WO2019163245A1 - Quinone analysis method and online sfe-sfc system for implementing said method - Google Patents

Quinone analysis method and online sfe-sfc system for implementing said method Download PDF

Info

Publication number
WO2019163245A1
WO2019163245A1 PCT/JP2018/044126 JP2018044126W WO2019163245A1 WO 2019163245 A1 WO2019163245 A1 WO 2019163245A1 JP 2018044126 W JP2018044126 W JP 2018044126W WO 2019163245 A1 WO2019163245 A1 WO 2019163245A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile phase
sample
extraction
phase solvent
analysis
Prior art date
Application number
PCT/JP2018/044126
Other languages
French (fr)
Japanese (ja)
Inventor
恵子 松本
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2020502033A priority Critical patent/JP6977863B2/en
Publication of WO2019163245A1 publication Critical patent/WO2019163245A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/12Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the preparation of the feed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/10Selective adsorption, e.g. chromatography characterised by constructional or operational features
    • B01D15/16Selective adsorption, e.g. chromatography characterised by constructional or operational features relating to the conditioning of the fluid carrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/40Selective adsorption, e.g. chromatography characterised by the separation mechanism using supercritical fluid as mobile phase or eluent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/42Selective adsorption, e.g. chromatography characterised by the development mode, e.g. by displacement or by elution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/286Phases chemically bonded to a substrate, e.g. to silica or to polymers
    • B01J20/287Non-polar phases; Reversed phases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient

Definitions

  • the present invention relates to a method for analyzing quinones and an on-line SFE-SFC system for carrying out the method.
  • the quinone profiling method is a technique for grasping the type and amount of microbial communities present in a sample by extracting quinones, which are respiration-related substances of microorganisms, from the sample and measuring the amount thereof.
  • a supercritical fluid extraction (SFE) system is generally used in addition to manual extraction with an organic solvent.
  • quinones are extracted from the sample in the extraction container by passing a mobile phase solvent composed of carbon dioxide in a supercritical state and an appropriate amount of organic solvent through the extraction container enclosing the sample. Quinones are captured by the adsorption cartridge.
  • the adsorption cartridge capturing the quinones is removed from the SFE system, and the quinones are eluted from the adsorption cartridge by passing an acetone solution through the adsorption cartridge.
  • the acetone solution containing the eluted quinones is passed through another silica gel column to adsorb the quinones on the silica gel column.
  • the collected liquid is evaporated by an evaporator, concentrated, washed with acetone and washed with quinone.
  • the quinones are collected and analyzed by high performance liquid chromatograph (HPLC).
  • the object of the present invention is to make it possible to perform from quinone extraction to analysis with high efficiency without manual operation.
  • the method for analyzing quinones according to the present invention is to perform from extraction of quinones to separation analysis using an online SFE-SFC system without manual operation.
  • the online SFE-SFC system is a system configured to be able to perform on-line extraction of sample components (SFE) using a supercritical fluid and supercritical fluid chromatography analysis (SFC) of the extracted components.
  • SFE sample components
  • SFC supercritical fluid and supercritical fluid chromatography analysis
  • Patent Document 2 a mobile phase supply unit for supplying a mobile phase solvent composed of carbon dioxide and a modifier in a supercritical state, a sample is sealed, and the sample is supplied by the mobile phase solvent supplied from the mobile phase supply unit
  • An extraction container for extracting a component from the sample, an analysis column for separating the component extracted from the sample, and a detector for detecting the component separated by the analysis column. After the components contained in the sample are extracted into the mobile phase solvent in the container, the mobile phase solvent containing the components extracted from the sample is guided to the analytical column and separated, and the components separated by the analytical column Is configured to be detected by the detector.
  • the method for analyzing quinones of the present invention includes a sample enclosing step of enclosing a sample containing quinones in the extraction container, and extracting a component containing quinones from the sample from the mobile phase supply unit after the sample enclosing step.
  • the first mobile phase solvent to be supplied to the extraction container and after performing “static extraction” in which the extraction container is left in a state filled with the first mobile phase solvent, the sample
  • the first mobile phase solvent containing the component extracted from is passed through the analytical column, and the component containing at least quinones among the components contained in the first mobile phase solvent is captured by the analytical column.
  • the series of extraction operations including “static extraction” and “dynamic extraction” is repeated a plurality of times, preferably three times or more in the extraction step.
  • the second mobile phase solvent a solvent having a higher concentration of the modifier than the first mobile phase solvent can be used.
  • the concentration of the modifier of the second mobile phase solvent may be increased with time.
  • the online SFE-SFC system has a function of fully automatically executing the above-described quinone analysis method.
  • a control unit that controls the operation of the online SFE-SFC system is configured to extract a component containing quinones from the sample into the extraction container in which the sample containing quinones is enclosed. After supplying the mobile phase solvent and filling the extraction container with the first mobile phase solvent and allowing to stand, the analysis of the first mobile phase solvent in the extraction container containing the component extracted from the sample is performed.
  • An extraction unit configured to perform a series of extraction operations for causing the analytical column to capture a component containing at least quinones among components in the first mobile phase solvent, and passing through the column; And an analysis unit configured to pass the second mobile phase solvent for eluting the component captured by the analysis column by the extraction operation through the analysis column.
  • the extraction unit is configured to repeat the series of extraction operations a plurality of times. By doing so, the extraction rate of quinones can be improved and the analysis accuracy can be increased.
  • Examples of the analytical column for realizing the present invention include a naphthylethyl group or pyrenylethyl group-binding column in which a separation medium in which a naphthylethyl group or a pyrenylethyl group is bound to a carrier is packed. Acetonitrile is mentioned.
  • an analyst encloses a sample containing quinones in an extraction container, and then leaves the sample in a state where the extraction container is filled with a first mobile phase solvent. Static extraction for extraction into one mobile phase solvent, and dynamic extraction for allowing the first mobile phase solvent in the extraction vessel to flow through the analysis column and capture components containing quinones in the analysis column. Since it is carried out as a series of extraction operations, and then the second mobile phase solvent is passed through the analytical column and eluted while separating the components captured by the analytical column and detected by the detector, From the extraction of quinones to the separation analysis can be completed on one SFE-SFC system.
  • the on-line SFE-SFC system of the present invention has a function of performing the above quinone analysis method in a fully automatic manner, processing from extraction of quinones to separation analysis can be performed with high efficiency.
  • FIG. 1 shows a schematic configuration diagram of an embodiment of an online SFE-SFC system suitable for carrying out a quinone analysis method.
  • the online SFE-SFC system 1 of this embodiment mainly includes a mobile phase supply unit 2, an SFE unit 4, an autosampler 6, an analytical column 8, back pressure control valves (BPR) 10, 12, a detector 14, and a control unit. 28.
  • BPR back pressure control valves
  • the mobile phase supply unit 2 includes a carbon dioxide pump 16 for sending carbon dioxide and a modifier pump 18 for sending a modifier.
  • a carbon dioxide pump 16 for sending carbon dioxide
  • a modifier pump 18 for sending a modifier.
  • the pressure in the flow path is controlled by the BPR 10 or 12 so that the carbon dioxide flows in a supercritical state.
  • the modifier include acetonitrile.
  • the SFE unit 4 includes an extraction container 20 and flow path switching valves 22 and 24.
  • the flow path switching valves 22 and 24 are for switching the connection destination of one end and the other end of the extraction container 20, respectively.
  • the online SFE-SFC system 1 is in a standby state (see FIG. 3), static extraction (see FIG. 4), dynamic extraction (see FIG. 5) and analysis (see FIG. 3).
  • a state for performing each operation of FIG. 6) can be taken. Details of static extraction (see FIG. 4), dynamic extraction (see FIG. 5), and analysis (see FIG. 6) will be described later.
  • the autosampler 6 is provided downstream of the SFE unit 4 on the flow path through which the mobile phase solvent from the mobile phase supply unit 2 flows.
  • the autosampler 6 is for, for example, injecting a standard sample into a flow path when acquiring measurement data of the standard sample.
  • the analysis column 8 is provided further downstream of the autosampler 6.
  • the analytical column 8 is, for example, a naphthylethyl group-bonded column packed with a separation medium in which a naphthylethyl group is bound to a silica gel carrier.
  • the analysis column 8 is accommodated in the column oven 26 and the temperature is adjusted.
  • the BPR 10 is provided on the flow path branched from the flow path between the autosampler 6 and the analysis column 8, and the BPR 12 is provided downstream of the analysis column 8.
  • Each of the BPRs 10 and 12 is for controlling the pressure in the flow path to a predetermined pressure in order to bring carbon dioxide in the mobile phase solvent fed by the mobile phase supply unit 2 into a supercritical state.
  • the detector 14 is provided further downstream of the BPR 12.
  • the detector 14 is for detecting a component separated by the analysis column 8 and performing quantification, and is realized by, for example, a mass spectrometer (MS).
  • MS mass spectrometer
  • the control unit 28 is for performing operation control of the online SFE-SFC system 1.
  • the control unit 28 is realized by, for example, a computer circuit on which an arithmetic element such as a microcomputer and a storage element storing a program executed by the arithmetic element are mounted.
  • the extraction unit 20 and the analysis unit 32 are provided as part of the function of the control unit 28.
  • the extraction unit 20 is configured to perform a series of extraction operations for extracting a component containing quinones from a sample containing quinones enclosed in the extraction container 20.
  • a series of extraction operations are operations including two processes of static extraction and dynamic extraction.
  • the flow path configuration of the system 1 is set as shown in FIG. 4, and a first mobile phase solvent having a predetermined composition is supplied to the extraction container 20 from the mobile phase supply unit 2.
  • the inside of the extraction container 20 is filled with the first mobile phase solvent and allowed to stand for a certain time (for example, 2 minutes).
  • a component containing quinones in the sample is extracted into the first mobile phase solvent.
  • the dynamic extraction is a process performed after static extraction, and the flow path configuration of the system 1 is set as shown in FIG. 5, and the first mobile phase solvent in the extraction container 20 is analyzed with an analysis column. 8 is a process in which a component containing quinones extracted from the sample into the first mobile phase solvent is captured by the analytical column 8 and concentrated.
  • the first mobile phase solvent used in the above-described series of extraction operations is adjusted so that quinones are extracted from the sample in the extraction container 20 in the static extraction and the quinones are not eluted from the analytical column 8 in the dynamic extraction. It has been done.
  • the analytical column 8 is a naphthylethyl group-bonded column
  • the first mobile phase solvent has, for example, a composition in which the ratio of carbon dioxide to modifier is 9: 1 (acetonitrile concentration 10%) Can be used.
  • the extraction efficiency of quinones from the sample in the extraction container 20 is improved by repeating the above series of extraction operations a plurality of times. For this reason, it is preferable that the extraction unit 30 is configured to repeat the above-described series of extraction operations a predetermined number of times (for example, three times).
  • the analysis unit 32 sets the flow path configuration of the system 1 as shown in FIG. 6 and sets the second mobile phase having a composition different from that of the first mobile phase solvent.
  • the solvent is passed through the analysis column 8, and the quinones captured by the analysis column 8 are eluted while being separated from other components and guided to the detector 14.
  • the second mobile phase solvent used in the above analysis operation has a higher elution power of quinones from the analysis column 8 than the first mobile phase solvent.
  • the second mobile phase solvent is realized by making the concentration of the modifier higher than that of the first mobile phase solvent. In addition, you may make it raise the modifier concentration of a 2nd mobile phase solvent with time.
  • the online SFE-SFC system 1 is in a standby state (the state shown in FIG. 3).
  • the analyst encloses a sample such as soil containing quinones in the extraction container 20 (step S1), and inputs an analysis start instruction to the control unit 28.
  • the extraction unit 30 performs static extraction with the flow path configuration of the system 1 in the state of FIG. 4 (step S2), and then changes the flow path configuration of the system 1 to the state of FIG.
  • dynamic extraction is performed (step S3).
  • the extraction unit 30 repeats the series of extraction operations a preset number of times (step S4).
  • the analysis unit 32 sets the flow path configuration of the system 1 to the state shown in FIG. 6 and passes the second mobile phase solvent through the analysis column 8 to perform separation analysis of quinones (step S5). From the detection signal obtained by the detector 14, a chromatogram derived from quinones contained in the sample is obtained, and the quinones contained in the sample can be quantified by obtaining the peak area. .
  • FIG. 7 shows four ubiquinone species (Q-8, Q-9, Q-10, Q-10 (H2)) that are confirmed as quinones possessed by oil-degrading microorganisms and are the main components of the quinone profiling method. It is a chromatogram which shows the analysis result by the said quinone analysis method about 2 types of menaquinone (M-7, M-9).
  • (A) is an analysis result about the soil before implementing oil purification
  • (B) is an analysis result about the soil after implementing oil purification for one month.
  • a series of extraction operations consisting of static extraction (2 minutes) and dynamic extraction (2 minutes) was repeated three times using a mobile phase (first mobile phase solvent) having an acetonitrile concentration of 10%. Thereafter, the acetonitrile concentration of the mobile phase solvent was increased with time to elute quinones from the analytical column 8, and detection was performed by the detector 14 (MS).
  • any quinones can be detected as a peak waveform by the above quinone analysis method. From this, it was proved that the processing from the extraction of quinones to the analysis can be completed online by using one analytical column 8.
  • the amount of quinones contained in the soil is proportional to the amount of oil in the soil.
  • the amount of quinones in the soil after one month has passed since the oil was purified is less than the amount of quinones in the soil before the oil was purified. The analysis shows that quinones can be detected accurately.
  • FIG. 8 is a chromatogram showing the verification results of the extraction rate of quinones (Q-9) by the number of repetitions of a series of extraction operations consisting of static extraction (2 minutes) and dynamic extraction (2 minutes).
  • (A) shows the case where the number of repetitions is 1
  • (B) shows the case where the number of repetitions is three.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

This quinone analysis method comprises: a sample sealing step for sealing a sample including quinones in an extraction container; an extraction step for, after the sample sealing step and as a series of extraction operations, carrying out "static extraction" in which a first mobile phase solvent for extracting components including quinones from the sample is supplied from a mobile phase supply unit to the extraction container and the extraction container is left still in a state of being filled with the first mobile phase solvent, and then carrying out "dynamic extraction" in which the first mobile phase solvent including components extracted from the sample is allowed to flow through the analysis column and at least the components including quinones from among the components included in the first mobile phase solvent are captured by the analysis column; and an analysis step for supplying, from the mobile phase supply unit, a second mobile phase solvent for eluting, from the analysis column, the components captured by the analysis column as a result of the series of extraction operations, causing the second mobile phase solvent to flow through the analysis column, separating and eluting the components captured by the analysis column, and detecting the same using a detector.

Description

キノン類分析方法とその方法を実施するためのオンラインSFE-SFCシステムMethod for analyzing quinones and on-line SFE-SFC system for carrying out the method
 本発明は、キノン類分析方法とその方法を実施するためのオンラインSFE-SFCシステムに関するものである。 The present invention relates to a method for analyzing quinones and an on-line SFE-SFC system for carrying out the method.
 土壌などの試料中における微生物の活動を観察するための手法の1つとしてキノンプロファイリング法がある(特許文献1を参照。)。キノンプロファイリング法は、微生物の呼吸関連物質であるキノン類を試料から抽出してその量を測定することで、試料中に存在する微生物群集の種類や量を把握する手法である。 One of the methods for observing the activity of microorganisms in a sample such as soil is a quinone profiling method (see Patent Document 1). The quinone profiling method is a technique for grasping the type and amount of microbial communities present in a sample by extracting quinones, which are respiration-related substances of microorganisms, from the sample and measuring the amount thereof.
 キノン類の抽出には、一般的に有機溶媒による手動抽出の他に、超臨界流体抽出(SFE)システムが利用される。具体的には、試料を封入した抽出容器に超臨界状態の二酸化炭素と適量の有機溶媒からなる移動相溶媒を通液することによって抽出容器内の試料からキノン類を抽出し、試料から抽出されたキノン類を吸着カートリッジに捕捉させる。 For the extraction of quinones, a supercritical fluid extraction (SFE) system is generally used in addition to manual extraction with an organic solvent. Specifically, quinones are extracted from the sample in the extraction container by passing a mobile phase solvent composed of carbon dioxide in a supercritical state and an appropriate amount of organic solvent through the extraction container enclosing the sample. Quinones are captured by the adsorption cartridge.
 試料からキノン類を抽出した後、キノン類を捕捉させた吸着カートリッジをSFEシステムから取り外し、その吸着カートリッジにアセトン溶液を通液することによって吸着カートリッジからキノン類を溶出させる。溶出したキノン類を含有するアセトン溶液を別のシリカゲルカラムに通液し、シリカゲルカラムにキノン類を吸着させる。そして、キノン類を吸着させたシリカゲルカラムに揮発性の高い有機溶媒を通液してキノン類を溶出させて回収した後、回収した液をエバポレータで蒸発させて濃縮し、アセトンで洗浄してキノン類を回収し、回収したキノン類を高速液体クロマトグラフ(HPLC)にて分析することにより定量する。 After extracting the quinones from the sample, the adsorption cartridge capturing the quinones is removed from the SFE system, and the quinones are eluted from the adsorption cartridge by passing an acetone solution through the adsorption cartridge. The acetone solution containing the eluted quinones is passed through another silica gel column to adsorb the quinones on the silica gel column. Then, after passing the highly volatile organic solvent through a silica gel column on which quinones are adsorbed to elute and recover the quinones, the collected liquid is evaporated by an evaporator, concentrated, washed with acetone and washed with quinone. The quinones are collected and analyzed by high performance liquid chromatograph (HPLC).
WO2006/118167A1WO2006 / 118167A1 WO2016/031008A1WO2016 / 031008A1
 上記のように、従来のキノンプロファイリング法では、SFEシステムにて試料からキノン類を抽出した後、抽出されたキノン類をHPLCに導入するまでの脱離や濃縮といった処理を手作業で行なう必要があった。 As described above, in the conventional quinone profiling method, after extraction of quinones from a sample by the SFE system, it is necessary to manually perform a process such as desorption and concentration until the extracted quinones are introduced into HPLC. there were.
 本発明は、キノン類の抽出から分析までを手作業を介することなく高効率に行なえるようにすることを目的とするものである。 The object of the present invention is to make it possible to perform from quinone extraction to analysis with high efficiency without manual operation.
 本発明に係るキノン類分析方法は、キノン類の抽出から分離分析までをオンラインSFE-SFCシステムを用いて手作業を介することなく実行するものである。 The method for analyzing quinones according to the present invention is to perform from extraction of quinones to separation analysis using an online SFE-SFC system without manual operation.
 オンラインSFE-SFCシステムは、超臨界流体を用いた試料成分の抽出(SFE)と、抽出された成分の超臨界流体クロマトグラフィー分析(SFC)とをオンラインで行なうことができるように構成されたシステムであり、例えば特許文献2に開示されている。具体的には、超臨界状態の二酸化炭素とモディファイアからなる移動相溶媒を供給するための移動相供給部、試料が封入され、前記移動相供給部から供給される前記移動相溶媒によって前記試料から成分を抽出するための抽出容器、前記試料から抽出された成分の分離を行なうための分析カラム、及び前記分析カラムで分離された成分を検出するための検出器を有するものであり、前記抽出容器内で試料中に含まれる成分を前記移動相溶媒に抽出した後、前記試料から抽出された成分を含む前記移動相溶媒を前記分析カラムに導いて分離し、前記分析カラムで分離された成分を前記検出器により検出するように構成されたものである。 The online SFE-SFC system is a system configured to be able to perform on-line extraction of sample components (SFE) using a supercritical fluid and supercritical fluid chromatography analysis (SFC) of the extracted components. For example, it is disclosed in Patent Document 2. Specifically, a mobile phase supply unit for supplying a mobile phase solvent composed of carbon dioxide and a modifier in a supercritical state, a sample is sealed, and the sample is supplied by the mobile phase solvent supplied from the mobile phase supply unit An extraction container for extracting a component from the sample, an analysis column for separating the component extracted from the sample, and a detector for detecting the component separated by the analysis column. After the components contained in the sample are extracted into the mobile phase solvent in the container, the mobile phase solvent containing the components extracted from the sample is guided to the analytical column and separated, and the components separated by the analytical column Is configured to be detected by the detector.
 本発明のキノン類分析方法は、前記抽出容器にキノン類を含む試料を封入する試料封入ステップと、前記試料封入ステップの後で、前記移動相供給部から前記試料からキノン類を含む成分を抽出するための第1の移動相溶媒を前記抽出容器に供給し、前記抽出容器内が前記第1の移動相溶媒で満たされた状態で静置する「静的抽出」を実施した後、前記試料から抽出された成分を含む前記第1の移動相溶媒を前記分析カラムに通液し、前記第1の移動相溶媒に含まれる成分のうち少なくともキノン類を含む成分を前記分析カラムに捕捉させる「動的抽出」を一連の抽出動作として実行する抽出ステップと、前記一連の抽出動作により前記分析カラムに捕捉された成分を前記分析カラムから溶出させるための第2の移動相溶媒を前記移動相供給部から供給して前記分析カラムに通液し、前記分析カラムに捕捉された成分を分離しながら溶出させて前記検出器により検出する分析ステップと、を備えている。 The method for analyzing quinones of the present invention includes a sample enclosing step of enclosing a sample containing quinones in the extraction container, and extracting a component containing quinones from the sample from the mobile phase supply unit after the sample enclosing step. The first mobile phase solvent to be supplied to the extraction container, and after performing “static extraction” in which the extraction container is left in a state filled with the first mobile phase solvent, the sample The first mobile phase solvent containing the component extracted from is passed through the analytical column, and the component containing at least quinones among the components contained in the first mobile phase solvent is captured by the analytical column. An extraction step for performing "dynamic extraction" as a series of extraction operations, and a second mobile phase solvent for eluting components captured by the analysis column by the series of extraction operations from the analysis column. It is supplied from the parts was passed through the analytical column, and a, and analysis steps of detecting by the detector eluted while separating the captured components in the analytical column.
 本発明のキノン類分析方法では、前記抽出ステップにおいて「静的抽出」と「動的抽出」からなる前記一連の抽出動作を複数回、好ましくは3回以上繰り返すことが好ましい。そうすれば、キノン類の抽出率が向上し、分析精度を高めることができる。 In the quinone analysis method of the present invention, it is preferable that the series of extraction operations including “static extraction” and “dynamic extraction” is repeated a plurality of times, preferably three times or more in the extraction step. By doing so, the extraction rate of quinones can be improved and the analysis accuracy can be increased.
 前記第2の移動相溶媒として、前記モディファイアの濃度が前記第1の移動相溶媒よりも高いものを用いることができる。 As the second mobile phase solvent, a solvent having a higher concentration of the modifier than the first mobile phase solvent can be used.
 前記分析ステップにおいて、前記第2の移動相溶媒の前記モディファイアの濃度を時間とともに上昇させてもよい。 In the analyzing step, the concentration of the modifier of the second mobile phase solvent may be increased with time.
 本発明に係るオンラインSFE-SFCシステムは、上述のキノン類分析方法を全自動で実施する機能を備えるものである。具体的には、当該オンラインSFE-SFCシステムの動作制御を行なう制御部が、キノン類を含む試料が封入された前記抽出容器に、前記試料からキノン類を含む成分を抽出するための第1の移動相溶媒を供給して前記抽出容器を前記第1の移動相溶媒で満たして静置した後、前記試料から抽出された成分を含む前記抽出容器内の前記第1の移動相溶媒を前記分析カラムに通液し、前記第1の移動相溶媒中の成分のうち少なくともキノン類を含む成分を前記分析カラムに捕捉させる一連の抽出動作を実行するように構成された抽出部と、前記一連の抽出動作により前記分析カラムに捕捉された成分を前記分析カラムから溶出させるための前記第2の移動相溶媒を前記分析カラムに通液するように構成された分析部と、を備えている。 The online SFE-SFC system according to the present invention has a function of fully automatically executing the above-described quinone analysis method. Specifically, a control unit that controls the operation of the online SFE-SFC system is configured to extract a component containing quinones from the sample into the extraction container in which the sample containing quinones is enclosed. After supplying the mobile phase solvent and filling the extraction container with the first mobile phase solvent and allowing to stand, the analysis of the first mobile phase solvent in the extraction container containing the component extracted from the sample is performed. An extraction unit configured to perform a series of extraction operations for causing the analytical column to capture a component containing at least quinones among components in the first mobile phase solvent, and passing through the column; And an analysis unit configured to pass the second mobile phase solvent for eluting the component captured by the analysis column by the extraction operation through the analysis column.
 前記抽出部は、前記一連の抽出動作を複数回繰り返すように構成されていることが好ましい。そうすれば、キノン類の抽出率が向上し、分析精度を高めることができる。 It is preferable that the extraction unit is configured to repeat the series of extraction operations a plurality of times. By doing so, the extraction rate of quinones can be improved and the analysis accuracy can be increased.
 本発明を実現するための前記分析カラムとしては、担体にナフチルエチル基又はピレニルエチル基を結合させた分離媒体が充填されているナフチルエチル基又はピレニルエチル基結合型のカラムが挙げられ、前記モディファイアとしてアセトニトリルが挙げられる。 Examples of the analytical column for realizing the present invention include a naphthylethyl group or pyrenylethyl group-binding column in which a separation medium in which a naphthylethyl group or a pyrenylethyl group is bound to a carrier is packed. Acetonitrile is mentioned.
 本発明のキノン類分析方法では、分析者が抽出容器にキノン類を含む試料を封入した後、第1の移動相溶媒で抽出容器を満たした状態で静置しキノン類を含む成分を前記第1の移動相溶媒に抽出する静的抽出、及び前記抽出容器内の前記第1の移動相溶媒を前記分析カラムに通液してキノン類を含む成分を前記分析カラムに捕捉させる動的抽出を一連の抽出動作として実施し、その後、第2の移動相溶媒を前記分析カラムに通液して前記分析カラムに捕捉された成分を分離しながら溶出させて前記検出器により検出するので、試料中のキノン類の抽出から分離分析までを1つのSFE-SFCシステム上で完結させることができる。 In the method for analyzing quinones of the present invention, an analyst encloses a sample containing quinones in an extraction container, and then leaves the sample in a state where the extraction container is filled with a first mobile phase solvent. Static extraction for extraction into one mobile phase solvent, and dynamic extraction for allowing the first mobile phase solvent in the extraction vessel to flow through the analysis column and capture components containing quinones in the analysis column. Since it is carried out as a series of extraction operations, and then the second mobile phase solvent is passed through the analytical column and eluted while separating the components captured by the analytical column and detected by the detector, From the extraction of quinones to the separation analysis can be completed on one SFE-SFC system.
 本発明のオンラインSFE-SFCシステムでは、上記キノン類分析方法を全自動で実施する機能を有するので、キノン類の抽出から分離分析までの処理を高効率に行なうことができる。 Since the on-line SFE-SFC system of the present invention has a function of performing the above quinone analysis method in a fully automatic manner, processing from extraction of quinones to separation analysis can be performed with high efficiency.
オンラインSFE-SFCシステムの一実施例を概略的に示す流路構成図である。It is a channel lineblock diagram showing roughly one example of an on-line SFE-SFC system. 同実施例のオンラインSFE-SFCシステムを用いたキノン類の分析方法を説明するためのフローチャートである。It is a flowchart for demonstrating the analysis method of quinones using the online SFE-SFC system of the Example. スタンバイ時のオンラインSFE-SFCシステムの流路構成を示す図である。It is a figure which shows the flow-path structure of the online SFE-SFC system at the time of standby. 静的抽出時のオンラインSFE-SFCシステムの流路構成を示す図である。It is a figure which shows the flow-path structure of the online SFE-SFC system at the time of static extraction. 動的抽出時のオンラインSFE-SFCシステムの流路構成を示す図である。It is a figure which shows the flow-path structure of the online SFE-SFC system at the time of dynamic extraction. 分析時のオンラインSFE-SFCシステムの流路構成を示す図である。It is a figure which shows the flow-path structure of the online SFE-SFC system at the time of analysis. 同実施例のオンラインSFE-SFCシステムを用いたキノン類の分析方法による分析結果の一例を示すクロマトグラムであり、(A)は浄化前の土壌の分析結果、(B)は浄化後の土壌の分析結果である。It is a chromatogram which shows an example of the analysis result by the analysis method of quinones using the online SFE-SFC system of the Example, (A) is the analysis result of the soil before purification, (B) is the soil of the soil after purification. It is an analysis result. 一連の抽出動作の繰り返し回数によるキノン類の抽出効果の検証結果を示すグラフであり、(A)は繰り返し回数が1回の場合、(B)は繰り返し回数が3回の場合である。It is a graph which shows the verification result of the extraction effect of quinones by the repetition frequency of a series of extraction operation | movement, (A) is the case where the repetition frequency is 1 time, (B) is the case where the repetition frequency is 3.
 以下、本発明に係るキノン類分析方法及びその方法を実施するためのオンラインSFE-SFCシステムについて、図面を参照しながら説明する。 Hereinafter, a method for analyzing quinones and an online SFE-SFC system for carrying out the method according to the present invention will be described with reference to the drawings.
 図1に、キノン類分析方法の実施に適したオンラインSFE-SFCシステムの一実施例の概略構成図を示す。 FIG. 1 shows a schematic configuration diagram of an embodiment of an online SFE-SFC system suitable for carrying out a quinone analysis method.
 この実施例のオンラインSFE-SFCシステム1は、主として、移動相供給部2、SFE部4、オートサンプラ6、分析カラム8、背圧制御バルブ(BPR)10,12、検出器14、及び制御部28からなる。 The online SFE-SFC system 1 of this embodiment mainly includes a mobile phase supply unit 2, an SFE unit 4, an autosampler 6, an analytical column 8, back pressure control valves (BPR) 10, 12, a detector 14, and a control unit. 28.
 移動相供給部2は、二酸化炭素を送液するための二酸化炭素ポンプ16と、モディファイアを送液するためのモディファイアポンプ18を備えている。二酸化炭素の初期状態は液体であるが、BPR10又は12によって流路内の圧力が制御されることにより、流路中を超臨界状態で流れる。モディファイアとしては、例えばアセトニトリルが挙げられる。 The mobile phase supply unit 2 includes a carbon dioxide pump 16 for sending carbon dioxide and a modifier pump 18 for sending a modifier. Although the initial state of carbon dioxide is liquid, the pressure in the flow path is controlled by the BPR 10 or 12 so that the carbon dioxide flows in a supercritical state. Examples of the modifier include acetonitrile.
 SFE部4は、抽出容器20、流路切替バルブ22及び24を備えている。流路切替バルブ22及び24はそれぞれ、抽出容器20の一端及び他端の接続先を切り替えるためのものである。流路切替バルブ22及び24の切替えにより、このオンラインSFE-SFCシステム1は、スタンバイ状態(図3参照)のほか、静的抽出(図4参照)、動的抽出(図5参照)及び分析(図6参照)のそれぞれの動作を実施するための状態をとることができる。静的抽出(図4参照)、動的抽出(図5参照)及び分析(図6参照)の詳細については後述する。 The SFE unit 4 includes an extraction container 20 and flow path switching valves 22 and 24. The flow path switching valves 22 and 24 are for switching the connection destination of one end and the other end of the extraction container 20, respectively. By switching the flow path switching valves 22 and 24, the online SFE-SFC system 1 is in a standby state (see FIG. 3), static extraction (see FIG. 4), dynamic extraction (see FIG. 5) and analysis (see FIG. 3). A state for performing each operation of FIG. 6) can be taken. Details of static extraction (see FIG. 4), dynamic extraction (see FIG. 5), and analysis (see FIG. 6) will be described later.
 オートサンプラ6は移動相供給部2からの移動相溶媒が流れる流路上におけるSFE部4の下流に設けられている。オートサンプラ6は、例えば、標準試料の測定データを取得する際に流路中に標準試料を注入するためのものである。 The autosampler 6 is provided downstream of the SFE unit 4 on the flow path through which the mobile phase solvent from the mobile phase supply unit 2 flows. The autosampler 6 is for, for example, injecting a standard sample into a flow path when acquiring measurement data of the standard sample.
 分析カラム8はオートサンプラ6のさらに下流に設けられている。分析カラム8は、例えば、シリカゲル担体にナフチルエチル基を結合させた分離媒体が充填されたナフチルエチル基結合型のカラムである。分析カラム8はカラムオーブン26内に収容され、温度調節がなされる。 The analysis column 8 is provided further downstream of the autosampler 6. The analytical column 8 is, for example, a naphthylethyl group-bonded column packed with a separation medium in which a naphthylethyl group is bound to a silica gel carrier. The analysis column 8 is accommodated in the column oven 26 and the temperature is adjusted.
 BPR10はオートサンプラ6と分析カラム8との間の流路から分岐した流路上に設けられており、BPR12は分析カラム8の下流に設けられている。BPR10及び12はそれぞれ、移動相供給部2によって送液される移動相溶媒中の二酸化炭素を超臨界状態にするために流路内の圧力を所定の圧力に制御するためのものである。 The BPR 10 is provided on the flow path branched from the flow path between the autosampler 6 and the analysis column 8, and the BPR 12 is provided downstream of the analysis column 8. Each of the BPRs 10 and 12 is for controlling the pressure in the flow path to a predetermined pressure in order to bring carbon dioxide in the mobile phase solvent fed by the mobile phase supply unit 2 into a supercritical state.
 検出器14はBPR12のさらに下流に設けられている。検出器14は、分析カラム8で分離した成分を検出して定量を行なうためのものであり、例えば質量分析計(MS)によって実現される。 The detector 14 is provided further downstream of the BPR 12. The detector 14 is for detecting a component separated by the analysis column 8 and performing quantification, and is realized by, for example, a mass spectrometer (MS).
 制御部28は、このオンラインSFE-SFCシステム1の動作制御を行なうためのものである。制御部28は、例えば、マイクロコンピュータなどの演算素子やその演算素子によって実行されるプログラムを格納した記憶素子が搭載されたコンピュータ回路によって実現される。 The control unit 28 is for performing operation control of the online SFE-SFC system 1. The control unit 28 is realized by, for example, a computer circuit on which an arithmetic element such as a microcomputer and a storage element storing a program executed by the arithmetic element are mounted.
 制御部28の機能の一部として抽出部20及び分析部32が設けられている。抽出部20は、抽出容器20に封入されたキノン類を含む試料からキノン類を含む成分を抽出するための一連の抽出動作を実行するように構成されている。一連の抽出動作とは、静的抽出と動的抽出の2つの処理を含む動作である。 The extraction unit 20 and the analysis unit 32 are provided as part of the function of the control unit 28. The extraction unit 20 is configured to perform a series of extraction operations for extracting a component containing quinones from a sample containing quinones enclosed in the extraction container 20. A series of extraction operations are operations including two processes of static extraction and dynamic extraction.
 静的抽出とは、システム1の流路構成を図4に示されるような状態にして、抽出容器20に移動相供給部2から所定の組成をもった第1の移動相溶媒を供給し、抽出容器20内を第1の移動相溶媒で満たして一定時間(例えば2分)静置する処理である。この静的抽出により、試料中のキノン類を含む成分が第1の移動相溶媒に抽出される。 With static extraction, the flow path configuration of the system 1 is set as shown in FIG. 4, and a first mobile phase solvent having a predetermined composition is supplied to the extraction container 20 from the mobile phase supply unit 2. In this process, the inside of the extraction container 20 is filled with the first mobile phase solvent and allowed to stand for a certain time (for example, 2 minutes). By this static extraction, a component containing quinones in the sample is extracted into the first mobile phase solvent.
 動的抽出とは静的抽出の後で実施される処理であり、システム1の流路構成を図5に示されるような状態にして、抽出容器20内の第1の移動相溶媒を分析カラム8に通液し、試料から第1の移動相溶媒に抽出されたキノン類を含む成分を分析カラム8に捕捉させて濃縮する処理である。 The dynamic extraction is a process performed after static extraction, and the flow path configuration of the system 1 is set as shown in FIG. 5, and the first mobile phase solvent in the extraction container 20 is analyzed with an analysis column. 8 is a process in which a component containing quinones extracted from the sample into the first mobile phase solvent is captured by the analytical column 8 and concentrated.
 上記一連の抽出動作において使用する第1の移動相溶媒は、静的抽出において抽出容器20内の試料からキノン類を抽出し、かつ動的抽出において分析カラム8からキノン類を溶出させないように調整されたものである。分析カラム8がナフチルエチル基結合型のカラムである場合には、第1の移動相溶媒として、例えば、二酸化炭素とモディファイアとの比率が9:1(アセトニトリル濃度10%)の組成をもつものを用いることができる。 The first mobile phase solvent used in the above-described series of extraction operations is adjusted so that quinones are extracted from the sample in the extraction container 20 in the static extraction and the quinones are not eluted from the analytical column 8 in the dynamic extraction. It has been done. When the analytical column 8 is a naphthylethyl group-bonded column, the first mobile phase solvent has, for example, a composition in which the ratio of carbon dioxide to modifier is 9: 1 (acetonitrile concentration 10%) Can be used.
 上記一連の抽出動作を複数回繰り返すことにより、抽出容器20内の試料からのキノン類の抽出効率が向上する。このため、抽出部30は、上記一連の抽出動作を所定回数(例えば3回)繰り返すように構成されていることが好ましい。 The extraction efficiency of quinones from the sample in the extraction container 20 is improved by repeating the above series of extraction operations a plurality of times. For this reason, it is preferable that the extraction unit 30 is configured to repeat the above-described series of extraction operations a predetermined number of times (for example, three times).
 分析部32は、上記一連の抽出動作が終了した後で、システム1の流路構成を図6に示されるような状態にして、第1の移動相溶媒とは組成の異なる第2の移動相溶媒を分析カラム8に通液し、分析カラム8に捕捉されたキノン類を他の成分と分離しながら溶出させ、検出器14に導くように構成されている。 After the series of extraction operations is completed, the analysis unit 32 sets the flow path configuration of the system 1 as shown in FIG. 6 and sets the second mobile phase having a composition different from that of the first mobile phase solvent. The solvent is passed through the analysis column 8, and the quinones captured by the analysis column 8 are eluted while being separated from other components and guided to the detector 14.
 上記分析動作において用いられる第2の移動相溶媒は、分析カラム8からのキノン類の溶出力が第1の移動相溶媒よりも高いものである。第2の移動相溶媒は、モディファイアの濃度を第1の移動相溶媒よりも高くすることによって実現される。なお、第2の移動相溶媒のモディファイア濃度を時間とともに上昇させるようにしてもよい。 The second mobile phase solvent used in the above analysis operation has a higher elution power of quinones from the analysis column 8 than the first mobile phase solvent. The second mobile phase solvent is realized by making the concentration of the modifier higher than that of the first mobile phase solvent. In addition, you may make it raise the modifier concentration of a 2nd mobile phase solvent with time.
 このオンラインSFE-SFCシステム1において実施されるキノン類分析方法について、図1とともに図2のフローチャートを用いて説明する。 The quinone analysis method performed in the online SFE-SFC system 1 will be described with reference to the flowchart of FIG. 2 together with FIG.
 初期状態では、オンラインSFE-SFCシステム1がスタンバイ状態(図3の状態)となっている。この状態で、分析者は抽出容器20にキノン類を含む土壌などの試料を封入し(ステップS1)、分析開始の指示を制御部28に入力する。分析開始の指示が入力されると、抽出部30はシステム1の流路構成を図4の状態にして静的抽出を実施した後(ステップS2)、システム1の流路構成を図5の状態にして動的抽出を実施する(ステップS3)。この一連の抽出動作により、試料中のキノン類を含む成分が分析カラム8に捕捉されて濃縮される。一連の抽出動作の繰返し回数が予め設定されている場合には、抽出部30は、上記一連の抽出動作を予め設定された回数だけ繰り返す(ステップS4)。 In the initial state, the online SFE-SFC system 1 is in a standby state (the state shown in FIG. 3). In this state, the analyst encloses a sample such as soil containing quinones in the extraction container 20 (step S1), and inputs an analysis start instruction to the control unit 28. When an instruction to start analysis is input, the extraction unit 30 performs static extraction with the flow path configuration of the system 1 in the state of FIG. 4 (step S2), and then changes the flow path configuration of the system 1 to the state of FIG. Thus, dynamic extraction is performed (step S3). By this series of extraction operations, components containing quinones in the sample are captured by the analysis column 8 and concentrated. If the number of repetitions of the series of extraction operations is preset, the extraction unit 30 repeats the series of extraction operations a preset number of times (step S4).
 その後、分析部32はシステム1の流路構成を図6の状態にして第2の移動相溶媒を分析カラム8に通液し、キノン類の分離分析を行なう(ステップS5)。検出器14によって得られる検出信号から、試料中に含有されていたキノン類に由来するクロマトグラムが得られ、そのピーク面積を求めることによって試料中に含有されていたキノン類を定量することができる。 Thereafter, the analysis unit 32 sets the flow path configuration of the system 1 to the state shown in FIG. 6 and passes the second mobile phase solvent through the analysis column 8 to perform separation analysis of quinones (step S5). From the detection signal obtained by the detector 14, a chromatogram derived from quinones contained in the sample is obtained, and the quinones contained in the sample can be quantified by obtaining the peak area. .
 図7は、油分解微生物が保有しているキノン類として確認され、キノンプロファイリング法の主要成分であるユビキノン4種(Q-8、Q-9、Q-10、Q-10(H2))とメナキノン2種(M-7、M-9)についての上記キノン類分析方法による分析結果を示すクロマトグラムである。なお、(A)は油分の浄化を実施する前の土壌についての分析結果であり、(B)は油分の浄化を実施して1か月が経過した後の土壌についての分析結果である。この分析では、アセトニトリル濃度が10%である移動相(第1の移動相溶媒)を用いて静的抽出(2分)と動的抽出(2分)からなる一連の抽出動作を3回繰り返した後、移動相溶媒のアセトニトリル濃度を時間とともに上昇させて分析カラム8からキノン類を溶出させて検出器14(MS)による検出を行なった。 FIG. 7 shows four ubiquinone species (Q-8, Q-9, Q-10, Q-10 (H2)) that are confirmed as quinones possessed by oil-degrading microorganisms and are the main components of the quinone profiling method. It is a chromatogram which shows the analysis result by the said quinone analysis method about 2 types of menaquinone (M-7, M-9). In addition, (A) is an analysis result about the soil before implementing oil purification, (B) is an analysis result about the soil after implementing oil purification for one month. In this analysis, a series of extraction operations consisting of static extraction (2 minutes) and dynamic extraction (2 minutes) was repeated three times using a mobile phase (first mobile phase solvent) having an acetonitrile concentration of 10%. Thereafter, the acetonitrile concentration of the mobile phase solvent was increased with time to elute quinones from the analytical column 8, and detection was performed by the detector 14 (MS).
 図7からわかるように、上記キノン類分析方法によっていずれのキノン類もピーク波形として検出することができている。このことから、キノン類の抽出から分析までの処理を1つの分析カラム8を用いてオンラインで完結させることが可能であることが立証された。 As can be seen from FIG. 7, any quinones can be detected as a peak waveform by the above quinone analysis method. From this, it was proved that the processing from the extraction of quinones to the analysis can be completed online by using one analytical column 8.
 また、土壌中に含まれるキノン類の量は土壌中の油分量に比例することがわかっている。図7の(A)と(B)を比較すると、油分を浄化して1か月が経過した土壌中のキノン類の量は油分を浄化する前の土壌中のキノン類の量よりも減少しており、分析によってキノン類を正確に検出できていることがわかる。 Also, it is known that the amount of quinones contained in the soil is proportional to the amount of oil in the soil. When (A) and (B) in FIG. 7 are compared, the amount of quinones in the soil after one month has passed since the oil was purified is less than the amount of quinones in the soil before the oil was purified. The analysis shows that quinones can be detected accurately.
 また、図8は、静的抽出(2分)と動的抽出(2分)からなる一連の抽出動作の繰返し回数によるキノン類(Q-9)の抽出率の検証結果を示すクロマトグラムであり、(A)は繰り返し回数が1回の場合、(B)は繰り返し回数が3回の場合である。この結果からわかるように、一連の抽出動作を1回だけ実施しても試料からのキノン類の抽出量は僅かであるが、一連の抽出動作を複数回繰り返すことによってキノン類の抽出量が大幅に上昇している。この結果から、キノンプロファイリング法の正確性に影響を与える試料からのキノン類の抽出率を大きく向上させるために、一連の抽出動作を繰り返すことが有効であることが立証された。 FIG. 8 is a chromatogram showing the verification results of the extraction rate of quinones (Q-9) by the number of repetitions of a series of extraction operations consisting of static extraction (2 minutes) and dynamic extraction (2 minutes). (A) shows the case where the number of repetitions is 1, and (B) shows the case where the number of repetitions is three. As can be seen from this result, the amount of quinones extracted from the sample is small even if the series of extraction operations is performed only once, but the extraction amount of quinones is greatly increased by repeating the series of extraction operations multiple times. Is rising. From this result, it was proved that it is effective to repeat a series of extraction operations in order to greatly improve the extraction rate of quinones from a sample that affects the accuracy of the quinone profiling method.
   1   オンラインSFE-SFCシステム
   2   移動相供給部
   4   SFE部
   6   オートサンプラ
   8   分析カラム
   10,12   背圧制御バルブ(BPR)
   14   検出器
   16   二酸化炭素ポンプ
   18   モディファイアポンプ
   20   抽出容器
   22,24   流路切替バルブ
   26   カラムオーブン
   28   制御部
   30   抽出部
   32   分析部
1 Online SFE-SFC system 2 Mobile phase supply unit 4 SFE unit 6 Autosampler 8 Analysis column 10, 12 Back pressure control valve (BPR)
DESCRIPTION OF SYMBOLS 14 Detector 16 Carbon dioxide pump 18 Modifier pump 20 Extraction container 22, 24 Flow path switching valve 26 Column oven 28 Control part 30 Extraction part 32 Analysis part

Claims (9)

  1.  超臨界状態の二酸化炭素とモディファイアからなる移動相溶媒を供給するための移動相供給部、試料が封入され、前記移動相供給部から供給される前記移動相溶媒によって前記試料から成分を抽出するための抽出容器、前記試料から抽出された成分の分離を行なうための分析カラム、及び前記分析カラムで分離された成分を検出するための検出器を有し、前記抽出容器内で試料中に含まれる成分を前記移動相溶媒に抽出した後、前記試料から抽出された成分を含む前記移動相溶媒を前記分析カラムに導いて分離し、前記分析カラムで分離された成分を前記検出器により検出するように構成されたオンラインSFE-SFCシステムを用いたキノン類分析方法であって、
     前記抽出容器にキノン類を含む試料を封入する試料封入ステップと、
     前記試料封入ステップの後で、前記移動相供給部から前記試料からキノン類を含む成分を抽出するための第1の移動相溶媒を前記抽出容器に供給し、前記抽出容器内が前記第1の移動相溶媒で満たされた状態で静置した後、前記試料から抽出された成分を含む前記第1の移動相溶媒を前記分析カラムに通液し、前記第1の移動相溶媒に含まれる成分のうち少なくともキノン類を含む成分を前記分析カラムに捕捉させる一連の抽出動作を実行する抽出ステップと、
     前記一連の抽出動作により前記分析カラムに捕捉された成分を前記分析カラムから溶出させるための第2の移動相溶媒を前記移動相供給部から供給して前記分析カラムに通液し、前記分析カラムに捕捉された成分を分離しながら溶出させて前記検出器により検出する分析ステップと、を備えている、キノン類分析方法。
    A mobile phase supply unit for supplying a mobile phase solvent composed of carbon dioxide and a modifier in a supercritical state, a sample is enclosed, and components are extracted from the sample by the mobile phase solvent supplied from the mobile phase supply unit An extraction container, an analysis column for separating components extracted from the sample, and a detector for detecting the components separated by the analysis column, and contained in the sample in the extraction container The components extracted from the sample are extracted into the mobile phase solvent, the mobile phase solvent containing the components extracted from the sample is guided to the analytical column and separated, and the components separated by the analytical column are detected by the detector. A method for analyzing quinones using an on-line SFE-SFC system configured as follows:
    A sample enclosing step of enclosing a sample containing quinones in the extraction container;
    After the sample sealing step, a first mobile phase solvent for extracting a component containing quinones from the sample from the mobile phase supply unit is supplied to the extraction container, and the inside of the extraction container is the first After standing in a state filled with the mobile phase solvent, the first mobile phase solvent containing the component extracted from the sample is passed through the analytical column, and the components contained in the first mobile phase solvent An extraction step for performing a series of extraction operations for causing the analytical column to capture a component containing at least quinones among
    A second mobile phase solvent for eluting the component captured by the analytical column by the series of extraction operations from the analytical column is supplied from the mobile phase supply unit and passed through the analytical column, and the analytical column A quinone analysis method, comprising: an elution step of separating the components captured in the sample while separating them and detecting them by the detector.
  2.  前記抽出ステップにおいて前記一連の抽出動作を複数回繰り返す、請求項1に記載のキノン類分析方法。 The quinone analysis method according to claim 1, wherein the series of extraction operations are repeated a plurality of times in the extraction step.
  3.  前記抽出ステップにおいて前記一連の抽出動作を3回以上繰り返す、請求項2に記載のキノン類分析方法。 The quinone analysis method according to claim 2, wherein the series of extraction operations is repeated three or more times in the extraction step.
  4.  前記第2の移動相溶媒の前記モディファイアの濃度を前記第1の移動相溶媒よりも高くする、請求項1から3のいずれか一項に記載のキノン類分析方法。 The method for analyzing quinones according to any one of claims 1 to 3, wherein the concentration of the modifier of the second mobile phase solvent is higher than that of the first mobile phase solvent.
  5.  前記分析ステップにおいて、前記第2の移動相溶媒の前記モディファイアの濃度を時間とともに上昇させる、請求項4に記載のキノン類分析方法。 The quinone analysis method according to claim 4, wherein, in the analysis step, the concentration of the modifier of the second mobile phase solvent is increased with time.
  6.  前記分析カラムとして、担体にナフチルエチル基又はピレニルエチル基を結合させた分離媒体が充填されているナフチルエチル基結合型のカラムを用い、前記モディファイアとしてアセトニトリルを用いる、請求項1から5のいずれか一項に記載のキノン類分析方法。 A naphthylethyl group-binding column in which a separation medium in which a naphthylethyl group or pyrenylethyl group is bound to a carrier is packed as the analytical column is used, and acetonitrile is used as the modifier. The method for analyzing quinones according to one item.
  7.  超臨界状態の二酸化炭素とモディファイアからなる移動相溶媒を供給するための移動相供給部、試料が封入され、前記移動相供給部から供給される前記移動相溶媒によって前記試料から成分を抽出するための抽出容器、前記試料から抽出された成分の分離を行なうための分析カラム、及び前記分析カラムで分離された成分を検出するための検出器を有し、前記抽出容器内で試料中に含まれる成分を前記移動相溶媒に抽出した後、前記試料から抽出された成分を含む前記移動相溶媒を前記分析カラムに導いて分離し、前記分析カラムで分離された成分を前記検出器により検出するように構成されたオンラインSFE-SFCシステムであって、
     当該オンラインSFE-SFCシステムの動作制御を行なう制御部は、
     キノン類を含む試料が封入された前記抽出容器に、前記試料からキノン類を含む成分を抽出するための第1の移動相溶媒を供給して前記抽出容器を前記第1の移動相溶媒で満たして静置した後、前記試料から抽出された成分を含む前記抽出容器内の前記第1の移動相溶媒を前記分析カラムに通液し、前記第1の移動相溶媒中の成分のうち少なくともキノン類を含む成分を前記分析カラムに捕捉させる一連の抽出動作を実行するように構成された抽出部と、
     前記分析カラムに捕捉された成分を前記分析カラムから溶出させるための前記第2の移動相溶媒を前記分析カラムに通液するように構成された分析部と、を備えているオンラインSFE-SFCシステム。
    A mobile phase supply unit for supplying a mobile phase solvent composed of carbon dioxide and a modifier in a supercritical state, a sample is enclosed, and components are extracted from the sample by the mobile phase solvent supplied from the mobile phase supply unit An extraction container, an analysis column for separating components extracted from the sample, and a detector for detecting the components separated by the analysis column, and contained in the sample in the extraction container The components extracted from the sample are extracted into the mobile phase solvent, the mobile phase solvent containing the components extracted from the sample is guided to the analytical column and separated, and the components separated by the analytical column are detected by the detector. An online SFE-SFC system configured as follows:
    The controller that controls the operation of the online SFE-SFC system
    A first mobile phase solvent for extracting a component containing quinones from the sample is supplied to the extraction container in which the sample containing quinones is enclosed, and the extraction container is filled with the first mobile phase solvent. The first mobile phase solvent in the extraction container containing the component extracted from the sample is passed through the analytical column, and at least quinone of the components in the first mobile phase solvent. An extraction unit configured to perform a series of extraction operations for causing the analytical column to capture a component containing a species,
    An on-line SFE-SFC system comprising: an analysis unit configured to pass the second mobile phase solvent for eluting the component captured by the analysis column from the analysis column. .
  8.  前記抽出部は、前記一連の抽出動作を複数回繰り返すように構成されている、請求項7に記載のオンラインSFE-SFCシステム。 The online SFE-SFC system according to claim 7, wherein the extraction unit is configured to repeat the series of extraction operations a plurality of times.
  9.  前記分析カラムは担体にナフチルエチル基を結合させた分離媒体が充填されているナフチルエチル基結合型のカラムであり、前記モディファイアはアセトニトリルである、請求項7又は8に記載のオンラインSFE-SFCシステム。 The on-line SFE-SFC according to claim 7 or 8, wherein the analytical column is a naphthylethyl group-binding column packed with a separation medium in which a naphthylethyl group is bound to a carrier, and the modifier is acetonitrile. system.
PCT/JP2018/044126 2018-02-26 2018-11-30 Quinone analysis method and online sfe-sfc system for implementing said method WO2019163245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020502033A JP6977863B2 (en) 2018-02-26 2018-11-30 Quinone analysis method and online SFE-SFC system for implementing the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032056 2018-02-26
JP2018032056 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163245A1 true WO2019163245A1 (en) 2019-08-29

Family

ID=67687089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/044126 WO2019163245A1 (en) 2018-02-26 2018-11-30 Quinone analysis method and online sfe-sfc system for implementing said method

Country Status (2)

Country Link
JP (1) JP6977863B2 (en)
WO (1) WO2019163245A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163417A1 (en) * 2021-01-26 2022-08-04 株式会社島津製作所 Method for analyzing metabolites of microorganisms
KR102614936B1 (en) * 2023-02-03 2023-12-19 주식회사 버던트테크놀로지 Quantitative analysis appratus and method of cannabidiol using online supercritical fluid extrraction and supercritical fluid chromatography from raw hemp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294503A (en) * 1994-04-21 1995-11-10 Jeol Ltd Fractionating and analyzing method and apparatus using supercritical fluid
WO2017149620A1 (en) * 2016-02-29 2017-09-08 株式会社島津製作所 Preparative device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608747A (en) * 1983-06-29 1985-01-17 Morinaga & Co Ltd Analyzer using supercritical fluid
JPS6332366A (en) * 1986-07-25 1988-02-12 Japan Spectroscopic Co Supercritical fluid chromatography device
EP0601275A3 (en) * 1992-12-11 1995-01-11 Hewlett Packard Co Methods and apparatus for automatically adding fluid reagents to sample containers.
JPH07159387A (en) * 1993-12-03 1995-06-23 Hitachi Ltd Apparatus and method as well as analyzer for extracting fat-soluble or volatile material in sample water
EP0748247B1 (en) * 1994-02-22 2012-06-20 The Curators Of The University Of Missouri Macrocyclic antibiotics as separation agents
AU2002307529B2 (en) * 2001-04-26 2007-02-01 Agilent Technologies, Inc. Hollow fiber membrane sample preparation devices
JP5691120B2 (en) * 2008-05-23 2015-04-01 和光純薬工業株式会社 Production method of silica gel containing high concentration sulfuric acid
CA2797960A1 (en) * 2009-10-01 2011-04-07 Phenomenome Discoveries Inc. Serum-based biomarkers of pancreatic cancer and uses thereof for disease detection and diagnosis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07294503A (en) * 1994-04-21 1995-11-10 Jeol Ltd Fractionating and analyzing method and apparatus using supercritical fluid
WO2017149620A1 (en) * 2016-02-29 2017-09-08 株式会社島津製作所 Preparative device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ICHIKAWA, CHIGUSA ET AL., SFE/SFC-MS. JAPANESE JOURNAL OF PESTICIDE SCIENCE, vol. 41, 2016, pages 216 - 222, ISSN: 2187-8692 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163417A1 (en) * 2021-01-26 2022-08-04 株式会社島津製作所 Method for analyzing metabolites of microorganisms
KR102614936B1 (en) * 2023-02-03 2023-12-19 주식회사 버던트테크놀로지 Quantitative analysis appratus and method of cannabidiol using online supercritical fluid extrraction and supercritical fluid chromatography from raw hemp

Also Published As

Publication number Publication date
JPWO2019163245A1 (en) 2020-12-03
JP6977863B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Sánchez‐Camargo et al. On‐line coupling of supercritical fluid extraction and chromatographic techniques
Cortes Developments in multidimensional separation systems
Dettmer-Wilde et al. Practical gas chromatography
JP6657003B2 (en) Glycated hemoglobin measuring method, glycated hemoglobin measuring device, and glycated hemoglobin measuring program
Bellot et al. Liquid chromatography modelling: a review
Zoccali et al. Recent advances in the coupling of carbon dioxide-based extraction and separation techniques
WO2019163245A1 (en) Quinone analysis method and online sfe-sfc system for implementing said method
Lindholm Development and validation of HPLC methods for analytical and preparative purposes
Nan et al. Novel and rapid method for determination of organophosphorus pesticide residues in edible fungus using direct gas purge microsyringe extraction coupled on-line with gas chromatography–mass spectrometry
JPH09206502A (en) Pseudo moving bed type separator
CN111279188A (en) Sample preconcentration system and method for use with gas chromatography
CN105424845A (en) Method for analyzing aroma components of flavoring material through GC/MS based on thermal desorption
JP2009180618A (en) Pretreatment apparatus and liquid chromatograph device
CN106267897A (en) Ginsenoside and the method for residual pesticide in sharp separation Radix Ginseng
Barba et al. Enantiomeric analysis of limonene and carvone by direct introduction of aromatic plants into multidimensional gas chromatography
Fornstedt et al. Modeling of preparative liquid chromatography
CN106501438A (en) For analyzing analytical equipment and the analysis method of tobacco juice composition
Lu et al. Simultaneous analysis of endogenetic and ectogenic plant hormones by pressurized capillary electrochromatography
CN104569253B (en) The assay method of benzo [a] pyrene in a kind of cigarette mainstream flue gas
CN112444570B (en) Method for detecting organic matters in titanium tetrachloride by headspace solid-phase microextraction gas chromatography-mass spectrometry
JP5076807B2 (en) Multi-dimensional gas chromatograph
Blanch et al. A contribution to the study of the enantiomeric composition of a chiral constituent in hazelnut oil used in the detection of adulterated olive oil
CN109073611B (en) Method and apparatus for flame ionization detection for chromatography
CN104007219A (en) Liquid chromatography and enzyme electrode combining device and application thereof
Nitz et al. Thermal desorption-and sniffing-mass spectrometric monitoring of enriched trace compounds by means of a “live total transfer system”

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502033

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907230

Country of ref document: EP

Kind code of ref document: A1