程について説明する。
2. Method for Producing Electrocatalyst As shown in FIG. 3 (FIGS. 3A to 3D), a method for producing an electrode catalyst for a fuel cell according to an embodiment of the present invention includes a supporting step, a heat treatment step, and a noble metal layer forming step. In addition, in the supporting step, the transition metal fine particles 8 are supported on the carbon carrier 1, in the heat treatment step, the carbon carrier 1 supporting the transition metal fine particles 8 is heated, and in the noble metal layer forming step, the noble metal layer is formed on the transition metal fine particles 8. 7 is formed. Hereinafter, each step will be described.
2-1.担持工程
 担持工程においては、図3Aに示すように、カーボン担体1上に、微細な遷移金属微粒子8を担持する。担持方法は、遷移金属微粒子8が担持可能であれば制限されないが、例えば、蒸着、含浸、逆ミセル法等により行われる。蒸着による場合には、具体的には、図4に示すようなアークプラズマ蒸着APD装置を用いた蒸着により担持を行う。当該蒸着は真空排気下で行われることが好ましい。
2-1. Supporting Step In the supporting step, fine transition metal fine particles 8 are supported on the carbon support 1 as shown in FIG. 3A. The supporting method is not limited as long as the transition metal fine particles 8 can be supported. For example, vapor deposition, impregnation, reverse micelle method and the like are performed. In the case of vapor deposition, specifically, carrying is performed by vapor deposition using an arc plasma vapor deposition APD apparatus as shown in FIG. The vapor deposition is preferably performed under vacuum exhaust.
 担持工程において用いられる遷移金属については、上記「1-3.遷移金属微粒子8」と同様である。 The transition metal used in the supporting step is the same as in “1-3. Transition metal fine particles 8”.
2-2.熱処理工程
 熱処理工程においては、図3Bに示すように、微細な遷移金属微粒子8が担持されたカーボン担体1を加熱する。当該加熱処理により、微細な遷移金属微粒子8が凝集しつつナノピット3及び/又はナノチャネル5がカーボン担体1上に形成され、凝集した遷移金属微粒子8がナノピット3及び/又はナノチャネル5内でカーボン担体1と接触した状態となる。
2-2. Heat Treatment Step In the heat treatment step, as shown in FIG. 3B, the carbon carrier 1 on which fine transition metal fine particles 8 are supported is heated. By the heat treatment, fine transition metal fine particles 8 are aggregated to form nanopits 3 and / or nanochannels 5 on the carbon support 1, and the aggregated transition metal fine particles 8 are carbonized in the nanopits 3 and / or nanochannels 5. It will be in the state which contacted the support | carrier 1. FIG.
 遷移金属微粒子8としてFeナノ粒子を黒鉛上で加熱し冷却すると、Fe-C相図が示す様に、ナノ粒子中にはフェライトとFeC(セメンタイト)の層状組織が形成されると考えていた。これらはいずれも酸で溶解できるため、酸処理による体積減少後、残ったFeをコアとして貴金属層であるPt層を選択形成し、上述の触媒構造を構築できると予想していた。しかし得られた加熱試料を熱希硫酸で長時間還流処理してもFe粒子径の減少は全く確認できなかった。高分解能TEM、STEM、XPSの分析の結果、Feナノ粒子は単結晶粒のため、本来FeCが安定に析出する粒界が存在せず、固溶したカーボンは全てFe粒子表面に緻密なカーボン被覆層として析出していることが分かった。すなわち、遷移金属微粒子8の組成及び熱処理条件によってカーボン被覆層が貴金属層形成や酸溶解のバリアになる場合がある。従って、処理温度及び金属粒子の組成を適宜調整することが好ましい。 When the Fe nanoparticles as transition metal fine particles 8 are heated and cooled on graphite, a layered structure of ferrite and Fe 3 C (cementite) is formed in the nanoparticles as shown in the Fe—C phase diagram. It was. Since any of these can be dissolved with an acid, it was expected that after the volume is reduced by acid treatment, a Pt layer, which is a noble metal layer, is selectively formed using the remaining Fe as a core to construct the above-described catalyst structure. However, even if the obtained heated sample was refluxed with hot dilute sulfuric acid for a long time, no decrease in the Fe particle diameter could be confirmed. As a result of high-resolution TEM, STEM, and XPS analysis, Fe nanoparticles are single crystal grains, so there are no grain boundaries where Fe 3 C is naturally stably deposited, and all solid solution carbon is dense on the Fe particle surface. It was found that it was deposited as a carbon coating layer. That is, depending on the composition of the transition metal fine particles 8 and the heat treatment conditions, the carbon coating layer may be a barrier for noble metal layer formation and acid dissolution. Therefore, it is preferable to appropriately adjust the treatment temperature and the composition of the metal particles.
 熱処理工程は、ナノピット3及び/又はナノチャネル5が形成可能であれば特に制限されないが、例えば、不活性ガス流通下又は真空排気下、あるいは酸素、水素、水蒸気、二酸化炭素から選択されるすくなくとも一種を含むガス流通下、行われることが好ましい。 The heat treatment process is not particularly limited as long as the nanopits 3 and / or nanochannels 5 can be formed. For example, at least one selected from oxygen gas, hydrogen, water vapor, and carbon dioxide is selected under an inert gas flow or vacuum exhaust. It is preferable to carry out under the gas distribution containing.
 熱処理工程が、不活性ガス流通下又は真空排気下で行われる場合には、ピット形状の凹部が形成され易いため、ナノピット3に遷移金属微粒子8が沈み込んだ状態が形成されうる。
 また、熱処理工程が、不活性ガス流通下又は真空排気下で行われる場合には、加熱温度は500~1140℃が好ましく、550~1000℃がより好ましく、580~800℃がさらに好ましい。加熱温度は、具体的には例えば、500、520、540、560、580、600、620、640、660、680、700、720、740、760、780、800、820、840、860、880、900、911、920、940、960、980、1000、1020、1040、1060、1080、1100、1120、1140℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
When the heat treatment step is performed under an inert gas flow or evacuation, a pit-shaped recess is easily formed, so that a state in which the transition metal fine particles 8 are submerged in the nanopit 3 can be formed.
When the heat treatment step is performed under an inert gas flow or under vacuum exhaust, the heating temperature is preferably 500 to 1140 ° C, more preferably 550 to 1000 ° C, and further preferably 580 to 800 ° C. Specifically, the heating temperature is, for example, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 911, 920, 940, 960, 980, 1000, 1020, 1040, 1060, 1080, 1100, 1120, 1140 ° C., and may be within a range between any two of the numerical values exemplified here. .
 熱処理工程が、酸素、水素、水蒸気、二酸化炭素から選択されるすくなくとも一種を含むガス流通下で行われる場合には、チャネル形状の凹部が形成され易く、遷移金属微粒子8がナノチャネル5のステップ部に傾いて付いている状態が形成されうる。
 また、熱処理工程が、酸素、水素、水蒸気、二酸化炭素から選択されるすくなくとも一種を含むガス流通下で行われる場合には、加熱温度は300~950℃が好ましく、350~850℃がより好ましく、380~820℃がさらに好ましい。加熱温度は、具体的には例えば、300、320、340、360、380、400、420、440、460、480、500、520、540、560、580、600、620、640、660、680、700、720、740、760、780、800、820、840、860、880、900、920、940、950℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
When the heat treatment step is performed under a gas flow including at least one selected from oxygen, hydrogen, water vapor, and carbon dioxide, channel-shaped recesses are easily formed, and the transition metal fine particles 8 are the step portions of the nanochannel 5. A state of being inclined to can be formed.
In the case where the heat treatment step is performed under a gas flow containing at least one selected from oxygen, hydrogen, water vapor, and carbon dioxide, the heating temperature is preferably 300 to 950 ° C., more preferably 350 to 850 ° C., 380 to 820 ° C. is more preferable. Specifically, the heating temperature is, for example, 300, 320, 340, 360, 380, 400, 420, 440, 460, 480, 500, 520, 540, 560, 580, 600, 620, 640, 660, 680, 700, 720, 740, 760, 780, 800, 820, 840, 860, 880, 900, 920, 940, 950 ° C., and may be within the range between any two of the numerical values exemplified here. .
 熱処理工程において、加熱温度が高すぎると上述のように冷却時に遷移金属微粒子8上に形成される炭素被膜が厚く、また緻密な結晶構造となる場合があり、後述の酸処理工程によっても炭素皮膜を剥離することが困難となる場合があり好ましくない。また、温度が低すぎると、遷移金属微粒子へのカーボン担体の固溶が生じず、ナノピット又はナノチャネルが形成されず、さらに遷移金属微粒子のナノアンカーとしての効果も期待できない。従って、上記の温度範囲とすることが好ましい。 In the heat treatment step, if the heating temperature is too high, the carbon film formed on the transition metal fine particles 8 at the time of cooling as described above may be thick and have a dense crystal structure. It is not preferable because it may be difficult to peel off. On the other hand, if the temperature is too low, solid dissolution of the carbon carrier in the transition metal fine particles does not occur, nanopits or nanochannels are not formed, and further, the effect of the transition metal fine particles as nanoanchors cannot be expected. Therefore, the above temperature range is preferable.
2-3.貴金属層形成工程
 貴金属層形成工程においては、図3Dに示すように、遷移金属微粒子8上に貴金属層7が形成される。
2-3. Noble Metal Layer Formation Step In the noble metal layer formation step, as shown in FIG. 3D, the noble metal layer 7 is formed on the transition metal fine particles 8.
 貴金属層7の形成方法は、貴金属層7を形成可能であれば特に制限されないが、例えば、メッキ処理により行われる。メッキ処理は、例えば、化学メッキ、含水溶媒(例:水)中に分散状態の試料及び水溶性の貴金属前駆体を共存させた状態で水素ガスを含む反応ガスのバブリング(以下、「水素バブリング」とも称する。)により、あるいは試料上に貴金属溶液の液滴を乗せこの液滴表面に水素の流通を行うことにより、貴金属前駆体を遷移金属の表面上で還元させて、遷移金属微粒子8を貴金属の原子層で被覆する。 The method for forming the noble metal layer 7 is not particularly limited as long as the noble metal layer 7 can be formed. For example, the noble metal layer 7 is formed by plating. Plating treatment includes, for example, chemical plating, bubbling of a reaction gas containing hydrogen gas in a state where a sample in a dispersed state and a water-soluble noble metal precursor coexist in a water-containing solvent (eg, water) (hereinafter referred to as “hydrogen bubbling”). Or by placing a droplet of a noble metal solution on the sample and circulating hydrogen on the surface of the droplet, the noble metal precursor is reduced on the surface of the transition metal, and the transition metal fine particles 8 are converted into noble metal. With an atomic layer of
 また、担持工程において用いる遷移金属材料に、貴金属を含む場合には、後述の酸処理工程によっても貴金属層7が形成されうる。すなわち、酸処理工程を貴金属層形成工程とみなすことが出来る。なお、酸処理工程により貴金属層7が形成されうるのは、Fe等の遷移金属は貴金属より酸に溶解しやすく、選択的な溶解が進行すると共に、残存した貴金属原子も相互に凝集しより安定な層状構造を形成するためである。 Further, when the transition metal material used in the supporting process includes a noble metal, the noble metal layer 7 can be formed also by an acid treatment process described later. That is, the acid treatment process can be regarded as a noble metal layer forming process. Note that the noble metal layer 7 can be formed by the acid treatment process because transition metals such as Fe are more easily dissolved in acid than noble metals, and selective dissolution progresses, and the remaining noble metal atoms aggregate together and become more stable. This is to form a simple layered structure.
2-4.酸処理工程
 本発明の実施形態に係る燃料電池用電極触媒の製造方法は、熱処理工程の後に、酸処理工程をさらに含み得る。当該酸処理はいくつかの目的を有する。
2-4. Acid Treatment Step The method for producing a fuel cell electrode catalyst according to an embodiment of the present invention may further include an acid treatment step after the heat treatment step. The acid treatment has several purposes.
 酸処理工程の1つの目的は、遷移金属微粒子8上に形成されうる炭素被膜の除去である。上記加熱処理工程において、加熱後冷却中の遷移金属表面に炭素が析出し炭素被膜を形成する場合がある。このような炭素皮膜を残しておくと貴金属層の形成に問題を生ずる可能性があるため、除去することが好ましい。 One purpose of the acid treatment step is to remove the carbon film that can be formed on the transition metal fine particles 8. In the heat treatment step, carbon may be deposited on the surface of the transition metal that is being cooled after heating to form a carbon film. If such a carbon film is left behind, it may cause a problem in the formation of the noble metal layer. Therefore, it is preferably removed.
 酸処理工程の別の目的は、遷移金属微粒子8を溶解し、ナノアンカーとなる遷移金属微粒子8の粒径をコントロールすることである。上記熱処理工程において、微細な遷移金属微粒子が凝集し遷移金属微粒子8を形成するが、この際遷移金属微粒子8の粒径が増大する。ナノアンカーとなる遷移金属微粒子の平均粒径が大きすぎると、貴金属層を形成して得られる触媒金属微粒子の平均粒径もその分大きくなり、質量活性(単位質量当たりの触媒活性)が小さくなるため、適切な大きさまで溶解することが好ましい。
 溶解を目的とする場合は、本発明の実施形態に係る燃料電池用電極触媒の製造方法は、例えば、図3(図3A~3D)に示すように、担持工程(図3A)、加熱処理工程(図3B)、酸処理工程(図3C)、貴金属層形成工程(図3D)を含む。
Another purpose of the acid treatment step is to dissolve the transition metal fine particles 8 and control the particle size of the transition metal fine particles 8 to be nano-anchors. In the heat treatment step, fine transition metal fine particles are aggregated to form transition metal fine particles 8, and at this time, the particle diameter of the transition metal fine particles 8 increases. If the average particle size of the transition metal fine particles serving as nano-anchors is too large, the average particle size of the catalytic metal fine particles obtained by forming the noble metal layer also increases accordingly, and the mass activity (catalytic activity per unit mass) decreases. Therefore, it is preferable to dissolve to an appropriate size.
For the purpose of dissolution, the method for producing a fuel cell electrode catalyst according to the embodiment of the present invention includes, for example, a supporting step (FIG. 3A), a heat treatment step, as shown in FIG. 3 (FIGS. 3A to 3D). (FIG. 3B), an acid treatment process (FIG. 3C), and a noble metal layer formation process (FIG. 3D).
