WO2019163365A1 - Magneto-caloric element and magnetic heat pump device - Google Patents

Magneto-caloric element and magnetic heat pump device Download PDF

Info

Publication number
WO2019163365A1
WO2019163365A1 PCT/JP2019/001749 JP2019001749W WO2019163365A1 WO 2019163365 A1 WO2019163365 A1 WO 2019163365A1 JP 2019001749 W JP2019001749 W JP 2019001749W WO 2019163365 A1 WO2019163365 A1 WO 2019163365A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
heat pump
peak value
magnetic body
pump device
Prior art date
Application number
PCT/JP2019/001749
Other languages
French (fr)
Japanese (ja)
Inventor
善民 横田
相哲 ▲裴▼
清水 圭一
一也 茂木
裕介 山口
龍一 近藤
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2019163365A1 publication Critical patent/WO2019163365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a magnetocaloric element in which a plurality of magnetic bodies are arranged in cascade, and a technique related to a magnetic heat pump apparatus using the magnetocaloric element.
  • a plurality of work chambers 2 are arranged along the circumferential direction on the outer peripheral side of a permanent magnet fixed to a rotating shaft, and each of the work chambers 2 has a magnetic heat quantity.
  • the magnetic body 6 which comprises an element is accommodated (refer FIG. 1).
  • the opening part of the axial direction edge part of each working chamber 2 is obstruct
  • the communication holes 1a and 1b constitute, for example, an outflow communication hole on the outer peripheral side and an inflow communication hole on the inner peripheral side.
  • FIG. 1 the case where the rotary disk 4 of a rotary valve is provided in the front side of the communicating hole plate 1 is illustrated.
  • the rotating disk 4 rotates in synchronization with the permanent magnet 3.
  • the rotating disk 4 is formed with slit-shaped notches 4a and 4b extending in the circumferential direction as valve ports, and the flow of the heat transfer medium into and out of each working chamber is controlled via the notches 4a and 4b.
  • the valve applied to the magnetic refrigeration heat pump apparatus to which the present invention is applied may not be a rotary valve.
  • the work chamber is filled with a plurality of types of magnetic materials stacked (arranged) in cascade (in series). ing.
  • the heat conduction medium is pumped to each work chamber in a form that is synchronized with the demagnetization and excitation repeated to the magnetic material in the work chamber by the permanent magnet, so that the low temperature in the demagnetization area and the excitation area Take out the high temperature.
  • the present invention has been made paying attention to the above points, and provides a magnetocaloric element capable of further improving the heat exchange efficiency such as refrigeration capacity by a simple design and a magnetic heat pump device using the magnetocaloric element. Objective.
  • the magnetocaloric element of one aspect of the present invention is a magnetocaloric element for a magnetic heat pump device in which a plurality of magnetic bodies having different Curie temperatures are arranged in series along the axial direction, For adjacent magnetic materials, a material that constitutes a low-side magnetic material when the magnetic material having a lower Curie temperature is a low-side magnetic material and the magnetic material having a higher Curie temperature is a high-side magnetic material.
  • the crossing position of the entropy change curve of the material and the entropy change curve of the material constituting the high-side magnetic material is a position where the entropy change value is higher than the half-value width of the entropy change distribution of the material constituting the low-side magnetic material Is the gist.
  • the gist of the magnetic heat pump device is to employ the magnetocaloric element according to the above aspect as the magnetocaloric element to which the heat transfer medium is supplied.
  • a plurality of types having different Curie temperatures are considered in consideration of the half-value width of the entropy change distribution of the material constituting each magnetic body.
  • the temperature difference from the peak value of the high magnetic material is set to 18% or less of the peak value of the magnetic material having the lowest peak value of the adiabatic temperature change distribution, more preferably set so that there is no temperature difference.
  • the plurality of magnetic bodies can be set to the same amount (equal intervals), and the magnetocaloric element can be easily manufactured.
  • the basic configuration of the magnetic refrigeration heat pump apparatus of this embodiment is the same as the conventional configuration shown in FIG. 1, but the configuration of the magnetocaloric elements 20 arranged in the circumferential direction is different.
  • the basic configuration of the magnetic refrigeration heat pump of the present embodiment is such that a permanent magnet 3 is fixed to a rotating shaft 10 that is rotationally driven by a motor (not shown).
  • a plurality of work chambers 2 each containing a magnetocaloric element 20 are arranged on the outer periphery of the permanent magnet 3.
  • the plurality of work chambers 2 are arranged along the circumferential direction so as to form an annular shape concentric with the rotation shaft 10. Further, an annular yoke (not shown) is provided on the outer peripheral side of the plurality of work chambers 2.
  • each work chamber 2 The opening at the axial end of each work chamber 2 is closed by a communication hole plate 1, and a communication hole to each work chamber 2 is formed in the communication hole plate 1 (valve plate) (see FIG. 1). ).
  • a rotary disc 4 of a rotary valve On the front side of the communication hole plate 1 is disposed a rotary disc 4 of a rotary valve that rotates with the rotation of the permanent magnet 3 (see FIG. 1).
  • a slit-shaped notch extending in the circumferential direction opens as a valve port on the rotating disk 4, and the flow of heat transfer medium is controlled through the slit.
  • the outer peripheral side is for outflow and the inner peripheral side is for inflow (see FIG. 1).
  • the configuration of a known magnetic refrigeration heat pump device may be adopted.
  • the magnetocaloric element 20 of the present embodiment is not limited to the magnetic refrigeration heat pump apparatus, and can be applied as long as it is a magnetic heat pump apparatus using the magnetocaloric effect.
  • the structure of the heat pump device can be applied as appropriate.
  • a magnetocaloric element 20 is arranged along the axial direction.
  • the plurality of magnetic bodies M are arranged in order from the material having the low Curie temperature with respect to each working chamber 2 (in FIG. 2, the Curie temperature increases in the order from the left side to the right side in FIG. 2). It is configured to be accommodated along the direction.
  • FIG. 2 exemplifies a case where the plurality of magnetic bodies M to be accommodated are five types, and it is assumed that the Curie temperatures of the materials of the five types of magnetic bodies M have the following relationship. M1 ⁇ M2 ⁇ M3 ⁇ M4 ⁇ M5
  • the five types of magnetic bodies M are sequentially accommodated in the work chamber 2 so that the lengths in the arrangement direction are equal, that is, the respective masses are equal. Are arranged in series.
  • materials having substantially equal peak values ⁇ Tad of the distribution of adiabatic temperature change are used.
  • a magnetic body M made of a manganese-based material is used, and one having a peak value ⁇ Tad of each adiabatic temperature change distribution in the vicinity of 1.6 (K) is employed.
  • the peak value ⁇ Tad of the adiabatic temperature change distribution of each material constituting the plurality of magnetic bodies the peak value of the magnetic body having the lowest peak value of the adiabatic temperature change distribution and the peak value of the adiabatic temperature change distribution are the most.
  • the material is selected so that the temperature difference from the peak value of the magnetic material having a high value becomes 18% or less of the peak value of the magnetic material having the lowest peak value of the adiabatic temperature change distribution.
  • examples of the magnetic material capable of setting the peak value ⁇ Tad of each adiabatic temperature change to substantially the same value include lanthanum-based materials, lanthanum-based hydrogenated materials, and gadolinium-based materials in addition to manganese-based materials.
  • the magnetic bodies M are equally spaced. It was confirmed that it was possible to arrange them in series. For this reason, the temperature difference of the peak value ⁇ Tad is set to 18% or less.
  • the temperature difference of the peak value ⁇ Tad is preferably 10% or less, more preferably 5% or less.
  • the five types of magnetic bodies M adopt the same series of materials and adjust the blending ratio to adjust the entropy change distribution and the Curie temperature while aligning the peak values ⁇ Tad of each adiabatic temperature change distribution. It is possible.
  • the magnetic body having a relatively low Curie temperature is used as the low-side magnetic body (left side in FIG. 3), and the Curie temperature is on the high side.
  • the magnetic body is a high-side magnetic body (right side in FIG. 3)
  • the intersection position P between the entropy change curve of the material constituting the low-side magnetic body and the entropy change curve of the material constituting the high-side magnetic body is The entropy change value ⁇ s is set to be higher than the half-value width 9 of the entropy change distribution of the material constituting the low-side magnetic body.
  • the crossing position P is not particularly problematic as long as the entropy change value is higher than the half-value width 9 of the entropy change of the material composing the low-side magnetic material, but the entropy change distribution of the material composing the low-side magnetic material is not problematic. It is preferable to cross at a position of 80% or less of the peak value. If the peak values of adjacent magnetic materials are too close, if there is no difference in the peak value ⁇ Tad, the difference in Curie temperature between adjacent magnetic materials may be unnecessarily small.
  • the Curie temperature is set higher from the left side to the right side, and among the adjacent magnetic bodies, the magnetic substance on the left side is at a higher temperature than the peak value in the entropy change curve of the left magnetic body.
  • the Curie temperature of the right magnetic material relative to the left magnetic material is relatively set so that the lower temperature curve intersects the peak value in the entropy change curve of the right magnetic material at a position higher than the half-value width 9. design.
  • FIG. 3 illustrates the case where the peak value of the entropy change distribution increases as the Curie temperature increases, but the present invention is not limited to this.
  • a material having a relatively low peak value of the entropy change distribution of the magnetic substance in the middle may be disposed.
  • the Curie temperature of each magnetic material M is not determined and designed first, but is designed so that the curves of the respective entropy change distributions have the above relationship, thereby providing five types of magnetic properties.
  • the Curie temperature of the body M is specified. For this reason, the five types of magnetic bodies M are not necessarily arranged so that the Curie temperatures are increased at regular temperature intervals.
  • the plurality of magnetic bodies are filled in equal amounts, that is, simply at equal intervals to produce the magnetocaloric element 20. it can. For this reason, compared with the structure of patent document 2, the manufacture operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

[Problem] To provide: a magneto-caloric element with which heat exchange efficiency, such as refrigeration capacity, can be further improved by a simple design; and a magnetic heat pump device using the same. [Solution] This magneto-caloric element 20 for magnetic heat pumps has a plurality of magnetic bodies having different Curie temperatures and arranged sequentially along an axial direction, in the order of the Curie temperatures thereof. If the magnetic body having a lower Curie temperature among adjacent magnetic bodies is referred to as a low-side magnetic body and the magnetic body having a higher Curie temperature among the adjacent magnetic bodies is referred to as a high-side magnetic body, the intersection point P between the entropy variation curve of the material constituting the low-side magnetic body and the entropy variation curve of the material constituting the high-side magnetic body is located at a position at which the entropy variation value is higher than the half-value width 9 of the entropy variation distribution of the material constituting the low-side magnetic body.

Description

磁気熱量素子及び磁気ヒートポンプ装置Magneto-caloric element and magnetic heat pump device
 本発明は、複数の磁性体をカスケード状に配列した磁気熱量素子、及びそれを用いた磁気ヒートポンプ装置に関する技術である。 The present invention relates to a magnetocaloric element in which a plurality of magnetic bodies are arranged in cascade, and a technique related to a magnetic heat pump apparatus using the magnetocaloric element.
 磁気冷凍ヒートポンプ装置は、特許文献1に記載のように、回転軸に固定された永久磁石の外周側に円周方向に沿って複数の作業室2が配列し、各作業室2にそれぞれ磁気熱量素子を構成する磁性体6が収納されている(図1参照)。また、永久磁石3の回転に同期して、作業室2内の磁性体6への熱伝導媒体(水などの作業流体)の流入・流出を調節する弁を備える。
 各作業室2の軸方向端部の開口部は、例えば特許文献1や図1に示す、連通孔プレート1で閉塞され、その連通孔プレート1(バルブプレート)に各作業室2への連通孔1a、1bが形成されている。連通孔1a、1bは、例えば外周側の流出用連通孔と内周側の流入用連通孔を構成する。
In the magnetic refrigeration heat pump apparatus, as described in Patent Document 1, a plurality of work chambers 2 are arranged along the circumferential direction on the outer peripheral side of a permanent magnet fixed to a rotating shaft, and each of the work chambers 2 has a magnetic heat quantity. The magnetic body 6 which comprises an element is accommodated (refer FIG. 1). In addition, in synchronization with the rotation of the permanent magnet 3, there is provided a valve for adjusting inflow / outflow of the heat conduction medium (work fluid such as water) to the magnetic body 6 in the work chamber 2.
The opening part of the axial direction edge part of each working chamber 2 is obstruct | occluded by the communicating hole plate 1 shown, for example in patent document 1 and FIG. 1, and the communicating hole to each working room 2 is made into the communicating hole plate 1 (valve plate). 1a and 1b are formed. The communication holes 1a and 1b constitute, for example, an outflow communication hole on the outer peripheral side and an inflow communication hole on the inner peripheral side.
 図1では、その連通孔プレート1の前側には、ロータリー弁の回転ディスク4を備える場合が例示されている。回転ディスク4は永久磁石3と同期をとって回転する。その回転ディスク4には、円周方向に延びるスリット状の切欠き4a、4bが弁のポートとして形成され、その切欠き4a、4bを介して各作業室への熱伝導媒体の流出入制御が行われる。ここで例えばスリット状の切欠き4a、4bのうち、外周側が流出用であり、内周側が流入用である。
 ここで、本発明が適用される磁気冷凍ヒートポンプ装置に適用される弁は、ロータリー弁でなくても良い。
 また、熱交換効率を向上させる目的で、特許文献2に記載のように、作業室に対し複数種類の磁性材料をカスケード状(直列に)に積層(配置)するように充填することも行われている。
In FIG. 1, the case where the rotary disk 4 of a rotary valve is provided in the front side of the communicating hole plate 1 is illustrated. The rotating disk 4 rotates in synchronization with the permanent magnet 3. The rotating disk 4 is formed with slit- shaped notches 4a and 4b extending in the circumferential direction as valve ports, and the flow of the heat transfer medium into and out of each working chamber is controlled via the notches 4a and 4b. Done. Here, for example, of the slit- shaped notches 4a and 4b, the outer peripheral side is for outflow, and the inner peripheral side is for inflow.
Here, the valve applied to the magnetic refrigeration heat pump apparatus to which the present invention is applied may not be a rotary valve.
In addition, for the purpose of improving the heat exchange efficiency, as described in Patent Document 2, the work chamber is filled with a plurality of types of magnetic materials stacked (arranged) in cascade (in series). ing.
特許第5488580号公報Japanese Patent No. 5488580 特許第5884806号公報Japanese Patent No. 5884806
 磁気ヒートポンプ装置では、永久磁石による作業室内の磁性材料への消磁と励磁の繰り返しと同期させる形で、熱伝導媒体を各作業室に圧送することで、消磁領域においては低温を、励磁領域においては高温を取り出す。
 本発明は、上記のような点に着目してなされたもので、簡易な設計によって冷凍能力などの熱交換効率を更に向上可能な磁気熱量素子及びそれを使用した磁気ヒートポンプ装置を提供することを目的とする。
In the magnetic heat pump device, the heat conduction medium is pumped to each work chamber in a form that is synchronized with the demagnetization and excitation repeated to the magnetic material in the work chamber by the permanent magnet, so that the low temperature in the demagnetization area and the excitation area Take out the high temperature.
The present invention has been made paying attention to the above points, and provides a magnetocaloric element capable of further improving the heat exchange efficiency such as refrigeration capacity by a simple design and a magnetic heat pump device using the magnetocaloric element. Objective.
 課題を解決するために、本発明の一態様の磁気熱量素子は、キュリー温度が異なる複数の磁性体を、軸方向に沿って直列に配列した、磁気ヒートポンプ装置用の磁気熱量素子であって、隣り合う磁性体について、相対的に、キュリー温度が低い側の磁性体を低側磁性体と、キュリー温度が高い側の磁性体を高側磁性体としたとき、低側磁性体を構成する材料のエントロピー変化曲線と、高側磁性体を構成する材料のエントロピー変化曲線との交差位置が、低側磁性体を構成する材料のエントロピー変化分布の半値幅よりもエントロピー変化値が高い位置であることを要旨とする。 In order to solve the problem, the magnetocaloric element of one aspect of the present invention is a magnetocaloric element for a magnetic heat pump device in which a plurality of magnetic bodies having different Curie temperatures are arranged in series along the axial direction, For adjacent magnetic materials, a material that constitutes a low-side magnetic material when the magnetic material having a lower Curie temperature is a low-side magnetic material and the magnetic material having a higher Curie temperature is a high-side magnetic material. The crossing position of the entropy change curve of the material and the entropy change curve of the material constituting the high-side magnetic material is a position where the entropy change value is higher than the half-value width of the entropy change distribution of the material constituting the low-side magnetic material Is the gist.
 また、本発明の一態様の磁気ヒートポンプ装置は、熱伝導媒体が供給される磁気熱量素子として、上記一態様の磁気熱量素子を採用することを要旨とする。 The gist of the magnetic heat pump device according to one aspect of the present invention is to employ the magnetocaloric element according to the above aspect as the magnetocaloric element to which the heat transfer medium is supplied.
 本発明の一態様によれば、キュリー温度が異なる複数種類の磁性体を積層配置させる際に、各磁性体を構成する材料のエントロピー変化分布の半値幅を考慮して、キュリー温度が異なる複数種類の磁性体を直列配置することで、簡易な構成によって、更に効率良く熱量を取り出すことが可能となる。
 更に、複数の磁性体を構成する各材料の断熱温度変化の分布のピーク値について、最も断熱温度変化の分布のピーク値が低い磁性体のピーク値と、最も断熱温度変化の分布のピーク値が高い磁性体のピーク値との温度差が、最も断熱温度変化の分布のピーク値が低い磁性体のピーク値の18%以下、より好ましくは温度差がないように設定することで、直列に配置する複数の磁性体を同量(等間隔)に設定することが可能となり、磁気熱量素子の作製が容易となる。
According to one aspect of the present invention, when a plurality of types of magnetic bodies having different Curie temperatures are arranged in a stack, a plurality of types having different Curie temperatures are considered in consideration of the half-value width of the entropy change distribution of the material constituting each magnetic body. By arranging the magnetic bodies in series, it is possible to extract heat more efficiently with a simple configuration.
Furthermore, regarding the peak value of the distribution of the adiabatic temperature change of each material constituting the plurality of magnetic bodies, the peak value of the magnetic body having the lowest distribution value of the adiabatic temperature change and the peak value of the distribution of the adiabatic temperature change are the most. The temperature difference from the peak value of the high magnetic material is set to 18% or less of the peak value of the magnetic material having the lowest peak value of the adiabatic temperature change distribution, more preferably set so that there is no temperature difference. The plurality of magnetic bodies can be set to the same amount (equal intervals), and the magnetocaloric element can be easily manufactured.
磁気冷凍ヒートポンプ装置の構成を説明する概略分解図である。It is a schematic exploded view explaining the structure of a magnetic refrigeration heat pump apparatus. 本発明に基づく磁気熱量素子の配列を例示する断面図である。It is sectional drawing which illustrates the arrangement | sequence of the magnetocaloric element based on this invention. エントロピー変化曲線の重なりを例示する図である。It is a figure which illustrates the overlap of an entropy change curve.
 次に本発明に実施形態について図面を参照して説明する。
 <第1の実施形態>
 (構成)
 本実施形態の磁気冷凍ヒートポンプ装置の基本構成は、図1に示す従来構成と同様であるが、周方向に配列した磁気熱量素子20の構成が異なる。
 本実施形態の磁気冷凍ヒートポンプの基本構成は、図2に示すように、不図示のモータで回転駆動される回転軸10に永久磁石3が固定されている。永久磁石3の外周には、それぞれ磁気熱量素子20が収容された複数の作業室2が配置されている。複数の作業室2は、回転軸10と同心の円環状となるように、円周方向に沿って配列している。更に複数の作業室2の外周側には、円環状のヨーク(不図示)が設けられている。
Next, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
(Constitution)
The basic configuration of the magnetic refrigeration heat pump apparatus of this embodiment is the same as the conventional configuration shown in FIG. 1, but the configuration of the magnetocaloric elements 20 arranged in the circumferential direction is different.
As shown in FIG. 2, the basic configuration of the magnetic refrigeration heat pump of the present embodiment is such that a permanent magnet 3 is fixed to a rotating shaft 10 that is rotationally driven by a motor (not shown). A plurality of work chambers 2 each containing a magnetocaloric element 20 are arranged on the outer periphery of the permanent magnet 3. The plurality of work chambers 2 are arranged along the circumferential direction so as to form an annular shape concentric with the rotation shaft 10. Further, an annular yoke (not shown) is provided on the outer peripheral side of the plurality of work chambers 2.
 各作業室2の軸方向端部の開口部は、それぞれ連通孔プレート1で閉塞され、その連通孔プレート1(バルブプレート)に各作業室2への連通孔が形成されている(図1参照)。その連通孔プレート1の前側には、永久磁石3の回転と共に回転するロータリー弁の回転ディスク4が配置される(図1参照)。回転ディスク4には、円周方向に延びるスリット状の切欠きが弁のポートとして開口し、そのスリットを介して熱伝導媒体の流出入制御が行われる。例えばスリットのうち、外周側が流出用であり、内周側が流入用である(図1参照)。
 ここで、以下に説明する磁気熱量素子20以外の構成については、公知の磁気冷凍ヒートポンプ装置の構成を採用しても良い。また、本実施形態の磁気熱量素子20は、磁気冷凍ヒートポンプ装置に限定されず、磁気熱量効果を用いた磁気ヒートポンプ装置であれば適用可能であり、磁気熱量素子20以外は、他の公知の磁気ヒートポンプ装置の構造を適宜適用可能である。
The opening at the axial end of each work chamber 2 is closed by a communication hole plate 1, and a communication hole to each work chamber 2 is formed in the communication hole plate 1 (valve plate) (see FIG. 1). ). On the front side of the communication hole plate 1 is disposed a rotary disc 4 of a rotary valve that rotates with the rotation of the permanent magnet 3 (see FIG. 1). A slit-shaped notch extending in the circumferential direction opens as a valve port on the rotating disk 4, and the flow of heat transfer medium is controlled through the slit. For example, among the slits, the outer peripheral side is for outflow and the inner peripheral side is for inflow (see FIG. 1).
Here, as for the configuration other than the magnetocaloric element 20 described below, the configuration of a known magnetic refrigeration heat pump device may be adopted. In addition, the magnetocaloric element 20 of the present embodiment is not limited to the magnetic refrigeration heat pump apparatus, and can be applied as long as it is a magnetic heat pump apparatus using the magnetocaloric effect. The structure of the heat pump device can be applied as appropriate.
 <磁気熱量素子20>
 各作業室2には、磁気熱量素子20が軸方向に沿って配置されている。磁気熱量素子20は、各作業室2に対し、複数の磁性体Mが、キュリー温度の低い材料から順番(図2では、紙面左側から右側に向けてキュリー温度の温度が高くなる順)に軸方向に沿って収容されて構成されている。図2では、収容される複数の磁性体Mが5種類の場合を例示し、その5種類の磁性体Mの材料の各キュリー温度が下記のような関係にあるものとする。
  M1 < M2 <M3 < M4 < M5
<Magnetic calorific element 20>
In each working chamber 2, a magnetocaloric element 20 is arranged along the axial direction. In the magnetocaloric element 20, the plurality of magnetic bodies M are arranged in order from the material having the low Curie temperature with respect to each working chamber 2 (in FIG. 2, the Curie temperature increases in the order from the left side to the right side in FIG. 2). It is configured to be accommodated along the direction. FIG. 2 exemplifies a case where the plurality of magnetic bodies M to be accommodated are five types, and it is assumed that the Curie temperatures of the materials of the five types of magnetic bodies M have the following relationship.
M1 <M2 <M3 <M4 <M5
 この5種類の磁性体Mは、図2に示すように、並び方向の各長さが等しくなるように設定して、つまり各質量が等量になるようにして、作業室2に順番に収容されて直列配置されている。
 5種類の磁性体Mとしては、断熱温度変化の分布のピーク値ΔTadがほぼ等しい材料を使用する。
 本実施形態では、マンガン系材料からなる磁性体Mを使用し、各断熱温度変化分布のピーク値ΔTadが1.6(K)近辺のものを採用した。
As shown in FIG. 2, the five types of magnetic bodies M are sequentially accommodated in the work chamber 2 so that the lengths in the arrangement direction are equal, that is, the respective masses are equal. Are arranged in series.
As the five types of magnetic bodies M, materials having substantially equal peak values ΔTad of the distribution of adiabatic temperature change are used.
In the present embodiment, a magnetic body M made of a manganese-based material is used, and one having a peak value ΔTad of each adiabatic temperature change distribution in the vicinity of 1.6 (K) is employed.
 具体的には、複数の磁性体を構成する各材料の断熱温度変化分布のピーク値ΔTadについて、最も断熱温度変化分布のピーク値が低い磁性体のピーク値と、最も断熱温度変化分布のピーク値が高い磁性体のピーク値との温度差が、最も断熱温度変化の分布のピーク値が低い磁性体のピーク値の18%以下となるように材料の選定を行う。
 ここで、各断熱温度変化のピーク値ΔTadをほぼ同じ値に設定可能な磁性体の材料として、マンガン系材料の他、ランタン系材料、ランタン系水素化材料、ガドリニウム系材料が例示できる。
Specifically, regarding the peak value ΔTad of the adiabatic temperature change distribution of each material constituting the plurality of magnetic bodies, the peak value of the magnetic body having the lowest peak value of the adiabatic temperature change distribution and the peak value of the adiabatic temperature change distribution are the most. The material is selected so that the temperature difference from the peak value of the magnetic material having a high value becomes 18% or less of the peak value of the magnetic material having the lowest peak value of the adiabatic temperature change distribution.
Here, examples of the magnetic material capable of setting the peak value ΔTad of each adiabatic temperature change to substantially the same value include lanthanum-based materials, lanthanum-based hydrogenated materials, and gadolinium-based materials in addition to manganese-based materials.
 発明者が確認したところ、マンガン系及びランタン系材料では、ΔTad=1.6K±32%、ランタン系水素化材料ではΔTad=2.9K±18%であれば、各磁性体Mをそれぞれ等間隔となるようにして直列に配置することが可能であることを確認した。このため、ピーク値ΔTadの温度差を18%以下に設定した。ピーク値ΔTadの温度差は、好ましくは10%以下、より好ましくは5パーセント以下である。
 ここで、5種類の磁性体Mは、同じ系列の材料を採用し、その配合比を調整することで、各断熱温度変化分布のピーク値ΔTadを揃えつつ、エントロピー変化分布やキュリー温度を調整することが可能である。
As a result of the inventor's confirmation, ΔTad = 1.6K ± 32% for manganese-based and lanthanum-based materials, and ΔTad = 2.9K ± 18% for lanthanum-based hydrogenated materials, the magnetic bodies M are equally spaced. It was confirmed that it was possible to arrange them in series. For this reason, the temperature difference of the peak value ΔTad is set to 18% or less. The temperature difference of the peak value ΔTad is preferably 10% or less, more preferably 5% or less.
Here, the five types of magnetic bodies M adopt the same series of materials and adjust the blending ratio to adjust the entropy change distribution and the Curie temperature while aligning the peak values ΔTad of each adiabatic temperature change distribution. It is possible.
 また、本実施形態では、図3に示すように、隣り合う磁性体について、相対的に、キュリー温度が低い側の磁性体を低側磁性体(図3中左側)、キュリー温度が高い側の磁性体を高側磁性体(図3中右側)としたとき、低側磁性体を構成する材料のエントロピー変化曲線と、高側磁性体を構成する材料のエントロピー変化曲線との交差位置Pが、低側磁性体を構成する材料のエントロピー変化分布の半値幅9よりもエントロピー変化値Δsが高い位置となるように設定する。
 交差位置Pは、低側磁性体を構成する材料のエントロピー変化の半値幅9よりもエントロピー変化値が高い位置であれば特に問題はないが、低側磁性体を構成する材料のエントロピー変化分布のピーク値の80パーセント以下の位置で交差させることが好ましい。隣り合う磁性体のピーク値が近づきすぎると、ピーク値ΔTadに差がない場合、隣り合う磁性体間のキュリー温度の差が、必要以上に小さくなる可能性がある。
In the present embodiment, as shown in FIG. 3, for the adjacent magnetic bodies, the magnetic body having a relatively low Curie temperature is used as the low-side magnetic body (left side in FIG. 3), and the Curie temperature is on the high side. When the magnetic body is a high-side magnetic body (right side in FIG. 3), the intersection position P between the entropy change curve of the material constituting the low-side magnetic body and the entropy change curve of the material constituting the high-side magnetic body is The entropy change value Δs is set to be higher than the half-value width 9 of the entropy change distribution of the material constituting the low-side magnetic body.
The crossing position P is not particularly problematic as long as the entropy change value is higher than the half-value width 9 of the entropy change of the material composing the low-side magnetic material, but the entropy change distribution of the material composing the low-side magnetic material is not problematic. It is preferable to cross at a position of 80% or less of the peak value. If the peak values of adjacent magnetic materials are too close, if there is no difference in the peak value ΔTad, the difference in Curie temperature between adjacent magnetic materials may be unnecessarily small.
 図3に示す設定例では、左側から右側の行くほどキュリー温度が高く設定され、隣り合う磁性体のうち、左側の磁性体のエントロピー変化曲線におけるピーク値よりも高温側で且つ当該左側の磁性体の半値幅9よりも高い位置で、右側の磁性体のエントロピー変化曲線におけるピーク値よりも低温側の曲線が交差するように、相対的に、左側の磁性体に対する右側の磁性体のキュリー温度を設計する。
 ここで、図3ではキュリー温度が高くなるほど、エントロピー変化分布のピーク値が高くなる場合を例示しているが、これに限定されない。途中の磁性体のエントロピー変化分布のピーク値が相対的に低い材料が配置されていても良い。
 このように、本実施形態では、各磁性体Mのキュリー温度を先に決定して設計するのではなく、各エントロピー変化分布の曲線について上記関係となるように設計することで、5種類の磁性体Mのキュリー温度を特定する。このため、5種類の磁性体Mのキュリー温度が必ずしも等温度間隔で高くなるように配置されるとは限らない。
In the setting example shown in FIG. 3, the Curie temperature is set higher from the left side to the right side, and among the adjacent magnetic bodies, the magnetic substance on the left side is at a higher temperature than the peak value in the entropy change curve of the left magnetic body. The Curie temperature of the right magnetic material relative to the left magnetic material is relatively set so that the lower temperature curve intersects the peak value in the entropy change curve of the right magnetic material at a position higher than the half-value width 9. design.
Here, FIG. 3 illustrates the case where the peak value of the entropy change distribution increases as the Curie temperature increases, but the present invention is not limited to this. A material having a relatively low peak value of the entropy change distribution of the magnetic substance in the middle may be disposed.
As described above, in this embodiment, the Curie temperature of each magnetic material M is not determined and designed first, but is designed so that the curves of the respective entropy change distributions have the above relationship, thereby providing five types of magnetic properties. The Curie temperature of the body M is specified. For this reason, the five types of magnetic bodies M are not necessarily arranged so that the Curie temperatures are increased at regular temperature intervals.
 (動作その他)
 永久磁石3の回転に伴い、永久磁石3の磁極に近い側の磁性体Mに磁場が印加(励磁)されて加熱されると共に、永久磁石3の磁極から離れて消磁された磁性体Mでは温度が下がって低温となる。
 このとき、隣り合う磁性体のエントロピー変化分布の関係が、上記のように設定することで、全体としての潜熱が高くなり、直列配置の磁性体Mによって、低温及び高温をより熱交換効率を高くし、大きな熱量として取り出すことが可能となる。本実施形態では、高い冷凍能力を得ることが出来ることを確認した。
(Operation other)
Along with the rotation of the permanent magnet 3, a magnetic field is applied (excited) to the magnetic body M on the side close to the magnetic pole of the permanent magnet 3 to be heated, and the magnetic body M demagnetized away from the magnetic pole of the permanent magnet 3 has a temperature. Falls and becomes low temperature.
At this time, by setting the relationship between the entropy change distributions of the adjacent magnetic bodies as described above, the latent heat as a whole is increased, and the heat exchange efficiency is further increased between the low temperature and the high temperature by the magnetic bodies M arranged in series. However, it can be taken out as a large amount of heat. In this embodiment, it was confirmed that a high refrigeration capacity can be obtained.
 さらに、直列配置する複数の磁性体Mの断熱温度変化の分布のピーク値ΔTadを揃えることで、複数の磁性体を等量づつに、つまり単純に等間隔で充填させて磁気熱量素子20を作製できる。このため、特許文献2の構成に比べて、熱交換効率を高めつつ磁気熱量素子20の作製作業が簡易となる。
 また、各磁性体Mのエントロピー変化分布のピーク値を揃える必要がないため、磁性体Mとして使用する磁性材料の選定範囲を狭める必要がない。
 なお、本実施形態では、磁性体として粒状体を想定して説明しているが、その他の形態の磁性体を用いてもよい。
Further, by aligning the peak value ΔTad of the distribution of the adiabatic temperature change of the plurality of magnetic bodies M arranged in series, the plurality of magnetic bodies are filled in equal amounts, that is, simply at equal intervals to produce the magnetocaloric element 20. it can. For this reason, compared with the structure of patent document 2, the manufacture operation | work of the magnetocaloric element 20 becomes easy, improving heat exchange efficiency.
Further, since it is not necessary to align the peak values of the entropy change distribution of each magnetic body M, it is not necessary to narrow the selection range of the magnetic material used as the magnetic body M.
In the present embodiment, a granular material is assumed as the magnetic material. However, other forms of magnetic material may be used.
 ここで、発明者が確認したところ、エントロピー変化Δsについて、少なくとも下記範囲であれば、等量充填でも性能が確保できることも確認している。
マンガン系材料:8.5J/kgK±43%
ランタン系材料:3.9J/kgK±16%
ランタン系水素化材料:11.4J/kgK±29%
 すなわち、複数の磁性体を等量充填で配置しても、直列配置する複数の磁性体のエントロピー変化分布のピーク値を同じ値に揃える必要がない。すなわち、材料の選定条件が厳しくなることもない。
 ここで、上記説明では、直列配置した複数の磁性体が等間隔の場合を例示しているが、多少の長さ違いが存在していても構わない。例えば10%以下の長さ違いを有していても良い。
Here, when the inventor confirmed, about entropy change (DELTA) s, if it is at least the following range, it has also confirmed that a performance can be ensured by equivalent filling.
Manganese material: 8.5 J / kgK ± 43%
Lanthanum material: 3.9 J / kgK ± 16%
Lanthanum hydrogenation material: 11.4J / kgK ± 29%
That is, even if a plurality of magnetic bodies are arranged in equal amounts, it is not necessary to make the peak values of the entropy change distributions of the plurality of magnetic bodies arranged in series the same value. That is, the material selection conditions do not become severe.
Here, in the above description, the case where a plurality of magnetic bodies arranged in series are equally spaced is illustrated, but there may be a slight difference in length. For example, the length difference may be 10% or less.
2 作業室
3 永久磁石
9 半値幅
10 回転軸
20 磁気熱量素子
M 磁性体
P 交差位置
 
2 Work chamber 3 Permanent magnet 9 Half width 10 Rotating shaft 20 Magneto-caloric element M Magnetic body P Crossing position

Claims (5)

  1.  キュリー温度が異なる複数の磁性体を、軸方向に沿って直列に配列した、磁気ヒートポンプ装置用の磁気熱量素子であって、
     隣り合う磁性体について、相対的に、キュリー温度が低い側の磁性体を低側磁性体と、キュリー温度が高い側の磁性体を高側磁性体としたとき、
     低側磁性体を構成する材料のエントロピー変化曲線と、高側磁性体を構成する材料のエントロピー変化曲線との交差位置が、低側磁性体を構成する材料のエントロピー変化分布の半値幅よりもエントロピー変化値が高い位置であることを特徴とする磁気ヒートポンプ装置用の磁気熱量素子。
    A magnetocaloric element for a magnetic heat pump device, in which a plurality of magnetic bodies having different Curie temperatures are arranged in series along the axial direction,
    For adjacent magnetic bodies, when the magnetic body on the side with a low Curie temperature is a low-side magnetic body and the magnetic body on the side with a high Curie temperature is a high-side magnetic body,
    The intersection of the entropy change curve of the material composing the low-side magnetic material and the entropy change curve of the material composing the high-side magnetic material is more entropy than the half-value width of the entropy change distribution of the material composing the low-side magnetic material. A magnetocaloric element for a magnetic heat pump device, characterized in that the change value is at a high position.
  2.  上記複数の磁性体の少なくとも1つのエントロピー変化分布のピーク値が、他の磁性体のエントロピー変化分布のピーク値と異なることを特徴とする請求項1に記載した磁気ヒートポンプ装置用の磁気熱量素子。 The magnetocaloric element for a magnetic heat pump device according to claim 1, wherein the peak value of at least one entropy change distribution of the plurality of magnetic bodies is different from the peak value of the entropy change distribution of other magnetic bodies.
  3.  上記複数の磁性体を構成する各材料の断熱温度変化の分布のピーク値について、最も断熱温度変化の分布のピーク値が低い磁性体のピーク値と、最も断熱温度変化の分布のピーク値が高い磁性体のピーク値との温度差が、最も断熱温度変化の分布のピーク値が低い磁性体のピーク値の18%以下としたことを特徴とする請求項1又は請求項2に記載した磁気ヒートポンプ装置用の磁気熱量素子。 About the peak value of the distribution of the adiabatic temperature change of each material constituting the plurality of magnetic bodies, the peak value of the magnetic body having the lowest distribution value of the adiabatic temperature change and the highest peak value of the distribution of the adiabatic temperature change are the highest. 3. The magnetic heat pump according to claim 1, wherein the temperature difference from the peak value of the magnetic material is 18% or less of the peak value of the magnetic material having the lowest peak value of the adiabatic temperature change distribution. Magneto-caloric element for equipment.
  4.  上記直列に配列する複数の磁性体を等間隔に配列させたことを特徴とする請求項1~請求項3のいずれか1項に記載した磁気ヒートポンプ装置用の磁気熱量素子。 4. The magnetocaloric element for a magnetic heat pump device according to claim 1, wherein the plurality of magnetic bodies arranged in series are arranged at equal intervals.
  5.  中心軸周りに回転可能な永久磁石と、上記永久磁石の外周側に円環状に配置されると共に複数の磁気熱量素子が円周方向に並列して設けられ、上記各磁気熱量素子が装置の軸方向に沿って延在する磁気ヒートポンプ装置であって、
     上記磁気熱量素子が、請求項1~請求項4のいずれか1項に記載した磁気熱量素子であることを特徴とする磁気ヒートポンプ装置。
    A permanent magnet rotatable around a central axis, and a plurality of magnetocaloric elements arranged in parallel in the circumferential direction and arranged in an annular shape on the outer peripheral side of the permanent magnet, each of the magnetocaloric elements being connected to the axis of the apparatus A magnetic heat pump device extending along a direction,
    5. A magnetic heat pump device according to claim 1, wherein the magnetocaloric element is the magnetocaloric element according to any one of claims 1 to 4.
PCT/JP2019/001749 2018-02-23 2019-01-22 Magneto-caloric element and magnetic heat pump device WO2019163365A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018030642A JP2019143938A (en) 2018-02-23 2018-02-23 Magneto-caloric element and magnetic heat pump device
JP2018-030642 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163365A1 true WO2019163365A1 (en) 2019-08-29

Family

ID=67686770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001749 WO2019163365A1 (en) 2018-02-23 2019-01-22 Magneto-caloric element and magnetic heat pump device

Country Status (2)

Country Link
JP (1) JP2019143938A (en)
WO (1) WO2019163365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066589A (en) * 2020-08-31 2020-12-11 中国科学院理化技术研究所 Magnetic refrigeration system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7032684B2 (en) * 2020-03-30 2022-03-09 ダイキン工業株式会社 Solid refrigeration equipment
CN112361642B (en) * 2020-11-03 2022-03-25 珠海格力电器股份有限公司 Magnetic regenerator, cold accumulation bed, magnetic refrigeration system and magnetic refrigeration control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189543A (en) * 2012-03-13 2013-09-26 Toyama Univ Magnetic refrigeration material, cold storage material, and refrigeration system using them
JP5884806B2 (en) * 2013-10-09 2016-03-15 株式会社デンソー Magneto-caloric element and thermomagnetic cycle apparatus having the same
US20180005735A1 (en) * 2014-12-18 2018-01-04 Basf Se Magnetocaloric cascade and method for fabricating a magnetocaloric cascade

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488580B2 (en) * 2011-01-27 2014-05-14 株式会社デンソー Magnetic refrigeration system and automotive air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189543A (en) * 2012-03-13 2013-09-26 Toyama Univ Magnetic refrigeration material, cold storage material, and refrigeration system using them
JP5884806B2 (en) * 2013-10-09 2016-03-15 株式会社デンソー Magneto-caloric element and thermomagnetic cycle apparatus having the same
US20180005735A1 (en) * 2014-12-18 2018-01-04 Basf Se Magnetocaloric cascade and method for fabricating a magnetocaloric cascade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112066589A (en) * 2020-08-31 2020-12-11 中国科学院理化技术研究所 Magnetic refrigeration system

Also Published As

Publication number Publication date
JP2019143938A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
WO2019163365A1 (en) Magneto-caloric element and magnetic heat pump device
JP5884806B2 (en) Magneto-caloric element and thermomagnetic cycle apparatus having the same
KR102217279B1 (en) Variable heat pump using magneto caloric materials
US8448453B2 (en) Refrigeration device and a method of refrigerating
US10254020B2 (en) Regenerator including magneto caloric material with channels for the flow of heat transfer fluid
US9797630B2 (en) Heat pump with restorative operation for magneto caloric material
US8875522B2 (en) Magnetic heat pump apparatus
JP2017526890A (en) Magnetic refrigeration system with unequal blow
WO2018168294A1 (en) Magnetic work body and magnetic heat pump device using same
WO2015118007A1 (en) An active magnetic regenerator device
JP6384255B2 (en) Magneto-caloric element and thermomagnetism cycle device
JP6384256B2 (en) Magneto-caloric element and thermomagnetism cycle device
WO2018088168A1 (en) Magnetic heat pump device
JP7111968B2 (en) magnetic refrigerator
US20210010724A1 (en) Magnetic work body unit and magnetic heat pump device using same
US20150300704A1 (en) Magneto caloric heat pump
JP2024517430A (en) Temperature control device and manufacturing method thereof
JP6369299B2 (en) Magneto-caloric element and thermomagnetism cycle device
WO2019130846A1 (en) Magnetic refrigeration heat pump device
WO2019106978A1 (en) Magnetic heat pump device
WO2018168296A1 (en) Plate-shaped magnetic work body and magnetic heat pump device using same
JP6683138B2 (en) Thermomagnetic cycle device
WO2019106977A1 (en) Control valve and magnetic heat pump device
US20210080155A1 (en) Tankless magnetic induction water heater/chiller assembly
JP7456965B2 (en) Magnetic refrigeration equipment and refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758187

Country of ref document: EP

Kind code of ref document: A1