WO2019163354A1 - Organic electroluminescent element, luminescent thin film, display device, and luminescent device - Google Patents

Organic electroluminescent element, luminescent thin film, display device, and luminescent device Download PDF

Info

Publication number
WO2019163354A1
WO2019163354A1 PCT/JP2019/001609 JP2019001609W WO2019163354A1 WO 2019163354 A1 WO2019163354 A1 WO 2019163354A1 JP 2019001609 W JP2019001609 W JP 2019001609W WO 2019163354 A1 WO2019163354 A1 WO 2019163354A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
ring
light emitting
layer
Prior art date
Application number
PCT/JP2019/001609
Other languages
French (fr)
Japanese (ja)
Inventor
美音 渡邊
望月 誠
田中 達夫
片倉 利恵
北 弘志
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2020502080A priority Critical patent/JPWO2019163354A1/en
Publication of WO2019163354A1 publication Critical patent/WO2019163354A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present invention relates to an organic electroluminescence element, a light-emitting thin film, a display device, and a lighting device.
  • a display which is a video display unit such as a television or a computer, is one of the electronic devices indispensable in modern society.
  • displays have been accelerating in size and thickness, and along with this, development of organic electroluminescence (hereinafter, sometimes referred to as “organic EL”) elements has also become active.
  • the organic EL element is a self-luminous all-solid-state light-emitting element with a relatively simple structure and a wide viewing angle, and has ideal characteristics as a component of a display. Yes.
  • an organic EL element has a structure in which a functional thin film such as a light emitting layer is laminated between an anode and a cathode.
  • a functional thin film such as a light emitting layer
  • an organic compound exhibiting light emitting properties is used for the light emitting layer provided between the anode and the cathode.
  • the luminescent compound used for the light emitting layer has been studied from various viewpoints.
  • the light emitting compound fluorescent light emitting compounds have been mainly used from the beginning of the development of the organic EL device.
  • singlet excitons and triplet excitons are generated at a ratio of 1: 3 according to the spin statistics rule. Therefore, in the fluorescent compound in which transition from singlet excitons contributes to light emission, the internal quantum efficiency is limited to 25% at the maximum.
  • the light-emitting layer includes a host material, a fluorescent light-emitting molecule present as a dopant in the host material, and an intersystem crossing agent that transfers energy to the fluorescent light-emitting molecule.
  • An organic light-emitting device is described in which fluorescent light-emitting molecules emit fluorescence when is applied.
  • a fluorescent compound that has been generally used conventionally has strong light emission when the molecules are isolated, and has a property of causing quenching when the concentration of the molecules increases and the molecules aggregate. Therefore, even if the concentration of the fluorescent compound is increased with the aim of improving the luminous efficiency of the organic EL element, the effect immediately reaches its limit due to Dexter type energy transfer, self-shielding effect, etc. It is difficult to achieve high luminous efficiency by controlling the concentration.
  • the method of increasing the concentration of the luminescent compound can cause quenching even when the fluorescent luminescent compound and the phosphorescent metal complex are used in combination, It is known that a unique problem is caused even when a wet coating method is used for film formation. For example, when the concentration of the luminescent compound is increased in the solution used for coating, molecules tend to aggregate together, so that the functional thin film such as a luminescent layer to be formed has a local decrease in film density or uniformity. It tends to cause a decrease. Such alteration due to aggregation also brings about a decrease in luminous efficiency, and therefore a new method capable of achieving both luminous efficiency and device lifetime is desired.
  • an object of the present invention is to provide an organic electroluminescence element, a light-emitting thin film, a display device, and a lighting device that exhibit high luminous efficiency and can extend the lifetime of light emission.
  • An organic electroluminescence device comprising an anode, a cathode, and a light emitting layer provided between the anode and the cathode, wherein the light emitting layer contains a phosphorescent metal complex and an aggregation-induced light emitting molecule.
  • the phosphorescent metal complex is an organometallic complex represented by the following general formula (DP).
  • M represents Ir, Pt, Rh, Ru, Cu or Os
  • a 1 , A 2 , B 1 and B 2 are each independently a carbon atom or a nitrogen atom.
  • Ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed with A 1 and A 2 or a 5-membered or 6-membered aromatic heterocycle
  • ring Z 2 represents B 1 and B Represents a 5- or 6-membered aromatic heterocyclic ring formed together with 2
  • Ring Z 1 and ring Z 2 may have a substituent, and the substituents may be bonded to each other to form a condensed ring structure. It may be.
  • L ′ represents a monoanionic bidentate ligand coordinated to M
  • m ′ represents an integer of 0 to 2
  • n ′ represents an integer of 1 to 3
  • m ′ + n ′ represents 2 or 3
  • the ligand represented by ring Z 1 and ring Z 2 and L ′ may have the same structure or different from each other. It may be a structure.
  • a display device comprising the organic electroluminescence element according to any one of 1 to 3 above.
  • the illuminating device which comprises the organic electroluminescent element in any one of said 1 to 3.
  • an organic electroluminescence element a light-emitting thin film, a display device, and a lighting device that exhibit high luminous efficiency and can extend the lifetime of light emission.
  • FIG. 4 is a schematic diagram of a display unit A.
  • FIG. It is a schematic diagram of a pixel. It is a schematic diagram of a passive matrix type full-color display device. It is the schematic of an illuminating device. It is a schematic diagram of an illuminating device.
  • the present inventors have replaced the conventional fluorescent compound with aggregation-induced luminescence that exhibits strong light emission by aggregation (
  • AIE aggregation-induced emission
  • the concentration of the compound is increased with the aim of improving the light emission efficiency, concentration quenching occurs and the light emission efficiency decreases.
  • AIE molecules are used as the light-emitting compound, when the concentration of the compound is increased, rather strong light emission occurs due to aggregation of the molecules. Therefore, it is considered that the method using the AIE molecule in combination as the light emitting compound is an effective means for achieving both the light emission efficiency and the light emission lifetime.
  • the film structure can be kept stable, so that the light emission of the organic EL element or the like is not greatly affected by the light emission lifetime of the phosphorescent metal complex itself. It was judged that it was suitable for prolonging the lifetime.
  • the AIE molecule can exhibit strong light emission in an aggregated state, contact with oxygen, moisture, etc. in the atmosphere can be reduced by forming aggregates in advance.
  • the formation of aggregates is presumed to reduce the contact area with oxygen, moisture, etc., which are degradation factors of organic EL elements, and improve the stability of the luminescent compound in the atmosphere. Therefore, when sealing an organic EL element etc., it becomes possible to employ
  • the organic EL device includes an anode, a cathode, and a functional thin film that is disposed between the anode and the cathode and includes at least a light emitting layer.
  • This organic EL element contains a phosphorescent metal complex and an aggregation-induced luminescent molecule in a light emitting layer provided between an anode and a cathode.
  • AIE molecule Aggregation-induced luminescent molecule
  • AIE molecules Aggregation-induced light-emitting molecules do not emit light because the quantum yield is low or the emission intensity is weak when the molecules are dissolved or dispersed without aggregation in the liquid medium. In a state where the molecules are aggregated to form an aggregate, the molecule exhibits the property that the quantum yield increases and the emission intensity increases.
  • an appropriate molecule exhibiting the above properties can be used as the AIE molecule.
  • the type of AIE molecule is not particularly limited.
  • an AIE molecule one kind may be used alone or a plurality of kinds may be used in combination in a single light emitting layer.
  • a preferred form of the AIE molecule is a molecule having at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring. With such a molecule, it is possible to easily obtain fluorescence having a required maximum emission wavelength in the visible light region by introducing an appropriate substituent.
  • AIE molecules include benzofuro-oxazolo-carbazole-based aggregation-induced luminescent molecules, carborane-based aggregation-induced luminescent molecules, tetraphenylethylene-based aggregation-induced luminescent molecules, silole-based aggregation-induced luminescent molecules, rhodamine-based molecules.
  • aromatic ring-containing metal complexes in which a site that suppresses molecular motion is introduced into the ligand, other hetero compounds having an aromatic heterocycle, and the like can be given.
  • the type of AIE molecule is not limited to these.
  • benzofuro / oxazolo / carbazole-based aggregation-induced luminescent molecules examples include benzofuro-oxazolo-carbazole derivatives having a benzofuro [2,3-c] oxazolo [4,5-a] carbazole skeleton represented by the following general formula (1) Can be used.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent
  • R 3 and R 4 each independently represent a substituent
  • N represents an integer of 0 to 4
  • n represents an integer of 0 to 4.
  • substituent for substituting the benzofuro-oxazolo-carbazole derivative include various electron-donating groups and electron-withdrawing groups that exhibit an arbitrary substituent constant according to Hammett's rule, but in particular, an aliphatic hydrocarbon group, an aromatic group A hydrocarbon group or a heterocyclic group is preferred.
  • Examples of the aliphatic hydrocarbon group that substitutes the benzofuro-oxazolo-carbazole derivative include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • a linear or branched alkyl group such as a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group or a pentadecyl group, or a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group.
  • aromatic hydrocarbon group replacing the benzofuro-oxazolo-carbazole derivative examples include phenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl Group, pyrenyl group, biphenylyl group and the like.
  • heterocyclic group that substitutes the benzofuro-oxazolo-carbazole derivative examples include a pyridyl group, a pyridazyl group, a pyrimidinyl group, a pyrrolyl group, an imidazolyl group, a benzoimidazolyl group, a pyrazolyl group, a pyrazinyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, Thiazolyl group, benzoxazolyl group, benzothiazolyl group, isoxazolyl group, isothiazolyl group, thiadiazolyl group, oxadiazolyl group, furyl group, furazanyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, Dibenzothienyl, indazolyl group
  • the benzofuro-oxazolo-carbazole derivatives are, for example, sulfonic acid group, carboxyl group, phosphoric acid group, phosphorous acid group, hydroxyl group, amino group, isocyanate group, silyl group, halogen atom, alkyl group, cycloalkyl group, alkenyl group, Alkynyl group, cycloalkenyl group, cycloalkynyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group , A carbamoyl group, a ureido group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an ary
  • Carborane-based aggregation-induced luminescent molecules As the carborane-based aggregation-inducing luminescent molecule, a 1,2-closo-dicarbadodecaborane derivative represented by C 2 B 10 H 12 can be used. A particularly preferred form of the carborane-based aggregation-inducing luminescent molecule is a derivative of o-carborane represented by the following general formula (2). A derivative of o-carborane has a high electron withdrawing property in a cluster portion where ⁇ electrons are delocalized. It is generally known that a carborane derivative having a ⁇ -electron conjugated unit introduced at the 1- or 2-position carbon emits strong fluorescence (K. Kokado, et al., Macromolecules, 2009, 42, 1418-1420). Etc.).
  • R 5 and R 6 each independently represent a hydrogen atom, an organic group, or an organometallic group, and at least one of R 5 and R 6 is a ⁇ -electron conjugated unit.
  • a white circle represents a carbon atom
  • a black circle represents a boron atom to which a hydrogen atom is bonded.
  • the carborane represented by the general formula (2) is a cluster molecule having a regular dihedral structure, and illustration of boron atoms and hydrogen atoms located on the back side is omitted in the formula.
  • Examples of the organic group for substituting carborane include saturated aliphatic hydrocarbon groups such as alkyl groups and cycloalkyl groups, unsaturated aliphatic hydrocarbon groups such as alkenyl groups, alkynyl groups, cycloalkenyl groups, and cycloalkynyl groups. And aromatic hydrocarbon groups and heterocyclic groups. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative.
  • organometallic group that substitutes carborane examples include an organic group in which metal atoms such as Ir, Pt, Rh, Ru, Ag, Cu, Os, and Re are coordinate-bonded.
  • organic groups include pyridine ring, pyridazine ring, pyrimidine ring, imidazole ring, benzimidazole ring, pyrazole ring, pyrazine ring, triazole ring, benzoxazole ring, benzothiazole ring, quinoline ring, isoquinoline ring, indazole Ring, quinoxaline ring, phenanthridine ring and the like.
  • the carborane has other substituents such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group, and a halogen atom, like the benzofuro-oxazolo-carbazole derivative.
  • an organic group such as a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group substituted on the cluster portion may be included in the organic metal group.
  • R 5 and R 6 may have the same structure or different structures as long as at least one is a ⁇ -electron conjugated unit.
  • R 5 and R 6 may be condensed with each other to form a ring.
  • R 5 and R 6 may be composed of a combination of an electron-donating ⁇ -electron conjugated unit and an electron-accepting ⁇ -electron conjugated unit, or an electron-donating ⁇ -electron conjugated unit and a non-conjugated atom. It may be configured in combination with a group.
  • Examples of the ⁇ -electron conjugated unit include an atomic group composed of an organic group such as an aromatic hydrocarbon group and an aromatic heterocyclic group, an organic metal group, and a linking group such as a conjugated diene group, an ethynylene group, and a hetero atom. Or a molecular chain.
  • the ⁇ -electron conjugated unit is preferably composed of a planar molecular chain or atomic group in that the molecular motion of the ⁇ -electron conjugated unit is easily restricted by aggregation of carborane.
  • a particularly preferred form of the ⁇ -electron conjugated unit is an aromatic hydrocarbon group or an aromatic group from the viewpoint that molecular motion is easily restricted by aggregation of carborane, and that energy level control and molecular motion control can be performed appropriately. It is a heterocyclic group.
  • the aromatic hydrocarbon group constituting the ⁇ -electron conjugated unit a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, and the like are preferable.
  • Examples of the aromatic heterocyclic group constituting the ⁇ -electron conjugated unit include pyridyl group, pyrimidyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, oxazolyl group, thiazolyl group, thiadiazolyl group, oxadiazolyl group, triazinyl group, etc. Is preferred.
  • R 5 and R 6 a 9-carbazolylphenyl group, ⁇ -carbonylylphenyl group, triphenylsilyl group and the like can be preferably used.
  • Tetraphenylethylene-based aggregation-induced luminescent molecule As the tetraphenylethylene-based aggregation-inducing luminescent molecule, a tetraphenylethylene derivative having a tetraphenylethylene skeleton represented by the following general formula (3) can be used.
  • R 7 , R 8 , R 9 and R 10 each independently represents an organic group or an organometallic group, and o, p, q and r are each independently Represents an integer of 0 to 5.
  • Examples of the organic group that substitutes the tetraphenylethylene derivative include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a heterocyclic group. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative.
  • organometallic group that substitutes for the tetraphenylethylene derivative examples include organic groups in which metal atoms such as Ir, Pt, Rh, Ru, Ag, Cu, Os, and Re are coordinated. Specific examples of these organic groups include the same groups as the organometallic groups that substitute for the carborane.
  • the tetraphenylethylene derivative is the same as the benzofuro-oxazolo-carbazole derivative, and other sulfonic acid group, carboxyl group, phosphoric acid group, phosphorous acid group, hydroxyl group, amino group, isocyanate group, silyl group, halogen atom, etc.
  • R 7 to R 10 may have the same structure or different structures among one or more substituents substituted on the same ring. . Also, R 7 to R 10 may have the same structure or different structures. R 7 to R 10 may be condensed with substituents substituted on the same ring to form a ring, or condensed with substituents substituted on different rings to form a ring. It may be formed. Note that the tetraphenylethylene derivative has a structure in which two or more tetraphenylethylene skeletons represented by the general formula (3) are included and these skeletons are connected to each other via any one of R 7 to R 10. May be.
  • tetraphenylethylene-based aggregation-inducing luminescent molecule examples include tetraphenylethylene and a 9-carbazolylphenyl group, ⁇ at the para-position of the benzene ring of the tetraphenylethylene derivative represented by the general formula (3).
  • -Derivatives substituted with a carbonylylphenyl group, a 4,6-diphenyl-1,3,5-triazinyl group and the like are exemplified, but not limited thereto.
  • silole-based aggregation-induced luminescent molecules As the silole-based aggregation-inducing luminescent molecule, a silole derivative in which a ⁇ -electron conjugated unit is bonded to a silole ring can be used.
  • a particularly preferred form of the silole-based aggregation-inducing luminescent molecule is a derivative in which the 3-position and 4-position carbon of the silole ring represented by the following general formula (4) is substituted with a benzene ring which may have a substituent. It is.
  • R 11 and R 12 each independently represents a hydrocarbon group having 1 to 12 carbon atoms, and s and t each independently represents an integer of 0 to 5]
  • R 13 and R 16 each independently represents an organic group, and R 14 and R 15 each independently represents an organic group having 1 to 20 carbon atoms.
  • R 11 and R 12 for substituting the silole derivative include a saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms, an unsaturated aliphatic hydrocarbon group having 1 to 12 carbon atoms, and a carbon number of 1 -12 aromatic hydrocarbon groups. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative.
  • R 11 and R 12 are more preferably a hydrocarbon group having 1 to 6 carbon atoms, and still more preferably a hydrocarbon group having 1 to 4 carbon atoms.
  • s and t are preferably 0 or 1, and particularly preferably 0, that is, R 11 and R 12 are each a phenyl group.
  • R 13 and R 16 for substituting a silole derivative include an atomic group or a molecular chain composed of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group. Specific examples of these organic groups include the same groups as the substituents for substituting the carborane.
  • R 13 or R 16 is one of a benzene ring, a naphthalene ring, a pyridine ring, a pyrrole ring, an imidazole ring, an imidazoline ring, a pyrazolyl ring, a pyrazine ring, an oxazole ring, a thiazole ring, a furan ring, and a thiophene ring.
  • a ⁇ -electron conjugated unit constituted as described above is more preferable, a ⁇ -electron conjugated unit including one or more benzene rings is further preferable, and a phenyl group is particularly preferable.
  • R 14 and R 15 for substituting the silole derivative examples include a saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, an unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, and a carbon number of 1 Up to 20 aromatic hydrocarbon groups. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative.
  • the organic groups represented by R 14 and R 15 are not limited to hydrocarbons, and may have heteroatoms such as N, O, S, and Si.
  • R 14 and R 15 are more preferably an organic group having 1 to 12 carbon atoms, more preferably a phenyl group or an alkyl group having 1 to 12 carbon atoms.
  • AIE molecule can be synthesized using a conventionally known method.
  • K.K. Kokado, et al. Macromolecules, 2009, 42, 1418-1420, US Patent Application Publication No. 2012/299474, US Patent Application Publication No. 2013/179791, US Patent Application Publication No. 2013/89889, Qin W. , Et al. , Chem. Commun. , 2015, 51, 7321-7324, Kim J. et al. Y. , Et al. , Adv. Mater. 2013, 25, 2666-2671, Chen B. et al. , Et al. , Chem. Eur. J.
  • rhodamine-based aggregation-inducing luminescent molecules examples include S. Kamino, et al. , Chem. Commun. , 2010, 46, 9013-9015 can be used.
  • FIG. 1 is a conceptual diagram illustrating aggregation-induced luminescence of AIE molecules.
  • a conventional fluorescent compound that does not exhibit aggregation-induced light emission causes quenching and a decrease in light emission intensity as the concentration increases.
  • AIE molecules have the property that the emission intensity increases as the concentration increases. Whether or not the luminescent compound has such aggregation-induced luminescence can be confirmed by dispersing molecules in a solvent and comparing the luminescence intensity observed for each concentration.
  • a predetermined concentration of a luminescent compound is dispersed in a good solvent at room temperature (25 ° C.), the emission spectrum of the excited luminescent compound is measured, and the peak intensity at the maximum emission wavelength is measured in the case of a dilute dispersion solution. It is possible to confirm whether or not it has aggregation-induced luminescence by obtaining the relative intensity with respect to.
  • the emission intensity at the maximum emission wavelength ⁇ max detected from the dispersion solution with a concentration of 0.01 mM is I 0
  • the emission intensity at the maximum emission wavelength ⁇ max detected from the dispersion solution with a concentration of 10 mM is I 10 .
  • the light emitting compound satisfying the following mathematical formula (A) is defined as an AIE molecule. I 10 / I 0 > 1 (A)
  • the AIE molecule may be contained in the light emitting layer at an appropriate concentration.
  • concentration of AIE molecules in the light emitting layer can be, for example, 0.1% by mass or more and 99.9% by mass or less. If the charge transporting property of the AIE molecule is good, high luminous efficiency can be obtained even if the light emitting layer is formed in such a wide range of film concentrations.
  • membrane in the light emitting layer of the phosphorescence-emitting metal complex mentioned later is 0.1 to 50 mass%, for example, Preferably you may be 1 to 30 mass%.
  • the light emitting layer can be composed of only a phosphorescent metal complex and an AIE molecule, or can be composed of a phosphorescent metal complex and an AIE molecule and a host compound described later.
  • the concentration of AIE molecules in the light emitting layer is preferably 2% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more. Moreover, it is good also as 30 mass% or less, and good also as 30 mass% or more and 99.9 mass% or less.
  • concentration of AIE molecules in the film is 2% by mass or more, strong light emission due to aggregation of AIE molecules is likely to be obtained. Further, when the concentration of AIE molecules in the film is 30% by mass or less, high luminous efficiency can be obtained when a host compound is used in combination with the phosphorescent metal complex.
  • the concentration of AIE molecules in the film is 30% by mass or more, the luminescent compound is present in a more aggregated state as compared with a general light emitting layer, so that light emission by the aggregated AIE molecules can be reliably obtained. In addition, deterioration of the luminescent compound due to oxygen, moisture, etc. in the atmosphere can be avoided.
  • the organic EL device according to the present invention can be provided, for example, as a structure having an anode and a cathode on a base material, and an organic constituent layer including a light emitting layer sandwiched between the anode and the cathode.
  • an organic constituent layer including a light emitting layer sandwiched between the anode and the cathode.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
  • the organic EL element according to the present invention may be provided on the outside of the electrode by appropriately combining layers such as a sealing layer, a barrier layer, and a light extraction layer.
  • layers such as a sealing layer, a barrier layer, and a light extraction layer.
  • the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the light emitting layer may be composed of a single layer or a plurality of layers.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • an electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • Examples of typical element configurations having a tandem structure include the following configurations.
  • Anode / first light emitting unit / second light emitting unit / third light emitting unit / cathode II) anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
  • the plurality of light emitting units may all have the same configuration or different configurations. Further, some of the light emitting units may have the same configuration, and the remaining light emitting units may have different configurations.
  • the tandem organic EL element may be composed of two light emitting units, or may be composed of four or more light emitting units by providing a light emitting unit or an intermediate layer between the third light emitting unit and the cathode. May be.
  • the light emitting units may be stacked adjacent to each other or may be stacked via an intermediate layer.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer.
  • the intermediate layer is an electron adjacent to the anode side and the layer adjacent to the cathode side. Any layer having a function of supplying holes can be formed using a known material and structure.
  • Examples of the material for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , and CuGaO.
  • conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 , RuO 2 , and Al
  • double-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C 60 and other fullerenes, conductive organic layers such as oligothiophene, Examples include, but are not limited to, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, etc. Is not to be done.
  • a preferable configuration of the light emitting unit includes, for example, a configuration in which the anode and the cathode are removed from any one of the above-described element configurations (1) to (7), but is not limited thereto.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, and US Pat. No. 6,872. 472, U.S. Pat. No. 6,107,734, U.S. Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-. No.
  • the phosphorescent metal complex to be described later and the AIE molecule may be included in a light emitting layer composed of a single layer as long as they are used in the same light emitting layer.
  • the light emitting layer may be included in one or more of the light emitting layers.
  • the phosphorescent metal complex described later and the AIE molecule may be included in a single light emitting unit among light emitting units constituting a tandem type as long as they are used in the same light emitting layer. A plurality of light emitting units may be included.
  • the organic EL device according to the present invention is derived from a configuration in which only light emission derived from a phosphorescent metal complex is emitted, a configuration in which only light emission derived from an AIE molecule is emitted, and a phosphorescent metal complex.
  • a configuration in which only light emission derived from an AIE molecule is emitted a configuration in which only light emission derived from an AIE molecule is emitted
  • a phosphorescent metal complex a configuration in which only light emission derived from an AIE molecule is emitted
  • any configuration may be used.
  • the relationship between the energy level of the phosphorescent metal complex and the energy level of the AIE molecule is not particularly limited, and energy transfer from the phosphorescent metal complex to the AIE molecule is involved in light emission. May or may not be involved.
  • the phosphorescent metal complex and the AIE molecule have a HOMO energy level deeper than the HOMO energy level of the host compound, and the phosphorescent metal complex and the AIE.
  • the LUMO energy level of the molecule is preferably shallower than the LUMO energy level of the host compound.
  • the external extraction quantum efficiency of light emission at room temperature is preferably 1% or more, and more preferably 5% or more.
  • external extraction quantum efficiency (%) number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element ⁇ 100.
  • each layer (hole injection layer, hole transport layer, hole blocking layer, electron blocking layer, electron transport layer, electron injection layer, light emitting layer) constituting the organic EL device according to the present invention will be described.
  • the hole injection layer is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the hole injection layer see “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”, Volume 2, Chapter 2, “Electrode Materials” (pages 123-166). It is described in detail.
  • the hole injection layer can be provided as necessary.
  • the hole injection layer may be provided, for example, between the anode and the light emitting layer, or between the anode and the hole transport layer.
  • the same material as the material of the hole transport layer described later can be used.
  • the material for the hole injection layer one kind may be used alone, or a plurality kinds may be used in combination.
  • Examples of the material for the hole injection layer include phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-A-2003-519432, JP-A 2006-135145, and vanadium oxide.
  • Preferred are metal oxides, amorphous carbon, conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.
  • the hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer is not particularly limited, but is usually 5 nm to 5 ⁇ m, preferably 2 to 500 nm, more preferably 5 to 200 nm.
  • any material having hole injection property, hole transport property, and electron barrier property may be used, and a known compound having such properties should be used. Can do.
  • As the material for the hole transport layer one kind may be used alone, or a plurality kinds may be used in combination.
  • Examples of the material for the hole transport layer include porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkanes.
  • Derivatives triarylamine derivatives, carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinyl carbazole, polymers with aromatic amines introduced into the main chain or side chain Polymer or oligomer, polysilane, conductive polymer or oligomer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiol) Fen, etc.) and the like.
  • triarylamine derivative examples include a benzidine type typified by ⁇ -NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the connecting core part of triarylamine.
  • hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, and the like can also be used.
  • JP-A-11-251067 J. Org. Huang, et. al. Inorganic semiconductors such as p-type-Si and p-type-SiC as described in the literature (Applied Physics Letters, 80 (2002), p. 139) can also be used. Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal typified by Ir (ppy) 3 are also preferably used.
  • the hole transport layer may be formed as a layer having a high p property by doping a doping material.
  • Specific examples of the hole transport layer having such a structure are disclosed in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a triarylamine derivative As a material for the hole transport layer, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, a polymer or an oligomer having an aromatic amine introduced into the main chain or side chain, and the like are preferably used.
  • the material for the hole transport layer include compounds described in the following documents, but are not limited thereto. Appl. Phys. Lett. 69, 2160 (1996); Lumin. , 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. , 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater.
  • the hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the recombination probability of electrons and holes can be improved. Moreover, the said electron carrying layer can also be used as a hole-blocking layer as needed.
  • the hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
  • the thickness of the hole blocking layer is not particularly limited, but is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • materials for electron transport layers described later and materials used as host compounds described later are preferably used.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons. By blocking electrons while transporting holes, the probability of recombination of electrons and holes can be improved. Moreover, the said hole transport layer can also be used as an electron blocking layer as needed.
  • the electron blocking layer is preferably provided adjacent to the anode side of the light emitting layer.
  • the thickness of the electron blocking layer is not particularly limited, but is preferably 3 to 100 nm, more preferably 5 to 30 nm.
  • a material for the electron blocking layer a material for a hole transport layer described later and a material used as a host compound described later are preferably used.
  • the electron transport layer is made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer is not particularly limited, but is usually 2 nm to 5 ⁇ m, preferably 2 to 500 nm, more preferably 5 to 200 nm.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • any material that has any of electron injection property, electron transport property, and hole barrier property may be used, and a known compound having such properties can be used.
  • the material for the electron transport layer may be used alone or in combination of two or more.
  • Examples of the material for the electron transport layer include nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one in which one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, and pyrimidines.
  • pyrazine derivatives pyridazine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benz Thiazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenyl Emissions, etc.) and the like.
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) Aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) Etc., and metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb.
  • examples of the material for the electron transport layer include metal-free or metal phthalocyanine, or those whose ends are substituted with an alkyl group or a sulfonic acid group.
  • a distyrylpyrazine derivative that can be a material for the light emitting layer can be used, and an inorganic semiconductor such as n-type-Si, n-type-SiC, or the like can also be used.
  • a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can be used.
  • the electron transport layer may be formed as a layer having a high n property by doping a doping material.
  • the dopant include n-type dopants including metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure are disclosed in JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • the material for the electron transport layer include compounds described in the following documents, but are not limited thereto.
  • U.S. Pat.No. 6,528,187, U.S. Pat.No. 7,230,107 U.S. Patent Publication No. 20050025993, U.S. Pat. Publication No. 2004036077, U.S. Pat. Publication No. 200901115316, U.S. Pat. Publication No. 20090101870, U.S. Pat. No. 2003060956, International Publication No. 20080832085, Appl. Phys. Lett. , 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl.
  • JP-A 2009-209133, JP-A 2009-124114, JP-A 2008-277810, JP 2 06-156445, JP-2005-340122 discloses a JP 2003-45662, JP-2003-31367, JP 2003-282270, JP-WO 2012115034 or the like.
  • More preferable materials for the electron transport layer include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance.
  • the details of the electron injection layer are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. It is described in.
  • the electron injection layer can be provided as necessary.
  • the electron injection layer may be provided, for example, between the cathode and the light emitting layer or between the cathode and the electron transport layer.
  • the electron injection layer is preferably a very thin film.
  • the thickness of the electron injection layer is preferably 0.1 to 5 nm.
  • the electron injection layer may be a non-uniform film in which constituent materials are intermittently present.
  • materials preferably used for the electron injection layer include metals such as strontium and aluminum, alkali metal compounds such as lithium fluoride, sodium fluoride, and potassium fluoride, magnesium fluoride, and calcium fluoride. Examples thereof include alkaline earth metal compounds such as metal oxides, metal oxides such as aluminum oxide, and metal complexes such as lithium 8-hydroxyquinolate (Liq). It is also possible to use the same material as that of the electron transport layer.
  • the material for the electron injection layer may be used alone or in combination of two or more.
  • the light emitting layer is a layer that provides a field for generating light emission. Electrons and holes injected from the electrode or an adjacent layer are recombined in the light emitting layer, and light emission occurs with deactivation of excitons generated by the recombination.
  • the site that emits light may be within the layer of the light emitting layer, or may be the interface between the light emitting layer and an adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but it is possible to improve the homogeneity of the film to be formed, to prevent the application of unnecessary high voltage during light emission, and to the drive current. From the viewpoint of improving the stability of the emission color, the thickness is preferably 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, still more preferably 5 to 200 nm.
  • the individual thickness of the light emitting layer is preferably 2 nm to 1 ⁇ m, more preferably 2 to 200 nm, and still more preferably 3 to 150 nm.
  • the light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host).
  • a light emitting dopant compound a dopant compound, also simply referred to as a dopant
  • a host compound a matrix material, a light emitting host compound, also simply referred to as a host.
  • a phosphorescent metal complex described later and the AIE molecule function as a light emitting dopant.
  • Luminescent dopant As the luminescent dopant, there are a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound).
  • a fluorescent luminescent dopant also referred to as a fluorescent dopant or a fluorescent compound
  • a phosphorescent dopant also referred to as a phosphorescent dopant or a phosphorescent compound.
  • a phosphorescent metal complex described later functions as a phosphorescent dopant
  • the AIE molecule functions as a fluorescent dopant.
  • the concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the dopant used and the requirements of the device.
  • the luminescent dopant may be distributed at a uniform concentration or a non-uniform arbitrary concentration with respect to the film thickness direction of the luminescent layer.
  • the luminescent dopant in addition to the phosphorescent metal complex described later and the AIE molecule, other phosphorescent dopants and other fluorescent luminescent dopants can be used in combination.
  • One type of luminescent compound may be used for each phosphorescent dopant or for each fluorescent luminescent dopant, or a plurality of types of luminescent compounds may be used in combination.
  • different light emitting dopants may be used in the same light emitting layer, or different light emitting dopants may be used for different light emitting layers. With such a combination, an arbitrary emission color can be obtained for the emission emitted from the organic EL element.
  • the emission color of the organic EL device or compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society for Color Science, University of Tokyo Press, 1985).
  • the result measured by Konica Minolta Sensing Co., Ltd. can be defined by the color when applied to the CIE chromaticity coordinates.
  • the organic EL device according to the present invention may be a device in which one or more light-emitting layers contain a plurality of light-emitting dopants having different light emission colors and exhibit white light emission.
  • the combination of the luminescent dopants that emit white light is not particularly limited, and examples thereof include a combination of blue and orange, a combination of blue, green, and red.
  • the white light emitted by the organic EL device according to the present invention is not limited in hue and the like, and may be white near orange or white near blue.
  • the phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. The preferable phosphorescence quantum yield of a phosphorescent dopant is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence quantum yield in solution can be measured using various solvents, but the phosphorescent dopant according to the present invention achieves a phosphorescence quantum yield of 0.01 or more in any solvent. Just do it.
  • the principle of light emission of phosphorescent dopant is roughly divided into two types. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to emit light from the phosphorescent dopant. Energy transfer type. The other is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, and recombination of carriers occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In either case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • a phosphorescent dopant that is, a phosphorescent metal complex used in combination with an AIE molecule, or other phosphorescent compounds used in combination with the phosphorescent metal complex.
  • a phosphorescent dopant that is, a phosphorescent metal complex used in combination with an AIE molecule, or other phosphorescent compounds used in combination with the phosphorescent metal complex.
  • an appropriate type it is possible to use an appropriate type used for a light emitting layer of a general organic EL element.
  • the principle of light emission of the phosphorescent dopant may be based on any of the above principles.
  • phosphorescent dopant examples include compounds described in the following documents, but are not limited thereto. Nature, 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. , 19, 739 (2007), Chern. Mater. 17, 3532 (2005), Adv. Mater. , 17, 1059 (2005), International Publication No. 2009100991, International Publication No. 2008101842, International Publication No. 2003030257, United States Patent Publication No. 2006835469, United States Patent Publication No. 20060202194, United States Patent Publication No. 20070087321, United States Patent Publication. 20050244673, Inorg. Chern. , 40, 1704 (2001), Chern. Mater.
  • an organometallic complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferably used.
  • an organometallic complex represented by the following general formula (DP) is particularly preferable.
  • M represents Ir, Pt, Rh, Ru, Cu or Os
  • a 1 , A 2 , B 1 and B 2 are each independently a carbon atom or a nitrogen atom.
  • Ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed with A 1 and A 2 or a 5-membered or 6-membered aromatic heterocycle
  • ring Z 2 represents B 1 and B Represents a 5- or 6-membered aromatic heterocyclic ring formed together with 2 ;
  • Ring Z 1 and ring Z 2 may have a substituent, and the substituents may be bonded to each other to form a condensed ring structure. It may be.
  • L ′ represents a monoanionic bidentate ligand coordinated to M
  • m ′ represents an integer of 0 to 2
  • n ′ represents an integer of 1 to 3
  • m ′ + n ′ represents 2 or 3
  • the ligand represented by ring Z 1 and ring Z 2 and L ′ may have the same structure or different from each other. It may be a structure.
  • M is a central metal of the organometallic complex and is Ir, Pt, Rh, Ru, Cu or Os.
  • Ir or Pt is preferable, and Ir is particularly preferable.
  • Examples of the 6-membered aromatic hydrocarbon ring that forms the ring Z 1 include a benzene ring.
  • Examples of the condensed ring structure formed by such a ring Z 1 include a naphthalene ring and an anthracene ring.
  • Examples of the 5-membered aromatic heterocycle forming the ring Z 1 or the ring Z 2 include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, and an isothiazole ring. Oxadiazole ring, thiadiazole ring and the like.
  • a pyrazole ring or an imidazole ring is more preferable, and an imidazole ring is particularly preferable.
  • Examples of the 6-membered aromatic heterocyclic ring that forms the ring Z 1 or the ring Z 2 include a pyridine ring, a pyrimidine ring, a pyridazine ring, and a pyrazine ring.
  • Examples of the bidentate ligand L ′ include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid, acetylacetone and the like.
  • the bidentate ligand L ′ may have a substituent.
  • Examples of the substituent substituted on the organometallic complex represented by the general formula (DP) include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg, vinyl group, aryl group etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon ring group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesity
  • oxazolyl group benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, Benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) ), Quinoxalinyl group, pyridazinyl group, Lyazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group,
  • a 2 is preferably a carbon atom, and A 1 is preferably a carbon atom.
  • Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring.
  • Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
  • a more preferable structure of the phosphorescent metal complex is represented by the following general formula (DP-1) or general formula (DP-2).
  • B 3 , B 4 and B 5 are each a ring-forming atom constituting an aromatic heterocyclic ring, and each independently represents an optionally substituted carbon.
  • An atom, a nitrogen atom, an oxygen atom or a sulfur atom which may have a substituent is represented.
  • M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′, and n ′ are synonymous with those in the general formula (DP).
  • examples of the substituent for substituting B 3 to B 5 include the same groups as the substituents for substituting the organometallic complex represented by the general formula (DP).
  • a 2 is preferably a carbon atom, and A 1 and A 2 are preferably carbon atoms.
  • Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring. Also, among the B 1 and B 2, wherein at least one, preferably a nitrogen atom.
  • the aromatic heterocycle constituted by B 1 to B 5 is represented by the following general formula (DP-1a), general formula (DP-1b), and general formula (DP-1c). It is preferable that it is a structure represented by either of these.
  • Rb 3 , Rb 4, and Rb 5 are each independently a hydrogen atom or a substituent.
  • * 1 represents a binding site with A2
  • * 2 represents a binding site with M.
  • B 3 to B 5 have the same meanings as in the general formula (DP-1). ]
  • the substituents of Rb 3 to Rb 5 are organometallic complexes represented by the general formula (DP) The same group as the substituent which substitutes is mentioned.
  • At least one of B 4 and B 5 is preferably a carbon atom.
  • at least one of B 3 and B 4 is preferably a carbon atom.
  • a 3 represents a ring-forming atom constituting the ring Z 1 and represents a carbon atom or a nitrogen atom
  • B 3 represents a 5-membered aromatic heterocyclic ring
  • Z 2 is a ring-forming atom that represents a carbon atom or a nitrogen atom
  • L ′′ represents a divalent linking group.
  • M, A 1 , A 2 , B 1 , B 2 , Ring Z 1 , L ', M' and n ' have the same meaning as in the general formula (DP).
  • linking group L ′′ examples include an alkylene group, an alkenylene group, an arylene group, a heteroarylene group, a divalent heterocyclic group, —O—, —S—, or a group in which these are arbitrarily combined.
  • a 2 is preferably a carbon atom, and A 1 is preferably a carbon atom.
  • Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring.
  • Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
  • the organometallic complex represented by the general formula (DP-2) is more preferably a structure represented by the following general formula (DP-2a).
  • L ′′ 1 and L ′′ 2 each independently represent C—Rb 6 or a nitrogen atom, and Rb 6 represents a hydrogen atom or a substituent.
  • Rb 6 may be bonded to each other to form a ring.
  • M, A 1 , A 2 , A 3 , B 1 , B 2 , B 3 , ring Z 1 , ring Z 2 , L ′, m ′, n ′ are as defined in general formula (DP-2). .
  • examples of the substituent that substitutes Rb 6 include the same groups as the substituents that substitute the organometallic complex represented by the general formula (DP).
  • a 2 is preferably a carbon atom, and A 1 is preferably a carbon atom.
  • Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring.
  • Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
  • the fluorescent luminescent dopant which concerns on this invention is a compound which can light-emit from an excitation singlet.
  • the kind of the fluorescent light-emitting dopant is not particularly limited as long as light emission from the excited singlet is observed.
  • concentration quenching may occur when other fluorescent light-emitting dopants that do not have aggregation-induced light-emitting properties are used together with AIE molecules. Therefore, the structure which does not use other fluorescent luminescent dopant together is more preferable.
  • fluorescent luminescent dopant examples include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, Examples include pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzoanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
  • luminescent dopants using delayed fluorescence have been developed, and these may be used.
  • Specific examples of the luminescent dopant using delayed fluorescence include compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like, but are not limited thereto. is not.
  • the host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and is a compound in which light emission itself is not substantially observed in the organic EL element.
  • a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.1 at room temperature (25 ° C.) is preferred, and a compound having a phosphorescence quantum yield of less than 0.01 is more preferred.
  • the host compound preferably has a mass ratio of 20% or more in the light emitting layer among the compounds contained in the light emitting layer. Moreover, it is preferable that the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer.
  • a light emitting layer having a configuration in which a host compound is used in combination with a phosphorescent metal complex or an AIE molecule may be formed, or a light emitting layer having a configuration in which a host compound is not used in combination. It may be formed.
  • the host compound an appropriate type used for a light emitting layer of a general organic EL element can be used.
  • the host compound may be a low molecular compound or a high molecular compound having a repeating unit. Further, it may be a compound having a reactive group such as a vinyl group or an epoxy group.
  • a host compound may be used individually by 1 type, and may use multiple types together. When a plurality of types of host compounds are used in combination, the movement of electric charges can be easily adjusted, so that the organic EL element can be made highly efficient.
  • the glass transition temperature of the host compound is preferably 90 ° C. or higher, more preferably 120 ° C. or higher.
  • the glass transition temperature (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the host compound include compounds described in the following documents, but are not limited thereto. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No.
  • the organic layer of the organic EL element may further contain other inclusions.
  • Other inclusions include, for example, simple halogens and halogenated compounds such as bromine, iodine and chlorine, alkali metals such as Pd, Ca and Na, compounds of alkaline earth metals and transition metals, metal complexes and salts. Can be mentioned.
  • the amount of other inclusions is not particularly limited, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 50 ppm or less with respect to the total mass of the layer containing the inclusions.
  • the range is not limited to this range depending on the purpose of improving the transportability of electrons and holes, the purpose of making the energy transfer of excitons advantageous.
  • the formation method of the organic layer is not particularly limited.
  • a method also referred to as a wet process or the like can be used.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, LB method (Langmuir-Blodgett method) and the like. Can be mentioned.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable in that a homogeneous thin film is easily obtained and productivity is high. Used.
  • liquid medium for dissolving or dispersing the organic layer material examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. And aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO.
  • a dispersion method for dispersing the material of the organic layer ultrasonic dispersion, high shear force dispersion, media dispersion, or the like can be used.
  • the organic layer may be formed using the same method for each layer, or may be formed using a different method for each layer.
  • the deposition conditions vary depending on the type of compound used, but generally, the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 10 ⁇ 6 to 10 ⁇ 2 Pa, the deposition rate is 0.01 to 50 nm / Second, substrate temperature ⁇ 50 to 300 ° C., film thickness 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm can be set as appropriate conditions.
  • the organic layer is produced from the anode side layer to the cathode side layer consistently by a single vacuum drawing. However, it may be taken out halfway and subjected to a different film forming method. When taking out on the way, it is preferable to perform the operation
  • anode As the anode, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material capable of forming a transparent conductive film such as IDIXO (In 2 O 3 —ZnO) may be used.
  • IDIXO In 2 O 3 —ZnO
  • the anode can be formed as a thin film by depositing an electrode material by vapor deposition or sputtering.
  • a pattern having a desired shape may be formed by photolithography.
  • high pattern accuracy is not required (in the case of about 100 ⁇ m or more)
  • a pattern may be formed using a mask when performing vapor deposition or sputtering of the electrode material.
  • wet methods such as a printing system and a coating system, can also be used.
  • the transmittance of the anode is larger than 10%.
  • the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness of the anode depends on the electrode material, it is usually 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • cathode As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • the electrode material of the cathode a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / More preferred are silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like.
  • the cathode can be formed as a thin film by depositing an electrode material by vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness of the cathode is usually 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • either one of the anode and the cathode of the organic EL element is transparent or semi-transparent from the viewpoint of transmitting the emitted light and improving the light emission luminance.
  • a transparent or semi-transparent cathode can be produced by depositing a metal as a cathode electrode material with a film thickness of 1 to 20 nm and then depositing the conductive transparent material thereon. it can.
  • a support substrate (also referred to as a substrate, a substrate, a substrate, a support, or the like) of the organic EL element, glass, plastic, or the like can be used, and the type thereof is not particularly limited.
  • the support substrate may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate include glass, quartz, and a transparent resin film.
  • a particularly preferable support substrate is a resin film that can give flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, and cellulose acetate propionate (CAP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • CAP cellulose acetate propionate
  • Cellulose esters such as cellulose acetate phthalate (TAC), cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether Ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone Cycloolefins such as amines, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) Based resins and the like.
  • TAC cellulose acetate phthalate
  • PES polyethersulfone
  • Cycloolefins such as amines, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon,
  • the resin film has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 of 0.01 g / (m 2 ⁇ 24 h) or less.
  • the oxygen permeability measured by the method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and the water vapor permeability is 10 ⁇ .
  • a high barrier film of 5 g / (m 2 ⁇ 24 h) or less is more preferable.
  • the barrier film formed on the barrier film any material may be used as long as it has a function of suppressing the intrusion of an organic EL element such as moisture or oxygen, which may deteriorate.
  • an organic EL element such as moisture or oxygen
  • the barrier film preferably has a laminated structure of an inorganic layer and an organic layer.
  • the stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.
  • the formation method of the barrier film is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure
  • a plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate for example, a metal plate such as aluminum or stainless steel, a film, a resin substrate, a ceramic substrate, or the like can be used.
  • Examples of the method for sealing the organic EL element include a method in which a sealing member is bonded to an electrode or a support substrate with an adhesive.
  • the sealing member should just be arrange
  • Examples of the method for processing the sealing member into a concave shape include sand blasting and chemical etching.
  • the transparency and electrical insulation of the sealing member are not particularly limited.
  • the sealing member include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate / film include those formed of polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • the metal plate / film include those formed of metals and alloys such as stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film or a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film, the oxygen permeability was measured by the method based on JIS K 7126-1987 is 1 ⁇ 10 -3 ml / m 2 / 24h or less
  • the water vapor permeability measured by the method based on JIS K 7129-1992 degrees (25 ⁇ 0.5 °C, relative humidity (90 ⁇ 2)%) is preferably those of 1 ⁇ 10 -3 g / (m 2 / 24h) or less.
  • Adhesives include photo-curing adhesives having a reactive vinyl group such as acrylic acid oligomers and methacrylic acid oligomers, thermosetting adhesives, moisture-curing adhesives such as 2-cyanoacrylates, and epoxy-based adhesives. And a thermosetting adhesive such as a chemical curing (two-component mixed) adhesive.
  • thermosetting adhesive such as a chemical curing (two-component mixed) adhesive.
  • hot melt adhesives such as polyamide, polyester, polyolefin, and the like, and cationic curing type ultraviolet curing epoxy resin adhesives can be used.
  • an adhesive that can be adhesively cured from room temperature to 80 ° C. is preferable.
  • the adhesive may be one in which a desiccant is dispersed.
  • coating of the adhesive agent to a sealing part may be performed using a commercially available dispenser, and may be performed by printing like screen printing.
  • the sealing film may be provided by any one of an inorganic film, an organic film, an inorganic / organic hybrid film, and the like.
  • any material may be used as long as it has a function of suppressing intrusion of substances that cause deterioration of the organic EL element such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do.
  • the sealing film preferably has a laminated structure of an inorganic layer and an organic layer.
  • the method for forming the sealing film is not particularly limited.
  • the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected into the gap between the sealing member and the display area of the organic EL element in both the gas phase and the liquid phase. It is preferable to do.
  • the gap between the sealing member and the display area of the organic EL element may be a vacuum or may enclose a hygroscopic compound.
  • Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • Etc. metal oxides
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid
  • anhydrous salts are preferably used.
  • the organic EL element according to the present invention can be used as a display device, a display, and various light sources.
  • light sources include lighting devices (home lighting, interior lighting), clock backlights, liquid crystal backlights, signboard advertising light sources, traffic light sources, optical storage media light sources, electrophotographic copying machine light sources, Examples include a light source of an optical communication processor and a light source of an optical sensor. In particular, it can be effectively used as a backlight of a liquid crystal display device and an illumination light source.
  • the organic EL element according to the present invention can be used as a pixel of a display device.
  • the display device may be a single color display device or a multicolor display device.
  • a multicolor display device is demonstrated as an example of the display apparatus which comprises the organic EL element of this invention.
  • the configuration of the organic EL element provided in the display device can take various configurations including the above-described element configuration example.
  • a DC voltage is applied to the multicolor display device, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • an AC voltage is applied, light emission can be observed only when the anode is in the + state and the cathode is in the-state.
  • the AC waveform to be applied is not particularly limited.
  • the multicolor display device can be used as, for example, a display device, a display, or various light sources.
  • Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car.
  • full-color display is possible when three types of organic EL elements of blue light emission, red light emission and green light emission are used. It can be used as a display device for reproducing still images and moving images, and a driving method for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements.
  • This display device displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and a wiring unit that electrically connects the display unit A and the control unit B. Etc.
  • the control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. Then, the pixels for each scanning line sequentially emit light according to the image data signal by the scanning signal, and image information is displayed by the display unit A.
  • FIG. 3 is a schematic diagram of the display unit A.
  • the display unit A has a plurality of pixels 3, a plurality of scanning lines 5, and a plurality of data lines 6 on the substrate.
  • FIG. 3 shows a case where light from each pixel 3 is extracted downward (in the direction of the white arrow).
  • the scanning line 5 and the data line 6 in the wiring part are each made of a conductive material.
  • the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern, and are connected to the pixels 3 at the orthogonal positions.
  • the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • Full color display is possible by appropriately arranging each of the red, green, and blue pixels of the emission color on the substrate.
  • FIG. 4 is a schematic diagram of a pixel.
  • the pixel 3 includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • organic EL elements 10 of red, green and blue emission colors are used.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is driven by the capacitor 13. It is transmitted to the gate of the transistor 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. A current is supplied from the power supply line 7 to the organic EL element 10 in accordance with the potential of the image data signal applied to the gate.
  • the controller B sequentially scans and the scanning signal moves to the next scanning line 5
  • the driving of the switching transistor 11 is turned off.
  • the capacitor 13 holds the potential of the charged image data signal. Therefore, the drive of the drive transistor 12 is kept on, and the light emission of the organic EL element 10 continues until the next scanning signal is applied.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light for each of the plurality of pixels by providing the switching transistor 11 and the driving transistor 12 which are active elements with respect to the organic EL element 10 used for each of the plurality of pixels 3. Can be configured. Such a light emission method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Light emission may be used. Further, the potential of the capacitor 13 may be continuously maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the light emission method of the display device is not limited to the above active matrix method, and may be a passive matrix method in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 5 is a schematic diagram of a passive matrix type full-color display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the scanning line 5 emit light according to the image data signal.
  • the passive matrix method it is not necessary to provide an active element in the pixel 3, and the manufacturing cost is reduced.
  • the organic EL element according to the present invention can be used as a light source of various lighting devices.
  • the lighting device may be a device that generates an appropriate light source color, but is preferably a device that generates a white light source color.
  • White light emission can be obtained by causing a plurality of luminescent compounds to emit light at the same time and mixing the colors.
  • the combination of the luminescent colors may be a combination of three primary colors of red, green and blue, or a combination of complementary colors such as blue and yellow, blue green and orange.
  • dye which light-emits light from a luminescent compound as excitation light may be used together, and a color filter may be utilized.
  • organic EL elements that generate emission colors of respective colors may be arranged on the array to generate white emission, or the emission color of the organic EL element itself may be whitened.
  • the emission color of the organic EL element itself is white, patterning may be performed only on the light-emitting layer and the like, and the electrodes and the like may be collectively formed on one surface.
  • FIG. 6 is a schematic diagram of the lighting device.
  • FIG. 7 is a schematic diagram of a lighting device.
  • the lighting device can be formed, for example, by covering the organic EL element 101 according to the present invention with a glass cover 102 having a thickness of about 300 ⁇ m.
  • a glass cover 102 having a thickness of about 300 ⁇ m.
  • sealing is performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more), and the glass cover 102 is filled with an inert gas 108 such as nitrogen gas or trapped. It is possible to install a liquid 109 or the like.
  • the organic EL element according to the above embodiment is not limited to the above description in terms of its configuration, manufacturing method, application, etc., and other known configurations and A manufacturing method can be applied, and the present invention can be used for other purposes.
  • JP2013-089608A, JP2014120334A, JP2015-201508A, and the like may be referred to for the known configuration, manufacturing method, application, and the like of the organic EL element.
  • the luminescent thin film according to this embodiment contains a phosphorescent metal complex and an aggregation-induced luminescent molecule (AIE molecule).
  • AIE molecule an aggregation-induced luminescent molecule
  • concentration of the luminescent thin film of a phosphorescence-emitting metal complex can be 0.1 mass% or more and 99.9 mass% or less, for example.
  • the luminescent thin film according to the present embodiment can be used as a material such as an organic EL element, a photoelectric conversion element, or an organic functional thin film. Moreover, it can also be used as a light-emitting element constituting the display device or the lighting device.
  • the method for forming the light-emitting thin film of the present invention is not particularly limited, and conventionally known methods such as a vacuum deposition method and a wet method can be used.
  • other luminescent compounds and host compounds may be blended in the luminescent thin film to be formed.
  • wet method examples include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, LB method (Langmuir-Blodgett method) and the like. Can be mentioned.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable in that a homogeneous thin film is easily obtained and productivity is high. Used.
  • liquid medium for dissolving or dispersing the phosphorescent metal complex and AIE molecules examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO.
  • a dispersion method for dispersing the material ultrasonic dispersion, high shear force dispersion, media dispersion, or the like can be used.
  • fluorescent compound The fluorescent compounds (B-1, B-2) used in the examples are shown below.
  • Compound B-1 and Compound B-2 are conventional fluorescent compounds having no aggregation-induced light emission.
  • the hole transport material (HT-1) used in the examples is shown below.
  • Electrode transport material The electron transport materials (ET-1, ET-2) used in the examples are shown below.
  • AIE molecule The AIE molecules (AIE-1, AIE-2, AIE-3, AIE-4) used in the examples are shown below.
  • AIE molecules are fluorescent compounds that emit strong fluorescence by aggregating to form aggregates.
  • AIE-1 and AIE-2 were prepared according to the method described in the publication (Qin W., et al., Chem. Commun., 2015, 51, 7321-7324). Based on the synthesis.
  • AIE-3 was synthesized based on a method described in a publication (Kim JY, et al., Adv. Mater. 2013, 25, 2666-2671).
  • AIE-4 was synthesized based on a method described in a publication (Chen B., et al., Chem. Eur. J., 2014, 20, 1931-1939). About other compounds, the commercial item (made by Wako Pure Chemical Industries Ltd.) was used.
  • Example 1 An organic EL device was prepared using the post-crosslinking type compound HT-1 for the hole transport layer and the phosphorescent metal complex and the fluorescent molecule shown in Table 1 for the light emitting layer, and the light emission efficiency was evaluated.
  • the substrate was transferred to a nitrogen atmosphere, and a coating solution obtained by dissolving 9.0 mg of compound HT-1 in 1.1 g of chlorobenzene was applied on the first hole transport layer under conditions of 1500 rpm and 30 seconds.
  • the film was formed by spin coating.
  • ultraviolet light was irradiated for 180 seconds, and photopolymerization / crosslinking of the post-crosslinking type compound HT-1 was performed to form a second hole transport layer having a thickness of about 20 nm.
  • the transparent support substrate on which the light emitting layer was formed was attached to a vacuum deposition apparatus, and then the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and the compound ET-1 was added at 0.1 nm / second onto the light emitting layer. Evaporation was performed to form an electron transport layer having a thickness of about 35 nm.
  • Organic EL element 1-3 was produced in the same manner as organic EL element 1-1.
  • Organic EL device 1-4 was produced in the same manner as organic EL device 1-3, except that fluorescent compound B-1 was replaced with AIE molecule (AIE-1).
  • Organic EL device 1-5 was produced in the same manner as organic EL device 1-3, except that fluorescent compound B-1 was replaced with AIE molecule (AIE-2).
  • the organic EL device 1-1 using only the fluorescent compound B-1 having no aggregation-induced light emission as the light emitting compound at a concentration of 20% by mass showed no light emission.
  • the organic EL element 1-3 in which the phosphorescent metal complex A-1 and the fluorescent compound B-1 are used in combination as the light emitting compound the organic EL element 1 using only the phosphorescent metal complex A-1 is used.
  • the luminous efficiency was improved to some extent.
  • the organic EL element 1 Compared with -3, the luminous efficiency was improved by about 2 times. From this result, it is possible to obtain sufficient light emission with an AIE molecule even when the concentration is high enough to cause quenching with the conventional fluorescent compound, and a method using the AIE molecule together. was determined to be very effective in improving the luminous efficiency. Note that there was no significant difference in luminous efficiency between AIE-1 and AIE-2, which have similar structures.
  • Example 2 In order to confirm the component that generated light emission in Example 1, a sample of a light-emitting thin film was prepared using the same phosphorescent metal complex and fluorescent light-emitting molecule as in Example 1, and the emission spectrum was evaluated. .
  • Sample 2-1 The glass substrate of 300 mm ⁇ 300 mm ⁇ 1.1 mm was subjected to UV ozone cleaning treatment for 10 minutes. Thereafter, the coating solution used for forming the light emitting layer of the organic EL element 1-1 was formed on the substrate by spin coating under a nitrogen atmosphere at 1000 rpm for 30 seconds. Then, sealing was performed in the same procedure as that for the organic EL element 1-1 to obtain a sample 2-1.
  • Sample 2-2 was prepared in the same manner as Sample 2-1, except that fluorescent compound B-1 was replaced with phosphorescent metal complex A-1, and the formulation of the coating solution used to form the light emitting layer was changed. Was made.
  • Samples 2-3 to 2-4 were produced in the same manner as Sample 2-1, except that the fluorescent compound B-1 was replaced with AIE-1 or AIE-2.
  • Sample 2-5 was produced in the same manner as Sample 2-1, except that the coating solution used for forming the light emitting layer of the organic EL element 1-2 was used.
  • Sample 2-1 was prepared in the same manner as Sample 2-1, except that the coating solution used for forming the light-emitting layers of the organic EL devices 1-4 to 1-5 was used and the type of light-emitting compound was replaced with the compound shown in Table 2. 2-6 to 2-7 were produced.
  • Samples 2-1 to 2-4 were optically excited with light in a wavelength region including a visible light region, and samples 2-5 to 2-7 were excited with current at 2.5 mA / cm 2 .
  • the emission maximum wavelength of Samples 2-6 and 2-7 in which the AIE molecule and the phosphorescent metal complex are used in combination as the luminescent compound, is detected in Sample 2-5 using only the phosphorescent metal complex.
  • the emission maximum wavelengths of Samples 2-3 and 2-4 using only AIE molecules as the luminescent compound.
  • the spectral intensity at the emission maximum wavelength seen in Sample 2-5 was decreased, the spectral intensity at the emission maximum wavelength seen in Samples 2-6 and 2-7 was increased. The possibility of energy transfer from the luminescent metal complex to the AIE molecule was speculated.
  • Example 3 An organic EL device was prepared using the post-crosslinking type compound HT-1 for the hole transport layer and the phosphorescent metal complex and the fluorescent molecule shown in Table 3 for the light emitting layer, and the light emission efficiency was evaluated.
  • Organic EL devices 3-1 to 3-5 were produced in the same manner as the organic EL device 1-1 except that the type of the luminescent compound was replaced with the compounds shown in Table 3.
  • Example 2 ⁇ Evaluation of luminous efficiency> As in Example 1, the organic EL element was turned on at a constant current density of 2.5 mA / cm 2 at room temperature (25 ° C.), and the emission luminance was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta). The light emission efficiency (external extraction quantum efficiency) was determined by measurement. The results are shown in Table 3. The luminous efficiency in the table represents a relative value with the measured value of the organic EL element 3-3 as 100.
  • the organic EL device 3-1 in which only the fluorescent compound B-2 having no aggregation-inducing emission property as the light emitting compound was used at a concentration of 20% by mass showed no emission.
  • the organic EL elements 3-4 to 3-5 in which AIE molecules are added at the same concentration instead of the fluorescent compound B-2 and used in combination with the phosphorescent metal complex A-2, the organic EL element 3 Compared with -3, high luminous efficiency was obtained. Therefore, when the concentration of the fluorescent compound is increased for the purpose of improving the luminous efficiency, it is presumed that the method using the AIE molecule is effective.
  • Example 4 In order to confirm the component that generated light emission in Example 3, a sample of a light-emitting thin film was prepared using the same phosphorescent metal complex and fluorescent molecule as in Example 3, and the emission spectrum was evaluated. .
  • Sample 4-2 was prepared in the same manner as Sample 4-1, except that fluorescent compound B-2 was replaced with phosphorescent metal complex A-2 and the composition of the coating solution used for forming the light emitting layer was changed. Was made.
  • Samples 4-3 to 4-4 were prepared in the same manner as Sample 4-1, except that the fluorescent compound B-2 was replaced with AIE-3 or AIE-4.
  • Sample 4-5 was produced in the same manner as Sample 4-1, except that the coating solution used for forming the light emitting layer of the organic EL element 3-2 was used.
  • Samples were obtained in the same manner as Sample 4-1, except that the coating solution used for forming the light emitting layers of the organic EL devices 3-4 to 3-5 was used and the types of the light emitting compounds were replaced with the compounds shown in Table 4. 4-6 to 4-7 were produced.
  • the emission maximum wavelength of Samples 4-6 and 4-7 in which the AIE molecule and the phosphorescent metal complex are used in combination as the luminescent compound, is detected in Sample 4-5 using only the phosphorescent metal complex.
  • the emission maximum wavelengths of Samples 4-3 and 4-4 using only the AIE molecule as the luminescent compound.
  • the spectral intensity at the emission maximum wavelength seen in sample 4-5 decreased, while the spectrum intensity at the emission maximum wavelength seen in samples 4-6 and 4-7 increased, so phosphorescence The possibility of energy transfer from the luminescent metal complex to the AIE molecule was speculated.
  • Example 5 An organic EL device containing a high concentration of AIE molecules in the light emitting layer was prepared, and the light emitting property was confirmed.
  • the transparent support substrate on which the light emitting layer was formed was attached to a vacuum deposition apparatus, and then the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and the compound ET-2 was added at 0.1 nm / second on the light emitting layer. Evaporation was performed to form an electron transport layer having a thickness of about 35 nm.
  • Example 6 An organic EL element containing AIE molecules as a luminescent compound was prepared and evaluated for resistance to moisture and oxygen.
  • the organic EL device 6-2 containing AIE molecules in the light emitting layer was confirmed to have high light emission efficiency even after being left in the air.
  • the reason for this is not clear, but the AIE molecules form aggregates, which increases the diameter of the individual light emitters and reduces the contact area and the number of collisions with water molecules and oxygen that cause deterioration. Can be guessed.
  • the phosphorescent metal complex used in this case had similar results when Dp-1 to Dp-59 described in this specification were used.