 酸処理工程の別の目的は、貴金属層の形成である。上述したように担持工程において用いる遷移金属材料に、貴金属を含む場合には、後述の酸処理工程によっても貴金属層が形成されうる。その為、メッキ等による処理を行わずに貴金属層の形成を行うことが出来るため好ましい場合がある。 Another purpose of the acid treatment process is the formation of a noble metal layer. As described above, when the transition metal material used in the supporting step includes a noble metal, the noble metal layer can be formed also by an acid treatment step described later. Therefore, it may be preferable because the noble metal layer can be formed without performing a treatment such as plating.
 酸処理の方法は、上記の酸処理の目的が果たせれば特に制限されないが、例えば、硫酸、硝酸、塩酸等による処理が挙げられる。その他の濃度、温度、及び時間等の条件についても特に制限はないが、少なくともナノアンカーとなる遷移金属微粒子8が残るような条件である必要がある。当該遷移金属微粒子8がナノピット3又はナノチャネル5内に触媒金属微粒子4を形成するコアとなり、ナノピット3又はナノチャネル5内に触媒金属微粒子4に留めるためのアンカーとなるからである。 The acid treatment method is not particularly limited as long as the purpose of the acid treatment can be achieved, and examples thereof include treatment with sulfuric acid, nitric acid, hydrochloric acid and the like. There are no particular restrictions on other conditions such as concentration, temperature, and time, but the conditions should be such that at least the transition metal fine particles 8 serving as nanoanchors remain. This is because the transition metal fine particles 8 serve as a core for forming the catalyst metal fine particles 4 in the nanopits 3 or nanochannels 5 and serve as anchors for retaining the catalyst metal fine particles 4 in the nanopits 3 or nanochannels 5.
 以下に示す方法で燃料電池用電極触媒を製造し、各種評価を行った。 A fuel cell electrode catalyst was produced by the following method and subjected to various evaluations.
1.製造例1(黒鉛基板へのカーボン親和性の強い遷移金属微粒子の担持と熱処理)
 黒鉛基底面上でのFe等遷移金属ナノ粒子の挙動を詳細に把握するには、基板状試料を用いて直接SEM、TEM、STEMで観察するのが適している。ここでは遷移金属微粒子により黒鉛基底面に形成されるナノピット、ナノチャネル、ナノアンカーの観察等に使用した基板試料の作製方法を説明する。
1. Production Example 1 (Supporting and heat treatment of transition metal fine particles having a strong carbon affinity on the graphite substrate)
In order to grasp in detail the behavior of transition metal nanoparticles such as Fe on the bottom surface of the graphite base, it is suitable to directly observe with a SEM, TEM, or STEM using a substrate sample. Here, a method for producing a substrate sample used for observing nanopits, nanochannels, nanoanchors formed on the graphite base surface by transition metal fine particles will be described.
(1)HOPG基板へのFe担持
 SEM観察用に、5mm角-2mm厚さの高配向性黒鉛基板(HOPG)を0.5mm厚さに劈開し、その劈開面に図4のアークプラズマ蒸着APD装置(アドバンス理工(株)製)を用いてFeを蒸着した。劈開したHOPG14を真空容器13に設置し、内部の圧力が3x10-4Pa以下になるのを待って、Feターゲットを装着したアークプラズマガン11から印加電圧70V、コンデンサ容量360μFの条件でFeを2~20回の範囲でパルス蒸着した。温度は室温、基板は無回転とした。装置から取り出した試料をFE-SEM(日立ハイテクノロジーズ(株)製、SU9000)で観察してもFe粒子は観察されないが、XPSではFe2p3/2のピークが結合エネルギー711と707eVに認められる。0.5nm以下の一部酸化したFeクラスターとしてHOPG基板面の黒鉛基底面上に分散しているものと推測される。
(1) Fe support on HOPG substrate For SEM observation, a 5 mm square -2 mm thick highly oriented graphite substrate (HOPG) is cleaved to 0.5 mm thickness, and the arc plasma deposition APD of FIG. Fe was vapor-deposited using an apparatus (manufactured by Advance Riko Co., Ltd.). The cleaved HOPG 14 is placed in the vacuum vessel 13 and waits for the internal pressure to become 3 × 10 −4 Pa or less. Then, the Fe plasma is charged with 2 Fe from the arc plasma gun 11 equipped with an Fe target under the conditions of an applied voltage of 70 V and a capacitor capacity of 360 μF. Pulse deposition was performed in the range of ~ 20 times. The temperature was room temperature and the substrate was not rotated. When the sample taken out from the apparatus is observed with FE-SEM (manufactured by Hitachi High-Technologies Corporation, SU9000), Fe particles are not observed, but in XPS, Fe2p3 / 2 peaks are observed at binding energies 711 and 707 eV. It is presumed that the partially oxidized Fe clusters of 0.5 nm or less are dispersed on the graphite base surface of the HOPG substrate surface.
(2)HOPG基板へのその他遷移金属の担持
 アークプラズマガン11のFeターゲットをNi、Co、オーステナイトステンレス鋼(SUS304)、ハステロイ鋼に変更し同様の手順で試料を作製した。またアークプラズマガン11とアークプラズマガン12を同時に使用し、Feに対してNi、Co、Cr、Mo、V、Ta、Wを添加した試料を作製した。1回当たりの蒸着量は材料毎に異なるため、それぞれの蒸着回数は観察目的、組成により適宜変更した。
(2) Supporting other transition metals on the HOPG substrate Samples were prepared by changing the Fe target of the arc plasma gun 11 to Ni, Co, austenitic stainless steel (SUS304), and hastelloy steel. Moreover, the arc plasma gun 11 and the arc plasma gun 12 were used at the same time to prepare a sample in which Ni, Co, Cr, Mo, V, Ta, and W were added to Fe. Since the amount of vapor deposition per time varies depending on the material, the number of vapor depositions was appropriately changed depending on the observation purpose and composition.
(3)グラフェンへのFe担持
 TEM及びSTEMによるFe/C界面、特にナノピット領域を観察するため、黒鉛薄膜であるグラフェンを担体に用いてFe粒子を形成した。使用したグラフェン試料は2種類である。一つは、厚さ6~8nm、幅が約25μmの市販のグラフェンナノプレートレット(東京化成工業(株)製)で、この粉末をエチルアルコールに加え超音波加振器で分散させた後、TEM用カーボン膜貼り付けMoメッシュに滴下・乾燥させた。もう一つは、グラフェンナノプレートレットより更に薄いグラフェン薄層(6~8枚)で、これが予めメッシュ付きTEMグリッドの孔開きシリコンナイトライド支持膜上に形成された試料(EMジャパン(株)製、GN-6-10)を購入し使用した。TEMグリッド直径はいずれも3mmΦである。
 Fe粒子の形成は(1)と同様、APD装置を用いた。上記2種類のグラフェン試料を固定した専用試料ホルダーを真空容器内に設置し、真空排気後70V、360μFの条件でFeを20回パルス蒸着した。
(3) Fe loading on graphene In order to observe the Fe / C interface by TEM and STEM, particularly the nanopit region, Fe particles were formed using graphene, which is a graphite thin film, as a carrier. There are two types of graphene samples used. One is a commercially available graphene nanoplatelet (manufactured by Tokyo Chemical Industry Co., Ltd.) having a thickness of 6 to 8 nm and a width of about 25 μm. After adding this powder to ethyl alcohol and dispersing with an ultrasonic vibrator, It was dripped and dried on the carbon mesh pasting TEM carbon film. The other is a graphene thin layer (6-8 sheets) that is thinner than graphene nanoplatelets, and this is a sample (manufactured by EM Japan Co., Ltd.) that is formed in advance on a perforated silicon nitride support film of a meshed TEM grid. GN-6-10) was purchased and used. The TEM grid diameter is 3 mmΦ.
The APD apparatus was used for the formation of Fe particles as in (1). A dedicated sample holder on which the above two types of graphene samples were fixed was placed in a vacuum vessel, and after vacuum evacuation, Fe was pulse-deposited 20 times under the conditions of 70 V and 360 μF.
(4)ナノピット形成のための熱処理
 Fe粒子へカーボンを拡散させナノピット領域を形成させるため、(1)~(3)のFe/HOPG試料を真空中あるいはAr気流中で熱処理を行った。熱処理には高周波誘導加熱炉(美和製作所(株)、MU-αIV-YUNFO2)を使用した。本装置は真空中またはAr気流中で試料を2000℃まで1分で昇温可能である。黒鉛坩堝にFe/HOPG試料を入れ、穴付蓋をした後、石英製真空容器内に設置した。真空容器内をターボ分子ポンプで排気し、圧力が5x10-2Pa以下になるのを待って昇温を開始した。600~1100℃に1~2分で昇温し所定時間保持後、排気を継続しながら自然放冷した。自然放冷時の冷却速度はおおよそ50~100℃/minであった。室温までの冷却を確認後、容器内にArを導入し試料を取り出した。
 Ar気流中で試料を加熱する場合は、真空排気で容器内の圧力が5x10-2Pa以下になった後、真空排気を止め、純度5NのArを1L/minで流通してから昇温を開始した。真空とAr雰囲気の相違は特にないが、カーボンと遷移金属の反応で液相が出る系や温度の場合は、飛散を防ぐため、不活性ガスであるArを用いた。
(4) Heat treatment for forming nanopits In order to diffuse carbon into Fe particles and form a nanopit region, the Fe / HOPG samples of (1) to (3) were heat-treated in a vacuum or in an Ar stream. A high frequency induction heating furnace (Miwa Seisakusho, MU-αIV-YUNFO2) was used for the heat treatment. This apparatus can raise the temperature of the sample to 2000 ° C. in one minute in a vacuum or Ar flow. The Fe / HOPG sample was put into a graphite crucible, and a lid with a hole was placed, and then placed in a quartz vacuum vessel. The inside of the vacuum vessel was evacuated with a turbo molecular pump, and the temperature was raised after the pressure became 5 × 10 −2 Pa or less. The temperature was raised to 600 to 1100 ° C. in 1 to 2 minutes, held for a predetermined time, and then allowed to cool naturally while continuing to exhaust. The cooling rate during natural cooling was approximately 50 to 100 ° C./min. After confirming cooling to room temperature, Ar was introduced into the container and a sample was taken out.
When heating the sample in an Ar stream, after the pressure in the container is reduced to 5 × 10 −2 Pa or less by evacuation, the evacuation is stopped and the temperature is raised after flowing Ar of purity 5N at 1 L / min. Started. Although there is no particular difference between the vacuum and the Ar atmosphere, in the case of a system or temperature in which a liquid phase is generated by the reaction between carbon and a transition metal, Ar, which is an inert gas, was used to prevent scattering.
(5)ナノチャネル形成のための熱処理
 熱処理時の雰囲気中にH、O、CO、HO(水蒸気)などのガス化剤が存在すれば、Fe中に固溶したカーボンはFe表面でこれらと反応し気相に放出される。この結果、Fe粒子は常にカーボンを固溶しながら黒鉛基底面上を移動し、移動した跡としてナノチャネルを残す。
 上記(1)の基板試料について、100%水素気流中での熱処理を行い、ナノチャネルを形成した。試料を乗せた石英ボートを外部から加熱部に挿入できる機構を持った、横型固定流通式石英反応管を使用した。上記(1)の基板試料を反応管冷却部にセットし、Nで反応管内をパージした後Hを500cc/minで流通する。電気炉が所定の熱処理温度に到達したら、試料ボートを一気に加熱部に挿入し、所定時間保持した後、急速に冷却部に引き戻す。ボート先端の熱電対で計測した昇温速度は約100℃/min、降温速度は50~100℃/minである。室温まで冷却後、HをNで十分パージして試料を取り出した。
 本実施例で水素ガスを使用したのは、ガス化速度が他のガスより小さいためナノチャネルが長くなり過ぎず、またFe粒子が酸化されないためであるが、適正な濃度に希釈して使用すれば、H、O、CO、HOおよびこれらの混合ガスも同様に使用することができる。
(5) Heat treatment for nanochannel formation If a gasifying agent such as H 2 , O 2 , CO 2 , H 2 O (water vapor) is present in the atmosphere during the heat treatment, the solid solution carbon in Fe is Fe It reacts with these at the surface and is released into the gas phase. As a result, the Fe particles always move on the bottom surface of the graphite while dissolving carbon, and leave nanochannels as traces of movement.
The substrate sample (1) was heat-treated in a 100% hydrogen stream to form nanochannels. A horizontal fixed flow type quartz reaction tube having a mechanism capable of inserting a quartz boat carrying a sample into the heating unit from the outside was used. The substrate sample of (1) above is set in the reaction tube cooling section, and after purging the reaction tube with N 2 , H 2 is circulated at 500 cc / min. When the electric furnace reaches a predetermined heat treatment temperature, the sample boat is inserted into the heating unit at a stretch, held for a predetermined time, and then quickly pulled back to the cooling unit. The rate of temperature rise measured by a thermocouple at the tip of the boat is about 100 ° C./min, and the rate of temperature drop is 50-100 ° C./min. After cooling to room temperature, H 2 was sufficiently purged with N 2 and a sample was taken out.
The reason why hydrogen gas was used in this example is that the gasification rate is smaller than that of other gases, so that the nanochannel is not too long, and the Fe particles are not oxidized. For example, H 2 , O 2 , CO 2 , H 2 O and a mixed gas thereof can be used as well.
2.製造例2(カーボン粉末へのカーボン親和性の強い遷移金属微粒子の担持と熱処理)
 製造例1では、基本的現象を理解するため、HOPGやグラフェン等のモデル黒鉛材料を使用し、遷移金属の担持にも操作が簡略で原料からのカーボン汚染が少ないAPD法を使用した。ここでは本電極触媒の製造が通常のカーボン粉末原料や一般的な金属担持方法を使用しても実施できることを示す。
2. Production Example 2 (Supporting and heat treatment of transition metal fine particles having a strong carbon affinity in carbon powder)
In Production Example 1, in order to understand the basic phenomenon, model graphite materials such as HOPG and graphene were used, and the APD method was also used for supporting transition metals with a simple operation and less carbon contamination from the raw materials. Here, it is shown that the production of the electrode catalyst can be carried out using a normal carbon powder raw material or a general metal loading method.
