WO2019163339A1 - Non-contact input device and non-contact input method - Google Patents

Non-contact input device and non-contact input method Download PDF

Info

Publication number
WO2019163339A1
WO2019163339A1 PCT/JP2019/001284 JP2019001284W WO2019163339A1 WO 2019163339 A1 WO2019163339 A1 WO 2019163339A1 JP 2019001284 W JP2019001284 W JP 2019001284W WO 2019163339 A1 WO2019163339 A1 WO 2019163339A1
Authority
WO
WIPO (PCT)
Prior art keywords
half mirror
image
display
retroreflector
contact input
Prior art date
Application number
PCT/JP2019/001284
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大坪
Original Assignee
株式会社アスカネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アスカネット filed Critical 株式会社アスカネット
Priority to JP2019527576A priority Critical patent/JPWO2019163339A1/en
Publication of WO2019163339A1 publication Critical patent/WO2019163339A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means

Definitions

  • the present invention provides a non-contact input device and a non-contact input method (that is, a reproduced image) in which a real image is formed in the air and a signal can be input by operating an instruction unit (for example, a finger) while viewing the real image (for example, a touch panel image). And a method for detecting the designated position in a non-contact manner.
  • a non-contact input device and a non-contact input method (that is, a reproduced image) in which a real image is formed in the air and a signal can be input by operating an instruction unit (for example, a finger) while viewing the real image (for example, a touch panel image).
  • an instruction unit for example, a finger
  • viewing the real image for example, a touch panel image
  • Patent Document 2 discloses a light imaging means in which a plurality of first and second strip-shaped light reflecting surfaces orthogonal to each other in plan view are arranged on the same plane. And a display provided on one side of the light imaging means so as to be inclined with respect to the light imaging means, and an image of the display (for example, a keyboard) is transmitted to the other side space via the light imaging means. Forming an image of the pointing means (for example, a finger) touching the first image on the screen of the display as the second image using the optical imaging means, A non-contact input device that detects the position of the second image with an optical sensor provided on the display has been proposed.
  • Patent Document 2 uses optical imaging means in which a large number of first and second strip-shaped light reflecting surfaces orthogonal to each other in plan view are arranged on the same plane. There is a problem that it is difficult to manufacture a large non-contact input device, and even if manufactured, it is expensive.
  • Patent Document 3 discloses a retroreflector having first to third light reflecting surfaces arranged orthogonal to each other, can be formed into a flat plate shape, and can be mass-produced. In some cases, a retroreflector that can also be used as a stereoscopic image display device has been proposed. However, Patent Document 3 is a disclosure of a retroreflector and a manufacturing method thereof, and there is a description about processing an image using a display and using a retroreflector as part of a non-contact input device. Absent.
  • the present invention has been made in view of such circumstances, and provides a non-contact input device and a non-contact input method that can be mass-produced, can cope with an increase in size, and can input signals without physically touching a display.
  • the purpose is to do.
  • the non-contact input device includes a retroreflector, a half mirror that is erected on the functional side of the retroreflector, and a distance between the half mirror and one side of the half mirror. And a display for displaying the first image set in advance, the display surface being directed toward the half mirror, wherein the display detects infrared light irradiated toward the display An infrared light sensor is provided, and the first image displayed on the display is formed as a second image on the other side of the half mirror via the half mirror and the retroreflector.
  • Infrared rays are emitted from the half mirror side toward the second image by an infrared irradiator, and reflected infrared rays from the instruction means that has operated the second image are reflected on the half mirror and the recursive reaction. Is imaged on the display through the body, to detect the imaging position of the indicating means by said infrared light sensor.
  • a half mirror having a light transmittance of 35 to 65%.
  • the retroreflector is preferably planar, but may be nonplanar (for example, a curved surface or a curved surface) as long as it reflects light in a specific direction.
  • the infrared light sensor detects only the infrared light that has been optically modulated (for example, high frequency modulation or digital modulation). This can be distinguished from natural infrared light.
  • the half mirror has a thickness (substantially transparent sheet thickness) in the range of 10 to 500 ⁇ m.
  • a thickness substantially transparent sheet thickness
  • the deviation of the light passing through the half mirror can be reduced, resulting in clearer image formation. Even if the thickness of the half mirror exceeds 500 ⁇ m, the present invention is applicable, but the second image is not clear.
  • a support for keeping the half mirror flat is provided above and below or around the half mirror. As a result, the half mirror can be held flat.
  • the retroreflector is disposed horizontally, and the retroreflector is divided into left and right with the half mirror as a center. Further, in the non-contact input device according to the present invention, the left and right retroreflectors are respectively orthogonal first and second light reflecting surfaces and perpendicular light orthogonal to the first and second light reflecting surfaces.
  • the micro retroreflective block of the retroreflector formed on the left and right sides of the half mirror includes a plurality of micro retroreflective blocks having a reflective surface, and each vertical light reflecting surface faces the half mirror side. It is good to have.
  • the retroreflector can be formed by arranging a large number of cubic corners having three light reflecting surfaces orthogonal to each other in a plane. In this case, it is preferable that the center line of the cubic corner is vertical.
  • the infrared light sensor is formed in a sheet shape, and is disposed in contact with a display surface (image display surface) of the display (including a case where it is joined).
  • a display surface image display surface
  • the back surface of the sheet-like infrared light sensor is subjected to a non-translucent process and is not affected by light from the display.
  • the non-contact input method includes, for example, a planar retroreflector, a half mirror erected on the functional side of the retroreflector, and the half mirror on one side of the half mirror.
  • the display surface is arranged at a distance and facing the half mirror, and a display that displays a preset first image is used, and infrared light irradiated toward the display is detected on the display.
  • An infrared light sensor The first image displayed on the display is formed as a second image on the other side of the half mirror via the half mirror and the retroreflector, and the half image is directed toward the second image.
  • Infrared light is irradiated from the mirror side, and the reflected infrared light from the instruction means that has operated the second image is imaged on the display via the half mirror and the retroreflector, and the infrared light sensor The imaging position of the instruction means is detected.
  • non-contact input device and the non-contact input method according to the present invention since a retroreflector is used, a large non-contact input device can be manufactured at a relatively low cost.
  • the non-contact input device 10 includes a horizontal retroreflector 11, 11 a and a function side of the retroreflector 11, 11 a (this In the embodiment, the half mirror 12 erected in the center (front side, upper side), and the display surface 13 is arranged facing the half mirror 12 at a distance from the half mirror 12 on one side of the half mirror 12 and set in advance. And a display 14 for displaying the first image, and an infrared irradiator 16 provided on the other side of the half mirror 12 to illuminate the anti-half mirror 12 side.
  • the retroreflector is divided into left and right, but a single retroreflector may be used, or it may be further divided into three or more.
  • the display 14 is provided with a sheet-like infrared light sensor 15 that detects infrared light irradiated toward the display surface 13 of the display 14.
