WO2019163387A1 - Flake ice production apparatus - Google Patents

Flake ice production apparatus Download PDF

Info

Publication number
WO2019163387A1
WO2019163387A1 PCT/JP2019/002262 JP2019002262W WO2019163387A1 WO 2019163387 A1 WO2019163387 A1 WO 2019163387A1 JP 2019002262 W JP2019002262 W JP 2019002262W WO 2019163387 A1 WO2019163387 A1 WO 2019163387A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
flake ice
manufacturing apparatus
path
ice manufacturing
Prior art date
Application number
PCT/JP2019/002262
Other languages
French (fr)
Japanese (ja)
Inventor
美雄 廣兼
Original Assignee
ブランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブランテック株式会社 filed Critical ブランテック株式会社
Publication of WO2019163387A1 publication Critical patent/WO2019163387A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • F25C1/14Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes
    • F25C1/142Producing ice by freezing water on cooled surfaces, e.g. to form slabs to form thin sheets which are removed by scraping or wedging, e.g. in the form of flakes from the outer walls of cooled bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws

Definitions

  • the present invention relates to a flake ice manufacturing apparatus.
  • a saddle-shaped inner cylinder and an outer cylinder arranged coaxially, a shaft arranged on the central axis of the inner cylinder and rotating, and an axially spaced interval are attached to the shaft.
  • a sherbet ice making apparatus including a plurality of plate-shaped scrapers is described.
  • a raw water flow path is formed between the inner cylinder and the shaft.
  • a refrigerant flow path is provided between the inner cylinder and the outer cylinder.
  • the raw water supplied to the raw water flow path is cooled by the refrigerant supplied to the refrigerant flow path, and ice is generated on the inner surface of the inner cylinder.
  • the scraper rotates as the shaft rotates.
  • This sherbet ice manufacturing apparatus manufactures flake ice by scraping a scraper that rotates ice generated on the inner surface of the inner cylinder.
  • the sherbet ice manufacturing apparatus disclosed in Patent Document 1 can manufacture uniform flake ice by setting the clearance between the inner cylinder and the plate-shaped scraper at a constant interval. For that purpose, the inner cylinder must be formed in a perfect circle. However, it is difficult to manufacture a perfect inner cylinder. Furthermore, since the inner cylinder is provided with an internal space enough to rotate the plate-shaped scraper, the sherbet ice manufacturing apparatus is enlarged.
  • the object of the present invention is to provide a flake ice manufacturing apparatus having a structure that can be miniaturized and can be easily manufactured.
  • the flake ice manufacturing apparatus is A rotation axis; One or a plurality of metal plates provided therein with a coolant channel having a curved portion; A nozzle for injecting brine toward one or both surfaces of the metal plate; A scraper fixed to the rotating shaft and rotating; With The brine sprayed from the nozzle toward the surface of the metal plate is frozen on the surface of the metal plate and scraped by the rotating scraper to produce flake ice.
  • the refrigerant flow path includes a forward path from the side edge of the metal plate toward the center side of the metal plate, and a return path from the center side of the metal plate toward the side edge of the metal plate, and the forward path and the return path; Are adjacent to each other and have a folded portion on the center side of the metal plate.
  • the forward path and the return path may be formed in a spiral shape that is alternately adjacent.
  • the forward path may be formed in a rectangular tube shape, and the return path may be formed in a cylindrical shape.
  • the cross-sectional area of the forward path may be larger than the cross-sectional area of the return path.
  • the forward path and the return path may be formed unevenly on one surface side and the other surface side of the metal plate.
  • At least one of the forward path and the return path may be formed in a spiral shape.
  • the metal plate of the flake ice manufacturing apparatus may be made of copper or a copper alloy.
  • the said metal plate of the flake ice manufacturing apparatus which concerns on this invention may be made by casting.
  • FIG. 3 is an embodiment of the flake ice manufacturing apparatus according to the present invention, and is a cross-sectional view taken along the line II of FIG. It is a side view which shows one Embodiment of the flake ice manufacturing apparatus which concerns on this invention.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, showing an embodiment of the flake ice manufacturing apparatus according to the present invention.
  • It is a front view which shows one Embodiment containing the scraper with which the flake ice manufacturing apparatus which concerns on this invention was equipped.
  • It is sectional drawing which shows other embodiment of the metal plate with which the flake ice manufacturing apparatus which concerns on this invention was equipped.
  • FIG. 7 is a cross-sectional view of the flake ice manufacturing apparatus according to another embodiment of the present invention, taken along the line VII-VII in FIG.
  • FIG. 7 is another embodiment of the flake ice manufacturing apparatus according to the present invention, which is a cross-sectional view taken along line VIII-VIII in FIG. 6.
  • the flake ice production apparatus of this embodiment is an apparatus for producing flake ice obtained by processing ice produced from an aqueous solution (also referred to as brine) containing a solute into a flake shape.
  • the ice produced here is ice that has been solidified so that the concentration of the solute contained in the brine-in is substantially uniform, and that satisfies at least the following conditions (a) and (b) ( (Hereinafter also referred to as “hybrid ice”).
  • the temperature at the completion of melting is less than 0 ° C.
  • the rate of change in the solute concentration of the aqueous solution (brine) in which the ice has melted during the melting process is within 30%.
  • brine means an aqueous solution containing one or more solutes and having a low freezing point.
  • Specific examples of the brine include a sodium chloride aqueous solution (brine), a calcium chloride aqueous solution, a magnesium chloride aqueous solution, and an ethylene glycol aqueous solution.
  • the thermal conductivity of brine (brine) containing salt as a solute is about 0.58 W / m K, but the thermal conductivity of flake ice frozen from brine containing salt as a solute is about 2.2 W / m K. is there. That is, since the thermal conductivity of flake ice (solid) is higher than that of brine (liquid), flake ice (solid) can cool the article to be cooled earlier.
  • a metal plate preliminarily cooled to a temperature below the freezing point of the brine by spraying brine containing a solute into a mist. Can be frozen by being brought into contact with the metal plate and directly attached to the metal plate.
  • ice with high cooling ability (hybrid ice) satisfying the above conditions (a) and (b) can be generated.
  • FIG. 1 is an embodiment of the flake ice manufacturing apparatus 101, and is a cross-sectional view taken along the line II of FIG.
  • FIG. 2 is a side view showing an embodiment of the flake ice manufacturing apparatus 101.
  • FIG. 3 is an embodiment of the flake ice production apparatus 1, and is a cross-sectional view taken along the line III-III in FIG.
  • the flake ice manufacturing apparatus 101 includes a rotating shaft 110, a metal plate 120, a nozzle 130, and a scraper 141.
  • the flake ice manufacturing apparatus 101 further includes a positioner 150, a cover 160, and a refrigerant cooler 170.
  • the rotation shaft 110 includes a drive shaft 111 in a horizontal posture and a motor (for example, an inverter motor) 112 fixed to one end of the drive shaft 111, and rotates at an arbitrary rotation speed.
  • the drive shaft 111 excluding one end of the motor 112 and the drive shaft 111 to which the motor 112 is fixed, the metal plate 120, the nozzle 130, and the scraper 141 are covered with a cover 160.
  • the lower surface side of the cover 160 is opened and serves as a flake ice discharge port 161.
  • the cover 160 is made of FRP having heat insulation properties so that the inside of the cover 160 is not affected by outside air.
  • a flake ice storage tank (not shown) is placed below the flake ice discharge port 161.
  • the metal plate 120 is a flat plate having an ice making surface on both surfaces. As shown in FIG. 1, a coolant channel 121 is provided inside the metal plate 120. At the center of the metal plate 120, a through hole 122 through which the drive shaft 111 (hereinafter described as the rotating shaft 110) passes is formed. A plurality of metal plates 120 (two in FIG. 1) are arranged in a standing posture and face each other in parallel. The metal plate 120 is fixed so as not to rotate even when the rotating shaft 110 rotates.
  • the metal plate 120 As a member constituting the metal plate 120, copper or copper alloy having high thermal conductivity is adopted. However, the metal plate 120 may employ stainless steel or the like. The surface of the metal plate 120 is plated with a wear-resistant metal such as chromium. The metal plate 120 may have a disk shape as well as a polygon such as a square. In any case, the metal plate 120 is a plate-like body whose front and back surfaces are parallel (plate thickness is 25 mm, for example), and is formed by casting.
  • the coolant channel 121 is formed in a spiral shape surrounding, for example, a through hole 122 (see FIG. 2) that is the center side of the metal plate 120.
  • the refrigerant flow path 121 includes an outward path 121a from one side edge 120a of the metal plate 120 toward the through hole 122, and a return path 121b from the through hole 122 side toward the other side edge 120b of the metal plate 120.
  • the forward path 121a and the return path 121b of the refrigerant flow path 121 are formed so as to be adjacent to each other via the partition wall 121c.
  • the return path 121 a of the refrigerant flow path 121 and the folded portion 121 d of the return path 121 b are provided on the center side of the metal plate 120.
  • the center side of the metal plate 120 includes not only the position adjacent to the through hole 122 side but also the vicinity of the through hole 122.
  • the coolant channel 121 partitioned by the partition wall 121c can be easily provided by fitting the core into the mold. That is, a core corresponding to the flow path shape to be formed inside the metal plate 120 is placed in the casting mold, molten metal (hot water) is injected, and after the core is solidified, the inner core is broken and taken out. Thus, a desired flow path can be formed inside the metal plate 120.
  • the partition wall 121c is formed thick for heat insulation.
  • the thickness of the refrigerant flow path 121 and the surface of the metal plate 120 is thin so that the cold heat of the refrigerant is easily transferred to the surface of the metal plate 120.
  • Each refrigerant channel 121 is connected to the cooler 170 by first and second pipes 171 and 172.
  • the refrigerant cooled by the cooler 170 flows so as to circulate as one pipe 171 ⁇ the refrigerant flow path 121 ⁇ the other pipe 172.
  • the refrigerant for example, chlorofluorocarbon (HCFC22) or hydrofluorocarbon (HFC) having a boiling temperature of ⁇ 60 ° C. is used.
  • the nozzle 130 injects the brine toward the surfaces of both of the metal plates 120 (left surface and right surface in FIG. 2).
  • the metal plate 120 is cooled by the refrigerant flowing in the refrigerant flow path 121, the brine attached to the metal plate 120 is rapidly frozen to become ice (hybrid ice).
  • a large number of nozzles 130 are formed on the pipe 131 arranged at a slight interval from the metal plate 120.
  • nozzles 130 are formed in two directions so that brine can be sprayed toward both the metal plates 120.
  • the scraper 141 is a rod-shaped blade for scraping off the ice adhering to the metal plate 120, and is provided in the blade 140.
  • the scraper 141 rotates between the surface of the metal plate 120 and the pipe 131.
  • two scrapers 141 are linearly arranged in opposite directions.
  • the blade 140 includes an annular ring 142 whose diameter is the length of the scraper 141 arranged in a straight line.
  • the scraper 141 is shaped so as not to be bent by a positioner 150 (see FIG. 4) in which the ring 142 is fixed to the metal plate 120.
  • the scraper 141 and the ring 142 are collectively called a wiper (not numbered).
  • FIG. 4 is a front view showing a modified example of the blade 140.
  • Four blades 140 shown in FIG. 4 are arranged at equal intervals of 120 ° from the center.
  • a plurality of blades 140 may be arranged at equal intervals, such as four blades arranged at equal intervals of 90 °.
  • the scraper 141 is formed into a wave-like rod shape in which the tip portions 141a and the concave curved portions 141b are alternately formed.
  • the tip end portion 141a interrupts the ice and causes the ice to flow to the concave curved portion 141b, thereby making it easy to scrape the ice.
  • the scraper 141 shown in FIG. 1 is not drawn in a wave shape, it is naturally preferable that the scraper 141 is formed in a wave shape.
  • the scraper 141 should not contact the metal plate 120.
  • the scraper 141 is separated from the metal plate 120 with a clearance of about 0.2 mm.
  • the flake ice manufacturing apparatus 101 includes a positioner 150 so as to maintain this clearance.
  • the metal plate 120 in the standing posture is cooled by flowing the refrigerant into the refrigerant flow path 121.
  • the refrigerant flows from the first pipe 171 through the forward path 121a of the refrigerant flow path 121 toward the through hole 122, the direction of travel is reversed at the turn-back portion 121d, and flows from the return path 121b to the second pipe 172. Since the refrigerant flow path 121 is formed in a spiral shape, the flow resistance is small and the refrigerant flows smoothly.
  • the coolant is ⁇ 60 ° C.
  • the metal plate 120 is made of copper or a copper alloy having high thermal conductivity, so that the metal plate 120 is also cooled to ⁇ 60 ° C. Since the metal plate 120 is covered with the cover 160, it maintains ⁇ 60 ° C. without being affected by outside air.
  • brine is supplied into the pipe 131 and sprayed from the nozzle 130 toward the ice making surface that is the surface of the metal plate 120.
  • the freezing point of the saline solution (saturated state) is ⁇ 21 ° C.
  • the freezing point of the aqueous magnesium chloride solution (saturated state) is ⁇ 26.7 ° C. Therefore, when a saline solution or a magnesium aqueous solution is used as the brine, when the brine adheres to the metal plate 120, it is quickly frozen and a film of ice (hybrid ice) is generated on the surface of the metal plate 120.
  • the metal plate 120 since the metal plate 120 is covered with the cover 160 and is not affected by the outside air, the metal plate 120 maintains a cooled state.
  • scraper 141 When the scraper 141 is the two types shown in FIGS. 1 and 3, as shown in FIG. 3, when the metal plate 120 is regarded as a coordinate plane, the first quadrant is the first region A, the second The quadrant is called the second region B, the third quadrant is called the third region C, and the fourth quadrant is called the fourth region D.
  • the scraper 141 instantaneously injects brine from the nozzle 130 toward the metal plate 120 in the first area A and the third area C immediately before the vertical orientation as shown in FIGS.
  • the scraper 141 rotates in one direction (clockwise in the drawing) and enters the first region A and the third region C, and the ice Scrape off.
  • the brine is instantaneously injected from the nozzle 130 toward the metal plate 120 in the second area B and the fourth area D. Is done.
  • the scraper 141 rotates in one direction (clockwise in the drawing) in a state where the brine is instantly frozen and uniform thickness of ice is generated, and enters the second region B and the fourth region D, Scrape.
  • the scraper 141 continuously rotates in one direction, and brine is sprayed from the nozzle 130 to the areas A, B, C, and D where the ice generated on the metal plate 120 is scraped off, and is instantly frozen and generated.
  • the operation in which the scraped ice is scraped by the scraper 141 is repeated. However, the scraper 141 may be stopped every rotation of 90 °.
  • the scraper 141 is the three types shown in FIG. 4, six areas that are not assigned are provided. Even with the three scrapers 141, the stop and rotation are repeated in the same manner as the two scrapers 141, and the scraper 141 scrapes off the ice generated on the metal plate.
  • the flake ice generated by being scraped from the metal plate 120 by the scraper 141 in this way falls downward from the flake ice discharge port 161 on the lower surface side of the cover 160 and is stored in the flake ice storage tank.
  • brine is sprayed from the nozzle 130 onto the cooled metal plate 120 in the standing posture, and an ice film is formed on the surface of the metal plate 120 with a uniform thickness.
  • the scraper 141 rotates and the operation of scraping off the ice is repeated, so that the flake ice is stored one after another in the flake ice storage tank.
  • the brine is exemplified by salt water (sodium chloride aqueous solution) or magnesium chloride aqueous solution in the above embodiment, but is not particularly limited.
  • salt water sodium chloride aqueous solution
  • magnesium chloride aqueous solution in the above embodiment, but is not particularly limited.
  • an aqueous calcium chloride solution, ethylene glycol or the like can be employed.
  • the partition wall 121c forming the coolant channel 121 is thick, and the thickness between the coolant channel 121 and the surface of the metal plate 120 is thin.
  • the refrigerant flow path 121 is formed in a quadrangular cross-section with a large surface area and cross-sectional area of the forward path 121a and a circular cross-section with a small surface area and cross-sectional area of the return path 121b. May be.
  • the temperature of the refrigerant flowing in the forward path 121a is lower than the temperature of the refrigerant flowing in the return path 121b. Therefore, in the refrigerant flow path 121, the refrigerant having a high cooling capacity flows in the forward path 121a having a large surface area and flows in the flow path with a slow flow rate (with a long residence time), and in the return path 121b having a small surface area.
  • the refrigerant having a reduced cooling capacity flows at a higher flow rate (shorter residence time). Thereby, the refrigerant
  • the refrigerant flow path 121 is provided adjacent to each other in which the forward path 121a and the return path 121b are both spiral.
  • the forward path 121 p may be formed in a spiral shape on the metal plate 120
  • the return path 121 q may be formed in a straight line in the metal plate 120.
  • the forward path 121p is unevenly distributed on the surface side of the metal plate 120 at a portion intersecting with the return path 121q.
  • the forward path 121p is located at the center in the width direction of the metal plate 120 at a portion that does not intersect with the return path 121q.
  • the forward path 121p is located at an equal distance from both surfaces of the metal plate 120 over substantially the entire surface of the metal plate 120. Therefore, both surfaces of this metal plate 120 are cooled uniformly.
  • the refrigerant flow path 121 is unevenly distributed in the forward path 121p on one surface side of the metal plate 120, and the return path 121q is unevenly distributed on the other surface side of the metal plate 120, and both the forward path 121p and the return path 121q are swirled. It may be formed in a shape.
  • the metal plate 120 may be composed of two parts divided into two in the thickness direction.
  • the metal plate 120 can be formed by forming a coolant channel 121 in one part by machining and overlapping the other part so as to block the coolant channel 121 of this one part.
  • the flake ice manufacturing apparatus 101 is provided with a nozzle 130 for injecting brine onto the surface of the metal plate 120 in the pipe 131.
  • the nozzle 130 may be provided to follow the scraper 141 instead of the pipe 131 and rotate, and may include a blade (not shown) integrated with the scraper 141.
  • brine is jetted from the nozzle 130 after the scraper 141 scrapes off the ice, and instantly frozen until the next scraper 141 rotates, and the ice A film of is produced.
  • Such a nozzle 130 may not be tracked by the scraper 141 but may be rotated in advance of the scraper 141 so that the brine is jetted toward the rear of the scraper 141.
  • the metal plate 120 has the through-hole 122.
  • the metal plate 120 may be a notch instead of the through-hole 122, and may be one separated into two pieces.
  • a plurality of metal plates 120 are provided, a single plate may be used.
  • the metal plate 20 is plated with wear-resistant metal, but may be plated within a range in which the scraper 141 rotates.
  • the layout of the refrigerant flow path 121 and the pipe 131 in the embodiment described above is only an example, and the layout can be arbitrarily changed.
  • the flake ice manufacturing apparatus 101 to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
  • the flake ice manufacturing apparatus 101 to which the present invention is applied is A rotating shaft 110; One or a plurality of metal plates 120 provided therein with a coolant channel 121 having a curved portion; A nozzle 130 for injecting brine toward one or both surfaces of the metal plate 120; A scraper 141 fixed to a rotating shaft and rotating; With The brine sprayed from the nozzle 130 toward the surface of the metal plate 120 is frozen on the surface of the metal plate 120 and scraped by the rotating scraper 141 to produce flake ice.
  • the refrigerant flow path 121 provided in the metal plate 120 has a curved portion, so that the flow resistance is reduced in the refrigerant flow path 121, and the refrigerant smoothly flows in the refrigerant flow path 121.
  • the metal plate 120 can be efficiently cooled.
  • the refrigerant flow path 121 includes an outward path 121a from the side edge 120a of the metal plate 120 toward the center side of the metal plate 120, and a return path 121b from the center side of the metal plate 120 toward the side edge 120b of the metal plate 120. And the return path 121b are adjacent to each other and have a folded portion 121d on the center side of the metal plate 120.
  • the refrigerant flow path 121 has the forward path 121 a and the return path 121 b adjacent to each other, the forward path 121 a is directed from the side edge 120 a of the metal plate 120 to the center side, and the return path 121 b is of the metal plate 120.
  • the refrigerant flow path 121 provided from the side edge 120a of the metal plate 120 to the side edge 120b can be provided by moving from the center side to the side edge 120b.
  • the forward path 121a and the return path 121b are provided on the side edges 120a and 120b of the opposing sides of the metal plate 120 in the above embodiment, they may be provided on the side edges of any side.
  • the forward path 121a and the return path 121b are formed in a spiral shape that is alternately adjacent. According to the flake ice manufacturing apparatus 101, the outward passage 121a and the return passage 121b are formed in a spiral shape adjacent to each other, whereby the refrigerant passage 121 can be provided densely.
  • the forward path 121a is formed in a rectangular tube shape, and the return path 121b is formed in a cylindrical shape.
  • the cross-sectional area of the forward path 121a is larger than the cross-sectional area of the return path 121b. According to these flake ice manufacturing apparatuses 101, the cooling power of the metal plate 120 can be improved.
  • the forward path 121p and the return path 121q are formed unevenly on one surface side and the other surface side of the metal plate 120. According to the flake ice manufacturing apparatus 101, one side of the metal plate 120 can be efficiently cooled.
  • At least one of the forward path 121p and the return path 121q is formed in a spiral shape. According to the flake ice manufacturing apparatus 101, since at least one of the forward path 121p and the backward path 121q is formed in a spiral shape, the refrigerant can flow smoothly.
  • the metal plate 120 is made of copper or a copper alloy. According to the flake ice manufacturing apparatus 101, the refrigerant flowing in the refrigerant flow path 21 provided in the metal plate 120 can cool the metal plate 120 efficiently.
  • the rotating shaft 110 is in a horizontal posture, and the metal plate 120 is in a standing posture. According to the flake ice manufacturing apparatus 101, the ice generated on the surface of the metal plate 120 can be scraped off by its own weight.
  • the metal plate 120 is made of casting. According to the flake ice manufacturing apparatus 101, the coolant channel 121 can be easily formed by making the metal plate 120 as a casting.
  • 101 flake ice production apparatus, 110: rotating shaft, 120: metal plate, 120a: side edge, 120b: side edge, 121: refrigerant flow path, 121a: forward path, 121b: return path, 121c: partition wall, 121d: folding part 121p: Outward path, 121q: Return path, 130: Nozzle, 131: Pipe, 141: Scraper

Abstract

Provided is a compact flake ice production apparatus which can be produced easily, and a flake ice production method. This flake ice production apparatus 101 comprises: a rotating spindle 110; one or a plurality of metal plates 120 having provided therein a refrigerant circuit 121 having a curved portion; a nozzle 130 which sprays brine towards one or both surfaces of the metal plate 120; and a scraper 141 which rotates, being fixed to the rotating spindle. The flake ice production apparatus 101 produces flake ice by spraying brine from a nozzle 130 towards the surface of a metal plate 120, the brine subsequently freezing on the surface of the metal plate 120 and the ice thus formed being scraped off by the scraper 141.

Description

フレークアイス製造装置Flake ice making equipment
 本発明は、フレークアイス製造装置に関する。 The present invention relates to a flake ice manufacturing apparatus.
 食品等の鮮度を保持したり、蓄冷剤を冷却したりするために、氷を薄片状に加工したフレークアイスが使用されている。従来より、フレークアイスを製造するための装置が種々提案されている。 In order to maintain the freshness of foods, etc., or to cool the regenerator, flake ice processed into flakes is used. Conventionally, various apparatuses for producing flake ice have been proposed.
 例えば、特許文献1には、同軸に配置された竪型の内筒及び外筒と、この内筒の中心軸に配置されて回転するシャフトと、このシャフトに軸方向に間隔を空けて取り付けられた複数枚の板状のスクレーパとを備えたシャーベット氷製造装置が記載されている。このシャーベット氷製造装置は、内筒とシャフトとの間が原水流路とされている。このシャーベット氷製造装置は、内筒と外筒の間が冷媒流路とされている。 For example, in Patent Document 1, a saddle-shaped inner cylinder and an outer cylinder arranged coaxially, a shaft arranged on the central axis of the inner cylinder and rotating, and an axially spaced interval are attached to the shaft. In addition, a sherbet ice making apparatus including a plurality of plate-shaped scrapers is described. In this sherbet ice manufacturing apparatus, a raw water flow path is formed between the inner cylinder and the shaft. In this sherbet ice manufacturing apparatus, a refrigerant flow path is provided between the inner cylinder and the outer cylinder.
 このシャーベット氷製造装置は、原水流路に供給された原水が、冷媒流路に供給された冷媒によって冷却され、内筒の内面に氷を生成する。このシャーベット氷製造装置は、シャフトが回転することによって、スクレーパが回転する。このシャーベット氷製造装置は、内筒の内面に生成された氷を回転するスクレーパが掻き取ることで、フレークアイスを製造する。 In this sherbet ice manufacturing apparatus, the raw water supplied to the raw water flow path is cooled by the refrigerant supplied to the refrigerant flow path, and ice is generated on the inner surface of the inner cylinder. In this sherbet ice manufacturing apparatus, the scraper rotates as the shaft rotates. This sherbet ice manufacturing apparatus manufactures flake ice by scraping a scraper that rotates ice generated on the inner surface of the inner cylinder.
登録実用新案第3208296号公報Registered Utility Model No. 3208296
 特許文献1に開示されたシャーベット氷製造装置は、内筒と板状のスクレーパとの間のクリアランスが一定の間隔とされることで、均一なフレークアイスを製造することができる。そのためには、内筒は真円に形成されていなければならない。しかし、真円の内筒を製造することは困難である。さらに、内筒は、板状のスクレーパが回転するほどの内部空間を設けていることから、シャーベット氷製造装置が大型化する。 The sherbet ice manufacturing apparatus disclosed in Patent Document 1 can manufacture uniform flake ice by setting the clearance between the inner cylinder and the plate-shaped scraper at a constant interval. For that purpose, the inner cylinder must be formed in a perfect circle. However, it is difficult to manufacture a perfect inner cylinder. Furthermore, since the inner cylinder is provided with an internal space enough to rotate the plate-shaped scraper, the sherbet ice manufacturing apparatus is enlarged.
 本発明は、小型化が可能であり、容易に製造することができる構造のフレークアイス製造装置を提供することを目的とする。 The object of the present invention is to provide a flake ice manufacturing apparatus having a structure that can be miniaturized and can be easily manufactured.
 本発明に係るフレークアイス製造装置は、
 回転軸と、
 曲線部分を有する冷媒流路を内部に設けた1枚又は複数枚の金属プレートと、
 前記金属プレートの一方又は両方の表面に向けてブラインを噴射するノズルと、
 前記回転軸に固定されて回転するスクレーパと、
 を備え、
 前記ノズルから前記金属プレートの表面に向けて噴射されたブラインが前記金属プレートの表面で凍結し生成された氷を回転する前記スクレーパによって掻き取ってフレークアイスを製造する。
The flake ice manufacturing apparatus according to the present invention is
A rotation axis;
One or a plurality of metal plates provided therein with a coolant channel having a curved portion;
A nozzle for injecting brine toward one or both surfaces of the metal plate;
A scraper fixed to the rotating shaft and rotating;
With
The brine sprayed from the nozzle toward the surface of the metal plate is frozen on the surface of the metal plate and scraped by the rotating scraper to produce flake ice.
 本発明に係るフレークアイス製造装置の一態様は、
 前記冷媒流路は、前記金属プレートの側縁から前記金属プレートの中心側に向かう往路と、前記金属プレートの中心側から前記金属プレートの側縁に向かう復路とを備え、前記往路と前記復路とが隣り合い、前記金属プレートの中心側に折返し部を有する。
One aspect of the flake ice manufacturing apparatus according to the present invention is:
The refrigerant flow path includes a forward path from the side edge of the metal plate toward the center side of the metal plate, and a return path from the center side of the metal plate toward the side edge of the metal plate, and the forward path and the return path; Are adjacent to each other and have a folded portion on the center side of the metal plate.
 本発明に係るフレークアイス製造装置の一態様において、前記往路と前記復路とは、交互に隣り合う渦巻き状に形成されていてよい。
 この場合、前記往路は、角筒状に形成され、前記復路は、円筒状に形成されていてよい。
 この場合、前記往路の断面積は、前記復路の断面積よりも大きくされていてよい。
In one aspect of the flake ice manufacturing apparatus according to the present invention, the forward path and the return path may be formed in a spiral shape that is alternately adjacent.
In this case, the forward path may be formed in a rectangular tube shape, and the return path may be formed in a cylindrical shape.
In this case, the cross-sectional area of the forward path may be larger than the cross-sectional area of the return path.
 本発明に係るフレークアイス製造装置の一態様において、前記往路と前記復路とは、前記金属プレートの一方の表面側と他方の表面側とに偏在して形成されていてよい。 In one aspect of the flake ice manufacturing apparatus according to the present invention, the forward path and the return path may be formed unevenly on one surface side and the other surface side of the metal plate.
 この場合、前記往路と前記復路との少なくともいずれか一方は、渦巻き状に形成されていてよい。 In this case, at least one of the forward path and the return path may be formed in a spiral shape.
 本発明に係るフレークアイス製造装置の前記金属プレートは、銅製又は銅合金製であってよい。
 本発明に係るフレークアイス製造装置の前記金属プレートは、鋳造製であってよい。
The metal plate of the flake ice manufacturing apparatus according to the present invention may be made of copper or a copper alloy.
The said metal plate of the flake ice manufacturing apparatus which concerns on this invention may be made by casting.
 本発明によれば、容易に製造することができ、小型化されたフレークアイス製造装置及びフレークアイス製造方法を提供することができる。 According to the present invention, it is possible to provide a flake ice manufacturing apparatus and a flake ice manufacturing method that can be easily manufactured and are downsized.
本発明に係るフレークアイス製造装置の一実施形態であって、図2のI-I線断面図である。FIG. 3 is an embodiment of the flake ice manufacturing apparatus according to the present invention, and is a cross-sectional view taken along the line II of FIG. 本発明に係るフレークアイス製造装置の一実施形態を示す側面図である。It is a side view which shows one Embodiment of the flake ice manufacturing apparatus which concerns on this invention. 本発明に係るフレークアイス製造装置の一実施形態であって、図2のIII-III線断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2, showing an embodiment of the flake ice manufacturing apparatus according to the present invention. 本発明に係るフレークアイス製造装置に備えられたスクレーパを含む一実施形態を示す正面図である。It is a front view which shows one Embodiment containing the scraper with which the flake ice manufacturing apparatus which concerns on this invention was equipped. 本発明に係るフレークアイス製造装置に備えられた金属プレートの他実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the metal plate with which the flake ice manufacturing apparatus which concerns on this invention was equipped. 本発明に係るフレークアイス製造装置の他実施形態を示す要部断面図である。It is principal part sectional drawing which shows other embodiment of the flake ice manufacturing apparatus which concerns on this invention. 本発明に係るフレークアイス製造装置の他実施形態であって、図6のVII-VII線断面図である。FIG. 7 is a cross-sectional view of the flake ice manufacturing apparatus according to another embodiment of the present invention, taken along the line VII-VII in FIG. 本発明に係るフレークアイス製造装置の他実施形態であって、図6のVIII-VIII線断面図である。FIG. 7 is another embodiment of the flake ice manufacturing apparatus according to the present invention, which is a cross-sectional view taken along line VIII-VIII in FIG. 6.
 本実施形態のフレークアイス製造装置は、溶質を含有する水溶液(ブラインともいう)から生成した氷をフレーク(薄片)状に加工したフレークアイスを製造する装置である。ただし、ここで生成される氷は、ブラインインに含有される溶質の濃度が略均一となるように凝固させた氷であって、少なくとも以下の(a)及び(b)の条件を満たす氷(以下「ハイブリッドアイス」とも呼ぶ)のことをいう。
 (a)融解完了時の温度が0℃未満である
 (b)融解過程で氷が融解した水溶液(ブライン)の溶質濃度の変化率が30%以内である
The flake ice production apparatus of this embodiment is an apparatus for producing flake ice obtained by processing ice produced from an aqueous solution (also referred to as brine) containing a solute into a flake shape. However, the ice produced here is ice that has been solidified so that the concentration of the solute contained in the brine-in is substantially uniform, and that satisfies at least the following conditions (a) and (b) ( (Hereinafter also referred to as “hybrid ice”).
(A) The temperature at the completion of melting is less than 0 ° C. (b) The rate of change in the solute concentration of the aqueous solution (brine) in which the ice has melted during the melting process is within 30%.
 ここで、「ブライン」とは、1種類又は2種類以上の溶質を含有する、凝固点の低い水溶液を意味する。ブラインの具体例としては、例えば、塩化ナトリウム水溶液(塩水)や塩化カルシウム水溶液、塩化マグネシウム水溶液、エチレングリコール水溶液等がある。 Here, “brine” means an aqueous solution containing one or more solutes and having a low freezing point. Specific examples of the brine include a sodium chloride aqueous solution (brine), a calcium chloride aqueous solution, a magnesium chloride aqueous solution, and an ethylene glycol aqueous solution.
 食塩を溶質とするブライン(塩水)の熱伝導率は、約0.58W/m Kであるが、食塩を溶質とするブラインが凍結したフレークアイスの熱伝導率は約2.2W/m Kである。即ち、熱伝導率は、ブライン(液体)よりもフレークアイス(固体)の方が高いため、フレークアイス(固体)の方が被冷却品を早く冷却することができることになる。 The thermal conductivity of brine (brine) containing salt as a solute is about 0.58 W / m K, but the thermal conductivity of flake ice frozen from brine containing salt as a solute is about 2.2 W / m K. is there. That is, since the thermal conductivity of flake ice (solid) is higher than that of brine (liquid), flake ice (solid) can cool the article to be cooled earlier.
 このようなブラインを容器に溜めて外部から冷却しても、ハイブリッドアイスと同等の性質を有する氷を製造することはできない。これは、冷却速度が十分でないことに起因すると考えられる。 Even if such brine is stored in a container and cooled from the outside, ice having the same properties as hybrid ice cannot be produced. This is considered to be due to the insufficient cooling rate.
 しかしながら、図1乃至図8に示す本実施形態に係るフレークアイス製造装置1では、溶質を含有するブラインを噴射することで霧状にし、これをブラインの凝固点以下の温度に予め冷却された金属プレートに接触させることによって凍結させ、そのまま金属プレートに付着させることができる。これにより、上記(a)及び(b)の条件を満たす冷却能の高い氷(ハイブリッドアイス)を生成することができる。 However, in the flake ice manufacturing apparatus 1 according to the present embodiment shown in FIGS. 1 to 8, a metal plate preliminarily cooled to a temperature below the freezing point of the brine by spraying brine containing a solute into a mist. Can be frozen by being brought into contact with the metal plate and directly attached to the metal plate. Thereby, ice with high cooling ability (hybrid ice) satisfying the above conditions (a) and (b) can be generated.
 図1は、フレークアイス製造装置101の一実施形態であって、図2のI-I線断面図である。図2は、フレークアイス製造装置101の一実施形態を示す側面図である。図3は、フレークアイス製造装置1の一実施形態であって、図2のIII-III線断面図である。 FIG. 1 is an embodiment of the flake ice manufacturing apparatus 101, and is a cross-sectional view taken along the line II of FIG. FIG. 2 is a side view showing an embodiment of the flake ice manufacturing apparatus 101. FIG. 3 is an embodiment of the flake ice production apparatus 1, and is a cross-sectional view taken along the line III-III in FIG.
 図1乃至図3に示すように、フレークアイス製造装置101は、回転軸110と、金属プレート120と、ノズル130と、スクレーパ141とを備える。フレークアイス製造装置101は、さらに、ポジショナ150とカバー160と、冷媒の冷却機170を備える。 As shown in FIGS. 1 to 3, the flake ice manufacturing apparatus 101 includes a rotating shaft 110, a metal plate 120, a nozzle 130, and a scraper 141. The flake ice manufacturing apparatus 101 further includes a positioner 150, a cover 160, and a refrigerant cooler 170.
 回転軸110は、水平姿勢とされた駆動シャフト111と、この駆動シャフト111の一端部に固定されたモータ(例えばインバータモータ)112とを備え、任意の回転速度で回転する。モータ112及びモータ112を固定した駆動シャフト111の一端部を除いた駆動シャフト111と、金属プレート120と、ノズル130と、スクレーパ141がカバー160によって覆われている。カバー160の下面側は開口し、フレークアイス排出口161とされている。カバー160は、断熱性を有するFRP製とされ、カバー160内が外気の影響を受けないようにされている。フレークアイス排出口161の下方には、フレークアイス貯留タンク(図示せず)が置かれている。 The rotation shaft 110 includes a drive shaft 111 in a horizontal posture and a motor (for example, an inverter motor) 112 fixed to one end of the drive shaft 111, and rotates at an arbitrary rotation speed. The drive shaft 111 excluding one end of the motor 112 and the drive shaft 111 to which the motor 112 is fixed, the metal plate 120, the nozzle 130, and the scraper 141 are covered with a cover 160. The lower surface side of the cover 160 is opened and serves as a flake ice discharge port 161. The cover 160 is made of FRP having heat insulation properties so that the inside of the cover 160 is not affected by outside air. A flake ice storage tank (not shown) is placed below the flake ice discharge port 161.
 金属プレート120は、両表面を製氷面とした平板である。図1に示すように、金属プレート120の内部には、冷媒流路121が設けられている。金属プレート120の中心部には、駆動シャフト111(以下、回転軸110として説明する)が貫通する貫通穴122が形成されている。金属プレート120は、起立姿勢で複数枚(図1では2枚)、平行に向き合って並べられている。金属プレート120は、回転軸110が回転しても、回転しないように固定されている。 The metal plate 120 is a flat plate having an ice making surface on both surfaces. As shown in FIG. 1, a coolant channel 121 is provided inside the metal plate 120. At the center of the metal plate 120, a through hole 122 through which the drive shaft 111 (hereinafter described as the rotating shaft 110) passes is formed. A plurality of metal plates 120 (two in FIG. 1) are arranged in a standing posture and face each other in parallel. The metal plate 120 is fixed so as not to rotate even when the rotating shaft 110 rotates.
 金属プレート120を構成する部材としては、熱伝導率が高い銅や銅合金が採用される。ただし、金属プレート120は、ステンレス鋼などを採用してもよい。金属プレート120の表面は、耐摩耗性の金属、例えばクロムによってメッキされている。金属プレート120は、正方形等の多角形だけでなく、円盤形状であってもよい。いずれにしても、金属プレート120は、表面と裏面が平行な板状体で(板厚は例えば25mm)、鋳造によって形成される。 As a member constituting the metal plate 120, copper or copper alloy having high thermal conductivity is adopted. However, the metal plate 120 may employ stainless steel or the like. The surface of the metal plate 120 is plated with a wear-resistant metal such as chromium. The metal plate 120 may have a disk shape as well as a polygon such as a square. In any case, the metal plate 120 is a plate-like body whose front and back surfaces are parallel (plate thickness is 25 mm, for example), and is formed by casting.
 図1に示すように、冷媒流路121は、例えば、金属プレート120の中心側である貫通穴122(図2参照)を取り巻くような渦巻き状に形成されている。冷媒流路121は、金属プレート120の一方の側縁120aから貫通穴122に向かう往路121aと、貫通穴122側から金属プレート120の他方の側縁120bに向かう復路121bとを備えている。冷媒流路121の往路121aと復路121bは、仕切壁121cを介して隣り合うように形成される。冷媒流路121の往路121aと復路121bの折返し部121dが金属プレート120の中心側に設けられる。金属プレート120の中心側は、貫通穴122側に隣接した位置だけでなく、貫通穴122付近も含まれる。 As shown in FIG. 1, the coolant channel 121 is formed in a spiral shape surrounding, for example, a through hole 122 (see FIG. 2) that is the center side of the metal plate 120. The refrigerant flow path 121 includes an outward path 121a from one side edge 120a of the metal plate 120 toward the through hole 122, and a return path 121b from the through hole 122 side toward the other side edge 120b of the metal plate 120. The forward path 121a and the return path 121b of the refrigerant flow path 121 are formed so as to be adjacent to each other via the partition wall 121c. The return path 121 a of the refrigerant flow path 121 and the folded portion 121 d of the return path 121 b are provided on the center side of the metal plate 120. The center side of the metal plate 120 includes not only the position adjacent to the through hole 122 side but also the vicinity of the through hole 122.
 金属プレート120が鋳造によって形成されるため、中子を型に嵌め込むことで、仕切壁121cによって仕切られる冷媒流路121を容易に設けることができる。すなわち、金属プレート120の内部に形成しようとする流路形状に対応する中子を鋳造型内に配置して、溶融金属(湯)を注入し、固まった後にその内部の中子を崩し、取り出すことによって金属プレート120の内部に所望の流路を形成することができる。 Since the metal plate 120 is formed by casting, the coolant channel 121 partitioned by the partition wall 121c can be easily provided by fitting the core into the mold. That is, a core corresponding to the flow path shape to be formed inside the metal plate 120 is placed in the casting mold, molten metal (hot water) is injected, and after the core is solidified, the inner core is broken and taken out. Thus, a desired flow path can be formed inside the metal plate 120.
 往路121aの上流側を流れる冷媒と復路121bの下流側を流れる冷媒とでは、温度差が生じる。したがって、仕切壁121cは、断熱のために厚く形成される。冷媒流路121と金属プレート120の表面との肉厚は、冷媒の冷熱が金属プレート120の表面に伝熱されやすいように薄く形成される。 A temperature difference occurs between the refrigerant flowing upstream of the forward path 121a and the refrigerant flowing downstream of the backward path 121b. Therefore, the partition wall 121c is formed thick for heat insulation. The thickness of the refrigerant flow path 121 and the surface of the metal plate 120 is thin so that the cold heat of the refrigerant is easily transferred to the surface of the metal plate 120.
 各冷媒流路121は、第1、第2の配管171,172によって冷却機170に接続されている。冷却機170によって冷却された冷媒は、一方の配管171→冷媒流路121→他方の配管172というように循環するように流れる。冷媒としては、沸騰温度が例えば-60℃のフロン(HCFC22)やハイドロフルオロカーボン(HFC)等が使用される。 Each refrigerant channel 121 is connected to the cooler 170 by first and second pipes 171 and 172. The refrigerant cooled by the cooler 170 flows so as to circulate as one pipe 171 → the refrigerant flow path 121 → the other pipe 172. As the refrigerant, for example, chlorofluorocarbon (HCFC22) or hydrofluorocarbon (HFC) having a boiling temperature of −60 ° C. is used.
 図2に示すように、ノズル130は、ブラインを金属プレート120の両方(図2において左面と右面)の表面に向けて噴射する。詳しくは後述するが、金属プレート120は、冷媒流路121内に冷媒が流れて冷却されているため、金属プレート120に付着したブラインは急速冷凍されて氷(ハイブリッドアイス)となる。 As shown in FIG. 2, the nozzle 130 injects the brine toward the surfaces of both of the metal plates 120 (left surface and right surface in FIG. 2). As will be described later in detail, since the metal plate 120 is cooled by the refrigerant flowing in the refrigerant flow path 121, the brine attached to the metal plate 120 is rapidly frozen to become ice (hybrid ice).
 ノズル130は、金属プレート120から少しの間隔をあけて配置されたパイプ131に多数形成される。2枚の金属プレート120の間に配置されたパイプ131には、両金属プレート120に向けてブラインを噴射できるようにノズル130が二方向に形成されている。 A large number of nozzles 130 are formed on the pipe 131 arranged at a slight interval from the metal plate 120. In the pipe 131 disposed between the two metal plates 120, nozzles 130 are formed in two directions so that brine can be sprayed toward both the metal plates 120.
 スクレーパ141には、金属プレート120に付着した氷を掻き取るための棒状の刃部であり、ブレード140に備えられる。スクレーパ141は、金属プレート120の表面とパイプ131との間で回転する。図1及び図3に示すように、スクレーパ141は、2本が反対方向に向けて直線状に配置されている。ブレード140は、直線状に配置されたスクレーパ141の長さを直径とする円環状のリング142を備えている。リング142が金属プレート120に固定されたポジショナ150(図4参照)によって、スクレーパ141が撓むことがないように保形される。スクレーパ141とリング142とを合わせてワイパー(採番せず)と呼ぶ。 The scraper 141 is a rod-shaped blade for scraping off the ice adhering to the metal plate 120, and is provided in the blade 140. The scraper 141 rotates between the surface of the metal plate 120 and the pipe 131. As shown in FIGS. 1 and 3, two scrapers 141 are linearly arranged in opposite directions. The blade 140 includes an annular ring 142 whose diameter is the length of the scraper 141 arranged in a straight line. The scraper 141 is shaped so as not to be bent by a positioner 150 (see FIG. 4) in which the ring 142 is fixed to the metal plate 120. The scraper 141 and the ring 142 are collectively called a wiper (not numbered).
 図4は、ブレード140の変形例を示す正面図である。図4に示すブレード140は、中心から120°の等間隔で3本配置されている。ブレード140は、図示しないが、90°の等間隔で4本配置されている等、等間隔で複数本配置されてもよい。 FIG. 4 is a front view showing a modified example of the blade 140. Four blades 140 shown in FIG. 4 are arranged at equal intervals of 120 ° from the center. Although not shown, a plurality of blades 140 may be arranged at equal intervals, such as four blades arranged at equal intervals of 90 °.
 いずれにしても、スクレーパ141は、尖端部141aと凹曲部141bとを交互に形成した波形状の棒状とされる。尖端部141aが氷に割り込み、氷を凹曲部141bへ流すようにすることで、氷を掻き取りやすくされている。なお、図1に示したスクレーパ141は、波形状に描かれていないが、当然ながら、波形状に形成されていることが好ましい。 In any case, the scraper 141 is formed into a wave-like rod shape in which the tip portions 141a and the concave curved portions 141b are alternately formed. The tip end portion 141a interrupts the ice and causes the ice to flow to the concave curved portion 141b, thereby making it easy to scrape the ice. Although the scraper 141 shown in FIG. 1 is not drawn in a wave shape, it is naturally preferable that the scraper 141 is formed in a wave shape.
 スクレーパ141は、金属プレート120に接触しない方がよい。スクレーパ141は、例えば、0.2mm程度のクリアランスをもって金属プレート120から離れている。フレークアイス製造装置101は、このクリアランスを維持するように、ポジショナ150を備えている。 The scraper 141 should not contact the metal plate 120. For example, the scraper 141 is separated from the metal plate 120 with a clearance of about 0.2 mm. The flake ice manufacturing apparatus 101 includes a positioner 150 so as to maintain this clearance.
 ここで、このフレークアイス製造装置101によってフレークアイスを製造する方法について説明する。 Here, a method for manufacturing the flake ice using the flake ice manufacturing apparatus 101 will be described.
 冷媒を冷媒流路121内に流すことで、起立姿勢の金属プレート120が冷却される。冷媒は、第1の配管171から冷媒流路121の往路121aを貫通穴122の方へ流れ、折返し部121dで進行方向が反転し、復路121bから第2の配管172へ流れる。冷媒流路121が渦巻き状に形成されていることで、流動抵抗が小さく、冷媒がスムーズに流れる。冷媒が-60℃であると、金属プレート120が熱伝導率の高い銅製又は銅合金製とされていることで、金属プレート120も-60℃に冷却される。金属プレート120は、カバー160で覆われていることから、外気の影響を受けることなく、-60℃を維持する。 The metal plate 120 in the standing posture is cooled by flowing the refrigerant into the refrigerant flow path 121. The refrigerant flows from the first pipe 171 through the forward path 121a of the refrigerant flow path 121 toward the through hole 122, the direction of travel is reversed at the turn-back portion 121d, and flows from the return path 121b to the second pipe 172. Since the refrigerant flow path 121 is formed in a spiral shape, the flow resistance is small and the refrigerant flows smoothly. When the coolant is −60 ° C., the metal plate 120 is made of copper or a copper alloy having high thermal conductivity, so that the metal plate 120 is also cooled to −60 ° C. Since the metal plate 120 is covered with the cover 160, it maintains −60 ° C. without being affected by outside air.
 そして、ブラインがパイプ131内に供給され、ノズル130から金属プレート120の表面である製氷面に向けて噴射される。食塩水(飽和状態)の凝固点は-21℃であり、塩化マグネシウム水溶液(飽和状態)の凝固点は-26.7℃である。したがって、食塩水やマグネシウム水溶液をブラインとして使用した場合は、ブラインが金属プレート120に付着すると、急速冷凍され、氷(ハイブリッドアイス)の膜が金属プレート120の表面に生成される。しかも、金属プレート120は、カバー160によって覆われ、外気の影響を受けないため、冷却された状態を維持する。 Then, brine is supplied into the pipe 131 and sprayed from the nozzle 130 toward the ice making surface that is the surface of the metal plate 120. The freezing point of the saline solution (saturated state) is −21 ° C., and the freezing point of the aqueous magnesium chloride solution (saturated state) is −26.7 ° C. Therefore, when a saline solution or a magnesium aqueous solution is used as the brine, when the brine adheres to the metal plate 120, it is quickly frozen and a film of ice (hybrid ice) is generated on the surface of the metal plate 120. In addition, since the metal plate 120 is covered with the cover 160 and is not affected by the outside air, the metal plate 120 maintains a cooled state.
 ここで、スクレーパ141を備えたブレード140(以下、「スクレーパ141」として説明する)の動作について説明する。スクレーパ141が図1及び図3に示した2本のタイプである場合は、図3に示すように、金属プレート120を座標面に見立てたときに、第1象限を第1領域A、第2象限を第2領域B、第3象限を第3の領域C、第4象限を第4領域Dと呼ぶ。 Here, the operation of the blade 140 provided with the scraper 141 (hereinafter, described as “scraper 141”) will be described. When the scraper 141 is the two types shown in FIGS. 1 and 3, as shown in FIG. 3, when the metal plate 120 is regarded as a coordinate plane, the first quadrant is the first region A, the second The quadrant is called the second region B, the third quadrant is called the third region C, and the fourth quadrant is called the fourth region D.
 スクレーパ141は、図1及び図3に示すような縦向きの姿勢になる直前に、第1領域Aと第3領域Cにノズル130から金属プレート120に向けてブラインが瞬間的に噴射される。このブラインが瞬間冷凍され、均一な厚さの氷が生成された状態で、スクレーパ141が一方向(図面では時計方向)に回転して第1領域Aと第3の領域Cに進入し、氷を掻き取る。このようにスクレーパ141が第1領域Aと第3の領域C内を回転している間に、第2領域Bと第4領域Dにノズル130から金属プレート120に向けてブラインが瞬間的に噴射される。このブラインが瞬間冷凍され、均一な厚さの氷が生成された状態で、スクレーパ141が一方向(図面では時計方向)に回転し、第2領域Bと第4領域Dに進入し、氷を掻き取る。 The scraper 141 instantaneously injects brine from the nozzle 130 toward the metal plate 120 in the first area A and the third area C immediately before the vertical orientation as shown in FIGS. In a state where the brine is instantaneously frozen and ice having a uniform thickness is generated, the scraper 141 rotates in one direction (clockwise in the drawing) and enters the first region A and the third region C, and the ice Scrape off. Thus, while the scraper 141 rotates in the first area A and the third area C, the brine is instantaneously injected from the nozzle 130 toward the metal plate 120 in the second area B and the fourth area D. Is done. The scraper 141 rotates in one direction (clockwise in the drawing) in a state where the brine is instantly frozen and uniform thickness of ice is generated, and enters the second region B and the fourth region D, Scrape.
 このようにスクレーパ141が一方向に連続して回転し、金属プレート120に生成された氷を掻き取られた領域A,B,C,Dにノズル130からブラインが噴射され、瞬間冷凍されて生成された氷がスクレーパ141によって掻き取られる動作が繰り返される。ただし、スクレーパ141は、90°回転するたびに停止するようにしてもよい。 In this way, the scraper 141 continuously rotates in one direction, and brine is sprayed from the nozzle 130 to the areas A, B, C, and D where the ice generated on the metal plate 120 is scraped off, and is instantly frozen and generated. The operation in which the scraped ice is scraped by the scraper 141 is repeated. However, the scraper 141 may be stopped every rotation of 90 °.
 スクレーパ141が図4に示した3本のタイプである場合は、採番しない領域が6つ設けられる。3本のスクレーパ141であっても、2本のスクレーパ141と同様に停止と回転を繰り返し、スクレーパ141が金属プレートに生成された氷を掻き取る。 When the scraper 141 is the three types shown in FIG. 4, six areas that are not assigned are provided. Even with the three scrapers 141, the stop and rotation are repeated in the same manner as the two scrapers 141, and the scraper 141 scrapes off the ice generated on the metal plate.
 このようにしてスクレーパ141によって金属プレート120から掻き取られることで生成されたフレークアイスは、カバー160の下面側のフレークアイス排出口161から下方に落下し、フレークアイス貯留タンク内に溜められる。まとめると、スクレーパ141が停止している状態において、冷却されている起立姿勢の金属プレート120にノズル130からブラインが噴射され、金属プレート120の表面に氷の膜が均一な厚さで成形された後、スクレーパ141が回転し、氷を掻き取るという動作を繰り返すことで、フレークアイスが次々とフレークアイス貯留タンク内に溜められる。 The flake ice generated by being scraped from the metal plate 120 by the scraper 141 in this way falls downward from the flake ice discharge port 161 on the lower surface side of the cover 160 and is stored in the flake ice storage tank. In summary, when the scraper 141 is stopped, brine is sprayed from the nozzle 130 onto the cooled metal plate 120 in the standing posture, and an ice film is formed on the surface of the metal plate 120 with a uniform thickness. Thereafter, the scraper 141 rotates and the operation of scraping off the ice is repeated, so that the flake ice is stored one after another in the flake ice storage tank.
 以上、本発明の実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。また本発明の要旨を逸脱しない範囲内であれば種々の変更や上記実施の形態の組み合わせを施してもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above-described embodiments, and is considered within the scope of the matters described in the claims. Other embodiments and modifications are also included. Further, various modifications and combinations of the above embodiments may be made within the scope not departing from the gist of the present invention.
 例えば、上述した実施形態では、ブラインは、上述した実施形態では塩水(塩化ナトリウム水溶液)や塩化マグネシウム水溶液を例示したが、特に限定されない。具体的には、例えば塩化カルシウム水溶液、エチレングリコール等を採用することができる。これにより、溶質又は濃度の違いに応じて凝固点の異なる複数種類のブラインを用意することも可能となる。 For example, in the embodiment described above, the brine is exemplified by salt water (sodium chloride aqueous solution) or magnesium chloride aqueous solution in the above embodiment, but is not particularly limited. Specifically, for example, an aqueous calcium chloride solution, ethylene glycol or the like can be employed. Thereby, it is also possible to prepare a plurality of types of brines having different freezing points according to differences in solute or concentration.
 上述した実施形態では、冷媒流路121を形成する仕切壁121cは厚く、冷媒流路121と金属プレート120の表面との肉厚を薄く形成した。図5に示すように、冷媒流路121は、さらに冷却力を向上させるため、往路121aの表面積や断面積が大きな断面四角形状とし、復路121bの表面積や断面積が小さな断面円形状に形成してもよい。 In the above-described embodiment, the partition wall 121c forming the coolant channel 121 is thick, and the thickness between the coolant channel 121 and the surface of the metal plate 120 is thin. As shown in FIG. 5, in order to further improve the cooling power, the refrigerant flow path 121 is formed in a quadrangular cross-section with a large surface area and cross-sectional area of the forward path 121a and a circular cross-section with a small surface area and cross-sectional area of the return path 121b. May be.
 往路121aを流れる冷媒の温度は、復路121bを流れる冷媒の温度より低温である。したがって、冷媒流路121では、表面積の大きな通路とした往路121a内で冷却能力の高い冷媒が流速を遅くして(滞留時間を長くして)流動し、表面積の小さな流路とした復路121b内で冷却能力の低下した冷媒が流速を速くして(滞留時間を短くして)流動する。これにより、冷媒流路121は、冷媒の金属プレート120に対する冷却能力を高めている。 The temperature of the refrigerant flowing in the forward path 121a is lower than the temperature of the refrigerant flowing in the return path 121b. Therefore, in the refrigerant flow path 121, the refrigerant having a high cooling capacity flows in the forward path 121a having a large surface area and flows in the flow path with a slow flow rate (with a long residence time), and in the return path 121b having a small surface area. The refrigerant having a reduced cooling capacity flows at a higher flow rate (shorter residence time). Thereby, the refrigerant | coolant flow path 121 has improved the cooling capability with respect to the metal plate 120 of a refrigerant | coolant.
 上述した実施形態では、冷媒流路121は、往路121aと復路121bがともに渦巻き状で、隣り合って設けられた。しかし、図6乃至図8に示すように、冷媒流路121は、往路121pが金属プレート120渦巻き状に形成され、復路121qが金属プレート120内で直線状に形成されてもよい。 In the above-described embodiment, the refrigerant flow path 121 is provided adjacent to each other in which the forward path 121a and the return path 121b are both spiral. However, as shown in FIGS. 6 to 8, in the refrigerant flow path 121, the forward path 121 p may be formed in a spiral shape on the metal plate 120, and the return path 121 q may be formed in a straight line in the metal plate 120.
 図7に示すように、往路121pは、復路121qと交差する部位において、金属プレート120の表面側に偏在する。図8に示すように、往路121pは、復路121qと交差しない部位において、金属プレート120の幅方向中心に位置する。換言すれば、往路121pは金属プレート120のほぼ全面において金属プレート120の両表面から均等の距離に位置する。したがって、この金属プレート120は、両表面が均等に冷却される。 As shown in FIG. 7, the forward path 121p is unevenly distributed on the surface side of the metal plate 120 at a portion intersecting with the return path 121q. As shown in FIG. 8, the forward path 121p is located at the center in the width direction of the metal plate 120 at a portion that does not intersect with the return path 121q. In other words, the forward path 121p is located at an equal distance from both surfaces of the metal plate 120 over substantially the entire surface of the metal plate 120. Therefore, both surfaces of this metal plate 120 are cooled uniformly.
 さらに、図示しないが、冷媒流路121は、往路121pを金属プレート120の一方の表面側に偏在し、復路121qを金属プレート120の他方の表面側に偏在し、往路121pも復路121qもともに渦巻き状に形成したものとしてもよい。 Further, although not shown, the refrigerant flow path 121 is unevenly distributed in the forward path 121p on one surface side of the metal plate 120, and the return path 121q is unevenly distributed on the other surface side of the metal plate 120, and both the forward path 121p and the return path 121q are swirled. It may be formed in a shape.
 さらに、金属プレート120は、鋳造によって形成される以外に、厚さ方向に二分割した二つの部分で構成してもよい。この金属プレート120は、一方の部分に機械加工で冷媒流路121を形成し、この一方の部分の冷媒流路121を塞ぐように他方の部分を重ね合わせて形成することができる。 Furthermore, in addition to being formed by casting, the metal plate 120 may be composed of two parts divided into two in the thickness direction. The metal plate 120 can be formed by forming a coolant channel 121 in one part by machining and overlapping the other part so as to block the coolant channel 121 of this one part.
 さらに、フレークアイス製造装置101は、ブラインを金属プレート120の表面に噴射するためのノズル130をパイプ131に備えた。ノズル130が、パイプ131ではなく、スクレーパ141に追尾して回転するように設けられ、スクレーパ141と一体のブレード(図示せず)を備えてもよい。ノズル130がスクレーパ141に追尾するように設けられることで、スクレーパ141が氷を掻き取った後にノズル130からブラインが噴射され、次のスクレーパ141が回転してくるまでの間に瞬間冷凍され、氷の膜が生成される。 Furthermore, the flake ice manufacturing apparatus 101 is provided with a nozzle 130 for injecting brine onto the surface of the metal plate 120 in the pipe 131. The nozzle 130 may be provided to follow the scraper 141 instead of the pipe 131 and rotate, and may include a blade (not shown) integrated with the scraper 141. By providing the nozzle 130 so as to track the scraper 141, brine is jetted from the nozzle 130 after the scraper 141 scrapes off the ice, and instantly frozen until the next scraper 141 rotates, and the ice A film of is produced.
 このようなノズル130は、スクレーパ141に追尾するのではなく、スクレーパ141に先行して回転し、ブラインがスクレーパ141の後方に向けて噴射されるようにしてもよい。 Such a nozzle 130 may not be tracked by the scraper 141 but may be rotated in advance of the scraper 141 so that the brine is jetted toward the rear of the scraper 141.
 上述した実施形態では、金属プレート120は、貫通穴122を形成したが、貫通穴122でなく、切込みであってもよく、さらに、上下2枚に分離したものであってもよい。金属プレート120は、複数枚備えられるとしたが、1枚でもよい。金属プレート20には、耐摩耗性の金属でメッキするとしたが、スクレーパ141が回転する範囲でメッキしてもよい。 In the above-described embodiment, the metal plate 120 has the through-hole 122. However, the metal plate 120 may be a notch instead of the through-hole 122, and may be one separated into two pieces. Although a plurality of metal plates 120 are provided, a single plate may be used. The metal plate 20 is plated with wear-resistant metal, but may be plated within a range in which the scraper 141 rotates.
 上述した実施形態における冷媒流路121やパイプ131のレイアウトは、一例を図示しただけであり、そのレイアウトは、任意に変更できる。 The layout of the refrigerant flow path 121 and the pipe 131 in the embodiment described above is only an example, and the layout can be arbitrarily changed.
 以上まとめると、本発明が適用されるフレークアイス製造装置101は、次のような構成を取れば足り、各種各様な実施形態を取ることができる。 In summary, the flake ice manufacturing apparatus 101 to which the present invention is applied only needs to have the following configuration, and can take various embodiments.
 即ち、本発明が適用されるフレークアイス製造装置101は、
 回転軸110と、
 曲線部分を有する冷媒流路121を内部に設けた1枚又は複数枚の金属プレート120と、
 金属プレート120の一方又は両方の表面に向けてブラインを噴射するノズル130と、
 回転軸に固定されて回転するスクレーパ141と、
 を備え、
 ノズル130から金属プレート120の表面に向けて噴射されたブラインが前記金属プレート120の表面で凍結し生成された氷を回転するスクレーパ141によって掻き取ってフレークアイスを製造する。
That is, the flake ice manufacturing apparatus 101 to which the present invention is applied is
A rotating shaft 110;
One or a plurality of metal plates 120 provided therein with a coolant channel 121 having a curved portion;
A nozzle 130 for injecting brine toward one or both surfaces of the metal plate 120;
A scraper 141 fixed to a rotating shaft and rotating;
With
The brine sprayed from the nozzle 130 toward the surface of the metal plate 120 is frozen on the surface of the metal plate 120 and scraped by the rotating scraper 141 to produce flake ice.
 このフレークアイス製造装置101によれば、金属プレート120に設けられた冷媒流路121が曲線部分を有することにより、冷媒流路121内を流動抵抗が小さくなり、冷媒が冷媒流路121内をスムーズに流れ、金属プレート120を効率的に冷却することができる。 According to the flake ice manufacturing apparatus 101, the refrigerant flow path 121 provided in the metal plate 120 has a curved portion, so that the flow resistance is reduced in the refrigerant flow path 121, and the refrigerant smoothly flows in the refrigerant flow path 121. The metal plate 120 can be efficiently cooled.
 本発明が適用されるフレークアイス製造装置101において、
 冷媒流路121は、金属プレート120の側縁120aから金属プレート120の中心側に向かう往路121aと、金属プレート120の中心側から金属プレート120の側縁120bに向かう復路121bとを備え、往路121aと復路121bとが隣り合い、金属プレート120の中心側に折返し部121dを有する。
 このフレークアイス製造装置101によれば、冷媒流路121が隣り合う往路121aと復路121bとを有し、往路121aが金属プレート120の側縁120aから中心側に向かい、復路121bが金属プレート120の中心側から側縁120bに向かうことで、金属プレート120の側縁120aから側縁120bへ設けられた冷媒流路121を設けることができる。さらに、往路121aと復路121bは、上記実施形態では金属プレート120の対向する辺の側縁120a,120bに設けたが、どの辺の側縁に設けてもよい。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The refrigerant flow path 121 includes an outward path 121a from the side edge 120a of the metal plate 120 toward the center side of the metal plate 120, and a return path 121b from the center side of the metal plate 120 toward the side edge 120b of the metal plate 120. And the return path 121b are adjacent to each other and have a folded portion 121d on the center side of the metal plate 120.
According to the flake ice manufacturing apparatus 101, the refrigerant flow path 121 has the forward path 121 a and the return path 121 b adjacent to each other, the forward path 121 a is directed from the side edge 120 a of the metal plate 120 to the center side, and the return path 121 b is of the metal plate 120. The refrigerant flow path 121 provided from the side edge 120a of the metal plate 120 to the side edge 120b can be provided by moving from the center side to the side edge 120b. Furthermore, although the forward path 121a and the return path 121b are provided on the side edges 120a and 120b of the opposing sides of the metal plate 120 in the above embodiment, they may be provided on the side edges of any side.
 本発明が適用されるフレークアイス製造装置101において、
 往路121aと復路121bとは、交互に隣り合う渦巻き状に形成されている。
 このフレークアイス製造装置101によれば、往路121aと復路121bとが隣り合う渦巻き状に形成されることで、冷媒流路121を密に設けることができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The forward path 121a and the return path 121b are formed in a spiral shape that is alternately adjacent.
According to the flake ice manufacturing apparatus 101, the outward passage 121a and the return passage 121b are formed in a spiral shape adjacent to each other, whereby the refrigerant passage 121 can be provided densely.
 本発明が適用されるフレークアイス製造装置101において、
 往路121aは、角筒状に形成され、復路121bは、円筒状に形成されている。
 本発明が適用されるフレークアイス製造装置101において、
 往路121aの断面積は、復路121bの断面積よりも大きくされている。
 これらのフレークアイス製造装置101によれば、金属プレート120の冷却力を向上させることができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The forward path 121a is formed in a rectangular tube shape, and the return path 121b is formed in a cylindrical shape.
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The cross-sectional area of the forward path 121a is larger than the cross-sectional area of the return path 121b.
According to these flake ice manufacturing apparatuses 101, the cooling power of the metal plate 120 can be improved.
 本発明が適用されるフレークアイス製造装置101において、
 往路121pと復路121qとは、金属プレート120の一方の表面側と他方の表面側とに偏在して形成されている。
 このフレークアイス製造装置101によれば、金属プレート120の片面側を効率的に冷却することができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The forward path 121p and the return path 121q are formed unevenly on one surface side and the other surface side of the metal plate 120.
According to the flake ice manufacturing apparatus 101, one side of the metal plate 120 can be efficiently cooled.
 本発明が適用されるフレークアイス製造装置101において、
 往路121pと復路121qとの少なくともいずれか一方は、渦巻き状に形成されている。
 このフレークアイス製造装置101によれば、往路121pと復路121qの少なくともいずれか一方が渦巻き状に形成されていることにより、冷媒がスムーズに流れるようにすることができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
At least one of the forward path 121p and the return path 121q is formed in a spiral shape.
According to the flake ice manufacturing apparatus 101, since at least one of the forward path 121p and the backward path 121q is formed in a spiral shape, the refrigerant can flow smoothly.
 本発明が適用されるフレークアイス製造装置101において、
 前記金属プレート120は、銅製又は銅合金製である。
 このフレークアイス製造装置101によれば、金属プレート120の内部に設けられた冷媒流路21内を流れる冷媒が金属プレート120を効率的に冷却することができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The metal plate 120 is made of copper or a copper alloy.
According to the flake ice manufacturing apparatus 101, the refrigerant flowing in the refrigerant flow path 21 provided in the metal plate 120 can cool the metal plate 120 efficiently.
 本発明が適用されるフレークアイス製造装置101において、
 回転軸110は、水平姿勢であり、金属プレート120は、起立姿勢である。
 このフレークアイス製造装置101によれば、金属プレート120の表面に生成された氷を自重によって掻き落とすことができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The rotating shaft 110 is in a horizontal posture, and the metal plate 120 is in a standing posture.
According to the flake ice manufacturing apparatus 101, the ice generated on the surface of the metal plate 120 can be scraped off by its own weight.
 本発明が適用されるフレークアイス製造装置101において、
 金属プレート120は、鋳造製である。
 このフレークアイス製造装置101によれば、金属プレート120が鋳造製とされることにより、冷媒流路121を容易に形成することができる。
In the flake ice manufacturing apparatus 101 to which the present invention is applied,
The metal plate 120 is made of casting.
According to the flake ice manufacturing apparatus 101, the coolant channel 121 can be easily formed by making the metal plate 120 as a casting.
101:フレークアイス製造装置、110:回転軸、120:金属プレート、120a:側縁、120b:側縁、121:冷媒流路、121a:往路、121b:復路、121c:仕切壁、121d:折返し部、121p:往路、121q:復路、130:ノズル、131:パイプ、141:スクレーパ
 
 
 
101: flake ice production apparatus, 110: rotating shaft, 120: metal plate, 120a: side edge, 120b: side edge, 121: refrigerant flow path, 121a: forward path, 121b: return path, 121c: partition wall, 121d: folding part 121p: Outward path, 121q: Return path, 130: Nozzle, 131: Pipe, 141: Scraper

Claims (10)

  1.  回転軸と、
     曲線部分を有する冷媒流路を内部に設けた1枚又は複数枚の金属プレートと、
     前記金属プレートの一方又は両方の表面に向けてブラインを噴射するノズルと、
     前記回転軸に固定されて回転するスクレーパと、
     を備え、
     前記ノズルから前記金属プレートの表面に向けて噴射されたブラインが前記金属プレートの表面で凍結し生成された氷を回転する前記スクレーパによって掻き取ってフレークアイスを製造する、
     フレークアイス製造装置。
    A rotation axis;
    One or a plurality of metal plates provided therein with a coolant channel having a curved portion;
    A nozzle for injecting brine toward one or both surfaces of the metal plate;
    A scraper fixed to the rotating shaft and rotating;
    With
    Brine sprayed from the nozzle toward the surface of the metal plate is frozen on the surface of the metal plate and scraped by the rotating scraper to produce flake ice.
    Flakes ice making equipment.
  2.  前記冷媒流路は、前記金属プレートの側縁から前記金属プレートの中心側に向かう往路と、前記金属プレートの中心側から前記金属プレートの側縁に向かう復路とを備え、前記往路と前記復路とが隣り合い、前記金属プレートの中心側に折返し部を有する、
     請求項1に記載のフレークアイス製造装置。
    The refrigerant flow path includes a forward path from the side edge of the metal plate toward the center side of the metal plate, and a return path from the center side of the metal plate toward the side edge of the metal plate, and the forward path and the return path; Next to each other, and has a folded portion on the center side of the metal plate,
    The flake ice manufacturing apparatus of Claim 1.
  3.  前記往路と前記復路とは、交互に隣り合う渦巻き状に形成されている、
     請求項2に記載のフレークアイス製造装置。
    The forward path and the return path are formed in a spiral shape that is alternately adjacent,
    The flake ice manufacturing apparatus of Claim 2.
  4.  前記往路は、角筒状に形成され、前記復路は、円筒状に形成されている、
     請求項3に記載のフレークアイス製造装置。
    The forward path is formed in a rectangular tube shape, and the return path is formed in a cylindrical shape.
    The flake ice manufacturing apparatus of Claim 3.
  5.  前記往路の断面積は、前記復路の断面積よりも大きくされている、
     請求項3又は4に記載のフレークアイス製造装置。
    The cross-sectional area of the forward path is larger than the cross-sectional area of the return path,
    The flake ice manufacturing apparatus of Claim 3 or 4.
  6.  前記往路と前記復路とは、前記金属プレートの一方の表面側と他方の表面側とに偏在して形成されている、
     請求項2に記載のフレークアイス製造装置。
    The forward path and the return path are formed unevenly on one surface side and the other surface side of the metal plate,
    The flake ice manufacturing apparatus of Claim 2.
  7.  前記往路と前記復路との少なくともいずれか一方は、渦巻き状に形成されている、
     請求項6に記載のフレークアイス製造装置。
    At least one of the forward path and the return path is formed in a spiral shape,
    The flake ice manufacturing apparatus of Claim 6.
  8.  前記金属プレートは、銅製又は銅合金製である、
     請求項1乃至7のうちいずれか1項に記載のフレークアイス製造装置。
    The metal plate is made of copper or copper alloy,
    The flake ice manufacturing apparatus of any one of Claims 1 thru | or 7.
  9.  前記回転軸は、水平姿勢であり、前記金属プレートは、起立姿勢である、
     請求項1乃至8のうちいずれか1項に記載のフレークアイス製造装置。
    The rotating shaft is in a horizontal posture, and the metal plate is in a standing posture.
    The flake ice manufacturing apparatus of any one of Claims 1 thru | or 8.
  10.  前記金属プレートは、鋳造製である、
     請求項1乃至9のうちいずれか1項に記載のフレークアイス製造装置。
     
     
    The metal plate is made of cast,
    The flake ice manufacturing apparatus of any one of Claims 1 thru | or 9.

PCT/JP2019/002262 2018-02-22 2019-01-24 Flake ice production apparatus WO2019163387A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029384 2018-02-22
JP2018029384A JP7153302B2 (en) 2018-02-22 2018-02-22 flake ice making equipment

Publications (1)

Publication Number Publication Date
WO2019163387A1 true WO2019163387A1 (en) 2019-08-29

Family

ID=67688040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002262 WO2019163387A1 (en) 2018-02-22 2019-01-24 Flake ice production apparatus

Country Status (2)

Country Link
JP (1) JP7153302B2 (en)
WO (1) WO2019163387A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023002881A1 (en) 2021-07-20 2023-01-26 ブランテックインターナショナル株式会社 Ice-making device and ice-making method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217509A (en) * 1963-05-03 1965-11-16 Remcor Prod Co Ice making and vending apparatus
JPS5135146A (en) * 1974-09-12 1976-03-25 Jei Toroiaa Aran
US4357807A (en) * 1981-01-09 1982-11-09 Jerry Aleksandrow Low energy ice making apparatus
JPS63108177A (en) * 1986-08-19 1988-05-13 サンウエル エンジニアリング カンパニ− リミテツド Corrugated plate heat exchanger
CN201575650U (en) * 2009-12-21 2010-09-08 郭茂和 Ice storage structure
JP2012167922A (en) * 2004-06-23 2012-09-06 Gerber Lionel Heat exchanger for use in cooling liquid

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234770A (en) * 1988-03-15 1989-09-20 Tetsuo Yotsuda Artificial snow making device
JPH04165277A (en) * 1990-10-29 1992-06-11 Toshiba Corp Ice making machinery for accumulating heat
JP4897423B2 (en) * 2006-10-06 2012-03-14 ホシザキ電機株式会社 Ice making drum of drum type ice making machine
JP6234529B2 (en) * 2015-11-19 2017-11-22 ブランテック株式会社 How to maintain freshness of fresh seafood
WO2017086461A1 (en) * 2015-11-19 2017-05-26 ブランテック株式会社 Ice, refrigerant, ice production method, method for producing cooled article, method for producing refrigerated article of plant/animal or portion thereof, refrigerating material for plant/animal or portion thereof, method for producing frozen fresh plant/animal or portion thereof, defrosted article or processed article thereof, and freezing material for fresh plant/animal or portion thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217509A (en) * 1963-05-03 1965-11-16 Remcor Prod Co Ice making and vending apparatus
JPS5135146A (en) * 1974-09-12 1976-03-25 Jei Toroiaa Aran
US4357807A (en) * 1981-01-09 1982-11-09 Jerry Aleksandrow Low energy ice making apparatus
JPS63108177A (en) * 1986-08-19 1988-05-13 サンウエル エンジニアリング カンパニ− リミテツド Corrugated plate heat exchanger
JP2012167922A (en) * 2004-06-23 2012-09-06 Gerber Lionel Heat exchanger for use in cooling liquid
CN201575650U (en) * 2009-12-21 2010-09-08 郭茂和 Ice storage structure

Also Published As

Publication number Publication date
JP2019143906A (en) 2019-08-29
JP7153302B2 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
JP2018021753A5 (en)
JP4976879B2 (en) Ice making equipment
CA2471969A1 (en) Heat exchanger for use in an ice machine
WO2019163387A1 (en) Flake ice production apparatus
US2637177A (en) Congelation apparatus and method
CN102425895A (en) Preparation apparatus for high concentration fluid ice
CN107270767B (en) Continuous jet of ice grains cleaning device based on vortex tube
CN109780768B (en) Cold energy recovery type liquid nitrogen deep-freezing quick-freezing fresh-keeping device and method
CN104006594A (en) Tube ice making machine applicable to both fresh water and seawater, and ice making process thereof
US4750336A (en) Arrangement for producing ice slush
KR100924787B1 (en) Apparatus making ice from sea water and fresh water
WO2019163386A1 (en) Flake ice production apparatus and method for producing flake ice production apparatus
JP2020128830A (en) Flake ice manufacturing device and method of manufacturing spiral refrigerant channel
WO2020184601A1 (en) Ice-making device
JP2006516015A (en) Conveyor screw for use as a surface scraper in cooling and refrigeration units
JP6886696B2 (en) Ice machine
DK177178B1 (en) Optimized surface for freezing cylinder
KR101512665B1 (en) Apparatus and method for manufacturing ice
JP2023015785A (en) Ice maker
CN209819971U (en) Cold energy recovery type liquid nitrogen copious cooling quick-freezing fresh-keeping device
JP6482691B1 (en) Production equipment for fine ice containing salt
US1649511A (en) Cooling wheel
RU207756U1 (en) ICE CREAM MIXER
JP2020016427A (en) Apparatus for making fine ice with salinity
JP2000140824A (en) Freeze concentrator utilizing cold fresh air, freeze rarefying device, and ice maker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756791

Country of ref document: EP

Kind code of ref document: A1