(1)含浸法によるGCB粉末へのFe担持(10wt%Fe/GCB粉末の調製)
 硝酸鉄(III)9水和物(関東化学)5.29gを脱水エタノール44.56gに加え室温で撹拌し完全に溶解させた。GCB粉末5.04gを脱水エタノール150.11gに加え撹拌し懸濁液を調製し、上記の硝酸鉄溶液のうち37.77gを加え室温で1時間撹拌した。得られた混合液をナス形フラスコに移しエバポレーターを用いて40℃で減圧蒸留することによりエタノールを留去し黒色の粉末を得た。この粉末を、電気炉を用いて空気中110℃、5時間乾燥後、空気中200℃で2時間焼成しFe酸化物/GCB粉末を得た。
(1) Fe support on GCB powder by impregnation method (Preparation of 10 wt% Fe / GCB powder)
5.29 g of iron (III) nitrate nonahydrate (Kanto Chemical) was added to 44.56 g of dehydrated ethanol and stirred at room temperature to completely dissolve it. A suspension was prepared by adding 5.04 g of GCB powder to 150.11 g of dehydrated ethanol, and 37.77 g of the above iron nitrate solution was added, followed by stirring at room temperature for 1 hour. The obtained mixed liquid was transferred to an eggplant-shaped flask and distilled under reduced pressure at 40 ° C. using an evaporator to remove ethanol and obtain a black powder. This powder was dried in air at 110 ° C. for 5 hours using an electric furnace and then calcined in air at 200 ° C. for 2 hours to obtain an Fe oxide / GCB powder.
(2)含浸法によるKB粉末へのFe担持(10wt%Fe/KB粉末の調製)
 硝酸鉄(III)9水和物(関東化学)12.19gを脱水エタノール100.37gに加え室温で撹拌し完全に溶解させた。KB粉末5.01gを脱水エタノール149.95gに加え撹拌し懸濁液を調製し、上記の硝酸鉄溶液のうち37.53gを加え室温で1時間撹拌した。得られた混合液をナス形フラスコに移しエバポレーターを用いて40℃で減圧蒸留することによりエタノールを留去し黒色の粉末を得た。この粉末を、電気炉を用いて空気中110℃、5時間乾燥後、空気中200℃で2時間焼成しFe酸化物/KB粉末を得た。
(2) Fe support on KB powder by impregnation method (preparation of 10 wt% Fe / KB powder)
12.19 g of iron (III) nitrate nonahydrate (Kanto Chemical) was added to 100.37 g of dehydrated ethanol and stirred at room temperature to completely dissolve it. A suspension was prepared by adding 5.01 g of KB powder to 149.95 g of dehydrated ethanol, and 37.53 g of the above iron nitrate solution was added and stirred at room temperature for 1 hour. The obtained mixed liquid was transferred to an eggplant-shaped flask and distilled under reduced pressure at 40 ° C. using an evaporator to remove ethanol and obtain a black powder. This powder was dried in air at 110 ° C. for 5 hours using an electric furnace and then calcined in air at 200 ° C. for 2 hours to obtain Fe oxide / KB powder.
(3)逆ミセル法によるGCB粉末へのFe担持(20wt%Fe/GCB粉末の調製)
 均一な粒径の形成に特徴がある逆ミセル法でもFe/GCBの作製を実施した。合成は、100 mLのガラス反応管を用い、N雰囲気中で撹拌しながら行った。鉄アセチルアセトネート、Fe(acac)3、(Ardrich)、1、2-ヘキサデカンジオール(260mg、東京化成)をジフェニルエーテル(12.5mL、関東化学)に溶解した。溶液を110Cで30min攪拌した後、オレイン酸(関東化学)およびオレイルアミン(ACROS)を添加し、30min攪拌した後、GCB粉末を加え、温度を220Cに昇温し30min攪拌した。還元剤として水素化トリエチルホウ素リチウム(LiBEtH・関東化学)を混合溶液に滴下し、その後270Cまで昇温、30min還流することで還元、担持した。室温まで放冷して濾過した。得られた触媒粉末は60Cで真空乾燥した。
(3) Fe loading on GCB powder by reverse micelle method (Preparation of 20 wt% Fe / GCB powder)
Fe / GCB was also produced by the reverse micelle method characterized by the formation of a uniform particle size. The synthesis was performed using a 100 mL glass reaction tube with stirring in an N 2 atmosphere. Iron acetylacetonate, Fe (acac) 3, (Ardrich), 1,2-hexadecanediol (260 mg, Tokyo Kasei) were dissolved in diphenyl ether (12.5 mL, Kanto Chemical). After the solution was stirred at 110 ° C. for 30 min, oleic acid (Kanto Chemical) and oleylamine (ACROS) were added and stirred for 30 min, GCB powder was added, and the temperature was raised to 220 ° C. and stirred for 30 min. Lithium triethylborohydride (LiBEt 3 H, Kanto Chemical) was added dropwise to the mixed solution as a reducing agent, and then the temperature was raised to 270 ° C. and refluxed for 30 minutes to reduce and carry. It was allowed to cool to room temperature and filtered. The obtained catalyst powder was vacuum-dried at 60 ° C.
(4)ナノピット形成のための熱処理
 得られたFe酸化物/GCB粉末あるいはFe酸化物/KB粉末2.00gを石英ボートに乗せ、固定床流通式横型石英反応管内の水冷部に設置した。窒素200cc/min流通下750℃に加熱した中央部に挿入し15分保持した後引き戻し、室温まで窒素中で放冷した。空気との接触による粉末試料の発熱、発火を防止するため、室温で0.25%O/Nを十分流通し不動態化処理を行った後に取り出した。
(4) Heat treatment for forming nanopits The obtained Fe oxide / GCB powder or 2.00 g of Fe oxide / KB powder was placed on a quartz boat and placed in a water-cooled section in a fixed bed flow type horizontal quartz reaction tube. It inserted in the center part heated at 750 degreeC under nitrogen 200cc / min circulation, hold | maintained for 15 minutes, pulled back, and stood to cool in nitrogen to room temperature. In order to prevent heat generation and ignition of the powder sample due to contact with air, a sufficient amount of 0.25% O 2 / N 2 was passed at room temperature and the sample was taken out after being passivated.
(5)ナノチャネル形成のための熱処理
 得られたFe酸化物/GCB粉末あるいはFe酸化物/KB粉末2.00gを石英ボートに乗せ、固定床流通式横型石英反応管内の水冷部に設置した。水素200cc/min流通下800℃に加熱した中央部に挿入し15分保持した後引き戻し、室温まで窒素中で放冷した。空気との接触による粉末試料の発熱、発火を防止するため、室温で0.25%O/Nを十分流通し不動態化処理を行った後に取り出した。
(5) Heat treatment for nanochannel formation The obtained Fe oxide / GCB powder or 2.00 g of Fe oxide / KB powder was placed on a quartz boat and placed in a water-cooled section in a fixed bed flow type horizontal quartz reaction tube. It was inserted into the central part heated to 800 ° C. under a flow of 200 cc / min of hydrogen, held for 15 minutes, pulled back, and allowed to cool to room temperature in nitrogen. In order to prevent heat generation and ignition of the powder sample due to contact with air, a sufficient amount of 0.25% O 2 / N 2 was passed at room temperature and the sample was taken out after being passivated.
3.製造例3(酸溶解)
 実施例1あるいは実施例2においてナノピット、ナノチャネルを形成した後の酸処理を以下の方法で行った。
3. Production Example 3 (acid dissolution)
The acid treatment after forming nanopits and nanochannels in Example 1 or Example 2 was performed by the following method.
(1)基板試料の酸溶解
 製造例1の(4)、(5)でナノピット、ナノチャネル形成熱処理を行った後のHOPG試料を、金属微粒子担持面が上に向くようにして三角フラスコの0.1M-HSO 80ml中に浸漬した。マグネチックスターラーでHSOを緩やかに攪拌しながら、オイルバスで95℃に加熱し3時間溶解処理を行った。酸溶解する試料の作製条件により溶解速度は一定ではないため、酸濃度と処理温度、時間は適宜変更した。なお三角フラスコには還流冷却器を付けてHSO濃度を一定に保った。試料面に付着した気泡はその都度除去した。終了後、HOPG試料を蒸留水で十分洗浄しデシケーター内で乾燥した。
(1) Acid dissolution of substrate sample The HOPG sample after the nanopit / nanochannel formation heat treatment in (4) and (5) of Production Example 1 was placed in the Erlenmeyer flask with the metal particle support surface facing upward. . Soaked in 80 ml of 1M-H 2 SO 4 . While gently stirring H 2 SO 4 with a magnetic stirrer, the mixture was heated to 95 ° C. with an oil bath and dissolved for 3 hours. Since the dissolution rate is not constant depending on the preparation conditions of the acid-dissolving sample, the acid concentration, treatment temperature, and time were appropriately changed. The Erlenmeyer flask was equipped with a reflux condenser to keep the H 2 SO 4 concentration constant. Bubbles adhering to the sample surface were removed each time. After completion, the HOPG sample was thoroughly washed with distilled water and dried in a desiccator.
(2)粉末試料の酸溶解
 製造例2の(4)、(5)でナノピット、ナノチャネル形成熱処理を施したFe/GCB、Fe/KB粉末試料も基板試料と同様に加熱HSOによる処理を実施した。還流冷却を設置した丸底フラスコに0.1M-HSO 100mlを入れ、マグネチックスターラーで攪拌しながらFe/GCB粉末あるいはFe/KB粉末1.00gを混合した。その後、オイルバスにより攪拌したまま95℃まで昇温し、Fe/GCBは3時間、Fe/KBは2時間の加熱還流を行った。丸底フラスコを氷水で十分冷却した後、処理済みの粉末試料を濾過回収した。粉末試料は、蒸留水での洗浄と濾過を繰り返した後、減圧乾燥した。
酸処理時間、温度、硫酸濃度は、処理する試料や目的により異なるため、予備試験により適正な条件を決めるのが望ましい。本実施例では、酸処理の途中、ピペットで少量のHSO懸濁液を抜きとり、洗浄した粉末の粒子溶解状況をSEMで観察して酸処理終点を判断した。
(2) Acid dissolution of powder sample Fe / GCB and Fe / KB powder samples subjected to heat treatment for forming nanopits and nanochannels in (4) and (5) of Production Example 2 were also heated by H 2 SO 4 in the same manner as the substrate samples. Processing was carried out. In a round bottom flask equipped with reflux cooling, 100 ml of 0.1M-H 2 SO 4 was put and mixed with 1.00 g of Fe / GCB powder or Fe / KB powder while stirring with a magnetic stirrer. Thereafter, the temperature was raised to 95 ° C. with stirring in an oil bath, and Fe / GCB was refluxed for 3 hours and Fe / KB was heated for 2 hours. After the round bottom flask was sufficiently cooled with ice water, the treated powder sample was collected by filtration. The powder sample was dried under reduced pressure after repeated washing with distilled water and filtration.
Since the acid treatment time, temperature, and sulfuric acid concentration vary depending on the sample to be treated and the purpose, it is desirable to determine appropriate conditions by preliminary tests. In this example, during the acid treatment, a small amount of H 2 SO 4 suspension was extracted with a pipette, and the particle dissolution state of the washed powder was observed with an SEM to determine the acid treatment end point.
4.製造例4(ナノアンカーへの選択的Pt化学メッキ)
 製造例3で形成したナノアンカーをコアにしてPtをアンカー上にのみ選択形成する一方法として、下記の化学メッキを実施した。
4). Production Example 4 (Selective Pt Chemical Plating on Nano Anchor)
As a method of selectively forming Pt only on the anchor using the nano-anchor formed in Production Example 3 as a core, the following chemical plating was performed.
(1)粉末試料でのPt選択化学メッキ
 粉末試料に対する選択的Pt化学メッキの方法は、特許WO2014/178283A1に記載される方法を適用した。テトラアンミン白金水酸塩水溶液(田中貴金属工業(株)製、Pt濃度20.97 g/L)を6.00ml(Pt 0.126g相当)と蒸留水20mlを製造例3(2)で酸処理済みのFe/GCB粉末あるいはFe/KB粉末それぞれ0.5gと共に図13Aに示したノズル付密封ガラス容器に投入した。投入したPtが全て触媒に析出した場合のPt担持量は20wt%である。室温20℃において、マグネチックスターラーでの攪拌とNガス200cc/minのバブリングを行いながらヒーターで懸濁液を2分間沸騰させた。その後20℃まで氷水で冷却した後、Nガスを止め、100%Hガス100cc/minによるバブリング3時間を行った。この3時間の過程でテトラアンミン白金水酸塩は水素により還元され、ナノアンカーを種結晶としたPt選択析出を生じる。処理が終了したら、粉末を濾過回収し温水洗浄を十分繰り返した後、減圧乾燥を1時間実施しPtメッキ済試料とした。
(1) Pt selective chemical plating on powder sample As a method of selective Pt chemical plating on a powder sample, the method described in Patent WO2014 / 178283A1 was applied. Tetraammine platinum hydroxide aqueous solution (Tanaka Kikinzoku Co., Ltd., Pt concentration 20.97 g / L) 6.00 ml (equivalent to Pt 0.126 g) and distilled water 20 ml were acid-treated in Production Example 3 (2) Each of Fe / GCB powder and Fe / KB powder of 0.5 g was put into a sealed glass container with a nozzle shown in FIG. 13A. The amount of Pt supported when all of the charged Pt is deposited on the catalyst is 20 wt%. At room temperature of 20 ° C., the suspension was boiled for 2 minutes with a heater while stirring with a magnetic stirrer and bubbling with N 2 gas at 200 cc / min. After cooling to 20 ° C. with ice water, the N 2 gas was stopped and bubbling was performed for 3 hours with 100% H 2 gas at 100 cc / min. In the course of 3 hours, tetraammineplatinum hydrate is reduced by hydrogen, and Pt selective precipitation using nanoanchors as seed crystals occurs. When the treatment was completed, the powder was collected by filtration and washed with warm water sufficiently, and then dried under reduced pressure for 1 hour to obtain a Pt-plated sample.
(2)基板試料でのPt選択化学メッキ
 基板試料の場合、基板上のナノアンカー数は粉末試料の1/1000程しかなく、(1)の方法では溶液濃度が極めて薄くなり水素ガスによる還元析出の選択性も低下する懸念がある。また塩化白金酸水溶液を使用した場合は、希釈度が高いため加水分解が起こり、Ptメッキ自体ができなかった。加水分解を防止するため、塩酸によりpHを酸性側に調製したところ、Feの溶解によるPtの析出が基板全域で生じ、Ptの選択メッキは実現できなかった。
そこで基板試料に対しては、図13Cに示す様に、基板表面にPt塩溶液の液滴を乗せ、この液滴表面に水素を流通させる方法を新たに考案して実施した。
テトラアンミン白金水酸塩水溶液(田中貴金属工業(株)製、Pt濃度20.97g/L)0.2mlをマイクロピペットで採取しメスフラスコで200 mlに希釈し、Pt 2.097x10-5g/mlの水溶液を作製した。製造例1(4)、(5)で作製した熱処理後のFe/HOPG試料、あるいは実施例3(1)で酸溶解済みのFe/HOPG試料に、この希釈したPt溶液20μlをマイクロピペットで滴下保持し、図13Bの様に容器内に設置した。ガスの流通により、基板上の液滴が蒸発しないようにビン下部には水25を置き、上部をガスで接触させるかあるいはバブリングさせて内部の湿度を維持する。試料と液滴を設置後、200cc/minのNを10分間流通したのち、100cc/minのHに切り替えて還元を開始し、3時間保持した後、再度Nに切り替えて還元を終了させた。終了後、基板は沸騰水中で十分洗浄し真空乾燥した。
(2) Pt selective chemical plating on a substrate sample In the case of a substrate sample, the number of nano-anchors on the substrate is only about 1/1000 that of a powder sample. In the method (1), the solution concentration becomes extremely thin and reduction deposition by hydrogen gas is performed. There is a concern that the selectivity of this will also decline. Further, when an aqueous chloroplatinic acid solution was used, hydrolysis occurred due to high dilution, and Pt plating itself could not be performed. In order to prevent hydrolysis, the pH was adjusted to the acidic side with hydrochloric acid. As a result, precipitation of Pt due to dissolution of Fe occurred in the entire substrate, and selective plating of Pt could not be realized.
Therefore, for the substrate sample, as shown in FIG. 13C, a method of placing a droplet of a Pt salt solution on the surface of the substrate and circulating hydrogen on the surface of the droplet was newly devised and implemented.
0.2 ml of tetraammine platinum hydroxide aqueous solution (Tanaka Kikinzoku Kogyo Co., Ltd., Pt concentration 20.97 g / L) was collected with a micropipette, diluted to 200 ml with a volumetric flask, and Pt 2.097 × 10 −5 g / ml. An aqueous solution of was prepared. 20 μl of the diluted Pt solution is dropped with a micropipette onto the heat-treated Fe / HOPG sample prepared in Production Example 1 (4) and (5) or the acid-dissolved Fe / HOPG sample in Example 3 (1). It hold | maintained and it installed in the container like FIG. 13B. Water 25 is placed in the lower part of the bottle so that the droplets on the substrate do not evaporate due to the gas flow, and the upper part is brought into contact with gas or bubbled to maintain the internal humidity. After placing the sample and droplets, 200 cc / min of N 2 was circulated for 10 minutes, then switching to 100 cc / min H 2 to start reduction, holding for 3 hours, and then switching to N 2 again to complete the reduction I let you. After completion, the substrate was sufficiently washed in boiling water and vacuum dried.
5.比較例
 ナノピット、ナノチャネル、ナノアンカーが無くHOPGあるいはKB粉末担体にPtが単独で担持された試料を製造例1での方法にならって作製ないしは市販品を入手し、本発明の触媒との比較に使用した。以下にその作製方法を示す。
5. Comparative Example A sample in which Pt is singly supported on a HOPG or KB powder carrier without nanopits, nanochannels and nanoanchors was prepared according to the method of Production Example 1 or a commercial product was obtained and compared with the catalyst of the present invention. Used for. The manufacturing method is shown below.
(1)Pt/HOPG基板試料(アークプラズマ蒸着法)
 劈開した直後の5mm角-0.5mm厚さのHOPGを製造例1(1)と同様にAPD装置に設置し、Ptターゲットを設置したアークプラズマガン12から印加電圧100V、コンデンサ容量1080μFの条件でPtを2回パルス蒸着した。圧力3x10-4Pa以下、温度は室温、基板は無回転とした。Ptの場合もこの状態ではPt粒子はSEMでは観察されない。Ptにはカーボンはほとんど固溶せず炭化物も形成しないため、加熱温度にかかわらずピットの形成はないと考えられる。Pt粒子径が観察可能な粒子径になるように10-5Paの超高真空中、赤外線イメージ炉により600℃で1時間の加熱を実施した。
(1) Pt / HOPG substrate sample (arc plasma deposition method)
A HOPG having a 5 mm square and a 0.5 mm thickness immediately after cleaving was installed in an APD apparatus in the same manner as in Production Example 1 (1), and applied with an applied voltage of 100 V and a capacitor capacity of 1080 μF from an arc plasma gun 12 on which a Pt target was installed. Pt was pulsed twice. The pressure was 3 × 10 −4 Pa or less, the temperature was room temperature, and the substrate was not rotated. Also in the case of Pt, Pt particles are not observed by SEM in this state. Since Pt hardly dissolves carbon and does not form carbides, it is considered that no pits are formed regardless of the heating temperature. Heating was performed at 600 ° C. for 1 hour in an ultra high vacuum of 10 −5 Pa so that the Pt particle size became an observable particle size in an infrared image furnace.
(2)Pt/KB粉末試料(市販品)
 製造例1(3)の手順と同様に、市販のPt/KB粉末(田中貴金属工業(株)製、TEC10E50E)をエチルアルコールに加え超音波加振器で分散させた後、TEM用カーボン膜貼り付けMoメッシュに滴下・乾燥させた。
(2) Pt / KB powder sample (commercially available)
Similar to the procedure of Production Example 1 (3), a commercially available Pt / KB powder (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., TEC10E50E) was added to ethyl alcohol and dispersed with an ultrasonic vibrator, and then a carbon film for TEM was attached. It was dripped and dried on the attached Mo mesh.
(3)Pt/KB粉末試料(アークプラズマ蒸着法)
 製造例1(3)の手順と同様に、比較例(2)と同じカーボン担体であるKB粉末をエチルアルコールに加え超音波加振器で分散させた後、TEM用カーボン膜貼り付けMoメッシュに滴下・乾燥させた。KBを固着させたTEMグリッドを専用試料ホルダーで真空容器に設置し、真空排気後100V、1080μF、室温でPtを5回パルス蒸着した。加熱は10-5Paの超高真空中、赤外線イメージ炉により600℃で1時間の加熱を実施した。
(3) Pt / KB powder sample (arc plasma deposition method)
In the same manner as in Production Example 1 (3), KB powder, which is the same carbon carrier as in Comparative Example (2), was added to ethyl alcohol and dispersed with an ultrasonic vibrator, and then applied to a Mo mesh with TEM carbon film. Dropped and dried. A TEM grid to which KB was fixed was placed in a vacuum vessel with a dedicated sample holder, and after vacuum evacuation, Pt was pulse-deposited 5 times at 100 V, 1080 μF and room temperature. Heating was performed at 600 ° C. for 1 hour in an ultrahigh vacuum of 10 −5 Pa using an infrared image furnace.
6.触媒の観察と分析
 本発明の具体的実施例を製造工程ごとに製造例1~4に示した。ここでは作製試料に形成された遷移金属微粒子とそれによって形成されたナノピット、ナノチャネル、ナノアンカーを電子顕微鏡で直接観察した結果を示す。
6). Catalyst Observation and Analysis Specific examples of the present invention are shown in Production Examples 1 to 4 for each production process. Here, the results of direct observation of the transition metal fine particles formed on the fabricated sample and the nanopits, nanochannels, and nanoanchors formed by the electron microscope are shown.
(1)真空加熱によるグラフェン上のFeナノピット
 製造例1(3)で作製したFe担持グラフェン薄層(APD、70V-360μF、20shot)に対し、製造例1(4)の真空排気中、600℃、1時間のナノピット形成加熱を加え、透過型電子顕微鏡(TEM、日立ハイテクノロジーズ製、H-9500)により観察した。その代表的な結果を図5Aに示す。Fe粒子は5~10nmの球状粒子(黒色)としてグラフェン基底面上に分散している。一部の黒色粒子の周囲にはほぼ円形の白色領域を確認する事ができる。これがFe粒子によりグラフェン基底面上に形成されたナノピットである。図5Bはナノピット構造の概略を示す端面図である。本試料ではFe粒子9がグラフェン直下に沈み込むだけではなく、回転あるいは振動して自身の粒径よりやや大きいナノピット3を形成している。この理由は、熱処理時の雰囲気が5x10-2Paと必ずしも十分清浄ではないため、雰囲気中に存在するごく微量の酸素がFe中に固溶したカーボンを一部ガス化しているものと思われる。事実、10-5Pa台の高真空下で熱処理を行った試料では、粒子の回りに明瞭な白色は観察されなくなった。その例を次に記す。
(1) Fe nanopits on graphene by vacuum heating The Fe-supported graphene thin layer (APD, 70V-360 μF, 20shot) prepared in Production Example 1 (3) was subjected to 600 ° C. in the vacuum exhaust of Production Example 1 (4). Heating for nanopit formation for 1 hour was applied, and observation was performed with a transmission electron microscope (TEM, manufactured by Hitachi High-Technologies Corporation, H-9500). A typical result is shown in FIG. 5A. The Fe particles are dispersed on the graphene base bottom as spherical particles (black) of 5 to 10 nm. A substantially circular white region can be confirmed around some black particles. This is a nanopit formed on the graphene base bottom surface by Fe particles. FIG. 5B is an end view schematically showing the nanopit structure. In this sample, the Fe particles 9 not only sink immediately below the graphene, but also rotate or vibrate to form nanopits 3 that are slightly larger than their own particle diameter. This is because the atmosphere during the heat treatment is not always as clean as 5 × 10 −2 Pa, and it seems that a very small amount of oxygen present in the atmosphere partially gasifies carbon in which Fe is dissolved. In fact, in the sample heat-treated under a high vacuum of the order of 10 −5 Pa, no clear white color was observed around the particles. An example is given below.
(2)超高真空加熱によるグラフェン上のFeナノピット
 製造例1(3)で作製したもう一つのFe担持グラフェンナノプレートレット(APD、70V-360μF、20shot)に対して、10-5Paの超高真空排気下、600℃、5時間のナノピット形成加熱を加えた。図6A、図6Bに走査透過型電子顕微鏡(STEM、日立ハイテクノロジーズ製、HD-2700)により観察した結果を示す。それぞれ約10nmのFe粒子とそのグラフェン界面を示している。図6AではFe粒子からグラフェン層に形成されたFe拡散層が認められる。また図6Bでは黒鉛基底面の数層を侵食し、Fe粒子が沈み込んでいるのが明瞭に確認できる。図6A、図6BのFe粒子の回折格子像からはこれらの粒子は単一結晶から構成されている。このFe粒子表面にはFeとは明らかに異なる層が形成されているのが確認できる。これは、加熱中Fe結晶格子に拡散したグラフェンのカーボンが、冷却に伴い析出したものである。
(2) Fe nanopits on graphene by ultra-high vacuum heating Compared to another Fe-supported graphene nanoplatelet (APD, 70V-360 μF, 20shot) produced in Production Example 1 (3), it exceeds 10 −5 Pa Under high vacuum evacuation, heating for nanopit formation at 600 ° C. for 5 hours was applied. FIG. 6A and FIG. 6B show the results of observation with a scanning transmission electron microscope (STEM, manufactured by Hitachi High-Technologies, HD-2700). Each shows an approximately 10 nm Fe particle and its graphene interface. In FIG. 6A, an Fe diffusion layer formed in the graphene layer from the Fe particles is observed. In FIG. 6B, it can be clearly seen that several layers on the bottom surface of the graphite are eroded and Fe particles are submerged. From the diffraction grating images of the Fe particles in FIGS. 6A and 6B, these particles are composed of a single crystal. It can be confirmed that a layer clearly different from Fe is formed on the Fe particle surface. This is a graphene carbon diffused in the Fe crystal lattice during heating, which is precipitated with cooling.
(3)真空加熱によるHOPG上のFeナノピット
 製造例1(1)で作製したFe担持HOPG試料(APD、70V-360μF、2shot)に対し、製造例1(4)の真空排気下、750℃、15分のナノピット形成加熱を加え、走査型電子顕微鏡(SEM、日立ハイテクノロジーズ製、SU-9000)で試料表面を観察した。HOPG基板表面は黒鉛基底面で構成されているが、前述のグラフェン試料と異なり多結晶体であるため、その表面には粒界やステップが存在する。代表的な表面の像を図7の(a)、図7の(b)に示す。図7の(b)では粒界が斜めに走っている。いずれも10~15nmのFe粒子がHOPG表面に均一に分散している。表面からは各Fe粒子がHOPG内に沈み込みピットを形成しているかは判断できないが、図7の(b)の一部の粒子の周囲には、図5Aで見られた粒子径よりやや大きいピットが同様に観察できる。このことから各Fe粒子についてもカーボンの固溶に伴う沈み込みが生じているものと考えられる。その詳細については、酸溶解試料で後述する。
(3) Fe nanopits on HOPG by vacuum heating The Fe-supported HOPG sample (APD, 70V-360 μF, 2shot) produced in Production Example 1 (1) was 750 ° C. under the vacuum exhaust of Production Example 1 (4). The sample was observed with a scanning electron microscope (SEM, manufactured by Hitachi High-Technologies Corporation, SU-9000) after heating for nano-pit formation for 15 minutes. The surface of the HOPG substrate is composed of a graphite basal plane, but unlike the graphene sample described above, it is a polycrystalline body, and therefore there are grain boundaries and steps on the surface. Representative surface images are shown in FIGS. 7A and 7B. In FIG. 7B, the grain boundaries run diagonally. In each case, Fe particles of 10 to 15 nm are uniformly dispersed on the HOPG surface. Although it cannot be determined from the surface whether each Fe particle sinks into the HOPG and forms pits, the particle diameter around a part of the particles in FIG. 7B is slightly larger than the particle diameter seen in FIG. 5A. A pit can be observed as well. From this, it is considered that each Fe particle is also submerged due to the solid solution of carbon. The details will be described later in the acid-dissolved sample.
(4)真空加熱によるHOPG上のその他遷移金属のナノピット
 製造例1(2)でHOPG上に担持した遷移金属の各試料に対して、製造例1(4)の真空下、750℃、15分のナノピット形成加熱を加えSEMでその表面を観察した。いずれも図7の(a)と同様の結果が得られた。そのうち、Niでは表面に形成された粒子の多くは、Feのような球状粒子ではなく、角張った形状であった。
(4) Nanopits of other transition metals on HOPG by vacuum heating Each sample of transition metal supported on HOPG in Production Example 1 (2) was 750 ° C., 15 minutes under the vacuum of Production Example 1 (4) The nanopit formation heating was added and the surface was observed with SEM. In either case, the same results as in FIG. 7A were obtained. Among them, in Ni, most of the particles formed on the surface were not spherical particles such as Fe, but had an angular shape.
(5)水素中加熱によるHOPG上のFeナノチャネル
 製造例1(1)で作製したFe担持HOPG試料(APD、70V-360μF、20shot)に対し、製造例1(5)の水素ガス流通下での熱処理を加え、SEMで観察した。水素ガス流通下での熱処理条件は、先ず500℃で1時間熱処理し、その後更に800℃で15分間の熱処理を加えた。SEMでの観察は、Fe粒子とHOPG界面の様子を把握するため、試料を40°傾斜させた。図8の(a)、(b)に結果を示す。図8の(a)にはナノチャネルが明瞭に認められ、チャネルの先頭にはそのチャネルを形成したFe粒子Aが確認できる。すべてのFe粒子がチャネルを形成しているわけではなく、真空中で加熱した場合と同様、一箇所に留まっている粒子も多数存在する。図8の(b)は図8の(a)の高倍率像である。Fe粒子AとFe粒子BはいずれもHOPGの黒鉛基底面にその底部を沈めているように見える。両者の違いは、粒子Aの後方にナノチャネルが存在することだけである。水素に限らずガス化ガス共存下で加熱した場合、比較的温度が低いときには黒鉛結晶のステップに接触しているFe粒子がナノチャネルを形成する。加熱温度が高くなるとステップの粒子だけでなく粒子Bの様な平滑基底面に存在する粒子もナノチャネルを形成する。図8の場合は、主にステップのFe粒子がナノチャネルを形成したものである。
(5) Fe nanochannel on HOPG by heating in hydrogen For Fe-supported HOPG sample (APD, 70V-360 μF, 20shot) produced in Production Example 1 (1), under the hydrogen gas flow of Production Example 1 (5) The heat treatment was applied and observed by SEM. The heat treatment conditions under hydrogen gas flow were as follows: first, heat treatment was performed at 500 ° C. for 1 hour, and then heat treatment was further performed at 800 ° C. for 15 minutes. In the SEM observation, the sample was tilted by 40 ° in order to grasp the state of the Fe particle and HOPG interface. The results are shown in FIGS. 8A and 8B. In FIG. 8A, nanochannels are clearly recognized, and Fe particles A forming the channels can be confirmed at the head of the channels. Not all Fe particles form channels, and there are many particles that remain in one place, as in the case of heating in vacuum. FIG. 8B is the high-magnification image of FIG. Both Fe particles A and Fe particles B appear to sink their bottoms on the graphite base surface of HOPG. The only difference between them is that there is a nanochannel behind the particle A. When heated in the presence of not only hydrogen but also a gasification gas, when the temperature is relatively low, Fe particles in contact with the graphite crystal step form nanochannels. When the heating temperature is increased, not only the step particles but also the particles existing on the bottom surface of the smooth base such as the particles B form nanochannels. In the case of FIG. 8, the Fe particles in the step mainly form nanochannels.
(6)水素中加熱したFe/GCB
 製造例2(1)で作製したFe担持GCB粉末触媒にナノチャネル形成のための熱処理(水素気流中、400℃、4時間)を実施し、TEMで観察した。結果を図9の(a)、図9の(b)に示す。撥水性の強い担体のため、含浸法で担持されたFe粒子は前述までの例よりやや大きく、図9の(a)は15nm、図9の(b)は40nmであった。平滑な黒鉛基板ではなく、Fe粒子もやや大きいため、明瞭なナノチャネル、ナノピットの形成は確認できなかった。しかし図9の(b)のFe粒子(上部)には、析出物の形成が確認できることから、GCB粉末からのカーボンの固溶は生じていることを伺わせ、粉末試料におけるナノピットの形成を示唆している。
(6) Fe / GCB heated in hydrogen
The Fe-supported GCB powder catalyst produced in Production Example 2 (1) was subjected to heat treatment for forming nanochannels (in a hydrogen stream at 400 ° C. for 4 hours) and observed with TEM. The results are shown in FIG. 9 (a) and FIG. 9 (b). Due to the strong water-repellent carrier, the Fe particles supported by the impregnation method are slightly larger than the above examples, and FIG. 9 (a) is 15 nm and FIG. 9 (b) is 40 nm. The formation of clear nanochannels and nanopits could not be confirmed because the particles were not smooth and the Fe particles were slightly larger. However, since the formation of precipitates can be confirmed in the Fe particles (upper part) of FIG. 9B, it is suggested that solid solution of carbon has occurred from the GCB powder, suggesting the formation of nanopits in the powder sample. doing.
(7)Feの完全溶解によるHOPGナノピットの確認
 Fe/HOPGに形成されたナノピットはSEMで直接確認する事はできない。そこで硫酸によりFe粒子本体とHOPG内に拡散したFeを全て溶解し、ナノピットが本当に形成されているかを確認した。Fe/HOPGは、これまでと同様、製造例1(2)のAPDでFe担持(100V、1080μF、2shot)後、製造例1(4)のアルゴン気流下、600℃1時間と950℃20分のナノピット形成加熱を加えたものである。図10の(a)は、硫酸処理前の試料表面のSEM像である。これを製造例3(1)の方法に準じて硫酸処理を実施した。Feを完全に溶解するため、硫酸濃度を0.5Mと高くし、更に1.5時間の煮沸還流を行った。処理後同一視野を観察したのが図10の(b)である。図10の(a)で認められた白色球状のFe粒子は、全て溶解除去され、各粒子が存在した場所には円形状の跡が明瞭に確認できる。これが各Fe粒子が黒鉛基底面のカーボンを固溶し形成したナノピットである。
(7) Confirmation of HOPG nanopits by complete dissolution of Fe Nanopits formed in Fe / HOPG cannot be directly confirmed by SEM. Therefore, all the Fe diffused in the Fe particle body and HOPG was dissolved by sulfuric acid, and it was confirmed whether nanopits were really formed. As before, Fe / HOPG was loaded with Fe (100 V, 1080 μF, 2 shots) on the APD of Production Example 1 (2), and then at 600 ° C. for 1 hour and 950 ° C. for 20 minutes in the argon stream of Production Example 1 (4). The nano pit formation heating was added. FIG. 10A is an SEM image of the sample surface before the sulfuric acid treatment. This was treated with sulfuric acid according to the method of Production Example 3 (1). In order to completely dissolve Fe, the sulfuric acid concentration was increased to 0.5 M, and the mixture was further refluxed for 1.5 hours. FIG. 10B shows the same field of view observed after processing. All the white spherical Fe particles observed in FIG. 10A are dissolved and removed, and a circular trace can be clearly confirmed at the place where each particle is present. This is a nanopit formed by each Fe particle formed by dissolving carbon on the bottom surface of the graphite.
(8)酸溶解後のHOPG上のFeナノアンカー
 酸処理によりFe粒子を完全に溶解せず、その一部をナノアンカーとして残存させた試料の表面をSEMで観察した。製造例1(2)で作製したFe担持HOPG(100V、1080μF、2shot)に、製造例1(4)のアルゴン気流下、600℃1時間と950℃10分の加熱を加えた。この試料に製造例3(1)の硫酸処理(0.5M HSO、85℃12時間還流)を実施した。酸処理後の試料表面を図11の(a)、図11の(b)に示す。大きなFe粒子は消失し、HOPG表面に残存したナノピットの凹部中心に白色部が確認できる。特に矢印を記したものは、中でも白色粒子が明瞭に確認できた部分である。
(8) Fe nanoanchor on HOPG after acid dissolution The surface of a sample in which Fe particles were not completely dissolved by the acid treatment and a part of the Fe nanoanchor remained as nanoanchors was observed by SEM. Heating at 600 ° C. for 1 hour and 950 ° C. for 10 minutes was added to the Fe-supported HOPG (100 V, 1080 μF, 2shot) produced in Production Example 1 (2) under the argon stream of Production Example 1 (4). This sample was subjected to the sulfuric acid treatment of Production Example 3 (1) (0.5 MH 2 SO 4 , refluxed at 85 ° C. for 12 hours). The sample surface after the acid treatment is shown in FIG. 11 (a) and FIG. 11 (b). Large Fe particles disappear, and a white portion can be confirmed at the center of the concave portion of the nanopit remaining on the HOPG surface. In particular, the ones with arrows are the portions where white particles can be clearly confirmed.
(9)FePt/HOPGの酸溶解によるナノアンカー
 本発明では次工程でナノピット内に形成されたナノアンカーにPtを選択的に析出させるのであるが、その一改良法として、次工程でPtを析出させる代わりに、予め所定量のPtをFeに混合し担持しておく例を説明する。
 実施例1(1)のAPD装置でFeを70V、360μF、20回蒸着する際、もう一つのプラズマガンでPtを70V、360μF、1回蒸着した。蒸着直後のFePt/HOPGをXPSで分析したところ、Pt濃度は14atm%であった。これに実施例1(4)のナノピット形成熱処理(アルゴン気流中、600℃1時間+850℃15分)を加えた後、直ちに実施例3(1)の酸溶解処理(0.1M HSO、95℃3時間)を行った。図12Aの(a)は酸処理前の試料表面、図12Aの(b)は酸処理後のその同一視野を観察したSEM像である。また図12Bの(c)、図12Bの(d)は図12Aの(a)、図12Aの(b)の高倍率像である。酸処理前の各Fe粒子は、酸処理によりその径が減少し、いずれもナノピットの中に大きく沈み込んでいるのが確認できる。図12Aの(a)のPt濃度は19atm%で、熱処理により粒子表面のPt濃度が析出時の14atm%より濃縮されたことを示している。更に図12Aの(b)の酸処理後のPt濃度は100atm%であった。これは酸処理により粒子表面からFeが溶出し、遂にはPtだけで表面が覆われていることを意味している。
 酸溶解ではナノアンカーとなるFeを完全に溶解してしまわないよう事前の検討と注意深い操作が必要であるが、遷移金属に事前に所定濃度のPtを混合しておくことで酸処理の操作が容易になるばかりで無く、次工程のPt選択析出が簡便もしくは不要にすることが可能になる。すなわち、上記酸処理工程が貴金属層形成工程を兼ねることが示唆されている。
(9) Nano-anchor by acid dissolution of FePt / HOPG In the present invention, Pt is selectively deposited on the nano-anchor formed in the nano-pit in the next step. As an improved method, Pt is deposited in the next step. Instead of this, an example in which a predetermined amount of Pt is mixed and supported in Fe will be described.
When the APD apparatus of Example 1 (1) was used to deposit Fe 70V, 360 μF, 20 times, Pt was vaporized 70 V, 360 μF, once using another plasma gun. When the FePt / HOPG immediately after deposition was analyzed by XPS, the Pt concentration was 14 atm%. The nanopit formation heat treatment of Example 1 (4) (in an argon stream, 600 ° C. for 1 hour + 850 ° C. for 15 minutes) was immediately added thereto, and then immediately after the acid dissolution treatment of Example 3 (1) (0.1 MH 2 SO 4 , 95 ° C. for 3 hours). 12A is a SEM image of the sample surface before the acid treatment, and FIG. 12A (b) is an SEM image of the same visual field after the acid treatment. Also, (c) in FIG. 12B and (d) in FIG. 12B are high-magnification images of (a) in FIG. 12A and (b) in FIG. 12A. It can be confirmed that the diameter of each Fe particle before the acid treatment is reduced by the acid treatment, and all of the Fe particles are greatly submerged in the nanopits. The Pt concentration in (a) of FIG. 12A is 19 atm%, indicating that the Pt concentration on the particle surface was concentrated from 14 atm% at the time of precipitation by heat treatment. Furthermore, the Pt concentration after the acid treatment in FIG. 12A (b) was 100 atm%. This means that Fe is eluted from the particle surface by the acid treatment, and the surface is finally covered only with Pt.
In acid dissolution, prior examination and careful operation are necessary so that Fe as a nano-anchor is not completely dissolved. However, the operation of acid treatment can be performed by mixing a transition metal with Pt of a predetermined concentration in advance. Not only becomes easy, but it becomes possible to make the Pt selective deposition in the next process simple or unnecessary. That is, it is suggested that the acid treatment step also serves as a noble metal layer forming step.
(10)ナノアンカーへのPtの選択化学メッキ
 図11に示したナノアンカーにPtを選択的に析出させるため製造例4を実施し、Ptがナノアンカー上に析出しその粒径が大きくなったことを確認した。図14と図15は、それとは別にナノアンカー中にPtが共存した場合の化学メッキに及ぼす影響を調査したものである。図15は、X線光電子分光装置(XPS)によるPt4fピークの変化をグラフ(a)、グラフ(b)、グラフ(c)により示しており、図14のRun A、Run B、Run CにおけるPt選択化学メッキ前後でのPtのXPS強度変化(「初期」及び「メッキ処理後」)をそれぞれ図15の(a)、図15の(b)、図15の(c)のグラフにおいて示している。いずれの場合もPtは粒子に選択的に析出し、基板上にはPtの析出は確認できない。しかしXPSで計測した粒子表面のPt濃度が82atm%、99atm%と高い方がメッキ後のXPSのPt強度の増加は大きい。Ptのメッキは異種金属を核にしても可能ではあるが、実用上短時間でメッキを行う上では予めPtを一部混合しておいた方が良いことがわかる。遷移金属表面にPtが適正濃度で存在した方が前述の酸溶解とその後のPt選択化学メッキ工程が容易になる事が示された。
(10) Selective chemical plating of Pt on nanoanchor Production Example 4 was carried out to selectively deposit Pt on the nanoanchor shown in FIG. 11, and Pt was deposited on the nanoanchor and its particle size increased. It was confirmed. FIG. 14 and FIG. 15 investigate the influence on chemical plating when Pt coexists in the nanoanchor separately. FIG. 15 is a graph (a), graph (b), and graph (c) showing changes in the Pt4f peak by the X-ray photoelectron spectrometer (XPS). Pt in Run A, Run B, and Run C in FIG. Changes in XPS intensity of Pt before and after selective chemical plating (“initial” and “after plating”) are shown in the graphs of FIG. 15A, FIG. 15B, and FIG. 15C, respectively. . In either case, Pt is selectively deposited on the particles, and no precipitation of Pt can be confirmed on the substrate. However, when the Pt concentration on the particle surface measured by XPS is as high as 82 atm% and 99 atm%, the increase in the Pt intensity of XPS after plating is large. Although Pt plating can be performed using a different metal as a core, it is understood that it is better to partially mix Pt in advance for practical plating in a short time. It was shown that the presence of Pt at an appropriate concentration on the transition metal surface facilitates the aforementioned acid dissolution and the subsequent Pt selective chemical plating process.
