WO2019163136A1 - X-ray inspection method - Google Patents

X-ray inspection method Download PDF

Info

Publication number
WO2019163136A1
WO2019163136A1 PCT/JP2018/007019 JP2018007019W WO2019163136A1 WO 2019163136 A1 WO2019163136 A1 WO 2019163136A1 JP 2018007019 W JP2018007019 W JP 2018007019W WO 2019163136 A1 WO2019163136 A1 WO 2019163136A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray inspection
inspection method
image processing
defect data
candidates
Prior art date
Application number
PCT/JP2018/007019
Other languages
French (fr)
Japanese (ja)
Inventor
昌幸 小林
竜己 服部
渋谷 久恵
宮本 敦
一亥 水野
秀明 笹澤
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to PCT/JP2018/007019 priority Critical patent/WO2019163136A1/en
Publication of WO2019163136A1 publication Critical patent/WO2019163136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to an X-ray inspection method.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2016-118445 (Patent Document 1) is a technique for inspecting an internal defect of a semiconductor device using X-rays.
  • X-rays emitted from an X-ray source are irradiated onto a sample to be inspected on which a structure mounted on a rotary stage is formed, and X-rays transmitted through the sample irradiated with X-rays are disclosed.
  • Is detected by an X-ray detector, and an X-ray transmission image is formed by processing an X-ray transmitted through the sample detected by the X-ray detector by an image processing unit to form an X-ray transmission image.
  • An X-ray inspection method is disclosed in which an X-ray transmission image is processed by a defect determination unit to detect a defect in a sample.
  • an imaging condition of a sample and an image processing parameter for determining a defect are set on an inspection apparatus before the inspection. Specifically, a defect to be detected is given to an inspection apparatus or a user as a correct defect, and imaging conditions and image processing parameters are set depending on whether or not the correct defect can be detected.
  • a defect to be detected is given to an inspection apparatus or a user as a correct defect, and imaging conditions and image processing parameters are set depending on whether or not the correct defect can be detected.
  • X-ray inspection since defects may exist inside the sample, it is difficult to obtain accurate defect information.
  • Patent Document 1 describes an X-ray inspection method for a semiconductor device, but does not disclose a specific method for setting imaging conditions such as an X-ray irradiation time and setting image processing parameters such as a threshold.
  • imaging conditions such as an X-ray irradiation time
  • image processing parameters such as a threshold.
  • the user visually determines the image quality while changing the irradiation time condition, and obtains an appropriate irradiation time condition, or determines whether the detection result is good or bad while changing the threshold value. It is assumed that a process is generated such that an appropriate threshold value is obtained by visual inspection.
  • an object of the present invention is to provide an X-ray inspection method for determining appropriate imaging conditions and image processing parameters for a sample whose correct defect information is unknown.
  • the present invention is an X-ray inspection method for obtaining an image of a sample using an X-ray inspection apparatus and performing image processing to obtain a defect detection result of the sample.
  • FIG. 1 is a plan view of a wafer in Example 1.
  • FIG. 1 is a sectional view of a wafer in Example 1.
  • FIG. It is explanatory drawing of the X-ray transmissive image obtained when X-rays are irradiated from the direction inclined with respect to the wafer in Example 1. It is a figure explaining the flow of the image-analysis process which performs defect detection and size measurement from the X-ray transmission image in Example 1.
  • FIG. It is an example of the X-ray transmission image obtained by irradiating X-rays from the diagonal to the wafer in which one layer TSV in Example 1 was formed.
  • 6 is a flowchart illustrating a processing flow for acquiring reference defect data according to the first exemplary embodiment.
  • 6 is a graph illustrating a method for selecting an image processing parameter from a plurality of image processing parameter candidates based on a plurality of reference defect data candidates in the first embodiment.
  • 12 is a flowchart illustrating processing for selecting an imaging condition from a plurality of imaging condition candidates in the second embodiment.
  • 10 is a graph illustrating a method for selecting an imaging condition from a plurality of imaging condition candidates in the second embodiment.
  • 12 is a flowchart illustrating processing for selecting an image processing parameter from a plurality of image processing parameter candidates and processing for selecting an imaging condition from a plurality of imaging condition candidates in the third embodiment.
  • FIG. 10 is a graph showing a method of selecting an image processing parameter based on the number of coincidences or the number of mismatches between reference defect data and defect detection positions of a plurality of detection result candidates in Example 3.
  • 10 is a graph showing a method for selecting an imaging condition based on the number of coincidence or the number of mismatches in the detection positions of detection results obtained with a plurality of imaging condition candidates in Example 3 and reference defect data.
  • FIG. 10 is an example of a GUI screen for setting imaging conditions in Embodiment 4.
  • FIG. FIG. 10 is an example of a GUI screen for creating a recipe in Embodiment 4.
  • FIG. 1 is a schematic diagram showing the configuration of an X-ray inspection apparatus.
  • an X-ray source 1 irradiates a wafer 2 which is a sample to be inspected with X-rays.
  • the X-ray source for example, a so-called microfocus X-ray source that has a small focal size and is advantageous in terms of high-resolution imaging can be used.
  • the translation stage 3 holds the wafer 2 and moves the wafer 2 in the X-axis, Y-axis, and Z-axis directions.
  • the rotary stage 4 holds the translation stage 3 and rotates the wafer 2 by rotational movement in the XY plane.
  • the central parts of the translation stage 3 and the rotary stage 4 can be made of glass (not shown) that absorbs little X-rays.
  • the X-ray detector 5 is disposed at a position facing the X-ray source 1 with the translation stage 3 and the rotation stage 4 interposed therebetween.
  • an image intensifier, a CCD camera, or the like can be used for the X-ray detector 5.
  • X-rays emitted from the X-ray source 1 are absorbed by the wafer 2 disposed on the translation stage 3, and the transmitted X-rays are detected by the X-ray detector 5.
  • the magnification and the width of the field of view are changed.
  • the X-ray detector 5 can rotate in the XZ plane around the X-ray generation position of the X-ray source 1, and the translation stage 3 translates the wafer 2 in accordance with the rotation angle, so that the measurement region does not shift. Adjust as follows.
  • the X-ray source 1, the translation stage 3, the rotary stage 4, and the X-ray detector 5 are arranged inside the X-ray shielding wall 6 so that X-rays do not leak outside.
  • the X-ray source controller 101 controls the tube voltage of the X-ray source 1, the probe current, the applied magnetic field to the electron optical system, the applied voltage, and the ON / OFF of X-ray generation.
  • the stage controller 102 is the translation stage 3 and the rotary stage 4.
  • the X-ray detector controller 103 reads data from the X-ray detector 5 and sets sensitivity, exposure time, average number of sheets, and the like.
  • the X-ray source controller 101, the stage controller 102, and the X-ray detector controller 103 are controlled by the control unit 104.
  • An X-ray transmission image is picked up while moving the wafer 2 based on the inspection conditions input in advance to the control unit 104 through the GUI.
  • the image analysis unit 105 receives an X-ray transmission image and a pre-input image processing parameter from the control unit 104, discriminates defects such as voids by image analysis, and measures the size and position of an inspection target such as TSV. The result is displayed on the input / output unit 106.
  • defects such as vacancies exist in the TSV or microbump
  • the luminance value of the defective portion is higher than that of the peripheral portion in the X-ray transmission image.
  • threshold processing By performing threshold processing on the image, a defective area can be extracted. Specifically, a region having a luminance value higher than the threshold value can be a defective portion, and a region having a lower luminance value can be a non-defective portion.
  • FIG. 2 and 3 show an example of a schematic diagram of the wafer 2.
  • 2 is a plan view
  • FIG. 3 is a cross-sectional view taken along the line A-A 'in FIG.
  • a plurality of dies 10 are regularly formed on the wafer 2, and TSVs 11 are formed on a part of the dies 10.
  • the diameter of TSV11 is ⁇ , and is formed at a pitch of Px in the X-axis direction and Py in the Y-axis direction.
  • the first layer 13, the second layer 14, and the third layer 15 are laminated, and the respective layers are connected by the TSV 11 and the microbump 12.
  • the length of TSV11 is h.
  • TSV is mainly made of Cu. Since Cu has a larger atomic number than Si constituting most of the wafer 2, X-ray absorption is large. That is, when the second layer 14 is irradiated with X-rays 200 and transmitted X-rays are detected by the X-ray detector 5, the region where TSV11 does not exist in the captured image becomes bright because X-ray absorption is small, and TSV11 is The existing region becomes dark because of the large X-ray absorption. Further, if the void 20 is present inside the TSV 11, X-ray absorption is reduced in the void region, and only the void region becomes brighter than the surroundings, and the void can be detected with this brightness difference.
  • an X-ray transmission image including a plurality of TSVs 11 is obtained by tilting in the ⁇ direction with respect to the wafer 2 on which TSVs 11 are formed on only one layer.
  • FIG. 6 shows an example of an X-ray transmission image.
  • 60 is an example of an X-ray transmission image
  • the right side is an enlarged view thereof.
  • the transmission image 65 has a shape obtained by rounding the left and right sides of a horizontally long rectangle.
  • an image 66 brighter than the surroundings is observed.
  • the image analysis unit 105 receives the X-ray image 60 from the control unit 104, performs preprocessing S601, and creates an inspection image 61.
  • the preprocessing is processing for obtaining an appropriate inspection image 61, and includes shading correction, contrast correction, noise removal, and the like. Processing for correcting imaging distortion caused by the X-ray detector may be included.
  • TSV region extraction S602 is performed using the inspection image 61. Since the transmission image 65 of the TSV is darker than the peripheral portion, binarization is performed with the darker side being 1 and the brighter side being 0.
  • the binarization threshold can be automatically determined by using Otsu's method or the like. Assuming the presence of the void 20, after tracing the contour of one pattern on the binary image, the convex hull is obtained and the inside is filled with one. Labeling identifies each one separately and extracts information such as area, perimeter length, barycentric position, and minimum and maximum X and Y coordinates.
  • non-defective image creation S603 is performed using the inspection image 61 and the TSV area information.
  • the non-defective image 62 is an image simulating a normal TSV image.
  • optical inspection a method of calculating the average and median by superimposing a plurality of identical patterns using the periodicity of the pattern on the wafer is often used. Even if they are regularly arranged, the shape and size change depending on the imaging position, so a non-defective image of the TSV is created from the transmission image 65 of one TSV. For example, an image in which a bright void portion is darkened is created by applying a minimum value filter of a specified size to the inspection image 61 and then applying a maximum value filter of the same size (opening). Alternatively, by dividing the region according to the distance from the outer periphery and center of the TSV, calculating an average or median for each region and replacing the value, a vertically normal and symmetric normal image is created.
  • defect detection S604 is performed using the inspection image 61 and the non-defective image 62.
  • a difference image obtained by subtracting the non-defective image 62 from the inspection image 61 is created, binarized by threshold processing, and labeling is performed.
  • the labeled region is a defect candidate, but includes false information detected due to a luminance difference due to density variation that cannot be said to be noise or a defect at the time of image acquisition. For this reason, for each defect area, feature quantities such as area, roundness, relative position with TSV, and luminance value are calculated, and only those having a high probability of defect are extracted as defects by comparison with a predetermined value.
  • learning is performed by teaching whether the defect is a defect or a false report on the feature space, and the defect and the false report are identified using a classification criterion obtained by the learning.
  • the position / size calculation processing S605 of each TSV area extracted in S602 and the defect area extracted in S604 is performed. Specifically, the center of gravity position of the TSV region, the rectangular size surrounding the TSV region, the center of gravity position of the defect region, the size (area, etc.), and the like.
  • position / size correction processing S606 is performed using the parameter 63 input in advance, and TSV or defect-corrected position / size information 64 is output.
  • TSV or defect-corrected position / size information 64 is output.
  • These pieces of information are displayed in a list on the file output and GUI screen in the input / output unit 106.
  • the input / output unit 106 can also display an image in which a defect detected in the input image is marked.
  • FIG. 7 shows a method of determining appropriate imaging conditions and image processing parameters for a sample whose correct defect information is unknown in the configuration of the X-ray inspection apparatus described in FIG. This will be described with reference to FIG.
  • FIG. 7 is a flowchart showing a processing flow for acquiring reference defect data in this embodiment.
  • S101 a reference defect data acquisition image is acquired under preset reference defect data acquisition conditions.
  • the reference defect data acquisition condition is an imaging condition in which the image quality is better than that of an actual inspection image.
  • a condition in which the X-ray irradiation time condition is longer than that during actual inspection can be set as the reference defect data acquisition condition. This is because in the X-ray transmission image, the longer the irradiation time, the lower the quantum noise and the better the image quality.
  • the irradiation time it is preferable to set the irradiation time as long as possible.
  • the irradiation time may be set so that the contrast and the signal / noise ratio (S / N ratio) become a preset value at a specific position of the sample.
  • image processing is executed with a plurality of image processing parameter candidates to obtain a plurality of reference defect data candidates.
  • the image processing parameter may be a threshold value of the threshold processing, or another image processing parameter may be applied according to the content of an image processing algorithm for determining the presence or absence of a defect.
  • an image processing parameter is selected from a plurality of image processing parameter candidates based on the plurality of reference defect data candidates (details will be described later).
  • the reference defect data candidate corresponding to the image processing parameter becomes the reference defect data.
  • the determination of the reference defect data is completed (S104).
  • FIG. 8 is a graph showing a method of selecting an image processing parameter from image processing parameter candidates based on a plurality of reference defect data candidates in the present embodiment.
  • a threshold is used as an image processing parameter, and the reference defect data corresponds to the number of defects.
  • a plurality of defect numbers (reference defect data candidates) are obtained with a plurality of threshold values (image processing parameter candidates) by the processing flow shown in FIG.
  • the threshold is a threshold for threshold processing in S604 of FIG. In the case of a void, a region having a luminance value higher than the threshold is a defective portion, and a region having a lower luminance value is a non-defective portion.
  • This graph shows that an appropriate threshold value can be selected from the shape of the threshold value dependency 201 of the number of defects.
  • the image processing parameter is selected based on the comparison between the reference defect data and a plurality of image processing parameter candidates. That is, when the threshold value is made lower than the appropriate threshold value 202, the number of defects rapidly increases, and more defects are detected than the ideal number of defects 203 (overdetection). This overdetection is caused by erroneously discriminating a minute change in luminance value due to quantum noise as a defect. On the other hand, when the threshold value is made higher than the appropriate threshold value 202, the number of defects decreases, and defects are detected with fewer than the ideal number of defects 203 (missing).
  • an appropriate threshold value 202 it is possible to estimate an appropriate threshold value 202 by finding a sudden change point of the defect number from the shape of the threshold value dependency 201 of the defect number.
  • the threshold value dependency 201 of the defect number has an inflection point, it is possible to set a threshold value independent of the user by calculating the inflection point and selecting a threshold value corresponding to the inflection point. It becomes.
  • a reference defect size may be set in advance, and the threshold value dependency of the defect number may be calculated according to the set defect size. Thereby, an appropriate threshold value can be set according to the defect size to be inspected.
  • a threshold value may be set lower or higher than the inflection point depending on the purpose of inspection.
  • a threshold value is set lower than the inflection point when it is desired to suppress an over-detection even if over-detection is included.
  • the threshold value is described as an example of the image processing parameter.
  • the image processing parameter may be applied to other image processing parameters (for example, the parameter relating to the preprocessing S601 in FIG. 5, the feature amount of S604, etc.).
  • This embodiment is an example in which an imaging condition is automatically set by selecting an imaging condition from a plurality of imaging condition candidates in the first embodiment. Since the configuration of the X-ray inspection apparatus and the method for acquiring the reference defect data are the same as those in the first embodiment, the differences will be described with reference to FIGS.
  • FIG. 9 is a flowchart showing a flow of processing for selecting an imaging condition from a plurality of imaging condition candidates in the present embodiment.
  • Steps S101 to S104 are the same as in the description of FIG.
  • an irradiation time condition will be described as an example of the imaging condition.
  • S201 an image is acquired with a plurality of irradiation time condition candidates.
  • a plurality of irradiation time conditions shorter than the reference defect data acquisition conditions are set in advance, and an image is acquired under each irradiation time condition.
  • the image may be acquired by repeatedly irradiating the sample with X-rays according to each irradiation time condition, or by irradiating X-rays for a long time only once, storing images of each frame before integration, It may be generated by changing the cumulative number of stored images. In the latter case, since a plurality of images having different irradiation times can be obtained by one X-ray irradiation, the net irradiation time on the sample can be reduced.
  • the presence or absence of defects is determined for images with different irradiation time conditions, and detection results are obtained.
  • the image processing parameter can be set by using the method described with reference to FIG.
  • an irradiation time is selected based on the detection result corresponding to each irradiation time condition (details will be described later).
  • the selection of the irradiation time condition (imaging condition) from the plurality of irradiation time condition candidates (imaging time condition candidates) is thus completed.
  • FIG. 10 is a graph showing a method for selecting an imaging condition from a plurality of imaging condition candidates in the present embodiment.
  • the number of defects (detection result) corresponding to each irradiation time (imaging condition) was obtained by the method described in FIG. 9 and plotted as the irradiation time dependency 301 of the number of defects.
  • the number of defects Under a long irradiation time condition, the number of defects is close to the number of defects 302 of the reference defect data. As the irradiation time condition becomes shorter, the number of defects decreases. This is because a threshold value is set so as to discriminate a luminance value change due to quantum noise from a non-defective portion.
  • the number of missed defects can be estimated from the difference 303 between the number of defects in each irradiation time condition and the number of defects in the reference defect data. It is possible to select an appropriate irradiation time condition from a plurality of irradiation time condition candidates by setting the level of the number of missed defects that can be allowed in advance.
  • the imaging condition may be applied to other imaging conditions that affect the image quality of the X-ray transmission image ( For example, X-ray source output, X-ray focal spot size, magnification, presence / absence or type of X-ray filter, X-ray energy, etc.).
  • the image processing parameters are automatically set in the second embodiment so that the image processing parameters are automatically selected based on the number of matches or the number of mismatches between the reference defect data and the defect detection positions of the plurality of detection result candidates.
  • the imaging condition is automatically set by selecting the imaging condition based on the number of coincidence or the number of mismatches of the defect detection positions between the plurality of detection results obtained from the plurality of imaging condition candidates and the reference defect data. did. Since the configuration of the X-ray inspection apparatus and the method for acquiring the reference defect data are the same as those in the first embodiment, the differences will be described with reference to FIGS.
  • FIG. 11 is a flowchart showing processing for selecting an image processing parameter from a plurality of image processing parameter candidates and processing for selecting an imaging condition from a plurality of imaging condition candidates in the present embodiment.
  • the imaging condition is the irradiation time condition. Since S101 to S104 are the same as the description of FIG. S201 is similar to the description of FIG.
  • image processing is executed on each of the images obtained in S201 with a plurality of preset image processing parameter candidates to obtain a plurality of detection result candidates.
  • the image processing parameters are the same image processing parameters as those in S102, and are, for example, threshold values for threshold processing (see Example 1).
  • an image processing parameter is selected for each irradiation time condition candidate based on the number of matches or the number of mismatches between the reference defect data and the defect detection position of the detection result candidate (details will be described later).
  • the defect detection result candidate corresponding to the image processing parameter determined in S307 is set as the defect detection result.
  • an irradiation time is selected based on the detection result for each irradiation time condition candidate obtained in S308 (details will be described later). This completes the selection of the image processing parameter and the selection of the imaging condition. Note that the flowchart described in FIG. 11 may be changed in order or performed in parallel without departing from the gist of the present invention.
  • FIG. 12 is a schematic diagram illustrating a method for calculating the number of matches and the number of mismatches between the reference defect data and the defect detection position of the detection result candidate in this embodiment.
  • reference defect data is obtained in S104, and a defect is detected at the position of the defect 402 in the visual field 401.
  • a detection result candidate is obtained and a defect is detected at the position of the defect 403.
  • the coincidence determination range 404 is set in advance, and whether the position coordinates match or does not match is determined based on whether or not the position coordinates of the defect 403 are inside the match determination range 404 from the position coordinates of the defect 402.
  • the number of matches is counted as 1 when inside, and the number of mismatches is counted as 1 when outside.
  • position coordinates match or mismatch are determined for all defects included in the detection result candidate, and the number of matches and the number of mismatches are calculated.
  • FIG. 13 is a graph showing a method of selecting an image processing parameter based on the number of coincidences or the number of inconsistencies between reference defect data and defect detection positions of a plurality of detection result candidates in this embodiment.
  • a threshold value will be described as an example of the image processing parameter.
  • the number of coincidences and the number of mismatches of position coordinates are calculated for a plurality of detection result candidates, and plotted as the threshold dependence 501 of the coincidence ratio and the threshold dependence 502 of the mismatch percentage. did.
  • the coincidence rate is calculated for each threshold value by (number of position coordinate matches) / (number of defects in reference defect data), and the mismatch rate is calculated by (number of position coordinate mismatches) / (number of defects of detection result candidates).
  • the threshold value is lowered, a minute change in luminance value is discriminated as a defective portion, and the coincidence rate increases. Also, the luminance value change due to quantum noise is erroneously determined as a defective part, so the mismatch rate also increases. Conversely, if the threshold value is increased, a minute luminance value change is determined as a non-defective part.
  • the coincidence rate and the non-coincidence rate decrease together. From the viewpoint of the performance of the inspection equipment, it is desirable that the match rate is high and the mismatch rate is low. Set the standard match rate and mismatch rate in advance, and select the appropriate threshold value by selecting the threshold value that satisfies the standard. It becomes possible to do.
  • FIG. 12 and 13 An irradiation time condition will be described as an example of the imaging condition.
  • the position coordinate coincidence rate and the disagreement rate are calculated, the disagreement rate at which the disagreement rate is the lowest in the threshold range where the coincidence rate satisfies the standard is calculated, and irradiation is performed. Plotted as time discordance rate dependence 601.
  • GUI Graphic User Interface
  • FIG. 15 shows an imaging condition setting screen of the GUI screen in this embodiment.
  • an inspection mode screen 130 for inspecting a wafer a recipe creation screen 131 for creating an inspection recipe
  • an imaging condition setting screen 132 for creating an inspection recipe
  • a load / unload screen 133 for loading and unloading a wafer.
  • the stage parameters such as the tube voltage of the X-ray source, the probe current, the irradiation time, the total number of sheets, the stage parameter reference distance magnification, the stage height, the tilt angle, and the rotation angle are input.
  • the reference distance is the distance from the X-ray source 1 to the X-ray detector 5, and when the magnification is input based on this, the stage height is calculated and displayed. Conversely, when the stage height is input, the magnification is calculated. Displayed.
  • the inclination angle is set so that the brightness contrast between the TSV and the void defect is sufficiently high in a range where the TSV does not overlap.
  • the rotation angle is set to be the smallest within a range where TSV images do not overlap.
  • the wafer is selected from the pull-down menu 134 and the pre-registered layout information is captured.
  • a die map on the wafer as shown in FIG. 2 is displayed, a user selects a die used for imaging condition setting, further displays TSV layout information in the die, and a user uses the position of a pattern used for imaging condition setting. specify.
  • the coordinates of the translation stage having the designated position as the center of the visual field are calculated and displayed on the stage coordinate display window 135, and the stage is moved to that position. Further, when the wafer layout information is not captured, the stage can be moved by inputting coordinates.
  • the stage can be translated and rotated by a control panel directly connected to the stage controller 102, and the display of the stage coordinates is updated with the movement. If the automatic rotation angle calculation button 136 is pressed in this state, the stage rotation angle without overlapping transmission images is automatically calculated, and the rotation angle of the rotary stage 4 is set to that angle.
  • an X-ray transmission image is displayed in real time, an arbitrary straight line 138 can be drawn, and its brightness profile 139 can be displayed.
  • the X-ray source is adjusted while confirming the brightness with the transmission image and the profile, and the stage is adjusted while confirming the size of the visual field and how the TSV is seen.
  • the reference defect data acquisition irradiation time input window 161 allows the user to input a reference defect data acquisition irradiation time, and acquires a reference defect data acquisition image according to the input value.
  • the irradiation time candidate input window 162 allows the user to input the maximum irradiation time, the minimum irradiation time, and the interval, and changes the irradiation time conditions at equal intervals between the minimum irradiation time and the maximum irradiation time according to the input value. Get an image.
  • FIG. 16 shows the recipe creation screen 131 of the GUI screen in the present embodiment.
  • wafer parameters such as wafer thickness, TSV diameter, TSV height, and defect detection parameters used for image processing and defect detection in defect detection processing are input. Further, a process of selecting a wafer from the pull-down menu 134 and designating an inspection area is performed.
  • the die selection button 140 is pressed, a die map on the wafer as shown in FIG. 2 is displayed, and the user selects an inspection target die.
  • the TSV layout information in the die is displayed by pressing the layout display button 141, and the inspection area is designated by the user.
  • the size and inclination of the inspection area are calculated according to the magnification, detector inclination angle, and stage rotation angle set on the imaging condition setting screen, and are set by arranging the inspection area of the size and inclination on the layout. .
  • the coordinates of the translation stage in which the set area is included in the field of view are calculated and displayed in the stage coordinate display window 135, and the stage is moved to that position.
  • the stage position may be finely adjusted by coordinate input or a control panel directly connected to the stage controller 102.
  • the add button 142 is pushed to the inspection object. With this process, one inspection area can be designated. In order to designate a plurality of inspection areas, the area designation from the layout display, the confirmation of the X-ray transmission image, and the addition of the inspection object are repeated. At this time, the set inspection region is displayed in the second and subsequent layout displays.
  • Various parameters and inspection area information set on the recipe creation screen 131 are saved together with parameters set on the imaging condition setting screen 132 when the recipe save button 143 is pressed.
  • the threshold candidate input window 151 allows the user to input a maximum threshold value, a minimum threshold value, and an interval, and obtains a plurality of defect detection result candidates according to the input value.
  • the match rate / mismatch rate input window 152 allows the user to input the match rate and mismatch rate standard values, and the image analysis unit 105 calculates threshold values, reference defect data, and the like based on the input value and the result of the defect detection candidate. Note that the number of matches or the number of matches may be used instead of the match rate and the mismatch rate.
  • the recipe created on the recipe creation screen 131 can be selected, and inspection can be started / stopped.
  • inspection results can be stored, read out and analyzed (not shown).
  • the inspection results include TSV position information of the world coordinates of the TSV or relative coordinates of the visual field center reference, or both, TSV size information of the diameter and height, the depth of the defect from the TSV top, the diameter of the defect in a true circle, It is an image such as a defect size information such as a longitudinal size and a transverse direction size, an image in which a detected defect is marked in an input image, and an image representing a TSV area.
  • the wafer set in the X-ray inspection apparatus 100 can be unloaded and the wafer stored in the hoop can be loaded (not shown).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

The objective of the present invention is to provide an X-ray inspection method for determining an appropriate imaging condition or image processing parameter for a sample having unknown correct defect information. To achieve this objective, this X-ray inspection method for using an X-ray inspection device to obtain an image of a sample and obtain a defect inspection result for the sample by subjecting the image to image processing is provided with: a step for obtaining an image for reference defect data acquisition under reference defect data acquisition conditions, a step for obtaining a plurality of reference defect data candidates using a plurality of different image processing parameter candidates, a step for selecting an image processing parameter from the plurality of image processing parameter candidates on the basis of the plurality of reference defect data candidates, and a step for obtaining reference defect data from the reference defect data candidate corresponding to the selected image processing parameter.

Description

X線検査方法X-ray inspection method
本発明は、X線検査方法に関する。 The present invention relates to an X-ray inspection method.
 半導体の高集積化が進み、近年では3D積層技術の進化も著しく、TSV(Through Si Via)やマイクロバンプ等の半導体積層技術の開発が進行している。この潮流に伴いTSVやマイクロバンプ等の電気接続部に発生する欠陥を非破壊で検査するニーズが高まっている。非破壊検査には、X線を半導体ウェハに照射し、その透過像より解析する手法が広く検討されている。 With the progress of high integration of semiconductors, the evolution of 3D stacking technology has been remarkable in recent years, and the development of semiconductor stacking technology such as TSV (Through Si Via) and micro bumps is progressing. Along with this trend, there is a growing need for non-destructive inspection of defects occurring in electrical connection parts such as TSVs and microbumps. For non-destructive inspection, a technique of irradiating a semiconductor wafer with X-rays and analyzing from the transmission image has been widely studied.
 X線を用いて半導体デバイスの内部欠陥を検査する技術として、特開2016-118445(特許文献1)がある。特許文献1には、X線源から発射したX線を回転ステージ上に載置されている構造物が形成された検査対象の試料に照射し、X線が照射された試料を透過したX線をX線検出器で検出し、X線検出器で検出した試料の内部を透過したX線を検出した信号を画像処理部で処理してX線透過像を形成し、画像処理部で形成したX線透過像を欠陥判定部で処理して試料の内部に欠陥を検出するX線検査方法が開示されている。 Japanese Unexamined Patent Application Publication No. 2016-118445 (Patent Document 1) is a technique for inspecting an internal defect of a semiconductor device using X-rays. In Patent Document 1, X-rays emitted from an X-ray source are irradiated onto a sample to be inspected on which a structure mounted on a rotary stage is formed, and X-rays transmitted through the sample irradiated with X-rays are disclosed. Is detected by an X-ray detector, and an X-ray transmission image is formed by processing an X-ray transmitted through the sample detected by the X-ray detector by an image processing unit to form an X-ray transmission image. An X-ray inspection method is disclosed in which an X-ray transmission image is processed by a defect determination unit to detect a defect in a sample.
特開2016-118445号公報Japanese Unexamined Patent Publication No. 2016-118445
 一般的な外観検査では、検査の事前に試料の撮像条件や欠陥判定のための画像処理パラメタを検査装置上で設定することが行われる。具体的には検出すべき欠陥を正解欠陥として検査装置又は使用者に与え、その正解欠陥を検出できるか否かで撮像条件や画像処理パラメタを設定することが行われている。しかしながらX線検査の場合、欠陥が試料の内部に存在することもあるため、正確な欠陥情報の取得が困難である。 In a general appearance inspection, an imaging condition of a sample and an image processing parameter for determining a defect are set on an inspection apparatus before the inspection. Specifically, a defect to be detected is given to an inspection apparatus or a user as a correct defect, and imaging conditions and image processing parameters are set depending on whether or not the correct defect can be detected. However, in the case of X-ray inspection, since defects may exist inside the sample, it is difficult to obtain accurate defect information.
 特許文献1には、半導体デバイスのX線検査方法が記載されているが、X線照射時間等の撮像条件の設定、閾値等の画像処理パラメタの設定に関して具体的な方法が開示されていない。このようなX線検査方法では、たとえば照射時間条件を変更しながら画像の出来栄えを使用者が目視により判定し、適当な照射時間条件を得る、あるいは閾値を変更しながら検出結果の良否を使用者が目視により判定し、適当な閾値を得るといった、工程の発生が想定される。 Patent Document 1 describes an X-ray inspection method for a semiconductor device, but does not disclose a specific method for setting imaging conditions such as an X-ray irradiation time and setting image processing parameters such as a threshold. In such an X-ray inspection method, for example, the user visually determines the image quality while changing the irradiation time condition, and obtains an appropriate irradiation time condition, or determines whether the detection result is good or bad while changing the threshold value. It is assumed that a process is generated such that an appropriate threshold value is obtained by visual inspection.
 正解欠陥情報が与えられない状態で上記の工程を実行した場合、使用者毎に画像の出来栄えや検出結果の判定基準が異なるため、撮像条件や画像処理パラメタが使用者に依存する。その結果、検査装置の性能が安定しなくなる問題が生じる。 When the above process is executed in a state where correct defect information is not given, the image quality and the detection criteria for the image are different for each user, so the imaging conditions and image processing parameters depend on the user. As a result, there arises a problem that the performance of the inspection apparatus becomes unstable.
 そこで、本発明は、正解欠陥情報が未知の試料に対し、適切な撮像条件、画像処理パラメタを決定するX線検査方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an X-ray inspection method for determining appropriate imaging conditions and image processing parameters for a sample whose correct defect information is unknown.
 本発明は、上記背景技術及び課題に鑑み、その一例を挙げるならば、X線検査装置を用いて試料の画像を取得し、画像処理をして試料の欠陥検出結果を得るX線検査方法であって、参照欠陥データ取得条件で参照欠陥データ取得用画像を得るステップと、異なる複数の画像処理パラメタ候補を用いて複数の参照欠陥データ候補を得るステップと、複数の参照欠陥データ候補に基づき複数の画像処理パラメタ候補から画像処理パラメタを選択するステップと、選択した画像処理パラメタに対応した参照欠陥データ候補から参照欠陥データを得るステップを備えた。 In view of the above-described background art and problems, the present invention is an X-ray inspection method for obtaining an image of a sample using an X-ray inspection apparatus and performing image processing to obtain a defect detection result of the sample. A step of obtaining an image for obtaining reference defect data under reference defect data obtaining conditions, a step of obtaining a plurality of reference defect data candidates using a plurality of different image processing parameter candidates, and a plurality based on the plurality of reference defect data candidates Selecting an image processing parameter from the image processing parameter candidates, and obtaining reference defect data from the reference defect data candidates corresponding to the selected image processing parameter.
 本発明によれば、正解欠陥情報が未知の試料に対し、適切な撮像条件、画像処理パラメタを決定するX線検査方法を提供できる。 According to the present invention, it is possible to provide an X-ray inspection method for determining appropriate imaging conditions and image processing parameters for a sample whose correct defect information is unknown.
実施例1におけるX線検査装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the X-ray inspection apparatus in Example 1. FIG. 実施例1におけるウェハの平面図である。1 is a plan view of a wafer in Example 1. FIG. 実施例1におけるウェハの断面図である。1 is a sectional view of a wafer in Example 1. FIG. 実施例1におけるウェハに対して傾斜した方向からX線を照射した場合に得られるX線透過像の説明図である。It is explanatory drawing of the X-ray transmissive image obtained when X-rays are irradiated from the direction inclined with respect to the wafer in Example 1. 実施例1におけるX線透過像から欠陥検出およびサイズ計測を行う画像解析処理のフローを説明する図である。It is a figure explaining the flow of the image-analysis process which performs defect detection and size measurement from the X-ray transmission image in Example 1. FIG. 実施例1における1層のTSVが形成されたウェハに斜めからX線を照射して得られるX線透過像の例である。It is an example of the X-ray transmission image obtained by irradiating X-rays from the diagonal to the wafer in which one layer TSV in Example 1 was formed. 実施例1における参照欠陥データを取得する処理フローを示すフローチャートである。6 is a flowchart illustrating a processing flow for acquiring reference defect data according to the first exemplary embodiment. 実施例1における複数の参照欠陥データ候補に基づき複数の画像処理パラメタ候補から画像処理パラメタを選択する方法を示すグラフである。6 is a graph illustrating a method for selecting an image processing parameter from a plurality of image processing parameter candidates based on a plurality of reference defect data candidates in the first embodiment. 実施例2における複数の撮像条件候補から撮像条件を選択する処理を示すフローチャートである。12 is a flowchart illustrating processing for selecting an imaging condition from a plurality of imaging condition candidates in the second embodiment. 実施例2における複数の撮像条件候補から撮像条件を選択する方法を示すグラフである。10 is a graph illustrating a method for selecting an imaging condition from a plurality of imaging condition candidates in the second embodiment. 実施例3における複数の画像処理パラメタ候補から画像処理パラメタを選択する処理と、複数の撮像条件候補から撮像条件を選択する処理を示すフローチャートである。12 is a flowchart illustrating processing for selecting an image processing parameter from a plurality of image processing parameter candidates and processing for selecting an imaging condition from a plurality of imaging condition candidates in the third embodiment. 実施例3における参照欠陥データと検出結果候補の欠陥検出位置の一致数、または不一致数を算出する方法を示す模式図である。It is a schematic diagram which shows the method of calculating the coincidence number or the mismatch number of the defect detection position of the reference defect data and the detection result candidate in the third embodiment. 実施例3における参照欠陥データと複数の検出結果候補の欠陥検出位置の一致数、または不一致数に基づき画像処理パラメタを選択する方法を示すグラフである。10 is a graph showing a method of selecting an image processing parameter based on the number of coincidences or the number of mismatches between reference defect data and defect detection positions of a plurality of detection result candidates in Example 3. 実施例3における複数の撮像条件候補で得た検出結果と参照欠陥データとの欠陥検出位置の一致数、または不一致数に基づき撮像条件を選択する方法を示すグラフである。10 is a graph showing a method for selecting an imaging condition based on the number of coincidence or the number of mismatches in the detection positions of detection results obtained with a plurality of imaging condition candidates in Example 3 and reference defect data. 実施例4における撮像条件を設定するGUI画面の一例である。FIG. 10 is an example of a GUI screen for setting imaging conditions in Embodiment 4. FIG. 実施例4におけるレシピを作成するGUI画面の一例である。FIG. 10 is an example of a GUI screen for creating a recipe in Embodiment 4. FIG.
 以下、本発明の実施例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本実施例の前提となる、X線検査装置を用いて試料の画像を取得し、画像処理をして試料の欠陥検出結果を得る方法について説明する。 First, a method for obtaining a sample defect detection result by acquiring an image of a sample using an X-ray inspection apparatus, which is a premise of the present embodiment, and performing image processing will be described.
 図1はX線検査装置の構成を示す模式図である。図1において、X線源1は検査対象の試料であるウェハ2にX線を照射する。X線源1は、例えば焦点寸法が小さく、高分解能撮像の面で有利な、いわゆるマイクロフォーカスX線源を用いることができる。並進ステージ3はウェハ2を保持し、X軸、Y軸、Z軸方向にウェハ2を移動させる。回転ステージ4は並進ステージ3を保持し、XY平面内の回転移動によりウェハ2を回転移動させる。並進ステージ3、回転ステージ4の中央部はX線の吸収が小さいガラス(図示せず)で構成することができる。X線検出器5は並進ステージ3、回転ステージ4を挟んで、X線源1と対向する位置に配置されている。ここで、X線検出器5にはイメージインテンシファイアとCCDカメラ等を用いることができる。X線源1から照射されたX線は並進ステージ3の上に配置されたウェハ2で吸収され、その透過X線はX線検出器5で検出される。並進ステージ3でウェハ2の位置を変えることで倍率と視野の広さを変更する。X線検出器5はX線源1のX線発生位置を中心にXZ面内の回転が可能であり、その回転角度に応じて並進ステージ3でウェハ2を並進移動させ、測定領域がずれないように調整する。上記、X線源1、並進ステージ3、回転ステージ4、X線検出器5はX線遮蔽壁6の内部に配置され、外部にX線が漏洩しないようになっている。 FIG. 1 is a schematic diagram showing the configuration of an X-ray inspection apparatus. In FIG. 1, an X-ray source 1 irradiates a wafer 2 which is a sample to be inspected with X-rays. As the X-ray source 1, for example, a so-called microfocus X-ray source that has a small focal size and is advantageous in terms of high-resolution imaging can be used. The translation stage 3 holds the wafer 2 and moves the wafer 2 in the X-axis, Y-axis, and Z-axis directions. The rotary stage 4 holds the translation stage 3 and rotates the wafer 2 by rotational movement in the XY plane. The central parts of the translation stage 3 and the rotary stage 4 can be made of glass (not shown) that absorbs little X-rays. The X-ray detector 5 is disposed at a position facing the X-ray source 1 with the translation stage 3 and the rotation stage 4 interposed therebetween. Here, an image intensifier, a CCD camera, or the like can be used for the X-ray detector 5. X-rays emitted from the X-ray source 1 are absorbed by the wafer 2 disposed on the translation stage 3, and the transmitted X-rays are detected by the X-ray detector 5. By changing the position of the wafer 2 by the translation stage 3, the magnification and the width of the field of view are changed. The X-ray detector 5 can rotate in the XZ plane around the X-ray generation position of the X-ray source 1, and the translation stage 3 translates the wafer 2 in accordance with the rotation angle, so that the measurement region does not shift. Adjust as follows. The X-ray source 1, the translation stage 3, the rotary stage 4, and the X-ray detector 5 are arranged inside the X-ray shielding wall 6 so that X-rays do not leak outside.
 X線源コントローラ101はX線源1の管電圧、プローブ電流、電子光学系への印加磁場、印加電圧、X線発生のON/OFFを制御し、ステージコントローラ102は並進ステージ3、回転ステージ4の移動座標を制御し、X線検出器コントローラ103はX線検出器5からのデータの読み込みと感度、露光時間、平均化枚数等の設定を行う。X線源コントローラ101、ステージコントローラ102、X線検出器コントローラ103は制御部104で制御される。GUIを通じて制御部104に事前に入力された検査条件に基づき、ウェハ2を移動させつつ、X線透過像を撮像する。 The X-ray source controller 101 controls the tube voltage of the X-ray source 1, the probe current, the applied magnetic field to the electron optical system, the applied voltage, and the ON / OFF of X-ray generation. The stage controller 102 is the translation stage 3 and the rotary stage 4. The X-ray detector controller 103 reads data from the X-ray detector 5 and sets sensitivity, exposure time, average number of sheets, and the like. The X-ray source controller 101, the stage controller 102, and the X-ray detector controller 103 are controlled by the control unit 104. An X-ray transmission image is picked up while moving the wafer 2 based on the inspection conditions input in advance to the control unit 104 through the GUI.
 画像解析部105は、制御部104からX線透過像と事前に入力された画像処理パラメタを受け取り、画像解析によりボイド等の欠陥を判別し、TSV等の検査対象物のサイズおよび位置を計測し、結果を入出力部106に表示する。TSVやマイクロバンプに空孔等の欠陥が存在する場合、X線透過像では欠陥部が周辺部より輝度値が高くなる。画像を閾値処理することで、欠陥領域を抽出することができる。具体的には閾値より輝度値が高い領域を欠陥部、低い領域が非欠陥部とすることができる。 The image analysis unit 105 receives an X-ray transmission image and a pre-input image processing parameter from the control unit 104, discriminates defects such as voids by image analysis, and measures the size and position of an inspection target such as TSV. The result is displayed on the input / output unit 106. When defects such as vacancies exist in the TSV or microbump, the luminance value of the defective portion is higher than that of the peripheral portion in the X-ray transmission image. By performing threshold processing on the image, a defective area can be extracted. Specifically, a region having a luminance value higher than the threshold value can be a defective portion, and a region having a lower luminance value can be a non-defective portion.
 図2、図3にウェハ2の模式図の一例を示す。図2は平面図、図3は図2内のA-A’の断面図を示している。ウェハ2には複数のダイ10が規則的に形成されており、ダイ10の一部にTSV11が形成されている。TSV11の直径はΦであり、X軸方向にはPx、Y軸方向にはPyのピッチで形成されている。図3では、第一の層13、第二の層14、第三の層15が積層されており、それぞれの層をTSV11とマイクロバンプ12で接続している。TSV11の長さはhである。 2 and 3 show an example of a schematic diagram of the wafer 2. 2 is a plan view, and FIG. 3 is a cross-sectional view taken along the line A-A 'in FIG. A plurality of dies 10 are regularly formed on the wafer 2, and TSVs 11 are formed on a part of the dies 10. The diameter of TSV11 is Φ, and is formed at a pitch of Px in the X-axis direction and Py in the Y-axis direction. In FIG. 3, the first layer 13, the second layer 14, and the third layer 15 are laminated, and the respective layers are connected by the TSV 11 and the microbump 12. The length of TSV11 is h.
 図4を用いて、ψ方向に傾斜させてX線透過像を取得した時の説明を行う。ここでは、ウェハ2の第二の層14に形成されたTSV11を1つだけ取り出したXZ断面図で説明を行う。TSVは主にCuで形成されており、Cuはウェハ2の大部分を構成するSiよりも原子番号が大きいため、X線の吸収が大きい。つまり、第二の層14にX線200を照射し、X線検出器5で透過X線を検出した場合、撮像画像ではTSV11が存在しない領域はX線の吸収が小さいため明るくなり、TSV11が存在する領域はX線の吸収が大きいため暗くなる。さらにTSV11内部にボイド20が存在すれば、ボイド領域ではX線の吸収が小さくなり、ボイド領域だけが周辺よりも明るくなり、この明るさの差をもって、ボイドを検出することができる。 Referring to FIG. 4, an explanation will be given when an X-ray transmission image is acquired by tilting in the ψ direction. Here, description will be made with reference to an XZ sectional view in which only one TSV 11 formed on the second layer 14 of the wafer 2 is taken out. TSV is mainly made of Cu. Since Cu has a larger atomic number than Si constituting most of the wafer 2, X-ray absorption is large. That is, when the second layer 14 is irradiated with X-rays 200 and transmitted X-rays are detected by the X-ray detector 5, the region where TSV11 does not exist in the captured image becomes bright because X-ray absorption is small, and TSV11 is The existing region becomes dark because of the large X-ray absorption. Further, if the void 20 is present inside the TSV 11, X-ray absorption is reduced in the void region, and only the void region becomes brighter than the surroundings, and the void can be detected with this brightness difference.
 ψ=0度、つまり第二の層14の鉛直方向からX線200を照射した場合には、TSV11領域を通過するX線を検出する画素が少なく、かつ該当画素に入射するX線のTSV11での吸収が最大となるため、プロファイル30のようにTSV存在領域が非常に暗くなる。また、TSV11内部にボイド20が存在していても、TSV11での吸収がそもそも非常に大きいため、コントラストが悪く、検出性能が低下する。 When ψ = 0 degrees, that is, when X-rays 200 are irradiated from the vertical direction of the second layer 14, there are few pixels that detect X-rays passing through the TSV11 region, and the XV TSV11 incident on the corresponding pixels As a result, the TSV existence area becomes very dark like the profile 30. Even if the void 20 exists in the TSV 11, the absorption at the TSV 11 is very large in the first place, so that the contrast is poor and the detection performance is deteriorated.
 一方、ψ方向に傾斜させてX線を照射した場合には(例えばψ=60度)、TSV11領域を通過したX線を検出する画素が増加し、かつ該当画素に入射するX線のTSV11での吸収もψ=0度のときよりも小さくなり、プロファイル31のようにボイド20をより高いコントラストで検出することが可能となる。 On the other hand, when X-rays are irradiated while being tilted in the ψ direction (for example, ψ = 60 degrees), the number of pixels that detect X-rays that have passed through the TSV11 region increases and the TSV11 of the X-rays that are incident on the corresponding pixels. Is also smaller than when ψ = 0 °, and the void 20 can be detected with a higher contrast as in the profile 31.
 このようにウェハに対してψ方向に傾斜させてX線透過像を取得することでTSV領域に対するボイド部分の明るさコントラストが大きくなり、TSV内部のボイドの検出精度を向上させることが可能となる。 By acquiring an X-ray transmission image by tilting in the ψ direction with respect to the wafer in this way, the brightness contrast of the void portion with respect to the TSV region is increased, and the void detection accuracy inside the TSV can be improved. .
 図5を用いて、画像解析部105における処理フローを説明する。ここでは、一層のみにTSV11が形成されたウェハ2を対象とし、ψ方向に傾斜させて複数のTSV11を含むX線透過像を取得した場合を例とする。図6にX線透過画像例を示す。図6において、60がX線透過画像例であって、右側はその拡大図である。図6に示すように、TSV11がほぼ円筒形状である場合、透過像65は横長の長方形の左右を丸めたような形となる。また、TSV11の内部にボイド20が存在する場合、周囲より明るい像66が観測される。 The processing flow in the image analysis unit 105 will be described with reference to FIG. Here, as an example, an X-ray transmission image including a plurality of TSVs 11 is obtained by tilting in the ψ direction with respect to the wafer 2 on which TSVs 11 are formed on only one layer. FIG. 6 shows an example of an X-ray transmission image. In FIG. 6, 60 is an example of an X-ray transmission image, and the right side is an enlarged view thereof. As shown in FIG. 6, when the TSV 11 has a substantially cylindrical shape, the transmission image 65 has a shape obtained by rounding the left and right sides of a horizontally long rectangle. In addition, when the void 20 exists inside the TSV 11, an image 66 brighter than the surroundings is observed.
 図5において、画像解析部105は制御部104からX線画像60を受け取り、前処理S601を行い、検査画像61を作成する。前処理は適正な検査画像61を得るための処理であり、シェーディング補正、コントラスト補正、ノイズ除去等を含む。X線検出器起因の撮像歪を補正する処理を含めてもよい。 5, the image analysis unit 105 receives the X-ray image 60 from the control unit 104, performs preprocessing S601, and creates an inspection image 61. The preprocessing is processing for obtaining an appropriate inspection image 61, and includes shading correction, contrast correction, noise removal, and the like. Processing for correcting imaging distortion caused by the X-ray detector may be included.
 次に、検査画像61を用いてTSV領域抽出S602を行う。TSVの透過像65は周辺部よりも暗いため、暗い方を1、明るい方を0とする二値化を行う。二値化閾値は、大津の方法等を利用すれば自動で定めることができる。ボイド20が存在することを想定して、二値画像上で1のパターンの輪郭追跡を行ったのち凸包を求め内側を1で塗りつぶす。ラベリングにより1個ずつ別々のものとして識別し、それぞれの面積、周囲長、重心位置、XおよびY座標の最小と最大等の情報を抽出する。 Next, TSV region extraction S602 is performed using the inspection image 61. Since the transmission image 65 of the TSV is darker than the peripheral portion, binarization is performed with the darker side being 1 and the brighter side being 0. The binarization threshold can be automatically determined by using Otsu's method or the like. Assuming the presence of the void 20, after tracing the contour of one pattern on the binary image, the convex hull is obtained and the inside is filled with one. Labeling identifies each one separately and extracts information such as area, perimeter length, barycentric position, and minimum and maximum X and Y coordinates.
 次に、検査画像61とTSV領域情報を用いて良品画像作成S603を行う。良品画像62は、正常なTSVの像を模擬した画像である。光学式の検査では、ウェハ上のパターンの周期性を利用して複数の同一のパターンを重ね合せて平均やメディアンを算出する方法がよく用いられているが、X線透過像では同一のものが規則的に並んでいても撮像位置によって形状とサイズが変化するため、1個のTSVの透過像65からそのTSVの良品画像を作成する。例えば、検査画像61に指定サイズの最小値フィルタをかけたあと同サイズの最大値フィルタをかける処理(オープニング)により、明るいボイド部分を暗くした画像を作成する。あるいは、TSVの外周および中心からの距離に応じて領域を分割し、領域毎に平均またはメディアンを算出して値を置き換える処理により、上下左右対称な正常らしい画像を作成する。 Next, non-defective image creation S603 is performed using the inspection image 61 and the TSV area information. The non-defective image 62 is an image simulating a normal TSV image. In optical inspection, a method of calculating the average and median by superimposing a plurality of identical patterns using the periodicity of the pattern on the wafer is often used. Even if they are regularly arranged, the shape and size change depending on the imaging position, so a non-defective image of the TSV is created from the transmission image 65 of one TSV. For example, an image in which a bright void portion is darkened is created by applying a minimum value filter of a specified size to the inspection image 61 and then applying a maximum value filter of the same size (opening). Alternatively, by dividing the region according to the distance from the outer periphery and center of the TSV, calculating an average or median for each region and replacing the value, a vertically normal and symmetric normal image is created.
 次に、検査画像61と良品画像62を用いて欠陥検出S604を行う。検査画像61から良品画像62を引いた差分画像を作成して閾値処理により二値化し、ラベリングを行う。ラベル付けされた領域は欠陥候補であるが、画像取得時のノイズや欠陥とは言えない密度ばらつきによる輝度差に起因して検出される虚報が含まれる。そのため、各欠陥領域について、面積、真円度、TSVとの相対位置、輝度値等の特徴量を算出しておき、予め指定した値との比較により欠陥らしさの高いもののみ欠陥として抽出する。あるいは特徴空間上で欠陥か虚報かを教示して学習を行い、学習により得られる分類基準を用いて欠陥と虚報を識別する。 Next, defect detection S604 is performed using the inspection image 61 and the non-defective image 62. A difference image obtained by subtracting the non-defective image 62 from the inspection image 61 is created, binarized by threshold processing, and labeling is performed. The labeled region is a defect candidate, but includes false information detected due to a luminance difference due to density variation that cannot be said to be noise or a defect at the time of image acquisition. For this reason, for each defect area, feature quantities such as area, roundness, relative position with TSV, and luminance value are calculated, and only those having a high probability of defect are extracted as defects by comparison with a predetermined value. Alternatively, learning is performed by teaching whether the defect is a defect or a false report on the feature space, and the defect and the false report are identified using a classification criterion obtained by the learning.
 次に、S602で抽出された個々のTSV領域およびS604で抽出された欠陥領域の位置・サイズ算出処理S605を行う。具体的にはTSV領域の重心位置、TSV領域を囲む矩形サイズ、欠陥領域の重心位置、サイズ(面積等)等である。 Next, the position / size calculation processing S605 of each TSV area extracted in S602 and the defect area extracted in S604 is performed. Specifically, the center of gravity position of the TSV region, the rectangular size surrounding the TSV region, the center of gravity position of the defect region, the size (area, etc.), and the like.
 最後に、予め入力しておいたパラメタ63を用いて位置・サイズ補正処理S606を行い、TSVまたは欠陥の補正された位置・サイズ情報64を出力する。具体的には、TSVの座標、視野中央基準の相対座標、直径、高さ、欠陥のTSVトップからの深さ、サイズ(真円換算の直径)、長手方向サイズ、短手方向サイズ等である。これらの情報は、入出力部106において、ファイル出力およびGUI画面に一覧表示される。また、入出力部106では、入力画像に検出された欠陥をマークした画像を表示することもできる。 Finally, position / size correction processing S606 is performed using the parameter 63 input in advance, and TSV or defect-corrected position / size information 64 is output. Specifically, the coordinates of the TSV, the relative coordinates of the visual field center reference, the diameter, the height, the depth from the TSV top of the defect, the size (diameter in terms of a perfect circle), the longitudinal size, the lateral direction size, and the like. . These pieces of information are displayed in a list on the file output and GUI screen in the input / output unit 106. The input / output unit 106 can also display an image in which a defect detected in the input image is marked.
 以上が、本実施例の前提となる、X線検査装置を用いて試料の画像を取得し、画像処理をして試料の欠陥検出結果を得る説明である。次に、本実施例の目的である、図1で説明したX線検査装置の構成で、正解欠陥情報が未知の試料に対し、適切な撮像条件、画像処理パラメタを決定する方法について図7、図8を用いて説明する。 The above is an explanation of obtaining a sample defect detection result by acquiring an image of a sample using an X-ray inspection apparatus, which is a premise of the present embodiment, and performing image processing. Next, FIG. 7 shows a method of determining appropriate imaging conditions and image processing parameters for a sample whose correct defect information is unknown in the configuration of the X-ray inspection apparatus described in FIG. This will be described with reference to FIG.
 図7は、本実施例における参照欠陥データを取得する処理フローを示すフローチャートである。図7において、S101ではあらかじめ設定した参照欠陥データ取得条件で参照欠陥データ取得用画像を取得する。 FIG. 7 is a flowchart showing a processing flow for acquiring reference defect data in this embodiment. In FIG. 7, in S101, a reference defect data acquisition image is acquired under preset reference defect data acquisition conditions.
 ここで、参照欠陥データ取得条件とは、実際の検査画像より画質がよくなる撮像条件のことである。例えば、X線の照射時間条件が実際の検査時より長い条件を参照欠陥データ取得条件とすることができる。これは、X線透過像は照射時間が長いほど量子ノイズが低減して画質がよくなるからである。参照欠陥データ取得用画像の取得には可能な限り照射時間を長く設定することが好適である。なお、試料の特定の位置でコントラストや信号/ノイズ比(S/N比)があらかじめ設定した値になるように照射時間を設定してもよい。また、このような長時間露光以外の方法でも、複数回の欠陥検出処理の結果(欠陥の個数、場所、大きさなど)が一致する、いわゆる、再現性のある欠陥取得は可能である。例えば、高輝度照明、3D-CT画像からの検出、通常検査より高分解能な条件での検出等でも可能である。このように、画質のよい参照欠陥データ取得用画像を取得することにより理想的な参照欠陥データを得ることができる。 Here, the reference defect data acquisition condition is an imaging condition in which the image quality is better than that of an actual inspection image. For example, a condition in which the X-ray irradiation time condition is longer than that during actual inspection can be set as the reference defect data acquisition condition. This is because in the X-ray transmission image, the longer the irradiation time, the lower the quantum noise and the better the image quality. For obtaining the reference defect data obtaining image, it is preferable to set the irradiation time as long as possible. Note that the irradiation time may be set so that the contrast and the signal / noise ratio (S / N ratio) become a preset value at a specific position of the sample. In addition, even with a method other than such a long exposure, it is possible to obtain a so-called reproducible defect in which the results (number of defects, location, size, etc.) of a plurality of defect detection processes match. For example, high-intensity illumination, detection from a 3D-CT image, detection under conditions with higher resolution than normal inspection, and the like are possible. In this way, ideal reference defect data can be obtained by acquiring a reference defect data acquisition image with good image quality.
 S102では参照欠陥データ取得用画像に対して図5で説明した処理方法を用いて、複数の画像処理パラメタ候補で画像処理を実行し、複数の参照欠陥データ候補を得る。ここで画像処理パラメタとは前記閾値処理の閾値であってもよいし、その他欠陥有無を判別する画像処理アルゴリズムの内容に応じて別の画像処理パラメタを適用してもよい。 In S102, using the processing method described in FIG. 5 for the reference defect data acquisition image, image processing is executed with a plurality of image processing parameter candidates to obtain a plurality of reference defect data candidates. Here, the image processing parameter may be a threshold value of the threshold processing, or another image processing parameter may be applied according to the content of an image processing algorithm for determining the presence or absence of a defect.
 S103では前記複数の参照欠陥データ候補に基づき複数の画像処理パラメタ候補から画像処理パラメタを選択する(詳細後述)。画像処理パラメタが決定すると、その画像処理パラメタに対応した参照欠陥データ候補が参照欠陥データとなる。以上により参照欠陥データの決定が完了する(S104)。 In S103, an image processing parameter is selected from a plurality of image processing parameter candidates based on the plurality of reference defect data candidates (details will be described later). When the image processing parameter is determined, the reference defect data candidate corresponding to the image processing parameter becomes the reference defect data. Thus, the determination of the reference defect data is completed (S104).
 図8は、本実施例における複数の参照欠陥データ候補に基づき画像処理パラメタ候補から画像処理パラメタを選択する方法を示すグラフである。図8においては、画像処理パラメタとして閾値を用い、参照欠陥データが欠陥個数に対応する。図8では、図7に示した処理フローにより複数の閾値(画像処理パラメタ候補)で複数の欠陥個数(参照欠陥データ候補)を得て、欠陥個数の閾値依存性201としてプロットした。ここで閾値とは、図5のS604における閾値処理の閾値である。なお、ボイドの場合、閾値より輝度値が高い領域が欠陥部、低い領域が非欠陥部となる。このグラフは、欠陥個数の閾値依存性201の形状から適切な閾値を選択できることを示している。言い換えれば、参照欠陥データと複数の画像処理パラメタ候補の比較に基づき画像処理パラメタを選択する。すなわち、適切な閾値202より閾値を低くすると、急激に欠陥個数が増加し、理想的な欠陥個数203より多く欠陥が検出される(過検出)。この過検出は量子ノイズによる微小な輝度値変化を欠陥と誤って判別されることに起因する。一方、適切な閾値202より閾値を高くすると、欠陥個数が低下し、理想的な欠陥個数203より少なく欠陥が検出される(見逃し)。 FIG. 8 is a graph showing a method of selecting an image processing parameter from image processing parameter candidates based on a plurality of reference defect data candidates in the present embodiment. In FIG. 8, a threshold is used as an image processing parameter, and the reference defect data corresponds to the number of defects. In FIG. 8, a plurality of defect numbers (reference defect data candidates) are obtained with a plurality of threshold values (image processing parameter candidates) by the processing flow shown in FIG. Here, the threshold is a threshold for threshold processing in S604 of FIG. In the case of a void, a region having a luminance value higher than the threshold is a defective portion, and a region having a lower luminance value is a non-defective portion. This graph shows that an appropriate threshold value can be selected from the shape of the threshold value dependency 201 of the number of defects. In other words, the image processing parameter is selected based on the comparison between the reference defect data and a plurality of image processing parameter candidates. That is, when the threshold value is made lower than the appropriate threshold value 202, the number of defects rapidly increases, and more defects are detected than the ideal number of defects 203 (overdetection). This overdetection is caused by erroneously discriminating a minute change in luminance value due to quantum noise as a defect. On the other hand, when the threshold value is made higher than the appropriate threshold value 202, the number of defects decreases, and defects are detected with fewer than the ideal number of defects 203 (missing).
 以上述べたように欠陥個数の閾値依存性201の形状から欠陥個数の急激な変化点を見つけることで、適切な閾値202を推定することが可能となる。特に、欠陥個数の閾値依存性201には変曲点があるため、変曲点を算出して、その変曲点に対応する閾値を選択することで、使用者に依存しない閾値の設定が可能となる。 As described above, it is possible to estimate an appropriate threshold value 202 by finding a sudden change point of the defect number from the shape of the threshold value dependency 201 of the defect number. In particular, since the threshold value dependency 201 of the defect number has an inflection point, it is possible to set a threshold value independent of the user by calculating the inflection point and selecting a threshold value corresponding to the inflection point. It becomes.
 また、あらかじめ基準の欠陥サイズを設定し、設定した欠陥サイズに応じて欠陥個数の閾値依存性を算出させてもよい。これにより、検査対象の欠陥サイズに応じた適切な閾値の設定ができる。 Alternatively, a reference defect size may be set in advance, and the threshold value dependency of the defect number may be calculated according to the set defect size. Thereby, an appropriate threshold value can be set according to the defect size to be inspected.
 また、検査の目的に応じて上記変曲点より低く、または高く閾値を設定してもよい。過検出が含まれても見逃しを抑えたい場合は変曲点より低く、逆に見逃しがあっても過検出は抑えて再現性を高くしたい場合は変曲点より高く閾値を設定する。 Also, a threshold value may be set lower or higher than the inflection point depending on the purpose of inspection. A threshold value is set lower than the inflection point when it is desired to suppress an over-detection even if over-detection is included.
 なお、図8では画像処理パラメタとして閾値を例に説明をしたが、他の画像処理パラメタに適用してもよい(例えば図5前処理S601に関するパラメタ、S604の特徴量等)。 In FIG. 8, the threshold value is described as an example of the image processing parameter. However, the image processing parameter may be applied to other image processing parameters (for example, the parameter relating to the preprocessing S601 in FIG. 5, the feature amount of S604, etc.).
 以上のように、図7、図8を用いて説明した方法で参照欠陥データを取得できれば、適切な撮像条件や画像処理パラメタを決定することができ、それらの使用者依存が抑制され、検査装置の性能が安定するという効果がある。 As described above, if reference defect data can be acquired by the method described with reference to FIGS. 7 and 8, appropriate imaging conditions and image processing parameters can be determined, and their dependence on users is suppressed, and the inspection apparatus There is an effect that the performance of is stabilized.
 本実施例は、実施例1において複数の撮像条件候補から撮像条件を選択して、撮像条件を自動設定するようにした例である。X線検査装置の構成、参照欠陥データを取得する方法については実施例1と同様であるため、相違点を図9、図10を用いて説明する。 This embodiment is an example in which an imaging condition is automatically set by selecting an imaging condition from a plurality of imaging condition candidates in the first embodiment. Since the configuration of the X-ray inspection apparatus and the method for acquiring the reference defect data are the same as those in the first embodiment, the differences will be described with reference to FIGS.
 図9は、本実施例における複数の撮像条件候補から撮像条件を選択する処理のフローを示したフローチャートである。S101からS104は前記図7の説明と同様のため省略する。ここでは撮像条件として照射時間条件を例に説明する。S201では複数の照射時間条件候補で画像を取得する。ここでは前記参照欠陥データ取得条件より短い照射時間条件をあらかじめ複数設定しておき、各々の照射時間条件で画像を取得する。画像の取得は各々の照射時間条件に応じて繰り返し試料にX線を照射してもよいし、1度だけ長時間X線を照射し、積算前の各フレームの画像を保存しておき、その保存画像の積算枚数を変えて生成してもよい。後者の場合、1度のX線照射で複数の異なる照射時間の画像が得られるため、試料への正味の照射時間を減らすことができる。 FIG. 9 is a flowchart showing a flow of processing for selecting an imaging condition from a plurality of imaging condition candidates in the present embodiment. Steps S101 to S104 are the same as in the description of FIG. Here, an irradiation time condition will be described as an example of the imaging condition. In S201, an image is acquired with a plurality of irradiation time condition candidates. Here, a plurality of irradiation time conditions shorter than the reference defect data acquisition conditions are set in advance, and an image is acquired under each irradiation time condition. The image may be acquired by repeatedly irradiating the sample with X-rays according to each irradiation time condition, or by irradiating X-rays for a long time only once, storing images of each frame before integration, It may be generated by changing the cumulative number of stored images. In the latter case, since a plurality of images having different irradiation times can be obtained by one X-ray irradiation, the net irradiation time on the sample can be reduced.
 S202では照射時間条件の異なる画像に対して欠陥有無の判別を行い、検出結果を得る。このとき画像処理パラメタの設定は、図5を用いて説明した方法を用いることができる。 In S202, the presence or absence of defects is determined for images with different irradiation time conditions, and detection results are obtained. At this time, the image processing parameter can be set by using the method described with reference to FIG.
 S203では各照射時間条件に対応した検出結果に基づき照射時間を選択する(詳細後述)。以上により複数の照射時間条件候補(撮像時間条件候補)から照射時間条件(撮像条件)の選択が完了する。 In S203, an irradiation time is selected based on the detection result corresponding to each irradiation time condition (details will be described later). The selection of the irradiation time condition (imaging condition) from the plurality of irradiation time condition candidates (imaging time condition candidates) is thus completed.
 図10は、本実施例における複数の撮像条件候補から撮像条件を選択する方法を示すグラフである。ここでは、図9で説明した方法で各々の照射時間(撮像条件)に応じた欠陥個数(検出結果)を得て、欠陥個数の照射時間依存性301としてプロットした。長い照射時間条件では、欠陥個数が参照欠陥データの欠陥個数302に近くなる。照射時間条件が短くなるに従い、欠陥個数は減少していく。これは量子ノイズによる輝度値変化を非欠陥部と判別するよう閾値を設定しているために起因する。すなわち照射時間条件を短くするほど量子ノイズによる輝度値変化が大きくなり、実欠陥の輝度値変化と近くなるため、実欠陥を非欠陥部と誤判別して見逃しやすくなる。上記によれば各々の照射時間条件における欠陥個数と参照欠陥データの欠陥個数の差分303から見逃し欠陥個数が推定できる。あらかじめ許容できる見逃し欠陥個数の水準を設定しておくことで、複数の照射時間条件候補から適切な照射時間条件を選択することが可能となる。 FIG. 10 is a graph showing a method for selecting an imaging condition from a plurality of imaging condition candidates in the present embodiment. Here, the number of defects (detection result) corresponding to each irradiation time (imaging condition) was obtained by the method described in FIG. 9 and plotted as the irradiation time dependency 301 of the number of defects. Under a long irradiation time condition, the number of defects is close to the number of defects 302 of the reference defect data. As the irradiation time condition becomes shorter, the number of defects decreases. This is because a threshold value is set so as to discriminate a luminance value change due to quantum noise from a non-defective portion. That is, as the irradiation time condition is shortened, the change in the luminance value due to the quantum noise increases and becomes close to the change in the luminance value of the actual defect. Based on the above, the number of missed defects can be estimated from the difference 303 between the number of defects in each irradiation time condition and the number of defects in the reference defect data. It is possible to select an appropriate irradiation time condition from a plurality of irradiation time condition candidates by setting the level of the number of missed defects that can be allowed in advance.
 なお、図9、図10では撮像条件として照射時間条件を例に適切な条件を選択する方法について説明したが、X線透過像の画質に影響のある他の撮像条件に適用してもよい(例えばX線源出力、X線焦点寸法、倍率、X線フィルタ有無または種類、X線エネルギー等)。 9 and 10, the method of selecting an appropriate condition using the irradiation time condition as an example of the imaging condition has been described. However, the imaging condition may be applied to other imaging conditions that affect the image quality of the X-ray transmission image ( For example, X-ray source output, X-ray focal spot size, magnification, presence / absence or type of X-ray filter, X-ray energy, etc.).
 以上のように本実施例によれば、あらかじめ複数の撮像条件候補を設定しておくことで、適切な撮像条件を自動設定することが可能となる。 As described above, according to the present embodiment, it is possible to automatically set appropriate imaging conditions by setting a plurality of imaging condition candidates in advance.
 本実施例は、実施例2において、参照欠陥データと複数の検出結果候補の欠陥検出位置の一致数、または不一致数に基づき画像処理パラメタを選択するようにして自動的に画像処理パラメタを設定するようにした。また、複数の撮像条件候補で得た複数の検出結果と参照欠陥データとの欠陥検出位置の一致数、または不一致数に基づき撮像条件を選択するようにして自動的に撮像条件を設定するようにした。X線検査装置の構成、参照欠陥データを取得する方法については、実施例1と同様であるため、相違点を図11から図14を用いて説明する。 In this embodiment, the image processing parameters are automatically set in the second embodiment so that the image processing parameters are automatically selected based on the number of matches or the number of mismatches between the reference defect data and the defect detection positions of the plurality of detection result candidates. I did it. In addition, the imaging condition is automatically set by selecting the imaging condition based on the number of coincidence or the number of mismatches of the defect detection positions between the plurality of detection results obtained from the plurality of imaging condition candidates and the reference defect data. did. Since the configuration of the X-ray inspection apparatus and the method for acquiring the reference defect data are the same as those in the first embodiment, the differences will be described with reference to FIGS.
 図11は、本実施例における複数の画像処理パラメタ候補から画像処理パラメタを選択する処理と、複数の撮像条件候補から撮像条件を選択する処理を示すフローチャートである。ここでは撮像条件を照射時間条件とした例について説明する。S101からS104は図7の説明と同様であるため省略する。またS201は図9の説明と同様であるため省略する。 FIG. 11 is a flowchart showing processing for selecting an image processing parameter from a plurality of image processing parameter candidates and processing for selecting an imaging condition from a plurality of imaging condition candidates in the present embodiment. Here, an example in which the imaging condition is the irradiation time condition will be described. Since S101 to S104 are the same as the description of FIG. S201 is similar to the description of FIG.
 S306では、S201で得た各々の画像に対して、あらかじめ設定した複数の画像処理パラメタ候補で画像処理を実行し、複数の検出結果候補を得る。ここで画像処理パラメタとはS102と同じ画像処理パラメタであり、例えば閾値処理の閾値等である(実施例1参照)。 In S306, image processing is executed on each of the images obtained in S201 with a plurality of preset image processing parameter candidates to obtain a plurality of detection result candidates. Here, the image processing parameters are the same image processing parameters as those in S102, and are, for example, threshold values for threshold processing (see Example 1).
 S307では、参照欠陥データと検出結果候補の欠陥検出位置の一致数、または不一致数に基づき各々の照射時間条件候補について画像処理パラメタを選択する(詳細後述)。 In S307, an image processing parameter is selected for each irradiation time condition candidate based on the number of matches or the number of mismatches between the reference defect data and the defect detection position of the detection result candidate (details will be described later).
 S308では、S307で決定した画像処理パラメタに対応した欠陥検出結果候補を欠陥検出結果とする。 In S308, the defect detection result candidate corresponding to the image processing parameter determined in S307 is set as the defect detection result.
 S309では、S308で得た照射時間条件候補毎の検出結果に基づき照射時間を選択する(詳細後述)。以上により画像処理パラメタの選択と、撮像条件の選択が完了する。なお、図11で説明したフローチャートは、本発明の要旨を逸脱しない範囲で適宜順序の入れ替えや、並列処理をするようにしてもよい。 In S309, an irradiation time is selected based on the detection result for each irradiation time condition candidate obtained in S308 (details will be described later). This completes the selection of the image processing parameter and the selection of the imaging condition. Note that the flowchart described in FIG. 11 may be changed in order or performed in parallel without departing from the gist of the present invention.
 次に、図12、図13を用いて参照欠陥データと複数の検出結果候補の欠陥検出位置の一致数、または不一致数に基づき画像処理パラメタを選択する方法を説明する。図12は、本実施例における参照欠陥データと検出結果候補の欠陥検出位置の一致数、不一致数を算出する方法を示す模式図である。ここではS104で参照欠陥データを得て、視野401内で欠陥402位置に欠陥を検出したことを示している。またS306で検出結果候補を得て、欠陥403の位置に欠陥を検出したことを示している。一致判定範囲404をあらかじめ設定しておき、欠陥403の位置座標が欠陥402の位置座標から一致判定範囲404の内側にあるか否かで位置座標の一致、不一致を判定する。内側にある場合は一致数1、外側にある場合は不一致数1と計数する。上記のようにして検出結果候補に含まれる全ての欠陥に対して位置座標の一致、不一致を判定し、一致数、不一致数を算出する。 Next, a method for selecting an image processing parameter based on the number of coincidences or the number of mismatches between the reference defect data and the defect detection positions of a plurality of detection result candidates will be described with reference to FIGS. FIG. 12 is a schematic diagram illustrating a method for calculating the number of matches and the number of mismatches between the reference defect data and the defect detection position of the detection result candidate in this embodiment. Here, it is shown that reference defect data is obtained in S104, and a defect is detected at the position of the defect 402 in the visual field 401. In S306, a detection result candidate is obtained and a defect is detected at the position of the defect 403. The coincidence determination range 404 is set in advance, and whether the position coordinates match or does not match is determined based on whether or not the position coordinates of the defect 403 are inside the match determination range 404 from the position coordinates of the defect 402. The number of matches is counted as 1 when inside, and the number of mismatches is counted as 1 when outside. As described above, position coordinates match or mismatch are determined for all defects included in the detection result candidate, and the number of matches and the number of mismatches are calculated.
 図13は、本実施例における参照欠陥データと複数の検出結果候補の欠陥検出位置の一致数、または不一致数に基づき画像処理パラメタを選択する方法を示すグラフである。画像処理パラメタとして閾値を例に説明する。ここではS307において、図12で説明した方法で、複数の検出結果候補に対して位置座標の一致数、不一致数を算出し、一致率の閾値依存性501、不一致率の閾値依存性502としてプロットした。なお一致率は、(位置座標の一致数)/(参照欠陥データの欠陥個数)、不一致率は、(位置座標の不一致数)/(検出結果候補の欠陥個数)により閾値毎に算出される。一致率が高いほど見逃しが少なく、不一致率が高いほど過検出が多いことを示す。閾値を低くしていくと、微小な輝度値変化を欠陥部と判別するようになるため、一致率は増加する。また量子ノイズによる輝度値変化も欠陥部と誤判定するようになるため、不一致率も増加する、逆に閾値を高くしていくと、微小な輝度値変化を非欠陥部と判別するようになるため、一致率、不一致率は供に低下する。検査装置の性能の観点では一致率は高く、不一致率は低いことが望ましく、あらかじめ基準の一致率、不一致率を設定しておき、その基準を満たす閾値を選択することで、適切な閾値を選択することが可能となる。 FIG. 13 is a graph showing a method of selecting an image processing parameter based on the number of coincidences or the number of inconsistencies between reference defect data and defect detection positions of a plurality of detection result candidates in this embodiment. A threshold value will be described as an example of the image processing parameter. Here, in S307, by using the method described with reference to FIG. 12, the number of coincidences and the number of mismatches of position coordinates are calculated for a plurality of detection result candidates, and plotted as the threshold dependence 501 of the coincidence ratio and the threshold dependence 502 of the mismatch percentage. did. The coincidence rate is calculated for each threshold value by (number of position coordinate matches) / (number of defects in reference defect data), and the mismatch rate is calculated by (number of position coordinate mismatches) / (number of defects of detection result candidates). The higher the matching rate, the less missed, and the higher the mismatch rate, the more overdetection. As the threshold value is lowered, a minute change in luminance value is discriminated as a defective portion, and the coincidence rate increases. Also, the luminance value change due to quantum noise is erroneously determined as a defective part, so the mismatch rate also increases. Conversely, if the threshold value is increased, a minute luminance value change is determined as a non-defective part. For this reason, the coincidence rate and the non-coincidence rate decrease together. From the viewpoint of the performance of the inspection equipment, it is desirable that the match rate is high and the mismatch rate is low. Set the standard match rate and mismatch rate in advance, and select the appropriate threshold value by selecting the threshold value that satisfies the standard. It becomes possible to do.
 次に、図14を用いて複数の撮像条件候補で得た検出結果と参照欠陥データとの欠陥検出位置の一致数、または不一致数に基づき撮像条件を選択する方法を説明する。撮像条件として照射時間条件を例に説明する。ここでは、図12、13で説明した方法で、位置座標の一致率、不一致率を算出し、一致率が基準を満たす閾値範囲のなかで、最も不一致率が低くなる不一致率を算出し、照射時間の不一致率依存性601としてプロットした。照射時間が短いほど、量子ノイズによる輝度値変化が欠陥による輝度値変化に近づくため、基準を満たす一致率を得るよう閾値を低くすると、量子ノイズによる輝度値変化を欠陥部と判別するようになり、不一致率が高くなる。照射時間を短くしていくと、量子ノイズが低減していくため、不一致率は低くなる。検査装置のスループットの観点では照射時間は短いことが望ましく、また不一致率は低いことが望ましい。あらかじめ基準の不一致率を設定しておくことで、照射時間の不一致率依存性601から基準を満たすのに最も短い照射時間条件を得ることができ、適切な照射時間条件を選択することができる。 Next, a method for selecting the imaging condition based on the number of coincidence or the number of mismatches in the defect detection position between the detection results obtained with a plurality of imaging condition candidates and the reference defect data will be described with reference to FIG. An irradiation time condition will be described as an example of the imaging condition. Here, by using the method described with reference to FIGS. 12 and 13, the position coordinate coincidence rate and the disagreement rate are calculated, the disagreement rate at which the disagreement rate is the lowest in the threshold range where the coincidence rate satisfies the standard is calculated, and irradiation is performed. Plotted as time discordance rate dependence 601. The shorter the irradiation time, the closer the brightness value change due to quantum noise approaches the brightness value change due to defects.If the threshold is lowered to obtain a matching rate that satisfies the criteria, the brightness value change due to quantum noise will be identified as a defective part. , The discrepancy rate becomes high. When the irradiation time is shortened, the quantum noise is reduced, so that the mismatch rate is lowered. From the viewpoint of the throughput of the inspection apparatus, it is desirable that the irradiation time is short and the mismatch rate is low. By setting a reference mismatch rate in advance, it is possible to obtain the shortest irradiation time condition that satisfies the reference from the irradiation time mismatch rate dependency 601, and to select an appropriate irradiation time condition.
 以上のように本実施例によれば、あらかじめ複数の画像処理パラメタ候補、複数の撮像条件候補、を設定しておくと、適切な画像処理パラメタ、撮像条件を自動設定することが可能となる。 As described above, according to this embodiment, when a plurality of image processing parameter candidates and a plurality of imaging condition candidates are set in advance, appropriate image processing parameters and imaging conditions can be automatically set.
 本実施例は、本発明を実施するシステムのGUI(Graphical User Interface)について図15、図16を用いて説明する。 In this embodiment, a GUI (Graphical User Interface) of a system for implementing the present invention will be described with reference to FIGS.
 図15は、本実施例におけるGUI画面の撮像条件設定画面を表す。GUI画面はウェハを検査するための検査モード画面130、検査のレシピを作成するためのレシピ作成画面131、撮像条件設定画面132、ウェハの搬入出を行うためのロード・アンロード画面133の4つのサブ画面を有する。 FIG. 15 shows an imaging condition setting screen of the GUI screen in this embodiment. There are four GUI screens: an inspection mode screen 130 for inspecting a wafer, a recipe creation screen 131 for creating an inspection recipe, an imaging condition setting screen 132, and a load / unload screen 133 for loading and unloading a wafer. Has a sub-screen.
 撮像条件設定画面132では、X線源の管電圧、プローブ電流、照射時間、積算枚数、ステージパラメータの基準距離倍率、ステージ高さ、傾斜角度、回転角度などのステージパラメータを入力する。 In the imaging condition setting screen 132, the stage parameters such as the tube voltage of the X-ray source, the probe current, the irradiation time, the total number of sheets, the stage parameter reference distance magnification, the stage height, the tilt angle, and the rotation angle are input.
 基準距離はX線源1からX線検出器5までの距離であり、これをもとに倍率を入力するとステージ高さが計算されて表示され、逆にステージ高さを入力すると倍率が計算されて表示される。傾斜角度は、TSVが重ならない範囲でTSVとボイド欠陥の輝度コントラストが十分に高くなるように設定する。回転角度は、TSVの像どうしが重ならない範囲でもっとも小さくなるように設定する。 The reference distance is the distance from the X-ray source 1 to the X-ray detector 5, and when the magnification is input based on this, the stage height is calculated and displayed. Conversely, when the stage height is input, the magnification is calculated. Displayed. The inclination angle is set so that the brightness contrast between the TSV and the void defect is sufficiently high in a range where the TSV does not overlap. The rotation angle is set to be the smallest within a range where TSV images do not overlap.
 ウェハのレイアウト情報が既知であれば、プルダウンメニュー134からウェハを選択し、予め登録してあるレイアウト情報を取り込む。図2に示すようなウェハ上のダイマップを表示して、ユーザにより撮像条件設定に用いるダイを選択し、さらにダイ内のTSVレイアウト情報を表示してユーザにより撮像条件設定に用いるパターンの位置を指定する。指定した位置が視野中心になる並進ステージの座標が計算され、ステージ座標表示ウィンドウ135に表示され、その位置にステージが移動される。またウェハレイアウト情報を取り込まない場合は、座標を入力してステージを動かすことが可能である。あるいはステージコントローラ102に直結した制御盤でステージを並進回転させることが可能であり、移動に伴いステージ座標の表示が更新される。この状態で回転角度自動計算ボタン136を押せば、透過像の重なりがないステージ回転角度を自動計算し、回転ステージ4の回転角度をその角度に設定する。 If the layout information of the wafer is known, the wafer is selected from the pull-down menu 134 and the pre-registered layout information is captured. A die map on the wafer as shown in FIG. 2 is displayed, a user selects a die used for imaging condition setting, further displays TSV layout information in the die, and a user uses the position of a pattern used for imaging condition setting. specify. The coordinates of the translation stage having the designated position as the center of the visual field are calculated and displayed on the stage coordinate display window 135, and the stage is moved to that position. Further, when the wafer layout information is not captured, the stage can be moved by inputting coordinates. Alternatively, the stage can be translated and rotated by a control panel directly connected to the stage controller 102, and the display of the stage coordinates is updated with the movement. If the automatic rotation angle calculation button 136 is pressed in this state, the stage rotation angle without overlapping transmission images is automatically calculated, and the rotation angle of the rotary stage 4 is set to that angle.
 透過像表示ウィンドウ137には、X線透過像がリアルタイム表示され、任意の直線138をひくことが可能であり、その明るさプロファイル139を表示可能である。透過像およびプロファイルで明るさを確認しながらX線源を調整し、視野の大きさやTSVの見え方を確認しながらステージを調整する。参照欠陥データ取得照射時間入力ウィンドウ161は、ユーザに参照欠陥データ取得照射時間を入力させ、入力値に応じて参照欠陥データ取得用画像を取得する。照射時間候補入力ウィンドウ162は、最大照射時間、最小照射時間、及び、間隔をユーザに入力させ、入力値に応じて最小照射時間から最大照射時間の間を等間隔に照射時間条件を変えながら複数画像を取得する。 In the transmission image display window 137, an X-ray transmission image is displayed in real time, an arbitrary straight line 138 can be drawn, and its brightness profile 139 can be displayed. The X-ray source is adjusted while confirming the brightness with the transmission image and the profile, and the stage is adjusted while confirming the size of the visual field and how the TSV is seen. The reference defect data acquisition irradiation time input window 161 allows the user to input a reference defect data acquisition irradiation time, and acquires a reference defect data acquisition image according to the input value. The irradiation time candidate input window 162 allows the user to input the maximum irradiation time, the minimum irradiation time, and the interval, and changes the irradiation time conditions at equal intervals between the minimum irradiation time and the maximum irradiation time according to the input value. Get an image.
 図16は、本実施例におけるGUI画面のレシピ作成画面131を表す。レシピ作成画面131では、ウェハ厚さ、TSV直径、TSV高さなどのウェハパラメータ、欠陥検出処理において画像処理や欠陥検出に用いる欠陥検出パラメタを入力する。また、プルダウンメニュー134からウェハを選択し、検査領域を指定する処理を行う。まずダイ選択ボタン140押下により、図2に示すようなウェハ上のダイマップを表示して、ユーザにより検査対象ダイを選択する。次に、レイアウト表示ボタン141押下によりダイ内のTSVレイアウト情報を表示して、ユーザにより検査領域を指定する。検査領域の大きさと傾きは撮像条件設定画面で設定した倍率および検出器傾斜角度およびステージ回転角度に応じて算出しておき、レイアウト上にその大きさおよび傾きの検査領域を配置することにより設定する。設定した領域が視野に含まれる並進ステージの座標が計算され、ステージ座標表示ウィンドウ135に表示され、その位置にステージが移動される。座標入力やステージコントローラ102に直結した制御盤によりステージ位置を微調整してもよい。 FIG. 16 shows the recipe creation screen 131 of the GUI screen in the present embodiment. On the recipe creation screen 131, wafer parameters such as wafer thickness, TSV diameter, TSV height, and defect detection parameters used for image processing and defect detection in defect detection processing are input. Further, a process of selecting a wafer from the pull-down menu 134 and designating an inspection area is performed. First, when the die selection button 140 is pressed, a die map on the wafer as shown in FIG. 2 is displayed, and the user selects an inspection target die. Next, the TSV layout information in the die is displayed by pressing the layout display button 141, and the inspection area is designated by the user. The size and inclination of the inspection area are calculated according to the magnification, detector inclination angle, and stage rotation angle set on the imaging condition setting screen, and are set by arranging the inspection area of the size and inclination on the layout. . The coordinates of the translation stage in which the set area is included in the field of view are calculated and displayed in the stage coordinate display window 135, and the stage is moved to that position. The stage position may be finely adjusted by coordinate input or a control panel directly connected to the stage controller 102.
 透過像表示ウィンドウ137にX線透過像が表示されるので、ステージ位置が確定したら検査対象に追加ボタン142を押す。この処理により、検査領域を1箇所指定することができる。複数の検査領域指定のためには、レイアウト表示からの領域指定とX線透過像の確認、検査対象追加を繰り返す。このとき、二回目以降のレイアウト表示において、設定済みの検査領域が表示されているようにする。レシピ保存ボタン143押下により撮像条件設定画面132で設定したパラメタとともにレシピ作成画面131で設定した各種パラメタと検査領域情報を保存する。 Since an X-ray transmission image is displayed in the transmission image display window 137, when the stage position is determined, the add button 142 is pushed to the inspection object. With this process, one inspection area can be designated. In order to designate a plurality of inspection areas, the area designation from the layout display, the confirmation of the X-ray transmission image, and the addition of the inspection object are repeated. At this time, the set inspection region is displayed in the second and subsequent layout displays. Various parameters and inspection area information set on the recipe creation screen 131 are saved together with parameters set on the imaging condition setting screen 132 when the recipe save button 143 is pressed.
 閾値候補入力ウィンドウ151は、ユーザに最大閾値、最小閾値、間隔を入力させ、入力値に応じて複数の欠陥検出結果候補を得る。一致率、不一致率入力ウィンドウ152は、ユーザに一致率、不一致率の基準値を入力させ、入力値と欠陥検出候補の結果に基づき閾値、及び参照欠陥データ等を画像解析部105で算出する。なお、一致率、不一致率に替えて、一致数、不一数でもよい。 The threshold candidate input window 151 allows the user to input a maximum threshold value, a minimum threshold value, and an interval, and obtains a plurality of defect detection result candidates according to the input value. The match rate / mismatch rate input window 152 allows the user to input the match rate and mismatch rate standard values, and the image analysis unit 105 calculates threshold values, reference defect data, and the like based on the input value and the result of the defect detection candidate. Note that the number of matches or the number of matches may be used instead of the match rate and the mismatch rate.
 検査モード画面130では、レシピ作成画面131で作成したレシピを選択し、検査の開始・中止を行うことができる。また、検査結果の保存、読み出しや解析も行うことができる(図示せず)。検査結果とは、TSVの世界座標あるいは視野中央基準の相対座標あるいはその両方のTSV位置情報、直径および高さのTSVサイズ情報、欠陥のTSVトップからの深さ、欠陥の真円換算の直径、長手方向サイズ、短手方向サイズなどの欠陥サイズ情報、入力画像に検出された欠陥をマークした画像、TSV領域を表す画像などの画像である。 In the inspection mode screen 130, the recipe created on the recipe creation screen 131 can be selected, and inspection can be started / stopped. In addition, inspection results can be stored, read out and analyzed (not shown). The inspection results include TSV position information of the world coordinates of the TSV or relative coordinates of the visual field center reference, or both, TSV size information of the diameter and height, the depth of the defect from the TSV top, the diameter of the defect in a true circle, It is an image such as a defect size information such as a longitudinal size and a transverse direction size, an image in which a detected defect is marked in an input image, and an image representing a TSV area.
 ロード・アンロード画面133では、X線検査装置100内部にセットされているウェハの搬出、フープに格納されているウェハの搬入を行うことができる(図示せず)。 On the load / unload screen 133, the wafer set in the X-ray inspection apparatus 100 can be unloaded and the wafer stored in the hoop can be loaded (not shown).
 1:X線源、2:ウェハ、3:並進ステージ、4:回転ステージ、5:X線検出器、6:X線遮蔽壁、10:ダイ、11:TSV、12:マイクロバンプ、13:第一の層、14:第二の層、15:第三の層、20:ボイド、30、31:プロファイル、60:X線画像、65:透過像、100:X線検査装置、101:X線源コントローラ、102:ステージコントローラ、103:X線検出器コントローラ、104:制御部、105:画像解析部、106:入出力部、200:X線 1: X-ray source, 2: Wafer, 3: Translation stage, 4: Rotation stage, 5: X-ray detector, 6: X-ray shielding wall, 10: Die, 11: TSV, 12: Micro bump, 13: No. 1 layer, 14: second layer, 15: third layer, 20: void, 30, 31: profile, 60: X-ray image, 65: transmission image, 100: X-ray inspection apparatus, 101: X-ray Source controller, 102: Stage controller, 103: X-ray detector controller, 104: Control unit, 105: Image analysis unit, 106: Input / output unit, 200: X-ray

Claims (15)

  1.  X線検査装置を用いて試料の画像を取得し、画像処理をして試料の欠陥検出結果を得るX線検査方法であって、
    参照欠陥データ取得条件で参照欠陥データ取得用画像を得るステップと、
    異なる複数の画像処理パラメタ候補を用いて複数の参照欠陥データ候補を得るステップと、
    該複数の参照欠陥データ候補に基づき前記複数の画像処理パラメタ候補から画像処理パラメタを選択するステップと、
    該選択した画像処理パラメタに対応した前記参照欠陥データ候補から参照欠陥データを得るステップと、
    を有することを特徴とするX線検査方法。
    An X-ray inspection method for obtaining an image of a sample using an X-ray inspection apparatus, performing image processing, and obtaining a defect detection result of the sample,
    Obtaining a reference defect data acquisition image under reference defect data acquisition conditions;
    Obtaining a plurality of reference defect data candidates using different image processing parameter candidates;
    Selecting image processing parameters from the plurality of image processing parameter candidates based on the plurality of reference defect data candidates;
    Obtaining reference defect data from the reference defect data candidates corresponding to the selected image processing parameters;
    An X-ray inspection method characterized by comprising:
  2.  X線検査装置を用いて試料の画像を取得し、画像処理をして試料の欠陥検出結果を得るX線検査方法であって、
    参照欠陥データ取得条件で参照欠陥データ取得用画像を得るステップと、
    該参照欠陥データ取得用画像から参照欠陥データを得るステップと、
    異なる複数の撮像条件候補で複数の画像を得るステップと、
    該複数の画像から複数の検出結果を得るステップと、
    前記参照欠陥データと前記複数の検出結果の比較を基に前記複数の撮像条件候補から撮像条件を選択するステップと、
    を有することを特徴とするX線検査方法。
    An X-ray inspection method for obtaining an image of a sample using an X-ray inspection apparatus, performing image processing, and obtaining a defect detection result of the sample,
    Obtaining a reference defect data acquisition image under reference defect data acquisition conditions;
    Obtaining reference defect data from the reference defect data acquisition image;
    Obtaining a plurality of images with a plurality of different imaging condition candidates;
    Obtaining a plurality of detection results from the plurality of images;
    Selecting an imaging condition from the plurality of imaging condition candidates based on a comparison of the reference defect data and the plurality of detection results;
    An X-ray inspection method characterized by comprising:
  3.  X線検査装置を用いて試料の画像を取得し、画像処理をして試料の欠陥検出結果を得るX線検査方法であって、
    参照欠陥データ取得条件で参照欠陥データ取得用画像を得るステップと、
    異なる複数の画像処理パラメタ候補を用いて複数の参照欠陥データ候補を得るステップと、
    該複数の参照欠陥データ候補に基づき前記複数の画像処理パラメタ候補から画像処理パラメタを選択するステップと、
    該選択した画像処理パラメタに対応した前記参照欠陥データ取得用画像から参照欠陥データを得るステップと、
    異なる複数の撮像条件候補で複数の画像を得るステップと、
    該複数の画像から複数の検出結果候補を得るステップと、
    該複数の検出結果候補から複数の検出結果を得るステップと、
    前記参照欠陥データと前記複数の検出結果の比較を基に前記複数の撮像条件候補から撮像条件を選択するステップと、
    を有することを特徴とするX線検査方法。
    An X-ray inspection method for obtaining an image of a sample using an X-ray inspection apparatus, performing image processing, and obtaining a defect detection result of the sample,
    Obtaining a reference defect data acquisition image under reference defect data acquisition conditions;
    Obtaining a plurality of reference defect data candidates using different image processing parameter candidates;
    Selecting image processing parameters from the plurality of image processing parameter candidates based on the plurality of reference defect data candidates;
    Obtaining reference defect data from the image for acquiring reference defect data corresponding to the selected image processing parameter;
    Obtaining a plurality of images with a plurality of different imaging condition candidates;
    Obtaining a plurality of detection result candidates from the plurality of images;
    Obtaining a plurality of detection results from the plurality of detection result candidates;
    Selecting an imaging condition from the plurality of imaging condition candidates based on a comparison of the reference defect data and the plurality of detection results;
    An X-ray inspection method characterized by comprising:
  4.  請求項1から3の何れか1項に記載のX線検査方法であって、
    前記参照欠陥データ取得条件はX線照射時間であって、検査時の照射時間より長いことを特徴とするX線検査方法。
    The X-ray inspection method according to any one of claims 1 to 3,
    The X-ray inspection method, wherein the reference defect data acquisition condition is an X-ray irradiation time, which is longer than an irradiation time at the time of inspection.
  5.  請求項1又は請求項3に記載のX線検査方法であって、
    前記参照欠陥データと前記複数の画像処理パラメタ候補の比較に基づき画像処理パラメタを選択することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 1 or 3,
    An X-ray inspection method, wherein an image processing parameter is selected based on a comparison between the reference defect data and the plurality of image processing parameter candidates.
  6.  請求項5に記載のX線検査方法であって、
    前記参照欠陥データと前記複数の画像処理パラメタ候補の欠陥検出位置の一致数、または不一致数に基づき画像処理パラメタを選択することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 5,
    An X-ray inspection method, wherein an image processing parameter is selected based on the number of matches or the number of mismatches between the reference defect data and the defect detection positions of the plurality of image processing parameter candidates.
  7.  請求項1又は請求項3に記載のX線検査方法であって、
    欠陥個数の画像処理パラメタ候補依存性に基づき画像処理パラメタを選択することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 1 or 3,
    An X-ray inspection method, wherein an image processing parameter is selected based on an image processing parameter candidate dependency of the number of defects.
  8.  請求項7に記載のX線検査方法であって、
    前記欠陥個数の画像処理パラメタ候補依存性の変曲点に基づき画像処理パラメタを選択することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 7,
    An X-ray inspection method, wherein an image processing parameter is selected based on an inflection point that is dependent on the number of defects of the image processing parameter candidate.
  9.  請求項2又は請求項3に記載のX線検査方法であって、
    各々の撮像条件で得た複数の検出結果と前記参照欠陥データとの欠陥検出位置の一致数、または不一致数に基づき撮像条件を選択することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 2 or 3,
    An X-ray inspection method, wherein an imaging condition is selected based on the number of coincidences or the number of mismatches in defect detection positions between a plurality of detection results obtained under each imaging condition and the reference defect data.
  10.  請求項2又は請求項3に記載のX線検査方法であって、
    前記参照欠陥データと前記複数の検出結果の欠陥個数の比較に基づき撮像条件を選択することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 2 or 3,
    An X-ray inspection method, wherein an imaging condition is selected based on a comparison between the reference defect data and the number of defects of the plurality of detection results.
  11.  請求項1から3の何れか1項に記載のX線検査方法であって、
    ユーザに参照欠陥データ取得条件を入力させるステップを有することを特徴とするX線検査方法。
    The X-ray inspection method according to any one of claims 1 to 3,
    An X-ray inspection method comprising a step of allowing a user to input a reference defect data acquisition condition.
  12.  請求項1又は3に記載のX線検査方法であって、
    ユーザに異なる複数の画像処理パラメタ候補を入力させるステップを有することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 1 or 3,
    An X-ray inspection method comprising a step of allowing a user to input a plurality of different image processing parameter candidates.
  13.  請求項2又は3に記載のX線検査方法であって、
    ユーザに異なる複数の撮像条件候補を入力させるステップを有することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 2 or 3,
    An X-ray inspection method comprising a step of allowing a user to input a plurality of different imaging condition candidates.
  14.  請求項6に記載のX線検査方法であって、
    ユーザに基準の欠陥検出位置の一致率、または不一致率を入力させるステップを有することを特徴とするX線検査方法。
    The X-ray inspection method according to claim 6,
    An X-ray inspection method comprising a step of allowing a user to input a matching rate or a mismatch rate of a reference defect detection position.
  15.  請求項1から3の何れか1項に記載のX線検査方法であって、
    ユーザに基準の欠陥サイズを入力させるステップを有することを特徴とするX線検査方法。
    The X-ray inspection method according to any one of claims 1 to 3,
    An X-ray inspection method comprising a step of allowing a user to input a reference defect size.
PCT/JP2018/007019 2018-02-26 2018-02-26 X-ray inspection method WO2019163136A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007019 WO2019163136A1 (en) 2018-02-26 2018-02-26 X-ray inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007019 WO2019163136A1 (en) 2018-02-26 2018-02-26 X-ray inspection method

Publications (1)

Publication Number Publication Date
WO2019163136A1 true WO2019163136A1 (en) 2019-08-29

Family

ID=67688255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007019 WO2019163136A1 (en) 2018-02-26 2018-02-26 X-ray inspection method

Country Status (1)

Country Link
WO (1) WO2019163136A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148213A (en) * 2000-11-13 2002-05-22 Hitachi Kenki Fine Tech Co Ltd X-ray inspecting apparatus and recording medium
JP2004294358A (en) * 2003-03-28 2004-10-21 Hitachi High-Technologies Corp Method and apparatus for inspecting defect
JP2006275743A (en) * 2005-03-29 2006-10-12 Matsushita Electric Ind Co Ltd Defect inspection method
US20070268034A1 (en) * 2006-05-17 2007-11-22 Qimonda Ag Method and apparatus for setting of appliance-specific evaluation parameters
JP2009210309A (en) * 2008-03-03 2009-09-17 Hitachi High-Technologies Corp Defect inspection device, and parameter adjusting method used for defect inspection device
JP2012208084A (en) * 2011-03-30 2012-10-25 Anritsu Sanki System Co Ltd X-ray foreign matter detection apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002148213A (en) * 2000-11-13 2002-05-22 Hitachi Kenki Fine Tech Co Ltd X-ray inspecting apparatus and recording medium
JP2004294358A (en) * 2003-03-28 2004-10-21 Hitachi High-Technologies Corp Method and apparatus for inspecting defect
JP2006275743A (en) * 2005-03-29 2006-10-12 Matsushita Electric Ind Co Ltd Defect inspection method
US20070268034A1 (en) * 2006-05-17 2007-11-22 Qimonda Ag Method and apparatus for setting of appliance-specific evaluation parameters
JP2009210309A (en) * 2008-03-03 2009-09-17 Hitachi High-Technologies Corp Defect inspection device, and parameter adjusting method used for defect inspection device
JP2012208084A (en) * 2011-03-30 2012-10-25 Anritsu Sanki System Co Ltd X-ray foreign matter detection apparatus

Similar Documents

Publication Publication Date Title
JP7002949B2 (en) Image evaluation method and image evaluation device
US8111902B2 (en) Method and apparatus for inspecting defects of circuit patterns
JP3993817B2 (en) Defect composition analysis method and apparatus
JP5081590B2 (en) Defect observation classification method and apparatus
JP5313939B2 (en) Pattern inspection method, pattern inspection program, electronic device inspection system
KR101479889B1 (en) Charged particle beam apparatus
JP5325580B2 (en) Defect observation method and apparatus using SEM
TWI613436B (en) Defect determination method, and X-ray inspection device
WO2016121265A1 (en) Sample observation method and sample observation device
KR20180113572A (en) Defect classification apparatus and defect classification method
KR101920268B1 (en) X-ray inspection method and device
JP2008004863A (en) Appearance inspection method and device therefor
CN109075094B (en) System and method for wafer inspection with noise boundary threshold
JP2004177139A (en) Support program for preparation of inspection condition data, inspection device, and method of preparing inspection condition data
US8755599B2 (en) Review apparatus and inspection system
JP2024012432A (en) Inspection system and non-temporary computer readable medium
JP2011008482A (en) Defect detection method, defect detection device and defect detection program
WO2011132766A1 (en) Reviewing method and reviewing device
JP2010236968A (en) Examining method and examining apparatus
JP5557271B2 (en) Radiation inspection apparatus, radiation inspection method, and radiation inspection program
WO2019163136A1 (en) X-ray inspection method
KR102075872B1 (en) Method for non-destructive inspection based on image and apparatus thereof
JP5131105B2 (en) Pattern inspection method and apparatus
WO2018003018A1 (en) X-ray inspection method and apparatus
CN114341631A (en) Charged particle beam device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP