WO2019163063A1 - Hydrogen energy utilization system, control device therefor, and control method therefor - Google Patents

Hydrogen energy utilization system, control device therefor, and control method therefor Download PDF

Info

Publication number
WO2019163063A1
WO2019163063A1 PCT/JP2018/006548 JP2018006548W WO2019163063A1 WO 2019163063 A1 WO2019163063 A1 WO 2019163063A1 JP 2018006548 W JP2018006548 W JP 2018006548W WO 2019163063 A1 WO2019163063 A1 WO 2019163063A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen storage
heat
storage device
control
Prior art date
Application number
PCT/JP2018/006548
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 渡並
佐藤 純一
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Priority to PCT/JP2018/006548 priority Critical patent/WO2019163063A1/en
Publication of WO2019163063A1 publication Critical patent/WO2019163063A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This embodiment relates to a hydrogen energy utilization system, its control device, and its control method.
  • a power generation system using renewable energy represented by sunlight and wind power is known.
  • a hydrogen energy utilization system that generates power using hydrogen energy may be used in combination.
  • hydrogen or water vapor is produced by a hydrogen production device such as electrolysis in a time zone in which the amount of power generated by renewable energy is greater than demand, and stored by a hydrogen storage device.
  • the hydrogen stored by the hydrogen storage device is generated and used by the hydrogen utilization device such as a fuel cell.
  • the hydrogen storage device has, for example, a hydrogen storage alloy tank that fills the hydrogen storage alloy with hydrogen, or a high-pressure tank that stores the hydrogen produced by the hydrogen production device by compressing it with a compressor.
  • the storage by the hydrogen storage alloy tank has an advantage that the hydrogen storage device can be made smaller than the high-pressure tank.
  • the heat supply is controlled so that the temperature of the hydrogen storage alloy is constant. However, by controlling the heat supply so that the temperature is constant, energy exceeding the amount of heat required to obtain a predetermined release pressure of the hydrogen storage alloy is consumed in the hydrogen energy utilization system.
  • a problem to be solved by the present invention is a hydrogen energy utilization system capable of supplying the amount of heat necessary for releasing hydrogen from a hydrogen storage alloy tank of a hydrogen storage device while suppressing a decrease in energy utilization efficiency of the entire system, and its control An apparatus and a control method thereof are provided.
  • the hydrogen energy utilization system includes a hydrogen storage device that stores hydrogen in a hydrogen storage alloy tank, a heat supply device that supplies heat to the hydrogen storage device, the hydrogen storage device, and the heat supply device.
  • a control device for controlling, the control device acquiring information on the pressure of hydrogen in the hydrogen storage alloy tank, the information, and information on the discharge pressure to be released from the hydrogen storage device, And a controller for controlling heat supplied from the heat supply device to the hydrogen storage device.
  • the present invention it is possible to supply the amount of heat necessary for releasing hydrogen from the hydrogen storage alloy tank of the hydrogen storage device while suppressing a decrease in the energy utilization efficiency of the entire system.
  • the block diagram which shows the whole structure of a hydrogen energy utilization system.
  • the block diagram which shows the detailed structure of a hydrogen supply system and a control apparatus.
  • the block diagram which shows the detailed structure of a hydrogen storage system.
  • the figure which shows the relationship between the storage amount of hydrogen which a control part uses for control, discharge
  • the figure which shows the relationship between the heat-medium temperature and energy of the secondary side flow path of a heat exchanger.
  • the flowchart which shows an example of control of a hydrogen energy utilization system.
  • FIG. 1 is a block diagram showing the overall configuration of the hydrogen energy utilization system 1.
  • the hydrogen energy utilization system 1 is a system that generates electricity using stored hydrogen, and includes a hydrogen production system 10, a hydrogen utilization device 20, a measurement device 22, and a control device 30. It is configured.
  • the hydrogen production system 10 is a system that generates and supplies hydrogen using, for example, power generated by renewable energy.
  • the hydrogen production system 10 includes a plurality of hydrogen supply systems 12. The detailed configuration of the hydrogen supply system 12 will be described later.
  • the hydrogen utilization device 20 is a fuel cell, for example, and is a device that generates power using hydrogen.
  • the hydrogen utilization device 20 generates power using hydrogen stored in the plurality of hydrogen supply systems 12.
  • the hydrogen utilization device 20 heats the supplied heat medium, for example, water using heat generated by power generation of the fuel cell, and supplies the heat medium obtained by this heating to the plurality of hydrogen supply systems 12. It is configured. Detailed description regarding the heat medium supplied from the hydrogen utilization apparatus 20 will be described later.
  • the measuring device 22 measures the state of the hydrogen utilization device 20 and transmits the measurement information to the control device 30.
  • the measurement device 22 measures the power generation amount of the hydrogen utilization device 20, the hydrogen consumption amount, the temperature of the heat medium, the flow rate of the heat medium, the hydrogen pressure at the hydrogen supply port of the hydrogen utilization device 20, and the like.
  • the control device 30 includes a processor, for example, and controls the entire hydrogen production system 10.
  • the term processor means a circuit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). The detailed configuration of the control unit 30 will be described later.
  • FIG. 2 is a block diagram showing a detailed configuration of the hydrogen supply system 12 and the control device 30.
  • the hydrogen supply system 12 includes a hydrogen production device 102, measuring devices 103 and 105, a hydrogen storage system 104, a hydrogen storage control device 106, and a valve opening / closing device 107.
  • the hydrogen production apparatus 102 produces hydrogen by electrolysis of water or steam using, for example, electric power supplied from a power generation apparatus that generates power using renewable energy or electric power supplied from an electric power system.
  • the hydrogen production apparatus 102 is, for example, a solid oxide water electrolysis apparatus.
  • the measuring device 103 is a measuring device such as a temperature sensor, a pressure gauge, and a flow meter that measures the state of the hydrogen production device 102, and measures the amount of hydrogen, pressure, temperature, and the like generated by the hydrogen production device 102.
  • the measuring device 103 outputs data measured by these measuring devices to the control device 30 as a data signal.
  • the hydrogen storage system 104 stores the hydrogen generated by the hydrogen production apparatus 102.
  • the hydrogen production apparatus 102 and the hydrogen storage system 104 communicate with each other via a pipe and a valve. Thereby, hydrogen is supplied to the hydrogen storage system 104 from the hydrogen production apparatus 102 via the pipe and the valve.
  • the detailed configuration of the hydrogen storage system 104 will be described later. *
  • the measuring device 105 is a measuring device such as a temperature sensor, a pressure gauge, and a flow meter that measures the state of the hydrogen storage system 104, and measures the flow rate, temperature, pressure, and the like of hydrogen supplied to the hydrogen storage system 104.
  • the measuring device 105 measures the temperature, pressure, storage amount, or filling rate of hydrogen stored in the hydrogen storage system 104, the amount of hydrogen released from the hydrogen storage system 104, temperature, pressure, and the like.
  • the measuring device 105 outputs the data measured by these measuring devices to the control device 30 as a data signal.
  • the hydrogen storage control device 106 is configured to include a processor and controls the valves, motors, heat pumps, heat exchangers, and the like of the hydrogen storage system 104 according to the control command of the control device 30, and the hydrogen storage amount of the hydrogen storage system 104, Control hydrogen supply, pressure, temperature, etc. Detailed control of the control device 30 via the hydrogen storage control device 106 will be described later.
  • the valve opening / closing device 107 opens and closes a valve provided in a hydrogen pipe communicating the hydrogen storage system 104 and the hydrogen utilization device 20.
  • the valve opening / closing device 107 opens and closes the valve according to the control of the control device 30. That is, the valve opening / closing device 107 opens the valve when hydrogen is supplied from the hydrogen storage system 104, and closes the valve when hydrogen is not supplied.
  • the control device 30 includes an acquisition unit 32, a control unit 34, and a storage unit 36.
  • the acquisition unit 32 acquires information used to control the entire hydrogen energy utilization system 1 from the measuring devices 22, 103, 105, the hydrogen storage system 104, and the like.
  • the control unit 34 controls the entire hydrogen energy utilization system 1 based on the information acquired by the acquisition unit 32. Further, the control unit 34 controls the hydrogen storage system 104 via the hydrogen storage control device 106.
  • the storage unit 36 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, an optical disk, or the like.
  • the storage unit 36 stores a program for operating the control unit 34.
  • the storage unit 36 stores information indicating the relationship between the hydrogen storage amount and temperature in the hydrogen storage alloy tank of the hydrogen storage device 200 (FIG. 3) and the discharge pressure of the hydrogen storage device 200.
  • FIG. 3 is a block diagram showing a detailed configuration of the hydrogen storage system 104.
  • the hydrogen storage system 104 includes a hydrogen storage device 200 and a heat supply device 201.
  • the hydrogen storage device 200 has a hydrogen storage alloy tank that stores hydrogen using, for example, a hydrogen storage alloy. Hydrogen generated by the hydrogen production apparatus 102 is supplied to the hydrogen storage apparatus 200 via a valve. The hydrogen storage alloy in the hydrogen storage alloy tank releases hydrogen by a pressure difference between the hydrogen release pressure and the hydrogen utilization device 20. Further, the larger the pressure difference between the hydrogen storage pressure and the hydrogen storage pressure, the more hydrogen is stored. That is, hydrogen is stored in the hydrogen storage alloy tank under a low temperature condition, and the stored hydrogen is promoted to be released from the hydrogen storage alloy tank under a high temperature condition. Further, it absorbs heat in proportion to the amount of released hydrogen and generates heat in proportion to the amount of absorbed heat.
  • the heat supply device 201 is a device that supplies heat to the hydrogen storage device 200.
  • the heat supply device 201 includes a heat exchanger 202, a heat pump 204, a hot water storage tank 206, pumps 300 to 304, and water pipes L1 to L3.
  • the heat exchanger 202 performs heat exchange between a heat medium, for example, water flowing in the primary side flow path L1, and a heat medium, for example, water, flowing in the secondary side flow path L2.
  • the flow path L1 exiting from the primary side of the heat exchanger 202 through the pump 300 for switching on / off of water circulation returns to the hot water storage tank 206.
  • the flow path L2 enters the heat pump 204, and the flow path L2 exiting from the heat pump 204 flows into the secondary side of the heat exchanger 202 flow path.
  • a pump 304 for switching on / off of water circulation in the flow path L3 is provided in the secondary side flow path L3 of the heat pump 204 with the hydrogen storage device 200.
  • the heat pump 204 heats or cools the water in the flow path L3.
  • the flow path L6 is a flow path that circulates in the hydrogen utilization device 20 and the hot water storage tank 206.
  • the hot water storage tank 206 is a tank that stores a heat medium, for example, water, and is supplied with heat by a heat medium that circulates in the flow path L6, for example, water.
  • the hot water storage tank 206 is configured to be able to supply heat to the load section.
  • FIG. 4 is a diagram illustrating an example of relationship information between the amount of hydrogen stored, the discharge pressure, and the temperature in the hydrogen storage device 200 used by the control unit 34 for control.
  • the amount of hydrogen stored is proportional to the filling rate of the hydrogen storage alloy tank.
  • the horizontal axis indicates the storage amount, and the vertical axis indicates the discharge pressure per unit amount of hydrogen.
  • T1 to T5 indicate temperatures, and T1 to T5 indicate the characteristics of the critical flow rate of hydrogen at the temperatures.
  • the critical flow rate is an index representing the performance of the hydrogen storage device 200, and means the lowest flow rate at which release can be maintained.