7.触媒の移動凝集試験
 本発明の効果を検証するため、比較例(1)、(2)、(3)の各試料と図12Aの(b)のナノアンカー付Pt/HOPG試料について、触媒の電位変動による移動凝集への耐性を比較評価した。
 ガラス製電気化学セルを用い、N飽和の0.1M HClO電解液中にAu線で固定した評価試料を吊るし、対極にPt板、基準極に可逆水素電極(RHE)を使用した。電解液温度65℃において、ポテンショスタット(北斗電工製、 HZ-5000)を用い、燃料電池実用化推進協議会(FCCJ)の負荷変動模擬試験法に準拠した電位ステップ(0.6、1.0Vの3秒ごとのステップサイクル)を1000~3000サイクル印加した。HOPG試料は水洗、乾燥した後、SEMによりサイクル印可前後でのPt粒子の移動凝集状況を直接観察した。
7). Catalyst migration aggregation test In order to verify the effect of the present invention, the potential of the catalyst for each sample of Comparative Examples (1), (2), and (3) and the Pt / HOPG sample with nano-anchor in FIG. The resistance to migration aggregation due to fluctuation was compared and evaluated.
Using a glass electrochemical cell, an evaluation sample fixed with an Au wire was suspended in an N 2 saturated 0.1 M HClO 4 electrolyte, a Pt plate was used as a counter electrode, and a reversible hydrogen electrode (RHE) was used as a reference electrode. At an electrolyte temperature of 65 ° C, using a potentiostat (HZ-5000, manufactured by Hokuto Denko), a potential step (0.6, 1.0V) conforming to the load variation simulation test method of the Fuel Cell Practical Use Promotion Council (FCCJ) (Step cycle every 3 seconds) was applied at 1000 to 3000 cycles. After the HOPG sample was washed with water and dried, the state of migration and aggregation of Pt particles before and after the cycle application was directly observed by SEM.
(1)ナノアンカーの無いAPD法Pt/HOPG
 図16中のSEM像(a),SEM像(b)は、比較例(1)のPt/HOPG試料に対して、室温で電位変動を1000回印加した場合のPt粒子変化を比較した、印加前後のSEM像である。サイクル印加前の図16の(a)ではPt粒子はほぼ球状を呈し、計測したPt粒径は2.4±0.6nmであった。これに対し、1000回印加後の図16の(b)では明らかに複数の粒子が結合したと思われる細長い粒子が確認でき、計測した平均粒径は2.8±0.8nmと大きくなっている。後述する(2)、(3)のKB粉末触媒では室温で電位ステップサイクルを加えても、Pt粒子成長は全く確認されなかったことと比較すると、平滑でPt粒子との相互作用も小さい黒鉛基底面では粒子が如何に移動し易いかをこの結果は示している。
(1) APD method Pt / HOPG without nanoanchors
The SEM image (a) and SEM image (b) in FIG. 16 are applied to the Pt / HOPG sample of Comparative Example (1), which compares the changes in Pt particles when the potential fluctuation is applied 1000 times at room temperature. It is a SEM image before and behind. In FIG. 16A before the cycle application, the Pt particles were almost spherical, and the measured Pt particle size was 2.4 ± 0.6 nm. On the other hand, in FIG. 16 (b) after 1000 times of application, it is possible to confirm elongated particles that are apparently combined with a plurality of particles, and the measured average particle size is as large as 2.8 ± 0.8 nm. Yes. With the KB powder catalysts described later in (2) and (3), even when a potential step cycle was applied at room temperature, the growth of Pt particles was smooth, and the graphite base had little interaction with Pt particles compared to the fact that no Pt particle growth was confirmed. The results show how easily the particles move on the surface.
(2)市販Pt/KB粉末
 図17中のSEM像(a),SEM像(b)は、比較例(2)のTEM用ホルダーに固定した市販Pt/KB触媒粉末(TEC10E50E)に対して、温度65℃で3000回の電位ステップサイクルを印加し、その前後でのPt粒子変化を比較した、印加前後のSEM像である。室温でのステップサイクル試験を実施したが、3000回の印加でも顕著な粒子変化が観測されなかったが、移動凝集が進行しやすいより高温の65℃で、同一視野での変化を比較した。ステップサイクル印加前の図17の(a)では、Pt粒子は3.2±1.3nmであったが、3000回印加した図17の(b)では5.9±1.8nmとなっており個々の粒子径が明らかに増大していることが分かる。KB担体の場合、粒子内部の細孔にも担持されているPtが存在するため、これがステップサイクルの印加により表面に移動し凝集したものと思われる。
(2) Commercial Pt / KB powder The SEM image (a) and SEM image (b) in FIG. 17 are compared with the commercial Pt / KB catalyst powder (TEC10E50E) fixed to the TEM holder of Comparative Example (2). It is the SEM image before and behind application which applied the potential step cycle 3000 times at the temperature of 65 degreeC, and compared the Pt particle | grain change before and after that. A step cycle test at room temperature was carried out, but no significant particle change was observed even after 3000 applications, but the changes in the same field of view were compared at a higher temperature of 65 ° C. where mobile aggregation is likely to proceed. In FIG. 17A before application of the step cycle, the Pt particles were 3.2 ± 1.3 nm, but in FIG. 17B applied 3000 times, it was 5.9 ± 1.8 nm. It can be seen that the individual particle sizes are clearly increased. In the case of a KB carrier, since Pt supported also in the pores inside the particles exists, it appears that this moved to the surface and aggregated by application of a step cycle.
(3)APD法Pt/KB粉末
 図18中のSEM像(a),SEM像(b)は、比較例(3)のPt/KB触媒粉末に対して、温度65℃で3000回の電位ステップサイクルを印加し、その前後でのPt粒子変化を比較した、印加前後のSEM像である。本試料の担体は(2)の市販触媒と同じKB粉末であるが、Ptを(1)と同じAPDで担持したものである。市販触媒はKBの細孔にもPt粒子が担持されていたが、本試料ではAPD法という性質上、細孔内にはPt粒子は担持されずKBの外表面にのみ存在する。本試料も温度65℃で電位ステップサイクル3000回を印加した。ステップサイクル印加前の図18の(a)ではPt粒子径は3.1±0.6nmであり、市販触媒とほぼ同じ粒径だが粒径分布は狭く均一に分布している。図18の(b)の3000回後は明らかに粒子が凝集し4.4±1.0nmまで増大している。しかし細孔内部にPt粒子が無い分、粒径増大は市販触媒より抑えられている。
(3) APD method Pt / KB powder The SEM image (a) and SEM image (b) in FIG. 18 are 3000 potential steps at a temperature of 65 ° C. with respect to the Pt / KB catalyst powder of Comparative Example (3). It is a SEM image before and after the application which applied the cycle and compared the Pt particle change before and after that. The carrier of this sample is the same KB powder as the commercially available catalyst in (2), but Pt is supported by the same APD as in (1). In the commercially available catalyst, Pt particles are supported on the pores of KB. However, due to the nature of the APD method in this sample, Pt particles are not supported in the pores and exist only on the outer surface of KB. This sample was also applied with 3000 potential step cycles at a temperature of 65 ° C. In FIG. 18A before application of the step cycle, the Pt particle size is 3.1 ± 0.6 nm, which is almost the same particle size as that of the commercially available catalyst, but the particle size distribution is narrow and uniformly distributed. After 3000 times of (b) in FIG. 18, the particles clearly aggregate and increase to 4.4 ± 1.0 nm. However, since there are no Pt particles inside the pores, the increase in particle size is suppressed compared to commercially available catalysts.
(4)ナノアンカー付APD法/HOPG
 Feナノアンカー付Pt/HOPGに対して、65℃、1000回の電位ステップサイクルを印可した。SEMにより印加前後の試料表面に何の変化も認められ無かった。
(4) APD method with nano anchors / HOPG
For Pt / HOPG with Fe nanoanchor, 1000 potential step cycles at 65 ° C. were applied. No change was observed on the sample surface before and after application by SEM.
 以上の結果より、遷移金属微粒子をナノアンカーとして有する触媒金属微粒子の場合には、カーボンに担持した触媒金属微粒子の移動・凝集が抑制されることがわかる。 From the above results, it can be seen that in the case of catalytic metal fine particles having transition metal fine particles as nanoanchors, the migration and aggregation of the catalytic metal fine particles supported on carbon is suppressed.
8.製造例5(Fe-Ni合金及びその組成による影響)
 Fe-Ni状態図から容易に分かる様に、FeにNiを添加するとオーステナイト相(fcc)領域が低温度まで大きく拡張する。その結果、多くの温度領域でFeNi合金への炭素固溶量は純Feの場合よりも大きい値を示す。このことから遷移金属としてFe-Ni合金を適用する事で、同一熱処理条件でもより大きなピットを形成でき、かつ酸処理や貴金属層形成工程で障害となる遷移金属粒子表面への緻密で厚い炭素層の析出を抑制できる事が期待される。
8). Production Example 5 (Effect of Fe—Ni alloy and its composition)
As can be easily seen from the Fe-Ni phase diagram, when Ni is added to Fe, the austenite phase (fcc) region is greatly expanded to a low temperature. As a result, the carbon solid solution amount in the FeNi alloy shows a larger value than in the case of pure Fe in many temperature ranges. Therefore, by applying Fe-Ni alloy as the transition metal, larger pits can be formed even under the same heat treatment conditions, and a dense and thick carbon layer on the surface of the transition metal particle that becomes an obstacle in the acid treatment and noble metal layer formation process It is expected that the precipitation of can be suppressed.
 ここでは、製造例1の(2)で2基のアークプラズマガンによりHOPG基板上にFeとNiをそれぞれ担持した試料に対し(4)のナノピット形成熱処理を施した場合を例に上記の効果を説明する。
(1)Fe-Niの担持と熱処理
 FeとNiのアークプラズマ蒸着条件は、3×10-4Pa以上の真空度において双方とも印加電圧70V、コンデンサ容量360μFとした。Fe+Ni担持量が一定になるように留意しながら、Fe、Niそれぞれのパルス蒸着回数を変更して組成の異なる試料を作製した。担持後XPSから求めたNi濃度Ni/(Fe+Ni)は、15、26、44atm%であった。またFe+Niの総担持量は、ナノピット形成熱処理後のSEM像の粒径分布結果から0.3~0.4μg/cmの範囲内にある事を確認した。
Here, the above effect is taken as an example in the case where the nanopit forming heat treatment (4) is performed on the sample carrying Fe and Ni on the HOPG substrate by the two arc plasma guns in (2) of Production Example 1 respectively. explain.
(1) Fe—Ni support and heat treatment The arc plasma deposition conditions for Fe and Ni were an applied voltage of 70 V and a capacitor capacity of 360 μF in a vacuum degree of 3 × 10 −4 Pa or more. Samples having different compositions were prepared by changing the number of pulse depositions of Fe and Ni while keeping the amount of Fe + Ni supported constant. The Ni concentration Ni / (Fe + Ni) determined from XPS after loading was 15, 26, and 44 atm%. The total supported amount of Fe + Ni was confirmed to be in the range of 0.3 to 0.4 μg / cm 2 from the particle size distribution result of the SEM image after the heat treatment for forming nanopits.
 試料のナノピット形成熱処理は、高周波誘導加熱炉によりAr気流中800、850、900℃の温度に30秒で昇温し5秒間保持した後自然放冷した。図19に熱処理後の各試料表面の代表的なSEM像をFe100%の場合と比較して示した。熱処理温度900℃ではNi濃度によらず粒子は球状を呈しているが、850℃、800℃の低温ではNiの添加により粒子形状がやや平板状になる傾向を示す。EDXによる各粒子のスポット分析から、組成変動はあるものの、いずれの粒子もFeNi合金であった。 The nano pit formation heat treatment of the sample was carried out in a high-frequency induction heating furnace at a temperature of 800, 850, and 900 ° C. in an Ar stream for 30 seconds, held for 5 seconds, and then naturally cooled. FIG. 19 shows a representative SEM image of the surface of each sample after heat treatment in comparison with the case of Fe 100%. At a heat treatment temperature of 900 ° C., the particles have a spherical shape regardless of the Ni concentration, but at low temperatures of 850 ° C. and 800 ° C., the particle shape tends to be slightly flat due to the addition of Ni. From the spot analysis of each particle by EDX, all the particles were FeNi alloy although there was a composition variation.
 熱処理温度900℃の各SEM像からFeNi合金粒子の平均粒径を求め、Ni濃度に対してプロットした結果を図20に示す。ここではNi100%の結果も併せて示した。Ni15atm%以外の試料では平均粒径は9~12nm、標準偏差も±4~5nmと比較的近い値を示していたが、Ni15atm%では平均粒径は2倍近い19nm、標準偏差も±6nmと特異的に大きな値を示した。図20に破線で示した曲線は、900℃で各FeNi組成のオーステナイト相に固溶可能な炭素量を示したもので、炭素量は900℃のFe-Ni-C三元系状態図から求めた。Ni濃度に対する両者の傾向は良く一致しており、炭素原子が遷移金属格子内に拡散固溶する動的過程では、金属粒子は炭素表面上を移動し易くなり粒子間の衝突頻度が増すことで粒径が増大するのかもしれない。 The average particle diameter of FeNi alloy particles was determined from each SEM image at a heat treatment temperature of 900 ° C., and the results plotted against the Ni concentration are shown in FIG. Here, the result of Ni 100% is also shown. In samples other than Ni15 atm%, the average particle size was 9-12 nm and the standard deviation was relatively close to ± 4-5 nm. However, in Ni15 atm%, the average particle size was nearly doubled to 19 nm and the standard deviation was ± 6 nm. It showed a large value specifically. The curve indicated by the broken line in FIG. 20 indicates the amount of carbon that can be dissolved in the austenite phase of each FeNi composition at 900 ° C. The carbon amount is obtained from the Fe—Ni—C ternary phase diagram at 900 ° C. It was. Both tendencies for the Ni concentration are in good agreement, and in the dynamic process in which carbon atoms diffuse and dissolve in the transition metal lattice, the metal particles easily move on the carbon surface and the collision frequency between the particles increases. The particle size may increase.
 先に述べたように遷移金属粒子の平均径は0.5~10nm、特に望ましくは0.5~5nmであり、19nmまで大きくなると酸処理による粒径縮小の工程が増大するだけで無く、貴金属層形成後の触媒金属微粒子の個数密度が低下し触媒単位重量当たりの性能低下を招く。このような特定のNi濃度領域で生じる著しい粒成長は、熱処理温度を低下することで容易に回避できる。図21にNi濃度15atm%の試料を900℃から850℃、800℃にそれぞれ下げて、同様に5秒間加熱した後のFeNi合金粒子の平均粒径の変化を示す。900℃の19±6nmに対して、850℃では11±6nm、800℃では12±4nmと平均粒径と標準偏差はともに低減できる事が確認された。本組成での両温度における炭素固溶量は、Fe-Ni-C三元系状態図がこれまでに報告されていないため不明であるが、他組成の傾向から炭素固溶量は温度低下に伴い漸減しているものと予想される。それでも図22に示す様に850℃で60分間加熱した場合、Fe100atm%の粒子径は5秒加熱に比べ大きく増加していないが、Ni15atm%では粒子成長が進みその平均粒径はFe100atm%よりむしろ増大している。FeNi合金系での加熱条件は、炭素固溶量を考慮し、低温でかつ適正な加熱時間を選択することが必要である。 As described above, the average diameter of the transition metal particles is 0.5 to 10 nm, particularly preferably 0.5 to 5 nm. When the transition metal particles are increased to 19 nm, not only the step of reducing the particle size by acid treatment increases, but also noble metals. The number density of the catalyst metal fine particles after the layer formation is lowered, and the performance per unit weight of the catalyst is lowered. Such remarkable grain growth occurring in a specific Ni concentration region can be easily avoided by lowering the heat treatment temperature. FIG. 21 shows the change in the average particle diameter of the FeNi alloy particles after a sample having a Ni concentration of 15 atm% is lowered from 900 ° C. to 850 ° C. and 800 ° C. and heated in the same manner for 5 seconds. It was confirmed that both the average particle diameter and the standard deviation can be reduced to 19 ± 6 nm at 900 ° C., 11 ± 6 nm at 850 ° C., and 12 ± 4 nm at 800 ° C. The amount of carbon solid solution at both temperatures in this composition is unknown because no Fe-Ni-C ternary phase diagram has been reported so far. Along with this, it is expected to gradually decrease. Nevertheless, as shown in FIG. 22, when heated at 850 ° C. for 60 minutes, the particle size of Fe 100 atm% did not increase significantly compared to heating for 5 seconds, but with Ni 15 atm%, particle growth progressed and the average particle size was rather than Fe 100 atm%. It is increasing. As for the heating conditions in the FeNi alloy system, it is necessary to select a proper heating time at a low temperature in consideration of the amount of carbon solid solution.
(2)Fe-Niの酸処理による溶解性
 図19の900℃熱処理試料に対し硫酸による酸処理を行い、組成によるFeNi合金粒子の溶解性の違いを比較した。酸処理は前述の実施例より穏やかな条件を選択し、試料間の相違が明確に比較できるようにした。加熱後の各試料を0.05M-HSOに浸漬し室温で30分間攪拌した。その後、試料を沸騰水中で十分洗浄した後、水素気流中300℃で30分間加熱し表面の付着・吸着物を除去した。SEMにより酸処理前と同一視野を探し出し、FeNi合金粒子の形状変化やピット形成の有無を観察した。
(2) Solubility of Fe—Ni by acid treatment The 900 ° C. heat-treated sample of FIG. 19 was acid-treated with sulfuric acid, and the difference in solubility of FeNi alloy particles depending on the composition was compared. The acid treatment was selected under milder conditions than in the previous examples so that differences between samples could be clearly compared. Each sample after heating was immersed in 0.05M-H 2 SO 4 and stirred at room temperature for 30 minutes. Then, after thoroughly washing the sample in boiling water, it was heated in a hydrogen stream at 300 ° C. for 30 minutes to remove the adhering / adsorbed material on the surface. The same field of view as before the acid treatment was searched by SEM, and the shape change of FeNi alloy particles and the presence or absence of pit formation were observed.
 図23に各試料の酸処理前後の同一視野のSEM像を示す。Ni濃度15atm%の試料を除き、酸処理前にHOPG上に存在したFeあるいはFeNi合金粒子のほとんどは溶解している。また粒子が存在した位置にはピット及び/あるいは溶解せずに残った微小粒子が確認できる。特にNi濃度26atm%では試料中最も明瞭にピットが確認できた。これは図20の炭素固溶量の曲線から予想されるようにNi濃度15atm%試料に次いで炭素固溶量が大きいためと思われる。一方、試料中最も炭素固溶量が多いNi濃度15atm%試料では、酸処理後もFeNi粒子の多くがほぼそのままのサイズで残っている。Niの添加により炭素固溶量が大きく増大したものの、冷却時に析出した炭素層も厚い(あるいは緻密な)ため、酸溶解が抑制されたためと予想される。
 ピット形成と酸溶解の両方を満足するためには適正な炭素固溶量が存在することを意味しており、その値は図20から1.2~4.5atm%である。
FIG. 23 shows SEM images of the same visual field before and after acid treatment of each sample. Except for the sample having a Ni concentration of 15 atm%, most of the Fe or FeNi alloy particles present on the HOPG before the acid treatment are dissolved. Further, pits and / or fine particles remaining without being dissolved can be confirmed at the positions where the particles existed. In particular, when the Ni concentration was 26 atm%, pits could be confirmed most clearly in the sample. This is presumably because the amount of carbon solid solution is the second largest after the Ni concentration 15 atm% sample, as expected from the carbon solid solution amount curve in FIG. On the other hand, in the sample having a Ni concentration of 15 atm% with the largest amount of carbon solid solution in the sample, most of the FeNi particles remain in an almost intact size even after the acid treatment. Although the amount of carbon solid solution was greatly increased by the addition of Ni, it is expected that acid dissolution was suppressed because the carbon layer deposited during cooling was thick (or dense).
In order to satisfy both pit formation and acid dissolution, it means that there is an appropriate amount of carbon solid solution, and the value is 1.2 to 4.5 atm% from FIG.
 図24中のSEM像(a),SEM像(b)は、同じNi濃度15atm%の試料を850℃で熱処理した場合の溶解性を調べたものである。同一視野を見つけ出せず別視野同士での比較であるが、酸処理前は平板状であったFeNi粒子は、酸処理後にはいずれも角が丸くなり半球状を呈している。900℃熱処理試料と同様、FeNi合金粒子の完全な溶解は生じていないが低温化による炭素固溶量低下の効果が出ている。また酸処理後の試料のNi濃度をXPSで分析したところ、酸処理前の15atm%から38atm%に増加していた。Feの溶解速度が大きく粒子表面でNiの濃縮が生じている事が分かる。FeよりNiの方がPtとの格子ミスフィットが小さいため、酸処理後の選択的Pt化学メッキ工程が容易になる。Ni上への緻密なPt層の形成によりFe単独の場合より、実運転時の遷移金属イオンの溶出を抑制できることは電池性能の安定性確保のため重要である。 24. SEM images (a) and SEM images (b) in FIG. 24 are obtained by examining the solubility when a sample having the same Ni concentration of 15 atm% is heat-treated at 850 ° C. Although the same field of view was not found and comparison was made between different fields of view, the FeNi particles that were flat before acid treatment have rounded corners and a hemisphere after acid treatment. Similar to the 900 ° C. heat-treated sample, the FeNi alloy particles are not completely dissolved, but the effect of lowering the amount of carbon solid solution by lowering the temperature is obtained. Moreover, when the Ni concentration of the sample after acid treatment was analyzed by XPS, it increased from 15 atm% before acid treatment to 38 atm%. It can be seen that the dissolution rate of Fe is large and Ni concentration occurs on the particle surface. Since Ni has a smaller lattice misfit with Pt than Fe, the selective Pt chemical plating step after acid treatment becomes easier. It is important for ensuring the stability of battery performance that the formation of a dense Pt layer on Ni can suppress the elution of transition metal ions during actual operation as compared with the case of Fe alone.
 (3)Fe-Niの初期混合状態
 FeNiの実施例での熱処理は、いずれも所定温度に30秒で昇温し5秒間保持する短時間熱処理を採用した。これはNi添加による炭素固溶量上昇が粒子の表面移動を促し、長時間の熱処理が結果的にFeNi合金粒子径の過剰な増大を招くと考えられたためである。ここではアークプラズマ蒸着によるFeとNiの担持パターンによる熱処理後のFeNi合金粒子径への影響を検討した。
 図25は、アークプラズマ蒸着法による遷移金属担持パターンの概略を示したものである。(a)はFeのみを単独担持する場合に使用したパターンである。Feターゲットを設置したアークプラズマガンに印加電圧70V、コンデンサ容量360μFを1分間隔で10回印加し、10ショットのパルス蒸着を行う。アークプラズマガン先端部を冷やし安定したプラズマ発光を得るため10ショット毎に10~15分間のインターバルを設けた。目的とするFe担持量に合うようにこの操作を繰り返した。(b)(c)はFeNi二成分系の担持に使用したパターンである。(b)交互担持は、アークプラズマガン11で10ショットのFe蒸着を行った後、別のアークプラズマガン12からNi蒸着を行うもので、FeとNiのパルス蒸着を同期させず交互に繰り返すものである。前述のアークプラズマ蒸着によるFeNi担持は、全てこの(b)交互担持のパターンで行った。
(3) Fe—Ni initial mixed state The heat treatment in each of the FeNi examples employs a short-time heat treatment in which the temperature is raised to a predetermined temperature in 30 seconds and held for 5 seconds. This is because the increase in the amount of carbon solid solution due to the addition of Ni promotes the surface movement of the particles, and it is thought that the long-time heat treatment results in an excessive increase in the FeNi alloy particle diameter. Here, the influence on the FeNi alloy particle diameter after the heat treatment by the support pattern of Fe and Ni by arc plasma deposition was examined.
FIG. 25 shows an outline of a transition metal support pattern by an arc plasma deposition method. (A) is the pattern used when carrying only Fe alone. An applied voltage of 70 V and a capacitor capacity of 360 μF are applied 10 times at 1 minute intervals to an arc plasma gun provided with an Fe target, and 10 shots of pulse deposition are performed. An interval of 10 to 15 minutes was provided for every 10 shots in order to cool the tip of the arc plasma gun and obtain stable plasma emission. This operation was repeated so as to meet the target Fe loading. (B) and (c) are patterns used for supporting the FeNi binary system. (B) Alternating support is a method in which, after 10 shots of Fe deposition are performed by the arc plasma gun 11, Ni deposition is performed from another arc plasma gun 12, and pulse deposition of Fe and Ni is alternately repeated without synchronization. It is. All of the above-described FeNi support by arc plasma deposition was performed in this (b) alternating support pattern.
 これに対して(c)同期担持は、アークプラズマガン11と12からのFeとNiのパルス蒸着を同期させて行うものである。図26はこの担持パターンを使用して作製したNi濃度47atm%の試料を、Ar気流中900℃5秒間加熱した後のSEM像である。この場合、Feのショット数が30に対してNiが20ショットであったため、先にFeを単独で10ショット蒸着した後、FeとNiの同期担持を20ショット行った。この試料で特徴的な点は、加熱段階で既に多くのFeNi合金粒子がHOPG基板上に深いピットを穿ち埋没しているのが確認できることである。平均粒子径も9±4nmと小さく凝集が抑制されている。このように10nm以下の平均粒子径を維持しかつ酸処理なしでも存在が確認できるほどの深いピットが形成された理由は現状必ずしも明らかでは無いが、図25の(c)の同期担持により形成されたFeとNiのクラスター(FeNi合金粒子前駆体)の構造が図25の(b)の交互担持より深いピットを素早く形成するのに適しているためと考えられる。つまり図25の(c)により形成されたFe、Ni原子の初期混合状態が状態図におけるFe-Ni系オーステナイト構造に素早く移行するのに適しているため、熱処理の昇温過程で既に接触する直下の炭素を結晶内に固溶し、粒子が移動し始める前にピットを形成しているのかも知れない。 (C) On the other hand, synchronous loading is performed by synchronizing pulse deposition of Fe and Ni from the arc plasma guns 11 and 12 in synchronization. FIG. 26 is an SEM image after a sample having a Ni concentration of 47 atm% produced using this supporting pattern was heated in an Ar air flow at 900 ° C. for 5 seconds. In this case, since the number of shots of Fe was 30 and Ni was 20 shots, 10 shots of Fe were vapor-deposited first, and then 20 shots of Fe and Ni were synchronously carried. A characteristic point of this sample is that it can be confirmed that many FeNi alloy particles have already been buried in deep pits on the HOPG substrate in the heating stage. The average particle size is also as small as 9 ± 4 nm and aggregation is suppressed. The reason why such deep pits that can maintain the average particle diameter of 10 nm or less and that can be confirmed without acid treatment is not clear at present, but is formed by the synchronous loading of FIG. This is probably because the structure of Fe and Ni clusters (FeNi alloy particle precursors) is suitable for quickly forming deeper pits than the alternate loading shown in FIG. That is, since the initial mixed state of Fe and Ni atoms formed by (c) in FIG. 25 is suitable for quickly shifting to the Fe—Ni austenite structure in the phase diagram, it is immediately under the contact with the temperature rising process of the heat treatment. The carbon may be dissolved in the crystal and pits may be formed before the particles begin to move.
9.製造例6(Fe-Ni-Pt合金粒子を用いた低温熱処理)
 本発明ではナノピット内に遷移金属からなるナノアンカーを形成した後、そのナノアンカー上に選択的にPtを析出させる工程を行うことで電極触媒が作製される。ここで遷移金属の担持時にPtを所定量混合担持しておくことで、選択的Pt析出工程を簡略化するかあるいは全く無くすることができる事は既に遷移金属がFeの場合で示した。本実施例では遷移金属がFe-Ni系の場合について、Fe、Niの担持時にPtも合わせて担持した例を示す。
9. Production Example 6 (Low-temperature heat treatment using Fe—Ni—Pt alloy particles)
In this invention, after forming the nano anchor which consists of transition metals in a nanopit, an electrode catalyst is produced by performing the process of depositing Pt selectively on the nano anchor. Here, it has already been shown in the case where the transition metal is Fe that the selective Pt deposition process can be simplified or eliminated at all by supporting a predetermined amount of Pt when the transition metal is supported. In the present embodiment, an example in which Pt is supported together with Fe and Ni when the transition metal is Fe—Ni-based is shown.
 アークプラズマ蒸着は、三基のアークプラズマガンにそれぞれFe、Ni、Ptターゲットを設置し、HOPG基板に対していずれも印加電圧70V、コンデンサ容量360μFによる交互担持を実施した。XPSにより分析したFe:Ni:Pt組成は62:28:10atm%であった。 In the arc plasma deposition, Fe, Ni, and Pt targets were installed on three arc plasma guns, respectively, and alternately supported on the HOPG substrate with an applied voltage of 70 V and a capacitor capacity of 360 μF. The Fe: Ni: Pt composition analyzed by XPS was 62:28:10 atm%.
 図27の(a)は、高周波誘導加熱炉によりAr気流中700℃まで30秒で昇温し10秒間保持した後の試料表面の代表的なSEM像である。図27の(b)は(a)に0.005M-HSOによる室温10分間の酸処理を施し、沸騰水洗浄と水素気流中300℃30分間の加熱処理をした後のSEM像である。両者は同一視野を観察したもので酸処理前後の変化が明瞭に分かる。 (A) of FIG. 27 is a typical SEM image of the sample surface after being heated up to 700 ° C. in an Ar air flow for 30 seconds and held for 10 seconds by a high-frequency induction heating furnace. (B) in FIG. 27 is an SEM image after (a) is subjected to acid treatment with 0.005M-H 2 SO 4 for 10 minutes at room temperature, washed with boiling water and heated at 300 ° C. for 30 minutes in a hydrogen stream. is there. Both observed the same visual field, and the change before and after acid treatment can be clearly seen.
 まず図27の(a)の700℃10秒の熱処理でFeNiPt粒子は平板状を呈しているが、酸処理後これらの粒子の全が溶解によりその径を大きく縮小している。それぞれの平板粒子が存在した同一箇所に一個ないしは複数個に分かれた白色粒子が確認できる。XPS分析の結果、強度は小さいもののPt4f5/2とPt4f7/2のピークが明瞭に認められる。またFeとNiのピークはノイズレベルであった。
 次に図27の(a)で粒子が存在した部分には明瞭にピットが形成されていることを確認できる。図27の(b)の矢印を示した箇所は特に顕著で、数nmの小さい白色粒子がピット内部に落ち込んでいるのが確認できる。その他の箇所でも平板状粒子の形状に即した浅いピットが穿たれ、径を大きく縮小した白色粒子がそれぞれ存在する。Fe-Ni-Ptの三元系において、700℃というFeだけでは形成できなかった低い熱処理温度においてもピットが形成され、そのピット内に選択的にPt粒子が形成される事が確認できた。
First, the FeNiPt particles are in the form of a flat plate by heat treatment at 700 ° C. for 10 seconds in FIG. 27A, but after acid treatment, all of these particles are greatly reduced in size due to dissolution. One or a plurality of white grains can be confirmed at the same location where each tabular grain is present. As a result of XPS analysis, although the intensity is small, peaks of Pt4f5 / 2 and Pt4f7 / 2 are clearly recognized. The peaks of Fe and Ni were noise levels.
Next, in FIG. 27A, it can be confirmed that pits are clearly formed in the portion where the particles exist. The portion indicated by the arrow in FIG. 27B is particularly remarkable, and it can be confirmed that small white particles of several nm have fallen into the pit. In other places, shallow pits corresponding to the shape of the tabular grains are drilled, and white grains having a greatly reduced diameter exist. In the Fe—Ni—Pt ternary system, it was confirmed that pits were formed even at a low heat treatment temperature that could not be formed only by Fe at 700 ° C., and that Pt particles were selectively formed in the pits.
 もう一つの特徴として、0.005M-HSOで室温10分というこれまでになり緩やかな酸処理条件でもFeとNiがほぼ完全に溶解している点が挙げられる。PtもNiと同様、Feのオーステナイト相拡張効果のある元素として知られている。Fe-Pt状態図ではオーステナイト相はPtの添加により室温付近まで安定化することが分かる。現状Fe-Ni-Pt三元系及びFe-Ni-Pt-C四元系の状態図に関する報告例は少なく、オーステナイト相の安定領域やその炭素固溶量は不明であるが、本実施例の結果から、Fe-Ni-Pt系が本発明の遷移金属を適用した安定な電極触媒とその製造方法にとって極めて適合した材料系である事が確認できた。
Another feature is that Fe and Ni are almost completely dissolved even under mild acid treatment conditions at 0.005M-H 2 SO 4 at room temperature of 10 minutes. Like Ni, Pt is also known as an element having an effect of extending the austenite phase of Fe. It can be seen from the Fe—Pt phase diagram that the austenite phase is stabilized to near room temperature by the addition of Pt. There are few reports on the phase diagrams of the current Fe-Ni-Pt ternary system and Fe-Ni-Pt-C quaternary system, and the stable region of the austenite phase and the amount of carbon solid solution are unknown. From the results, it has been confirmed that the Fe—Ni—Pt system is a material system that is extremely suitable for the stable electrode catalyst to which the transition metal of the present invention is applied and the production method thereof.
1:カーボン担体、2:触媒粒子、3:ナノピット、4:触媒金属微粒子、5:ナノチャネル、7:貴金属層、8:遷移金属微粒子、9:Fe粒子、11:アークプラズマガン1(遷移金属蒸着用)、12:アークプラズマガン2(貴金属用)、13:真空容器、14:担体試料、15:試料搬入容器、16:真空排気系、17:密封栓付ガラスビン、18:ガス導入ノズル、、19:ガス排出管、20:窒素/水素、21:Pt原料塩溶液、、22:回転子とマグネチックスターラー、23:試料ホルダー、、24:基板試料とPt原料塩水溶液、25:水、26:黒鉛基板、、27:Feナノアンカー、28:Pt原料塩水溶液の液滴、29:グラフェン、100:電極触媒 1: carbon support, 2: catalyst particles, 3: nanopits, 4: catalyst metal fine particles, 5: nanochannel, 7: noble metal layer, 8: transition metal fine particles, 9: Fe particles, 11: arc plasma gun 1 (transition metal) 12: Arc plasma gun 2 (for precious metal), 13: Vacuum container, 14: Carrier sample, 15: Sample carrying container, 16: Vacuum exhaust system, 17: Glass bottle with sealing stopper, 18: Gas introduction nozzle, 19: gas exhaust pipe, 20: nitrogen / hydrogen, 21: Pt raw material salt solution, 22: rotor and magnetic stirrer, 23: sample holder, 24: substrate sample and Pt raw material salt aqueous solution, 25: water, 26: Graphite substrate, 27: Fe nano-anchor, 28: Drop of Pt raw salt aqueous solution, 29: Graphene, 100: Electrocatalyst

Claims (12)

  1.  カーボン担体と、ナノピット及び/又はナノチャネルと、遷移金属微粒子と、貴金属層と、を備え、
     前記ナノピット及び/又はナノチャネルは、前記カーボン担体上に形成され、
     前記遷移金属微粒子は、前記ナノピット及び/又はナノチャネル内で前記カーボン担体と接触し、
     前記貴金属層は、前記遷移金属微粒子上に形成されている、
     燃料電池用電極触媒。
    A carbon support, nanopits and / or nanochannels, transition metal fine particles, and a noble metal layer,
    The nanopits and / or nanochannels are formed on the carbon support;
    The transition metal fine particles are in contact with the carbon support in the nanopits and / or nanochannels,
    The noble metal layer is formed on the transition metal fine particles,
    Fuel cell electrode catalyst.
  2.  前記遷移金属微粒子は、Fe、Ni、Co、Mn、Cr、Mo、V、Ta、Wから選択される少なくとも一種の金属を含む請求項1に記載の触媒。 The catalyst according to claim 1, wherein the transition metal fine particles contain at least one metal selected from Fe, Ni, Co, Mn, Cr, Mo, V, Ta, and W.
  3.  前記遷移金属微粒子は、Fe、Ni、Crを含むオーステナイト系ステンレス鋼である請求項1に記載の触媒。 The catalyst according to claim 1, wherein the transition metal fine particles are austenitic stainless steel containing Fe, Ni, and Cr.
  4.  前記貴金属層は、Ptを含む請求項1~請求項3のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein the noble metal layer contains Pt.
  5.  前記遷移金属微粒子の平均粒径は、0.5~10nmであり、前記貴金属層の厚さは、0.5~2nmである請求項1~請求項4のいずれか1項に記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the transition metal fine particles have an average particle diameter of 0.5 to 10 nm, and the noble metal layer has a thickness of 0.5 to 2 nm.
  6.  前記遷移金属微粒子の平均粒径と前記ナノピットの平均直径の比(遷移金属微粒子平均粒径/ナノピット平均直径)、又は、前記遷移金属微粒子の平均粒径と前記ナノチャルの平均幅の比(遷移金属微粒子平均粒径/ナノチャネル平均幅)は、0.3~1.4である請求項1~請求項5のいずれか1項に記載の触媒。 Ratio of average particle diameter of transition metal fine particles and average diameter of nanopits (average particle diameter of transition metal fine particles / average diameter of nanopits), or ratio of average particle diameter of transition metal fine particles to average width of nanochar (transition metal) The catalyst according to any one of claims 1 to 5, wherein a fine particle average particle diameter / nanochannel average width) is 0.3 to 1.4.
  7.  前記カーボン担体は、黒鉛又は黒鉛化カーボンブラックであり、
     前記ナノピット及び/又はナノチャネルは前記黒鉛又は黒鉛化カーボンブラックの基底面上に形成されている請求項1~請求項6のいずれか1項に記載の触媒。
    The carbon support is graphite or graphitized carbon black;
    The catalyst according to any one of claims 1 to 6, wherein the nanopits and / or nanochannels are formed on a basal plane of the graphite or graphitized carbon black.
  8.  担持工程と、熱処理工程と、貴金属層形成工程と、を含み、
     前記担持工程では、カーボン担体に遷移金属微粒子を担持し、
     前記熱処理工程では、前記遷移金属微粒子を担持した前記カーボン担体を加熱し、
     前記貴金属層形成工程では、前記遷移金属微粒子上に貴金属層を形成する、
     燃料電池用電極触媒の製造方法。
    Including a supporting step, a heat treatment step, and a noble metal layer forming step,
    In the supporting step, the transition metal fine particles are supported on the carbon support,
    In the heat treatment step, the carbon support carrying the transition metal fine particles is heated,
    In the noble metal layer forming step, a noble metal layer is formed on the transition metal fine particles.
    A method for producing an electrode catalyst for a fuel cell.
  9.  前記熱処理工程は、不活性ガス流通下又は真空排気下、500~1140℃で行われる請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the heat treatment step is performed at 500 to 1140 ° C under an inert gas flow or under vacuum exhaust.
  10.  前記熱処理工程は、酸素、水素、水蒸気、二酸化炭素から選択されるすくなくとも一種を含むガス流通下、300~950℃で行う請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the heat treatment step is performed at 300 to 950 ° C under a gas flow including at least one selected from oxygen, hydrogen, water vapor, and carbon dioxide.
  11.  前記熱処理工程の後に、酸処理工程をさらに含む、請求項8~請求項10のいずれか1項に記載の製造方法。 The production method according to any one of claims 8 to 10, further comprising an acid treatment step after the heat treatment step.
  12.  前記遷移金属微粒子は、貴金属を含む、請求項11記載の製造方法。 The manufacturing method according to claim 11, wherein the transition metal fine particles include a noble metal.
PCT/JP2019/004509 2018-02-26 2019-02-07 Electrode catalyst for fuel cells and method for producing same WO2019163548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020501666A JP7214944B2 (en) 2018-02-26 2019-02-07 Fuel cell electrode catalyst and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018032257 2018-02-26
JP2018-032257 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163548A1 true WO2019163548A1 (en) 2019-08-29

Family

ID=67687066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004509 WO2019163548A1 (en) 2018-02-26 2019-02-07 Electrode catalyst for fuel cells and method for producing same

Country Status (2)

Country Link
JP (1) JP7214944B2 (en)
WO (1) WO2019163548A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158131A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Electrocatalyst and method of manufacturing the same
JP2009167084A (en) * 2008-01-16 2009-07-30 Inha-Industry Partnership Inst Method for producing porous carbon nanofiber composite produced by electroplating transition metal for hydrogen storage
JP2013058436A (en) * 2011-09-09 2013-03-28 Tokyo Institute Of Technology Electrode catalyst for polymer electrolyte fuel cell and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158131A (en) * 2007-12-25 2009-07-16 Toyota Motor Corp Electrocatalyst and method of manufacturing the same
JP2009167084A (en) * 2008-01-16 2009-07-30 Inha-Industry Partnership Inst Method for producing porous carbon nanofiber composite produced by electroplating transition metal for hydrogen storage
JP2013058436A (en) * 2011-09-09 2013-03-28 Tokyo Institute Of Technology Electrode catalyst for polymer electrolyte fuel cell and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2019163548A1 (en) 2021-02-25
JP7214944B2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
US11577309B2 (en) Polyhedral metal nanocages with well-defined facets and ultrathin walls and methods of making and uses thereof
Cui et al. Large scale restructuring of porous Pt-Ni nanoparticle tubes for methanol oxidation: A highly reactive, stable, and restorable fuel cell catalyst
US9689085B2 (en) Underpotential deposition-mediated layer-by-layer growth of thin films
KR101597970B1 (en) Preparing method of alloy catalyst using poly dopamine coating and alloy catalyst thereby
Solla-Gullon et al. Shape dependent electrocatalysis
Hwang et al. Ni@ Ru and NiCo@ Ru core–shell hexagonal nanosandwiches with a compositionally tunable core and a regioselectively grown shell
US20130177838A1 (en) Hollow nanoparticles as active and durable catalysts and methods for manufacturing the same
US9272334B2 (en) Synthesis of platinum-alloy nanoparticles and supported catalysts including the same
Nguyen et al. Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting–dealloying on an ordered TiO 2 nanotube surface lead to significantly enhanced photocatalytic H 2 generation
JP5994155B2 (en) Highly active and stable catalyst particles, electrode catalyst using the same, and method for producing the same
Johnson et al. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen
US11384439B2 (en) Electrode material for electrolytic hydrogen generation
Huang et al. Truncated palladium nanocubes: synthesis and the effect of OH− concentration on their catalysis of the alkaline oxygen reduction reaction
Song et al. Facile large-scale synthesis of Au–Pt alloyed nanowire networks as efficient electrocatalysts for methanol oxidation and oxygen reduction reactions
Tabet-Aoul et al. 3D hierarchical cauliflower-like carbon nanotubes/platinum–tin nanostructure and its electrocatalytic activity for ethanol oxidation
Li et al. Electrosynthesis of Pd/Au hollow cone-like microstructures for electrocatalytic formic acid oxidation
JP7376146B2 (en) Tetrahedral nanoparticles
Gruzeł et al. Thin layer vs. nanoparticles: Effect of SnO2 addition to PtRhNi nanoframes for ethanol oxidation reaction
Choi et al. Surface-controlled galvanic replacement for the development of Pt-Ag nanoplates with concave surface substructures
Lüsi et al. Oxygen electroreduction in alkaline solution on Pd coatings prepared by galvanic exchange of copper
Lim et al. The shape-controlled synthesis of gallium–palladium (GaPd 2) nanomaterials as high-performance electrocatalysts for the hydrogen evolution reaction
Fortunato et al. Large Platinum Structures as Promising Catalysts for the Oxygen‐Reduction Reaction
WO2019163548A1 (en) Electrode catalyst for fuel cells and method for producing same
Zhang et al. Control of the composition of Pt–Ni electrocatalysts in surfactant-free synthesis using neat N-formylpiperidine
Manso et al. CuPt and CuPtRu nanostructures for ammonia oxidation reaction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757240

Country of ref document: EP

Kind code of ref document: A1