  • the infrared light sensor 15 is connected to a large number of infrared light sensor cells 17 arranged in a lattice pattern and to the upper and lower portions of the infrared light sensor cell 17. It has transparent conducting wires 19 and 20 wired in a matrix and insulating transparent protective sheets 22 and 23, and is attached to the display surface 13 of the display 14.
  • the back surface of the infrared light sensor cell 17 is subjected to an opaque process (blind process) so that the infrared light sensor cell 17 does not react to the light emitted from the display 14.
  • an opaque process blink process
  • a connector for connecting data obtained by the sheet-like infrared light sensor 15 to a control device (including a computer) 37 is provided at the X-direction end and the Y-direction end of the sheet-like infrared light sensor 15. Is provided.
  • the half mirror 12 includes a transparent film 25 and a half mirror layer 26 formed on one side thereof. Since the thickness of the half mirror layer 26 is 2 ⁇ m or less, the thickness of the half mirror 12 is preferably 10 to 500 ⁇ m (preferably 10 to 100 ⁇ m) based on the thickness t 1 of the film 25. In this case, since the half mirror 12 itself has no strength, as shown in FIG. 4 (A), a frame 27 is provided around it, or as shown in FIG. A weight bar 27b is provided. These serve as a support that keeps the half mirror 12 flat. In this embodiment, the angle formed by the half mirror 12 and the display 14 is 35 to 60 degrees, but the present invention can be applied to other angles.
  • the light L (including visible light and infrared light) L enters the half mirror 12 from an oblique direction, so the thickness of the half mirror 12 is selected to be 10 to 500 ⁇ m as described above. doing.
  • the reason will be described with reference to FIG.
  • the light beam L incident on the film 25 at the point P at the angle ⁇ 1 is bent at the angle ⁇ 2, passes through the half mirror layer 26, and exits from the point Q of the half mirror layer 26 at the angle ⁇ 1.
  • the light beam L1 reflected at the point Q of the half mirror layer 26 is reflected from the back surface at the point R of the film 25 and becomes the light beam L2 toward the half mirror layer 26.
  • the thickness of the half mirror 12 is reduced.
  • d1 indicates the optical path difference between the light beam L2 and the light beam L3 that has passed through the half mirror 12, and is proportional to the thickness t1 of the half mirror 12.
  • the image on the display 14 is turned on and off, the image may be rough, and thus, for example, a thick half mirror using glass can be used.
  • the retroreflectors 11 and 11a will be described with reference to FIGS. 1 and 5A to 5D.
  • the retroreflectors 11 and 11a those described in Patent Document 3 (Patent No. 6118004) are used. That is, the retroreflectors 11 and 11a arranged on the left and right (horizontal) with the half mirror 12 in the center are spaced apart from the light reflecting grooves 29 and 29a arranged in parallel above the flat blocks 28 and 28a. And partition walls 30 and 30a orthogonal to the light reflection grooves 29 and 29a. The light reflection grooves 29 and 29a are orthogonal to the first and second light reflection surfaces 31, 32, 31a and 32a.
  • the partition walls 30 and 30a are provided with a draft angle that becomes narrower toward the upper side, and are perpendicular to the first and second light reflecting surfaces 31, 32, 31a, and 32a on one side. 33, 33a.
  • the first and second light reflecting surfaces 31 and 32 and the vertical light reflecting surface 33 constitute the first minute retroreflective block, and the first and second light reflecting surfaces 31a and 32a and the vertical light reflecting surface are formed. It has the surface 33a and constitutes a second minute retroreflective block.
  • the vertical light reflecting surfaces 33 and 33a of the first and second micro retroreflective blocks provided on the left and right retroreflectors 11 and 11a face each other and face the half mirror 12 side. It is suitable. As a result, the optical axis of each retroreflector element (small retroreflective block) of the left and right retroreflectors 11 and 11a can be tilted toward the half mirror 12 to increase the reflection efficiency.
  • a large number of corner cubes (cubic corners) having a cube corner shape and three orthogonal light reflecting surfaces can be arranged in a planar shape and used as a retroreflector. In this case, it is preferable that the center axis of the corner cube is arranged vertically or inclined to the half mirror 12 side.
  • the infrared irradiator 16 provided on the other side of the half mirror 12 will be described.
  • the infrared irradiator 16 is arranged so as to irradiate the entire display 14 and the symmetric area 35 with infrared rays with the half mirror 12 at the center.
  • Infrared light to be irradiated is modulated by high frequency or digital, and the infrared light sensor 15 detects only predetermined infrared light.
  • a non-contact input method using the non-contact input device 10 and its operation will be described.
  • a sheet-like infrared light sensor 15 is disposed in a sticking state, and its output is output to a control device (including a computer) 37, which infrared light It is detected whether the sensor cell 17 has detected a predetermined infrared ray.
  • the first image displayed on the display 14 forms an image as the second image at the symmetrical position (the other side of the half mirror 12) with the half mirror 12 as the center.
  • the vertical light reflecting surfaces 33 and 33a of the left and right retroreflectors 11 and 11a face the half mirror 12, the utilization factor of the retroreflector is improved, and the half mirror 12 is also Since it has a film shape, the second image becomes clearer.
  • the pointing means 38 such as a finger from the outside (the side opposite to the side where the half mirror 12 is present)
  • infrared rays are emitted from the infrared irradiator 16 toward the pointing means 38 (second image). Since it is irradiated, the reflected infrared rays from the instruction means 38 are imaged on the display 14 via the half mirror 12 and the retroreflectors 11 and 11a, and the image 38a of the instruction means 38 is displayed. Since the display 14 is provided with the sheet-like infrared light sensor 15, the imaging position is detected from the image 38a of the pointing means 38 such as a finger.
  • the position of the image 38a of the instruction means 38 is performed by calculating the centroid (same as the center of gravity) position of the image. In this case, if the instruction unit 38 such as a finger is inserted to the back of the second image, the accurate position data of the image 38a of the instruction unit 38 may not be obtained.
  • the position of the means 38 is preferably measured when the position is within a proper area (for example, 0.6 to 2 cm 2 ).
  • the operation of a specific electric device can be performed hygienically only by touching the second image formed in the space.
  • the first image displayed on the display 14 can be changed.
  • the half mirrors 11 and 11a are provided on both sides of the half mirror 12, but the present invention is applicable to either one of them.
  • the non-contact input device and non-contact input method according to the present invention (device and method for detecting the indication position of a reproduced image in a non-contact manner), when used for an operation panel of various machines, have an operation panel (for example, a keyboard). , A touch panel) is displayed in space, and an operation signal button is pressed to obtain an input signal. Therefore, the non-contact input device and the non-contact input method according to the present invention can be optimally used not only for an operation panel of a factory machine but also for a touch panel of a mobile phone, a personal computer, an automobile, a ship, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

A display (14) is positioned to one side of a half-mirror (12), and a sheet-shaped infrared sensor (15) is disposed on said display (14). A first image displayed on the display (14) is formed to the other side of the half-mirror (12) as a second image via the half-mirror (12) and retro-reflective bodies (11, 11a). An infrared beam is radiated toward the second image, and the infrared beam that has been reflected by a pointing means (38) having manipulated the second image and that has passed through the half-mirror (12) and the retro-reflective bodies (11, 11a) forms an image on the display (14). The position at which the image of the pointing means (38) has been formed is sensed by the infrared sensor (15).