  • the hydrogen pressure in the hydrogen storage alloy in the hydrogen storage alloy tank varies depending on the hydrogen filling rate and temperature. As described above, for example, information indicating the relationship between the storage amount of hydrogen in the hydrogen storage device 200 shown in FIG. 4, the temperature, and the discharge pressure is stored in the storage unit 36 in the control device 30.
  • the control unit 34 controls the heat supply device 201 based on information indicating the relationship between the hydrogen storage amount, temperature, and discharge pressure in the hydrogen storage device 200 stored in the storage unit 36. Do. For example, the control unit 34 first acquires information on the pressure A0 at the hydrogen supply port of the hydrogen utilization device 20. That is, when the hydrogen storage amount in the hydrogen storage device 200 is B1, the control unit 34 sets the temperature in the hydrogen storage alloy tank of the hydrogen storage device 200 in order to set the discharge pressure to A1 higher than the A0 by a predetermined pressure. Needs to be T4 or more.
  • the control unit 34 converts the required hydrogen flow rate from the information on the generated power of the hydrogen utilization device 20, and acquires the required heat amount based on the converted hydrogen flow rate and the temperature difference T4-T2. Since the temperature change of the hydrogen storage alloy in the hydrogen storage alloy tank is also affected by the hydrogen release flow rate, these relationships are obtained and reflected in advance in the information shown in FIG. *
  • the control unit 34 includes information on the hydrogen pressure in the hydrogen storage device 200 (hydrogen storage amount B1, pressure A2 or temperature T2), information on the discharge pressure A1 to be released from the hydrogen storage device 200, The amount of heat supplied from the heat supply device 201 to the hydrogen storage device 200 is controlled based on the information on the hydrogen discharge flow rate. That is, the control unit 34 releases the discharge pressure of the hydrogen storage device 200 to a predetermined release based on the information indicating the relationship between the hydrogen storage amount in the hydrogen storage device 200, the temperature and the discharge pressure, and the information on the hydrogen discharge flow rate. Control is performed to supply the hydrogen storage device 200 with the amount of heat for making the pressure.
  • the control unit 34 supplies the hydrogen storage device 200 to the hydrogen storage device 200 based on the hydrogen flow rate discharged from the hydrogen storage device 200 in addition to the information indicating the relationship between the hydrogen storage amount in the hydrogen storage device 200 and the temperature and the discharge pressure. Control the amount of heat In this way, the control unit 34 acquires the amount of heat necessary according to the amount of power generated by the hydrogen utilization device 20 and supplies the amount of heat to the hydrogen storage device 200 from the heat supply device 201. For this reason, it is suppressed that the amount of heat is excessively supplied from the heat supply device 201 to the hydrogen storage device 200, and the energy utilization rate of the entire hydrogen energy utilization system 1 is increased.
  • the power generation amount of the hydrogen use device 20 is determined. This makes it possible to acquire the amount of heat required.
  • FIG. 5 is a diagram showing the relationship between the heat medium temperature and energy of the secondary side flow path L5 of the heat exchanger 202. As shown in FIG. The horizontal axis indicates the heat medium temperature, that is, the water temperature, and the vertical axis indicates energy.
  • the reference heat amount per unit time supplied from the heat exchanger 202 to the hydrogen storage device 200 is controlled by the flow rate of water flowing through the secondary side flow path L5 and the temperature of the water.
  • the flow rate of the water flowing through the secondary side flow path L5 can be reduced.
  • a curve reflecting such a relationship is E1. That is, the curve E1 shows the relationship between the heat medium temperature and the energy required for driving the pump 304 when supplying the reference heat amount.
  • the energy required for driving the pump 304 decreases as the temperature of the heat medium increases.
  • the control part 34 sets the secondary side flow path L5 to the heat medium temperature which becomes the minimum when the energy E1 required for driving the pump 304 and the energy E2 required by the heat exchanger 202 are added. Control the temperature of the flowing water. Thereby, the energy required for heat exchange via the secondary side flow path L5 is suppressed, and the energy utilization efficiency of the entire hydrogen energy utilization system 1 is increased.
  • control unit 34 of the control device 30 controls the temperature and flow rate of the heat medium supplied from the heat supply device 201 so that the storage basic unit becomes smaller, thereby the hydrogen storage alloy in the hydrogen storage device 200. Control the temperature of the hydrogen storage alloy in the tank.
  • a storage basic unit means the energy consumed for the unit amount of hydrogen discharge
  • the control device 30 uses the hydrogen limit flow rate and the storage basic unit as an index of the operation of the hydrogen storage device 200.
  • the control device 30 may control the hydrogen storage device 200 and the heat supply device 201 so that the hydrogen limit flow rate becomes larger than the hydrogen use flow rate ( ⁇ safety factor).
  • the control device 30 opens the pumps 300 to 304, and flows hot water from the hot water storage tank 206 to the primary side of the heat exchanger 111.
  • the hot water that has flowed from the hot water storage tank 206 to the primary side of the heat exchanger 202 drops in temperature and returns to the hot water storage tank 206.
  • the temperature of the hot water that has flowed from the secondary side of the heat exchanger 202 to the heat pump 204 decreases due to heat absorption in the heat pump 204 and returns to the secondary side of the heat exchanger 202.
  • the temperature of the hot water flowing into the hydrogen storage alloy tank of the hydrogen storage device 200 decreases due to heat absorption in the hydrogen storage alloy tank from which hydrogen has been released, and returns to the secondary side of the heat pump 204. In this manner, heat for releasing hydrogen can be supplied to the hydrogen storage alloy tank of the hydrogen storage device 200 using the hot water from the hot water storage tank 206 to the primary side of the heat exchanger 202.
  • the control device 30 closes the pump 300 between the hot water storage tank 3206 and the primary side of the heat exchanger 202 among the pumps 300 to 306, and makes the others open. Thereby, the circulation of the hot water between the hot water storage tank 206 and the primary side of the heat exchanger 202 is stopped, and the hot water is circulated between the secondary side of the heat exchanger 202 and the heat pump 204.
  • the control device 30 operates the heat pump 204 in the heating mode to heat the hot water circulated between the hydrogen storage device 200 and the heat pump 204 and supply the heated water to the hydrogen storage device 200.
  • the temperature of the hot water flowing from the secondary side of the heat pump 204 to the hydrogen storage alloy tank of the hydrogen storage device 200 decreases due to heat absorption in the hydrogen storage alloy tank from which hydrogen has been released, and returns to the secondary side of the heat pump 204.
  • heat for releasing hydrogen can be supplied to the hydrogen storage alloy tank of the hydrogen storage device 200 using the hot water from the heat exchanger 202 to the primary side of the heat pump 204.
  • the control device 30 includes a pump 302 between the heat exchanger 202 and the primary side of the heat pump 204 among the pumps 300 to 306, and a pump 304 between the secondary side of the pump 204 and the hydrogen storage device 200. Open state and close others. Thereby, the circulation of the hot water between the hot water storage tank 206 and the primary side of the heat exchanger 111 is stopped.
  • the control device 30 operates the heat pump 204 in the cooling mode, thereby cooling the water circulating between the hydrogen storage device 200 and the heat pump 204 and supplying the water to the hydrogen storage device 200.
  • the temperature of the water flowing from the secondary side of the heat pump 204 to the hydrogen storage alloy tank of the hydrogen storage device 200 rises due to heat generation in the hydrogen storage alloy tank storing hydrogen, and returns to the secondary side of the heat pump 204.
  • water between the secondary side of the heat exchanger 202 and the heat pump 204 is cooled, and hydrogen storage by the hydrogen storage alloy tank of the hydrogen storage device 200 can be performed using the cooled water. .
  • the controller 30 controls the number of operating systems in the plurality of hydrogen supply systems 12 because the energy consumption varies depending on the number of operating systems in the plurality of hydrogen supplying systems 12. More specifically, the control device operates the hydrogen supply system 12 so that hydrogen is supplied from the hydrogen storage device 200 selected based on the pressure in the hydrogen storage device 200 included in each of the plurality of hydrogen supply systems 12. That is, the control device 30 selects the hydrogen storage device 200 having a pressure close to the discharge pressure of hydrogen discharged to the hydrogen utilization device 20 based on at least the temperature among the hydrogen storage amount and temperature in the hydrogen storage device 200. In other words, the control device 30 selects and operates the hydrogen supply system 12 in order of decreasing heat amount applied to the hydrogen storage device 200 when supplying hydrogen to the hydrogen utilization device 20. Thereby, the energy utilization efficiency of the hydrogen utilization system 1 can be improved.
  • the hydrogen storage device 200 included in at least one of the plurality of hydrogen storage systems 104 includes a hydrogen storage alloy tank
  • the hydrogen included in at least one of the other hydrogen storage systems 104 includes hydrogen.
  • the storage device 200 may be configured to have a high-pressure tank. For example, when the storage time from production to use of hydrogen is short, it is stored in a high-pressure tank, and when the storage time is longer, it is stored in a hydrogen storage alloy tank. As described above, by combining the hydrogen storage alloy tank and the high-pressure tank, the energy consumed by the hydrogen storage of the hydrogen storage device 200 can be reduced.
  • control device 30 may adjust the temperature of the heat medium by switching or combining the heat media having different temperatures stored in the heat supply devices 201 of the plurality of hydrogen supply systems 12.
  • the heat medium released from the hydrogen storage device 200 may be stored and used for cooling or the like. Thereby, cold energy can be utilized.
  • the heat medium supplied from the hydrogen utilization device 20 may be stored in the hot water storage tank 206 after supplying the load with heat.
  • the heat medium supplied from the hydrogen utilization device 20 may be stored in the hot water storage tank 206 before supplying heat to the load section.
  • FIG. 6 is a flowchart illustrating an example of the control of the hydrogen energy utilization system 1, and an example of the control of the hydrogen energy utilization system 1 will be described with reference to FIG. Here, a control example until the control unit 30 supplies heat to the heat supply device 201 will be described.
  • the acquisition part 32 of the control apparatus 30 acquires the information regarding the hydrogen pressure in the hydrogen storage alloy tank of the hydrogen storage apparatus 200 (step S100). Next, based on the information on the hydrogen pressure in the hydrogen storage alloy tank acquired by the acquisition unit 32 and the information on the discharge pressure to be released from the hydrogen storage device 200, the control unit 34 supplies the hydrogen storage device from the heat supply device 201. The amount of heat supplied to 200 is calculated (step S102).
  • control unit 34 controls the heat supply device 201 to supply the amount of heat calculated in step S102 to the hydrogen storage device 200 (step S104). Subsequently, the control unit 34 determines whether or not to end the control (step S106). When the control is not ended (NO in step S106), the processing from step S100 is repeated. On the other hand, if the process ends (YES in step S106), the entire control process ends. As described above, the control device 30 controls the heat supply device 201 to supply heat based on the information on the hydrogen pressure in the hydrogen storage alloy tank and the information on the discharge pressure to be released from the hydrogen storage device 200. I do.
  • the control device 30 is based on the information on the hydrogen pressure in the hydrogen storage device 200 and the information on the discharge pressure to be released from the hydrogen storage device 200.
  • the amount of heat supplied from 201 to the hydrogen storage device 200 is controlled.
  • the amount of heat consumed can be suppressed to the amount of heat corresponding to the hydrogen pressure required to supply the hydrogen utilization device 20, and the energy utilization efficiency of the hydrogen energy utilization system 1 can be improved.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

This hydrogen energy utilization system comprises a hydrogen storage device storing hydrogen in a hydrogen storing alloy tank, a heat supply device supplying an amount of heat to the hydrogen storage device, and a control device controlling the hydrogen storage device and the heat supply device. On the basis of information regarding the hydrogen pressure inside the hydrogen storing alloy tank and information regarding the discharge pressure that should be discharged from the hydrogen storage device, the control device controls the amount of heat supplied from the heat supply device to the hydrogen storage device.

Description

水素エネルギー利用システム、その制御装置、及びその制御方法Hydrogen energy utilization system, control device therefor, and control method therefor
 本実施形態は、水素エネルギー利用システム、その制御装置、及びその制御方法に関する。 This embodiment relates to a hydrogen energy utilization system, its control device, and its control method.
 太陽光や風力などに代表される再生可能エネルギーによる発電システムが知られている。この発電システムでは、水素エネルギーを利用した発電を行う水素エネルギー利用システムが併用される場合がある。このような水素エネルギー利用システムは、再生可能エネルギーによる発電量が需要よりも大きい時間帯に、水または水蒸気を電気分解等の水素製造装置で水素を製造し、水素貯蔵装置により貯蔵する。一方で、再生可能エネルギーによる発電量が需要よりも小さい時間帯に、水素貯蔵装置により貯蔵した水素を燃料電池等の水素利用装置により電気と熱エネルギーとを生成して、利用する。 A power generation system using renewable energy represented by sunlight and wind power is known. In this power generation system, a hydrogen energy utilization system that generates power using hydrogen energy may be used in combination. In such a hydrogen energy utilization system, hydrogen or water vapor is produced by a hydrogen production device such as electrolysis in a time zone in which the amount of power generated by renewable energy is greater than demand, and stored by a hydrogen storage device. On the other hand, in the time zone when the amount of power generated by renewable energy is smaller than the demand, the hydrogen stored by the hydrogen storage device is generated and used by the hydrogen utilization device such as a fuel cell.
 水素貯蔵装置は、例えば水素吸蔵合金に水素を充填する水素吸蔵合金タンクを有していたり、水素製造装置で製造した水素を圧縮機で圧縮して貯蔵する高圧タンクを有していたりする。水素吸蔵合金タンクによる貯蔵は、高圧タンクよりも水素貯蔵装置を小型化できる利点がある。一方で、水素吸蔵合金の温度が低下すると、水素吸蔵合金の放出圧力も低下して、燃料電池等で必要となる水素量を放出できなくなってしまう。このため、水素吸蔵合金を加熱する必要があり、一般に水素吸蔵合金の温度が一定になるように熱供給制御されている。ところが、温度が一定になるように熱供給制御することにより、水素吸蔵合金の所定の放出圧力を得るために必要となる熱量以上のエネルギーが水素エネルギー利用システムで消費されてしまう。 The hydrogen storage device has, for example, a hydrogen storage alloy tank that fills the hydrogen storage alloy with hydrogen, or a high-pressure tank that stores the hydrogen produced by the hydrogen production device by compressing it with a compressor. The storage by the hydrogen storage alloy tank has an advantage that the hydrogen storage device can be made smaller than the high-pressure tank. On the other hand, when the temperature of the hydrogen storage alloy decreases, the release pressure of the hydrogen storage alloy also decreases, and the amount of hydrogen necessary for a fuel cell or the like cannot be released. For this reason, it is necessary to heat the hydrogen storage alloy, and in general, the heat supply is controlled so that the temperature of the hydrogen storage alloy is constant. However, by controlling the heat supply so that the temperature is constant, energy exceeding the amount of heat required to obtain a predetermined release pressure of the hydrogen storage alloy is consumed in the hydrogen energy utilization system.
特許第5976950号公報Japanese Patent No. 5976950
 本発明が解決しようとする課題は、システム全体のエネルギー利用効率が低下することを抑制しつつ水素貯蔵装置の水素吸蔵合金タンクの水素放出に必要な熱量を供給可能な水素エネルギー利用システム、その制御装置、及びその制御方法を提供することである。 A problem to be solved by the present invention is a hydrogen energy utilization system capable of supplying the amount of heat necessary for releasing hydrogen from a hydrogen storage alloy tank of a hydrogen storage device while suppressing a decrease in energy utilization efficiency of the entire system, and its control An apparatus and a control method thereof are provided.
 本実施形態に係る水素エネルギー利用システムは、水素吸蔵合金タンクに水素を貯蔵する水素貯蔵装置と、前記水素貯蔵装置に熱量を供給する熱供給装置と、前記水素貯蔵装置、及び前記熱供給装置を制御する制御装置と、を備え、前記制御装置は、前記水素吸蔵合金タンク内の水素の圧力に関する情報を取得する取得部と、前記情報と、前記水素貯蔵装置から放出すべき放出圧力の情報とに基づき、前記熱供給装置から前記水素貯蔵装置へ供給する熱を制御する制御部と、を有する。 The hydrogen energy utilization system according to the present embodiment includes a hydrogen storage device that stores hydrogen in a hydrogen storage alloy tank, a heat supply device that supplies heat to the hydrogen storage device, the hydrogen storage device, and the heat supply device. A control device for controlling, the control device acquiring information on the pressure of hydrogen in the hydrogen storage alloy tank, the information, and information on the discharge pressure to be released from the hydrogen storage device, And a controller for controlling heat supplied from the heat supply device to the hydrogen storage device.
 本発明によれば、システム全体のエネルギー利用効率が低下することを抑制しつつ水素貯蔵装置の水素吸蔵合金タンクの水素放出に必要な熱量を供給できる。 According to the present invention, it is possible to supply the amount of heat necessary for releasing hydrogen from the hydrogen storage alloy tank of the hydrogen storage device while suppressing a decrease in the energy utilization efficiency of the entire system.
水素エネルギー利用システムの全体構成を示すブロック図。The block diagram which shows the whole structure of a hydrogen energy utilization system. 水素供給システム及び制御装置の詳細な構成を示すブロック図。The block diagram which shows the detailed structure of a hydrogen supply system and a control apparatus. 水素貯蔵システムの詳細な構成を示すブロック図。The block diagram which shows the detailed structure of a hydrogen storage system. 制御部が制御に使用する水素の貯蔵量と放出圧力と温度との関係を示す図。The figure which shows the relationship between the storage amount of hydrogen which a control part uses for control, discharge | release pressure, and temperature. 熱交換器の二次側流路の熱媒体温度とエネルギーとの関係を示す図。The figure which shows the relationship between the heat-medium temperature and energy of the secondary side flow path of a heat exchanger. 水素エネルギー利用システムの制御の一例示すフローチャート。The flowchart which shows an example of control of a hydrogen energy utilization system.
 以下、本発明の実施形態に係る水素エネルギー利用システム、その制御装置、及びその制御方法について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は、本発明の実施形態の一例であって、本発明はこれらの実施形態に限定して解釈されるものではない。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 Hereinafter, a hydrogen energy utilization system, a control device thereof, and a control method thereof according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, embodiment shown below is an example of embodiment of this invention, This invention is limited to these embodiment, and is not interpreted. In the drawings referred to in this embodiment, the same portions or portions having similar functions are denoted by the same reference symbols or similar symbols, and repeated description thereof may be omitted. In addition, the dimensional ratio in the drawing may be different from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.
 図1は、水素エネルギー利用システム1の全体構成を示すブロック図である。図1に示すように、水素エネルギー利用システム1は、貯蔵した水素を利用して発電するシステムであり、水素製造システム10と、水素利用装置20と、計測装置22と、制御装置30とを備え構成されている。 FIG. 1 is a block diagram showing the overall configuration of the hydrogen energy utilization system 1. As shown in FIG. 1, the hydrogen energy utilization system 1 is a system that generates electricity using stored hydrogen, and includes a hydrogen production system 10, a hydrogen utilization device 20, a measurement device 22, and a control device 30. It is configured.
 水素製造システム10は、例えば再生可能エネルギーにより発電した電力を用いて水素を生成し、供給するシステムである。水素製造システム10は、複数の水素供給システム12を有する。水素供給システム12の詳細な構成は後述する。 The hydrogen production system 10 is a system that generates and supplies hydrogen using, for example, power generated by renewable energy. The hydrogen production system 10 includes a plurality of hydrogen supply systems 12. The detailed configuration of the hydrogen supply system 12 will be described later.
 図1に示すように、水素利用装置20は、例えば燃料電池であり、水素を利用して発電する装置である。水素利用装置20は、複数の水素供給システム12に貯蔵された水素を用いて発電を行う。また、水素利用装置20は、供給された熱媒体、例えば水を燃料電池の発電で生じた熱を用いて加熱し、この加熱により得た熱媒体を複数の水素供給システム12に供給するように構成されている。水素利用装置20から供給される熱媒体に関する詳細な説明は後述する。 As shown in FIG. 1, the hydrogen utilization device 20 is a fuel cell, for example, and is a device that generates power using hydrogen. The hydrogen utilization device 20 generates power using hydrogen stored in the plurality of hydrogen supply systems 12. The hydrogen utilization device 20 heats the supplied heat medium, for example, water using heat generated by power generation of the fuel cell, and supplies the heat medium obtained by this heating to the plurality of hydrogen supply systems 12. It is configured. Detailed description regarding the heat medium supplied from the hydrogen utilization apparatus 20 will be described later.
 計測装置22は、水素利用装置20の状態を計測し、計測情報を制御装置30に送信する。例えば、計測装置22は、水素利用装置20の発電量、水素消費量、熱媒体の温度、熱媒体の流量、水素利用装置20の水素供給口における水素の圧力などを測定する。 The measuring device 22 measures the state of the hydrogen utilization device 20 and transmits the measurement information to the control device 30. For example, the measurement device 22 measures the power generation amount of the hydrogen utilization device 20, the hydrogen consumption amount, the temperature of the heat medium, the flow rate of the heat medium, the hydrogen pressure at the hydrogen supply port of the hydrogen utilization device 20, and the like.
 制御装置30は、例えばプロセッサを含んで構成され、水素製造システム10全体の制御を行う。ここで、プロセッサという文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)などの回路を意味する。制御部30の詳細な構成は後述する。 The control device 30 includes a processor, for example, and controls the entire hydrogen production system 10. Here, the term processor means a circuit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). The detailed configuration of the control unit 30 will be described later.
 図2は、水素供給システム12及び制御装置30の詳細な構成を示すブロック図である。水素供給システム12は、水素製造装置102と、計測装置103、105と、水素貯蔵システム104と、水素貯蔵制御装置106と、弁開閉装置107とを備えて構成されている。 FIG. 2 is a block diagram showing a detailed configuration of the hydrogen supply system 12 and the control device 30. The hydrogen supply system 12 includes a hydrogen production device 102, measuring devices 103 and 105, a hydrogen storage system 104, a hydrogen storage control device 106, and a valve opening / closing device 107.
 水素製造装置102は、例えば再生可能エネルギーにより発電する発電装置から供給される電力、又は電力系統から供給される電力を用いて、水又は水蒸気の電気分解により水素を製造する。水素製造装置102は、例えば固体酸化物型水電解装置である。 The hydrogen production apparatus 102 produces hydrogen by electrolysis of water or steam using, for example, electric power supplied from a power generation apparatus that generates power using renewable energy or electric power supplied from an electric power system. The hydrogen production apparatus 102 is, for example, a solid oxide water electrolysis apparatus.
 計測装置103は、水素製造装置102の状態を計測する温度センサ、圧力計、流量計などの計測機器であり、水素製造装置102の生成する水素量、圧力、温度などを計測する。計測装置103は、これらの計測機器によって計測されたデータがデータ信号として、制御装置30に出力する。 The measuring device 103 is a measuring device such as a temperature sensor, a pressure gauge, and a flow meter that measures the state of the hydrogen production device 102, and measures the amount of hydrogen, pressure, temperature, and the like generated by the hydrogen production device 102. The measuring device 103 outputs data measured by these measuring devices to the control device 30 as a data signal.
 水素貯蔵システム104は、水素製造装置102により生成された水素を貯蔵する。水素製造装置102と水素貯蔵システム104とは配管及び弁介して連通している。これにより、水素貯蔵システム104には、配管及び弁を介して水素製造装置102から水素が供給される。水素貯蔵システム104の詳細な構成は後述する。  The hydrogen storage system 104 stores the hydrogen generated by the hydrogen production apparatus 102. The hydrogen production apparatus 102 and the hydrogen storage system 104 communicate with each other via a pipe and a valve. Thereby, hydrogen is supplied to the hydrogen storage system 104 from the hydrogen production apparatus 102 via the pipe and the valve. The detailed configuration of the hydrogen storage system 104 will be described later. *
 計測装置105は、水素貯蔵システム104の状態を計測する温度センサ、圧力計、流量計などの計測機器であり、水素貯蔵システム104に供給される水素の流量、温度、圧力などを計測する。また、計測装置105は、水素貯蔵システム104に貯蔵される水素の温度、圧力、貯蔵量、或いは充填率、水素貯蔵システム104から放出される水素の放出量、温度、圧力などを計測する。計測装置105は、これらの計測機器によって計測されたデータがデータ信号として、制御装置30に出力する The measuring device 105 is a measuring device such as a temperature sensor, a pressure gauge, and a flow meter that measures the state of the hydrogen storage system 104, and measures the flow rate, temperature, pressure, and the like of hydrogen supplied to the hydrogen storage system 104. The measuring device 105 measures the temperature, pressure, storage amount, or filling rate of hydrogen stored in the hydrogen storage system 104, the amount of hydrogen released from the hydrogen storage system 104, temperature, pressure, and the like. The measuring device 105 outputs the data measured by these measuring devices to the control device 30 as a data signal.
 水素貯蔵制御装置106は、プロセッサを含んで構成され、制御装置30の制御指令に従い水素貯蔵システム104の弁、モータ、ヒートポンプ及び熱交換器などの制御を行い、水素貯蔵システム104の水素貯蔵量、水素供給量、圧力、温度などを制御する。水素貯蔵制御装置106を介した制御装置30の詳細な制御は後述する。 The hydrogen storage control device 106 is configured to include a processor and controls the valves, motors, heat pumps, heat exchangers, and the like of the hydrogen storage system 104 according to the control command of the control device 30, and the hydrogen storage amount of the hydrogen storage system 104, Control hydrogen supply, pressure, temperature, etc. Detailed control of the control device 30 via the hydrogen storage control device 106 will be described later.
 弁開閉装置107は、水素貯蔵システム104と水素利用装置20とを連通する水素配管に設けられた弁の開閉を行う。弁開閉装置107は、制御装置30の制御に従いこの弁の開閉を行う。すなわち、弁開閉装置107は、水素貯蔵システム104から水素の供給をする場合に、弁を開き、水素の供給をしない場合に、弁を閉じる。 The valve opening / closing device 107 opens and closes a valve provided in a hydrogen pipe communicating the hydrogen storage system 104 and the hydrogen utilization device 20. The valve opening / closing device 107 opens and closes the valve according to the control of the control device 30. That is, the valve opening / closing device 107 opens the valve when hydrogen is supplied from the hydrogen storage system 104, and closes the valve when hydrogen is not supplied.
 図2に示すように、制御装置30は、取得部32と、制御部34と、記憶部36とを備えて構成されている。 As shown in FIG. 2, the control device 30 includes an acquisition unit 32, a control unit 34, and a storage unit 36.
 取得部32は、水素エネルギー利用システム1全体を制御するために用いる情報を、計測装置22、103、105と水素貯蔵システム104などから取得する。 The acquisition unit 32 acquires information used to control the entire hydrogen energy utilization system 1 from the measuring devices 22, 103, 105, the hydrogen storage system 104, and the like.
 制御部34は、取得部32が取得した情報に基づき、水素エネルギー利用システム1全体を制御する。また、制御部34は、水素貯蔵制御装置106を介して水素貯蔵システム104を制御する。 The control unit 34 controls the entire hydrogen energy utilization system 1 based on the information acquired by the acquisition unit 32. Further, the control unit 34 controls the hydrogen storage system 104 via the hydrogen storage control device 106.
 記憶部36は、例えば、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等により実現される。記憶部36は、制御部34を動作させるためのプログラムを記憶している。また、記憶部36は、水素貯蔵装置200(図3)が有する水素吸蔵合金タンク内の水素の貯蔵量と温度と水素貯蔵装置200の放出圧力の関係を示す情報を記憶している。 The storage unit 36 is realized by, for example, a RAM (Random Access Memory), a semiconductor memory element such as a flash memory, a hard disk, an optical disk, or the like. The storage unit 36 stores a program for operating the control unit 34. The storage unit 36 stores information indicating the relationship between the hydrogen storage amount and temperature in the hydrogen storage alloy tank of the hydrogen storage device 200 (FIG. 3) and the discharge pressure of the hydrogen storage device 200.
 図3は、水素貯蔵システム104の詳細な構成を示すブロック図である。図3に示すように、水素貯蔵システム104は、水素貯蔵装置200と、熱供給装置201とを備えて構成されている。 FIG. 3 is a block diagram showing a detailed configuration of the hydrogen storage system 104. As shown in FIG. 3, the hydrogen storage system 104 includes a hydrogen storage device 200 and a heat supply device 201.
 水素貯蔵装置200は、例えば水素吸蔵合金を用いて水素を貯蔵する水素吸蔵合金タンクを有する。水素貯蔵装置200には、水素製造装置102によって生成された水素が弁を介して供給される。水素吸蔵合金タンクの水素吸蔵合金は、水素放出圧力と水素利用装置20との圧力差で水素を放出する。また、水素貯蔵の圧力と水素吸蔵圧力との圧力差が大きいほど水素を吸蔵する。すなわち、水素は、低温の条件下で水素吸蔵合金タンクの貯蔵がされ、この貯蔵された水素は、高温の条件下で水素吸蔵合金タンクからの放出が促進される。また、水素の放出量に比例して吸熱し、吸熱量に比例して発熱する。 The hydrogen storage device 200 has a hydrogen storage alloy tank that stores hydrogen using, for example, a hydrogen storage alloy. Hydrogen generated by the hydrogen production apparatus 102 is supplied to the hydrogen storage apparatus 200 via a valve. The hydrogen storage alloy in the hydrogen storage alloy tank releases hydrogen by a pressure difference between the hydrogen release pressure and the hydrogen utilization device 20. Further, the larger the pressure difference between the hydrogen storage pressure and the hydrogen storage pressure, the more hydrogen is stored. That is, hydrogen is stored in the hydrogen storage alloy tank under a low temperature condition, and the stored hydrogen is promoted to be released from the hydrogen storage alloy tank under a high temperature condition. Further, it absorbs heat in proportion to the amount of released hydrogen and generates heat in proportion to the amount of absorbed heat.
 熱供給装置201は、水素貯蔵装置200に熱量を供給する装置である。この熱供給装置201は、熱交換器202と、ヒートポンプ204と、貯湯タンク206と、ポンプ300乃至304と、水管L1乃至L3とを備えて構成されている。 The heat supply device 201 is a device that supplies heat to the hydrogen storage device 200. The heat supply device 201 includes a heat exchanger 202, a heat pump 204, a hot water storage tank 206, pumps 300 to 304, and water pipes L1 to L3.
 熱交換器202は、一次側の流路L1に流れる熱媒体、例えば水と、二次側の流路L2に流れる熱媒体、例えば水との間で熱交換を行う。水の循環のオンオフを切り替えるためのポンプ300を通って熱交換器202の一次側から出た流路L1は、貯湯タンク206に戻る。 The heat exchanger 202 performs heat exchange between a heat medium, for example, water flowing in the primary side flow path L1, and a heat medium, for example, water, flowing in the secondary side flow path L2. The flow path L1 exiting from the primary side of the heat exchanger 202 through the pump 300 for switching on / off of water circulation returns to the hot water storage tank 206.
 流路流路L2は、ヒートポンプ204内に入り、ヒートポンプ204内から出た流路L2は、熱交換器202流路流路流路の二次側に流入する。 The flow path L2 enters the heat pump 204, and the flow path L2 exiting from the heat pump 204 flows into the secondary side of the heat exchanger 202 flow path.
 水素貯蔵装置200との間におけるヒートポンプ204の二次側の流路L3には、流路L3における水の循環のオンオフを切り替えるためのポンプ304が設けられている。ヒートポンプ204は、流路L3内の水を加熱又は冷却する。 In the secondary side flow path L3 of the heat pump 204 with the hydrogen storage device 200, a pump 304 for switching on / off of water circulation in the flow path L3 is provided. The heat pump 204 heats or cools the water in the flow path L3.
 流路L6は、水素利用装置20内と貯湯タンク206内を循環する流路である。貯湯タンク206は、熱媒体、例えば水を貯水するタンクであり、流路L6内を循環する熱媒体、例えば水により熱が供給される。また、貯湯タンク206は、負荷部に熱量を供給可能に構成されている。 The flow path L6 is a flow path that circulates in the hydrogen utilization device 20 and the hot water storage tank 206. The hot water storage tank 206 is a tank that stores a heat medium, for example, water, and is supplied with heat by a heat medium that circulates in the flow path L6, for example, water. The hot water storage tank 206 is configured to be able to supply heat to the load section.
 ここで、図2及び図3を参照しつつ、図4に基づき、制御装置30の制御部34が水素貯蔵制御装置106を介して水素貯蔵システム104に対して行う制御の詳細を説明する。  Here, the details of the control performed by the control unit 34 of the control device 30 on the hydrogen storage system 104 via the hydrogen storage control device 106 will be described based on FIG. 4 with reference to FIGS. *
 図4は、制御部34が制御に使用する水素貯蔵装置200内の水素の貯蔵量と放出圧力と温度との関係情報の一例を示す図である。なお、水素の貯蔵量は、水素吸蔵合金タンクの充填率に比例する。横軸は貯蔵量を示し、縦軸は水素の単位量あたりの放出圧力を示している。T1乃至T5は温度を示し、T1乃至T5によりその温度における水素の限界流量の特性を示している。限界流量とは、水素貯蔵装置200の性能を表す指標であり、放出を維持できる最下流量を意味する。水素吸蔵合金タンク内の水素吸蔵合金における水素圧力は、水素の充填率、及び温度により変動する。上述のように例えば図4に示す水素貯蔵装置200内の水素の貯蔵量と温度と放出圧力の関係を示す情報は、制御装置30内の記憶部36に記憶されている。 FIG. 4 is a diagram illustrating an example of relationship information between the amount of hydrogen stored, the discharge pressure, and the temperature in the hydrogen storage device 200 used by the control unit 34 for control. The amount of hydrogen stored is proportional to the filling rate of the hydrogen storage alloy tank. The horizontal axis indicates the storage amount, and the vertical axis indicates the discharge pressure per unit amount of hydrogen. T1 to T5 indicate temperatures, and T1 to T5 indicate the characteristics of the critical flow rate of hydrogen at the temperatures. The critical flow rate is an index representing the performance of the hydrogen storage device 200, and means the lowest flow rate at which release can be maintained. The hydrogen pressure in the hydrogen storage alloy in the hydrogen storage alloy tank varies depending on the hydrogen filling rate and temperature. As described above, for example, information indicating the relationship between the storage amount of hydrogen in the hydrogen storage device 200 shown in FIG. 4, the temperature, and the discharge pressure is stored in the storage unit 36 in the control device 30.
 図4に示すように、制御部34は、記憶部36に記憶される水素貯蔵装置200内の水素の貯蔵量と温度と放出圧力との関係を示す情報に基づき、熱供給装置201の制御を行う。例えば、制御部34は、まず水素利用装置20の水素供給口の圧力A0の情報を取得する。すなわち、制御部34は、水素貯蔵装置200内の水素の貯蔵量がB1である場合、放出圧力をA0よりも所定圧力高いA1にするために、水素貯蔵装置200の水素吸蔵合金タンク内の温度をT4以上にする必要がある。また、水素貯蔵装置200の水素吸蔵合金タンク内の現在温度がT2である場合、T4―T2の温度差に基づく熱量を熱供給装置201から水素貯蔵装置200に供給させる必要がある。このため、制御部34は、水素利用装置20の発電電力の情報から必要となる水素流量を換算し、換算した水素流量と、温度差T4―T2に基づき必要となる熱量を取得する。なお、水素吸蔵合金タンクの水素吸蔵合金の温度変化は、水素放出流量の影響も受けるので、これらの関係を求めておき、図4に示す情報にも予め反映させる。  As shown in FIG. 4, the control unit 34 controls the heat supply device 201 based on information indicating the relationship between the hydrogen storage amount, temperature, and discharge pressure in the hydrogen storage device 200 stored in the storage unit 36. Do. For example, the control unit 34 first acquires information on the pressure A0 at the hydrogen supply port of the hydrogen utilization device 20. That is, when the hydrogen storage amount in the hydrogen storage device 200 is B1, the control unit 34 sets the temperature in the hydrogen storage alloy tank of the hydrogen storage device 200 in order to set the discharge pressure to A1 higher than the A0 by a predetermined pressure. Needs to be T4 or more. When the current temperature in the hydrogen storage alloy tank of the hydrogen storage device 200 is T2, it is necessary to supply the heat storage device 201 to the hydrogen storage device 200 with an amount of heat based on the temperature difference T4-T2. Therefore, the control unit 34 converts the required hydrogen flow rate from the information on the generated power of the hydrogen utilization device 20, and acquires the required heat amount based on the converted hydrogen flow rate and the temperature difference T4-T2. Since the temperature change of the hydrogen storage alloy in the hydrogen storage alloy tank is also affected by the hydrogen release flow rate, these relationships are obtained and reflected in advance in the information shown in FIG. *
 このように、制御部34は、水素貯蔵装置200内の水素の圧力に関する情報(水素貯蔵量B1と、圧力A2又は温度T2)と、水素貯蔵装置200から放出すべき放出圧力A1の情報と、水素放出流量の情報とに基づき、熱供給装置201から水素貯蔵装置200へ供給する熱量を制御する。すなわち、この制御部34は、水素貯蔵装置200内の水素の貯蔵量と温度と放出圧力の関係を示す情報と、水素放出流量の情報とに基づき、水素貯蔵装置200の放出圧力を所定の放出圧力にするための熱量を水素貯蔵装置200へ供給させる制御を行う。 As described above, the control unit 34 includes information on the hydrogen pressure in the hydrogen storage device 200 (hydrogen storage amount B1, pressure A2 or temperature T2), information on the discharge pressure A1 to be released from the hydrogen storage device 200, The amount of heat supplied from the heat supply device 201 to the hydrogen storage device 200 is controlled based on the information on the hydrogen discharge flow rate. That is, the control unit 34 releases the discharge pressure of the hydrogen storage device 200 to a predetermined release based on the information indicating the relationship between the hydrogen storage amount in the hydrogen storage device 200, the temperature and the discharge pressure, and the information on the hydrogen discharge flow rate. Control is performed to supply the hydrogen storage device 200 with the amount of heat for making the pressure.
 また、制御部34は、水素貯蔵装置200内の水素の貯蔵量と温度と放出圧力の関係を示す情報に加え、水素貯蔵装置200から放出される水素流量にも基づき、水素貯蔵装置200へ供給する熱量を制御する。このように、制御部34は、水素利用装置20の発電量に応じて必要となる熱量を取得し、その熱量を熱供給装置201から水素貯蔵装置200に供給させる。このため、熱供給装置201から水素貯蔵装置200に過剰に熱量が供給されることが抑制され、水素エネルギー利用システム1全体のエネルギー利用率が増加する。このように、温度別の水素限界流量の特性と、水素貯蔵装置200内の水素吸蔵合金の水素放出圧力と水素利用装置20の水素利用圧力との関係から、水素利用装置20の発電量に応じて必要となる熱量を取得可能となる。 The control unit 34 supplies the hydrogen storage device 200 to the hydrogen storage device 200 based on the hydrogen flow rate discharged from the hydrogen storage device 200 in addition to the information indicating the relationship between the hydrogen storage amount in the hydrogen storage device 200 and the temperature and the discharge pressure. Control the amount of heat In this way, the control unit 34 acquires the amount of heat necessary according to the amount of power generated by the hydrogen utilization device 20 and supplies the amount of heat to the hydrogen storage device 200 from the heat supply device 201. For this reason, it is suppressed that the amount of heat is excessively supplied from the heat supply device 201 to the hydrogen storage device 200, and the energy utilization rate of the entire hydrogen energy utilization system 1 is increased. As described above, depending on the characteristics of the hydrogen limit flow rate according to temperature, the relationship between the hydrogen release pressure of the hydrogen storage alloy in the hydrogen storage device 200 and the hydrogen use pressure of the hydrogen use device 20, the power generation amount of the hydrogen use device 20 is determined. This makes it possible to acquire the amount of heat required.
 図5に基づき、上述の熱量を熱交換器202から水素貯蔵装置200に供給する場合の制御例を説明する。図5は、熱交換器202の二次側流路L5の熱媒体温度とエネルギーの関係を示す図である。横軸は、熱媒体温度、すなわち水温を示し、縦軸はエネルギーを示している。熱交換器202から水素貯蔵装置200に供給する単位時間あたりの基準熱量は、二次側流路L5を流れる水の流量と、水の温度により制御される。例えば、二次側流路L5を流れる水の温度を上げるに従い、二次側流路L5を流れる水の流量を低減させることが可能である。このような関係を反映した曲線がE1である。すなわち、曲線E1は、基準熱量を供給する場合の、熱媒体温度とポンプ304の駆動に必要となるエネルギーとの関係を示している。このように、ポンプ304の駆動に必要となるエネルギーは、熱媒体の温度を上げるに従い減少する。 Based on FIG. 5, the example of control in the case of supplying the above-mentioned calorie | heat amount from the heat exchanger 202 to the hydrogen storage apparatus 200 is demonstrated. FIG. 5 is a diagram showing the relationship between the heat medium temperature and energy of the secondary side flow path L5 of the heat exchanger 202. As shown in FIG. The horizontal axis indicates the heat medium temperature, that is, the water temperature, and the vertical axis indicates energy. The reference heat amount per unit time supplied from the heat exchanger 202 to the hydrogen storage device 200 is controlled by the flow rate of water flowing through the secondary side flow path L5 and the temperature of the water. For example, as the temperature of the water flowing through the secondary side flow path L5 is increased, the flow rate of the water flowing through the secondary side flow path L5 can be reduced. A curve reflecting such a relationship is E1. That is, the curve E1 shows the relationship between the heat medium temperature and the energy required for driving the pump 304 when supplying the reference heat amount. Thus, the energy required for driving the pump 304 decreases as the temperature of the heat medium increases.
 一方で、基準熱量を供給する場合の、熱交換器202が必要とするエネルギーは、熱媒体の温度を上げるに従い増加する。この関係を反映した曲線がE2である。これらから分かるように、基準熱量を供給する場合の、ポンプ304の駆動に必要となるエネルギーE1と、熱交換器202が必要とするエネルギーE2とはトレードオフの関係にある。このため、制御部34は、ポンプ304の駆動に必要となるエネルギーE1と、熱交換器202が必要とするエネルギーE2とを加算した場合に最小となる熱媒体温度に二次側流路L5を流れる水の温度を制御する。これにより、二次側流路L5を介した熱交換に必要となるネルギーが抑制され、水素エネルギー利用システム1全体のエネルギー利用効率が増加する。このように、貯蔵原単位が小さくなるように、制御装置30の制御部34は、熱供給装置201から供給する熱媒体の温度と流量を制御することにより、水素貯蔵装置200内の水素吸蔵合金タンクの水素吸蔵合金の温度を制御する。なお、貯蔵原単位は、水素吸蔵合金タンクからの単位量の水素放出に消費されるエネルギーを意味する。また、制御装置30は、水素貯蔵装置200運転の指標として、水素貯蔵装置200が水素吸蔵合金タンクを有する場合、水素限界流量と貯蔵原単位とを用いる。さらにまた、制御装置30は、水素限界流量が水素利用流量(×安全率)よりも大きくなるように、水素貯蔵装置200及び熱供給装置201を制御してもよい。 On the other hand, the energy required by the heat exchanger 202 when supplying the reference heat amount increases as the temperature of the heat medium increases. A curve reflecting this relationship is E2. As can be seen, there is a trade-off relationship between the energy E1 required for driving the pump 304 and the energy E2 required by the heat exchanger 202 when supplying the reference heat amount. For this reason, the control part 34 sets the secondary side flow path L5 to the heat medium temperature which becomes the minimum when the energy E1 required for driving the pump 304 and the energy E2 required by the heat exchanger 202 are added. Control the temperature of the flowing water. Thereby, the energy required for heat exchange via the secondary side flow path L5 is suppressed, and the energy utilization efficiency of the entire hydrogen energy utilization system 1 is increased. In this way, the control unit 34 of the control device 30 controls the temperature and flow rate of the heat medium supplied from the heat supply device 201 so that the storage basic unit becomes smaller, thereby the hydrogen storage alloy in the hydrogen storage device 200. Control the temperature of the hydrogen storage alloy in the tank. In addition, a storage basic unit means the energy consumed for the unit amount of hydrogen discharge | release from a hydrogen storage alloy tank. Further, when the hydrogen storage device 200 has a hydrogen storage alloy tank, the control device 30 uses the hydrogen limit flow rate and the storage basic unit as an index of the operation of the hydrogen storage device 200. Furthermore, the control device 30 may control the hydrogen storage device 200 and the heat supply device 201 so that the hydrogen limit flow rate becomes larger than the hydrogen use flow rate (× safety factor).
 ここで、制御装置30の制御部34が行う温水の循環制御例について説明する。まず、貯湯タンク206に熱供給に必要となる温水が貯湯されている場合について説明する。 Here, an example of hot water circulation control performed by the control unit 34 of the control device 30 will be described. First, the case where hot water required for heat supply is stored in the hot water storage tank 206 will be described.
 制御装置30は、ポンプ300乃至304を開状態とし、貯湯タンク206から熱交換器111の一次側へ温水を流す。貯湯タンク206から熱交換器202の一次側へ流れた温水は、温度が低下して貯湯タンク206に戻る。熱交換器202の二次側からヒートポンプ204へ流れた温水は、ヒートポンプ204における吸熱により温度が低下し、熱交換器202の二次側に戻る。 The control device 30 opens the pumps 300 to 304, and flows hot water from the hot water storage tank 206 to the primary side of the heat exchanger 111. The hot water that has flowed from the hot water storage tank 206 to the primary side of the heat exchanger 202 drops in temperature and returns to the hot water storage tank 206. The temperature of the hot water that has flowed from the secondary side of the heat exchanger 202 to the heat pump 204 decreases due to heat absorption in the heat pump 204 and returns to the secondary side of the heat exchanger 202.
 水素貯蔵装置200の水素吸蔵合金タンクへ流れた温水は、水素を放出した水素吸蔵合金タンクにおける吸熱により温度が低下し、ヒートポンプ204の二次側に戻る。このように、貯湯タンク206から熱交換器202の一次側への温水を利用して、水素貯蔵装置200の水素吸蔵合金タンクに対して、水素放出のための熱を供給することができる。 The temperature of the hot water flowing into the hydrogen storage alloy tank of the hydrogen storage device 200 decreases due to heat absorption in the hydrogen storage alloy tank from which hydrogen has been released, and returns to the secondary side of the heat pump 204. In this manner, heat for releasing hydrogen can be supplied to the hydrogen storage alloy tank of the hydrogen storage device 200 using the hot water from the hot water storage tank 206 to the primary side of the heat exchanger 202.
 次に、貯湯タンク206に熱供給に必要となる温水が十分に貯湯されていない場合について説明する。制御装置30は、ポンプ300乃至306のうち貯湯タンク3206と熱交換器202の一次側との間のポンプ300を閉じ、他は開状態とする。これにより、貯湯タンク206と熱交換器202の一次側との間の温水の循環は停止し、熱交換器202の二次側とヒートポンプ204との間で温水が循環する。 Next, a case where the hot water necessary for supplying heat is not sufficiently stored in the hot water storage tank 206 will be described. The control device 30 closes the pump 300 between the hot water storage tank 3206 and the primary side of the heat exchanger 202 among the pumps 300 to 306, and makes the others open. Thereby, the circulation of the hot water between the hot water storage tank 206 and the primary side of the heat exchanger 202 is stopped, and the hot water is circulated between the secondary side of the heat exchanger 202 and the heat pump 204.
 制御装置30は、ヒートポンプ204を加熱モードとして動作させることで、水素貯蔵装置200とヒートポンプ204との間で循環する温水を加熱して水素貯蔵装置200に供給する。ヒートポンプ204の二次側から水素貯蔵装置200の水素吸蔵合金タンクへ流れた温水は、水素を放出した水素吸蔵合金タンクにおける吸熱により温度が低下し、ヒートポンプ204の二次側に戻る。このように、熱交換器202からヒートポンプ204の一次側への温水を利用して、水素貯蔵装置200の水素吸蔵合金タンクに対して、水素放出のための熱を供給することができる。 The control device 30 operates the heat pump 204 in the heating mode to heat the hot water circulated between the hydrogen storage device 200 and the heat pump 204 and supply the heated water to the hydrogen storage device 200. The temperature of the hot water flowing from the secondary side of the heat pump 204 to the hydrogen storage alloy tank of the hydrogen storage device 200 decreases due to heat absorption in the hydrogen storage alloy tank from which hydrogen has been released, and returns to the secondary side of the heat pump 204. Thus, heat for releasing hydrogen can be supplied to the hydrogen storage alloy tank of the hydrogen storage device 200 using the hot water from the heat exchanger 202 to the primary side of the heat pump 204.
 ここで、水素貯蔵装置200の水素吸蔵合金タンクへの水素の吸蔵時における制御装置30の循環制御例について説明する。水素貯蔵装置200内の水素吸蔵合金タンクへ水素の吸蔵を行なわせる場合、水素吸蔵合金タンクの水素吸蔵合金タンクへ供給される水を低温とする。制御装置30は、ポンプ300ないし306のうち、熱交換器202とヒートポンプ204との一次側との間のポンプ302と、ポンプ204の二次側と水素貯蔵装置200との間のポンプ304とを開状態とし、他を閉状態とする。これにより、貯湯タンク206と熱交換器111の一次側との間の温水の循環は停止する。 Here, an example of the circulation control of the control device 30 when storing hydrogen in the hydrogen storage alloy tank of the hydrogen storage device 200 will be described. When hydrogen is stored in the hydrogen storage alloy tank in the hydrogen storage device 200, water supplied to the hydrogen storage alloy tank of the hydrogen storage alloy tank is set to a low temperature. The control device 30 includes a pump 302 between the heat exchanger 202 and the primary side of the heat pump 204 among the pumps 300 to 306, and a pump 304 between the secondary side of the pump 204 and the hydrogen storage device 200. Open state and close others. Thereby, the circulation of the hot water between the hot water storage tank 206 and the primary side of the heat exchanger 111 is stopped.
 制御装置30は、ヒートポンプ204を冷却モードとして動作させることで、水素貯蔵装置200とヒートポンプ204との間で循環する水を冷却して水素貯蔵装置200に供給する。これにより、ヒートポンプ204の二次側から水素貯蔵装置200の水素吸蔵合金タンクへ流れた水は、水素を吸蔵した水素吸蔵合金タンクにおける発熱により温度が上昇し、ヒートポンプ204の二次側に戻る。このように、熱交換器202の二次側とヒートポンプ204との間の水を冷却し、この冷却した水を利用して、水素貯蔵装置200の水素吸蔵合金タンクによる水素吸蔵とが可能となる。 The control device 30 operates the heat pump 204 in the cooling mode, thereby cooling the water circulating between the hydrogen storage device 200 and the heat pump 204 and supplying the water to the hydrogen storage device 200. As a result, the temperature of the water flowing from the secondary side of the heat pump 204 to the hydrogen storage alloy tank of the hydrogen storage device 200 rises due to heat generation in the hydrogen storage alloy tank storing hydrogen, and returns to the secondary side of the heat pump 204. In this way, water between the secondary side of the heat exchanger 202 and the heat pump 204 is cooled, and hydrogen storage by the hydrogen storage alloy tank of the hydrogen storage device 200 can be performed using the cooled water. .
 ここで、図1を再び参照しつつ複数の水素供給システム12の制御例を説明する。制御装置30は、複数の水素供給システム12の内の運転させるシステムの数により消費エネルギーが変わるため、複数の水素供給システム12の内の運転させるシステムの数を制御する。より具体的には、制御装置は、複数の水素供給システム12それぞれが有する水素貯蔵装置200内の圧力に基づき選択した水素貯蔵装置200から水素を供給させるように、水素供給システム12を運転させる。すなわち、制御装置30は、水素貯蔵装置200内の水素貯蔵量及び温度のうち少なくとも温度に基づき、水素利用装置20に放出する水素の放出圧に近い圧力を有する水素貯蔵装置200を選択する。換言すると、制御装置30は、水素利用装置20に水素を供給する際に水素貯蔵装置200に加える熱量が少ない順に水素供給システム12を選択し、運転させる。これにより、水素利用システム1のエネルギー利用効率を向上させることが可能となる。 Here, a control example of the plurality of hydrogen supply systems 12 will be described with reference to FIG. 1 again. The controller 30 controls the number of operating systems in the plurality of hydrogen supply systems 12 because the energy consumption varies depending on the number of operating systems in the plurality of hydrogen supplying systems 12. More specifically, the control device operates the hydrogen supply system 12 so that hydrogen is supplied from the hydrogen storage device 200 selected based on the pressure in the hydrogen storage device 200 included in each of the plurality of hydrogen supply systems 12. That is, the control device 30 selects the hydrogen storage device 200 having a pressure close to the discharge pressure of hydrogen discharged to the hydrogen utilization device 20 based on at least the temperature among the hydrogen storage amount and temperature in the hydrogen storage device 200. In other words, the control device 30 selects and operates the hydrogen supply system 12 in order of decreasing heat amount applied to the hydrogen storage device 200 when supplying hydrogen to the hydrogen utilization device 20. Thereby, the energy utilization efficiency of the hydrogen utilization system 1 can be improved.
 また、複数の水素貯蔵システム104のうち少なくとも一つの水素貯蔵システム104が有する水素貯蔵装置200は水素吸蔵合金タンクを有し、他の水素貯蔵システム104のうち少なくとも一つの水素貯蔵システム104が有する水素貯蔵装置200は高圧タンクを有するように構成してもよい。例えば、水素の製造から利用までの貯蔵時間が短い場合には高圧タンクに貯蔵し、貯蔵時間がより長い場合には水素吸蔵合金タンクに貯蔵する。このように、水素吸蔵合金タンクと、高圧タンクとを組み合わせることにより、水素貯蔵装置200の水素貯蔵による消費エネルギーを低減できる。 In addition, the hydrogen storage device 200 included in at least one of the plurality of hydrogen storage systems 104 includes a hydrogen storage alloy tank, and the hydrogen included in at least one of the other hydrogen storage systems 104 includes hydrogen. The storage device 200 may be configured to have a high-pressure tank. For example, when the storage time from production to use of hydrogen is short, it is stored in a high-pressure tank, and when the storage time is longer, it is stored in a hydrogen storage alloy tank. As described above, by combining the hydrogen storage alloy tank and the high-pressure tank, the energy consumed by the hydrogen storage of the hydrogen storage device 200 can be reduced.
 なお、制御装置30は、複数の水素供給システム12それぞれの熱供給装置201に貯蔵された温度の異なる熱媒体を切り換えたり、組み合わせたりして、熱媒体の温度を調整してもよい。また、水素貯蔵装置200が有する水素吸蔵合金の温度が外気温よりも低い場合には、水素貯蔵装置200から放出された熱媒体を貯蔵し、冷房等に利用してもよい。これにより冷熱エネルギーを活用することができる。さらにまた、水素利用装置20から供給される熱媒体を負荷部に熱量を供給した後に貯湯タンク206に貯湯してもよい。或いは、水素利用装置20から供給される熱媒体を負荷部に熱量を供給する前に貯湯タンク206に貯湯してもよい。 Note that the control device 30 may adjust the temperature of the heat medium by switching or combining the heat media having different temperatures stored in the heat supply devices 201 of the plurality of hydrogen supply systems 12. When the temperature of the hydrogen storage alloy included in the hydrogen storage device 200 is lower than the outside air temperature, the heat medium released from the hydrogen storage device 200 may be stored and used for cooling or the like. Thereby, cold energy can be utilized. Furthermore, the heat medium supplied from the hydrogen utilization device 20 may be stored in the hot water storage tank 206 after supplying the load with heat. Alternatively, the heat medium supplied from the hydrogen utilization device 20 may be stored in the hot water storage tank 206 before supplying heat to the load section.
 図6は、水素エネルギー利用システム1の制御の一例示すフローチャートであり、図6に基づき水素エネルギー利用システム1の制御の一例を説明する。ここでは、制御部30が熱供給装置201に熱量を供給させるまでの制御例を説明する。 FIG. 6 is a flowchart illustrating an example of the control of the hydrogen energy utilization system 1, and an example of the control of the hydrogen energy utilization system 1 will be described with reference to FIG. Here, a control example until the control unit 30 supplies heat to the heat supply device 201 will be described.
 制御装置30の取得部32が、水素貯蔵装置200の水素吸蔵合金タンク内の水素圧力に関する情報を取得する(ステップS100)。次に、制御部34が、取得部32が取得した水素吸蔵合金タンク内の水素圧力に関する情報と、水素貯蔵装置200から放出すべき放出圧力の情報とに基づき、熱供給装置201から水素貯蔵装置200へ供給する熱量を演算する(ステップS102)。 The acquisition part 32 of the control apparatus 30 acquires the information regarding the hydrogen pressure in the hydrogen storage alloy tank of the hydrogen storage apparatus 200 (step S100). Next, based on the information on the hydrogen pressure in the hydrogen storage alloy tank acquired by the acquisition unit 32 and the information on the discharge pressure to be released from the hydrogen storage device 200, the control unit 34 supplies the hydrogen storage device from the heat supply device 201. The amount of heat supplied to 200 is calculated (step S102).
 次に、制御部34は、熱供給装置201に対してステップS102で演算した熱量を水素貯蔵装置200に供給させる制御を行う(ステップS104)。続けて、制御部34は、制御を終了するか否かの判断を行い(ステップS106)、制御を終了しない場合(ステップS106のNO)、ステップS100からの処理を繰り返す。一方で終了する場合(ステップS106のYES)、全体の制御処理を終了する。このように、制御装置30は、水素吸蔵合金タンク内の水素の圧力に関する情報と、水素貯蔵装置200から放出すべき放出圧力の情報とに基づき、熱供給装置201に対して熱量を供給させる制御を行う。 Next, the control unit 34 controls the heat supply device 201 to supply the amount of heat calculated in step S102 to the hydrogen storage device 200 (step S104). Subsequently, the control unit 34 determines whether or not to end the control (step S106). When the control is not ended (NO in step S106), the processing from step S100 is repeated. On the other hand, if the process ends (YES in step S106), the entire control process ends. As described above, the control device 30 controls the heat supply device 201 to supply heat based on the information on the hydrogen pressure in the hydrogen storage alloy tank and the information on the discharge pressure to be released from the hydrogen storage device 200. I do.
 以上のように、本実施の形態によれば、制御装置30は、水素貯蔵装置200内の水素の圧力に関する情報と、水素貯蔵装置200から放出すべき放出圧力の情報とに基づき、熱供給装置201から水素貯蔵装置200へ供給する熱量を制御する。これにより、水素利用装置20に供給するために必要となる水素の圧力に応じた熱量に消費熱量を抑制可能となり、水素エネルギー利用システム1のエネルギー利用効率を向上させることができる。 As described above, according to the present embodiment, the control device 30 is based on the information on the hydrogen pressure in the hydrogen storage device 200 and the information on the discharge pressure to be released from the hydrogen storage device 200. The amount of heat supplied from 201 to the hydrogen storage device 200 is controlled. As a result, the amount of heat consumed can be suppressed to the amount of heat corresponding to the hydrogen pressure required to supply the hydrogen utilization device 20, and the energy utilization efficiency of the hydrogen energy utilization system 1 can be improved.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (9)