Abstract

The present invention provides an organic electroluminescent element, a luminescent thin film, a display device, and a luminescent device which have high luminous efficiency and can also prolong luminescence lifespan. The organic electroluminescent element includes a positive electrode, a negative electrode, and a light emitting layer provided between the positive electrode and the negative electrode, wherein a phosphorescent metal complex and an aggregation-induced emission molecule are contained in the light emitting layer. The luminescent thin film contains a phosphorescent metal complex and an aggregation-induced emission molecule. The display device and the luminescent device each include an organic electroluminescent element in which a phosphorescent metal complex and an aggregation-induced emission molecule are contained in a light emitting layer.

Description

有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHT EMITTING THIN FILM, DISPLAY DEVICE AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置に関する。 The present invention relates to an organic electroluminescence element, a light-emitting thin film, a display device, and a lighting device.
 テレビやコンピュータ等の映像表示部であるディスプレイは、現代社会において欠かすことのできない電子デバイスの一つとなっている。ディスプレイは、近年、大型化や薄型化が加速しており、これに伴って有機エレクトロルミネッセンス(以下、「有機EL」ということがある。)素子の開発も盛んになっている。有機EL素子は、構造が比較的単純で視野角にも富んだ自発光型の全固体発光素子であり、ディスプレイの構成要素として理想的な特性を持つため、今後の更なる普及が見込まれている。 A display, which is a video display unit such as a television or a computer, is one of the electronic devices indispensable in modern society. In recent years, displays have been accelerating in size and thickness, and along with this, development of organic electroluminescence (hereinafter, sometimes referred to as “organic EL”) elements has also become active. The organic EL element is a self-luminous all-solid-state light-emitting element with a relatively simple structure and a wide viewing angle, and has ideal characteristics as a component of a display. Yes.
 一般に、有機EL素子は、陽極と陰極との間に発光層等の機能性薄膜が積層された構造を有している。陽極と陰極との間に設けられる発光層には、発光性を示す有機化合物が用いられている。陽極と陰極との間に電圧が印加されると、陰極から注入された電子と陽極から注入された正孔とが、発光層に含まれる発光性化合物上で再結合して励起子を生じる。この励起子が励起状態から基底状態へと失活する際、エネルギーが光として放出されることによって発光が生じる。 Generally, an organic EL element has a structure in which a functional thin film such as a light emitting layer is laminated between an anode and a cathode. For the light emitting layer provided between the anode and the cathode, an organic compound exhibiting light emitting properties is used. When a voltage is applied between the anode and the cathode, electrons injected from the cathode and holes injected from the anode recombine on the luminescent compound contained in the light emitting layer to generate excitons. When the exciton is deactivated from the excited state to the ground state, light is emitted by releasing energy as light.
 有機EL素子の開発においては、低価格化や量産化、発光効率や素子寿命の向上といった要求が、これまで以上に高まることが予測されている。有機EL素子の低価格化や量産化を実現する方法としては、溶液の塗布や印刷によって機能性薄膜を成膜する湿式塗布法が有効であると考えられている。そこで、現在では、従来主流であった真空蒸着法の代わりに湿式塗布法を用いる製造プロセスの開発が広く進められている。 In the development of organic EL elements, it is predicted that demands for lower prices, mass production, luminous efficiency, and improvement of element lifetime will increase more than ever. As a method for realizing cost reduction and mass production of organic EL elements, it is considered that a wet coating method in which a functional thin film is formed by coating or printing a solution is effective. Therefore, at present, development of a manufacturing process using a wet coating method instead of the vacuum deposition method which has been the mainstream has been widely promoted.
 また、発光層に用いる発光性化合物についても、様々な観点から検討がなされている。発光性化合物としては、有機EL素子が開発された当初から、主として蛍光発光性化合物が用いられてきた。しかし、電子と正孔の再結合によると、スピン統計則に従って一重項励起子と三重項励起子とが1:3の比率で生成する。そのため、一重項励起子からの遷移が発光に寄与する蛍光発光性化合物では、内部量子効率が最大でも25%に制限されていた。 Also, the luminescent compound used for the light emitting layer has been studied from various viewpoints. As the light emitting compound, fluorescent light emitting compounds have been mainly used from the beginning of the development of the organic EL device. However, according to the recombination of electrons and holes, singlet excitons and triplet excitons are generated at a ratio of 1: 3 according to the spin statistics rule. Therefore, in the fluorescent compound in which transition from singlet excitons contributes to light emission, the internal quantum efficiency is limited to 25% at the maximum.
 これに対し、現在では、三重項励起子からの遷移が発光に寄与するリン光発光性化合物によって、理論上、100%の内部量子効率を実現できることが明らかになっている。リン光発光性化合物としては、本来は禁制である一重項励起状態から三重項励起状態へのエネルギー移動(項間交差:ISCという。)を重原子効果によって容易にした種々のリン光発光性金属錯体が開発されている。 In contrast, at present, it has been clarified that 100% internal quantum efficiency can be theoretically realized by a phosphorescent compound in which transition from triplet exciton contributes to light emission. As phosphorescent compounds, various phosphorescent metals that facilitate the energy transfer from the originally forbidden singlet excited state to the triplet excited state (intersystem crossing: referred to as ISC) by the heavy atom effect. Complexes have been developed.
 従来、蛍光発光性化合物とリン光発光性金属錯体とを同一の発光層で併用して、量子効率を改善する技術が提案されている。例えば、特許文献1には、発光層が、ホスト材料、ホスト材料中にドーパントとして存在する蛍光発光分子、及び、蛍光発光分子にエネルギーを移動させる項間交差剤を含み、アノードとカソードとを通して電圧を印加した場合に蛍光発光分子が蛍光を発する有機発光素子が記載されている。 Conventionally, a technique for improving quantum efficiency by combining a fluorescent compound and a phosphorescent metal complex in the same light emitting layer has been proposed. For example, in Patent Document 1, the light-emitting layer includes a host material, a fluorescent light-emitting molecule present as a dopant in the host material, and an intersystem crossing agent that transfers energy to the fluorescent light-emitting molecule. An organic light-emitting device is described in which fluorescent light-emitting molecules emit fluorescence when is applied.
特許第4571359号公報Japanese Patent No. 4571359
 近年、有機EL素子について、発光効率や素子寿命の更なる向上が求められているが、発光性化合物のうち、青色のような短波長側の発光色を示すリン光発光性金属錯体は、長波長側の発光色を示す他のリン光発光性金属錯体と比較して、発光寿命が短い現状がある。リン光発光性金属錯体を利用することによって、理論上、内部量子効率を向上させることはできるものの、青色発光自体を利用する場合や、青色発光等を合成して白色光等を得ようとする場合、青色を示すリン光発光性金属錯体の発光寿命によって素子寿命も短くなるため、未だ発光効率と素子寿命との両立を実現できていない状況にある。 In recent years, there has been a demand for further improvement in light emission efficiency and device lifetime for organic EL devices. Among light emitting compounds, phosphorescent metal complexes that exhibit a light emission color on a short wavelength side such as blue are long. Compared with other phosphorescent metal complexes that exhibit the emission color on the wavelength side, there is a current state of short emission lifetime. Theoretically, the internal quantum efficiency can be improved by using a phosphorescent metal complex. However, when using blue light emission itself, or trying to obtain white light by synthesizing blue light emission. In this case, the device lifetime is shortened due to the emission lifetime of the phosphorescent metal complex exhibiting blue, so that it is not yet possible to achieve both the light emission efficiency and the device lifetime.
 また、従来一般的に用いられている蛍光発光性化合物は、分子が孤立している状態では強い発光を示す一方、分子の濃度が高くなって分子同士が凝集すると消光を起こす性質がある。そのため、有機EL素子の発光効率の向上を狙って蛍光発光性化合物の濃度を高くしたとしても、デクスター型のエネルギー移動や自己遮蔽効果等が原因で、その効果は直ちに限度に達してしまうので、濃度の制御によって高い発光効率を実現するのは困難になっている。 In addition, a fluorescent compound that has been generally used conventionally has strong light emission when the molecules are isolated, and has a property of causing quenching when the concentration of the molecules increases and the molecules aggregate. Therefore, even if the concentration of the fluorescent compound is increased with the aim of improving the luminous efficiency of the organic EL element, the effect immediately reaches its limit due to Dexter type energy transfer, self-shielding effect, etc. It is difficult to achieve high luminous efficiency by controlling the concentration.
 また、発光性化合物の濃度を高くする手法は、特許文献1に記載されるように、蛍光発光性化合物とリン光発光性金属錯体とを併用する場合にも消光を生じ得るし、発光層を成膜するにあたって湿式塗布法を用いる場合にも、固有の問題を生じることが知られている。例えば、塗布に用いる溶液中で発光性化合物の濃度が高くなると、分子同士が凝集し易くなるため、成膜される発光層等の機能性薄膜に、局所的な膜密度の低下や均一性の低下を生じ易くなる。このような凝集に伴う変質も、発光効率の低下をもたらすため、発光効率と素子寿命とを両立し得る新たな手法が望まれる。 Further, as described in Patent Document 1, the method of increasing the concentration of the luminescent compound can cause quenching even when the fluorescent luminescent compound and the phosphorescent metal complex are used in combination, It is known that a unique problem is caused even when a wet coating method is used for film formation. For example, when the concentration of the luminescent compound is increased in the solution used for coating, molecules tend to aggregate together, so that the functional thin film such as a luminescent layer to be formed has a local decrease in film density or uniformity. It tends to cause a decrease. Such alteration due to aggregation also brings about a decrease in luminous efficiency, and therefore a new method capable of achieving both luminous efficiency and device lifetime is desired.
 そこで、本発明は、高い発光効率を示し、発光を長寿命化することも可能な有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置を提供することを目的とする。 Therefore, an object of the present invention is to provide an organic electroluminescence element, a light-emitting thin film, a display device, and a lighting device that exhibit high luminous efficiency and can extend the lifetime of light emission.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.陽極と、陰極と、前記陽極と前記陰極の間に設けられた発光層と、を備え、前記発光層中にリン光発光性金属錯体と凝集誘起発光性分子とを含有する有機エレクトロルミネッセンス素子。 1. An organic electroluminescence device comprising an anode, a cathode, and a light emitting layer provided between the anode and the cathode, wherein the light emitting layer contains a phosphorescent metal complex and an aggregation-induced light emitting molecule.
 2.前記リン光発光性金属錯体が下記一般式(DP)で表される有機金属錯体である前記1に記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000002
[但し、一般式(DP)中、Mは、Ir、Pt、Rh、Ru、Cu又はOsを表し、A、A、B及びBは、それぞれ独立して、炭素原子又は窒素原子を表し、環Zは、A及びAと共に形成される6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環を表し、環Zは、B及びBと共に形成される5員又は6員の芳香族複素環を表す。環Z及び環Zは、置換基を有していてもよく、置換基同士は、互いに結合して縮環構造を形成していてもよく、互いに結合して配位子同士を連結していてもよい。L’は、Mに配位したモノアニオン性の二座配位子を表し、m’は、0~2の整数を表し、n’は、1~3の整数を表し、m’+n’は、2又は3であり、m’及びn’が2以上のとき、環Z及び環Zで表される配位子とL’は、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。]
2. 2. The organic electroluminescence device according to 1 above, wherein the phosphorescent metal complex is an organometallic complex represented by the following general formula (DP).
Figure JPOXMLDOC01-appb-C000002
[In the general formula (DP), M represents Ir, Pt, Rh, Ru, Cu or Os, and A 1 , A 2 , B 1 and B 2 are each independently a carbon atom or a nitrogen atom. Ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed with A 1 and A 2 or a 5-membered or 6-membered aromatic heterocycle, and ring Z 2 represents B 1 and B Represents a 5- or 6-membered aromatic heterocyclic ring formed together with 2 ; Ring Z 1 and ring Z 2 may have a substituent, and the substituents may be bonded to each other to form a condensed ring structure. It may be. L ′ represents a monoanionic bidentate ligand coordinated to M, m ′ represents an integer of 0 to 2, n ′ represents an integer of 1 to 3, and m ′ + n ′ represents 2 or 3, and when m ′ and n ′ are 2 or more, the ligand represented by ring Z 1 and ring Z 2 and L ′ may have the same structure or different from each other. It may be a structure. ]
 3.前記凝集誘起発光性分子が、テトラフェニルエチレン誘導体、又は、シロール誘導体である前記1に記載の有機エレクトロルミネッセンス素子。 3. 2. The organic electroluminescence device according to 1 above, wherein the aggregation-induced luminescent molecule is a tetraphenylethylene derivative or a silole derivative.
 4.リン光発光性金属錯体と凝集誘起発光性分子とを含有する発光性薄膜。 4. A luminescent thin film containing a phosphorescent metal complex and an aggregation-induced luminescent molecule.
 5.前記1から前記3のいずれかに記載の有機エレクトロルミネッセンス素子を具備する表示装置。 5. 4. A display device comprising the organic electroluminescence element according to any one of 1 to 3 above.
 前記1から前記3のいずれかに記載の有機エレクトロルミネッセンス素子を具備する照明装置。 The illuminating device which comprises the organic electroluminescent element in any one of said 1 to 3.
 本発明によれば、高い発光効率を示し、発光を長寿命化することも可能な有機エレクトロルミネッセンス素子、発光性薄膜、表示装置及び照明装置を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescence element, a light-emitting thin film, a display device, and a lighting device that exhibit high luminous efficiency and can extend the lifetime of light emission.
AIE分子の凝集誘起発光性を説明する概念図である。It is a conceptual diagram explaining the aggregation induced luminescent property of an AIE molecule. 有機EL素子から構成される表示装置の一例を示した模式図である。It is the schematic diagram which showed an example of the display apparatus comprised from an organic EL element. 表示部Aの模式図である。4 is a schematic diagram of a display unit A. FIG. 画素の模式図である。It is a schematic diagram of a pixel. パッシブマトリクス方式フルカラー表示装置の模式図である。It is a schematic diagram of a passive matrix type full-color display device. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の模式図である。It is a schematic diagram of an illuminating device.
 以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although the form for implementing this invention is demonstrated in detail, this invention is not limited to these.
 本発明者らは、有機EL素子や発光性薄膜の発光効率と発光寿命とを両立すべく鋭意検討した結果、従来の蛍光発光性化合物に代えて、凝集により強い発光を示す凝集誘起発光性(aggregation-induced emission:AIE)分子をリン光発光性金属錯体と併用すると、リン光発光性金属錯体の発光寿命に大きく影響されることなく、有機EL素子や発光性薄膜の全体としての発光の寿命が長寿命化し、発光性化合物の全体としての発光効率も向上することを見出した。 As a result of intensive studies to achieve both the light emission efficiency and the light emission lifetime of the organic EL device and the light-emitting thin film, the present inventors have replaced the conventional fluorescent compound with aggregation-induced luminescence that exhibits strong light emission by aggregation ( When the aggregation-induced emission (AIE) molecule is used in combination with a phosphorescent metal complex, the lifetime of the entire organic EL device or luminescent thin film is not affected by the emission lifetime of the phosphorescent metal complex. Has been found to increase the lifetime and improve the luminous efficiency of the luminescent compound as a whole.
 発光性化合物として従来型の蛍光発光性化合物を用いる場合、発光効率の向上を狙って化合物の濃度を高くすると、濃度消光が起こり、却って発光効率が低下してしまうことが知られている。これに対し、発光性化合物としてAIE分子を用いると、化合物の濃度を高くした場合に、分子同士の凝集によって、寧ろ強い発光を生じる。よって、発光性化合物としてAIE分子を併用する手法は、発光効率と発光寿命とを両立する有効な手段になると考えられる。 When a conventional fluorescent compound is used as the light-emitting compound, it is known that if the concentration of the compound is increased with the aim of improving the light emission efficiency, concentration quenching occurs and the light emission efficiency decreases. On the other hand, when AIE molecules are used as the light-emitting compound, when the concentration of the compound is increased, rather strong light emission occurs due to aggregation of the molecules. Therefore, it is considered that the method using the AIE molecule in combination as the light emitting compound is an effective means for achieving both the light emission efficiency and the light emission lifetime.
 また、一般には、発光層等に生じる膜構造の経時的変化が、有機EL素子等を劣化させる一因であると知られている。通常、電圧の印加によって発光性化合物の分子が拡散すると、分子の凝集化や結晶化が進み、発光層等の機能性薄膜の膜構造が変化し得る。このような膜構造の変化は、有機EL素子等の全体としての発光効率にも影響すると考えられている。これに対し、AIE分子は、凝集した状態で強い発光を示すことができるため、分子が拡散を始める以前に予め凝集体を形成させておくことによって、電圧の印加による膜構造の変化を少なくすることができる。この手法によると、長期間の駆動を行う場合にも、膜構造を安定に保つことができるため、リン光発光性金属錯体自体の発光寿命に大きく影響されることなく、有機EL素子等の発光の寿命を長寿命化するのに好適であると判断した。 Further, it is generally known that a change over time in the film structure that occurs in the light emitting layer or the like is a cause of deterioration of the organic EL element or the like. Usually, when a molecule of a luminescent compound is diffused by application of a voltage, the aggregation and crystallization of the molecule proceeds, and the film structure of a functional thin film such as a luminescent layer can be changed. Such a change in the film structure is considered to affect the luminous efficiency of the organic EL element as a whole. On the other hand, since AIE molecules can exhibit strong light emission in an aggregated state, the change in the film structure due to application of voltage is reduced by forming aggregates in advance before the molecules start to diffuse. be able to. According to this method, even when driving for a long period of time, the film structure can be kept stable, so that the light emission of the organic EL element or the like is not greatly affected by the light emission lifetime of the phosphorescent metal complex itself. It was judged that it was suitable for prolonging the lifetime.
 また、AIE分子は、凝集した状態で強い発光を示すことができるため、予め凝集体を形成させておくことによって、大気中の酸素や水分等との接触を低減することができる。凝集体が形成されることによって、有機EL素子等の劣化因子である酸素や水分等との接触面積が小さくなり、大気下における発光性化合物の安定性が向上すると推察される。よって、有機EL素子等を封止するにあたって、従来よりも低い性能の封止材を採用することが可能になり、低コスト化に繋がることも期待される。 In addition, since the AIE molecule can exhibit strong light emission in an aggregated state, contact with oxygen, moisture, etc. in the atmosphere can be reduced by forming aggregates in advance. The formation of aggregates is presumed to reduce the contact area with oxygen, moisture, etc., which are degradation factors of organic EL elements, and improve the stability of the luminescent compound in the atmosphere. Therefore, when sealing an organic EL element etc., it becomes possible to employ | adopt the sealing material of a lower performance than before, and it is anticipated that it will lead to cost reduction.
《有機EL素子》
 はじめに、本実施形態に係る有機EL素子について説明する。本実施形態に係る有機EL素子は、陽極と、陰極と、陽極と陰極との間に配置され、少なくとも発光層を含んで構成された機能性薄膜とを備える。この有機EL素子は、陽極と陰極の間に設けられた発光層中に、リン光発光性金属錯体と凝集誘起発光性分子とを含有する。
<< Organic EL element >>
First, the organic EL element according to this embodiment will be described. The organic EL device according to this embodiment includes an anode, a cathode, and a functional thin film that is disposed between the anode and the cathode and includes at least a light emitting layer. This organic EL element contains a phosphorescent metal complex and an aggregation-induced luminescent molecule in a light emitting layer provided between an anode and a cathode.
<凝集誘起発光性分子(AIE分子)>
 凝集誘起発光性分子(AIE分子)は、液媒体中、分子が凝集することなく溶解又は分散している状態では、量子収率が低いため発光を発さないか、発光強度が弱く、反対に、分子が凝集して集合体を形成している状態では、量子収率が高くなって発光強度が強くなる性質を示す分子である。
<Aggregation-induced luminescent molecule (AIE molecule)>
Aggregation-induced light-emitting molecules (AIE molecules) do not emit light because the quantum yield is low or the emission intensity is weak when the molecules are dissolved or dispersed without aggregation in the liquid medium. In a state where the molecules are aggregated to form an aggregate, the molecule exhibits the property that the quantum yield increases and the emission intensity increases.
 本実施形態に係る有機EL素子においては、AIE分子として、前記の性質を示す適宜の分子を用いることができる。AIE分子の種類は、特に制限されるものではない。AIE分子としては、単一の発光層において、一種を単独で用いてもよいし、複数種を併用してもよい。AIE分子の好ましい形態は、芳香族炭化水素環及び芳香族複素環のうち、少なくとも一方を有する分子である。このような分子であれば、適切な置換基の導入等によって、必要とされる可視光領域の極大発光波長を持つ蛍光を容易に得ることができる。 In the organic EL device according to this embodiment, an appropriate molecule exhibiting the above properties can be used as the AIE molecule. The type of AIE molecule is not particularly limited. As an AIE molecule, one kind may be used alone or a plurality of kinds may be used in combination in a single light emitting layer. A preferred form of the AIE molecule is a molecule having at least one of an aromatic hydrocarbon ring and an aromatic heterocyclic ring. With such a molecule, it is possible to easily obtain fluorescence having a required maximum emission wavelength in the visible light region by introducing an appropriate substituent.
 AIE分子としては、具体的には、ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子、カルボラン系凝集誘起発光性分子、テトラフェニルエチレン系凝集誘起発光性分子、シロール系凝集誘起発光性分子、ローダミン系凝集誘起発光性分子の他、配位子に分子運動を抑制する部位を導入した芳香環含有金属錯体、芳香族複素環を有するその他のヘテロ化合物等が挙げられる。但し、AIE分子の種類は、これらに限定されるものではない。 Specific examples of AIE molecules include benzofuro-oxazolo-carbazole-based aggregation-induced luminescent molecules, carborane-based aggregation-induced luminescent molecules, tetraphenylethylene-based aggregation-induced luminescent molecules, silole-based aggregation-induced luminescent molecules, rhodamine-based molecules. In addition to aggregation-induced light-emitting molecules, aromatic ring-containing metal complexes in which a site that suppresses molecular motion is introduced into the ligand, other hetero compounds having an aromatic heterocycle, and the like can be given. However, the type of AIE molecule is not limited to these.
(ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子)
 ベンゾフロ・オキサゾロ・カルバゾール系凝集誘起発光性分子としては、下記一般式(1)で表されるベンゾフロ[2,3-c]オキサゾロ[4,5-a]カルバゾール骨格を有するベンゾフロ・オキサゾロ・カルバゾール誘導体を用いることができる。
(Benzofuro / oxazolo / carbazole-based aggregation-induced luminescent molecules)
Examples of the benzofuro-oxazolo-carbazole-based aggregation-inducing light-emitting molecule include benzofuro-oxazolo-carbazole derivatives having a benzofuro [2,3-c] oxazolo [4,5-a] carbazole skeleton represented by the following general formula (1) Can be used.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[但し、一般式(1)中、R及びRは、それぞれ独立して、水素原子又は置換基を表し、R及びRは、それぞれ独立して、置換基を表し、mは、0~4の整数を表し、nは、0~4の整数を表す。] [In the general formula (1), R 1 and R 2 each independently represent a hydrogen atom or a substituent, R 3 and R 4 each independently represent a substituent, N represents an integer of 0 to 4, and n represents an integer of 0 to 4. ]
 ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基としては、ハメット則による任意の置換基定数を示す各種の電子供与基、電子求引基等が挙げられるが、特に、脂肪族炭化水素基、芳香族炭化水素基、又は、複素環基が好ましい。 Examples of the substituent for substituting the benzofuro-oxazolo-carbazole derivative include various electron-donating groups and electron-withdrawing groups that exhibit an arbitrary substituent constant according to Hammett's rule, but in particular, an aliphatic hydrocarbon group, an aromatic group A hydrocarbon group or a heterocyclic group is preferred.
 ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等の直鎖状又は分枝状のアルキル基や、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。 Examples of the aliphatic hydrocarbon group that substitutes the benzofuro-oxazolo-carbazole derivative include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. A linear or branched alkyl group such as a pentyl group, a hexyl group, an octyl group, a dodecyl group, a tridecyl group, a tetradecyl group or a pentadecyl group, or a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group.
 ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する芳香族炭化水素基としては、例えば、フェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。 Examples of the aromatic hydrocarbon group replacing the benzofuro-oxazolo-carbazole derivative include phenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl Group, pyrenyl group, biphenylyl group and the like.
 ベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する複素環基としては、例えば、ピリジル基、ピリダジル基、ピリミジニル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基、テトラゾリル基、オキサゾリル基、チアゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、イソオキサゾリル基、イソチアゾリル基、チアジアゾリル基、オキサジアゾリル基、フリル基、フラザニル基、チエニル基、キノリル基、イソキノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インダゾリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基、キノキサリニル基、フェナントリジル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等の芳香族複素環基や、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等の非芳香族複素環基が挙げられる。 Examples of the heterocyclic group that substitutes the benzofuro-oxazolo-carbazole derivative include a pyridyl group, a pyridazyl group, a pyrimidinyl group, a pyrrolyl group, an imidazolyl group, a benzoimidazolyl group, a pyrazolyl group, a pyrazinyl group, a triazolyl group, a tetrazolyl group, an oxazolyl group, Thiazolyl group, benzoxazolyl group, benzothiazolyl group, isoxazolyl group, isothiazolyl group, thiadiazolyl group, oxadiazolyl group, furyl group, furazanyl group, thienyl group, quinolyl group, isoquinolyl group, benzofuryl group, dibenzofuryl group, benzothienyl group, Dibenzothienyl, indazolyl, carbazolyl, carbolinyl, diazacarbazolyl, quinoxalinyl, phenanthridyl, pyridazinyl, triazinyl, quinazolini Group, or an aromatic heterocyclic group such as a phthalazinyl group, a pyrrolidyl group, imidazolidyl group, morpholyl group, and a non-aromatic heterocyclic groups such as oxazolidyl group.
 ベンゾフロ・オキサゾロ・カルバゾール誘導体は、例えば、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基、ハロゲン原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルキニル基、アリール基、アラルキル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アリールオキシカルボニル基、スルファモイル基、アシル基、アシルオキシ基、アミド基、カルバモイル基、ウレイド基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、シアノ基、ニトロ基、メルカプト基等のその他の置換基を、一般式(1)で表される骨格自体や、その骨格に置換した脂肪族炭化水素基、芳香族炭化水素基、又は、複素環基に有していてもよい。 The benzofuro-oxazolo-carbazole derivatives are, for example, sulfonic acid group, carboxyl group, phosphoric acid group, phosphorous acid group, hydroxyl group, amino group, isocyanate group, silyl group, halogen atom, alkyl group, cycloalkyl group, alkenyl group, Alkynyl group, cycloalkenyl group, cycloalkynyl group, aryl group, aralkyl group, alkoxy group, aryloxy group, alkylthio group, arylthio group, alkoxycarbonyl group, aryloxycarbonyl group, sulfamoyl group, acyl group, acyloxy group, amide group , A carbamoyl group, a ureido group, an alkylsulfinyl group, an arylsulfinyl group, an alkylsulfonyl group, an arylsulfonyl group, a cyano group, a nitro group, a mercapto group, and other substituents represented by the general formula (1) , Aliphatic hydrocarbon group substituted in its backbone, an aromatic hydrocarbon group, or may have a heterocyclic group.
(カルボラン系凝集誘起発光性分子)
 カルボラン系凝集誘起発光性分子としては、C1012で表される1,2-closo-ジカルバドデカボランの誘導体を用いることができる。カルボラン系凝集誘起発光性分子の特に好ましい形態は、下記一般式(2)で表されるo-カルボランの誘導体である。o-カルボランの誘導体は、π電子が非局在化しているクラスター部分が高い電子求引性を有している。1位や2位の炭素にπ電子共役ユニットを導入したカルボラン誘導体は強い蛍光を発することが、一般的に知られている(K.Kokado,et al.,Macromolecules,2009,42,1418-1420等参照)。
(Carborane-based aggregation-induced luminescent molecules)
As the carborane-based aggregation-inducing luminescent molecule, a 1,2-closo-dicarbadodecaborane derivative represented by C 2 B 10 H 12 can be used. A particularly preferred form of the carborane-based aggregation-inducing luminescent molecule is a derivative of o-carborane represented by the following general formula (2). A derivative of o-carborane has a high electron withdrawing property in a cluster portion where π electrons are delocalized. It is generally known that a carborane derivative having a π-electron conjugated unit introduced at the 1- or 2-position carbon emits strong fluorescence (K. Kokado, et al., Macromolecules, 2009, 42, 1418-1420). Etc.).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[但し、一般式(2)中、R及びRは、それぞれ独立して、水素原子、有機基、又は、有機金属基を表し、R及びRの少なくとも一方は、π電子共役ユニットを表す。]なお、一般式(2)において、白抜きの丸は、炭素原子を表し、黒丸は、水素原子が結合したホウ素原子を表す。一般式(2)で表されるカルボランは、正二重面体の構造を有するクラスター分子であり、式中では、背面側に位置するホウ素原子や水素原子の図示を省略している。 [However, in General Formula (2), R 5 and R 6 each independently represent a hydrogen atom, an organic group, or an organometallic group, and at least one of R 5 and R 6 is a π-electron conjugated unit. Represents. In general formula (2), a white circle represents a carbon atom, and a black circle represents a boron atom to which a hydrogen atom is bonded. The carborane represented by the general formula (2) is a cluster molecule having a regular dihedral structure, and illustration of boron atoms and hydrogen atoms located on the back side is omitted in the formula.
 カルボランを置換する有機基としては、例えば、アルキル基、シクロアルキル基等の飽和脂肪族炭化水素基や、アルケニル基、アルキニル基、シクロアルケニル基、シクロアルキニル基等の不飽和脂肪族炭化水素基や、芳香族炭化水素基や、複素環基等が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。 Examples of the organic group for substituting carborane include saturated aliphatic hydrocarbon groups such as alkyl groups and cycloalkyl groups, unsaturated aliphatic hydrocarbon groups such as alkenyl groups, alkynyl groups, cycloalkenyl groups, and cycloalkynyl groups. And aromatic hydrocarbon groups and heterocyclic groups. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative.
 カルボランを置換する有機金属基としては、Ir、Pt、Rh、Ru、Ag、Cu、Os、Re等の金属原子が配位結合した有機基が挙げられる。これらの有機基の具体例としては、ピリジン環、ピリダジン環、ピリミジン環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環、ピラジン環、トリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、インダゾール環、キノキサリン環、フェナントリジン環等が挙げられる。 Examples of the organometallic group that substitutes carborane include an organic group in which metal atoms such as Ir, Pt, Rh, Ru, Ag, Cu, Os, and Re are coordinate-bonded. Specific examples of these organic groups include pyridine ring, pyridazine ring, pyrimidine ring, imidazole ring, benzimidazole ring, pyrazole ring, pyrazine ring, triazole ring, benzoxazole ring, benzothiazole ring, quinoline ring, isoquinoline ring, indazole Ring, quinoxaline ring, phenanthridine ring and the like.
 カルボランは、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体と同様、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基、ハロゲン原子等、その他の置換基を、クラスター部分に置換した飽和脂肪族炭化水素基、不飽和脂肪族炭化水素基、芳香族炭化水素基、複素環基等の有機基や、有機金属基に有していてもよい。 The carborane has other substituents such as a sulfonic acid group, a carboxyl group, a phosphoric acid group, a phosphorous acid group, a hydroxyl group, an amino group, an isocyanate group, a silyl group, and a halogen atom, like the benzofuro-oxazolo-carbazole derivative. In addition, an organic group such as a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group substituted on the cluster portion may be included in the organic metal group.
 一般式(2)中、R及びRは、少なくとも一方がπ電子共役ユニットである限り、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。また、R及びRは、互いに縮合して環を形成していてもよい。また、R及びRは、電子供与性のπ電子共役ユニットと電子受容性のπ電子共役ユニットとの組み合わせで構成されてもよいし、電子供与性のπ電子共役ユニットと非共役の原子団との組み合わせで構成されてもよい。 In general formula (2), R 5 and R 6 may have the same structure or different structures as long as at least one is a π-electron conjugated unit. R 5 and R 6 may be condensed with each other to form a ring. R 5 and R 6 may be composed of a combination of an electron-donating π-electron conjugated unit and an electron-accepting π-electron conjugated unit, or an electron-donating π-electron conjugated unit and a non-conjugated atom. It may be configured in combination with a group.
 π電子共役ユニットとしては、例えば、芳香族炭化水素基、芳香族複素環基等の有機基や、有機金属基や、共役ジエン基、エチニレン基、ヘテロ原子等の連結基によって構成される原子団ないし分子鎖が挙げられる。π電子共役ユニットは、そのπ電子共役ユニットの分子運動がカルボランの凝集によって制約され易い点で、平面的な分子鎖ないし原子団で構成されることが好ましい。 Examples of the π-electron conjugated unit include an atomic group composed of an organic group such as an aromatic hydrocarbon group and an aromatic heterocyclic group, an organic metal group, and a linking group such as a conjugated diene group, an ethynylene group, and a hetero atom. Or a molecular chain. The π-electron conjugated unit is preferably composed of a planar molecular chain or atomic group in that the molecular motion of the π-electron conjugated unit is easily restricted by aggregation of carborane.
 π電子共役ユニットの特に好ましい形態は、カルボランの凝集によって分子運動が制約され易く、エネルギー準位の制御や、分子運動の制御を適切に行える点等から、芳香族炭化水素基、又は、芳香族複素環基である。π電子共役ユニットを構成する芳香族炭化水素基としては、フェニル基、ナフチル基、アントラニル基、フェナントリル基、ピレニル基等が好ましい。また、π電子共役ユニットを構成する芳香族複素環基としては、ピリジル基、ピリミジル基、ピロリル基、イミダゾリル基、ピラゾリル基、トリアゾリル基、オキサゾリル基、チアゾリル基、チアジアゾリル基、オキサジアゾリル基、トリアジニル基等が好ましい。具体的には、RやRとして、9-カルバゾリルフェニル基、γ-カルボニリルフェニル基、トリフェニルシリル基等も好ましく用いることができる。 A particularly preferred form of the π-electron conjugated unit is an aromatic hydrocarbon group or an aromatic group from the viewpoint that molecular motion is easily restricted by aggregation of carborane, and that energy level control and molecular motion control can be performed appropriately. It is a heterocyclic group. As the aromatic hydrocarbon group constituting the π-electron conjugated unit, a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a pyrenyl group, and the like are preferable. Examples of the aromatic heterocyclic group constituting the π-electron conjugated unit include pyridyl group, pyrimidyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, triazolyl group, oxazolyl group, thiazolyl group, thiadiazolyl group, oxadiazolyl group, triazinyl group, etc. Is preferred. Specifically, as R 5 and R 6 , a 9-carbazolylphenyl group, γ-carbonylylphenyl group, triphenylsilyl group and the like can be preferably used.
(テトラフェニルエチレン系凝集誘起発光性分子)
 テトラフェニルエチレン系凝集誘起発光性分子としては、下記一般式(3)で表されるテトラフェニルエチレン骨格を有するテトラフェニルエチレン誘導体を用いることができる。
(Tetraphenylethylene-based aggregation-induced luminescent molecule)
As the tetraphenylethylene-based aggregation-inducing luminescent molecule, a tetraphenylethylene derivative having a tetraphenylethylene skeleton represented by the following general formula (3) can be used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[但し、一般式(3)中、R、R、R及びR10は、それぞれ独立して、有機基、又は、有機金属基を表し、o、p、q及びrは、それぞれ独立して、0~5の整数を表す。] [In the general formula (3), R 7 , R 8 , R 9 and R 10 each independently represents an organic group or an organometallic group, and o, p, q and r are each independently Represents an integer of 0 to 5. ]
 テトラフェニルエチレン誘導体を置換する有機基としては、例えば、脂肪族炭化水素基や、芳香族炭化水素基や、複素環基等が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。 Examples of the organic group that substitutes the tetraphenylethylene derivative include an aliphatic hydrocarbon group, an aromatic hydrocarbon group, and a heterocyclic group. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative.
 テトラフェニルエチレン誘導体を置換する有機金属基としては、Ir、Pt、Rh、Ru、Ag、Cu、Os、Re等の金属原子が配位結合した有機基が挙げられる。これらの有機基の具体例としては、前記のカルボランを置換する有機金属基と同様の基が挙げられる。 Examples of the organometallic group that substitutes for the tetraphenylethylene derivative include organic groups in which metal atoms such as Ir, Pt, Rh, Ru, Ag, Cu, Os, and Re are coordinated. Specific examples of these organic groups include the same groups as the organometallic groups that substitute for the carborane.
 テトラフェニルエチレン誘導体は、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体と同様、スルホン酸基、カルボキシル基、リン酸基、亜リン酸基、水酸基、アミノ基、イソシアネート基、シリル基、ハロゲン原子等、その他の置換基を、テトラフェニルエチレン骨格自体や、その骨格に置換した脂肪族炭化水素基、芳香族炭化水素基、複素環基等の有機基や、有機金属基に有していてもよい。 The tetraphenylethylene derivative is the same as the benzofuro-oxazolo-carbazole derivative, and other sulfonic acid group, carboxyl group, phosphoric acid group, phosphorous acid group, hydroxyl group, amino group, isocyanate group, silyl group, halogen atom, etc. You may have a substituent in tetraphenylethylene frame | skeleton itself, organic groups, such as an aliphatic hydrocarbon group substituted by the frame | skeleton, an aromatic hydrocarbon group, and a heterocyclic group, or an organometallic group.
 一般式(3)中、R~R10は、同一の環に置換している置換基の1以上のうちで、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。また、R~R10同士は、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。また、R~R10は、同一の環に置換している置換基同士で縮合して環を形成していてもよいし、異なる環に置換している置換基同士で縮合して環を形成していてもよい。なお、テトラフェニルエチレン誘導体は、一般式(3)で表されるテトラフェニルエチレン骨格を2個以上含み、これら複数の骨格同士がR~R10のいずれかを介して互いに連結した構造であってもよい。 In general formula (3), R 7 to R 10 may have the same structure or different structures among one or more substituents substituted on the same ring. . Also, R 7 to R 10 may have the same structure or different structures. R 7 to R 10 may be condensed with substituents substituted on the same ring to form a ring, or condensed with substituents substituted on different rings to form a ring. It may be formed. Note that the tetraphenylethylene derivative has a structure in which two or more tetraphenylethylene skeletons represented by the general formula (3) are included and these skeletons are connected to each other via any one of R 7 to R 10. May be.
 テトラフェニルエチレン系凝集誘起発光性分子の具体例としては、テトラフェニルエチレンや、一般式(3)で表されるテトラフェニルエチレン誘導体のベンゼン環のパラ位に、9-カルバゾリルフェニル基、γ-カルボニリルフェニル基、4,6-ジフェニル-1,3,5-トリアジニル基等が置換した誘導体が挙げられるが、これらに制限されるものではない。 Specific examples of the tetraphenylethylene-based aggregation-inducing luminescent molecule include tetraphenylethylene and a 9-carbazolylphenyl group, γ at the para-position of the benzene ring of the tetraphenylethylene derivative represented by the general formula (3). -Derivatives substituted with a carbonylylphenyl group, a 4,6-diphenyl-1,3,5-triazinyl group and the like are exemplified, but not limited thereto.
(シロール系凝集誘起発光性分子)
 シロール系凝集誘起発光性分子としては、シロール環にπ電子共役ユニットが結合したシロール誘導体を用いることができる。シロール系凝集誘起発光性分子の特に好ましい形態は、下記一般式(4)で表されるシロール環の3位及び4位の炭素が置換基を有していてもよいベンゼン環で置換された誘導体である。
(Silole-based aggregation-induced luminescent molecules)
As the silole-based aggregation-inducing luminescent molecule, a silole derivative in which a π-electron conjugated unit is bonded to a silole ring can be used. A particularly preferred form of the silole-based aggregation-inducing luminescent molecule is a derivative in which the 3-position and 4-position carbon of the silole ring represented by the following general formula (4) is substituted with a benzene ring which may have a substituent. It is.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[但し、一般式(4)中、R11及びR12は、それぞれ独立して、炭素数が1~12の炭化水素基を表し、s及びtは、それぞれ独立して、0~5の整数を表し、R13及びR16は、それぞれ独立して、有機基を表し、R14及びR15は、それぞれ独立して、炭素数が1~20の有機基を表す。] [In the general formula (4), R 11 and R 12 each independently represents a hydrocarbon group having 1 to 12 carbon atoms, and s and t each independently represents an integer of 0 to 5] R 13 and R 16 each independently represents an organic group, and R 14 and R 15 each independently represents an organic group having 1 to 20 carbon atoms. ]
 シロール誘導体を置換するR11やR12としては、例えば、炭素数が1~12の飽和脂肪族炭化水素基や、炭素数が1~12の不飽和脂肪族炭化水素基や、炭素数が1~12の芳香族炭化水素基が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。R11やR12としては、炭素数が1~6の炭化水素基がより好ましく、炭素数が1~4の炭化水素基が更に好ましい。また、sやtは、0又は1であることが好ましく、0であること、すなわちR11やR12がフェニル基であることが特に好ましい。 Examples of R 11 and R 12 for substituting the silole derivative include a saturated aliphatic hydrocarbon group having 1 to 12 carbon atoms, an unsaturated aliphatic hydrocarbon group having 1 to 12 carbon atoms, and a carbon number of 1 -12 aromatic hydrocarbon groups. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative. R 11 and R 12 are more preferably a hydrocarbon group having 1 to 6 carbon atoms, and still more preferably a hydrocarbon group having 1 to 4 carbon atoms. Further, s and t are preferably 0 or 1, and particularly preferably 0, that is, R 11 and R 12 are each a phenyl group.
 シロール誘導体を置換するR13やR16としては、例えば、脂肪族炭化水素基や、芳香族炭化水素基や、複素環基によって構成される原子団ないし分子鎖が挙げられる。これらの有機基の具体例としては、前記のカルボランを置換する置換基と同様の基が挙げられる。R13やR16としては、ベンゼン環、ナフタレン環、ピリジン環、ピロール環、イミダゾール環、イミダゾリン環、ピラゾリル環、ピラジン環、オキサゾール環、チアゾール環、フラン環、及び、チオフェン環のうちの1種以上によって構成されるπ電子共役ユニットがより好ましく、1以上のベンゼン環を含むπ電子共役ユニットが更に好ましく、フェニル基が特に好ましい。 Examples of R 13 and R 16 for substituting a silole derivative include an atomic group or a molecular chain composed of an aliphatic hydrocarbon group, an aromatic hydrocarbon group, or a heterocyclic group. Specific examples of these organic groups include the same groups as the substituents for substituting the carborane. R 13 or R 16 is one of a benzene ring, a naphthalene ring, a pyridine ring, a pyrrole ring, an imidazole ring, an imidazoline ring, a pyrazolyl ring, a pyrazine ring, an oxazole ring, a thiazole ring, a furan ring, and a thiophene ring. A π-electron conjugated unit constituted as described above is more preferable, a π-electron conjugated unit including one or more benzene rings is further preferable, and a phenyl group is particularly preferable.
 シロール誘導体を置換するR14やR15としては、例えば、炭素数が1~20の飽和脂肪族炭化水素基や、炭素数が1~20の不飽和脂肪族炭化水素基や、炭素数が1~20の芳香族炭化水素基が挙げられる。これらの有機基の具体例としては、前記のベンゾフロ・オキサゾロ・カルバゾール誘導体を置換する置換基と同様の基が挙げられる。R14やR15で表される有機基は、炭化水素に限られず、N、O、S、Si等のヘテロ原子を有していてもよい。R14やR15としては、炭素数が1~12の有機基がより好ましく、フェニル基、又は、炭素数が1~12のアルキル基が更に好ましい。 Examples of R 14 and R 15 for substituting the silole derivative include a saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, an unsaturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, and a carbon number of 1 Up to 20 aromatic hydrocarbon groups. Specific examples of these organic groups include the same groups as the substituents for substituting the benzofuro-oxazolo-carbazole derivative. The organic groups represented by R 14 and R 15 are not limited to hydrocarbons, and may have heteroatoms such as N, O, S, and Si. R 14 and R 15 are more preferably an organic group having 1 to 12 carbon atoms, more preferably a phenyl group or an alkyl group having 1 to 12 carbon atoms.
(AIE分子の取得法)
 以上のAIE分子は、従来一般的に知られている方法を利用して合成することができる。例えば、K.Kokado,et al.,Macromolecules,2009,42,1418-1420、米国特許出願公開第2012/299474号明細書、米国特許出願公開第2013/177991号明細書、米国特許出願公開第2013/89889号明細書、Qin W.,et al.,Chem.Commun.,2015,51,7321-7324、Kim J.Y.,et al.,Adv.Mater.2013,25,2666-2671、Chen B.,et al.,Chem.Eur.J.,2014,20,1931-1939に記載された方法を用いることができる。また、ローダミン系凝集誘起発光性分子としては、例えば、S.Kamino,et al.,Chem.Commun.,2010,46,9013-9015に記載されたものを用いることができる。
(Acquisition method of AIE molecule)
The above AIE molecule can be synthesized using a conventionally known method. For example, K.K. Kokado, et al. , Macromolecules, 2009, 42, 1418-1420, US Patent Application Publication No. 2012/299474, US Patent Application Publication No. 2013/179791, US Patent Application Publication No. 2013/89889, Qin W. , Et al. , Chem. Commun. , 2015, 51, 7321-7324, Kim J. et al. Y. , Et al. , Adv. Mater. 2013, 25, 2666-2671, Chen B. et al. , Et al. , Chem. Eur. J. et al. , 2014, 20, 1931-1939 can be used. Examples of rhodamine-based aggregation-inducing luminescent molecules include S. Kamino, et al. , Chem. Commun. , 2010, 46, 9013-9015 can be used.
(AIE分子の凝集誘起発光性)
 図1は、AIE分子の凝集誘起発光性を説明する概念図である。図1に示すように、凝集誘起発光性を示さない従来型の蛍光発光性化合物は、濃度が増大すると消光を生じて発光強度が低下する。これに対し、AIE分子は、濃度が増大するほど発光強度が高くなる性質を有している。発光性化合物が、このような凝集誘起発光性を有しているか否かは、溶媒中に分子を分散し、濃度毎に観測される発光強度を比較することによって確認することができる。
(Aggregation-induced luminescence of AIE molecule)
FIG. 1 is a conceptual diagram illustrating aggregation-induced luminescence of AIE molecules. As shown in FIG. 1, a conventional fluorescent compound that does not exhibit aggregation-induced light emission causes quenching and a decrease in light emission intensity as the concentration increases. On the other hand, AIE molecules have the property that the emission intensity increases as the concentration increases. Whether or not the luminescent compound has such aggregation-induced luminescence can be confirmed by dispersing molecules in a solvent and comparing the luminescence intensity observed for each concentration.
 具体的には、室温(25℃)の良溶媒中に所定濃度の発光性化合物を分散し、励起した発光性化合物の発光スペクトルを測定し、最大発光波長におけるピーク強度について、希薄分散溶液の場合に対する相対強度を求めることで、凝集誘起発光性を有しているか否かを確認することができる。図1に示すように、濃度0.01mMの分散溶液から検出される最大発光波長λmaxの発光強度をI、濃度10mMの分散溶液から検出される最大発光波長λmaxの発光強度をI10とするとき、下記の数式(A)を満たす発光性化合物がAIE分子であると定義される。
  I10/I>1 ・・・(A)
Specifically, a predetermined concentration of a luminescent compound is dispersed in a good solvent at room temperature (25 ° C.), the emission spectrum of the excited luminescent compound is measured, and the peak intensity at the maximum emission wavelength is measured in the case of a dilute dispersion solution. It is possible to confirm whether or not it has aggregation-induced luminescence by obtaining the relative intensity with respect to. As shown in FIG. 1, the emission intensity at the maximum emission wavelength λmax detected from the dispersion solution with a concentration of 0.01 mM is I 0 , and the emission intensity at the maximum emission wavelength λmax detected from the dispersion solution with a concentration of 10 mM is I 10 . The light emitting compound satisfying the following mathematical formula (A) is defined as an AIE molecule.
I 10 / I 0 > 1 (A)
(AIE分子の濃度)
 AIE分子は、後記するリン光発光性金属錯体と併用される限り、発光層中に適宜の濃度で含まれてよい。AIE分子の発光層中の膜中濃度は、例えば、0.1質量%以上99.9質量%以下とすることができる。AIE分子の電荷輸送性が良好であれば、このような広範な膜中濃度で発光層を形成しても、高い発光効率を得ることができる。なお、後記するリン光発光性金属錯体の発光層中の膜中濃度は、例えば、0.1質量%以上50質量%以下、好ましくは1質量%以上30質量%以下とする。発光層は、リン光発光性金属錯体とAIE分子のみで構成することも可能であるし、リン光発光性金属錯体とAIE分子と後記するホスト化合物で構成することも可能である。
(AIE molecule concentration)
As long as the AIE molecule is used in combination with a phosphorescent metal complex to be described later, the AIE molecule may be contained in the light emitting layer at an appropriate concentration. The concentration of AIE molecules in the light emitting layer can be, for example, 0.1% by mass or more and 99.9% by mass or less. If the charge transporting property of the AIE molecule is good, high luminous efficiency can be obtained even if the light emitting layer is formed in such a wide range of film concentrations. In addition, the density | concentration in the film | membrane in the light emitting layer of the phosphorescence-emitting metal complex mentioned later is 0.1 to 50 mass%, for example, Preferably you may be 1 to 30 mass%. The light emitting layer can be composed of only a phosphorescent metal complex and an AIE molecule, or can be composed of a phosphorescent metal complex and an AIE molecule and a host compound described later.
 AIE分子の発光層中の膜中濃度は、好ましくは2質量%以上、より好ましくは5質量%以上、更に好ましくは10質量%以上である。また、30質量%以下としてもよいし、30質量%以上99.9質量%以下としてもよい。AIE分子の膜中濃度が2質量%以上であると、AIE分子の凝集による強い発光が得られ易い。また、AIE分子の膜中濃度が30質量%以下であると、リン光発光性金属錯体に加えてホスト化合物を併用したとき、高い発光効率を得ることができる。一方、AIE分子の膜中濃度が30質量%以上であると、一般的な発光層と比較して、発光性化合物がより凝集した状態で存在するため、凝集したAIE分子による発光が確実に得られると共に、大気中の酸素や水分等による発光性化合物の劣化を避けることができる。 The concentration of AIE molecules in the light emitting layer is preferably 2% by mass or more, more preferably 5% by mass or more, and still more preferably 10% by mass or more. Moreover, it is good also as 30 mass% or less, and good also as 30 mass% or more and 99.9 mass% or less. When the concentration of AIE molecules in the film is 2% by mass or more, strong light emission due to aggregation of AIE molecules is likely to be obtained. Further, when the concentration of AIE molecules in the film is 30% by mass or less, high luminous efficiency can be obtained when a host compound is used in combination with the phosphorescent metal complex. On the other hand, when the concentration of AIE molecules in the film is 30% by mass or more, the luminescent compound is present in a more aggregated state as compared with a general light emitting layer, so that light emission by the aggregated AIE molecules can be reliably obtained. In addition, deterioration of the luminescent compound due to oxygen, moisture, etc. in the atmosphere can be avoided.
《有機EL素子の構成層》
 本発明に係る有機EL素子は、例えば、基材上に陽極及び陰極を有し、発光層を含む有機構成層が陽極と陰極の間に挟まれた構造として設けることができる。本発明に係る有機EL素子の代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
 (1)陽極/発光層/陰極
 (2)陽極/発光層/電子輸送層/陰極
 (3)陽極/正孔輸送層/発光層/陰極
 (4)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 (6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
 (7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
<< Constituent layers of organic EL elements >>
The organic EL device according to the present invention can be provided, for example, as a structure having an anode and a cathode on a base material, and an organic constituent layer including a light emitting layer sandwiched between the anode and the cathode. As typical element configurations of the organic EL element according to the present invention, the following configurations can be exemplified, but the invention is not limited thereto.
(1) Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode
 本発明に係る有機EL素子は、電極の外側に、封止層、バリア層、光取出し層等の層が適宜組み合わされて設けられていてもよい。なお、上記の構成中、陽極と陰極を除いた層を「有機層」ともいう。 The organic EL element according to the present invention may be provided on the outside of the electrode by appropriately combining layers such as a sealing layer, a barrier layer, and a light extraction layer. In the above configuration, the layer excluding the anode and the cathode is also referred to as “organic layer”.
 発光層は、単層で構成してもよいし、複数層で構成してもよい。発光層が複数層で構成される場合は、各発光層の間に非発光性の中間層を設けてもよい。また、必要に応じて、発光層と陰極との間に、正孔阻止層(正孔障壁層ともいう)や、電子注入層(陰極バッファー層ともいう)を設けてもよい。また、発光層と陽極との間に、電子阻止層(電子障壁層ともいう)や、正孔注入層(陽極バッファー層ともいう)を設けてもよい。 The light emitting layer may be composed of a single layer or a plurality of layers. When the light emitting layer is composed of a plurality of layers, a non-light emitting intermediate layer may be provided between the light emitting layers. Further, as necessary, a hole blocking layer (also referred to as a hole blocking layer) or an electron injection layer (also referred to as a cathode buffer layer) may be provided between the light emitting layer and the cathode. Further, an electron blocking layer (also referred to as an electron barrier layer) or a hole injection layer (also referred to as an anode buffer layer) may be provided between the light emitting layer and the anode.
(タンデム構造)
 本発明に係る有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。タンデム構造の代表的な素子構成としては、例えば、以下の構成が挙げられる。
 (I)陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
 (II)陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
(Tandem structure)
The organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked. Examples of typical element configurations having a tandem structure include the following configurations.
(I) Anode / first light emitting unit / second light emitting unit / third light emitting unit / cathode (II) anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
 タンデム型の有機EL素子において、複数の発光ユニットは、全て同じ構成であってもよいし、異なる構成であってもよい。また、一部の発光ユニットが同じ構成であり、残りの発光ユニットが異なる構成であってもよい。また、タンデム型の有機EL素子は、二つの発光ユニットで構成してもよいし、第3発光ユニットと陰極との間に発光ユニットや中間層を設けて、四つ以上の発光ユニットで構成してもよい。発光ユニット同士は、隣接して積層されていてもよいし、中間層を介して積層されていてもよい。 In the tandem organic EL element, the plurality of light emitting units may all have the same configuration or different configurations. Further, some of the light emitting units may have the same configuration, and the remaining light emitting units may have different configurations. The tandem organic EL element may be composed of two light emitting units, or may be composed of four or more light emitting units by providing a light emitting unit or an intermediate layer between the third light emitting unit and the cathode. May be. The light emitting units may be stacked adjacent to each other or may be stacked via an intermediate layer.
 中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側に隣接する層に電子を、陰極側に隣接する層に正孔を供給する機能を持った層であれば、公知の材料及び構成で設けることができる。 The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer. The intermediate layer is an electron adjacent to the anode side and the layer adjacent to the cathode side. Any layer having a function of supplying holes can be formed using a known material and structure.
 中間層の材料としては、例えば、ITO(インジウム・錫酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜や、C60等のフラーレン類、オリゴチオフェン等の導電性有機物層や、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、これらに限定されるものではない。 Examples of the material for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , and CuGaO. 2 , conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 , RuO 2 , and Al, double-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 and other multilayer films, C 60 and other fullerenes, conductive organic layers such as oligothiophene, Examples include, but are not limited to, conductive organic compound layers such as metal phthalocyanines, metal-free phthalocyanines, metal porphyrins, metal-free porphyrins, etc. Is not to be done.
 発光ユニットの好ましい構成としては、例えば、上記の(1)~(7)のいずれかの素子構成から陽極と陰極を除いた構成等が挙げられるが、これらに限定されるものではない。 A preferable configuration of the light emitting unit includes, for example, a configuration in which the anode and the cathode are removed from any one of the above-described element configurations (1) to (7), but is not limited thereto.
 タンデム型の有機EL素子の具体例としては、例えば、米国特許第6,337,492号、米国特許第7,420,203号、米国特許第7,473,923号、米国特許第6,872,472号、米国特許第6,107,734号、米国特許第6,337,492号、国際公開第2005/009087号、特開2006-228712号、特開2006-24791号、特開2006-49393号、特開2006-49394号、特開2006-49396号、特開2011-96679号、特開2005-340187号、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号、特開2009-076929号、特開2008-078414号、特開2007-059848号、特開2003-272860号、特開2003-045676号、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、これらに限定されるものではない。 Specific examples of the tandem organic EL element include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, and US Pat. No. 6,872. 472, U.S. Pat. No. 6,107,734, U.S. Pat. No. 6,337,492, International Publication No. 2005/009087, JP-A 2006-228712, JP-A 2006-24791, JP-A 2006-. No. 49393, JP-A-2006-49394, JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-34966681, JP-A-3884564, JP-A-4213169 JP, 2010-192719, JP, 2009-076929, JP, 2008-078414, Examples include, but are not limited to, element configurations and constituent materials described in JP 2007-059848, JP 2003-272860, JP 2003-045676, and International Publication No. 2005/094130. .
 本発明に係る有機EL素子において、後記するリン光発光性金属錯体と前記のAIE分子は、同一の発光層で併用されている限り、単層で構成される発光層に含まれてもよいし、複数層で構成される発光層のうちの1以上に含まれてもよい。また、後記するリン光発光性金属錯体と前記のAIE分子は、同一の発光層で併用されている限り、タンデム型を構成する発光ユニットのうち、単一の発光ユニットに含まれてもよいし、複数の発光ユニットに含まれてもよい。 In the organic EL device according to the present invention, the phosphorescent metal complex to be described later and the AIE molecule may be included in a light emitting layer composed of a single layer as long as they are used in the same light emitting layer. The light emitting layer may be included in one or more of the light emitting layers. In addition, the phosphorescent metal complex described later and the AIE molecule may be included in a single light emitting unit among light emitting units constituting a tandem type as long as they are used in the same light emitting layer. A plurality of light emitting units may be included.
 本発明に係る有機EL素子は、リン光発光性金属錯体に由来する発光のみが出射される構成、AIE分子に由来する発光のみが出射される構成、及び、リン光発光性金属錯体に由来する発光とAIE分子に由来する発光の両方が出射される構成のうち、いずれの構成とされてもよい。リン光発光性金属錯体のエネルギー準位と、AIE分子のエネルギー準位との関係は、特に制限されるものではなく、リン光発光性金属錯体からAIE分子へのエネルギー移動が発光に関与してもよいし、関与しなくてもよい。但し、発光層にホスト化合物を用いる場合は、リン光発光性金属錯体及びAIE分子のHOMOのエネルギー準位が、ホスト化合物のHOMOのエネルギー準位より深く、且つ、リン光発光性金属錯体及びAIE分子のLUMOのエネルギー準位が、ホスト化合物のLUMOのエネルギー準位より浅いことが好ましい。 The organic EL device according to the present invention is derived from a configuration in which only light emission derived from a phosphorescent metal complex is emitted, a configuration in which only light emission derived from an AIE molecule is emitted, and a phosphorescent metal complex. Of the configurations in which both the luminescence and the luminescence derived from the AIE molecules are emitted, any configuration may be used. The relationship between the energy level of the phosphorescent metal complex and the energy level of the AIE molecule is not particularly limited, and energy transfer from the phosphorescent metal complex to the AIE molecule is involved in light emission. May or may not be involved. However, when a host compound is used for the light emitting layer, the phosphorescent metal complex and the AIE molecule have a HOMO energy level deeper than the HOMO energy level of the host compound, and the phosphorescent metal complex and the AIE. The LUMO energy level of the molecule is preferably shallower than the LUMO energy level of the host compound.
 本発明に係る有機EL素子は、室温(25℃)における発光の外部取り出し量子効率が、1%以上であることが好ましく、5%以上であることがより好ましい。ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 In the organic EL device according to the present invention, the external extraction quantum efficiency of light emission at room temperature (25 ° C.) is preferably 1% or more, and more preferably 5% or more. Here, external extraction quantum efficiency (%) = number of photons emitted to the outside of the organic EL element / number of electrons flowed to the organic EL element × 100.
 以下、本発明に係る有機EL素子を構成する各層(正孔注入層、正孔輸送層、正孔阻止層、電子阻止層、電子輸送層、電子注入層、発光層)について説明する。 Hereinafter, each layer (hole injection layer, hole transport layer, hole blocking layer, electron blocking layer, electron transport layer, electron injection layer, light emitting layer) constituting the organic EL device according to the present invention will be described.
《正孔注入層》
 正孔注入層は、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層である。正孔注入層については、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。正孔注入層は、必要に応じて設けることができる。正孔注入層は、例えば、陽極と発光層との間や、陽極と正孔輸送層との間に設けてよい。
《Hole injection layer》
The hole injection layer is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. For the hole injection layer, see “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”, Volume 2, Chapter 2, “Electrode Materials” (pages 123-166). It is described in detail. The hole injection layer can be provided as necessary. The hole injection layer may be provided, for example, between the anode and the light emitting layer, or between the anode and the hole transport layer.
 正孔注入層については、特開平9-45479号公報、特開平9-260062号公報、特開平8-288069号公報等にも、その詳細が記載されている。 Details of the hole injection layer are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
 正孔注入層の材料としては、例えば、後記する正孔輸送層の材料と同様の材料を用いることができる。正孔注入層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 As the material of the hole injection layer, for example, the same material as the material of the hole transport layer described later can be used. As the material for the hole injection layer, one kind may be used alone, or a plurality kinds may be used in combination.
 正孔注入層の材料としては、銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。 Examples of the material for the hole injection layer include phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives as described in JP-A-2003-519432, JP-A 2006-135145, and vanadium oxide. Preferred are metal oxides, amorphous carbon, conductive polymers such as polyaniline (emeraldine) and polythiophene, orthometalated complexes represented by tris (2-phenylpyridine) iridium complex, and triarylamine derivatives.
《正孔輸送層》
 正孔輸送層は、正孔を輸送する機能を有する材料からなり、陽極から注入された正孔を発光層に伝達する機能を有していればよい。
《Hole transport layer》
The hole transport layer is made of a material having a function of transporting holes, and may have a function of transmitting holes injected from the anode to the light emitting layer.
 正孔輸送層の厚さの総和は、特に制限されるものではないが、通常、5nm~5μm、好ましくは2~500nm、より好ましくは5~200nmである。 The total thickness of the hole transport layer is not particularly limited, but is usually 5 nm to 5 μm, preferably 2 to 500 nm, more preferably 5 to 200 nm.
 正孔輸送層の材料としては、正孔の注入性、正孔の輸送性、及び、電子の障壁性のいずれかを有していればよく、このような性質を有する公知の化合物を用いることができる。正孔輸送層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 As a material for the hole transport layer, any material having hole injection property, hole transport property, and electron barrier property may be used, and a known compound having such properties should be used. Can do. As the material for the hole transport layer, one kind may be used alone, or a plurality kinds may be used in combination.
 正孔輸送層の材料としては、例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、ポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入したポリマー高分子又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えば、PEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。 Examples of the material for the hole transport layer include porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkanes. Derivatives, triarylamine derivatives, carbazole derivatives, indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, polyvinyl carbazole, polymers with aromatic amines introduced into the main chain or side chain Polymer or oligomer, polysilane, conductive polymer or oligomer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiol) Fen, etc.) and the like.
 トリアリールアミン誘導体としては、α-NPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミンの連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。 Examples of the triarylamine derivative include a benzidine type typified by α-NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the connecting core part of triarylamine.
 また、正孔輸送層の材料としては、特表2003-519432号公報や、特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も用いることができる。 In addition, as a material for the hole transport layer, hexaazatriphenylene derivatives as described in JP-T-2003-519432, JP-A-2006-135145, and the like can also be used.
 また、正孔輸送層の材料としては、特開平11-251067号公報、J.Huang,et.al.著文献(Applied Physics Letters,80(2002),p.139)に記載されているような、p型-Si、p型-SiC等の無機半導体も用いることができる。また、Ir(ppy)に代表される中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。 As materials for the hole transport layer, JP-A-11-251067, J. Org. Huang, et. al. Inorganic semiconductors such as p-type-Si and p-type-SiC as described in the literature (Applied Physics Letters, 80 (2002), p. 139) can also be used. Further, ortho-metalated organometallic complexes having Ir or Pt as the central metal typified by Ir (ppy) 3 are also preferably used.
 正孔輸送層は、ドープ材をドープしてp性の高い層として形成してもよい。このような構成の正孔輸送層の具体例としては、特開平4-297076号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 The hole transport layer may be formed as a layer having a high p property by doping a doping material. Specific examples of the hole transport layer having such a structure are disclosed in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 正孔輸送層の材料としては、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入したポリマーやオリゴマー等が好ましく用いられる。 As a material for the hole transport layer, a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, a polymer or an oligomer having an aromatic amine introduced into the main chain or side chain, and the like are preferably used. .
 正孔輸送層の材料の具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。Appl.Phys.Lett.,69,2160(1996)、J.Lumin.,72-74,985(1997)、Appl.Phys.Lett.,78,673(2001)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,90,183503(2007)、Appl.Phys.Lett.,51,913(1987)、Synth.Met.,87,171(1997)、Synth.Met.,91,209(1997)、Synth.Met.,111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chern.,3,319(1993)、Adv.Mater.,6,677(1994)、Chern.Mater.,15,3148(2003)、米国特許公開第20030162053号、米国特許公開第20020158242号、米国特許公開第20060240279号、米国特許公開第20080220265号、米国特許第5061569号、国際公開第2007002683号、国際公開第2009018009号、EP650955号、米国特許公開第20080124572号、米国特許公開第20070278938号、米国特許公開第20080106190号、米国特許公開第20080018221号、国際公開第2012115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。 Specific examples of the material for the hole transport layer include compounds described in the following documents, but are not limited thereto. Appl. Phys. Lett. 69, 2160 (1996); Lumin. , 72-74,985 (1997), Appl. Phys. Lett. 78, 673 (2001), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. , 90, 183503 (2007), Appl. Phys. Lett. 51, 913 (1987), Synth. Met. , 87, 171 (1997), Synth. Met. 91, 209 (1997), Synth. Met. 111, 421 (2000), SID Symposium Digest, 37, 923 (2006), J. Am. Mater. Chern. 3,319 (1993), Adv. Mater. 6, 677 (1994), Chern. Mater. , 15, 3148 (2003), U.S. Patent Publication No. 20030162053, U.S. Patent Publication No. 200201558242, U.S. Patent Publication No. 20060240279, U.S. Patent Publication No. 20080220265, U.S. Patent No. 5061569, International Publication No. 2007002683, International Publication. 2009018009, EP650955, U.S. Patent Publication No. 20080124572, U.S. Patent Publication No. 200707078938, U.S. Patent Publication No. 200880106190, U.S. Patent Publication No. 20080018221, International Publication No. 201212115034, Special Table No. 2003-519432, Special Publication No. 2006-135145, US Patent Application No. 13/585981, and the like.
《正孔阻止層》
 正孔阻止層は、広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなる。電子を輸送しつつ正孔を阻止することで、電子と正孔の再結合確率を向上させることができる。また、前記の電子輸送層を、必要に応じて正孔阻止層として用いることもできる。正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
《Hole blocking layer》
The hole blocking layer is a layer having a function of an electron transporting layer in a broad sense, and is preferably made of a material having a function of transporting electrons and a small ability to transport holes. By blocking holes while transporting electrons, the recombination probability of electrons and holes can be improved. Moreover, the said electron carrying layer can also be used as a hole-blocking layer as needed. The hole blocking layer is preferably provided adjacent to the cathode side of the light emitting layer.
 正孔阻止層の厚さは、特に制限されるものではないが、好ましくは3~100nm、より好ましくは5~30nmである。 The thickness of the hole blocking layer is not particularly limited, but is preferably 3 to 100 nm, more preferably 5 to 30 nm.
 正孔阻止層の材料としては、後記する電子輸送層の材料や、後記するホスト化合物として用いられる材料が好ましく用いられる。 As the material for the hole blocking layer, materials for electron transport layers described later and materials used as host compounds described later are preferably used.
《電子阻止層》
 電子阻止層は、広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなる。正孔を輸送しつつ電子を阻止することで、電子と正孔の再結合確率を向上させることができる。また、前記の正孔輸送層を、必要に応じて電子阻止層として用いることもできる。電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
《Electron blocking layer》
The electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons. By blocking electrons while transporting holes, the probability of recombination of electrons and holes can be improved. Moreover, the said hole transport layer can also be used as an electron blocking layer as needed. The electron blocking layer is preferably provided adjacent to the anode side of the light emitting layer.
 電子阻止層の厚さは、特に制限されるものではないが、好ましくは3~100nm、より好ましくは5~30nmである。 The thickness of the electron blocking layer is not particularly limited, but is preferably 3 to 100 nm, more preferably 5 to 30 nm.
 電子阻止層の材料としては、後記する正孔輸送層の材料や、後記するホスト化合物として用いられる材料が好ましく用いられる。 As the material for the electron blocking layer, a material for a hole transport layer described later and a material used as a host compound described later are preferably used.
《電子輸送層》
 電子輸送層は、電子を輸送する機能を有する材料からなり、陰極から注入された電子を発光層に伝達する機能を有していればよい。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
 電子輸送層の厚さの総和は、特に制限されるものではないが、通常、2nm~5μm、好ましくは2~500nm、より好ましくは5~200nmである。 The total thickness of the electron transport layer is not particularly limited, but is usually 2 nm to 5 μm, preferably 2 to 500 nm, more preferably 5 to 200 nm.
 有機EL素子においては、発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極の対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総膜厚を数nm~数μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。一方で、電子輸送層の厚さを厚くすると電圧が上昇しやすくなるため、特に厚さが厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。 In the organic EL element, when light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode positioned at the counter electrode of the electrode from which the light is extracted. It is known. When light is reflected by the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total film thickness of the electron transport layer between several nanometers and several micrometers. On the other hand, when the thickness of the electron transport layer is increased, the voltage is likely to increase. Therefore, particularly when the thickness is large, the electron mobility of the electron transport layer is preferably 10 −5 cm 2 / Vs or more. .
 電子輸送層の材料としては、電子の注入性、電子の輸送性、及び、正孔の障壁性のいずれかを有していればよく、このような性質を有する公知の化合物を用いることができる。電子輸送層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 As a material for the electron transport layer, any material that has any of electron injection property, electron transport property, and hole barrier property may be used, and a known compound having such properties can be used. . The material for the electron transport layer may be used alone or in combination of two or more.
 電子輸送層の材料としては、例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の1つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。 Examples of the material for the electron transport layer include nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one in which one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, and pyrimidines. Derivatives, pyrazine derivatives, pyridazine derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benz Thiazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenyl Emissions, etc.) and the like.
 また、電子輸送層の材料としては、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等や、これらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き換えられた金属錯体が挙げられる。 As the material for the electron transport layer, a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand, for example, tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) Aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq) Etc., and metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb.
 また、電子輸送層の材料としては、その他、メタルフリー若しくはメタルフタロシアニン、又は、それらの末端がアルキル基やスルホン酸基等で置換されているものが挙げられる。また、発光層の材料となり得るジスチリルピラジン誘導体も用いることができるし、n型-Si、n型-SiC等の無機半導体も用いることができる。また、これらの材料を高分子鎖に導入した高分子材料や、これらの材料を高分子の主鎖とした高分子材料も用いることができる。 In addition, examples of the material for the electron transport layer include metal-free or metal phthalocyanine, or those whose ends are substituted with an alkyl group or a sulfonic acid group. Further, a distyrylpyrazine derivative that can be a material for the light emitting layer can be used, and an inorganic semiconductor such as n-type-Si, n-type-SiC, or the like can also be used. In addition, a polymer material in which these materials are introduced into a polymer chain, or a polymer material having these materials as a polymer main chain can be used.
 電子輸送層は、ドープ材をドープしてn性の高い層として形成してもよい。ドープ材としては、金属錯体や、ハロゲン化金属等の金属化合物をはじめとするn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、特開平4-297076号公報、特開平10-270172号公報、特開2000-196140号公報、特開2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 The electron transport layer may be formed as a layer having a high n property by doping a doping material. Examples of the dopant include n-type dopants including metal complexes and metal compounds such as metal halides. Specific examples of the electron transport layer having such a structure are disclosed in JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 電子輸送層の材料の具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。米国特許第6528187号、米国特許第7230107号、米国特許公開第20050025993号、米国特許公開第20040036077号、米国特許公開第20090115316号、米国特許公開第20090101870号、米国特許公開第20090179554号、国際公開第2003060956号、国際公開第2008132085号、Appl.Phys.Lett.,75,4(1999)、Appl.Phys.Lett.,79,449(2001)、Appl.Phys.Lett.,81,162(2002)、Appl.Phys.Lett.,81,162(2002)、Appl.Phys.Lett.,79,156(2001)、米国特許第7964293号、米国特許公開第2009030202号、国際公開第2004080975号、国際公開第2004063159号、国際公開第2005085387号、国際公開第2006067931号、国際公開第2007086552号、国際公開第2008114690号、国際公開第2009069442号、国際公開第2009066779号、国際公開第2009054253号、国際公開第2011086935号、国際公開第2010150593号、国際公開第2010047707号、EP2311826号、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012115034号等である。 Specific examples of the material for the electron transport layer include compounds described in the following documents, but are not limited thereto. U.S. Pat.No. 6,528,187, U.S. Pat.No. 7,230,107, U.S. Patent Publication No. 20050025993, U.S. Pat. Publication No. 2004036077, U.S. Pat. Publication No. 200901115316, U.S. Pat. Publication No. 20090101870, U.S. Pat. No. 2003060956, International Publication No. 20080832085, Appl. Phys. Lett. , 75, 4 (1999), Appl. Phys. Lett. 79, 449 (2001), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 81, 162 (2002), Appl. Phys. Lett. 79,156 (2001), U.S. Pat. No. 7,964,293, U.S. Patent Publication No. 2009030202, International Publication No. 20040980975, International Publication No. 2004063159, International Publication No. 2005085387, International Publication No. 20060606731, International Publication No. 2007086552. International Publication No. 20081414690, International Publication No. 2009090442, International Publication No. 2009066779, International Publication No. 200905253, International Publication No. 20101086935, International Publication No. 2010150593, International Publication No. 20110047707, EP23111826, JP2010- No. 251,675, JP-A 2009-209133, JP-A 2009-124114, JP-A 2008-277810, JP 2 06-156445, JP-2005-340122 discloses a JP 2003-45662, JP-2003-31367, JP 2003-282270, JP-WO 2012115034 or the like.
 より好ましい電子輸送層の材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。 More preferable materials for the electron transport layer include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
《電子注入層》
 電子注入層は、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層である。電子注入層については、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。電子注入層は、必要に応じて設けることができる。電子注入層は、例えば、陰極と発光層との間や、陰極と電子輸送層との間に設けてよい。
《Electron injection layer》
The electron injection layer is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. The details of the electron injection layer are described in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their industrialization front line (issued by NTT Corporation on November 30, 1998)”. It is described in. The electron injection layer can be provided as necessary. The electron injection layer may be provided, for example, between the cathode and the light emitting layer or between the cathode and the electron transport layer.
 電子注入層は、極めて薄い膜であることが好ましい。電子注入層の厚さは、好ましくは0.1~5nmである。電子注入層は、構成材料が断続的に存在する不均一な膜であってもよい。 The electron injection layer is preferably a very thin film. The thickness of the electron injection layer is preferably 0.1 to 5 nm. The electron injection layer may be a non-uniform film in which constituent materials are intermittently present.
 電子注入層については、特開平6-325871号公報、特開平9-17574号公報、特開平10-74586号公報等にも、その詳細が記載されている。 Details of the electron injection layer are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
 電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウムをはじめとする金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウムをはじめとするアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウムをはじめとするアルカリ土類金属化合物、酸化アルミニウムをはじめとする金属酸化物、リチウム8-ヒドロキシキノレート(Liq)をはじめとする金属錯体等が挙げられる。また、前記の電子輸送層の材料と同様の材料を用いることも可能である。電子注入層の材料は、一種を単独で用いてもよいし、複数種を併用してもよい。 Specific examples of materials preferably used for the electron injection layer include metals such as strontium and aluminum, alkali metal compounds such as lithium fluoride, sodium fluoride, and potassium fluoride, magnesium fluoride, and calcium fluoride. Examples thereof include alkaline earth metal compounds such as metal oxides, metal oxides such as aluminum oxide, and metal complexes such as lithium 8-hydroxyquinolate (Liq). It is also possible to use the same material as that of the electron transport layer. The material for the electron injection layer may be used alone or in combination of two or more.
《発光層》
 発光層は、発光を生じる場を提供する層である。電極又は隣接する層から注入されてくる電子と正孔は、発光層において再結合し、再結合により生じた励起子の失活に伴って発光が生じる。発光する部位は、発光層の層内であってもよいし、発光層と隣接する層との界面であってもよい。
<Light emitting layer>
The light emitting layer is a layer that provides a field for generating light emission. Electrons and holes injected from the electrode or an adjacent layer are recombined in the light emitting layer, and light emission occurs with deactivation of excitons generated by the recombination. The site that emits light may be within the layer of the light emitting layer, or may be the interface between the light emitting layer and an adjacent layer.
 発光層の厚さの総和は、特に制限されるものではないが、形成する膜の均質性を向上させる観点や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性を向上させる観点からは、好ましくは2nm~5μm、より好ましくは2~500nm、更に好ましくは5~200nmである。 The total thickness of the light emitting layer is not particularly limited, but it is possible to improve the homogeneity of the film to be formed, to prevent the application of unnecessary high voltage during light emission, and to the drive current. From the viewpoint of improving the stability of the emission color, the thickness is preferably 2 nm to 5 μm, more preferably 2 to 500 nm, still more preferably 5 to 200 nm.
 発光層の個々の厚さは、好ましくは2nm~1μm、より好ましくは2~200nm、更に好ましくは3~150nmである。 The individual thickness of the light emitting layer is preferably 2 nm to 1 μm, more preferably 2 to 200 nm, and still more preferably 3 to 150 nm.
 発光層は、発光ドーパント(発光性ドーパント化合物、ドーパント化合物、単にドーパントともいう)と、ホスト化合物(マトリックス材料、発光ホスト化合物、単にホストともいう)とを含有することが好ましい。本実施形態に係る有機EL素子においては、後記するリン光発光性金属錯体と前記のAIE分子が、発光ドーパントとして機能する。 The light emitting layer preferably contains a light emitting dopant (a light emitting dopant compound, a dopant compound, also simply referred to as a dopant) and a host compound (a matrix material, a light emitting host compound, also simply referred to as a host). In the organic EL device according to the present embodiment, a phosphorescent metal complex described later and the AIE molecule function as a light emitting dopant.
(1)発光ドーパント
 発光ドーパントとしては、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)と、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)とがある。本実施形態に係る有機EL素子においては、後記するリン光発光性金属錯体がリン光発光性ドーパントして機能し、前記のAIE分子は、蛍光発光性ドーパントとして機能する。
(1) Luminescent dopant As the luminescent dopant, there are a fluorescent luminescent dopant (also referred to as a fluorescent dopant or a fluorescent compound) and a phosphorescent dopant (also referred to as a phosphorescent dopant or a phosphorescent compound). In the organic EL element according to the present embodiment, a phosphorescent metal complex described later functions as a phosphorescent dopant, and the AIE molecule functions as a fluorescent dopant.
 発光層中の発光ドーパントの濃度については、使用されるドーパント及びデバイスの必要条件に基づいて、任意に決定することができる。発光ドーパントは、発光層の膜厚方向に対し、均一な濃度で分布していてもよいし、不均一な任意の濃度で分布していてもよい。 The concentration of the luminescent dopant in the luminescent layer can be arbitrarily determined based on the dopant used and the requirements of the device. The luminescent dopant may be distributed at a uniform concentration or a non-uniform arbitrary concentration with respect to the film thickness direction of the luminescent layer.
 発光ドーパントとしては、後記するリン光発光性金属錯体や、前記のAIE分子の他に、その他のリン光発光性ドーパントや、その他の蛍光発光性ドーパントを併用することも可能である。リン光発光性ドーパント毎、又は、蛍光発光性ドーパント毎について、一種の発光性化合物を用いてもよいし、複数種の発光性化合物を併用してもよい。また、同一の発光層で異なる発光ドーパントを併用してもよいし、異なる発光層毎に異なる発光ドーパントを用いてもよい。このような組み合わせにより、有機EL素子から出射される発光について、任意の発光色を得ることができる。 As the luminescent dopant, in addition to the phosphorescent metal complex described later and the AIE molecule, other phosphorescent dopants and other fluorescent luminescent dopants can be used in combination. One type of luminescent compound may be used for each phosphorescent dopant or for each fluorescent luminescent dopant, or a plurality of types of luminescent compounds may be used in combination. Further, different light emitting dopants may be used in the same light emitting layer, or different light emitting dopants may be used for different light emitting layers. With such a combination, an arbitrary emission color can be obtained for the emission emitted from the organic EL element.
 本発明に係る有機EL素子や化合物の発光色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング(株)製)で測定した結果をCIE色度座標に当てはめたときの色で定義することができる。 The emission color of the organic EL device or compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Society for Color Science, University of Tokyo Press, 1985). The result measured by Konica Minolta Sensing Co., Ltd. can be defined by the color when applied to the CIE chromaticity coordinates.
 本発明に係る有機EL素子は、1層又は複数層の発光層が発光色の異なる複数の発光ドーパントを含有し、白色発光を示す素子とされてもよい。白色発光を示す発光ドーパントの組み合わせについては、特に限定されるものではないが、例えば、青と橙の組み合わせや、青と緑と赤の組み合わせ等が挙げられる。 The organic EL device according to the present invention may be a device in which one or more light-emitting layers contain a plurality of light-emitting dopants having different light emission colors and exhibit white light emission. The combination of the luminescent dopants that emit white light is not particularly limited, and examples thereof include a combination of blue and orange, a combination of blue, green, and red.
 本発明に係る有機EL素子が示す白色発光は、色相等が限定されるものではなく、橙色寄りの白色であっても、青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度が、x=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。 The white light emitted by the organic EL device according to the present invention is not limited in hue and the like, and may be white near orange or white near blue. When measured by the method described above, the chromaticity in the CIE 1931 color system at 1000 cd / m 2 may be in the region of x = 0.39 ± 0.09 and y = 0.38 ± 0.08. preferable.
(1.1)リン光発光性ドーパント
 本発明に係るリン光発光性ドーパントは、励起三重項からの発光が観測される化合物である。具体的には、室温(25℃)においてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義される。リン光発光性ドーパントの好ましいリン光量子収率は、0.1以上である。
(1.1) Phosphorescent dopant The phosphorescent dopant according to the present invention is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C. The preferable phosphorescence quantum yield of a phosphorescent dopant is 0.1 or more.
 リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は、種々の溶媒を用いて測定できるが、本発明に係るリン光発光性ドーパントは、任意の溶媒のいずれかにおいて0.01以上のリン光量子収率が達成されればよい。 The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. The phosphorescence quantum yield in solution can be measured using various solvents, but the phosphorescent dopant according to the present invention achieves a phosphorescence quantum yield of 0.01 or more in any solvent. Just do it.
 リン光発光性ドーパントの発光の原理は、二種に大別される。一つは、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型である。もう一つは、リン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こってリン光発光性ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーは、ホスト化合物の励起状態のエネルギーよりも低いことが条件である。 The principle of light emission of phosphorescent dopant is roughly divided into two types. One is that recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant to emit light from the phosphorescent dopant. Energy transfer type. The other is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, and recombination of carriers occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In either case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
 本実施形態に係る有機EL素子においては、リン光発光性ドーパント、すなわち、AIE分子と併用するリン光発光性金属錯体や、リン光発光性金属錯体に加えて併用するその他のリン光発光性化合物として、一般的な有機EL素子の発光層に使用される適宜の種類を用いることができる。リン光発光性ドーパントの発光の原理は、前記のいずれの原理によるものであってもよい。 In the organic EL device according to the present embodiment, a phosphorescent dopant, that is, a phosphorescent metal complex used in combination with an AIE molecule, or other phosphorescent compounds used in combination with the phosphorescent metal complex. As an appropriate type, it is possible to use an appropriate type used for a light emitting layer of a general organic EL element. The principle of light emission of the phosphorescent dopant may be based on any of the above principles.
 リン光発光性ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。Nature,395,151(1998)、Appl.Phys.Lett.,78,1622(2001)、Adv.Mater.,19,739(2007)、Chern.Mater.,17,3532(2005)、Adv.Mater.,17,1059(2005)、国際公開第2009100991号、国際公開第2008101842号、国際公開第2003040257号、米国特許公開第2006835469号、米国特許公開第20060202194号、米国特許公開第20070087321号、米国特許公開第20050244673号、Inorg.Chern.,40,1704(2001)、Chern.Mater.,16,2480(2004)、Adv.Mater.,16,2003(2004)、Angew.Chern.lnt.Ed.,2006,45,7800、Appl.Phys.Lett.,86,153505(2005)、Chern.Lett.,34,592(2005)、Chern.Commun.,2906(2005)、Inorg.Chern.,42,1248(2003)、国際公開第2009050290号、国際公開第2002015645号、国際公開第2009000673号、米国特許公開第20020034656号、米国特許第7332232号、米国特許公開第20090108737号、米国特許公開第20090039776号、米国特許第6921915号、米国特許第6687266号、米国特許公開第20070190359号、米国特許公開第20060008670号、米国特許公開第20090165846号、米国特許公開第20080015355号、米国特許第7250226号、米国特許第7396598号、米国特許公開第20060263635号、米国特許公開第20030138657号、米国特許公開第20030152802号、米国特許第7090928号、Angew.Chern.lnt.Ed.,47,1(2008)、Chern.Mater.,18,5119(2006)、Inorg.Chern.,46,4308(2007)、Organometallics,23,3745(2004)、Appl.Phys.Lett.,74,1361(1999)、国際公開第2002002714号、国際公開第2006009024号、国際公開第2006056418号、国際公開第2005019373号、国際公開第2005123873号、国際公開第2005123873号、国際公開第2007004380号、国際公開第2006082742号、米国特許公開第20060251923号、米国特許公開第20050260441号、米国特許第7393599号、米国特許第7534505号、米国特許第7445855号、米国特許公開第20070190359号、米国特許公開第20080297033号、米国特許第7338722号、米国特許公開第20020134984号、米国特許第7279704号、米国特許公開第2006098120号、米国特許公開第2006103874号、国際公開第2005076380号、国際公開第2010032663号、国際公開第第2008140115号、国際公開第2007052431号、国際公開第2011134013号、国際公開第2011157339号、国際公開第2010086089号、国際公開第2009113646号、国際公開第2012020327号、国際公開第2011051404号、国際公開第2011004639号、国際公開第2011073149号、米国特許公開第2012228583号、米国特許公開第2012212126号、特開2012-069737号、特開2012-195554号、特開2009-114086号、特開2003-81988号、特開2002-302671号、特開2002-363552号等である。 Specific examples of the phosphorescent dopant include compounds described in the following documents, but are not limited thereto. Nature, 395, 151 (1998), Appl. Phys. Lett. 78, 1622 (2001), Adv. Mater. , 19, 739 (2007), Chern. Mater. 17, 3532 (2005), Adv. Mater. , 17, 1059 (2005), International Publication No. 2009100991, International Publication No. 2008101842, International Publication No. 2003030257, United States Patent Publication No. 2006835469, United States Patent Publication No. 20060202194, United States Patent Publication No. 20070087321, United States Patent Publication. 20050244673, Inorg. Chern. , 40, 1704 (2001), Chern. Mater. 16, 2480 (2004), Adv. Mater. 16, 2003 (2004), Angew. Chern. lnt. Ed. , 2006, 45, 7800, Appl. Phys. Lett. 86, 153505 (2005), Chern. Lett. , 34, 592 (2005), Chern. Commun. , 2906 (2005), Inorg. Chern. , 42, 1248 (2003), International Publication No. 2009050290, International Publication No. 20022015645, International Publication No. 2009000673, United States Patent Publication No. 20020034656, United States Patent No. 7332232, United States Patent Publication No. 20090108737, United States Patent Publication No. 20090039776, U.S. Patent No. 6921915, U.S. Patent No. 6,687,266, U.S. Patent Publication No. 20070190359, U.S. Patent Publication No. 2006060008670, U.S. Patent Publication No. 20090165846, U.S. Patent Publication No. 20080015355, U.S. Pat. No. 7,250,226, U.S. Pat. Patent No. 7396598, U.S. Patent Publication No. 20060263635, U.S. Patent Publication No. 200301368657, U.S. Patent Publication No. 2003015280 Patent, US Patent No. 7090928, Angew. Chern. lnt. Ed. 47, 1 (2008), Chern. Mater. , 18, 5119 (2006), Inorg. Chern. 46, 4308 (2007), Organometallics, 23, 3745 (2004), Appl. Phys. Lett. , 74, 1361 (1999), International Publication No. 2002002714, International Publication No. 2006009024, International Publication No. 200606056418, International Publication No. 2005019373, International Publication No. 20050051873, International Publication No. 200500513873, International Publication No. 20070043380, International Patent Publication No. 2006082742, United States Patent Publication No. 20060251923, United States Patent Publication No. 20050260441, United States Patent No. 7393599, United States Patent No. 7,534,505, United States Patent No. 7,445,855, United States Patent Publication No. 20070190359, United States Patent Publication No. 20080297033. No. 7, U.S. Pat. No. 7,338,722, U.S. Patent Publication No. 200201334984, U.S. Pat. No. 7,279,704, U.S. Pat. No. 8120, U.S. Patent Publication No. 2006103874, International Publication No. 2005076380, International Publication No. 201303663, International Publication No. 2008140115, International Publication No. 2007705243, International Publication No. 20111134013, International Publication No. 2011157339, International Publication No. 201208989, International Publication No. WO200913646, International Publication No. 2012120327, International Publication No. 20111051404, International Publication No. 2011004639, International Publication No. 20111073149, US Patent Publication No. 20122225853, US Patent Publication No. 2012122126, JP2012 -0697737, JP2012-195554, JP2009-114086, JP2003-81988, JP200. No. -302671, a JP 2002-363552 and the like.
 AIE分子と併用するリン光発光性金属錯体としては、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合のうち少なくとも1つの配位様式を含む有機金属錯体が好ましく用いられる。リン光発光性金属錯体としては、下記一般式(DP)で表される有機金属錯体が特に好ましい。 As the phosphorescent metal complex used in combination with the AIE molecule, an organometallic complex containing at least one coordination mode among a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is preferably used. . As the phosphorescent metal complex, an organometallic complex represented by the following general formula (DP) is particularly preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[但し、一般式(DP)中、Mは、Ir、Pt、Rh、Ru、Cu又はOsを表し、A、A、B及びBは、それぞれ独立して、炭素原子又は窒素原子を表し、環Zは、A及びAと共に形成される6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環を表し、環Zは、B及びBと共に形成される5員又は6員の芳香族複素環を表す。環Z及び環Zは、置換基を有していてもよく、置換基同士は、互いに結合して縮環構造を形成していてもよく、互いに結合して配位子同士を連結していてもよい。L’は、Mに配位したモノアニオン性の二座配位子を表し、m’は、0~2の整数を表し、n’は、1~3の整数を表し、m’+n’は、2又は3であり、m’及びn’が2以上のとき、環Z及び環Zで表される配位子とL’は、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。] [In the general formula (DP), M represents Ir, Pt, Rh, Ru, Cu or Os, and A 1 , A 2 , B 1 and B 2 are each independently a carbon atom or a nitrogen atom. Ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed with A 1 and A 2 or a 5-membered or 6-membered aromatic heterocycle, and ring Z 2 represents B 1 and B Represents a 5- or 6-membered aromatic heterocyclic ring formed together with 2 ; Ring Z 1 and ring Z 2 may have a substituent, and the substituents may be bonded to each other to form a condensed ring structure. It may be. L ′ represents a monoanionic bidentate ligand coordinated to M, m ′ represents an integer of 0 to 2, n ′ represents an integer of 1 to 3, and m ′ + n ′ represents 2 or 3, and when m ′ and n ′ are 2 or more, the ligand represented by ring Z 1 and ring Z 2 and L ′ may have the same structure or different from each other. It may be a structure. ]
 Mは、有機金属錯体の中心金属であり、Ir、Pt、Rh、Ru、Cu又はOsである。Mとしては、Ir又はPtが好ましく、Irが特に好ましい。 M is a central metal of the organometallic complex and is Ir, Pt, Rh, Ru, Cu or Os. As M, Ir or Pt is preferable, and Ir is particularly preferable.
 環Zを形成する6員の芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。このような環Zによって形成される縮環構造としては、例えば、ナフタレン環、アントラセン環等がある。 Examples of the 6-membered aromatic hydrocarbon ring that forms the ring Z 1 include a benzene ring. Examples of the condensed ring structure formed by such a ring Z 1 include a naphthalene ring and an anthracene ring.
 環Zや環Zを形成する5員の芳香族複素環としては、例えば、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環、チアジアゾール環等が挙げられる。5員の芳香族複素環としては、ピラゾール環又はイミダゾール環がより好ましく、イミダゾール環が特に好ましい。 Examples of the 5-membered aromatic heterocycle forming the ring Z 1 or the ring Z 2 include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, and an isothiazole ring. Oxadiazole ring, thiadiazole ring and the like. As the 5-membered aromatic heterocyclic ring, a pyrazole ring or an imidazole ring is more preferable, and an imidazole ring is particularly preferable.
 環Zや環Zを形成する6員の芳香族複素環としては、例えば、ピリジン環、ピリミジン環、ピリダジン環、ピラジン環等が挙げられる。 Examples of the 6-membered aromatic heterocyclic ring that forms the ring Z 1 or the ring Z 2 include a pyridine ring, a pyrimidine ring, a pyridazine ring, and a pyrazine ring.
 二座配位子L’としては、例えば、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、ピコリン酸、アセチルアセトン等が挙げられる。二座配位子L’は、置換基を有していてもよい。 Examples of the bidentate ligand L ′ include phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, pyrazabol, picolinic acid, acetylacetone and the like. The bidentate ligand L ′ may have a substituent.
 一般式(DP)で表される有機金属錯体に置換する置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリール基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったもの)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。 Examples of the substituent substituted on the organometallic complex represented by the general formula (DP) include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg, vinyl group, aryl group etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon ring group (aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group , Azulenyl group, acenaphthenyl group, fluorenyl group, phenanthryl group, indenyl group, Such as pyridyl, pyrimidinyl, furyl, pyrrolyl, imidazolyl, benzimidazolyl, pyrazolyl, pyrazinyl, triazolyl (eg, 1,2,4). -Triazol-1-yl group, 1,2,3-triazol-1-yl group, etc.), oxazolyl group, benzoxazolyl group, thiazolyl group, isoxazolyl group, isothiazolyl group, furazanyl group, thienyl group, quinolyl group, Benzofuryl group, dibenzofuryl group, benzothienyl group, dibenzothienyl group, indolyl group, carbazolyl group, carbolinyl group, diazacarbazolyl group (one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) ), Quinoxalinyl group, pyridazinyl group, Lyazinyl group, quinazolinyl group, phthalazinyl group, etc.), heterocyclic group (eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (eg, methoxy group, ethoxy group, propyloxy group, pentyloxy group, Hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (eg, cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, Methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.), cycloalkylthio group (for example, cyclopentylthio group, cyclohexylthio group, etc.), arylthio group (for example, phenylthio group) O group, naphthylthio group, etc.), alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxy) Carbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (for example, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecyl) Aminosulfonyl group, phenylaminosulfonyl group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, Bonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy Group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group, etc.), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propyl) Carbonylamino group, pentylcarbonylamino group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, Decylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group, dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group) Octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2-pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentyl) Ureido group, cyclohexylureido group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminourei Group), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.) ), Alkylsulfonyl groups (eg, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, dodecylsulfonyl group, etc.), arylsulfonyl groups or heteroarylsulfonyl groups (eg, phenylsulfonyl group) Naphthylsulfonyl group, 2-pyridylsulfonyl group, etc.), amino group (for example, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopente) Ruamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group, etc., cyano group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group) Group, triphenylsilyl group, phenyldiethylsilyl group, etc.).
 一般式(DP)において、Aは、炭素原子であることが好ましく、更に、Aが、炭素原子であることが好ましい。また、環Zは、置換若しくは無置換のベンゼン環又はピリジン環であることが好ましく、ベンゼン環であることがより好ましい。また、環Zは、5員の芳香族複素環であることが好ましく、B及びBのうち、少なくとも一方は、窒素原子であることが好ましい。 In the general formula (DP), A 2 is preferably a carbon atom, and A 1 is preferably a carbon atom. Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring. Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
 リン光発光性金属錯体のより好ましい構造は、下記一般式(DP-1)又は一般式(DP-2)で表される。 A more preferable structure of the phosphorescent metal complex is represented by the following general formula (DP-1) or general formula (DP-2).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
[但し、一般式(DP-1)中、B、B及びBは、芳香族複素環を構成する環形成原子であり、それぞれ独立して、置換基を有していてもよい炭素原子、置換基を有していてもよい窒素原子、酸素原子又は硫黄原子を表す。M、A、A、B、B、環Z、L’、m’、n’は、一般式(DP)においてと同義である。] [However, in the general formula (DP-1), B 3 , B 4 and B 5 are each a ring-forming atom constituting an aromatic heterocyclic ring, and each independently represents an optionally substituted carbon. An atom, a nitrogen atom, an oxygen atom or a sulfur atom which may have a substituent is represented. M, A 1 , A 2 , B 1 , B 2 , ring Z 1 , L ′, m ′, and n ′ are synonymous with those in the general formula (DP). ]
 一般式(DP-1)において、B~Bを置換する置換基としては、一般式(DP)で表される有機金属錯体を置換する置換基と同様の基が挙げられる。 In the general formula (DP-1), examples of the substituent for substituting B 3 to B 5 include the same groups as the substituents for substituting the organometallic complex represented by the general formula (DP).
 一般式(DP-1)において、Aは、炭素原子であることが好ましく、更に、A及びAが、炭素原子であることが好ましい。また、環Zは、置換若しくは無置換のベンゼン環又はピリジン環であることが好ましく、ベンゼン環であることがより好ましい。また、B及びBのうち、少なくとも一方は、窒素原子であることが好ましい。 In the general formula (DP-1), A 2 is preferably a carbon atom, and A 1 and A 2 are preferably carbon atoms. Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring. Also, among the B 1 and B 2, wherein at least one, preferably a nitrogen atom.
 一般式(DP-1)において、B~Bによって構成される芳香族複素環は、下記一般式(DP-1a)、一般式(DP-1b)、及び、一般式(DP-1c)のうちのいずれかで表される構造であることが好ましい。 In the general formula (DP-1), the aromatic heterocycle constituted by B 1 to B 5 is represented by the following general formula (DP-1a), general formula (DP-1b), and general formula (DP-1c). It is preferable that it is a structure represented by either of these.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[但し、一般式(DP-1a)、一般式(DP-1b)、及び、一般式(DP-1c)中、Rb、Rb及びRbは、それぞれ独立して、水素原子又は置換基を表し、*1はA2との結合部位を表し、*2はMとの結合部位を表す。B~Bは、一般式(DP-1)においてと同義である。] [In the general formula (DP-1a), the general formula (DP-1b), and the general formula (DP-1c), Rb 3 , Rb 4, and Rb 5 are each independently a hydrogen atom or a substituent. * 1 represents a binding site with A2, and * 2 represents a binding site with M. B 3 to B 5 have the same meanings as in the general formula (DP-1). ]
 一般式(DP-1a)、一般式(DP-1b)、及び、一般式(DP-1c)において、Rb~Rbの置換基としては、一般式(DP)で表される有機金属錯体を置換する置換基と同様の基が挙げられる。 In the general formula (DP-1a), general formula (DP-1b), and general formula (DP-1c), the substituents of Rb 3 to Rb 5 are organometallic complexes represented by the general formula (DP) The same group as the substituent which substitutes is mentioned.
 一般式(DP-1a)において、B及びBのうち、少なくとも一方は、炭素原子であることが好ましい。また、一般式(DP-1c)において、B及びBのうち、少なくとも一方は、炭素原子であることが好ましい。 In the general formula (DP-1a), at least one of B 4 and B 5 is preferably a carbon atom. In general formula (DP-1c), at least one of B 3 and B 4 is preferably a carbon atom.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
[但し、一般式(DP-2)中、Aは、環Zを構成する環形成原子であり、炭素原子又は窒素原子を表し、Bは、5員の芳香族複素環である環Zを構成する環形成原子であり、炭素原子又は窒素原子を表し、L”は、2価の連結基を表す。M、A、A、B、B、環Z、L’、m’、n’は、一般式(DP)においてと同義である。] [In the general formula (DP-2), A 3 represents a ring-forming atom constituting the ring Z 1 and represents a carbon atom or a nitrogen atom, and B 3 represents a 5-membered aromatic heterocyclic ring. Z 2 is a ring-forming atom that represents a carbon atom or a nitrogen atom, and L ″ represents a divalent linking group. M, A 1 , A 2 , B 1 , B 2 , Ring Z 1 , L ', M' and n 'have the same meaning as in the general formula (DP).]
 連結基L”としては、例えば、アルキレン基、アルケニレン基、アリーレン基、ヘテロアリーレン基、2価の複素環基、-O-、-S-、又は、これらを任意に組み合わせた基が挙げられる。 Examples of the linking group L ″ include an alkylene group, an alkenylene group, an arylene group, a heteroarylene group, a divalent heterocyclic group, —O—, —S—, or a group in which these are arbitrarily combined.
 一般式(DP-2)において、Aは、炭素原子であることが好ましく、更に、Aが、炭素原子であることが好ましい。また、環Zは、置換若しくは無置換のベンゼン環又はピリジン環であることが好ましく、ベンゼン環であることがより好ましい。また、環Zは、5員の芳香族複素環であることが好ましく、B及びBのうち、少なくとも一方は、窒素原子であることが好ましい。 In the general formula (DP-2), A 2 is preferably a carbon atom, and A 1 is preferably a carbon atom. Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring. Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
 一般式(DP-2)で表される有機金属錯体は、下記一般式(DP-2a)で表される構造であることがより好ましい。 The organometallic complex represented by the general formula (DP-2) is more preferably a structure represented by the following general formula (DP-2a).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
[但し、一般式(DP-2a)中、L”及びL”は、それぞれ独立して、C-Rb又は窒素原子を表し、Rbは、水素原子又は置換基を表す。L”及びL”がC-Rbであるとき、Rb同士は、互いに結合して環を形成していてもよい。M、A、A、A、B、B、B、環Z、環Z、L’、m’、n’は、一般式(DP-2)においてと同義である。] [In the general formula (DP-2a), L ″ 1 and L ″ 2 each independently represent C—Rb 6 or a nitrogen atom, and Rb 6 represents a hydrogen atom or a substituent. When L ″ 1 and L ″ 2 are C—Rb 6 , Rb 6 may be bonded to each other to form a ring. M, A 1 , A 2 , A 3 , B 1 , B 2 , B 3 , ring Z 1 , ring Z 2 , L ′, m ′, n ′ are as defined in general formula (DP-2). . ]
 一般式(DP-2a)において、Rbを置換する置換基としては、一般式(DP)で表される有機金属錯体を置換する置換基と同様の基が挙げられる。 In the general formula (DP-2a), examples of the substituent that substitutes Rb 6 include the same groups as the substituents that substitute the organometallic complex represented by the general formula (DP).
 一般式(DP-2a)において、Aは、炭素原子であることが好ましく、更に、Aが、炭素原子であることが好ましい。また、環Zは、置換若しくは無置換のベンゼン環又はピリジン環であることが好ましく、ベンゼン環であることがより好ましい。また、環Zは、5員の芳香族複素環であることが好ましく、B及びBのうち、少なくとも一方は、窒素原子であることが好ましい。 In the general formula (DP-2a), A 2 is preferably a carbon atom, and A 1 is preferably a carbon atom. Ring Z 1 is preferably a substituted or unsubstituted benzene ring or pyridine ring, and more preferably a benzene ring. Ring Z 2 is preferably a 5-membered aromatic heterocyclic ring, and at least one of B 1 and B 2 is preferably a nitrogen atom.
 以下、リン光発光性金属錯体として好ましい化合物の具体例を挙げるが、これらに限定されるものではない。 Hereinafter, specific examples of preferable compounds as the phosphorescent metal complex will be given, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(1.2)蛍光発光性ドーパント
 本発明に係る蛍光発光性ドーパントは、励起一重項からの発光が可能な化合物である。蛍光発光性ドーパントの種類は、励起一重項からの発光が観測される限り、特に限定されるものではない。但し、本実施形態に係る有機EL素子において、AIE分子と共に、凝集誘起発光性を有しないその他の蛍光発光性ドーパントを併用すると、濃度消光が起こる虞がある。そのため、その他の蛍光発光性ドーパントを併用しない構成がより好ましい。
(1.2) Fluorescent luminescent dopant The fluorescent luminescent dopant which concerns on this invention is a compound which can light-emit from an excitation singlet. The kind of the fluorescent light-emitting dopant is not particularly limited as long as light emission from the excited singlet is observed. However, in the organic EL device according to this embodiment, concentration quenching may occur when other fluorescent light-emitting dopants that do not have aggregation-induced light-emitting properties are used together with AIE molecules. Therefore, the structure which does not use other fluorescent luminescent dopant together is more preferable.
 蛍光発光性ドーパントの具体例としては、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンゾアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、希土類錯体系化合物等が挙げられる。 Specific examples of the fluorescent luminescent dopant include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarin derivatives, Examples include pyran derivatives, cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzoanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
 また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。遅延蛍光を利用した発光ドーパントの具体例としては、国際公開第2011/156793号、特開2011-213643号、特開2010-93181号等に記載の化合物が挙げられるが、これらに限定されるものではない。 In recent years, luminescent dopants using delayed fluorescence have been developed, and these may be used. Specific examples of the luminescent dopant using delayed fluorescence include compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like, but are not limited thereto. is not.
(2)ホスト化合物
 本発明に係るホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない化合物である。好ましくは、室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物であり、より好ましくはリン光量子収率が0.01未満の化合物である。
(2) Host Compound The host compound according to the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and is a compound in which light emission itself is not substantially observed in the organic EL element. A compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.1 at room temperature (25 ° C.) is preferred, and a compound having a phosphorescence quantum yield of less than 0.01 is more preferred.
 ホスト化合物は、発光層に含まれる化合物のうちで、その発光層中における質量比が20%以上であることが好ましい。また、ホスト化合物の励起状態エネルギーは、同一層内に含まれる発光ドーパントの励起状態エネルギーよりも高いことが好ましい。なお、本実施形態に係る有機EL素子においては、リン光発光性金属錯体やAIE分子と共にホスト化合物を併用した構成の発光層を形成してもよいし、ホスト化合物を併用しない構成の発光層を形成してもよい。 The host compound preferably has a mass ratio of 20% or more in the light emitting layer among the compounds contained in the light emitting layer. Moreover, it is preferable that the excited state energy of a host compound is higher than the excited state energy of the light emission dopant contained in the same layer. In the organic EL device according to this embodiment, a light emitting layer having a configuration in which a host compound is used in combination with a phosphorescent metal complex or an AIE molecule may be formed, or a light emitting layer having a configuration in which a host compound is not used in combination. It may be formed.
 ホスト化合物としては、一般的な有機EL素子の発光層に使用される適宜の種類を用いることができる。ホスト化合物は、低分子化合物であってもよいし、繰り返し単位を有する高分子化合物であってもよい。また、ビニル基やエポキシ基のような反応性基を有する化合物であってもよい。ホスト化合物は、一種を単独で用いてもよいし、複数種を併用してもよい。複数種のホスト化合物を併用すると、電荷の移動を容易に調整することができるため、有機EL素子を高効率化することができる。 As the host compound, an appropriate type used for a light emitting layer of a general organic EL element can be used. The host compound may be a low molecular compound or a high molecular compound having a repeating unit. Further, it may be a compound having a reactive group such as a vinyl group or an epoxy group. A host compound may be used individually by 1 type, and may use multiple types together. When a plurality of types of host compounds are used in combination, the movement of electric charges can be easily adjusted, so that the organic EL element can be made highly efficient.
 ホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や駆動による発熱の中で安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。ホスト化合物のガラス転移温度は、好ましくは90℃以上、より好ましくは120℃以上である。なお、このガラス転移温度(Tg)は、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。 As a host compound, it has a hole transporting ability or an electron transporting ability, prevents an increase in wavelength of light emission, and further allows the organic EL element to operate stably during high temperature driving or heat generated by driving. Therefore, it is preferable to have a high glass transition temperature (Tg). The glass transition temperature of the host compound is preferably 90 ° C. or higher, more preferably 120 ° C. or higher. The glass transition temperature (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
 ホスト化合物の具体例としては、以下の文献に記載されている化合物等が挙げられるが、これらに限定されるものではない。特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第20030175553号、米国特許公開第20060280965号、米国特許公開第20050112407号、米国特許公開第20090017330号、米国特許公開第20090030202号、米国特許公開第20050238919号、国際公開第2001039234号、国際公開第2009021126号、国際公開第2008056746号、国際公開第2004093207号、国際公開第2005089025号、国際公開第2007063796号、国際公開第2007063754号、国際公開第2004107822号、国際公開第2005030900号、国際公開第2006114966号、国際公開第2009086028号、国際公開第2009003898号、国際公開第2012023947号、特開2008-074939号公報、特開2007-254297号公報、EP2034538号等である。 Specific examples of the host compound include compounds described in the following documents, but are not limited thereto. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, US Patent Publication No. 20030175553, United States Patent Publication No. 20060280965, United States Patent Publication No. 20050112407, United States Patent Publication 20090017330, U.S. Patent Publication No. 20090030202, U.S. Patent Publication No. 20050238919, International Publication No. 2001039234, International Publication No. 200902126, International Publication No. No. 8056746, International Publication No. 2004093207, International Publication No. 2005089025, International Publication No. 20077063796, International Publication No. 2007076754, International Publication No. 2004078822, International Publication No. 2005030900, International Publication No. 20060146966, International Publication No. 2009086028 International Publication No. 2009003898, International Publication No. 20122023947, Japanese Unexamined Patent Application Publication No. 2008-074939, Japanese Unexamined Patent Application Publication No. 2007-254297, EP2034538, and the like.
《含有物》
 有機EL素子の有機層は、その他の含有物を更に含んでいてもよい。その他の含有物としては、例えば、臭素、ヨウ素、塩素等の単体のハロゲンやハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属や遷移金属の化合物、金属錯体、塩等が挙げられる。
<Contents>
The organic layer of the organic EL element may further contain other inclusions. Other inclusions include, for example, simple halogens and halogenated compounds such as bromine, iodine and chlorine, alkali metals such as Pd, Ca and Na, compounds of alkaline earth metals and transition metals, metal complexes and salts. Can be mentioned.
 その他の含有物の量は、特に制限されるものではないが、含有物を含む層の全質量に対して、好ましくは1000ppm以下、より好ましくは500ppm以下、更に好ましくは50ppm以下である。但し、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によっては、このような範囲に限定されない。 The amount of other inclusions is not particularly limited, but is preferably 1000 ppm or less, more preferably 500 ppm or less, and still more preferably 50 ppm or less with respect to the total mass of the layer containing the inclusions. However, the range is not limited to this range depending on the purpose of improving the transportability of electrons and holes, the purpose of making the energy transfer of excitons advantageous.
《有機層の形成方法》
 有機層(正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法は、特に制限されるものではなく、例えば、真空蒸着法、湿式法(ウェットプロセスともいう)等を用いることができる。
<Method for forming organic layer>
The formation method of the organic layer (a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, etc.) is not particularly limited. A method (also referred to as a wet process) or the like can be used.
 湿式法としては、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等が挙げられる。湿式法としては、均質な薄膜が得られ易く、且つ、生産性が高い点で、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式の適性が高い方法が好ましく用いられる。 Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, LB method (Langmuir-Blodgett method) and the like. Can be mentioned. As the wet method, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable in that a homogeneous thin film is easily obtained and productivity is high. Used.
 有機層の材料を溶解又は分散させる液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類や、酢酸エチル等の脂肪酸エステル類や、ジクロロベンゼン等のハロゲン化炭化水素類や、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類や、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類や、DMF、DMSO等の有機溶媒が挙げられる。有機層の材料を分散させる分散方法としては、超音波分散、高剪断力分散、メディア分散等を用いることができる。 Examples of the liquid medium for dissolving or dispersing the organic layer material include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. And aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as DMF and DMSO. As a dispersion method for dispersing the material of the organic layer, ultrasonic dispersion, high shear force dispersion, media dispersion, or the like can be used.
 有機層は、層毎に同じ方法を用いて形成してもよいし、層毎に異なる方法を用いて形成してもよい。真空蒸着法を用いる場合、蒸着条件は、使用する化合物の種類等によって異なるが、一般に、ボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、膜厚0.1nm~5μm、好ましくは5~200nmの範囲で、適宜の条件とすることができる。 The organic layer may be formed using the same method for each layer, or may be formed using a different method for each layer. In the case of using the vacuum deposition method, the deposition conditions vary depending on the type of compound used, but generally, the boat heating temperature is 50 to 450 ° C., the degree of vacuum is 10 −6 to 10 −2 Pa, the deposition rate is 0.01 to 50 nm / Second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm can be set as appropriate conditions.
 有機層は、一回の真空引きで一貫して陽極側の層から陰極側の層までを作製することが好ましい。但し、途中で取り出して異なる製膜法を施してもよい。途中で取り出す場合は、その際の作業を、乾燥不活性ガス雰囲気下で行うことが好ましい。 It is preferable that the organic layer is produced from the anode side layer to the cathode side layer consistently by a single vacuum drawing. However, it may be taken out halfway and subjected to a different film forming method. When taking out on the way, it is preferable to perform the operation | work in that case in dry inert gas atmosphere.
《陽極》
 陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5eV以上)金属、合金、電気伝導性化合物、又は、これらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等のように非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode, a material having a work function (4 eV or more, preferably 4.5 eV or more) of a metal, an alloy, an electrically conductive compound, or a mixture thereof is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material capable of forming a transparent conductive film such as IDIXO (In 2 O 3 —ZnO) may be used.
 陽極は、電極物質を蒸着やスパッタリング等で成膜することにより、薄膜として形成することができる。陽極の成膜に際しては、フォトリソグラフィー法により所望の形状のパターンを形成してもよい。また、高いパターン精度を必要としない場合は(100μm以上程度の場合)、電極物質の蒸着やスパッタリング等を行う時にマスクを使用してパターンを形成してもよい。また、有機導電性化合物のように塗布可能な電極物質を用いる場合には、印刷方式、コーティング方式等の湿式法を用いることもできる。 The anode can be formed as a thin film by depositing an electrode material by vapor deposition or sputtering. When forming the anode, a pattern having a desired shape may be formed by photolithography. Further, when high pattern accuracy is not required (in the case of about 100 μm or more), a pattern may be formed using a mask when performing vapor deposition or sputtering of the electrode material. Moreover, when using the electrode substance which can be apply | coated like an organic electroconductivity compound, wet methods, such as a printing system and a coating system, can also be used.
 有機EL素子の発光を陽極から取り出す場合には、陽極の透過率を10%より大きくすることが好ましい。陽極としてのシート抵抗は、数百Ω/□以下が好ましい。陽極の厚さは、電極材料にもよるが、通常、10nm~1μm、好ましくは10~200nmである。 When taking out the light emission of the organic EL element from the anode, it is preferable that the transmittance of the anode is larger than 10%. The sheet resistance as the anode is preferably several hundred Ω / □ or less. Although the thickness of the anode depends on the electrode material, it is usually 10 nm to 1 μm, preferably 10 to 200 nm.
《陰極》
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属という)、合金、電気伝導性化合物、又は、これらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。
"cathode"
As the cathode, a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, or a mixture thereof as an electrode material is preferably used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
 陰極の電極物質としては、電子注入性や、酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等がより好ましい。 As the electrode material of the cathode, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, magnesium / More preferred are silver mixtures, magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like.
 陰極は、電極物質を蒸着やスパッタリング等で成膜することにより、薄膜として形成することができる。 The cathode can be formed as a thin film by depositing an electrode material by vapor deposition or sputtering.
 陰極としてのシート抵抗は、数百Ω/□以下が好ましい。陰極の厚さは、通常、10nm~5μm、好ましくは50~200nmである。 The sheet resistance as the cathode is preferably several hundred Ω / □ or less. The thickness of the cathode is usually 10 nm to 5 μm, preferably 50 to 200 nm.
 なお、有機EL素子の陽極及び陰極のいずれか一方は、発光した光を透過させて発光輝度を向上させる点から、透明又は半透明であることが好ましい。例えば、陰極の電極物質である金属を1~20nmの膜厚で成膜した後、その上に、前記の導電性透明材料を成膜することによって、透明又は半透明の陰極を作製することができる。 In addition, it is preferable that either one of the anode and the cathode of the organic EL element is transparent or semi-transparent from the viewpoint of transmitting the emitted light and improving the light emission luminance. For example, a transparent or semi-transparent cathode can be produced by depositing a metal as a cathode electrode material with a film thickness of 1 to 20 nm and then depositing the conductive transparent material thereon. it can.
《支持基板》
 有機EL素子の支持基板(基体、基板、基材、支持体等ともいう)としては、ガラス、プラスチック等を用いることが可能であり、その種類は特に限定されるものではない。支持基板は、透明であってもよいし、不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。透明な支持基板としては、ガラス、石英、透明樹脂フィルム等が挙げられる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることができる樹脂フィルムである。
《Support substrate》
As a support substrate (also referred to as a substrate, a substrate, a substrate, a support, or the like) of the organic EL element, glass, plastic, or the like can be used, and the type thereof is not particularly limited. The support substrate may be transparent or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film that can give flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステルや、ポリエチレン、ポリプロピレンや、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類又はこれらの誘導体や、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル或いはポリアリレート類、アートン(商品名JSR社製)或いはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等が挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, and cellulose acetate propionate (CAP). ), Cellulose esters such as cellulose acetate phthalate (TAC), cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether Ketone, polyimide, polyethersulfone (PES), polyphenylene sulfide, polysulfone Cycloolefins such as amines, polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylate, arton (trade name, manufactured by JSR) or appel (trade name, manufactured by Mitsui Chemicals) Based resins and the like.
 樹脂フィルムの表面には、無機物の被膜、有機物の被膜、無機物と有機物のハイブリッド被膜等が形成されていてもよい。樹脂フィルムは、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、JIS K 7126-1987に準拠した方法で測定された酸素透過度が10-3ml/(m・24h・atm)以下、且つ、水蒸気透過度が10-5g/(m・24h)以下の高バリア性フィルムであることがより好ましい。 On the surface of the resin film, an inorganic coating, an organic coating, an inorganic / organic hybrid coating, or the like may be formed. The resin film has a water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 of 0.01 g / (m 2 · 24 h) or less. The oxygen permeability measured by the method according to JIS K 7126-1987 is 10 −3 ml / (m 2 · 24 h · atm) or less, and the water vapor permeability is 10 −. A high barrier film of 5 g / (m 2 · 24 h) or less is more preferable.
 バリア性フィルムに形成するバリア膜の材料としては、水分や酸素等のように有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。バリア膜には、脆弱性を改良するために、無機層と有機層の積層構造を持たせることが好ましい。無機層と有機層の積層順は、特に制限されるものではないが、無機層と有機層を交互に複数回積層することが好ましい。 As a material of the barrier film formed on the barrier film, any material may be used as long as it has a function of suppressing the intrusion of an organic EL element such as moisture or oxygen, which may deteriorate. For example, silicon oxide, silicon dioxide, nitriding Silicon or the like can be used. In order to improve brittleness, the barrier film preferably has a laminated structure of an inorganic layer and an organic layer. The stacking order of the inorganic layer and the organic layer is not particularly limited, but it is preferable to stack the inorganic layer and the organic layer alternately a plurality of times.
 バリア膜の形成方法は、特に制限されるものではなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。バリア膜の形成方法としては、特開2004-68143号公報に記載されているような大気圧プラズマ重合法が特に好ましい。 The formation method of the barrier film is not particularly limited, and for example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure A plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. As a method for forming the barrier film, an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板やフィルム、樹脂基板、セラミック製の基板等を用いることができる。 As the opaque support substrate, for example, a metal plate such as aluminum or stainless steel, a film, a resin substrate, a ceramic substrate, or the like can be used.
《封止》
 有機EL素子を封止する方法としては、例えば、封止部材と、電極や支持基板とを接着剤で接着する方法が挙げられる。封止部材は、有機EL素子の表示領域を覆うように配置されていればよく、凹板状であってもよいし、平板状であってもよい。封止部材を凹状に加工する方法としては、サンドブラスト加工、化学エッチング加工等が挙げられる。封止部材の透明性や電気絶縁性は、特に限定されるものではない。
<Sealing>
Examples of the method for sealing the organic EL element include a method in which a sealing member is bonded to an electrode or a support substrate with an adhesive. The sealing member should just be arrange | positioned so that the display area | region of an organic EL element may be covered, and may be concave plate shape and flat plate shape. Examples of the method for processing the sealing member into a concave shape include sand blasting and chemical etching. The transparency and electrical insulation of the sealing member are not particularly limited.
 封止部材の具体例としては、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、ソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等が挙げられる。また、ポリマー板・フィルムとしては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等で形成されたものが挙げられる。金属板・フィルムとしては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム、タンタル等の金属や合金で形成されたものが挙げられる。 Specific examples of the sealing member include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate / film include those formed of polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like. Examples of the metal plate / film include those formed of metals and alloys such as stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 封止部材としては、有機EL素子を薄膜化できる点から、ポリマーフィルムや、金属フィルムを好ましく用いることができる。ポリマーフィルムとしては、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/m/24h以下、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が1×10-3g/(m/24h)以下のものが好ましい。 As the sealing member, a polymer film or a metal film can be preferably used because the organic EL element can be thinned. The polymer film, the oxygen permeability was measured by the method based on JIS K 7126-1987 is 1 × 10 -3 ml / m 2 / 24h or less, the water vapor permeability measured by the method based on JIS K 7129-1992 degrees (25 ± 0.5 ℃, relative humidity (90 ± 2)%) is preferably those of 1 × 10 -3 g / (m 2 / 24h) or less.
 接着剤としては、アクリル酸系オリゴマー、メタクリル酸系オリゴマー等の反応性ビニル基を有する光硬化型接着剤や熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型接着剤、エポキシ系等の熱硬化型接着剤や化学硬化型(二液混合)接着剤が挙げられる。また、ポリアミド、ポリエステル、ポリオレフィン等のホットメルト型接着剤や、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤が挙げられる。 Adhesives include photo-curing adhesives having a reactive vinyl group such as acrylic acid oligomers and methacrylic acid oligomers, thermosetting adhesives, moisture-curing adhesives such as 2-cyanoacrylates, and epoxy-based adhesives. And a thermosetting adhesive such as a chemical curing (two-component mixed) adhesive. In addition, hot melt adhesives such as polyamide, polyester, polyolefin, and the like, and cationic curing type ultraviolet curing epoxy resin adhesives can be used.
 接着剤としては、有機EL素子が熱処理によって劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、接着剤は、乾燥剤が分散されたものであってもよい。封止部分への接着剤の塗布は、市販のディスペンサーを使って行ってもよいし、スクリーン印刷のように印刷で行ってもよい。 As the adhesive, since the organic EL element may be deteriorated by heat treatment, an adhesive that can be adhesively cured from room temperature to 80 ° C. is preferable. The adhesive may be one in which a desiccant is dispersed. Application | coating of the adhesive agent to a sealing part may be performed using a commercially available dispenser, and may be performed by printing like screen printing.
 また、有機EL素子を封止する方法としては、支持基板の反対側に設けられた電極の外側に、有機層及び電極を被覆する封止膜を成膜する方法を用いることもできる。封止膜は、無機物の被膜、有機物の被膜、無機物と有機物のハイブリッド被膜等のいずれによって設けてもよい。封止膜の材料としては、水分や酸素等のように有機EL素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。封止膜には、脆弱性を改良するために、無機層と有機層の積層構造を持たせることが好ましい。 Further, as a method for sealing the organic EL element, a method of forming a sealing film covering the organic layer and the electrode on the outside of the electrode provided on the opposite side of the support substrate can also be used. The sealing film may be provided by any one of an inorganic film, an organic film, an inorganic / organic hybrid film, and the like. As a material for the sealing film, any material may be used as long as it has a function of suppressing intrusion of substances that cause deterioration of the organic EL element such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like is used. Can do. In order to improve brittleness, the sealing film preferably has a laminated structure of an inorganic layer and an organic layer.
 封止膜の形成方法は、特に制限されるものではなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 The method for forming the sealing film is not particularly limited. For example, the vacuum deposition method, the sputtering method, the reactive sputtering method, the molecular beam epitaxy method, the cluster ion beam method, the ion plating method, the plasma polymerization method, An atmospheric pressure plasma polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相のいずれについても、窒素、アルゴン等の不活性気体や、フッ化炭化水素、シリコンオイル等の不活性液体を注入することが好ましい。また、封止部材と有機EL素子の表示領域との間隙は、真空としてもよいし、吸湿性化合物を封入してもよい。 An inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil is injected into the gap between the sealing member and the display area of the organic EL element in both the gas phase and the liquid phase. It is preferable to do. In addition, the gap between the sealing member and the display area of the organic EL element may be a vacuum or may enclose a hygroscopic compound.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられる。硫酸塩、金属ハロゲン化物及び過塩素酸類については、無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.). For sulfates, metal halides and perchloric acids, anhydrous salts are preferably used.
《用途》
 本発明に係る有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源としては、例えば、照明装置(家庭用照明、車内照明)、時計用バックライト、液晶用バックライト、看板広告の光源、信号機の光源、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。特に、液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element according to the present invention can be used as a display device, a display, and various light sources. Examples of light sources include lighting devices (home lighting, interior lighting), clock backlights, liquid crystal backlights, signboard advertising light sources, traffic light sources, optical storage media light sources, electrophotographic copying machine light sources, Examples include a light source of an optical communication processor and a light source of an optical sensor. In particular, it can be effectively used as a backlight of a liquid crystal display device and an illumination light source.
(表示装置)
 本発明に係る有機EL素子は、具体的には、表示装置の画素として用いることができる。表示装置は、単色表示装置であってもよいし、多色表示装置であってもよい。以下では、本発明の有機EL素子を具備する表示装置の一例として、多色表示装置について説明する。
(Display device)
Specifically, the organic EL element according to the present invention can be used as a pixel of a display device. The display device may be a single color display device or a multicolor display device. Below, a multicolor display device is demonstrated as an example of the display apparatus which comprises the organic EL element of this invention.
 表示装置に備えられる有機EL素子の構成は、前記の素子構成例をはじめとして各種の構成を採ることができる。多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光を観測することができる。交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光を観測することができる。なお、印加する交流の波形は、特に制限されるものではない。 The configuration of the organic EL element provided in the display device can take various configurations including the above-described element configuration example. When a DC voltage is applied to the multicolor display device, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. When an AC voltage is applied, light emission can be observed only when the anode is in the + state and the cathode is in the-state. The AC waveform to be applied is not particularly limited.
 多色表示装置は、例えば、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイスや、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。表示デバイス、ディスプレイにおいて、青発光、赤発光及び緑発光の三種類の有機EL素子を用いるとフルカラーの表示が可能である。静止画像や動画像を再生する表示装置としての使用が可能であり、動画像の再生を行う場合の駆動方式としては、単純マトリクス(パッシブマトリクス)方式、アクティブマトリクス方式のいずれであってもよい。 The multicolor display device can be used as, for example, a display device, a display, or various light sources. Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in a car. In display devices and displays, full-color display is possible when three types of organic EL elements of blue light emission, red light emission and green light emission are used. It can be used as a display device for reproducing still images and moving images, and a driving method for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
 図2は、有機EL素子から構成される表示装置の一例を示した模式図である。この表示装置は、有機EL素子の発光により画像情報の表示を行う。ディスプレイ1は、複数の画素を有する表示部Aと、画像情報に基づいて表示部Aの画像走査を行う制御部Bと、表示部Aと制御部Bとの間を電気的に接続する配線部等を備えている。 FIG. 2 is a schematic view showing an example of a display device composed of organic EL elements. This display device displays image information by light emission of an organic EL element. The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and a wiring unit that electrically connects the display unit A and the control unit B. Etc.
 制御部Bは、複数の画素のそれぞれに、外部からの画像情報に基づいて走査信号と画像データ信号とを送る。そして、走査信号によって走査線毎の画素が画像データ信号に応じて順次発光し、表示部Aによって画像情報が表示される。 The control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. Then, the pixels for each scanning line sequentially emit light according to the image data signal by the scanning signal, and image information is displayed by the display unit A.
 図3は、表示部Aの模式図である。表示部Aは、基板上に、複数の画素3と、複数の走査線5と、複数のデータ線6とを有している。図3においては、各画素3からの光が下方向(白矢印方向)へ取り出される場合が示されている。 FIG. 3 is a schematic diagram of the display unit A. The display unit A has a plurality of pixels 3, a plurality of scanning lines 5, and a plurality of data lines 6 on the substrate. FIG. 3 shows a case where light from each pixel 3 is extracted downward (in the direction of the white arrow).
 配線部の走査線5及びデータ線6は、それぞれ導電材料からなる。走査線5とデータ線6とは、互いに格子状に直交し、直交する位置で各画素3に接続している。画素3は、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光色が赤色の画素、緑色の画素及び青色の画素のそれぞれを、適宜、基板上に配列させることによってフルカラーの表示が可能となる。 The scanning line 5 and the data line 6 in the wiring part are each made of a conductive material. The scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern, and are connected to the pixels 3 at the orthogonal positions. When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data. Full color display is possible by appropriately arranging each of the red, green, and blue pixels of the emission color on the substrate.
 図4は、画素の模式図である。画素3は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。基板上に備えられる複数の画素3には、赤色、緑色及び青色の各発光色の有機EL素子10が用いられる。 FIG. 4 is a schematic diagram of a pixel. The pixel 3 includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. For the plurality of pixels 3 provided on the substrate, organic EL elements 10 of red, green and blue emission colors are used.
 図4において、スイッチングトランジスタ11のドレインには、制御部Bからデータ線6を介して画像データ信号が印加される。そして、制御部Bからスイッチングトランジスタ11のゲートに、走査線5を介して走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号が、コンデンサー13と駆動トランジスタ12のゲートに伝達される。 4, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is driven by the capacitor 13. It is transmitted to the gate of the transistor 12.
 画像データ信号の伝達によって、コンデンサー13が画像データ信号の電位に応じて充電されると共に、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続されており、ソースが有機EL素子10の電極に接続されている。有機EL素子10には、ゲートに印加された画像データ信号の電位に応じて電源ライン7から電流が供給される。 By the transmission of the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10. A current is supplied from the power supply line 7 to the organic EL element 10 in accordance with the potential of the image data signal applied to the gate.
 制御部Bが順次走査を行い、走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしても、コンデンサー13は、充電された画像データ信号の電位を保持する。そのため、駆動トランジスタ12の駆動は、オン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。そして、順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動し、有機EL素子10が発光する。 When the controller B sequentially scans and the scanning signal moves to the next scanning line 5, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal. Therefore, the drive of the drive transistor 12 is kept on, and the light emission of the organic EL element 10 continues until the next scanning signal is applied. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
 このように有機EL素子10の発光は、複数の画素3にそれぞれ用いられる有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12とを設けることによって、複数の画素毎に行われる方式で構成することができる。このような発光方式は、アクティブマトリクス方式と呼ばれる。 As described above, the organic EL element 10 emits light for each of the plurality of pixels by providing the switching transistor 11 and the driving transistor 12 which are active elements with respect to the organic EL element 10 used for each of the plurality of pixels 3. Can be configured. Such a light emission method is called an active matrix method.
 なお、有機EL素子10の発光は、複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフによる発光でもよい。また、コンデンサー13の電位は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。 The light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Light emission may be used. Further, the potential of the capacitor 13 may be continuously maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
 なお、表示装置の発光方式は、以上のアクティブマトリクス方式に制限されるものではなく、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式としてもよい。 Note that the light emission method of the display device is not limited to the above active matrix method, and may be a passive matrix method in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
 図5は、パッシブマトリクス方式フルカラー表示装置の模式図である。図5において、複数の走査線5と、複数の画像データ線6とは、画素3を挟んで対向して格子状に設けられている。順次走査により走査線5の走査信号が印加されたとき、走査線5に接続している画素3が画像データ信号に応じて発光する。パッシブマトリクス方式によると、画素3にアクティブ素子を設ける必要がなく、製造コストが低減する。 FIG. 5 is a schematic diagram of a passive matrix type full-color display device. In FIG. 5, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween. When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the scanning line 5 emit light according to the image data signal. According to the passive matrix method, it is not necessary to provide an active element in the pixel 3, and the manufacturing cost is reduced.
<照明装置>
 本発明に係る有機EL素子は、具体的には、各種の照明装置の光源として用いることができる。照明装置としては、適宜の光源色を生じる装置であってよいが、白色の光源色を生じる装置とすることが好ましい。
<Lighting device>
Specifically, the organic EL element according to the present invention can be used as a light source of various lighting devices. The lighting device may be a device that generates an appropriate light source color, but is preferably a device that generates a white light source color.
 白色の発光は、複数の発光性化合物によって複数の発光色を同時に発光させて、混色することで得ることができる。発光色の組み合わせとしては、赤色、緑色及び青色の三原色の組み合わせであってもよいし、青色と黄色、青緑色と橙色等の補色の関係の組み合わせであってもよい。また、発光性化合物からの光を励起光として発光する色素を併用してもよいし、カラーフィルターを利用してもよい。 White light emission can be obtained by causing a plurality of luminescent compounds to emit light at the same time and mixing the colors. The combination of the luminescent colors may be a combination of three primary colors of red, green and blue, or a combination of complementary colors such as blue and yellow, blue green and orange. Moreover, the pigment | dye which light-emits light from a luminescent compound as excitation light may be used together, and a color filter may be utilized.
 照明装置においては、各色の発光色を生じる有機EL素子をアレイ上に配列して白色の発光を生成してもよいし、有機EL素子自体の発光色を白色化してもよい。有機EL素子自体の発光色を白色にする場合には、発光層等のみについてパターニングを行い、電極等については一面に一括して成膜してもよい。 In the illuminating device, organic EL elements that generate emission colors of respective colors may be arranged on the array to generate white emission, or the emission color of the organic EL element itself may be whitened. When the emission color of the organic EL element itself is white, patterning may be performed only on the light-emitting layer and the like, and the electrodes and the like may be collectively formed on one surface.
 図6は、照明装置の概略図である。また、図7は、照明装置の模式図である。照明装置は、例えば、本発明に係る有機EL素子101を、厚み300μm程度のガラスカバー102等で覆うことにより形成することができる。一対の電極105,107と、有機層106とを、周囲にシール材を塗布したガラスカバー102等で封止することによって、有機層106等が大気中の酸素や水分で劣化するのを防ぐことができる。例えば、封止を、窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行い、ガラスカバー102内に窒素ガス等の不活性ガス108を充填したり、捕水剤109等を設置したりすることが可能である。 FIG. 6 is a schematic diagram of the lighting device. FIG. 7 is a schematic diagram of a lighting device. The lighting device can be formed, for example, by covering the organic EL element 101 according to the present invention with a glass cover 102 having a thickness of about 300 μm. By sealing the pair of electrodes 105 and 107 and the organic layer 106 with a glass cover 102 or the like having a sealing material applied around it, the organic layer 106 or the like is prevented from being deteriorated by oxygen or moisture in the atmosphere. Can do. For example, sealing is performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more), and the glass cover 102 is filled with an inert gas 108 such as nitrogen gas or trapped. It is possible to install a liquid 109 or the like.
 なお、以上の本実施形態に係る有機EL素子は、その構成、製法、用途等が、前記の説明に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、その他の公知の構成や製法を適用することができるし、本発明をその他の用途に用いることもできる。例えば、有機EL素子の公知の構成、製法、用途等に関して、特開2013-089608号公報、特開2014-120334号公報、特開2015-201508号公報等を参照してもよい。 Note that the organic EL element according to the above embodiment is not limited to the above description in terms of its configuration, manufacturing method, application, etc., and other known configurations and A manufacturing method can be applied, and the present invention can be used for other purposes. For example, JP2013-089608A, JP2014120334A, JP2015-201508A, and the like may be referred to for the known configuration, manufacturing method, application, and the like of the organic EL element.
《発光性薄膜》
 次に、本実施形態に係る発光性薄膜について説明する。本実施形態に係る発光性薄膜は、リン光発光性金属錯体と凝集誘起発光性分子(AIE分子)とを含有する。例えば、基材上に、リン光発光性金属錯体とAIE分子とを含む機能性薄膜を成膜することによって、各種の用途に使用可能な発光性の機能薄膜を形成することができる。AIE分子の発光性薄膜中の濃度は、例えば、0.1質量%以上99.9質量%以下とすることができる。また、リン光発光性金属錯体の発光性薄膜中の濃度は、例えば、0.1質量%以上99.9質量%以下とすることができる。
<Light-emitting thin film>
Next, the luminescent thin film according to this embodiment will be described. The luminescent thin film according to this embodiment contains a phosphorescent metal complex and an aggregation-induced luminescent molecule (AIE molecule). For example, by forming a functional thin film containing a phosphorescent metal complex and AIE molecules on a substrate, it is possible to form a light-emitting functional thin film that can be used for various applications. The concentration of the AIE molecule in the light-emitting thin film can be, for example, 0.1% by mass or more and 99.9% by mass or less. Moreover, the density | concentration in the luminescent thin film of a phosphorescence-emitting metal complex can be 0.1 mass% or more and 99.9 mass% or less, for example.
 本実施形態に係る発光性薄膜は、例えば、有機EL素子、光電変換素子、有機機能性薄膜等の材料として用いることができる。また、前記の表示装置や照明装置を構成する発光素子として用いることもできる。本発明の発光性薄膜の形成方法は、特に制限されるものではなく、従来公知の真空蒸着法、湿式法等による形成方法を用いることができる。形成する発光性薄膜には、リン光発光性金属錯体とAIE分子に加えて、その他の発光性化合物やホスト化合物を配合してもよい。 The luminescent thin film according to the present embodiment can be used as a material such as an organic EL element, a photoelectric conversion element, or an organic functional thin film. Moreover, it can also be used as a light-emitting element constituting the display device or the lighting device. The method for forming the light-emitting thin film of the present invention is not particularly limited, and conventionally known methods such as a vacuum deposition method and a wet method can be used. In addition to the phosphorescent metal complex and the AIE molecule, other luminescent compounds and host compounds may be blended in the luminescent thin film to be formed.
 湿式法としては、例えば、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等が挙げられる。湿式法としては、均質な薄膜が得られ易く、且つ、生産性が高い点で、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式の適性が高い方法が好ましく用いられる。 Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, LB method (Langmuir-Blodgett method) and the like. Can be mentioned. As the wet method, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable in that a homogeneous thin film is easily obtained and productivity is high. Used.
 リン光発光性金属錯体やAIE分子を溶解又は分散させる液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類や、酢酸エチル等の脂肪酸エステル類や、ジクロロベンゼン等のハロゲン化炭化水素類や、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類や、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類や、DMF、DMSO等の有機溶媒が挙げられる。材料を分散させる分散方法としては、超音波分散、高剪断力分散、メディア分散等を用いることができる。 Examples of the liquid medium for dissolving or dispersing the phosphorescent metal complex and AIE molecules include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO. As a dispersion method for dispersing the material, ultrasonic dispersion, high shear force dispersion, media dispersion, or the like can be used.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例における「%」は、特に記載がない限り「質量%」を意味する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, “%” means “% by mass” unless otherwise specified.
(リン光発光性金属錯体)
 実施例で使用したリン光発光性金属錯体(A-1,A-2,A-3)を以下に示す。
(Phosphorescent metal complex)
The phosphorescent metal complexes (A-1, A-2, A-3) used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(蛍光発光性化合物)
 実施例で使用した蛍光発光性化合物(B-1,B-2)を以下に示す。なお、化合物B-1及び化合物B-2は、凝集誘起発光性が無い従来型の蛍光発光性化合物である。
(Fluorescent compound)
The fluorescent compounds (B-1, B-2) used in the examples are shown below. Compound B-1 and Compound B-2 are conventional fluorescent compounds having no aggregation-induced light emission.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(正孔輸送材料)
 実施例で使用した正孔輸送材料(HT-1)を以下に示す。
(Hole transport material)
The hole transport material (HT-1) used in the examples is shown below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(電子輸送材料)
 実施例で使用した電子輸送材料(ET-1,ET-2)を以下に示す。
(Electron transport material)
The electron transport materials (ET-1, ET-2) used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(ホスト化合物)
 実施例で使用したホスト化合物(H-1,H-2)を以下に示す。
(Host compound)
The host compounds (H-1, H-2) used in the examples are shown below.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(AIE分子)
 実施例で使用したAIE分子(AIE-1,AIE-2,AIE-3,AIE-4)を以下に示す。なお、AIE分子は凝集して集合体を形成することにより強い蛍光を発光する、蛍光発光性化合物である。
(AIE molecule)
The AIE molecules (AIE-1, AIE-2, AIE-3, AIE-4) used in the examples are shown below. AIE molecules are fluorescent compounds that emit strong fluorescence by aggregating to form aggregates.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 なお、実施例で使用した化合物のうち、AIE-1とAIE-2は、刊行物(Qin W.,et al.,Chem.Commun.,2015,51,7321-7324)に記載された方法に基づいて合成した。また、AIE-3は、刊行物(Kim J.Y.,et al.,Adv.Mater.2013,25,2666-2671)に記載された方法に基づいて合成した。また、AIE-4は、刊行物(Chen B.,et al.,Chem.Eur.J.,2014,20,1931-1939)に記載された方法に基づいて合成した。その他の化合物については、市販品(和光純薬工業社製)を用いた。 Of the compounds used in the examples, AIE-1 and AIE-2 were prepared according to the method described in the publication (Qin W., et al., Chem. Commun., 2015, 51, 7321-7324). Based on the synthesis. AIE-3 was synthesized based on a method described in a publication (Kim JY, et al., Adv. Mater. 2013, 25, 2666-2671). AIE-4 was synthesized based on a method described in a publication (Chen B., et al., Chem. Eur. J., 2014, 20, 1931-1939). About other compounds, the commercial item (made by Wako Pure Chemical Industries Ltd.) was used.
[実施例1]
 正孔輸送層に後架橋型の化合物HT-1、発光層に表1に示すリン光発光性金属錯体及び蛍光発光性分子を用いて有機EL素子を作製し、発光効率の評価を行った。
[Example 1]
An organic EL device was prepared using the post-crosslinking type compound HT-1 for the hole transport layer and the phosphorescent metal complex and the fluorescent molecule shown in Table 1 for the light emitting layer, and the light emission efficiency was evaluated.
<有機EL素子1-1の作製>
(陽極の作製)
 100mm×100mm×1.1mmの透明支持基板(NHテクノグラス社製、NA-45)上に、陽極としてITO(インジウムチンオキシド)を約100nmの厚さで成膜し、パターニングを行った。次いで、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後に、UVオゾン洗浄を5分間行った。
<Preparation of organic EL element 1-1>
(Preparation of anode)
On a 100 mm × 100 mm × 1.1 mm transparent support substrate (NH Techno Glass, NA-45), an ITO (indium tin oxide) film having a thickness of about 100 nm was formed as an anode and patterned. Subsequently, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
(正孔輸送層の作製)
 続いて、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS、へレウス社製、商品名:CLEVIOS P VP AI 4083)を純水で70%に希釈して得た溶液を、透明支持基板に作製した陽極上に、3000rpm、30秒の条件でスピンコート法により成膜した。そして、200℃において1時間乾燥し、膜厚30nmの第1正孔輸送層を形成した。次いで、この基板を窒素雰囲気下に移し、9.0mgの化合物HT-1を1.1gのクロロベンゼンに溶解させて得た塗布液を、第1正孔輸送層上に、1500rpm、30秒の条件でスピンコート法により成膜した。そして、180秒間紫外光を照射し、後架橋型の化合物HT-1の光重合・架橋を行い、膜厚約20nmの第2正孔輸送層を形成した。
(Preparation of hole transport layer)
Subsequently, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS, manufactured by Hereus Co., Ltd., trade name: CLEVIOS P VP AI 4083) to 70% with pure water was used. Then, a film was formed on the anode prepared on the transparent support substrate by spin coating under conditions of 3000 rpm and 30 seconds. And it dried at 200 degreeC for 1 hour, and formed the 30-nm-thick 1st positive hole transport layer. Next, the substrate was transferred to a nitrogen atmosphere, and a coating solution obtained by dissolving 9.0 mg of compound HT-1 in 1.1 g of chlorobenzene was applied on the first hole transport layer under conditions of 1500 rpm and 30 seconds. The film was formed by spin coating. Then, ultraviolet light was irradiated for 180 seconds, and photopolymerization / crosslinking of the post-crosslinking type compound HT-1 was performed to form a second hole transport layer having a thickness of about 20 nm.
(発光層の作製)
 続いて、6.75mgのホスト化合物H-1と1.69mgの蛍光発光性化合物B-1を窒素雰囲気下で1.1gのクロロベンゼンに溶解させて得た塗布液を、第2正孔輸送層上に、1500rpm、30秒の条件でスピンコート法により成膜した。そして、真空下、130℃で加熱乾燥することにより溶媒を完全に除去し、膜厚約50nmの発光層を形成した。
(Production of light emitting layer)
Subsequently, a coating solution obtained by dissolving 6.75 mg of the host compound H-1 and 1.69 mg of the fluorescent compound B-1 in 1.1 g of chlorobenzene under a nitrogen atmosphere was used as the second hole transport layer. A film was formed thereon by spin coating under conditions of 1500 rpm and 30 seconds. Then, the solvent was completely removed by heating and drying at 130 ° C. under vacuum to form a light emitting layer having a thickness of about 50 nm.
(電子輸送層の作製)
 続いて、発光層を成膜した透明支持基板を真空蒸着装置に取り付けた後、真空槽を4×10-4Paまで減圧し、発光層上に、化合物ET-1を0.1nm/秒で蒸着して、膜厚約35nmの電子輸送層を形成した。
(Preparation of electron transport layer)
Subsequently, the transparent support substrate on which the light emitting layer was formed was attached to a vacuum deposition apparatus, and then the vacuum chamber was depressurized to 4 × 10 −4 Pa, and the compound ET-1 was added at 0.1 nm / second onto the light emitting layer. Evaporation was performed to form an electron transport layer having a thickness of about 35 nm.
(電子注入層・陰極の作製)
 続いて、真空蒸着装置を使用して、電子輸送層上に、フッ化リチウムを蒸着して、膜厚約1.0nmの電子注入層を形成した。次いで、電子注入層上に、アルミニウムを蒸着して、膜厚約110nmの陰極を形成した。
(Preparation of electron injection layer / cathode)
Subsequently, using a vacuum deposition apparatus, lithium fluoride was deposited on the electron transport layer to form an electron injection layer having a thickness of about 1.0 nm. Next, aluminum was deposited on the electron injection layer to form a cathode having a thickness of about 110 nm.
(封止)
 封止用のガラスカバーの周縁部に、酸素や水分を吸着する吸湿性化合物を配合したエポキシ系光硬化型接着剤(東亞合成社製、ラックストラックLC0629B)を塗布し、このガラスカバーで、透明支持基板上に形成した電極と有機層を覆い、シール材としてのエポキシ系光硬化型接着剤を塗布した周縁部と透明支持基板とを密着させた。その後、電極や有機層が成膜されていない部分に、透明支持基板側からUV光を照射し、接着剤を硬化させることにより、封止された有機EL素子1-1を得た。
(Sealing)
An epoxy photo-curing adhesive (Lux Track LC0629B, manufactured by Toagosei Co., Ltd.) containing a hygroscopic compound that adsorbs oxygen and moisture is applied to the periphery of the sealing glass cover. The electrode formed on the support substrate and the organic layer were covered, and the peripheral portion coated with an epoxy photocurable adhesive as a sealing material was adhered to the transparent support substrate. Thereafter, UV light was irradiated from the transparent support substrate side to a portion where no electrode or organic layer was formed, and the adhesive was cured to obtain a sealed organic EL element 1-1.
<有機EL素子1-2の作製>
 発光層を成膜する塗布液に8.01mgのホスト化合物H-1と0.42mgのリン光発光性金属錯体A-1を用いたこと以外は有機EL素子1-1と同様にして、有機EL素子1-2を作製した。
<Preparation of organic EL element 1-2>
In the same manner as in the organic EL device 1-1 except that 8.01 mg of the host compound H-1 and 0.42 mg of the phosphorescent metal complex A-1 were used for the coating solution for forming the light emitting layer. An EL element 1-2 was produced.
<有機EL素子1-3の作製>
 発光層を成膜する塗布液に6.33mgのホスト化合物H-1と0.42mgのリン光発光性金属錯体A-1と1.69mgの蛍光発光性化合物B-1を用いたこと以外は有機EL素子1-1と同様にして、有機EL素子1-3を作製した。
<Preparation of organic EL element 1-3>
Except that 6.33 mg of the host compound H-1, 0.42 mg of the phosphorescent metal complex A-1 and 1.69 mg of the fluorescent compound B-1 were used for the coating solution for forming the light emitting layer. Organic EL element 1-3 was produced in the same manner as organic EL element 1-1.
<有機EL素子1-4の作製>
 蛍光発光性化合物B-1をAIE分子(AIE-1)に置き換えたこと以外は有機EL素子1-3と同様にして、有機EL素子1-4を作製した。
<Preparation of organic EL element 1-4>
Organic EL device 1-4 was produced in the same manner as organic EL device 1-3, except that fluorescent compound B-1 was replaced with AIE molecule (AIE-1).
<有機EL素子1-5の作製>
 蛍光発光性化合物B-1をAIE分子(AIE-2)に置き換えたこと以外は有機EL素子1-3と同様にして、有機EL素子1-5を作製した。
<Preparation of organic EL element 1-5>
Organic EL device 1-5 was produced in the same manner as organic EL device 1-3, except that fluorescent compound B-1 was replaced with AIE molecule (AIE-2).
<発光効率の評価>
 室温(25℃)において、2.5mA/cmの定電流密度で有機EL素子を点灯させて、分光放射輝度計CS-2000(コニカミノルタ社製)により発光輝度を測定し、発光効率(外部取り出し量子効率)を求めた。その結果を表1に示す。表中の発光効率は、有機EL素子1-3の測定値を100とした相対値を表す。
<Evaluation of luminous efficiency>
At room temperature (25 ° C.), the organic EL element was turned on at a constant current density of 2.5 mA / cm 2 , and the emission luminance was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta). The extraction quantum efficiency was determined. The results are shown in Table 1. The luminous efficiency in the table represents a relative value with the measured value of the organic EL element 1-3 as 100.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1に示すように、発光性化合物として凝集誘起発光性が無い蛍光発光性化合物B-1のみを20質量%の濃度で用いた有機EL素子1-1では、発光が全く見られなかった。発光性化合物としてリン光発光性金属錯体A-1と蛍光発光性化合物B-1とを併用した有機EL素子1-3では、リン光発光性金属錯体A-1のみを用いた有機EL素子1-2と比較すると、発光効率がある程度向上した。 As shown in Table 1, the organic EL device 1-1 using only the fluorescent compound B-1 having no aggregation-induced light emission as the light emitting compound at a concentration of 20% by mass showed no light emission. In the organic EL element 1-3 in which the phosphorescent metal complex A-1 and the fluorescent compound B-1 are used in combination as the light emitting compound, the organic EL element 1 using only the phosphorescent metal complex A-1 is used. Compared with -2, the luminous efficiency was improved to some extent.
 これに対し、AIE分子を蛍光発光性化合物B-1の代わりに同濃度添加し、リン光発光性金属錯体A-1と併用した有機EL素子1-4~1-5では、有機EL素子1-3と比較して、約2倍近い発光効率の向上が見られた。この結果から、従来型の蛍光発光性化合物では凝集状態となり、消光が生じる程度の高濃度であっても、AIE分子であれば十分に発光を得ることが可能であり、AIE分子を併用する手法が発光効率の改善に非常に効果的であると判断した。なお、構造が類似しているAIE-1とAIE-2とでは、発光効率の大きな違いは見られなかった。 In contrast, in the organic EL elements 1-4 to 1-5 in which AIE molecules are added at the same concentration in place of the fluorescent compound B-1, and used in combination with the phosphorescent metal complex A-1, the organic EL element 1 Compared with -3, the luminous efficiency was improved by about 2 times. From this result, it is possible to obtain sufficient light emission with an AIE molecule even when the concentration is high enough to cause quenching with the conventional fluorescent compound, and a method using the AIE molecule together. Was determined to be very effective in improving the luminous efficiency. Note that there was no significant difference in luminous efficiency between AIE-1 and AIE-2, which have similar structures.
[実施例2]
 実施例1で発光を生じた成分を確認するため、実施例1と同様のリン光発光性金属錯体及び蛍光発光性分子を用いて発光性薄膜のサンプルを作製し、発光スペクトルの評価を行った。
[Example 2]
In order to confirm the component that generated light emission in Example 1, a sample of a light-emitting thin film was prepared using the same phosphorescent metal complex and fluorescent light-emitting molecule as in Example 1, and the emission spectrum was evaluated. .
<サンプル2-1の作製>
 300mm×300mm×1.1mmのガラス基板に、UVオゾン洗浄処理を10分間行った。その後、窒素雰囲気下において、有機EL素子1-1の発光層の形成に用いた塗布液を、基板上に、1000rpm、30秒の条件でスピンコート法により成膜した。そして、有機EL素子1-1と同様の手順で封止を行って、サンプル2-1とした。
<Preparation of Sample 2-1>
The glass substrate of 300 mm × 300 mm × 1.1 mm was subjected to UV ozone cleaning treatment for 10 minutes. Thereafter, the coating solution used for forming the light emitting layer of the organic EL element 1-1 was formed on the substrate by spin coating under a nitrogen atmosphere at 1000 rpm for 30 seconds. Then, sealing was performed in the same procedure as that for the organic EL element 1-1 to obtain a sample 2-1.
<サンプル2-2の作製>
 蛍光発光性化合物B-1をリン光性発光性金属錯体A-1に置き換え、発光層の形成に用いた塗布液の配合を変えた以外はサンプル2-1と同様にして、サンプル2-2を作製した。
<Preparation of Sample 2-2>
Sample 2-2 was prepared in the same manner as Sample 2-1, except that fluorescent compound B-1 was replaced with phosphorescent metal complex A-1, and the formulation of the coating solution used to form the light emitting layer was changed. Was made.
<サンプル2-3~2-4の作製>
 蛍光発光性化合物B-1をAIE-1又はAIE-2に置き換えた以外はサンプル2-1と同様にして、サンプル2-3~2-4を作製した。
<Preparation of Samples 2-3 to 2-4>
Samples 2-3 to 2-4 were produced in the same manner as Sample 2-1, except that the fluorescent compound B-1 was replaced with AIE-1 or AIE-2.
<サンプル2-5の作製>
 有機EL素子1-2の発光層の形成に用いた塗布液を使用した以外はサンプル2-1と同様にして、サンプル2-5を作製した。
<Preparation of Sample 2-5>
Sample 2-5 was produced in the same manner as Sample 2-1, except that the coating solution used for forming the light emitting layer of the organic EL element 1-2 was used.
<サンプル2-6~2-7の作製>
 有機EL素子1-4~1-5の発光層の形成に用いた塗布液を使用し、発光性化合物の種類を表2に示す化合物に置き換えた以外はサンプル2-1と同様にして、サンプル2-6~2-7を作製した。
<Preparation of Samples 2-6 to 2-7>
Sample 2-1 was prepared in the same manner as Sample 2-1, except that the coating solution used for forming the light-emitting layers of the organic EL devices 1-4 to 1-5 was used and the type of light-emitting compound was replaced with the compound shown in Table 2. 2-6 to 2-7 were produced.
<スペクトルの評価>
 表2に示す励起方法を用いてサンプルを発光させて、分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)により室温下で発光スペクトルを測定し、発光極大波長を確認した。サンプル2-1~2-4については、可視光領域を含む波長領域の光で光励起し、サンプル2-5~2-7については、2.5mA/cmで電流励起した。
<Spectrum evaluation>
The sample was made to emit light using the excitation method shown in Table 2, and the emission spectrum was measured at room temperature with a spectrofluorometer (Hitachi High-Tech Science Co., Ltd., F-7000) to confirm the emission maximum wavelength. Samples 2-1 to 2-4 were optically excited with light in a wavelength region including a visible light region, and samples 2-5 to 2-7 were excited with current at 2.5 mA / cm 2 .
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 その結果、発光性化合物としてAIE分子とリン光発光性金属錯体とを併用したサンプル2-6及び2-7の発光極大波長は、リン光発光性金属錯体のみを用いたサンプル2-5で検出された発光極大波長と、発光性化合物としてAIE分子のみを用いたサンプル2-3及び2-4の発光極大波長の両方を含んでいた。さらに、サンプル2-5で見られた発光極大波長のスペクトル強度は減少した一方で、サンプル2-6及び2-7で見られた発光極大波長のスペクトル強度は増大していたことから、リン光発光性金属錯体からAIE分子にエネルギーの移動が生じた可能性が推測された。 As a result, the emission maximum wavelength of Samples 2-6 and 2-7, in which the AIE molecule and the phosphorescent metal complex are used in combination as the luminescent compound, is detected in Sample 2-5 using only the phosphorescent metal complex. And the emission maximum wavelengths of Samples 2-3 and 2-4 using only AIE molecules as the luminescent compound. Furthermore, while the spectral intensity at the emission maximum wavelength seen in Sample 2-5 was decreased, the spectral intensity at the emission maximum wavelength seen in Samples 2-6 and 2-7 was increased. The possibility of energy transfer from the luminescent metal complex to the AIE molecule was speculated.
[実施例3]
 正孔輸送層に後架橋型の化合物HT-1、発光層に表3に示すリン光発光性金属錯体及び蛍光発光性分子を用いて有機EL素子を作製し、発光効率の評価を行った。
[Example 3]
An organic EL device was prepared using the post-crosslinking type compound HT-1 for the hole transport layer and the phosphorescent metal complex and the fluorescent molecule shown in Table 3 for the light emitting layer, and the light emission efficiency was evaluated.
<有機EL素子3-1~3-5の作製>
 発光性化合物の種類を表3に示す化合物に置き換えた以外は有機EL素子1-1と同様にして、有機EL素子3-1~3-5を作製した。
<Production of organic EL elements 3-1 to 3-5>
Organic EL devices 3-1 to 3-5 were produced in the same manner as the organic EL device 1-1 except that the type of the luminescent compound was replaced with the compounds shown in Table 3.
<発光効率の評価>
 実施例1と同様に、室温(25℃)において、2.5mA/cmの定電流密度で有機EL素子を点灯させて、分光放射輝度計CS-2000(コニカミノルタ社製)により発光輝度を測定し、発光効率(外部取り出し量子効率)を求めた。その結果を表3に示す。表中の発光効率は、有機EL素子3-3の測定値を100とした相対値を表す。
<Evaluation of luminous efficiency>
As in Example 1, the organic EL element was turned on at a constant current density of 2.5 mA / cm 2 at room temperature (25 ° C.), and the emission luminance was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta). The light emission efficiency (external extraction quantum efficiency) was determined by measurement. The results are shown in Table 3. The luminous efficiency in the table represents a relative value with the measured value of the organic EL element 3-3 as 100.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表3に示すように、発光性化合物として凝集誘起発光性が無い蛍光発光性化合物B-2のみを20質量%の濃度で用いた有機EL素子3-1では、発光が全く見られなかった。これに対し、AIE分子を蛍光発光性化合物B-2の代わりに同濃度添加し、リン光発光性金属錯体A-2と併用した有機EL素子3-4~3-5では、有機EL素子3-3と比較して、高い発光効率が得られた。よって、発光効率を向上させる目的で蛍光発光性化合物の濃度を高くする場合、AIE分子を併用する手法が有効であると推察される。 As shown in Table 3, the organic EL device 3-1 in which only the fluorescent compound B-2 having no aggregation-inducing emission property as the light emitting compound was used at a concentration of 20% by mass showed no emission. On the other hand, in the organic EL elements 3-4 to 3-5 in which AIE molecules are added at the same concentration instead of the fluorescent compound B-2 and used in combination with the phosphorescent metal complex A-2, the organic EL element 3 Compared with -3, high luminous efficiency was obtained. Therefore, when the concentration of the fluorescent compound is increased for the purpose of improving the luminous efficiency, it is presumed that the method using the AIE molecule is effective.
[実施例4]
 実施例3で発光を生じた成分を確認するため、実施例3と同様のリン光発光性金属錯体及び蛍光発光性分子を用いて発光性薄膜のサンプルを作製し、発光スペクトルの評価を行った。
[Example 4]
In order to confirm the component that generated light emission in Example 3, a sample of a light-emitting thin film was prepared using the same phosphorescent metal complex and fluorescent molecule as in Example 3, and the emission spectrum was evaluated. .
<サンプル4-1の作製>
 実施例2と同様にして、300mm×300mm×1.1mmのガラス基板に、UVオゾン洗浄処理を10分間行った。その後、窒素雰囲気下において、有機EL素子3-1の発光層の形成に用いた塗布液を、基板上に、1000rpm、30秒の条件でスピンコート法により成膜した。そして、有機EL素子1-1と同様の手順で封止を行って、サンプル4-1とした。
<Preparation of Sample 4-1>
In the same manner as in Example 2, a UV ozone cleaning treatment was performed for 10 minutes on a glass substrate of 300 mm × 300 mm × 1.1 mm. Thereafter, the coating liquid used for forming the light emitting layer of the organic EL element 3-1 was formed on the substrate by spin coating under a nitrogen atmosphere at 1000 rpm for 30 seconds. Then, sealing was performed in the same procedure as in the organic EL element 1-1 to obtain a sample 4-1.
<サンプル4-2の作製>
 蛍光発光性化合物B-2をリン光性発光性金属錯体A-2に置き換え、発光層の形成に用いた塗布液の配合を変えた以外はサンプル4-1と同様にして、サンプル4-2を作製した。
<Preparation of Sample 4-2>
Sample 4-2 was prepared in the same manner as Sample 4-1, except that fluorescent compound B-2 was replaced with phosphorescent metal complex A-2 and the composition of the coating solution used for forming the light emitting layer was changed. Was made.
<サンプル4-3~4-4の作製>
 蛍光発光性化合物B-2をAIE-3又はAIE-4に置き換えた以外はサンプル4-1と同様にして、サンプル4-3~4-4を作製した。
<Preparation of samples 4-3 to 4-4>
Samples 4-3 to 4-4 were prepared in the same manner as Sample 4-1, except that the fluorescent compound B-2 was replaced with AIE-3 or AIE-4.
<サンプル4-5の作製>
 有機EL素子3-2の発光層の形成に用いた塗布液を使用した以外はサンプル4-1と同様にして、サンプル4-5を作製した。
<Preparation of Sample 4-5>
Sample 4-5 was produced in the same manner as Sample 4-1, except that the coating solution used for forming the light emitting layer of the organic EL element 3-2 was used.
<サンプル4-6~4-7の作製>
 有機EL素子3-4~3-5の発光層の形成に用いた塗布液を使用し、発光性化合物の種類を表4に示す化合物に置き換えた以外はサンプル4-1と同様にして、サンプル4-6~4-7を作製した。
<Preparation of Samples 4-6 to 4-7>
Samples were obtained in the same manner as Sample 4-1, except that the coating solution used for forming the light emitting layers of the organic EL devices 3-4 to 3-5 was used and the types of the light emitting compounds were replaced with the compounds shown in Table 4. 4-6 to 4-7 were produced.
<スペクトルの評価>
 実施例2と同様にして、表4に示す励起方法を用いてサンプルを発光させて、分光蛍光光度計(日立ハイテクサイエンス社製、F-7000)により室温下で発光スペクトルを測定し、発光極大波長を確認した。サンプル4-1~4-4については、可視光領域を含む波長領域の光で光励起し、サンプル4-5~4-7については、2.5mA/cmで電流励起した。
<Spectrum evaluation>
In the same manner as in Example 2, the sample was caused to emit light using the excitation method shown in Table 4, and the emission spectrum was measured at room temperature with a spectrofluorometer (Hitachi High-Tech Science Co., Ltd., F-7000). The wavelength was confirmed. Samples 4-1 to 4-4 were optically excited with light in a wavelength region including the visible light region, and samples 4-5 to 4-7 were excited with current at 2.5 mA / cm 2 .
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 その結果、発光性化合物としてAIE分子とリン光発光性金属錯体とを併用したサンプル4-6及び4-7の発光極大波長は、リン光発光性金属錯体のみを用いたサンプル4-5で検出された発光極大波長と、発光性化合物としてAIE分子のみを用いたサンプル4-3及び4-4の発光極大波長の両方を含んでいた。さらに、サンプル4-5で見られた発光極大波長のスペクトル強度は減少した一方で、サンプル4-6及び4-7で見られた発光極大波長のスペクトル強度は増大していたことから、リン光発光性金属錯体からAIE分子にエネルギーの移動が生じた可能性が推測された。 As a result, the emission maximum wavelength of Samples 4-6 and 4-7, in which the AIE molecule and the phosphorescent metal complex are used in combination as the luminescent compound, is detected in Sample 4-5 using only the phosphorescent metal complex. And the emission maximum wavelengths of Samples 4-3 and 4-4 using only the AIE molecule as the luminescent compound. Furthermore, the spectral intensity at the emission maximum wavelength seen in sample 4-5 decreased, while the spectrum intensity at the emission maximum wavelength seen in samples 4-6 and 4-7 increased, so phosphorescence The possibility of energy transfer from the luminescent metal complex to the AIE molecule was speculated.
[実施例5]
 発光層に高濃度のAIE分子を含む有機EL素子を作製し、発光性を確認した。
[Example 5]
An organic EL device containing a high concentration of AIE molecules in the light emitting layer was prepared, and the light emitting property was confirmed.
<有機EL素子5-1の作製>
(陽極の作製)
 実施例1と同様に、100mm×100mm×1.1mmの透明支持基板(NHテクノグラス社製、NA-45)上に、陽極としてITO(インジウムチンオキシド)を約100nmの厚さで成膜し、パターニングを行った。次いで、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥した後に、UVオゾン洗浄を5分間行った。
<Preparation of organic EL element 5-1>
(Preparation of anode)
As in Example 1, ITO (indium tin oxide) was formed as an anode with a thickness of about 100 nm on a 100 mm × 100 mm × 1.1 mm transparent support substrate (NH Techno Glass, NA-45). Then, patterning was performed. Subsequently, after ultrasonic cleaning with isopropyl alcohol and drying with dry nitrogen gas, UV ozone cleaning was performed for 5 minutes.
(正孔輸送層の作製)
 続いて、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT:PSS、へレウス社製、商品名:CLEVIOS P VP AI 4083)を純水で70%に希釈して得た溶液を、透明支持基板に作製した陽極上に、3000rpm、30秒の条件でスピンコート法により成膜した。そして、200℃において1時間乾燥し、膜厚30nmの正孔輸送層を形成した。
(Preparation of hole transport layer)
Subsequently, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT: PSS, manufactured by Hereus Co., Ltd., trade name: CLEVIOS P VP AI 4083) to 70% with pure water was used. Then, a film was formed on the anode prepared on the transparent support substrate by spin coating under conditions of 3000 rpm and 30 seconds. And it dried at 200 degreeC for 1 hour, and formed the 30-nm-thick hole transport layer.
(発光層の作製)
 続いて、8.43mgのAIE-1と、0.01mgのホスト化合物H-2を窒素雰囲気下で1.1gのクロロベンゼンに溶解させて得た塗布液を、正孔輸送層上に、1500rpm、30秒の条件でスピンコート法により成膜した。そして、真空下、130℃で加熱乾燥することにより溶媒を完全に除去し、膜厚約50nmの発光層を形成した。
(Production of light emitting layer)
Subsequently, a coating solution obtained by dissolving 8.43 mg of AIE-1 and 0.01 mg of the host compound H-2 in 1.1 g of chlorobenzene under a nitrogen atmosphere was applied to the hole transport layer at 1500 rpm, A film was formed by spin coating under conditions of 30 seconds. Then, the solvent was completely removed by heating and drying at 130 ° C. under vacuum to form a light emitting layer having a thickness of about 50 nm.
(電子輸送層の作製)
 続いて、発光層を成膜した透明支持基板を真空蒸着装置に取り付けた後、真空槽を4×10-4Paまで減圧し、発光層上に、化合物ET-2を0.1nm/秒で蒸着して、膜厚約35nmの電子輸送層を形成した。
(Preparation of electron transport layer)
Subsequently, the transparent support substrate on which the light emitting layer was formed was attached to a vacuum deposition apparatus, and then the vacuum chamber was depressurized to 4 × 10 −4 Pa, and the compound ET-2 was added at 0.1 nm / second on the light emitting layer. Evaporation was performed to form an electron transport layer having a thickness of about 35 nm.
(陰極の作製、封止)
 続いて、実施例1と同様に、真空蒸着装置を使用して、電子輸送層上に、アルミニウムを蒸着して、膜厚約110nmの陰極を形成した。そして、実施例1と同様に封止を行って、有機EL素子5-1を得た。
(Production and sealing of cathode)
Subsequently, similarly to Example 1, a vacuum deposition apparatus was used to deposit aluminum on the electron transport layer to form a cathode having a thickness of about 110 nm. Then, sealing was performed in the same manner as in Example 1 to obtain an organic EL element 5-1.
<発光性の確認>
 室温(25℃)において、直流電圧を印加して有機EL素子を駆動させて、目視により発光の有無を確認した。その結果、十分な発光が確認された。従来型の蛍光発光性化合物では濃度消光を生じる程度の高濃度であっても、AIE分子であれば、発光を生じさせることが可能であることが確認された。
<Confirmation of luminous properties>
At room temperature (25 ° C.), a direct current voltage was applied to drive the organic EL element, and the presence or absence of light emission was confirmed visually. As a result, sufficient light emission was confirmed. It was confirmed that even if the concentration was high enough to cause concentration quenching in the conventional fluorescent light-emitting compound, the AIE molecule could cause light emission.
[実施例6]
 発光性化合物としてAIE分子を含む有機EL素子を作製し、水分や酸素に対する耐性の評価を行った。
[Example 6]
An organic EL element containing AIE molecules as a luminescent compound was prepared and evaluated for resistance to moisture and oxygen.
<有機EL素子6-1~6-2の作製>
 リン光性発光性金属錯体A-1をリン光性発光性金属錯体A-3に置き換え、封止を行わず素子を完成させたこと以外は有機EL素子1-3~1-4と同様にして、有機EL素子6-1~6-2を作製した。
<Preparation of organic EL elements 6-1 and 6-2>
The phosphorescent luminescent metal complex A-1 was replaced with the phosphorescent luminescent metal complex A-3, and the device was completed without sealing and was the same as the organic EL devices 1-3 to 1-4. Thus, organic EL elements 6-1 and 6-2 were produced.
<水分や酸素に対する耐性の評価>
 作製直後の有機EL素子の発光効率と、大気中で24時間放置した後の有機EL素子の発光効率とをそれぞれ求めて、発光効率の低下に基づいて水分や酸素に対する耐性を評価した。なお、発光効率(外部取り出し量子効率)は、実施例1と同様にして求めた。その結果を表5に示す。表中の発光効率は、各有機EL素子について、作製直後(0時間後)の測定値を100とした相対値を表す。
<Evaluation of resistance to moisture and oxygen>
The light emission efficiency of the organic EL element immediately after the production and the light emission efficiency of the organic EL element after being left in the atmosphere for 24 hours were determined, and the resistance to moisture and oxygen was evaluated based on the decrease in the light emission efficiency. The luminous efficiency (external extraction quantum efficiency) was determined in the same manner as in Example 1. The results are shown in Table 5. The luminous efficiency in the table represents a relative value for each organic EL element, with the measured value immediately after production (after 0 hour) being 100.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表5に示すように、発光層にAIE分子を含む有機EL素子6-2では、大気中で放置した後においても、高い発光効率が確認された。この要因は明らかではないが、AIE分子が凝集体を形成することにより、個々の発光体の径が大きくなり、劣化の原因となる水分子や酸素との接触面積や衝突回数が減少したためであると推測できる。なお、この際に用いるリン光発光性金属錯体は、本明細書記載のDp-1~Dp-59を用いた場合にも同様の結果が得られた。 As shown in Table 5, the organic EL device 6-2 containing AIE molecules in the light emitting layer was confirmed to have high light emission efficiency even after being left in the air. The reason for this is not clear, but the AIE molecules form aggregates, which increases the diameter of the individual light emitters and reduces the contact area and the number of collisions with water molecules and oxygen that cause deterioration. Can be guessed. It should be noted that the phosphorescent metal complex used in this case had similar results when Dp-1 to Dp-59 described in this specification were used.
1   ディスプレイ
3   画素
5   走査線
6   データ線
7   電源ライン
10  有機EL素子
11  スイッチングトランジスタ
12  駆動トランジスタ
13  コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A   表示部
B   制御部
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 in an illuminating device Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate 108 with a transparent electrode Nitrogen Gas 109 Water capturing agent A Display part B Control part

Claims (6)

  1.  陽極と、陰極と、前記陽極と前記陰極の間に設けられた発光層と、を備え、前記発光層中にリン光発光性金属錯体と凝集誘起発光性分子とを含有する有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising an anode, a cathode, and a light emitting layer provided between the anode and the cathode, wherein the light emitting layer contains a phosphorescent metal complex and an aggregation-induced light emitting molecule.
  2.  前記リン光発光性金属錯体が下記一般式(DP)で表される有機金属錯体である請求項1に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    [但し、一般式(DP)中、Mは、Ir、Pt、Rh、Ru、Ag、Cu又はOsを表し、A、A、B及びBは、それぞれ独立して、炭素原子又は窒素原子を表し、環Zは、A及びAと共に形成される6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環を表し、環Zは、B及びBと共に形成される5員又は6員の芳香族複素環を表す。環Z及び環Zは、置換基を有していてもよく、置換基同士は、互いに結合して縮環構造を形成していてもよく、互いに結合して配位子同士を連結していてもよい。L’は、Mに配位したモノアニオン性の二座配位子を表し、m’は、0~2の整数を表し、n’は、1~3の整数を表し、m’+n’は、2又は3であり、m’及びn’が2以上のとき、環Z及び環Zで表される配位子とL’は、互いに同一の構造であってもよいし、互いに異なる構造であってもよい。]
    The organic electroluminescent device according to claim 1, wherein the phosphorescent metal complex is an organometallic complex represented by the following general formula (DP).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (DP), M represents Ir, Pt, Rh, Ru, Ag, Cu, or Os, and A 1 , A 2 , B 1, and B 2 are each independently a carbon atom or Represents a nitrogen atom, ring Z 1 represents a 6-membered aromatic hydrocarbon ring formed together with A 1 and A 2 , or a 5-membered or 6-membered aromatic heterocycle, and ring Z 2 represents B 1 and it represents an aromatic 5- or 6-membered heterocyclic ring formed together with B 2. Ring Z 1 and ring Z 2 may have a substituent, and the substituents may be bonded to each other to form a condensed ring structure. It may be. L ′ represents a monoanionic bidentate ligand coordinated to M, m ′ represents an integer of 0 to 2, n ′ represents an integer of 1 to 3, and m ′ + n ′ represents 2 or 3, and when m ′ and n ′ are 2 or more, the ligand represented by ring Z 1 and ring Z 2 and L ′ may have the same structure or different from each other. It may be a structure. ]
  3.  前記凝集誘起発光性分子が、テトラフェニルエチレン誘導体、又は、シロール誘導体である請求項1に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to claim 1, wherein the aggregation-induced luminescent molecule is a tetraphenylethylene derivative or a silole derivative.
  4.  リン光発光性金属錯体と凝集誘起発光性分子とを含有する発光性薄膜。 A luminescent thin film containing a phosphorescent metal complex and an aggregation-induced luminescent molecule.
  5.  請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 3.
  6.  請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する照明装置。 An illumination device comprising the organic electroluminescence element according to any one of claims 1 to 3.
PCT/JP2019/001609 2018-02-20 2019-01-21 Organic electroluminescent element, luminescent thin film, display device, and luminescent device WO2019163354A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502080A JPWO2019163354A1 (en) 2018-02-20 2019-01-21 Organic electroluminescence element, luminescent thin film, display device and lighting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-027883 2018-02-20
JP2018027883 2018-02-20

Publications (1)

Publication Number Publication Date
WO2019163354A1 true WO2019163354A1 (en) 2019-08-29

Family

ID=67687617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001609 WO2019163354A1 (en) 2018-02-20 2019-01-21 Organic electroluminescent element, luminescent thin film, display device, and luminescent device

Country Status (2)

Country Link
JP (1) JPWO2019163354A1 (en)
WO (1) WO2019163354A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197374A (en) * 2001-12-25 2003-07-11 Konica Corp Organic electroluminescent element and display device
JP2004253298A (en) * 2003-02-21 2004-09-09 Konica Minolta Holdings Inc White light-emitting organic electroluminescent element
CN107162953A (en) * 2017-07-13 2017-09-15 长春海谱润斯科技有限公司 A kind of luminous organic material and its organic luminescent device using tetraphenylethylene as parent nucleus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197374A (en) * 2001-12-25 2003-07-11 Konica Corp Organic electroluminescent element and display device
JP2004253298A (en) * 2003-02-21 2004-09-09 Konica Minolta Holdings Inc White light-emitting organic electroluminescent element
CN107162953A (en) * 2017-07-13 2017-09-15 长春海谱润斯科技有限公司 A kind of luminous organic material and its organic luminescent device using tetraphenylethylene as parent nucleus

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN ET AL.: "Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles", CHEMISTRY OF MATERIALS, vol. 15, no. 7, 3 August 2003 (2003-08-03), pages 1535 - 1546, XP009115643, DOI: 10.1021/cm021715z *
LEE ET AL.: "The first aggregation-induced emission fluorophore as a solution processed host material in hybrid white organic light-emitting diodes", JOURNAL OF MATERIALS CHEMISTRY C, vol. 4, no. 29, 7 August 2016 (2016-08-07), pages 7020 - 7025, XP055633133 *
WANG ET AL.: "Aggregation Emission Properties of Oligomers Based on Tetraphenylethylene", THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 114, no. 18, 21 April 2010 (2010-04-21), pages 5983 - 5988, XP055633135 *
ZHAN ET AL.: "Benzene-cored AIEgens for deep-blue OLEDs: high performance without hole-transporting layers, and unexpected excellent host for orange emission as a side-effect", CHEMICAL SCIENCE, vol. 7, no. 7, 17 March 2016 (2016-03-17), pages 4355 - 4363, XP002786207, DOI: 10.1039/C6SC00559D *

Also Published As

Publication number Publication date
JPWO2019163354A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP5765223B2 (en) MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT
JP5321684B2 (en) Organic electroluminescence device, display device, lighting device, and condensed polycyclic heterocyclic compound
KR102241439B1 (en) Organic electroluminescent element, method for manufacturing the same, display device, and lighting device
JP6319097B2 (en) Organic electroluminescence element, display device and lighting device
WO2010044342A1 (en) Organic el element, organic el element manufacturing method, white organic el element, display device, and illumination device
WO2017126370A1 (en) Organic electroluminescence element, display device, and lighting device
JP6094480B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, DISPLAY DEVICE, AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT
WO2013058098A1 (en) Organic electroluminescent element
WO2016143508A1 (en) Organic electroluminescent element and organic electroluminescent element material
WO2013031520A1 (en) Organic electroluminescence element
JP4935042B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2017079267A (en) Organic electroluminescent element, method of manufacturing organic electroluminescent element, display device, lighting device, and organic electroluminescent element material
WO2017104325A1 (en) Organic electroluminescent element, method for manufacturing organic electroluminescent element, display device, lighting device and organic electroluminescent element material
JP2014017494A (en) Organic electroluminescent element, and display device and illuminating device including the element
JP6911223B2 (en) Organometallic complex, organic electroluminescence device and its manufacturing method, display device and lighting device
JP5636630B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2017162872A (en) Charge transporting thin film, electronic device including the same, organic electroluminescent element, display device, and lighting device
WO2019163355A1 (en) Organic electroluminescent element, luminescent thin film, display device, and luminescent device
JP6172154B2 (en) Organic electroluminescence element, lighting device and display device
WO2018221173A1 (en) Organic electroluminescent element, display device, and lighting device
JP2014099539A (en) Organic electroluminescent element, display device, and lighting device
JP6036204B2 (en) Organic electroluminescence element, display device and lighting device
JP6098755B2 (en) Organic electroluminescence element, display device and lighting device
WO2013161739A1 (en) Organic electroluminescence element, illumination device and display device
JP2007099962A (en) Organic electroluminescent element material, organic electroluminescent element, displaying device and lighting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502080

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19758186

Country of ref document: EP

Kind code of ref document: A1