Description

非接触入力装置及び非接触入力方法Non-contact input device and non-contact input method
 本発明は、空中に実像を形成し、この実像(例えば、タッチパネル像)を見ながら指示手段(例えば、指)の操作によって信号入力ができる非接触入力装置及び非接触入力方法(即ち、再生画像の指示位置を非接触で検知する装置及び方法)に関する。 The present invention provides a non-contact input device and a non-contact input method (that is, a reproduced image) in which a real image is formed in the air and a signal can be input by operating an instruction unit (for example, a finger) while viewing the real image (for example, a touch panel image). And a method for detecting the designated position in a non-contact manner.
 ディスプレイ(表示器)に画像を表示し、ディスプレイの表面に設けられたタッチパネルを介して画像の特定の場所を指で押すことにより、タッチパネルの裏面側に設けられた感圧センサなどで押圧部分のXY座標が検知され、この入力信号によって次の動作を行うことは、従来から知られている(例えば、特許文献1参照)。
 しかしながら、特許文献1記載の技術においては、タッチパネル面を直接押す必要があり、汚れた指では操作できないという問題、また不特定多数の人が触れるため、衛生的ではないという問題があった。
An image is displayed on the display (display device), and a specific place of the image is pressed with a finger via a touch panel provided on the surface of the display, and a pressure sensor or the like provided on the back side of the touch panel is used to It has been conventionally known that the XY coordinates are detected and the next operation is performed by this input signal (see, for example, Patent Document 1).
However, in the technique described in Patent Document 1, there is a problem that it is necessary to directly press the touch panel surface and it cannot be operated with a dirty finger, and a problem that it is not hygienic because many unspecified people touch it.
 そこで、以上の問題を解決するため、特許文献2には、平面視して直交する第1、第2の帯状光反射面がそれぞれ同一平面上に多数立設して配置された光結像手段と、該光結像手段の一側に該光結像手段に対して傾けて設けられたディスプレイとを用い、該ディスプレイの画像(例えば、キーボード)を該光結像手段を介してその他側空間に第1の像として形成し、該第1の像にタッチした指示手段(例えば、指等)の画像を前記光結像手段を用いて前記ディスプレイの画面上に第2の像として表示し、前記ディスプレイに設けた光センサーで前記第2の像の位置を検知する非接触入力装置が提案されていた。
 ところが、特許文献2記載の技術は、平面視して直交する第1、第2の帯状光反射面がそれぞれ同一平面上に多数立設して配置された光結像手段を用いているので、大型の非接触入力装置を製造するのは困難であり、更に製造したとしても高価になるという問題があった。
Therefore, in order to solve the above problem, Patent Document 2 discloses a light imaging means in which a plurality of first and second strip-shaped light reflecting surfaces orthogonal to each other in plan view are arranged on the same plane. And a display provided on one side of the light imaging means so as to be inclined with respect to the light imaging means, and an image of the display (for example, a keyboard) is transmitted to the other side space via the light imaging means. Forming an image of the pointing means (for example, a finger) touching the first image on the screen of the display as the second image using the optical imaging means, A non-contact input device that detects the position of the second image with an optical sensor provided on the display has been proposed.
However, the technique described in Patent Document 2 uses optical imaging means in which a large number of first and second strip-shaped light reflecting surfaces orthogonal to each other in plan view are arranged on the same plane. There is a problem that it is difficult to manufacture a large non-contact input device, and even if manufactured, it is expensive.
一方、特許文献3には、それぞれ直交配置された第1~第3の光反射面を有する再帰性反射体であって、平板状に形成可能、かつ大量生産が可能で、並べて配置すれば大型になり、場合によっては立体像表示装置としても利用可能な再帰性反射体が提案されている。
しかしながら、特許文献3は再帰性反射体及びその製造方法の開示であって、ディスプレイを用いて画像処理することや、非接触入力装置の一部に再帰性反射体を使用することについての記載はない。
On the other hand, Patent Document 3 discloses a retroreflector having first to third light reflecting surfaces arranged orthogonal to each other, can be formed into a flat plate shape, and can be mass-produced. In some cases, a retroreflector that can also be used as a stereoscopic image display device has been proposed.
However, Patent Document 3 is a disclosure of a retroreflector and a manufacturing method thereof, and there is a description about processing an image using a display and using a retroreflector as part of a non-contact input device. Absent.
特開2006-39745号公報JP 2006-39745 A 特開2017-142577号公報JP 2017-142577 A 特許第6118004号公報Japanese Patent No. 6118004
 本発明はかかる事情に鑑みてなされたもので、大量生産が可能で大型化にも対応でき、ディスプレイに物理的に接触しなくても信号入力ができる非接触入力装置及び非接触入力方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a non-contact input device and a non-contact input method that can be mass-produced, can cope with an increase in size, and can input signals without physically touching a display. The purpose is to do.
 前記目的に沿う本発明に係る非接触入力装置は、再帰性反射体と、前記再帰性反射体の機能側に立設されたハーフミラーと、前記ハーフミラーの一側に該ハーフミラーと距離をおいて、表示面を前記ハーフミラーに向けて配置され、予め設定された第1の画像を表示するディスプレイとを備え、前記ディスプレイには、該ディスプレイに向けて照射される赤外光を検知する赤外光センサーが設けられ、前記ディスプレイに表示された前記第1の画像を前記ハーフミラー及び前記再帰性反射体を介して前記ハーフミラーの他側に第2の画像として形成させると共に、該第2の画像に向けて前記ハーフミラー側から赤外線照射器により赤外線を照射して、前記第2の画像を操作した指示手段からの反射赤外線を前記ハーフミラー及び前記再帰性反射体を介して前記ディスプレイに結像させ、前記赤外光センサーによって前記指示手段の結像位置を検知する。ここでハーフミラーは透光率35~65%のものを使用するのが好ましい。
 ここで、再帰性反射体は平面状であるのが好ましいが、光を特定方向に反射するものであれば非平面状(例えば,湾曲面、屈曲面)であってもよい。
The non-contact input device according to the present invention that meets the above-described object includes a retroreflector, a half mirror that is erected on the functional side of the retroreflector, and a distance between the half mirror and one side of the half mirror. And a display for displaying the first image set in advance, the display surface being directed toward the half mirror, wherein the display detects infrared light irradiated toward the display An infrared light sensor is provided, and the first image displayed on the display is formed as a second image on the other side of the half mirror via the half mirror and the retroreflector. Infrared rays are emitted from the half mirror side toward the second image by an infrared irradiator, and reflected infrared rays from the instruction means that has operated the second image are reflected on the half mirror and the recursive reaction. Is imaged on the display through the body, to detect the imaging position of the indicating means by said infrared light sensor. Here, it is preferable to use a half mirror having a light transmittance of 35 to 65%.
Here, the retroreflector is preferably planar, but may be nonplanar (for example, a curved surface or a curved surface) as long as it reflects light in a specific direction.
 本発明に係る非接触入力装置において、前記赤外光センサーは、光変調(例えば、高周波変調、デジタル変調)された前記赤外光のみ検知するのが好ましい。これによって自然の赤外光と区分できる。 In the non-contact input device according to the present invention, it is preferable that the infrared light sensor detects only the infrared light that has been optically modulated (for example, high frequency modulation or digital modulation). This can be distinguished from natural infrared light.
本発明に係る非接触入力装置において、前記ハーフミラーは厚み(実質透明シートの厚み)が10~500μmの範囲にあるのが好ましい。これによって、ハーフミラーを通過する光のずれを小さくでき、より鮮明な結像となる。なお、ハーフミラーの厚みが500μmを超えたものであっても、本発明は適用可能であるが、第2の画像が鮮明でなくなる。 In the non-contact input device according to the present invention, it is preferable that the half mirror has a thickness (substantially transparent sheet thickness) in the range of 10 to 500 μm. As a result, the deviation of the light passing through the half mirror can be reduced, resulting in clearer image formation. Even if the thickness of the half mirror exceeds 500 μm, the present invention is applicable, but the second image is not clear.
本発明に係る非接触入力装置において、前記ハーフミラーの上下又は周囲には該ハーフミラーを平面に保つ支持体を有するのが好ましい。これによって、ハーフミラーを平面状に保持できる。 In the non-contact input device according to the present invention, it is preferable that a support for keeping the half mirror flat is provided above and below or around the half mirror. As a result, the half mirror can be held flat.
 本発明に係る非接触入力装置において、前記再帰性反射体は水平に配置され、前記再帰性反射体は前記ハーフミラーを中心にして左右に分割されているのが好ましい。
更に、本発明に係る非接触入力装置において、前記左右の再帰性反射体はそれぞれ、直交する第1、第2の光反射面と、該第1、第2の光反射面に直交する垂直光反射面を有する微小再帰性反射ブロックを多数備え、前記ハーフミラーの左右に形成された前記再帰性反射体の前記微小再帰性反射ブロックは、それぞれの前記垂直光反射面が前記ハーフミラー側に向いているのがよい。
In the non-contact input device according to the present invention, it is preferable that the retroreflector is disposed horizontally, and the retroreflector is divided into left and right with the half mirror as a center.
Further, in the non-contact input device according to the present invention, the left and right retroreflectors are respectively orthogonal first and second light reflecting surfaces and perpendicular light orthogonal to the first and second light reflecting surfaces. The micro retroreflective block of the retroreflector formed on the left and right sides of the half mirror includes a plurality of micro retroreflective blocks having a reflective surface, and each vertical light reflecting surface faces the half mirror side. It is good to have.
本発明に係る非接触入力装置において、前記再帰性反射体は直交する3つの光反射面を有するキュービックコーナーを平面状に多数並べて形成することもできる。この場合、キュービックコーナーの中心線を垂直とするのが好ましい。 In the non-contact input device according to the present invention, the retroreflector can be formed by arranging a large number of cubic corners having three light reflecting surfaces orthogonal to each other in a plane. In this case, it is preferable that the center line of the cubic corner is vertical.
本発明に係る非接触入力装置において、前記赤外光センサーはシート状に形成され、前記ディスプレイの表示面(画像表示面)に接して配置されている(接合されている場合を含む)のが好ましい。この場合、シート状の赤外光センサーの裏面には非透光処理がなされて、ディスプレイからの光の影響を受けないのが好ましい。 In the non-contact input device according to the present invention, the infrared light sensor is formed in a sheet shape, and is disposed in contact with a display surface (image display surface) of the display (including a case where it is joined). preferable. In this case, it is preferable that the back surface of the sheet-like infrared light sensor is subjected to a non-translucent process and is not affected by light from the display.
そして、本発明に係る非接触入力方法は、例えば平面状の再帰性反射体と、前記再帰性反射体の機能側に立設されたハーフミラーと、前記ハーフミラーの一側に該ハーフミラーと距離をおいて、表示面を前記ハーフミラーに向けて配置され、予め設定された第1の画像を表示するディスプレイとを用い、前記ディスプレイに、該ディスプレイに向けて照射される赤外光を検知する赤外光センサーを設け、
 前記ディスプレイに表示された前記第1の画像を前記ハーフミラー及び前記再帰性反射体を介して前記ハーフミラーの他側に第2の画像として形成させると共に、該第2の画像に向けて前記ハーフミラー側から赤外線を照射して、前記第2の画像を操作した指示手段からの反射赤外線を前記ハーフミラー及び前記再帰性反射体を介して前記ディスプレイに結像させ、前記赤外光センサーによって前記指示手段の結像位置を検知する。
The non-contact input method according to the present invention includes, for example, a planar retroreflector, a half mirror erected on the functional side of the retroreflector, and the half mirror on one side of the half mirror. The display surface is arranged at a distance and facing the half mirror, and a display that displays a preset first image is used, and infrared light irradiated toward the display is detected on the display. An infrared light sensor
The first image displayed on the display is formed as a second image on the other side of the half mirror via the half mirror and the retroreflector, and the half image is directed toward the second image. Infrared light is irradiated from the mirror side, and the reflected infrared light from the instruction means that has operated the second image is imaged on the display via the half mirror and the retroreflector, and the infrared light sensor The imaging position of the instruction means is detected.
 本発明に係る非接触入力装置及び非接触入力方法においては、再帰性反射体を用いるので、大型の非接触入力装置が比較的安価に製造可能である。 In the non-contact input device and the non-contact input method according to the present invention, since a retroreflector is used, a large non-contact input device can be manufactured at a relatively low cost.
本発明の一実施例に係る非接触入力装置の説明図である。It is explanatory drawing of the non-contact input device which concerns on one Example of this invention. (A)、(B)はディスプレイの説明図である。(A), (B) is explanatory drawing of a display. ハーフミラーを通過する光線の説明図である。It is explanatory drawing of the light ray which passes a half mirror. (A)、(B)はハーフミラーの支持体の説明図である。(A), (B) is explanatory drawing of the support body of a half mirror. (A)、(B)は図1のJ部の拡大説明図、(C)、(D)は図1のK部の拡大説明図である。(A), (B) is an expansion explanatory view of J section of Drawing 1, (C), (D) is an expansion explanatory view of K section of Drawing 1.
 続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
 図1に示すように、本発明の一実施例に係る非接触入力装置10は、水平配置された平面状の再帰性反射体11、11aと、再帰性反射体11、11aの機能側(この実施例では表側、上側)中央に立設されたハーフミラー12と、ハーフミラー12の一側にハーフミラー12と距離をおいて、表示面13をハーフミラー12に向けて配置され、予め設定された第1の画像を表示するディスプレイ14と、ハーフミラー12の他側に設けられ反ハーフミラー12側を照らす赤外線照射器16とを備えている。なお、この実施例では、再帰性反射体を左右に分割したが、一枚の再帰性反射体を使用してもよいし、更に3枚以上に分割してもよい。
Subsequently, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, the non-contact input device 10 according to an embodiment of the present invention includes a horizontal retroreflector 11, 11 a and a function side of the retroreflector 11, 11 a (this In the embodiment, the half mirror 12 erected in the center (front side, upper side), and the display surface 13 is arranged facing the half mirror 12 at a distance from the half mirror 12 on one side of the half mirror 12 and set in advance. And a display 14 for displaying the first image, and an infrared irradiator 16 provided on the other side of the half mirror 12 to illuminate the anti-half mirror 12 side. In this embodiment, the retroreflector is divided into left and right, but a single retroreflector may be used, or it may be further divided into three or more.
ディスプレイ14には、このディスプレイ14の表示面13に向けて照射される赤外光を検知するシート状の赤外光センサー15が設けられている。赤外光センサー15は、図2(A)、(B)に示すように、格子状に配列された多数の赤外光センサーセル17と、赤外光センサーセル17の上部及び下部に接続されマトリックス状に配線された透明導線19、20と、絶縁性の透明な保護シート22、23とを有し、ディスプレイ14の表示面13に貼着されている。 The display 14 is provided with a sheet-like infrared light sensor 15 that detects infrared light irradiated toward the display surface 13 of the display 14. As shown in FIGS. 2A and 2B, the infrared light sensor 15 is connected to a large number of infrared light sensor cells 17 arranged in a lattice pattern and to the upper and lower portions of the infrared light sensor cell 17. It has transparent conducting wires 19 and 20 wired in a matrix and insulating transparent protective sheets 22 and 23, and is attached to the display surface 13 of the display 14.
この赤外光センサーセル17の裏面は不透光処理(盲処理)がなされて、ディスプレイ14から発する光に赤外光センサーセル17が反応しない構造となっている。このような構造とすることによって市販のディスプレイを使用でき装置全体を安価に製造できる。なお、シート状の赤外光センサー15のX方向端部、Y方向端部には、このシート状の赤外光センサー15で得たデータを制御装置(コンピュータを含む)37と連結するコネクターが設けられている。 The back surface of the infrared light sensor cell 17 is subjected to an opaque process (blind process) so that the infrared light sensor cell 17 does not react to the light emitted from the display 14. With such a structure, a commercially available display can be used, and the entire apparatus can be manufactured at low cost. A connector for connecting data obtained by the sheet-like infrared light sensor 15 to a control device (including a computer) 37 is provided at the X-direction end and the Y-direction end of the sheet-like infrared light sensor 15. Is provided.
ハーフミラー12は図3に示すように、透明なフイルム25とその片側に形成されたハーフミラー層26とからなっている。ハーフミラー層26の厚みは2μm以下であるので、ハーフミラー12の厚みはフイルム25の厚みt1からなって、10~500μm(好ましくは10~100μm)とするのがよい。この場合、ハーフミラー12自体には強度がないので、図4(A)に示すように、周囲に枠27を設けるか、又は図4(B)に示すように、上部に支持棒27a、下部に重り棒27bを設ける。これらは、ハーフミラー12を平面に保つ支持体の役目を果たす。この実施例では、ハーフミラー12とディスプレイ14のなす角度は35~60度としているが、他の角度でも本発明は適用される。 As shown in FIG. 3, the half mirror 12 includes a transparent film 25 and a half mirror layer 26 formed on one side thereof. Since the thickness of the half mirror layer 26 is 2 μm or less, the thickness of the half mirror 12 is preferably 10 to 500 μm (preferably 10 to 100 μm) based on the thickness t 1 of the film 25. In this case, since the half mirror 12 itself has no strength, as shown in FIG. 4 (A), a frame 27 is provided around it, or as shown in FIG. A weight bar 27b is provided. These serve as a support that keeps the half mirror 12 flat. In this embodiment, the angle formed by the half mirror 12 and the display 14 is 35 to 60 degrees, but the present invention can be applied to other angles.
なお、図3に示すように、ハーフミラー12に対して光線(可視光、赤外光を含む)Lは斜めから入光するので、前述のようにハーフミラー12の厚みを10~500μmに選定している。その理由について、図3を参照しながら説明する。角度θ1でフイルム25にP点で入光した光線Lは角度θ2に屈曲し、ハーフミラー層26を通過して角度θ1でハーフミラー層26のQ点から出光する。一方、ハーフミラー層26のQ点で反射した光線L1は、フイルム25のR点で裏面反射し、光線L2となってハーフミラー層26に向かう。ハーフミラー層26の裏面反射率は、例えば10%程度と大きいので、厚みを有するハーフミラー12を斜めに通過した光線L1は複屈折を起こして鮮明な画像が得られない。従って、この実施例では、ハーフミラー12の厚みを薄くした。d1は光線L2と、ハーフミラー12を通過した光線L3の光路差を示し、ハーフミラー12の厚みt1に比例する。但し、ディスプレイ14の画像がオンオフを行う押しボタンスイッチ等の場合は、画像は粗くてもよいので例えばガラスを用いた厚いハーフミラーを用いることができる。 As shown in FIG. 3, the light L (including visible light and infrared light) L enters the half mirror 12 from an oblique direction, so the thickness of the half mirror 12 is selected to be 10 to 500 μm as described above. doing. The reason will be described with reference to FIG. The light beam L incident on the film 25 at the point P at the angle θ1 is bent at the angle θ2, passes through the half mirror layer 26, and exits from the point Q of the half mirror layer 26 at the angle θ1. On the other hand, the light beam L1 reflected at the point Q of the half mirror layer 26 is reflected from the back surface at the point R of the film 25 and becomes the light beam L2 toward the half mirror layer 26. Since the back surface reflectance of the half mirror layer 26 is as large as about 10%, for example, the light beam L1 that has passed through the half mirror 12 having a thickness causes birefringence and a clear image cannot be obtained. Therefore, in this embodiment, the thickness of the half mirror 12 is reduced. d1 indicates the optical path difference between the light beam L2 and the light beam L3 that has passed through the half mirror 12, and is proportional to the thickness t1 of the half mirror 12. However, in the case of a push button switch or the like in which the image on the display 14 is turned on and off, the image may be rough, and thus, for example, a thick half mirror using glass can be used.
続いて、再帰性反射体11、11aについて、図1、図5(A)~(D)を参照しながら説明する。この実施例においては、再帰性反射体11、11aとして、特許文献3(特許第6118004号)に記載のものを使用する。即ち、ハーフミラー12を中央にして左右(水平)に配置された再帰性反射体11、11aは、平板状ブロック28、28aの上側に、平行配置された光反射溝29、29aと、所定間隔で平行配置され、光反射溝29、29aに直交する仕切り壁30、30aとを有し、光反射溝29、29aは、直交する第1、第2の光反射面31、32、31a、32aを備え、仕切り壁30、30aは上方に向かって幅狭となる抜き勾配が設けられ、一側に第1、第2の光反射面31、32、31a、32aとは直交する垂直光反射面33、33aを有する。第1、第2の光反射面31、32と垂直光反射面33を有して第1の微小再帰性反射ブロックを構成し、第1、第2の光反射面31a、32aと垂直光反射面33aを有して第2の微小再帰性反射ブロックを構成している。 Subsequently, the retroreflectors 11 and 11a will be described with reference to FIGS. 1 and 5A to 5D. In this embodiment, as the retroreflectors 11 and 11a, those described in Patent Document 3 (Patent No. 6118004) are used. That is, the retroreflectors 11 and 11a arranged on the left and right (horizontal) with the half mirror 12 in the center are spaced apart from the light reflecting grooves 29 and 29a arranged in parallel above the flat blocks 28 and 28a. And partition walls 30 and 30a orthogonal to the light reflection grooves 29 and 29a. The light reflection grooves 29 and 29a are orthogonal to the first and second light reflection surfaces 31, 32, 31a and 32a. The partition walls 30 and 30a are provided with a draft angle that becomes narrower toward the upper side, and are perpendicular to the first and second light reflecting surfaces 31, 32, 31a, and 32a on one side. 33, 33a. The first and second light reflecting surfaces 31 and 32 and the vertical light reflecting surface 33 constitute the first minute retroreflective block, and the first and second light reflecting surfaces 31a and 32a and the vertical light reflecting surface are formed. It has the surface 33a and constitutes a second minute retroreflective block.
この実施例においては、左右の再帰性反射体11、11aにそれぞれ設けられた多数の第1、第2の微小再帰性反射ブロックの垂直光反射面33、33aが向かい合って、ハーフミラー12側に向いている。これによって、左右の再帰性反射体11、11aの各再帰性反射体素子(微小再帰性反射ブロック)の光軸をハーフミラー12側に傾け、反射効率を高めることができる。なお、立方体の角部の形状をし、直交する3つの光反射面を有するコーナーキューブ(キュービックコーナー)を平面状に多数並べて再帰性反射体として使用できる。この場合、コーナーキューブの中心軸を垂直又は、ハーフミラー12側に傾けて配置するのがよい。 In this embodiment, the vertical light reflecting surfaces 33 and 33a of the first and second micro retroreflective blocks provided on the left and right retroreflectors 11 and 11a face each other and face the half mirror 12 side. It is suitable. As a result, the optical axis of each retroreflector element (small retroreflective block) of the left and right retroreflectors 11 and 11a can be tilted toward the half mirror 12 to increase the reflection efficiency. Note that a large number of corner cubes (cubic corners) having a cube corner shape and three orthogonal light reflecting surfaces can be arranged in a planar shape and used as a retroreflector. In this case, it is preferable that the center axis of the corner cube is arranged vertically or inclined to the half mirror 12 side.
ハーフミラー12の他側に設けられている赤外線照射器16について説明する。この赤外線照射器16はハーフミラー12を中央にして、ディスプレイ14と対称領域35の全部に赤外線を照射するように配置されている。照射する赤外線は高周波又はデジタルなどで変調され、所定の赤外光のみしか赤外光センサー15が感知しないようにしている。 The infrared irradiator 16 provided on the other side of the half mirror 12 will be described. The infrared irradiator 16 is arranged so as to irradiate the entire display 14 and the symmetric area 35 with infrared rays with the half mirror 12 at the center. Infrared light to be irradiated is modulated by high frequency or digital, and the infrared light sensor 15 detects only predetermined infrared light.
続いて、非接触入力装置10を用いた非接触入力方法及びその作用について説明する。図1において、ディスプレイ14の表示面13上には、シート状の赤外光センサー15が、貼着状態で配置され、その出力は制御装置(コンピュータを含む)37に出力され、どの赤外光センサーセル17が所定の赤外線を検知したかを検出する。 Next, a non-contact input method using the non-contact input device 10 and its operation will be described. In FIG. 1, on the display surface 13 of the display 14, a sheet-like infrared light sensor 15 is disposed in a sticking state, and its output is output to a control device (including a computer) 37, which infrared light It is detected whether the sensor cell 17 has detected a predetermined infrared ray.
ディスプレイ14に表示された第1の画像からの光線Lがハーフミラー12に当たると、その一部の光線L3は、ハーフミラー12を通過し、他の一部の光線L1はハーフミラー12で反射する。ハーフミラー12を通過した光線L3は再帰性反射体11で再帰性反射し、その反射光L3aはハーフミラー12で反射し、その反射光L4が結像に寄与する。また、再帰性反射体11aに向かった光線L1も再帰性反射体11aで再帰性反射し、ハーフミラー12を通過して結像に寄与する。従って、ディスプレイ14に表示される第1の画像が、ハーフミラー12を中心にしてその対称位置(ハーフミラー12の他側)に第2の画像として結像する。この実施例では、左右の再帰性反射体11、11aの垂直光反射面33、33aが、ハーフミラー12の方を向いているので、再帰性反射体の利用率が向上し、ハーフミラー12もフイルム状となっているので、第2の画像がより鮮明となる。 When the light beam L from the first image displayed on the display 14 hits the half mirror 12, a part of the light beam L3 passes through the half mirror 12, and the other part of the light beam L1 is reflected by the half mirror 12. . The light beam L3 that has passed through the half mirror 12 is retroreflected by the retroreflector 11, the reflected light L3a is reflected by the half mirror 12, and the reflected light L4 contributes to image formation. Further, the light beam L1 directed toward the retroreflector 11a is also retroreflected by the retroreflector 11a and passes through the half mirror 12 to contribute to the image formation. Accordingly, the first image displayed on the display 14 forms an image as the second image at the symmetrical position (the other side of the half mirror 12) with the half mirror 12 as the center. In this embodiment, since the vertical light reflecting surfaces 33 and 33a of the left and right retroreflectors 11 and 11a face the half mirror 12, the utilization factor of the retroreflector is improved, and the half mirror 12 is also Since it has a film shape, the second image becomes clearer.
ここで、第2の画像に外側(ハーフミラー12がある側と反対側)から指等の指示手段38で触れると、指示手段38(第2の画像)に向けて赤外線照射器16から赤外線が照射されるので、指示手段38からの反射赤外線を、ハーフミラー12及び再帰性反射体11、11aを介してディスプレイ14上に結像させて、指示手段38の画像38aが表示される。ディスプレイ14には、シート状の赤外光センサー15が設けられているので、指等の指示手段38の画像38aからその結像位置を検知する。指示手段38の画像38aの位置は、画像の図心(重心に同じ)位置を演算することによって行う。この場合、指等の指示手段38を、第2の画像の奥まで挿入すると、指示手段38の画像38aの正確な位置データが得られない場合があるので、赤外光センサー15で検知する指示手段38の位置が適正面積(例えば、0.6~2cm)範囲にある時にその位置を測定するのがよい。 Here, when the second image is touched by the pointing means 38 such as a finger from the outside (the side opposite to the side where the half mirror 12 is present), infrared rays are emitted from the infrared irradiator 16 toward the pointing means 38 (second image). Since it is irradiated, the reflected infrared rays from the instruction means 38 are imaged on the display 14 via the half mirror 12 and the retroreflectors 11 and 11a, and the image 38a of the instruction means 38 is displayed. Since the display 14 is provided with the sheet-like infrared light sensor 15, the imaging position is detected from the image 38a of the pointing means 38 such as a finger. The position of the image 38a of the instruction means 38 is performed by calculating the centroid (same as the center of gravity) position of the image. In this case, if the instruction unit 38 such as a finger is inserted to the back of the second image, the accurate position data of the image 38a of the instruction unit 38 may not be obtained. The position of the means 38 is preferably measured when the position is within a proper area (for example, 0.6 to 2 cm 2 ).
以上の非接触入力装置10を用いることによって、空間の結像した第2の画像に触れるのみで、特定の電気機器の操作を衛生的に行うことができる。また、ディスプレイ14に表示させる第1の画像は変更することは可能である。
この実施例においては、ハーフミラー12の両側にハーフミラー11、11aを設けたが、いずれか一方であっても本発明は適用される。
By using the non-contact input device 10 described above, the operation of a specific electric device can be performed hygienically only by touching the second image formed in the space. The first image displayed on the display 14 can be changed.
In this embodiment, the half mirrors 11 and 11a are provided on both sides of the half mirror 12, but the present invention is applicable to either one of them.
 本発明に係る非接触入力装置及び非接触入力方法(再生画像の指示位置を非接触で検知する装置及び方法)は、各種機械の操作盤に利用すると、操作ボタンを有する操作盤(例えば、キーボード、タッチパネル)の再生画像を空間に表示させ、再生画像の操作ボタンを押すと入力信号を得ることができる。
 従って、本発明に係る非接触入力装置及び非接触入力方法は、工場の機械の操作盤だけでなく、携帯電話、パソコン、自動車、船等のタッチパネルにも最適に使用できる。
The non-contact input device and non-contact input method according to the present invention (device and method for detecting the indication position of a reproduced image in a non-contact manner), when used for an operation panel of various machines, have an operation panel (for example, a keyboard). , A touch panel) is displayed in space, and an operation signal button is pressed to obtain an input signal.
Therefore, the non-contact input device and the non-contact input method according to the present invention can be optimally used not only for an operation panel of a factory machine but also for a touch panel of a mobile phone, a personal computer, an automobile, a ship, and the like.
10:非接触入力装置、11、11a:再帰性反射体、12:ハーフミラー、13:表示面、14:ディスプレイ、15:赤外光センサー、16:赤外線照射器、17:赤外光センサーセル、19、20:透明導線、22、23:保護シート、25:フイルム、26:ハーフミラー層、27:枠、27a:支持棒、27b:重り棒、28、28a:平板状ブロック、29、29a:光反射溝、30、30a:仕切り壁、31、31a:第1の光反射面、32、32a:第2の光反射面、33、33a:垂直光反射面、35:対称領域、37:制御装置、38:指示手段、38a :指示手段の画像 10: Non-contact input device 11, 11a: Retroreflector, 12: Half mirror, 13: Display surface, 14: Display, 15: Infrared light sensor, 16: Infrared irradiator, 17: Infrared light sensor cell 19, 20: transparent conductor, 22, 23: protective sheet, 25: film, 26: half mirror layer, 27: frame, 27a: support bar, 27b: weight bar, 28, 28a: flat block, 29, 29a : Light reflection groove, 30, 30a: partition wall, 31, 31a: first light reflection surface, 32, 32a: second light reflection surface, 33, 33a: vertical light reflection surface, 35: symmetry region, 37: Control device, 38: instruction means, 38a: image of instruction means

Claims (9)

  1.  再帰性反射体と、前記再帰性反射体の機能側に立設されたハーフミラーと、前記ハーフミラーの一側に該ハーフミラーと距離をおいて、表示面を前記ハーフミラーに向けて配置され、予め設定された第1の画像を表示するディスプレイとを備え、前記ディスプレイには、該ディスプレイに向けて照射される赤外光を検知する赤外光センサーが設けられ、
    前記ディスプレイに表示された前記第1の画像を前記ハーフミラー及び前記再帰性反射体を介して前記ハーフミラーの他側に第2の画像として形成させると共に、該第2の画像に向けて前記ハーフミラー側から赤外線照射器により赤外線を照射して、前記第2の画像を操作した指示手段からの反射赤外線を前記ハーフミラー及び前記再帰性反射体を介して前記ディスプレイに結像させ、前記赤外光センサーによって前記指示手段の結像位置を検知することを特徴とする非接触入力装置。
    A retroreflector, a half mirror erected on the functional side of the retroreflector, a distance from the half mirror on one side of the half mirror, and a display surface facing the half mirror A display that displays a preset first image, and the display is provided with an infrared light sensor that detects infrared light emitted toward the display,
    The first image displayed on the display is formed as a second image on the other side of the half mirror via the half mirror and the retroreflector, and the half image is directed toward the second image. Infrared rays are irradiated from the mirror side by an infrared irradiator, and reflected infrared rays from the pointing means that has operated the second image are imaged on the display via the half mirror and the retroreflector, and the infrared rays A non-contact input device, wherein an image forming position of the indicating means is detected by an optical sensor.
  2.  請求項1記載の非接触入力装置において、前記赤外光センサーは、光変調された前記赤外光のみ検知することを特徴とする非接触入力装置。 2. The non-contact input device according to claim 1, wherein the infrared light sensor detects only the light-modulated infrared light.
  3. 請求項1又は2記載の非接触入力装置において、前記ハーフミラーは厚みが10~500μmの範囲にあることを特徴とする非接触入力装置。 3. The non-contact input device according to claim 1, wherein the half mirror has a thickness in a range of 10 to 500 μm.
  4.  請求項1~3のいずれか1記載の非接触入力装置において、前記ハーフミラーの上下又は周囲には該ハーフミラーを平面に保つ支持体を有することを特徴とする非接触入力装置。 The non-contact input device according to any one of claims 1 to 3, further comprising a support body that keeps the half mirror flat on and above or around the half mirror.
  5.  請求項1~4のいずれか1記載の非接触入力装置において、前記再帰性反射体は水平に配置され、前記再帰性反射体は前記ハーフミラーを中心にして左右に分割されていることを特徴とする非接触入力装置。 The non-contact input device according to any one of claims 1 to 4, wherein the retroreflector is horizontally arranged, and the retroreflector is divided into left and right with the half mirror as a center. Non-contact input device.
  6.  請求項5記載の非接触入力装置において、前記左右の再帰性反射体はそれぞれ、直交する第1、第2の光反射面と、該第1、第2の光反射面に直交する垂直光反射面を有する微小再帰性反射ブロックを多数備え、前記ハーフミラーの左右に形成された前記再帰性反射体の前記微小再帰性反射ブロックは、それぞれの前記垂直光反射面が前記ハーフミラー側に向いていることを特徴とする非接触入力装置。 6. The non-contact input device according to claim 5, wherein each of the left and right retroreflectors includes first and second light reflecting surfaces orthogonal to each other, and vertical light reflection orthogonal to the first and second light reflecting surfaces. The micro retroreflective blocks of the retroreflector formed on the left and right sides of the half mirror have a plurality of micro retroreflective blocks having a surface, and the vertical light reflecting surfaces of the micro retroreflective blocks face the half mirror side. A non-contact input device.
  7. 請求項1~5のいずれか1記載の非接触入力装置において、前記再帰性反射体は直交する3つの光反射面を有するキュービックコーナーが平面状に多数並べて形成されていることを特徴とする非接触入力装置。 6. The non-contact input device according to claim 1, wherein the retroreflector is formed by arranging a number of cubic corners having three orthogonal light reflecting surfaces arranged in a plane. Contact input device.
  8. 請求項1~7のいずれか1記載の非接触入力装置において、前記赤外光センサーは、シート状に形成され、前記ディスプレイの表示面に接して配置されていることを特徴とする非接触入力装置。 8. The non-contact input device according to claim 1, wherein the infrared light sensor is formed in a sheet shape and disposed in contact with a display surface of the display. apparatus.
  9. 再帰性反射体と、前記再帰性反射体の機能側に立設されたハーフミラーと、前記ハーフミラーの一側に該ハーフミラーと距離をおいて、表示面を前記ハーフミラーに向けて配置され、予め設定された第1の画像を表示するディスプレイとを用い、前記ディスプレイに、該ディスプレイに向けて照射される赤外光を検知する赤外光センサーを設け、
     前記ディスプレイに表示された前記第1の画像を前記ハーフミラー及び前記再帰性反射体を介して前記ハーフミラーの他側に第2の画像として形成させると共に、該第2の画像に向けて前記ハーフミラー側から赤外線を照射して、前記第2の画像を操作した指示手段からの反射赤外線を前記ハーフミラー及び前記再帰性反射体を介して前記ディスプレイに結像させ、前記赤外光センサーによって前記指示手段の結像位置を検知することを特徴とする非接触入力方法。
    A retroreflector, a half mirror erected on the functional side of the retroreflector, a distance from the half mirror on one side of the half mirror, and a display surface facing the half mirror Using a display that displays a preset first image, and providing the display with an infrared light sensor that detects infrared light emitted toward the display,
    The first image displayed on the display is formed as a second image on the other side of the half mirror via the half mirror and the retroreflector, and the half image is directed toward the second image. Infrared light is irradiated from the mirror side, and the reflected infrared light from the instruction means that has operated the second image is imaged on the display via the half mirror and the retroreflector, and the infrared light sensor A non-contact input method characterized by detecting an imaging position of an instruction means.
PCT/JP2019/001284 2018-02-22 2019-01-17 Non-contact input device and non-contact input method WO2019163339A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019527576A JPWO2019163339A1 (en) 2018-02-22 2019-01-17 Non-contact input device and non-contact input method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018029591 2018-02-22
JP2018-029591 2018-02-22

Publications (1)

Publication Number Publication Date
WO2019163339A1 true WO2019163339A1 (en) 2019-08-29

Family

ID=67687603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001284 WO2019163339A1 (en) 2018-02-22 2019-01-17 Non-contact input device and non-contact input method

Country Status (2)

Country Link
JP (1) JPWO2019163339A1 (en)
WO (1) WO2019163339A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123500A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Mid-air video interaction device and its program
JP2009025776A (en) * 2007-06-21 2009-02-05 National Institute Of Information & Communication Technology Real mirror video image forming optical system
WO2017051598A1 (en) * 2015-09-25 2017-03-30 株式会社アスカネット Retroreflector
WO2017125984A1 (en) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 Aerial display device
JP2017142577A (en) * 2016-02-08 2017-08-17 株式会社アスカネット Non-contact display input device and method
WO2018078777A1 (en) * 2016-10-27 2018-05-03 マクセル株式会社 Aerial image display system, wavelength-selective image-forming device, image display device, aerial image display method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123500A1 (en) * 2007-03-30 2008-10-16 National Institute Of Information And Communications Technology Mid-air video interaction device and its program
JP2009025776A (en) * 2007-06-21 2009-02-05 National Institute Of Information & Communication Technology Real mirror video image forming optical system
WO2017051598A1 (en) * 2015-09-25 2017-03-30 株式会社アスカネット Retroreflector
WO2017125984A1 (en) * 2016-01-21 2017-07-27 パナソニックIpマネジメント株式会社 Aerial display device
JP2017142577A (en) * 2016-02-08 2017-08-17 株式会社アスカネット Non-contact display input device and method
WO2018078777A1 (en) * 2016-10-27 2018-05-03 マクセル株式会社 Aerial image display system, wavelength-selective image-forming device, image display device, aerial image display method

Also Published As

Publication number Publication date
JPWO2019163339A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US7050048B2 (en) Coordinate input and detection device and information display and input apparatus
KR102515292B1 (en) Thin Flat Type Optical Imaging Sensor And Flat Panel Display Embedding Optical Imaging Sensor
TWI571769B (en) Contactless input device and method
EP1059605A2 (en) Optical unit for detecting object and coordinate input apparatus using the same
US20120133624A1 (en) Display panel
KR20080044017A (en) Touch screen
JP2016154035A5 (en)
JP2010287225A (en) Touch input device
WO2018146867A1 (en) Control device
TW201128489A (en) Object-detecting system and method by use of non-coincident fields of light
TW201120710A (en) Optical sensing unit, display module and display device using the same
CN101930321B (en) Optical touch device and electronic device employing same
WO2019163339A1 (en) Non-contact input device and non-contact input method
CN201853211U (en) Laser optics touch-control module
JPH096521A (en) Pen input device
JP3742634B2 (en) Position detection device
EP4134730A1 (en) Display device and spatial input device including the same
TWI835108B (en) Reflection type aerial image forming device and method for forming reflection type aerial image
JP3782983B2 (en) pointing device
US20220308348A1 (en) Display device
JP5273676B2 (en) Wide-area infrared light source multi-touch screen
CN210983359U (en) Non-contact input device
CN115705090A (en) Positioning sensing device and input terminal equipment
KR100944027B1 (en) Augmented reality providing system of the table top structure
JP2023006167A (en) Aerial video display apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019527576

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757450

Country of ref document: EP

Kind code of ref document: A1