  1.  水素吸蔵合金タンクに水素を貯蔵する水素貯蔵装置と、
     前記水素貯蔵装置に熱を供給する熱供給装置と、
     前記水素貯蔵装置、及び前記熱供給装置を制御する制御装置と、を備え、
     前記制御装置は、
     前記水素吸蔵合金タンク内の水素の圧力に関する情報を取得する取得部と、
     前記情報と、前記水素貯蔵装置から放出すべき放出圧力の情報とに基づき、前記熱供給装置から前記水素貯蔵装置へ供給する熱量を制御する制御部と、
     を有する、水素エネルギー利用システム。
    A hydrogen storage device for storing hydrogen in a hydrogen storage alloy tank;
    A heat supply device for supplying heat to the hydrogen storage device;
    A control device for controlling the hydrogen storage device and the heat supply device,
    The controller is
    An acquisition unit for acquiring information on the pressure of hydrogen in the hydrogen storage alloy tank;
    A control unit for controlling the amount of heat supplied from the heat supply device to the hydrogen storage device based on the information and information on a discharge pressure to be released from the hydrogen storage device;
    A hydrogen energy utilization system.
  2.  前記制御装置は、前記水素吸蔵合金タンク内の水素の貯蔵量と温度と前記放出圧力との関係を示す情報に基づき、前記放出圧力にするための熱を前記水素貯蔵装置へ供給させる制御を行う、請求項1に記載の水素エネルギー利用システム。 The control device performs control to supply heat for making the discharge pressure to the hydrogen storage device based on information indicating a relationship between a storage amount of hydrogen in the hydrogen storage alloy tank, a temperature, and the discharge pressure. The hydrogen energy utilization system according to claim 1.
  3.  前記水素貯蔵装置から供給された前記水素を利用する水素利用装置を更に備え、
     前記制御装置は、前記水素利用装置が使用する水素量にも基づき、前記熱を制御する、請求項2に記載の水素エネルギー利用システム。
    A hydrogen utilization device that uses the hydrogen supplied from the hydrogen storage device;
    The hydrogen energy utilization system according to claim 2, wherein the control device controls the heat based on an amount of hydrogen used by the hydrogen utilization device.
  4.  前記熱供給装置は、前記水素利用装置が生成する熱を利用する、請求項3に記載の水素エネルギー利用システム。 The hydrogen energy utilization system according to claim 3, wherein the heat supply device uses heat generated by the hydrogen utilization device.
  5.  前記制御装置は、前記熱供給装置から供給する熱媒体の温度と流量を制御することにより、前記水素吸蔵合金タンク内の水素吸蔵合金の温度を制御する、請求項1乃至4のいずれか一項に記載の水素エネルギー利用システム。 The said control apparatus controls the temperature of the hydrogen storage alloy in the said hydrogen storage alloy tank by controlling the temperature and flow volume of the heat medium supplied from the said heat supply apparatus. The hydrogen energy utilization system described in 1.
  6.  前記熱供給装置を含む複数の熱供給装置を備えており、
     前記制御装置は、前記複数の熱供給装置の貯蔵した熱媒体を切り換え、または組み合わせることにより前記水素貯蔵装置に熱を供給させる、請求項1乃至5のいずれか一項に記載の水素エネルギー利用システム。
    A plurality of heat supply devices including the heat supply device;
    The hydrogen energy utilization system according to any one of claims 1 to 5, wherein the control device supplies heat to the hydrogen storage device by switching or combining the heat media stored in the plurality of heat supply devices. .
  7.  前記水素貯蔵装置を含む複数の水素貯蔵装置を備えており、
     前記制御装置は、前記複数の水素貯蔵装置の中から前記放出圧力に近い圧力を有する水素貯蔵装置を選択し、水素を供給させる制御を行わせる、請求項1乃至6のいずれか一項に記載の水素エネルギー利用システム。
    A plurality of hydrogen storage devices including the hydrogen storage device;
    The said control apparatus selects the hydrogen storage apparatus which has a pressure close | similar to the said discharge | release pressure from these hydrogen storage apparatuses, and performs control which supplies hydrogen. Hydrogen energy utilization system.
  8.  水素吸蔵合金タンクにより水素を貯蔵する水素貯蔵装置と、前記水素貯蔵装置に熱を供給する熱供給装置とを備える水素エネルギー利用システムの制御装置であって、
     前記水素吸蔵合金タンク内の水素の圧力に関する情報を取得する取得部と、
     前記情報と前記水素貯蔵装置から放出すべき水素の放出圧力の情報とに基づき、前記水素貯蔵装置へ供給する熱量を制御する制御部と、
     を備える水素エネルギー利用システムの制御装置。
    A hydrogen energy storage system comprising a hydrogen storage device for storing hydrogen in a hydrogen storage alloy tank, and a heat supply device for supplying heat to the hydrogen storage device, comprising:
    An acquisition unit for acquiring information on the pressure of hydrogen in the hydrogen storage alloy tank;
    A control unit for controlling the amount of heat supplied to the hydrogen storage device based on the information and information on the release pressure of hydrogen to be released from the hydrogen storage device;
    A control device for a hydrogen energy utilization system comprising:
  9.  水素吸蔵合金タンクにより水素を貯蔵する水素貯蔵装置と、前記水素貯蔵装置に熱量を供給する熱供給装置とを備える水素エネルギー利用システムの制御方法であって、
     前記水素吸蔵合金タンク内の水素の圧力に関する情報を取得する取得工程と、
     前記情報と、前記水素貯蔵装置から放出すべき放出圧力の情報とに基づき、前記熱供給装置から前記水素貯蔵装置へ供給する熱量を制御する制御工程と、
     を有する、水素エネルギー利用システムの制御方法。 
    A hydrogen energy utilization system control method comprising: a hydrogen storage device that stores hydrogen by a hydrogen storage alloy tank; and a heat supply device that supplies heat to the hydrogen storage device,
    An acquisition step of acquiring information on the pressure of hydrogen in the hydrogen storage alloy tank;
    A control step of controlling the amount of heat supplied from the heat supply device to the hydrogen storage device based on the information and information on the discharge pressure to be released from the hydrogen storage device;
    A method for controlling a hydrogen energy utilization system.
PCT/JP2018/006548 2018-02-22 2018-02-22 Hydrogen energy utilization system, control device therefor, and control method therefor WO2019163063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006548 WO2019163063A1 (en) 2018-02-22 2018-02-22 Hydrogen energy utilization system, control device therefor, and control method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006548 WO2019163063A1 (en) 2018-02-22 2018-02-22 Hydrogen energy utilization system, control device therefor, and control method therefor

Publications (1)

Publication Number Publication Date
WO2019163063A1 true WO2019163063A1 (en) 2019-08-29

Family

ID=67688276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006548 WO2019163063A1 (en) 2018-02-22 2018-02-22 Hydrogen energy utilization system, control device therefor, and control method therefor

Country Status (1)

Country Link
WO (1) WO2019163063A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121001A (en) * 2000-10-12 2002-04-23 Honda Motor Co Ltd Hydrogen supply device
JP2002252010A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2015172404A (en) * 2014-03-12 2015-10-01 トヨタ自動車株式会社 Fuel gas supply apparatus
JP5976950B1 (en) * 2015-07-24 2016-08-24 株式会社東芝 Power supply system and control method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121001A (en) * 2000-10-12 2002-04-23 Honda Motor Co Ltd Hydrogen supply device
JP2002252010A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2015172404A (en) * 2014-03-12 2015-10-01 トヨタ自動車株式会社 Fuel gas supply apparatus
JP5976950B1 (en) * 2015-07-24 2016-08-24 株式会社東芝 Power supply system and control method thereof

Similar Documents

Publication Publication Date Title
KR101222331B1 (en) Heat-pump hot water apparatus
JP5779070B2 (en) Solar energy utilization system
JP5132813B2 (en) Fluid heating system, fluid heating method, fluid heating control system, control apparatus, and control method
CN101128952A (en) Method of using hydrogen storage tank and hydrogen storage tank
CN110190296B (en) Battery thermal management system and control method thereof
US20090320503A1 (en) Cogeneration system
JP6183840B2 (en) Hot water supply system and control method thereof
JP5034367B2 (en) Heat pump water heater
JP4159975B2 (en) Energy storage type heat pump water heater
JP2012042098A (en) Operation method of air conditioner and refrigerating machine
JP2005164124A5 (en)
WO2019163063A1 (en) Hydrogen energy utilization system, control device therefor, and control method therefor
JP5629341B2 (en) Tank heating system for ship engine room
JP2010007891A (en) Heat pump storage type hot water supplying/heating device
JP2018170194A (en) Fuel cell system
JP6460059B2 (en) Fuel cell system
JP2008096064A (en) Heat pump system for hot water supply
JP2019035479A (en) Hydrogen storage system, control program and energy supply system
JP2001173899A (en) Hydrogen supplying device
JP2010040349A (en) Fuel cell cogeneration system, its control method, and control program
WO2018193769A1 (en) Compressed-air storage power generation device
JP2002195684A (en) Hybrid cold/warm water producing system using absorption cold/warm water generator as element
JP7101487B2 (en) Heat supply system
JP5312170B2 (en) Hot water supply system and control method thereof
KR102347322B1 (en) Thermal Management Method and Device For PEFMC

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18906777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18906777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP