WO2019163041A1 - Control device, sunlight control system, sunlight control method, and program - Google Patents

Control device, sunlight control system, sunlight control method, and program Download PDF

Info

Publication number
WO2019163041A1
WO2019163041A1 PCT/JP2018/006360 JP2018006360W WO2019163041A1 WO 2019163041 A1 WO2019163041 A1 WO 2019163041A1 JP 2018006360 W JP2018006360 W JP 2018006360W WO 2019163041 A1 WO2019163041 A1 WO 2019163041A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
schedule
heat capacity
building
solar
Prior art date
Application number
PCT/JP2018/006360
Other languages
French (fr)
Japanese (ja)
Inventor
正之 小松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/006360 priority Critical patent/WO2019163041A1/en
Priority to JP2020501913A priority patent/JP6991303B2/en
Publication of WO2019163041A1 publication Critical patent/WO2019163041A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • E06B9/26Lamellar or like blinds, e.g. venetian blinds
    • E06B9/264Combinations of lamellar blinds with roller shutters, screen windows, windows, or double panes; Lamellar blinds with special devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values

Definitions

  • the present invention relates to a technology for controlling solar radiation entering an interior space of a building.
  • Patent Document 1 There is known a technique for automatically saving the blinds to adjust the amount of solar radiation taken into the house to save energy and improve comfort (for example, Patent Document 1).
  • the blind is controlled so as to block the solar radiation when the room temperature becomes higher than the set temperature while capturing the solar radiation as much as possible.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device and the like that can control the solar radiation shielding device so as to obtain an energy saving effect more reliably.
  • a control device provides: A communication means for communicating with a solar shading device that shields solar radiation entering the interior space of the building; Schedule determining means for determining a control schedule for the solar shading device based on the heat capacity of the building; A solar shading device control means for controlling the solar shading device via the communication means according to the determined schedule.
  • the present invention it is possible to control the solar radiation shielding device so that the energy saving effect can be obtained more reliably.
  • FIG. 3 is a block diagram showing a hardware configuration of the control device according to the first embodiment.
  • the figure for demonstrating the secondary storage device with which the control apparatus which concerns on Embodiment 1 is provided
  • the block diagram which shows the function structure of the control apparatus which concerns on Embodiment 1.
  • FIG. The figure which shows an example of the basic control schedule table which concerns on Embodiment 1.
  • FIG. The flowchart which shows the procedure of the control schedule production
  • FIG. 1 The figure which shows the whole structure of the energy management system including the solar radiation control system which concerns on Embodiment 2 of this invention.
  • the figure for demonstrating the secondary storage device with which the control apparatus which concerns on Embodiment 2 is provided
  • FIG. The figure for demonstrating the housing information which concerns on Embodiment 2.
  • Block diagram showing a hardware configuration of a cloud server according to the second embodiment Block diagram showing a functional configuration of a cloud server according to the second embodiment
  • FIG. 1 is a diagram showing an overall configuration of an energy management system 1 including a solar radiation control system according to Embodiment 1.
  • the energy management system 1 is a so-called HEMS (Home Energy Management System) that manages electric power used in a general household.
  • the energy management system 1 includes a control device 2, an operation terminal 3, a power measuring device 4, a power generation facility 5, a solar radiation shielding device 6, an air conditioner 7, an illuminator 8, and a router 9.
  • the control device 2 is an example of a control device according to the present invention.
  • the control device 2 is installed at an appropriate location in the house H, and controls the energy management system 1 in an integrated manner. Details of the control device 2 will be described later.
  • the operation terminal 3 is a smart device such as a smartphone or a tablet terminal including an input device such as a push button, a touch panel, a touch pad, a display device such as an organic EL display or a liquid crystal display, and a communication interface.
  • the operation terminal 3 communicates with the control device 2 in accordance with a known communication standard such as Wi-Fi (registered trademark), Wi-SUN (registered trademark), or wired LAN.
  • the operation terminal 3 receives an operation from the user and transmits information indicating the received operation content to the control device 2. Further, the operation terminal 3 receives the information transmitted from the control device 2 and presented to the user, and displays the received information. In this way, the operation terminal 3 plays a role as an interface (so-called user interface) with the user.
  • the power measuring device 4 measures the power in each of the power lines PL1 to PL3.
  • Power line PL1 and power line PL2 are arranged between commercial power supply 11 and distribution board 12.
  • Power line PL3 is arranged between power generation facility 5 and connection point CP between power line PL1 and power line PL2.
  • the power measuring device 4 is connected to each of CT (Current Transformers) 1 to 3 connected to the power lines PL1 to PL3 through communication lines.
  • CT1 to CT3 are sensors for measuring an alternating current.
  • the power measuring device 4 measures the power in the power line PL1, in other words, the purchased power or the sold power in the home based on the measurement result of CT1.
  • the power measuring device 4 measures the power in the power line PL2, that is, the power consumed in the house H, that is, the total power consumption in the house H, based on the measurement result of CT2.
  • the power measuring device 4 measures the power in the power line PL3, that is, the power output from the power generation facility 5 (hereinafter referred to as generated power) based on the measurement result of CT3.
  • the above-mentioned purchased electric power means electric power supplied from the commercial power source 11, that is, electric power purchased from an electric power company.
  • the power sale power means the power supplied to the commercial power supply 11 as the reverse power, that is, the power sold to the electric power company.
  • the generated power exceeds the total power consumption of the house H, the user of the house H can sell the surplus power in the generated power to the electric utility by satisfying the specified condition. .
  • the total power consumption of the house H is equal to the power obtained by adding the purchased power and the generated power at the time of power purchase, and equal to the power obtained by subtracting the sold power from the generated power at the time of power sale.
  • the power measuring device 4 includes a wireless communication interface, and is connected to the control device 2 via a wireless network (not shown) constructed in the house H so as to be communicable.
  • This wireless network is, for example, a network conforming to ECHONET Lite.
  • the power measuring device 4 may be connected to this wireless network via an external communication adapter (not shown).
  • the power measuring device 4 stores power information in which the measurement result of the purchased power or the sold power, the measurement result of the total power consumption, and the measurement result of the generated power are stored. It transmits to the control apparatus 2.
  • the power measuring device 4 may spontaneously transmit the power information to the control device 2 at a constant time interval (for example, every one minute).
  • the power generation facility 5 is a solar power generation facility including a PV (photovoltaic) panel 50 and a PV-PCS 51 which is a power conditioning system.
  • the PV panel 50 is installed on the roof of the house H, and generates electric power by converting solar energy into electric energy.
  • the PV-PCS 51 converts the DC power generated by the power generation of the PV panel 50 into AC power, thereby generating the generated power and supplying it to the distribution board 12 via the power line PL3 and the power line PL2.
  • the solar radiation shielding device 6 is a device that is installed so as to cover a window (not shown) provided in the house H from the outdoor side and shields the solar radiation that enters through the window, and is, for example, an external electric blind. .
  • the solar radiation shielding device 6 is supplied with electric power through a power line PL4 connected to the distribution board 12.
  • the user can control the solar shading device 6 by operating a dedicated remote controller (not shown) of the solar shading device 6. Specifically, the user operates the remote control of the solar shading device 6 to instruct the change of the angle of the slat (also referred to as louver) (hereinafter referred to as the slat angle), or to raise the blind (that is, Blind fully open) can be instructed. Specifically, the user can specify a range of 0 ° to 90 ° in units of 15 ° for the slat angle.
  • the solar radiation shielding rate is the highest, and when it is 90 °, the solar radiation shielding rate is the lowest. .
  • the user can adjust the solar radiation which enters the house H to a favorite grade.
  • the solar radiation shielding device 6 includes a wireless communication interface, and is connected to the control device 2 via the wireless network described above so as to be communicable.
  • the solar radiation shielding device 6 may be connected to the wireless network via an external communication adapter (not shown).
  • the control device 2 can control the solar shading device 6 by giving an instruction similar to the above to the solar shading device 6 through communication. Details of the control of the solar radiation shielding device 6 by the control device 2 will be described later.
  • the air conditioner 7 is an air conditioner that air-conditions the interior space of the house H, and includes a wall-hanging type indoor unit and an outdoor unit installed outdoors.
  • the indoor unit and the outdoor unit are communicably connected via a communication line, and are connected by a refrigerant pipe for circulating the refrigerant.
  • the air conditioner 7 is supplied with power via a power line PL5 connected to the distribution board 12.
  • the user can instruct the air conditioner 7 to start or stop the cooling operation, the heating operation, the air blowing operation, or the dehumidifying operation, for example, by operating a dedicated remote controller (not shown) of the air conditioner 7.
  • a change in temperature (ie, target temperature) or wind power can be indicated.
  • the air conditioner 7 includes a wireless communication interface and is communicably connected to the control device 2 via the above-described wireless network.
  • the air conditioner 7 may be connected to this wireless network via an external communication adapter (not shown).
  • the control device 2 can instruct the air conditioner 7 by communication to start or stop the same instruction as above, that is, the cooling operation, the heating operation, the air blowing operation, or the dehumidifying operation, and the set temperature (that is, , Target temperature) or wind power change.
  • the air conditioner 7 transmits data indicating the current operation state of the air conditioner 7 (hereinafter referred to as operation state data) to the control device 2 in response to a request from the control device 2.
  • This operation state data includes information indicating any of the cooling operation, heating operation, air blowing operation, dehumidifying operation, and operation stop, information indicating the set temperature and wind power, and a temperature sensor provided in the indoor unit.
  • Information indicating the measured indoor air temperature and information indicating the operating frequency of the compressor included in the outdoor unit are included.
  • the air conditioner 7 may spontaneously transmit the operation state data to the control device 2 at a constant time interval (for example, every one minute).
  • the illuminator 8 is installed on the indoor ceiling in the house H and illuminates the room.
  • the illuminator 8 is supplied with power via a power line PL6 connected to the distribution board 12.
  • the user can cause the illuminator 8 to execute desired illumination by operating a dedicated remote controller (not shown) of the illuminator 8.
  • the illuminator 8 includes a wireless communication interface, and is connected to the control device 2 through the wireless network described above so as to be communicable.
  • the control device 2 can control the illuminator 8 by communication.
  • the router 9 is a broadband router and is connected to the control device 2 by a LAN (Local Area Network) cable.
  • the control device 2 can communicate with another device (for example, the weather operator server 10) connected to the Internet via the router 9.
  • the weather company server 10 is a server managed by the weather company and is connected to the Internet.
  • the weather company server 10 provides the contracted user with a weather forecast for the area where the user resides.
  • the weather company server 10 responds to a request from the control device 2 installed in the house H of the contracted user, and displays data indicating the weather forecast (hereinafter referred to as weather forecast data) as the control device. 2 to send.
  • weather forecast data data indicating the weather forecast
  • the control device 2 includes a processor 20, a communication interface 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and a secondary storage device 24. These components are connected to each other via a bus 25.
  • the processor 20 controls the control device 2 in an integrated manner. Details of the functions of the control device 2 realized by the processor 20 will be described later.
  • the communication interface 21 is a network card for wirelessly communicating with the power measuring device 4, the solar shading device 6, the air conditioner 7 and the illuminator 8 via the wireless network described above, and for wirelessly or wiredly communicating with the operation terminal 3
  • a network card and a network card for communicating with another device (for example, the weather operator server 10) via the router 9 are provided.
  • the communication interface 21 is an example of a communication unit provided in the control device according to the present invention.
  • the ROM 22 stores a plurality of firmware and data used when executing these firmware.
  • the RAM 23 is used as a work area for the processor 20.
  • the secondary storage device 24 is an example of a basic schedule storage unit and a time shift table storage unit according to the present invention.
  • the secondary storage device 24 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory), a readable / writable nonvolatile semiconductor memory such as a flash memory, or an HDD (Hard Disk Drive).
  • the secondary storage device 24 stores a solar radiation control program 240, an air conditioning history DB 241, a heat capacity data 242, a basic control schedule table 243, a time shift table 244, and a control schedule 245.
  • the secondary storage device 24 stores one or a plurality of programs for managing power consumed in the home and data used when each program is executed.
  • the solar radiation control program 240 is a computer program executed by the processor 20 and describes a process for controlling the solar radiation shielding device 6.
  • the air conditioning history DB 241 is a database in which a history of the operating state of the air conditioner 7 is stored.
  • the processor 20 receives the above-described operation state data sent from the air conditioner 7 via the communication interface 21 and stores the received operation state data in the air conditioning history DB 241 in association with the received time.
  • the energy management system 1 configured as described above includes the solar radiation control system according to Embodiment 1 of the present invention.
  • the solar radiation control system according to Embodiment 1 includes a control device 2, an operation terminal 3, a solar radiation shielding device 6, an air conditioner 7, and a router 9.
  • FIG. 4 is a block diagram showing a functional configuration of the control device 2.
  • the control device 2 includes an information reception unit 200, a heat capacity calculation unit 201, a solar radiation amount estimation unit 202, a schedule determination unit 203, a solar radiation shielding device control unit 204, and a table correction unit 205.
  • These functional units are realized by the processor 20 executing the solar radiation control program 240 stored in the secondary storage device 24.
  • the information receiving unit 200 is an example of a first information receiving unit according to the present invention.
  • the information receiving unit 200 receives floor information input via the operation terminal 3 by a user such as a construction worker or a resident of the house H.
  • the floor information is information regarding the floor of the house H.
  • the floor information includes, for example, the name of one or more members constituting the floor, the volume of each member (m 3 ), the heat capacity per unit volume of each member (kJ / (m 3 ⁇ K)), And total floor area (m 2 ).
  • the heat capacity calculation unit 201 is an example of a heat capacity calculation unit according to the present invention.
  • the heat capacity calculation unit 201 calculates the heat capacity of the house H based on the floor information received by the information reception unit 200.
  • the heat capacity of the entire building can be obtained by summing the heat capacities of one or more members constituting each of the floor, wall, ceiling, etc. of the building.
  • the heat capacity per unit area of the floor kJ / (m 2 ⁇ K)
  • the heat capacity calculation unit 201 calculates the heat capacity of the house H by the following formula 1.
  • Heat capacity of house H (kJ / (m 2 ⁇ K)) ⁇ [heat capacity of each member constituting the floor (kJ / K)] / total floor area of house H (m 2 ) (Formula 1)
  • the heat capacity calculation unit 201 calculates the total heat capacity (kJ / K) of the floor by the following formulas 2 to 4.
  • the heat capacity calculation unit 201 calculates the heat capacity (kJ / (m 2 ⁇ K)) of the house H by the following formula 5.
  • the heat capacity calculation unit 201 stores data indicating the calculated heat capacity, that is, heat capacity data 242 in the secondary storage device 24.
  • the solar radiation amount estimation unit 202 estimates the transition of the solar radiation amount in a future fixed period (24 hours in the present embodiment). Specifically, the solar radiation amount estimation unit 202 acquires weather forecast data indicating a weather forecast for the period from the weather operator server 10 by communication. And the solar radiation amount estimation part 202 estimates the transition of solar radiation amount by calculating a solar altitude and a direction in a predetermined time unit based on the acquired weather forecast data and the date and time in the above period. . The solar radiation amount estimation unit 202 notifies the schedule determination unit 203 of the transition of the estimated solar radiation amount.
  • the schedule determination unit 203 is an example of a schedule determination unit according to the present invention.
  • the schedule determination unit 203 determines a control schedule (hereinafter referred to as a control schedule) for the solar radiation shielding device 6 in the future period (that is, 24 hours). In that case, first, the schedule determination unit 203 acquires a basic basic control schedule. Specifically, the schedule determination unit 203 acquires, from the basic control schedule table 243 (see FIG. 5) stored in the secondary storage device 24, a control schedule corresponding to the month to which the period belongs as a basic control schedule.
  • the basic control schedule table 243 is a data table in which a control schedule corresponding to each month is stored in advance.
  • the basic control schedule table 243 is created by the manufacturer or distributor of the control device 2 or the solar shading device 6 and is stored in the secondary storage device 24 at the shipment stage of the control device 2.
  • the basic control schedule table 243 is controlled from a server operated by the manufacturer or distributor connected via the Internet by an operation via the operation terminal 3 by a user such as a construction worker or a resident of the house H. By being downloaded to the device 2, it may be stored in the secondary storage device 24.
  • the operating state of the solar shading device 6 is shown for each hour from 1 to 24:00.
  • the operating state of the solar shading device 6 is indicated by either a slat angle of 0 ° to 90 ° or a blind fully open.
  • “open” means blind fully open.
  • the schedule determination unit 203 corrects the acquired basic control schedule based on the transition of the solar radiation amount estimated by the solar radiation amount estimation unit 202, thereby performing temporary control. Generate a schedule.
  • the schedule determination unit 203 generates the control schedule 245 by correcting the generated temporary control schedule based on the time shift table 244 stored in the secondary storage device 24.
  • the time shift table 244 is a data table in which a season, a time zone, an operation state, and a shift time corresponding to the heat capacity index of the house H are associated.
  • FIG. 6 shows an example of the time shift table 244.
  • “winter” corresponds to months that require heating, for example, January, February, and December
  • “summer” corresponds to months that require cooling, for example, June to August.
  • “Spring / Autumn” corresponds to months in which heating and cooling are not required, for example, from March to May and from September to November.
  • the operating state is the operating state of the solar shading device 6, and is indicated by either a slat angle of 0 ° to 90 ° or a blind fully open.
  • “open” means blind fully open.
  • the shift time is the time (in minutes) for shifting the start time and end time of the corresponding operation state, and the sign indicates the direction of shift. For example, “-30” minutes means that the start time and end time of the corresponding operation state are advanced by 30 minutes. If “+30” minutes, the start time and end time of the corresponding operation state are delayed by 30 minutes. It means to do.
  • the index of the heat capacity (kJ / (m 2 ⁇ K)) of the house H is indicated by any one of “small”, “medium”, and “large”. .
  • the schedule determination unit 203 sets the index of the heat capacity of the house H as “small”, “medium”, or “large” based on the heat capacity indicated by the heat capacity data 242 and a predetermined reference heat capacity. Decide on.
  • the reference heat capacity is, for example, 170 kJ / (m 2 ⁇ K).
  • the schedule determining section 203 determines the heat capacity indicated by the capacity data 242, if it is between 170kJ / (m 2 ⁇ K) of 170 ⁇ 3kJ / (m 2 ⁇ K), the heat capacity of the house H The indicator is determined as “medium”.
  • the schedule determination unit 203 determines the heat capacity index of the house H to be “large” and 170 kJ / (m If it is smaller than 2 ⁇ K), the heat capacity index of the house H is determined to be “small”.
  • the schedule determination unit 203 generates the control schedule 245 by correcting the generated temporary control schedule based on the time shift table 244 described above. For example, the heat capacity index of the house H is “large”, the season is winter, and the generated temporary control schedule shows that the slat angle of the solar shading device 6 is controlled to 60 ° from 9:00 to 10:00. If so, the control schedule 245 indicates that the slat angle of the solar shading device 6 is controlled to 60 ° from 9:30 to 10:30.
  • the schedule determination unit 203 stores the generated control schedule 245 in the secondary storage device 24.
  • the solar shading device control unit 204 is an example of the solar shading device control means according to the present invention.
  • the solar shading device control unit 204 controls the solar shading device 6 according to the control schedule 245 stored in the secondary storage device 24. Specifically, for example, when the current time is the time when the operating state of the solar shading device 6 is changed, such as when the slat angle is changed from 45 ° to 60 °, the solar shading device 6 changes the operating state. Is generated and transmitted to the solar shading device 6.
  • control data includes information for instructing the change of the operation state and information indicating the specified operation state (for example, slat angle “60 °”).
  • the table correction unit 205 is an example of a table correction unit according to the present invention.
  • the table correction unit 205 corrects the time shift table 244 based on the tendency of the air condition in the room of the house H when the solar radiation shielding device 6 is controlled according to the control schedule 245. Specifically, the table correction unit 205 performs time shift based on the temporary control schedule and control schedule 245 generated last time, the history of air temperature (ie, room temperature) in the past day, and a predetermined correction rule. The corresponding shift time in the table 244 is corrected.
  • FIG. 7 shows an outline of the correction rule in the present embodiment.
  • the control direction means the direction of the operation state corresponding to the control performed on the solar radiation shielding device 6.
  • the control direction indicates either a direction for shielding solar radiation (hereinafter referred to as solar radiation shielding) or a direction for capturing solar radiation (hereinafter referred to as solar radiation capturing).
  • solar radiation shielding a direction for shielding solar radiation
  • solar radiation capturing a direction for capturing solar radiation
  • the control direction is solar shading
  • the control is performed to change the slat angle from 45 ° to 60 °.
  • the control direction is solar radiation capture.
  • the shift direction means a direction in which the start time and end time of the operation state in the temporary control schedule are shifted according to the time shift table 244 when the previous control schedule 245 is generated.
  • “ ⁇ ” indicates that the start time and end time of the operation state are advanced
  • “+” indicates that the start time and end time of the operation state are delayed.
  • the correction value means a time (unit: minutes) for correcting the shift time.
  • the table correction unit 205 For example, if the control direction is solar shading, the shift direction is “ ⁇ ”, and the result of solar control according to the control schedule 245 is that the room temperature is lower than a predetermined reference temperature, the table correction unit 205 The corresponding shift time in the time shift table 244 is extended by 10 minutes. Alternatively, if the control direction is solar radiation capture, the shift direction is “+”, and the result of solar radiation control according to the control schedule 245 is that the room temperature is lower than a predetermined reference temperature, the table correction unit 205 The corresponding shift time of the time shift table 244 is shortened by 10 minutes.
  • the table correction unit 205 may correct the time shift table 244 based on the tendency of room temperature averaged over the past several days.
  • FIG. 8 is a flowchart showing a procedure of control schedule generation processing executed by the control device 2.
  • the control device 2 executes the following control schedule generation process at a predetermined time (for example, midnight).
  • the solar radiation amount estimation unit 202 acquires weather forecast data indicating a weather forecast for a certain period in the future (24 hours in the present embodiment) through communication from the weather company server 10 (step S101).
  • the solar radiation amount estimation unit 202 estimates the transition of the solar radiation amount based on the acquired weather forecast data and the date and time in the above period (step S102).
  • the schedule determination unit 203 acquires a control schedule corresponding to the month to which the above period belongs as a basic control schedule from the basic control schedule table 243 (see FIG. 5) (step S103).
  • the schedule determination unit 203 generates a temporary control schedule based on the acquired basic control schedule and the transition of the solar radiation amount estimated by the solar radiation amount estimation unit 202 (step S104).
  • the schedule determination part 203 produces
  • the control device 2 determines the control schedule 245 indicating the control schedule for the solar radiation shielding device 6 based on the heat capacity of the house H. For this reason, it becomes possible to control the solar radiation shielding apparatus 6 so that an energy saving effect can be obtained more reliably.
  • the heating load can be reduced because more heat can be taken into the room in the winter than in the past in the winter.
  • time shift table 244 used for correcting the basic control schedule is appropriately corrected by the table correction unit 205 in actual operation.
  • the time shift table 244 can be optimized according to an actual property, and as a result, the solar shading device 6 can be controlled so as to obtain an energy saving effect more reliably.
  • Embodiment 2 (Embodiment 2) Then, the solar radiation control system which concerns on Embodiment 2 of this invention is demonstrated.
  • components and the like that are common to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 9 is a diagram showing an overall configuration of an energy management system 1A including the solar radiation control system according to the second embodiment.
  • the energy management system 1A includes a control device 2A, an operation terminal 3, a power measurement device 4, a power generation facility 5, a solar shading device 6, an air conditioner 7, an illuminator 8, a router 9, and a cloud server 13. Is provided.
  • the solar radiation control system according to Embodiment 2 includes a control device 2A, an operation terminal 3, a solar radiation shielding device 6, an air conditioner 7, a router 9, and a cloud server 13.
  • the hardware configuration of the control device 2A is the same as that of the control device 2 of the first embodiment (see FIG. 2).
  • the secondary storage device 24 of the control device 2A stores a solar radiation control program 240A instead of the solar radiation control program 240, as shown in FIG.
  • the solar radiation control program 240A is a computer program executed by the processor 20 included in the control device 2A, and describes a process for controlling the solar radiation shielding device 6.
  • the control device 2A functionally includes an information receiving unit 200A, a solar radiation amount estimating unit 202, a schedule determining unit 203, a solar radiation shielding device control unit 204, a table correcting unit 205, And a heat capacity acquisition unit 206. These functional units are realized by the processor 20 executing the solar radiation control program 240A stored in the secondary storage device 24.
  • the information receiving unit 200A is an example of a second information receiving unit according to the present invention.
  • 200 A of information reception parts receive the housing identification information input via the operation terminal 3 by users, such as a construction worker and the resident of the house H.
  • the house identification information is information including the manufacturer name of the house H and the house series name of the house H (see FIG. 12).
  • the heat capacity acquisition unit 206 is an example of a heat capacity acquisition unit according to the present invention.
  • the heat capacity acquisition unit 206 acquires heat capacity data that is data indicating the heat capacity of the house H by communication from the cloud server 13 based on the house identification information received by the information reception unit 200A. Specifically, the heat capacity acquisition unit 206 transmits request data for requesting heat capacity data to the cloud server 13. This request data stores house identification information.
  • the cloud server 13 is a server computer installed and operated by the manufacturer or sales company of the control device 2, has a function as a general Web server, and is connected to the Internet. As illustrated in FIG. 13, the cloud server 13 includes a processor 130, a communication interface 131, a ROM 132, a RAM 133, and a secondary storage device 134. These components are connected to each other via a bus 135.
  • the processor 130 controls the cloud server 13 in an integrated manner. The performance of the processor 130 is higher than that of the processor 20 of the control device 2A.
  • the communication interface 131 is an interface for connecting to the Internet and communicating with other devices such as the control device 2A.
  • the ROM 132 stores a plurality of firmware and data used when executing these firmware.
  • the RAM 133 is used as a work area for the processor 130.
  • the secondary storage device 134 is a large-capacity storage device composed of a readable / writable nonvolatile semiconductor memory such as an EEPROM or a flash memory, an HDD, or the like.
  • the secondary storage device 134 stores a program (hereinafter referred to as a service providing program) for providing a power management service to a customer, that is, each user who has purchased the control device 2A, and execution of the service providing program. Sometimes used data is stored.
  • the cloud server 13 functionally includes a power data collection unit 1300, a power management information notification unit 1301, and a heat capacity calculation unit 1302, as shown in FIG. These functional units are realized by the processor 130 executing the service providing program stored in the secondary storage device 134.
  • the power data collection unit 1300 periodically collects power data that is data related to the amount of power consumption from the control device 2A of each customer.
  • the power data includes the amount of power purchased or sold and the amount of generated power.
  • the power data collection unit 1300 stores the collected power data in a database (not shown) stored in the secondary storage device 134.
  • the power management information notification unit 1301 notifies the power management information to the control device 2A of each customer.
  • the power management information includes information such as advice on power saving.
  • the heat capacity calculation unit 1302 calculates the heat capacity of the house corresponding to the house identification information included in the request data. Specifically, the heat capacity calculation unit 1302 specifies the corresponding house manufacturer from the house identification information included in the received request data. Then, the heat capacity calculating unit 1302 notifies the server (not shown) operated by the specified manufacturer (hereinafter referred to as a housing information server) of the house series name included in the house identification information, so that the housing information server Receive and obtain detailed house design data.
  • a housing information server operated by the specified manufacturer
  • Such design data is, for example, BIM (Building Information Modeling) data.
  • the heat capacity calculation unit 1302 calculates the heat capacity of the house by advanced calculation based on the design data acquired from the house information server.
  • the heat capacity calculation unit 1302 transmits heat capacity data indicating the calculated heat capacity to the control device 2A that is the transmission source of the request data.
  • the control device 2A shows the control schedule for the solar radiation shielding device 6 based on the heat capacity of the house H calculated by the cloud server 13. 245 is determined.
  • the heat capacity calculation unit 1302 of the cloud server 13 calculates the heat capacity of the house H by advanced calculation using detailed design data of the house H. For this reason, 2 A of control apparatuses can determine the control schedule 245 based on the more exact heat capacity of the house H, As a result, the further energy saving effect can be anticipated.
  • the house identification information necessary for the control device 2A to acquire the heat capacity data from the cloud server 13 is simple information composed of the manufacturer name of the house H and the house series name. For this reason, even the user of the house H who does not have the specialized knowledge about a house can input this house identification information into the control apparatus 2A via the operation terminal 3 easily.
  • control devices 2 and 2A may further include at least one of an input device for receiving an operation from the user and a display device for presenting information to the user.
  • various electric devices such as a floor heating system, a floor cooling and heating system, a refrigerator, an IH (InductionInHeating) cooker, a television, and a water heater are controlled devices of the control devices 2 and 2A. It may be included.
  • the heat capacity calculation unit 201 may calculate the heat capacity of the house H based on information on the wall of the house H (hereinafter referred to as wall information), or information on the ceiling of the house H ( Hereinafter, the heat capacity of the house H may be calculated based on the ceiling information.
  • the information receiving unit 200 receives wall information or ceiling information input via the operation terminal 3 by a user such as a construction worker or a resident of the house H, and the heat capacity calculating unit 201 is a unit area of the wall or ceiling.
  • the heat capacity per unit (kJ / (m 2 ⁇ K)) is calculated as the heat capacity of the house H.
  • the information reception part 200 receives the heat capacity information of the house H input via the operation terminal 3 by users, such as a construction worker and the resident of the house H, and uses the received heat capacity information as heat capacity data. It may be stored in the secondary storage device 24 as 242.
  • control devices 2 and 2A may provide the user with an operation environment for editing the basic control schedule table 243 or the time shift table 244 stored in the secondary storage device 24 via the operation terminal 3.
  • the index of the heat capacity of the house H may be shown in two stages or four or more stages.
  • the reference heat capacity is exemplified as 170 kJ / (m 2 ⁇ K).
  • the reference heat capacity is merely an example, and an arbitrary value can be set as the reference heat capacity.
  • control devices 2 and 2A estimate the total power consumption when the solar shading device 6 is controlled in the temporary control schedule, and the energy saving effect (for example, by controlling the solar shading device 6 with the control schedule 245)
  • the amount of power reduction, the amount of reduction, etc. may be presented to the user via the operation terminal 3.
  • the solar radiation control programs 240 and 240A stored in the secondary storage device 24 are executed by the processor 20, whereby each functional unit of the control devices 2 and 2A (see FIGS. 4 and 11). ) Has been realized.
  • all or part of the functional units of the control devices 2 and 2A may be realized by dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated ⁇ Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the solar radiation control programs 240 and 240A are a CD-ROM (Compact Disc Read Only Memory), a DVD (Digital Versatile Disc), a magneto-optical disc (Magneto-Optical Disc), and a USB (Universal Serial Bus). It is also possible to store and distribute in a computer-readable recording medium such as a memory, a memory card, or an HDD. Then, by installing the solar radiation control programs 240 and 240A distributed in this way on a specific or general-purpose computer, the computer can be caused to function as the control devices 2 and 2A in the above embodiments.
  • a computer-readable recording medium such as a memory, a memory card, or an HDD.
  • the solar radiation control programs 240 and 240A may be stored in a storage device of a server (not shown) on the Internet, and the solar radiation control programs 240 and 240A may be downloaded from the server to the control devices 2 and 2A.
  • the present invention can be suitably employed in a system for efficiently using energy in a home.

Abstract

A control device (2) comprising a communications interface that communicates with a sunlight shielding device (6) that shields against sunlight entering an interior space of a building. A schedule determination unit (203) in the control device (2) determines a control schedule (245) for the sunlight shielding device (6) on the basis of thermal capacity data (242) indicating the thermal capacity of the building. A sunlight shielding device control unit (204) in the control device (2) controls the sunlight shielding device (6) via the communications interface and in accordance with the determined control schedule (245).

Description

制御装置、日射制御システム、日射制御方法及びプログラムControl device, solar radiation control system, solar radiation control method and program
 本発明は、建物の内部空間へ入る日射を制御する技術に関する。 The present invention relates to a technology for controlling solar radiation entering an interior space of a building.
 ブラインドを自動制御することで、住宅内に取り込む日射量を調整して省エネルギー化と快適性の向上を図る技術が知られている(例えば、特許文献1)。 There is known a technique for automatically saving the blinds to adjust the amount of solar radiation taken into the house to save energy and improve comfort (for example, Patent Document 1).
 特許文献1に開示されるブラインドの自動制御方法では、例えば、冬期の暖房時において、できるだけ日射を取り込みつつ、室温が設定温度より高くなると、日射を遮るようにブラインドを制御する。 In the blind automatic control method disclosed in Patent Document 1, for example, during the heating in winter, the blind is controlled so as to block the solar radiation when the room temperature becomes higher than the set temperature while capturing the solar radiation as much as possible.
特開平8-121044号公報JP-A-8-121044
 ところで、近年、エネルギーを効率的に利用する、ゼロエネルギーハウス(ZEH)が注目され、その普及が進められている。かかるZEHは、高断熱仕様で建築されているため、熱容量が大きく、熱容量が小さい住宅に比べると室内の温度変動の抑制効果に優れる。したがって、ブラインド等の日射遮蔽装置の自動制御において、より確実に省エネルギー効果を得るためには、対象となる住宅の熱容量を勘案することが必要であるが、そのような技術の提案は未だなされていないのが実情である。 By the way, in recent years, zero energy house (ZEH) which uses energy efficiently has been attracting attention and its spread is being promoted. Since such ZEH is built with high heat insulation specifications, the heat capacity is large, and the effect of suppressing temperature fluctuations in the room is excellent compared to a house with a small heat capacity. Therefore, in order to obtain a more energy-saving effect in automatic control of solar shading devices such as blinds, it is necessary to consider the heat capacity of the target house, but such a technology has not yet been proposed. There is no actual situation.
 本発明は、上記実情に鑑みてなされたものであり、より確実に省エネルギー効果が得られるように日射遮蔽装置を制御することを可能にした制御装置等を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device and the like that can control the solar radiation shielding device so as to obtain an energy saving effect more reliably.
 上記目的を達成するため、本発明に係る制御装置は、
 建物の内部空間へ入る日射を遮蔽する日射遮蔽装置と通信する通信手段と、
 前記日射遮蔽装置に対する制御のスケジュールを前記建物の熱容量に基づいて決定するスケジュール決定手段と、
 前記決定されたスケジュールに従って前記日射遮蔽装置を前記通信手段を介して制御する日射遮蔽装置制御手段と、を備える。
In order to achieve the above object, a control device according to the present invention provides:
A communication means for communicating with a solar shading device that shields solar radiation entering the interior space of the building;
Schedule determining means for determining a control schedule for the solar shading device based on the heat capacity of the building;
A solar shading device control means for controlling the solar shading device via the communication means according to the determined schedule.
 本発明によれば、より確実に省エネルギー効果が得られるように日射遮蔽装置を制御することが可能となる。 According to the present invention, it is possible to control the solar radiation shielding device so that the energy saving effect can be obtained more reliably.
本発明の実施の形態1に係る日射制御システムを包含したエネルギー管理システムの全体構成を示す図The figure which shows the whole structure of the energy management system including the solar radiation control system which concerns on Embodiment 1 of this invention. 実施の形態1に係る制御装置のハードウェア構成を示すブロック図FIG. 3 is a block diagram showing a hardware configuration of the control device according to the first embodiment. 実施の形態1に係る制御装置が備える二次記憶装置について説明するための図The figure for demonstrating the secondary storage device with which the control apparatus which concerns on Embodiment 1 is provided 実施の形態1に係る制御装置の機能構成を示すブロック図The block diagram which shows the function structure of the control apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る基本制御スケジュールテーブルの一例を示す図The figure which shows an example of the basic control schedule table which concerns on Embodiment 1. 実施の形態1に係る時間シフトテーブルの一例を示す図The figure which shows an example of the time shift table which concerns on Embodiment 1. 実施の形態1に係る補正ルールについて説明するための図The figure for demonstrating the correction rule which concerns on Embodiment 1. FIG. 実施の形態1に係る制御スケジュール生成処理の手順を示すフローチャートThe flowchart which shows the procedure of the control schedule production | generation process which concerns on Embodiment 1. 本発明の実施の形態2に係る日射制御システムを包含したエネルギー管理システムの全体構成を示す図The figure which shows the whole structure of the energy management system including the solar radiation control system which concerns on Embodiment 2 of this invention. 実施の形態2に係る制御装置が備える二次記憶装置について説明するための図The figure for demonstrating the secondary storage device with which the control apparatus which concerns on Embodiment 2 is provided 実施の形態2に係る制御装置の機能構成を示すブロック図The block diagram which shows the function structure of the control apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る住宅情報について説明するための図The figure for demonstrating the housing information which concerns on Embodiment 2. 実施の形態2に係るクラウドサーバのハードウェア構成を示すブロック図Block diagram showing a hardware configuration of a cloud server according to the second embodiment 実施の形態2に係るクラウドサーバの機能構成を示すブロック図Block diagram showing a functional configuration of a cloud server according to the second embodiment
 以下、本発明の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施の形態1)
 図1は、実施の形態1に係る日射制御システムを包含したエネルギー管理システム1の全体構成を示す図である。このエネルギー管理システム1は、一般家庭で使用される電力の管理を行う、いわゆる、HEMS(Home Energy Management System)と呼ばれるシステムである。エネルギー管理システム1は、制御装置2と、操作端末3と、電力計測装置4と、発電設備5と、日射遮蔽装置6と、エアコン7と、照明器8と、ルータ9とを備える。
(Embodiment 1)
FIG. 1 is a diagram showing an overall configuration of an energy management system 1 including a solar radiation control system according to Embodiment 1. As shown in FIG. The energy management system 1 is a so-called HEMS (Home Energy Management System) that manages electric power used in a general household. The energy management system 1 includes a control device 2, an operation terminal 3, a power measuring device 4, a power generation facility 5, a solar radiation shielding device 6, an air conditioner 7, an illuminator 8, and a router 9.
 制御装置2は、本発明に係る制御装置の一例である。制御装置2は、家屋H内の適切な場所に設置され、エネルギー管理システム1を統括的に制御する。制御装置2の詳細については後述する。 The control device 2 is an example of a control device according to the present invention. The control device 2 is installed at an appropriate location in the house H, and controls the energy management system 1 in an integrated manner. Details of the control device 2 will be described later.
 操作端末3は、押しボタン、タッチパネル、タッチパッド等の入力デバイスと、有機ELディスプレイ、液晶ディスプレイ等の表示デバイスと、通信インタフェースとを備えた、例えば、スマートフォン、タブレット端末等のスマートデバイスである。操作端末3は、制御装置2と、Wi-Fi(登録商標)、Wi-SUN(登録商標)、有線LAN等の周知の通信規格に則った通信を行う。操作端末3は、ユーザからの操作を受け付け、受け付けた操作内容を示す情報を制御装置2に送信する。また、操作端末3は、制御装置2から送信された、ユーザに提示するための情報を受信し、受信した情報を表示する。このように、操作端末3は、ユーザとのインタフェース(いわゆる、ユーザインタフェース)としての役割を担う。 The operation terminal 3 is a smart device such as a smartphone or a tablet terminal including an input device such as a push button, a touch panel, a touch pad, a display device such as an organic EL display or a liquid crystal display, and a communication interface. The operation terminal 3 communicates with the control device 2 in accordance with a known communication standard such as Wi-Fi (registered trademark), Wi-SUN (registered trademark), or wired LAN. The operation terminal 3 receives an operation from the user and transmits information indicating the received operation content to the control device 2. Further, the operation terminal 3 receives the information transmitted from the control device 2 and presented to the user, and displays the received information. In this way, the operation terminal 3 plays a role as an interface (so-called user interface) with the user.
 電力計測装置4は、電力線PL1~3のそれぞれにおける電力を計測する。電力線PL1及び電力線PL2は、商用電源11と分電盤12との間に配設される。電力線PL3は、発電設備5と、電力線PL1と電力線PL2との連結点CPとの間に配設される。 The power measuring device 4 measures the power in each of the power lines PL1 to PL3. Power line PL1 and power line PL2 are arranged between commercial power supply 11 and distribution board 12. Power line PL3 is arranged between power generation facility 5 and connection point CP between power line PL1 and power line PL2.
 電力計測装置4は、電力線PL1~3にそれぞれ接続されたCT(Current Transformer)1~3の各々と通信線を介して接続される。CT1~3は、交流電流を計測するセンサである。電力計測装置4は、CT1の計測結果に基づいて電力線PL1における電力、換言すると、この家庭における買電電力又は売電電力を計測する。また、電力計測装置4は、CT2の計測結果に基づいて電力線PL2における電力、即ち、家屋Hで消費される電力、即ち、家屋Hの総消費電力を計測する。また、電力計測装置4は、CT3の計測結果に基づいて電力線PL3における電力、即ち、発電設備5から出力される電力(以下、発電電力と称する。)を計測する。 The power measuring device 4 is connected to each of CT (Current Transformers) 1 to 3 connected to the power lines PL1 to PL3 through communication lines. CT1 to CT3 are sensors for measuring an alternating current. The power measuring device 4 measures the power in the power line PL1, in other words, the purchased power or the sold power in the home based on the measurement result of CT1. Moreover, the power measuring device 4 measures the power in the power line PL2, that is, the power consumed in the house H, that is, the total power consumption in the house H, based on the measurement result of CT2. The power measuring device 4 measures the power in the power line PL3, that is, the power output from the power generation facility 5 (hereinafter referred to as generated power) based on the measurement result of CT3.
 上記の買電電力とは、商用電源11から供給された電力、即ち、電気事業者から買った電力をいう。また、売電電力とは、逆潮電力として商用電源11へ供給した電力、即ち、電気事業者に売った電力をいう。家屋Hのユーザは、発電電力が、家屋Hの総消費電力を超えた場合に、規定の条件を満たすことで、発電電力の内の余剰分の電力を電気事業者に売ることが可能となる。なお、家屋Hの総消費電力は、買電時では、買電電力と発電電力を加算した電力に等しく、売電時では、発電電力から売電電力を差し引いた電力に等しい。 The above-mentioned purchased electric power means electric power supplied from the commercial power source 11, that is, electric power purchased from an electric power company. The power sale power means the power supplied to the commercial power supply 11 as the reverse power, that is, the power sold to the electric power company. When the generated power exceeds the total power consumption of the house H, the user of the house H can sell the surplus power in the generated power to the electric utility by satisfying the specified condition. . Note that the total power consumption of the house H is equal to the power obtained by adding the purchased power and the generated power at the time of power purchase, and equal to the power obtained by subtracting the sold power from the generated power at the time of power sale.
 また、電力計測装置4は、無線通信インタフェースを備え、家屋H内に構築された無線ネットワーク(図示せず)を介して、制御装置2と通信可能に接続する。この無線ネットワークは、例えば、エコーネットライト(ECHONET Lite)に準じたネットワークである。なお、電力計測装置4は、外付けの通信アダプタ(図示せず)を介して、この無線ネットワークに接続されてもよい。 Further, the power measuring device 4 includes a wireless communication interface, and is connected to the control device 2 via a wireless network (not shown) constructed in the house H so as to be communicable. This wireless network is, for example, a network conforming to ECHONET Lite. The power measuring device 4 may be connected to this wireless network via an external communication adapter (not shown).
 電力計測装置4は、制御装置2からの要求に応答して、買電電力又は売電電力の計測結果と、総消費電力の計測結果と、発電電力の計測結果とが格納された電力情報を制御装置2に送信する。なお、電力計測装置4は、電力情報を自発的に一定の時間間隔(例えば、1分間隔)で制御装置2に送信してもよい。 In response to the request from the control device 2, the power measuring device 4 stores power information in which the measurement result of the purchased power or the sold power, the measurement result of the total power consumption, and the measurement result of the generated power are stored. It transmits to the control apparatus 2. The power measuring device 4 may spontaneously transmit the power information to the control device 2 at a constant time interval (for example, every one minute).
 発電設備5は、PV(photovoltaic)パネル50と、パワーコンディショニングシステムであるPV-PCS51とを備えた太陽光発電設備である。PVパネル50は、家屋Hの屋根の上に設置され、太陽光エネルギーを電気エネルギーに変換することで発電する。PV-PCS51は、PVパネル50の発電により生じた直流電力を交流電力に変換することで、上記の発電電力を生成し、電力線PL3と電力線PL2を介して、分電盤12に供給する。 The power generation facility 5 is a solar power generation facility including a PV (photovoltaic) panel 50 and a PV-PCS 51 which is a power conditioning system. The PV panel 50 is installed on the roof of the house H, and generates electric power by converting solar energy into electric energy. The PV-PCS 51 converts the DC power generated by the power generation of the PV panel 50 into AC power, thereby generating the generated power and supplying it to the distribution board 12 via the power line PL3 and the power line PL2.
 日射遮蔽装置6は、家屋Hに設けられた図示しない窓を屋外側から覆うように設置され、当該窓を介して入射する日射を遮るための装置であり、例えば、外付けの電動ブラインドである。日射遮蔽装置6は、分電盤12に接続される電力線PL4を介して電力の供給を受ける。 The solar radiation shielding device 6 is a device that is installed so as to cover a window (not shown) provided in the house H from the outdoor side and shields the solar radiation that enters through the window, and is, for example, an external electric blind. . The solar radiation shielding device 6 is supplied with electric power through a power line PL4 connected to the distribution board 12.
 ユーザは、日射遮蔽装置6の図示しない専用のリモコンを操作して、日射遮蔽装置6を制御することができる。詳細には、ユーザは、日射遮蔽装置6のリモコンを操作して、スラット(ルーバともいう。)の角度(以下、スラット角度という。)の変更を指示したり、又は、ブラインドの巻き上げ(即ち、ブラインド全開)を指示することができる。具体的には、ユーザは、スラット角度について、0°~90°の範囲を15°単位で指定することができる。ブラインド全開でない、即ち、ブラインドが下りた状態において、スラット角度が0°(即ち、ブラインド全閉)の場合、日射の遮蔽率が最も高くなり、90°の場合、日射の遮蔽率が最も低くなる。これにより、ユーザは、家屋Hに入る日射を好みの程度に調整することができる。 The user can control the solar shading device 6 by operating a dedicated remote controller (not shown) of the solar shading device 6. Specifically, the user operates the remote control of the solar shading device 6 to instruct the change of the angle of the slat (also referred to as louver) (hereinafter referred to as the slat angle), or to raise the blind (that is, Blind fully open) can be instructed. Specifically, the user can specify a range of 0 ° to 90 ° in units of 15 ° for the slat angle. When the blind is not fully open, that is, when the blind is lowered, when the slat angle is 0 ° (ie, blind fully closed), the solar radiation shielding rate is the highest, and when it is 90 °, the solar radiation shielding rate is the lowest. . Thereby, the user can adjust the solar radiation which enters the house H to a favorite grade.
 また、日射遮蔽装置6は、無線通信インタフェースを備え、上述した無線ネットワークを介して、制御装置2と通信可能に接続する。なお、日射遮蔽装置6は、外付けの通信アダプタ(図示せず)を介して、この無線ネットワークに接続されてもよい。制御装置2は、通信により、日射遮蔽装置6に対して、上記と同様の指示を与えて、日射遮蔽装置6を制御することができる。制御装置2による日射遮蔽装置6の制御の詳細については後述する。 Moreover, the solar radiation shielding device 6 includes a wireless communication interface, and is connected to the control device 2 via the wireless network described above so as to be communicable. The solar radiation shielding device 6 may be connected to the wireless network via an external communication adapter (not shown). The control device 2 can control the solar shading device 6 by giving an instruction similar to the above to the solar shading device 6 through communication. Details of the control of the solar radiation shielding device 6 by the control device 2 will be described later.
 エアコン7は、家屋Hの内部空間の空調を行う空調機であり、壁掛タイプの室内機と、屋外に設置された室外機とを備える。室内機と室外機は、通信線を介して通信可能に接続されると共に、冷媒を循環させるための冷媒配管により接続されている。エアコン7は、分電盤12に接続される電力線PL5を介して電力の供給を受ける。ユーザは、エアコン7の図示しない専用のリモコンを操作することで、エアコン7に対して、例えば、冷房運転、暖房運転、送風運転又は除湿運転の開始又は停止を指示することができ、また、設定温度(即ち、目標温度)又は風力の変更を指示することができる。 The air conditioner 7 is an air conditioner that air-conditions the interior space of the house H, and includes a wall-hanging type indoor unit and an outdoor unit installed outdoors. The indoor unit and the outdoor unit are communicably connected via a communication line, and are connected by a refrigerant pipe for circulating the refrigerant. The air conditioner 7 is supplied with power via a power line PL5 connected to the distribution board 12. The user can instruct the air conditioner 7 to start or stop the cooling operation, the heating operation, the air blowing operation, or the dehumidifying operation, for example, by operating a dedicated remote controller (not shown) of the air conditioner 7. A change in temperature (ie, target temperature) or wind power can be indicated.
 また、エアコン7は、無線通信インタフェースを備え、上述した無線ネットワークを介して、制御装置2と通信可能に接続する。なお、エアコン7は、外付けの通信アダプタ(図示せず)を介して、この無線ネットワークに接続されてもよい。制御装置2は、通信により、エアコン7に対して、上記と同様の指示、即ち、冷房運転、暖房運転、送風運転又は除湿運転の開始又は停止を指示することができ、また、設定温度(即ち、目標温度)又は風力の変更を指示することができる。 In addition, the air conditioner 7 includes a wireless communication interface and is communicably connected to the control device 2 via the above-described wireless network. The air conditioner 7 may be connected to this wireless network via an external communication adapter (not shown). The control device 2 can instruct the air conditioner 7 by communication to start or stop the same instruction as above, that is, the cooling operation, the heating operation, the air blowing operation, or the dehumidifying operation, and the set temperature (that is, , Target temperature) or wind power change.
 また、エアコン7は、制御装置2からの要求に応答して、エアコン7の現在の運転状態を示すデータ(以下、運転状態データという。)を制御装置2に送信する。この運転状態データには、冷房運転中、暖房運転中、送風運転中、除湿運転中、運転停止中の何れかを示す情報と、設定温度及び風力を示す情報と、室内機が備える温度センサにより計測された室内の空気温度を示す情報と、室外機が備える圧縮機の運転周波数を示す情報とが含まれる。なお、エアコン7は、運転状態データを自発的に一定の時間間隔(例えば、1分間隔)で制御装置2に送信してもよい。 In addition, the air conditioner 7 transmits data indicating the current operation state of the air conditioner 7 (hereinafter referred to as operation state data) to the control device 2 in response to a request from the control device 2. This operation state data includes information indicating any of the cooling operation, heating operation, air blowing operation, dehumidifying operation, and operation stop, information indicating the set temperature and wind power, and a temperature sensor provided in the indoor unit. Information indicating the measured indoor air temperature and information indicating the operating frequency of the compressor included in the outdoor unit are included. The air conditioner 7 may spontaneously transmit the operation state data to the control device 2 at a constant time interval (for example, every one minute).
 照明器8は、家屋Hにおける室内の天井に設置され、室内の照明を行う。照明器8は、分電盤12に接続される電力線PL6を介して電力の供給を受ける。ユーザは、照明器8の図示しない専用のリモコンを操作して、所望の照明を照明器8に実行させることができる。また、照明器8は、無線通信インタフェースを備え、上述した無線ネットワークを介して、制御装置2と通信可能に接続する。制御装置2は、通信により、照明器8を制御することができる。 The illuminator 8 is installed on the indoor ceiling in the house H and illuminates the room. The illuminator 8 is supplied with power via a power line PL6 connected to the distribution board 12. The user can cause the illuminator 8 to execute desired illumination by operating a dedicated remote controller (not shown) of the illuminator 8. The illuminator 8 includes a wireless communication interface, and is connected to the control device 2 through the wireless network described above so as to be communicable. The control device 2 can control the illuminator 8 by communication.
 ルータ9は、ブロードバンドルータであり、制御装置2とLAN(Local Area Network)ケーブルで接続される。制御装置2は、ルータ9を介して、インターネットに接続される他の装置(例えば、気象事業者サーバ10)と通信することができる。 The router 9 is a broadband router and is connected to the control device 2 by a LAN (Local Area Network) cable. The control device 2 can communicate with another device (for example, the weather operator server 10) connected to the Internet via the router 9.
 気象事業者サーバ10は、気象事業者によって管理されるサーバであり、インターネットに接続されている。気象事業者サーバ10は、契約したユーザに、当該ユーザが居住する地域の天気予報を提供する。詳細には、気象事業者サーバ10は、契約したユーザの家屋Hに設置されている制御装置2からの要求に応答して、天気予報を示すデータ(以下、天気予報データという。)を制御装置2に送信する。 The weather company server 10 is a server managed by the weather company and is connected to the Internet. The weather company server 10 provides the contracted user with a weather forecast for the area where the user resides. Specifically, the weather company server 10 responds to a request from the control device 2 installed in the house H of the contracted user, and displays data indicating the weather forecast (hereinafter referred to as weather forecast data) as the control device. 2 to send.
 制御装置2は、図2に示すように、プロセッサ20と、通信インタフェース21と、ROM(Read Only Memory)22と、RAM(Random Access Memory)23と、二次記憶装置24とを備える。これらの構成部は、バス25を介して相互に接続される。プロセッサ20は、この制御装置2を統括的に制御する。プロセッサ20によって実現される制御装置2の機能の詳細については後述する。 As shown in FIG. 2, the control device 2 includes a processor 20, a communication interface 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and a secondary storage device 24. These components are connected to each other via a bus 25. The processor 20 controls the control device 2 in an integrated manner. Details of the functions of the control device 2 realized by the processor 20 will be described later.
 通信インタフェース21は、上述した無線ネットワークを介して電力計測装置4、日射遮蔽装置6、エアコン7及び照明器8と無線通信するためのネットワークカードと、操作端末3と無線通信又は有線通信するためのネットワークカードと、ルータ9を介して他の装置(例えば、気象事業者サーバ10)と通信するためのネットワークカードとを備える。通信インタフェース21は、本発明に係る制御装置が備える通信手段の一例である。 The communication interface 21 is a network card for wirelessly communicating with the power measuring device 4, the solar shading device 6, the air conditioner 7 and the illuminator 8 via the wireless network described above, and for wirelessly or wiredly communicating with the operation terminal 3 A network card and a network card for communicating with another device (for example, the weather operator server 10) via the router 9 are provided. The communication interface 21 is an example of a communication unit provided in the control device according to the present invention.
 ROM22は、複数のファームウェア及びこれらのファームウェアの実行時に使用されるデータを記憶する。RAM23は、プロセッサ20の作業領域として使用される。 The ROM 22 stores a plurality of firmware and data used when executing these firmware. The RAM 23 is used as a work area for the processor 20.
 二次記憶装置24は、本発明に係る基本スケジュール記憶手段、時間シフトテーブル記憶手段の一例である。二次記憶装置24は、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリ又はHDD(Hard Disk Drive)を含んで構成される。二次記憶装置24は、図3に示すように、日射制御プログラム240と、空調履歴DB241と、熱容量データ242と、基本制御スケジュールテーブル243と、時間シフトテーブル244と、制御スケジュール245とを記憶する。この他にも、二次記憶装置24には、この家庭で消費される電力を管理するための1又は複数のプログラムと、各プログラムの実行時に使用されるデータが記憶される。 The secondary storage device 24 is an example of a basic schedule storage unit and a time shift table storage unit according to the present invention. The secondary storage device 24 includes an EEPROM (Electrically Erasable Programmable Read-Only Memory), a readable / writable nonvolatile semiconductor memory such as a flash memory, or an HDD (Hard Disk Drive). As shown in FIG. 3, the secondary storage device 24 stores a solar radiation control program 240, an air conditioning history DB 241, a heat capacity data 242, a basic control schedule table 243, a time shift table 244, and a control schedule 245. . In addition, the secondary storage device 24 stores one or a plurality of programs for managing power consumed in the home and data used when each program is executed.
 日射制御プログラム240は、プロセッサ20によって実行されるコンピュータプログラムであり、日射遮蔽装置6を制御するための処理が記述されている。空調履歴DB241は、エアコン7の運転状態の履歴が保存されるデータベースである。プロセッサ20は、エアコン7から送られてきた上述した運転状態データを通信インタフェース21を介して受信し、受信した運転状態データを、受信した時刻と対応付けて空調履歴DB241に保存する。 The solar radiation control program 240 is a computer program executed by the processor 20 and describes a process for controlling the solar radiation shielding device 6. The air conditioning history DB 241 is a database in which a history of the operating state of the air conditioner 7 is stored. The processor 20 receives the above-described operation state data sent from the air conditioner 7 via the communication interface 21 and stores the received operation state data in the air conditioning history DB 241 in association with the received time.
 熱容量データ242、基本制御スケジュールテーブル243、時間シフトテーブル244及び制御スケジュール245の詳細については後述する。 Details of the heat capacity data 242, the basic control schedule table 243, the time shift table 244, and the control schedule 245 will be described later.
 以上のように構成されたエネルギー管理システム1は、本発明の実施の形態1に係る日射制御システムを包含している。実施の形態1に係る日射制御システムは、制御装置2と、操作端末3と、日射遮蔽装置6と、エアコン7と、ルータ9とにより構成される。 The energy management system 1 configured as described above includes the solar radiation control system according to Embodiment 1 of the present invention. The solar radiation control system according to Embodiment 1 includes a control device 2, an operation terminal 3, a solar radiation shielding device 6, an air conditioner 7, and a router 9.
 図4は、制御装置2の機能構成を示すブロック図である。制御装置2は、機能的には、情報受付部200と、熱容量算出部201と、日射量推定部202と、スケジュール決定部203と、日射遮蔽装置制御部204と、テーブル補正部205とを備える。これらの機能部は、プロセッサ20が二次記憶装置24に記憶されている日射制御プログラム240を実行することで実現される。 FIG. 4 is a block diagram showing a functional configuration of the control device 2. Functionally, the control device 2 includes an information reception unit 200, a heat capacity calculation unit 201, a solar radiation amount estimation unit 202, a schedule determination unit 203, a solar radiation shielding device control unit 204, and a table correction unit 205. . These functional units are realized by the processor 20 executing the solar radiation control program 240 stored in the secondary storage device 24.
 情報受付部200は、本発明に係る第1情報受付手段の一例である。情報受付部200は、工事担当者、家屋Hの住人等のユーザにより操作端末3を介して入力された床情報を受け付ける。床情報とは、家屋Hの床に関する情報である。床情報には、例えば、当該床を構成する1又は複数の部材名と、各部材の容積(m)と、各部材の単位容積当たりの熱容量(kJ/(m・K))と、延床面積(m)とが含まれる。 The information receiving unit 200 is an example of a first information receiving unit according to the present invention. The information receiving unit 200 receives floor information input via the operation terminal 3 by a user such as a construction worker or a resident of the house H. The floor information is information regarding the floor of the house H. The floor information includes, for example, the name of one or more members constituting the floor, the volume of each member (m 3 ), the heat capacity per unit volume of each member (kJ / (m 3 · K)), And total floor area (m 2 ).
 熱容量算出部201は、本発明に係る熱容量算出手段の一例である。熱容量算出部201は、情報受付部200が受け付けた床情報に基づいて、家屋Hの熱容量を算出する。建物全体の熱容量は、当該建物の床、壁、天井等のそれぞれを構成する1又は複数の部材の熱容量を合計することで得られる。しかし、一般的には、建物の熱容量として、床の単位面積当たりの熱容量(kJ/(m・K))が広く用いられている。そこで、本実施の形態では、熱容量算出部201は、下記の式1により家屋Hの熱容量を算出する。 The heat capacity calculation unit 201 is an example of a heat capacity calculation unit according to the present invention. The heat capacity calculation unit 201 calculates the heat capacity of the house H based on the floor information received by the information reception unit 200. The heat capacity of the entire building can be obtained by summing the heat capacities of one or more members constituting each of the floor, wall, ceiling, etc. of the building. However, in general, the heat capacity per unit area of the floor (kJ / (m 2 · K)) is widely used as the heat capacity of the building. Therefore, in the present embodiment, the heat capacity calculation unit 201 calculates the heat capacity of the house H by the following formula 1.
 家屋Hの熱容量(kJ/(m・K))=Σ[床を構成する各部材の熱容量(kJ/K)]/家屋Hの延床面積(m)  (式1) Heat capacity of house H (kJ / (m 2 · K)) = Σ [heat capacity of each member constituting the floor (kJ / K)] / total floor area of house H (m 2 ) (Formula 1)
 例えば、家屋Hの床が部材Aと部材Bで構成されている場合、熱容量算出部201は、下記の式2~式4により、床の総熱容量(kJ/K)を算出する。 For example, when the floor of the house H is composed of the members A and B, the heat capacity calculation unit 201 calculates the total heat capacity (kJ / K) of the floor by the following formulas 2 to 4.
 部材Aの熱容量(kJ/K)=部材Aの容積(m)×部材Aの単位容積当たりの熱容量(kJ/(m・K))  (式2) Heat capacity of member A (kJ / K) = volume of member A (m 3 ) × heat capacity per unit volume of member A (kJ / (m 3 · K)) (Formula 2)
 部材Bの熱容量(kJ/K)=部材Bの容積(m)×部材Bの単位容積当たりの熱容量(kJ/(m・K))  (式3) Heat capacity of member B (kJ / K) = volume of member B (m 3 ) × heat capacity per unit volume of member B (kJ / (m 3 · K)) (Formula 3)
 床の総熱容量(kJ/K)=部材Aの熱容量(kJ/K)+部材Bの熱容量(kJ/K)  (式4) Total heat capacity of floor (kJ / K) = heat capacity of member A (kJ / K) + heat capacity of member B (kJ / K) (Formula 4)
 そして、熱容量算出部201は、下記の式5により、家屋Hの熱容量(kJ/(m・K))を算出する。 Then, the heat capacity calculation unit 201 calculates the heat capacity (kJ / (m 2 · K)) of the house H by the following formula 5.
 家屋Hの熱容量(kJ/(m・K))=床の総熱容量(kJ/K)/家屋Hの延床面積(m)  (式5) Heat capacity of house H (kJ / (m 2 · K)) = total heat capacity of floor (kJ / K) / total floor area of house H (m 2 ) (Formula 5)
 熱容量算出部201は、算出した熱容量を示すデータ、即ち、熱容量データ242を二次記憶装置24に格納する。 The heat capacity calculation unit 201 stores data indicating the calculated heat capacity, that is, heat capacity data 242 in the secondary storage device 24.
 日射量推定部202は、今後の一定期間(本実施の形態では、24時間)における日射量の推移を推定する。詳細には、日射量推定部202は、気象事業者サーバ10から通信により当該期間の天気予報を示す天気予報データを取得する。そして、日射量推定部202は、取得した天気予報データと、上記の期間における日時とに基づいて、太陽の高度及び方位を予め定めた時間単位で計算することで、日射量の推移を推定する。日射量推定部202は、推定した日射量の推移をスケジュール決定部203に通知する。 The solar radiation amount estimation unit 202 estimates the transition of the solar radiation amount in a future fixed period (24 hours in the present embodiment). Specifically, the solar radiation amount estimation unit 202 acquires weather forecast data indicating a weather forecast for the period from the weather operator server 10 by communication. And the solar radiation amount estimation part 202 estimates the transition of solar radiation amount by calculating a solar altitude and a direction in a predetermined time unit based on the acquired weather forecast data and the date and time in the above period. . The solar radiation amount estimation unit 202 notifies the schedule determination unit 203 of the transition of the estimated solar radiation amount.
 スケジュール決定部203は、本発明に係るスケジュール決定手段の一例である。スケジュール決定部203は、今後の上記の期間(即ち、24時間)における日射遮蔽装置6に対する制御のスケジュール(以下、制御スケジュールという。)を決定する。その際、先ず、スケジュール決定部203は、基本となる基本制御スケジュールを取得する。詳細には、スケジュール決定部203は、二次記憶装置24に記憶されている基本制御スケジュールテーブル243(図5参照)から、当該期間が属する月に対応する制御スケジュールを基本制御スケジュールとして取得する。 The schedule determination unit 203 is an example of a schedule determination unit according to the present invention. The schedule determination unit 203 determines a control schedule (hereinafter referred to as a control schedule) for the solar radiation shielding device 6 in the future period (that is, 24 hours). In that case, first, the schedule determination unit 203 acquires a basic basic control schedule. Specifically, the schedule determination unit 203 acquires, from the basic control schedule table 243 (see FIG. 5) stored in the secondary storage device 24, a control schedule corresponding to the month to which the period belongs as a basic control schedule.
 基本制御スケジュールテーブル243は、各月に対応する制御スケジュールが予め格納されたデータテーブルである。基本制御スケジュールテーブル243は、制御装置2又は日射遮蔽装置6のメーカ又は販売元により作成され、制御装置2の出荷段階で二次記憶装置24に記憶されている。あるいは、工事担当者、家屋Hの住人等のユーザによる操作端末3を介した操作により、インターネットを介して接続される、上記のメーカ又は販売元が運営するサーバから、基本制御スケジュールテーブル243が制御装置2にダウンロードされることで、二次記憶装置24に記憶されるようにしてもよい。 The basic control schedule table 243 is a data table in which a control schedule corresponding to each month is stored in advance. The basic control schedule table 243 is created by the manufacturer or distributor of the control device 2 or the solar shading device 6 and is stored in the secondary storage device 24 at the shipment stage of the control device 2. Alternatively, the basic control schedule table 243 is controlled from a server operated by the manufacturer or distributor connected via the Internet by an operation via the operation terminal 3 by a user such as a construction worker or a resident of the house H. By being downloaded to the device 2, it may be stored in the secondary storage device 24.
 図5に示す基本制御スケジュールテーブル243の例では、1~12月の各月の制御スケジュールにおいて、日射遮蔽装置6の動作状態が1~24時の各時毎で示されている。日射遮蔽装置6の動作状態は、0°~90°のスラット角度、又は、ブラインド全開の何れかで示される。図5において、“開”は、ブラインド全開を意味する。 In the example of the basic control schedule table 243 shown in FIG. 5, in the control schedule for each month from January to December, the operating state of the solar shading device 6 is shown for each hour from 1 to 24:00. The operating state of the solar shading device 6 is indicated by either a slat angle of 0 ° to 90 ° or a blind fully open. In FIG. 5, “open” means blind fully open.
 基本制御スケジュールテーブル243から、基本制御スケジュールを取得すると、スケジュール決定部203は、日射量推定部202により推定された日射量の推移に基づいて、取得した基本制御スケジュールを補正することで、仮制御スケジュールを生成する。 When the basic control schedule is acquired from the basic control schedule table 243, the schedule determination unit 203 corrects the acquired basic control schedule based on the transition of the solar radiation amount estimated by the solar radiation amount estimation unit 202, thereby performing temporary control. Generate a schedule.
 スケジュール決定部203は、生成した仮制御スケジュールを二次記憶装置24に記憶されている時間シフトテーブル244に基づいて補正することで、制御スケジュール245を生成する。 The schedule determination unit 203 generates the control schedule 245 by correcting the generated temporary control schedule based on the time shift table 244 stored in the secondary storage device 24.
 時間シフトテーブル244は、季節と、時間帯と、動作状態と、家屋Hの熱容量の指標に応じたシフト時間とが対応付けられたデータテーブルである。図6に時間シフトテーブル244の一例を示す。図6において、“冬”には、暖房を要する月、例えば、1月、2月及び12月が該当し、“夏”には、冷房を要する月、例えば、6~8月が該当し、“春・秋”には、暖房及び冷房を要さない月、例えば、3月~5月と9月~11月が該当する。 The time shift table 244 is a data table in which a season, a time zone, an operation state, and a shift time corresponding to the heat capacity index of the house H are associated. FIG. 6 shows an example of the time shift table 244. In FIG. 6, “winter” corresponds to months that require heating, for example, January, February, and December, and “summer” corresponds to months that require cooling, for example, June to August. “Spring / Autumn” corresponds to months in which heating and cooling are not required, for example, from March to May and from September to November.
 また、図6において、季節が“冬”の場合、例えば、“朝”とは、7時~8時台であり、“午前”とは、9時~10時台であり、“昼”とは、11時~13時台であり、“午後”とは、14時~15時台であり、“夕方”とは、16時~17時台であり、“夜”とは1時~6時台と18時~24時台である。 In FIG. 6, when the season is “winter”, for example, “morning” is from 7:00 to 8 o'clock, “am” is from 9 to 10 o'clock, “day” Is from 11:00 to 13:00, “afternoon” is from 14:00 to 15:00, “evening” is from 16:00 to 17:00, and “night” is from 1 to 6 The time zone is between 18:00 and 24:00.
 図6において、季節が“夏”の場合、例えば、“朝”とは、5時~8時台であり、“午前”とは、9時~10時台であり、“昼”とは、11時~13時台であり、“午後”とは、14時~16時台であり、“夕方”とは、17時~18時台であり、“夜”とは1時~4時台と19時~24時台である。 In FIG. 6, when the season is “summer”, for example, “morning” is from 5:00 to 8 o'clock, “am” is from 9 to 10 o'clock, and “noon” is From 11:00 to 13:00, "Afternoon" is from 14:00 to 16:00, "Evening" is from 17:00 to 18:00, and "Night" is from 1 to 4 And 19: 00-24: 00.
 図6において、季節が“春・秋”の場合、例えば、“朝”とは、6時~8時台であり、“午前”とは、9時~10時台であり、“昼”とは、11時~13時台であり、“午後”とは、14時~16時台であり、“夕方”とは、17時台であり、“夜”とは1時~5時台と18時~24時台である。 In FIG. 6, when the season is “spring / autumn”, for example, “morning” is from 6:00 to 8:00, “am” is from 9:00 to 10:00, “day” Is from 11:00 to 13:00, "afternoon" is from 14:00 to 16:00, "evening" is from 17:00, and "night" is from 1 to 5 From 18:00 to 24:00.
 また、図6において、動作状態とは、日射遮蔽装置6の動作状態であり、0°~90°のスラット角度、又は、ブラインド全開の何れかで示される。図6において、“開”は、ブラインド全開を意味する。 Also, in FIG. 6, the operating state is the operating state of the solar shading device 6, and is indicated by either a slat angle of 0 ° to 90 ° or a blind fully open. In FIG. 6, “open” means blind fully open.
 また、図6において、シフト時間とは、対応する動作状態の開始時刻及び終了時刻をシフトする時間(分単位)であり、符号は、シフトする方向を示す。例えば、“-30”分の場合、対応する動作状態の開始時刻及び終了時刻を30分早めることを意味し、“+30”分の場合、対応する動作状態の開始時刻及び終了時刻を30分遅くすることを意味する。 In FIG. 6, the shift time is the time (in minutes) for shifting the start time and end time of the corresponding operation state, and the sign indicates the direction of shift. For example, “-30” minutes means that the start time and end time of the corresponding operation state are advanced by 30 minutes. If “+30” minutes, the start time and end time of the corresponding operation state are delayed by 30 minutes. It means to do.
 また、図6に示すように、本実施の形態では、家屋Hの熱容量(kJ/(m・K))の指標は、“小”、“中”及び“大”の何れかで示される。詳細には、スケジュール決定部203は、熱容量データ242で示される熱容量と、予め定められた基準熱容量とに基づいて、家屋Hの熱容量の指標を“小”、“中”及び“大”の何れかに決定する。基準熱容量は、例えば、170kJ/(m・K)である。具体的には、スケジュール決定部203は、熱容量データ242で示される熱容量が、170kJ/(m・K)から170×3kJ/(m・K)の間である場合、家屋Hの熱容量の指標を“中”に決定する。また、スケジュール決定部203は、熱容量データ242で示される熱容量が、170×3kJ/(m・K)より大きい場合は、家屋Hの熱容量の指標を“大”に決定し、170kJ/(m・K)より小さい場合は、家屋Hの熱容量の指標を“小”に決定する。 Further, as shown in FIG. 6, in the present embodiment, the index of the heat capacity (kJ / (m 2 · K)) of the house H is indicated by any one of “small”, “medium”, and “large”. . Specifically, the schedule determination unit 203 sets the index of the heat capacity of the house H as “small”, “medium”, or “large” based on the heat capacity indicated by the heat capacity data 242 and a predetermined reference heat capacity. Decide on. The reference heat capacity is, for example, 170 kJ / (m 2 · K). Specifically, the schedule determining section 203, the heat capacity indicated by the capacity data 242, if it is between 170kJ / (m 2 · K) of 170 × 3kJ / (m 2 · K), the heat capacity of the house H The indicator is determined as “medium”. In addition, when the heat capacity indicated by the heat capacity data 242 is larger than 170 × 3 kJ / (m 2 · K), the schedule determination unit 203 determines the heat capacity index of the house H to be “large” and 170 kJ / (m If it is smaller than 2 · K), the heat capacity index of the house H is determined to be “small”.
 スケジュール決定部203は、生成した仮制御スケジュールを上述した時間シフトテーブル244に基づいて補正することで、制御スケジュール245を生成する。例えば、家屋Hの熱容量の指標が“大”であり、季節が冬で、生成された仮制御スケジュールにおいて、9時~10時まで日射遮蔽装置6のスラット角度を60°に制御するように示されている場合、制御スケジュール245においては、9時半~10時半まで日射遮蔽装置6のスラット角度を60°に制御するように示されることになる。 The schedule determination unit 203 generates the control schedule 245 by correcting the generated temporary control schedule based on the time shift table 244 described above. For example, the heat capacity index of the house H is “large”, the season is winter, and the generated temporary control schedule shows that the slat angle of the solar shading device 6 is controlled to 60 ° from 9:00 to 10:00. If so, the control schedule 245 indicates that the slat angle of the solar shading device 6 is controlled to 60 ° from 9:30 to 10:30.
 スケジュール決定部203は、生成した制御スケジュール245を二次記憶装置24に格納する。 The schedule determination unit 203 stores the generated control schedule 245 in the secondary storage device 24.
 図4に戻り、日射遮蔽装置制御部204は、本発明に係る日射遮蔽装置制御手段の一例である。日射遮蔽装置制御部204は、二次記憶装置24に記憶されている制御スケジュール245に従って日射遮蔽装置6を制御する。詳細には、例えば、現在時刻が、スラット角度を45°から60°に変更する時刻になる等、日射遮蔽装置6の動作状態を変更する時刻になると、日射遮蔽装置6は、動作状態の変更を指示する制御データを生成し、日射遮蔽装置6に送信する。かかる制御データには、動作状態の変更を指示する情報と、指定した動作状態(例えば、スラット角度“60°”)を示す情報とが含まれている。 Referring back to FIG. 4, the solar shading device control unit 204 is an example of the solar shading device control means according to the present invention. The solar shading device control unit 204 controls the solar shading device 6 according to the control schedule 245 stored in the secondary storage device 24. Specifically, for example, when the current time is the time when the operating state of the solar shading device 6 is changed, such as when the slat angle is changed from 45 ° to 60 °, the solar shading device 6 changes the operating state. Is generated and transmitted to the solar shading device 6. Such control data includes information for instructing the change of the operation state and information indicating the specified operation state (for example, slat angle “60 °”).
 テーブル補正部205は、本発明に係るテーブル補正手段の一例である。テーブル補正部205は、制御スケジュール245に従って日射遮蔽装置6の制御が行われた際の家屋Hの室内の空気状態の傾向に基づいて、時間シフトテーブル244の補正を行う。詳細には、テーブル補正部205は、前回生成された仮制御スケジュール及び制御スケジュール245と、過去1日の空気温度(即ち、室温)の履歴と、予め定めた補正ルールとに基づいて、時間シフトテーブル244における対応するシフト時間を補正する。 The table correction unit 205 is an example of a table correction unit according to the present invention. The table correction unit 205 corrects the time shift table 244 based on the tendency of the air condition in the room of the house H when the solar radiation shielding device 6 is controlled according to the control schedule 245. Specifically, the table correction unit 205 performs time shift based on the temporary control schedule and control schedule 245 generated last time, the history of air temperature (ie, room temperature) in the past day, and a predetermined correction rule. The corresponding shift time in the table 244 is corrected.
 本実施の形態における補正ルールの概要を図7に示す。図7において、制御方向とは、日射遮蔽装置6に行った制御に対応する動作状態の方向を意味する。具体的には、制御方向は、日射を遮蔽する方向(以下、日射遮蔽という。)又は日射を取り込む方向(以下、日射取込という。)の何れかを示す。例えば、日射遮蔽装置6に対して、スラット角度を60°から45°に変更する制御を行った場合、制御方向は、日射遮蔽となり、スラット角度を45°から60°に変更する制御を行った場合、制御方向は、日射取込となる。 FIG. 7 shows an outline of the correction rule in the present embodiment. In FIG. 7, the control direction means the direction of the operation state corresponding to the control performed on the solar radiation shielding device 6. Specifically, the control direction indicates either a direction for shielding solar radiation (hereinafter referred to as solar radiation shielding) or a direction for capturing solar radiation (hereinafter referred to as solar radiation capturing). For example, when the solar shading device 6 is controlled to change the slat angle from 60 ° to 45 °, the control direction is solar shading, and the control is performed to change the slat angle from 45 ° to 60 °. In this case, the control direction is solar radiation capture.
 また、図7において、シフト方向とは、前回の制御スケジュール245を生成する際に、時間シフトテーブル244に従って、仮制御スケジュールにおける動作状態の開始時刻及び終了時刻をシフトした方向を意味する。シフト方向において、“-”は、動作状態の開始時刻及び終了時刻を早めたことを示し、“+”は、動作状態の開始時刻及び終了時刻を遅くしたことを示す。また、補正値とは、シフト時間を補正する時間(単位は、分)を意味する。 7, the shift direction means a direction in which the start time and end time of the operation state in the temporary control schedule are shifted according to the time shift table 244 when the previous control schedule 245 is generated. In the shift direction, “−” indicates that the start time and end time of the operation state are advanced, and “+” indicates that the start time and end time of the operation state are delayed. The correction value means a time (unit: minutes) for correcting the shift time.
 例えば、制御方向が日射遮蔽であり、シフト方向が“-”であって、当該制御スケジュール245に従った日射制御の結果、室温が予め定めた基準温度より低かった場合、テーブル補正部205は、時間シフトテーブル244の対応するシフト時間を10分延ばす。あるいは、制御方向が日射取込であり、シフト方向が“+”であって、当該制御スケジュール245に従った日射制御の結果、室温が予め定めた基準温度より低かった場合、テーブル補正部205は、時間シフトテーブル244の対応するシフト時間を10分短くする。 For example, if the control direction is solar shading, the shift direction is “−”, and the result of solar control according to the control schedule 245 is that the room temperature is lower than a predetermined reference temperature, the table correction unit 205 The corresponding shift time in the time shift table 244 is extended by 10 minutes. Alternatively, if the control direction is solar radiation capture, the shift direction is “+”, and the result of solar radiation control according to the control schedule 245 is that the room temperature is lower than a predetermined reference temperature, the table correction unit 205 The corresponding shift time of the time shift table 244 is shortened by 10 minutes.
 なお、テーブル補正部205は、過去数日間において平均した室温の傾向に基づいて、時間シフトテーブル244の補正を行うようにしてもよい。 Note that the table correction unit 205 may correct the time shift table 244 based on the tendency of room temperature averaged over the past several days.
 図8は、制御装置2が実行する制御スケジュール生成処理の手順を示すフローチャートである。制御装置2は、予め定めた時刻(例えば、午前0時)になると、以下の制御スケジュール生成処理を実行する。 FIG. 8 is a flowchart showing a procedure of control schedule generation processing executed by the control device 2. The control device 2 executes the following control schedule generation process at a predetermined time (for example, midnight).
 日射量推定部202は、気象事業者サーバ10から通信により、今後の一定期間(本実施の形態では、24時間)の天気予報を示す天気予報データを取得する(ステップS101)。日射量推定部202は、取得した天気予報データと、上記の期間における日時とに基づいて、日射量の推移を推定する(ステップS102)。 The solar radiation amount estimation unit 202 acquires weather forecast data indicating a weather forecast for a certain period in the future (24 hours in the present embodiment) through communication from the weather company server 10 (step S101). The solar radiation amount estimation unit 202 estimates the transition of the solar radiation amount based on the acquired weather forecast data and the date and time in the above period (step S102).
 スケジュール決定部203は、基本制御スケジュールテーブル243(図5参照)から、上記の期間が属する月に対応する制御スケジュールを基本制御スケジュールとして取得する(ステップS103)。 The schedule determination unit 203 acquires a control schedule corresponding to the month to which the above period belongs as a basic control schedule from the basic control schedule table 243 (see FIG. 5) (step S103).
 スケジュール決定部203は、取得した基本制御スケジュールと、日射量推定部202により推定された日射量の推移とに基づいて、仮制御スケジュールを生成する(ステップS104)。 The schedule determination unit 203 generates a temporary control schedule based on the acquired basic control schedule and the transition of the solar radiation amount estimated by the solar radiation amount estimation unit 202 (step S104).
 そして、スケジュール決定部203は、生成した仮制御スケジュールと、時間シフトテーブル244とに基づいて、本制御スケジュール、即ち、制御スケジュール245を生成する(ステップS105)。 And the schedule determination part 203 produces | generates this control schedule, ie, the control schedule 245, based on the produced | generated temporary control schedule and the time shift table 244 (step S105).
 以上説明したように、実施の形態1の日射制御システムによれば、制御装置2は、日射遮蔽装置6に対する制御のスケジュールを示す制御スケジュール245を、家屋Hの熱容量に基づいて決定する。このため、より確実に省エネルギー効果が得られるように日射遮蔽装置6を制御することが可能となる。 As described above, according to the solar radiation control system of the first embodiment, the control device 2 determines the control schedule 245 indicating the control schedule for the solar radiation shielding device 6 based on the heat capacity of the house H. For this reason, it becomes possible to control the solar radiation shielding apparatus 6 so that an energy saving effect can be obtained more reliably.
 例えば、熱容量が大きい家屋では、冬期において、従来と比較し、日射による熱量をより多く室内に取り込むことができるため、暖房負荷を軽減できる。 For example, in a house with a large heat capacity, the heating load can be reduced because more heat can be taken into the room in the winter than in the past in the winter.
 一方、熱容量が小さい家屋では、取り込む日射の熱量を制限でき、室温の無用な上昇を防止することができる。 On the other hand, in a house with a small heat capacity, it is possible to limit the amount of solar radiation to be taken in, and to prevent an unnecessary increase in room temperature.
 また、基本制御スケジュールを補正するために使用される時間シフトテーブル244は、実運用においてテーブル補正部205によって適宜補正される。このため、時間シフトテーブル244を実際の物件に応じて最適化することができ、結果として、より一層確実に省エネルギー効果が得られるように日射遮蔽装置6を制御することが可能となる。 In addition, the time shift table 244 used for correcting the basic control schedule is appropriately corrected by the table correction unit 205 in actual operation. For this reason, the time shift table 244 can be optimized according to an actual property, and as a result, the solar shading device 6 can be controlled so as to obtain an energy saving effect more reliably.
(実施の形態2)
 続いて、本発明の実施の形態2に係る日射制御システムについて説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 2)
Then, the solar radiation control system which concerns on Embodiment 2 of this invention is demonstrated. In the following description, components and the like that are common to the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図9は、実施の形態2に係る日射制御システムを包含したエネルギー管理システム1Aの全体構成を示す図である。エネルギー管理システム1Aは、制御装置2Aと、操作端末3と、電力計測装置4と、発電設備5と、日射遮蔽装置6と、エアコン7と、照明器8と、ルータ9と、クラウドサーバ13とを備える。実施の形態2に係る日射制御システムは、制御装置2Aと、操作端末3と、日射遮蔽装置6と、エアコン7と、ルータ9と、クラウドサーバ13とにより構成される。 FIG. 9 is a diagram showing an overall configuration of an energy management system 1A including the solar radiation control system according to the second embodiment. The energy management system 1A includes a control device 2A, an operation terminal 3, a power measurement device 4, a power generation facility 5, a solar shading device 6, an air conditioner 7, an illuminator 8, a router 9, and a cloud server 13. Is provided. The solar radiation control system according to Embodiment 2 includes a control device 2A, an operation terminal 3, a solar radiation shielding device 6, an air conditioner 7, a router 9, and a cloud server 13.
 制御装置2Aのハードウェア構成は、実施の形態1の制御装置2と同様である(図2参照)。但し、制御装置2Aの二次記憶装置24には、図10に示すように、日射制御プログラム240の替わりに、日射制御プログラム240Aが記憶されている。日射制御プログラム240Aは、制御装置2Aが備えるプロセッサ20によって実行されるコンピュータプログラムであり、日射遮蔽装置6を制御するための処理が記述されている。 The hardware configuration of the control device 2A is the same as that of the control device 2 of the first embodiment (see FIG. 2). However, the secondary storage device 24 of the control device 2A stores a solar radiation control program 240A instead of the solar radiation control program 240, as shown in FIG. The solar radiation control program 240A is a computer program executed by the processor 20 included in the control device 2A, and describes a process for controlling the solar radiation shielding device 6.
 制御装置2Aは、機能的には、図11に示すように、情報受付部200Aと、日射量推定部202と、スケジュール決定部203と、日射遮蔽装置制御部204と、テーブル補正部205と、熱容量取得部206とを備える。これらの機能部は、プロセッサ20が二次記憶装置24に記憶されている日射制御プログラム240Aを実行することで実現される。 As shown in FIG. 11, the control device 2A functionally includes an information receiving unit 200A, a solar radiation amount estimating unit 202, a schedule determining unit 203, a solar radiation shielding device control unit 204, a table correcting unit 205, And a heat capacity acquisition unit 206. These functional units are realized by the processor 20 executing the solar radiation control program 240A stored in the secondary storage device 24.
 情報受付部200Aは、本発明に係る第2情報受付手段の一例である。情報受付部200Aは、工事担当者、家屋Hの住人等のユーザにより操作端末3を介して入力された住宅識別情報を受け付ける。住宅識別情報とは、家屋Hのメーカ名と、家屋Hの住宅シリーズ名とを含む情報である(図12参照)。 The information receiving unit 200A is an example of a second information receiving unit according to the present invention. 200 A of information reception parts receive the housing identification information input via the operation terminal 3 by users, such as a construction worker and the resident of the house H. The house identification information is information including the manufacturer name of the house H and the house series name of the house H (see FIG. 12).
 熱容量取得部206は、本発明に係る熱容量取得手段の一例である。熱容量取得部206は、情報受付部200Aが受け付けた住宅識別情報に基づいて、クラウドサーバ13から通信により家屋Hの熱容量を示すデータである熱容量データを取得する。詳細には、熱容量取得部206は、クラウドサーバ13に対して、熱容量データを要求するための要求データを送信する。この要求データには、住宅識別情報が格納されている。 The heat capacity acquisition unit 206 is an example of a heat capacity acquisition unit according to the present invention. The heat capacity acquisition unit 206 acquires heat capacity data that is data indicating the heat capacity of the house H by communication from the cloud server 13 based on the house identification information received by the information reception unit 200A. Specifically, the heat capacity acquisition unit 206 transmits request data for requesting heat capacity data to the cloud server 13. This request data stores house identification information.
 クラウドサーバ13は、制御装置2のメーカ又は販売会社によって設置され、運用されるサーバコンピュータであり、一般的なWebサーバとしての機能を有し、インターネットに接続される。クラウドサーバ13は、図13に示すように、プロセッサ130と、通信インタフェース131と、ROM132と、RAM133と、二次記憶装置134とを備える。これらの構成部は、バス135を介して相互に接続される。プロセッサ130は、クラウドサーバ13を統括的に制御する。プロセッサ130の性能は、制御装置2Aのプロセッサ20より高い。 The cloud server 13 is a server computer installed and operated by the manufacturer or sales company of the control device 2, has a function as a general Web server, and is connected to the Internet. As illustrated in FIG. 13, the cloud server 13 includes a processor 130, a communication interface 131, a ROM 132, a RAM 133, and a secondary storage device 134. These components are connected to each other via a bus 135. The processor 130 controls the cloud server 13 in an integrated manner. The performance of the processor 130 is higher than that of the processor 20 of the control device 2A.
 通信インタフェース131は、インターネットに接続して、制御装置2A等の他の装置と通信するためのインタフェースである。 The communication interface 131 is an interface for connecting to the Internet and communicating with other devices such as the control device 2A.
 ROM132は、複数のファームウェアとこれらのファームウェアの実行時に使用されるデータを記憶する。RAM133は、プロセッサ130の作業領域として使用される。 The ROM 132 stores a plurality of firmware and data used when executing these firmware. The RAM 133 is used as a work area for the processor 130.
 二次記憶装置134は、EEPROM、フラッシュメモリ等の読み書き可能な不揮発性の半導体メモリ、HDD等で構成される大容量の記憶装置である。二次記憶装置134には、顧客、即ち、制御装置2Aを購入した各ユーザに対して、電力管理サービスを提供するためのプログラム(以下、サービス提供プログラムという。)と、かかるサービス提供プログラムの実行時に使用されるデータが記憶される。 The secondary storage device 134 is a large-capacity storage device composed of a readable / writable nonvolatile semiconductor memory such as an EEPROM or a flash memory, an HDD, or the like. The secondary storage device 134 stores a program (hereinafter referred to as a service providing program) for providing a power management service to a customer, that is, each user who has purchased the control device 2A, and execution of the service providing program. Sometimes used data is stored.
 クラウドサーバ13は、機能的には、図14に示すように、電力データ収集部1300と、電力管理情報通知部1301と、熱容量算出部1302とを備える。これらの機能部は、プロセッサ130が二次記憶装置134に記憶されている上記のサービス提供プログラムを実行することで実現される。 The cloud server 13 functionally includes a power data collection unit 1300, a power management information notification unit 1301, and a heat capacity calculation unit 1302, as shown in FIG. These functional units are realized by the processor 130 executing the service providing program stored in the secondary storage device 134.
 電力データ収集部1300は、各顧客の制御装置2Aから消費電力量に関するデータである電力データを定期的に収集する。電力データには、買電電力量又は売電電力量と、発電電力量とが含まれる。電力データ収集部1300は、収集した電力データを二次記憶装置134に記憶される図示しないデータベースに格納する。 The power data collection unit 1300 periodically collects power data that is data related to the amount of power consumption from the control device 2A of each customer. The power data includes the amount of power purchased or sold and the amount of generated power. The power data collection unit 1300 stores the collected power data in a database (not shown) stored in the secondary storage device 134.
 電力管理情報通知部1301は、各顧客の制御装置2Aに対して電力管理情報を通知する。電力管理情報には、節電に関するアドバイス等の情報が含まれている。 The power management information notification unit 1301 notifies the power management information to the control device 2A of each customer. The power management information includes information such as advice on power saving.
 熱容量算出部1302は、上述した要求データを受信すると、かかる要求データに含まれる住宅識別情報に対応する住宅の熱容量を算出する。詳細には、熱容量算出部1302は、受信した要求データに含まれる住宅識別情報から、対応する住宅のメーカを特定する。そして、熱容量算出部1302は、特定したメーカが運営する図示しないサーバ(以下、住宅情報サーバという。)に対して、住宅識別情報に含まれる住宅シリーズ名を通知することで、住宅情報サーバから当該住宅の詳細な設計データを受信して取得する。かかる設計データは、例えば、BIM(Building Information Modeling)データである。 When receiving the request data, the heat capacity calculation unit 1302 calculates the heat capacity of the house corresponding to the house identification information included in the request data. Specifically, the heat capacity calculation unit 1302 specifies the corresponding house manufacturer from the house identification information included in the received request data. Then, the heat capacity calculating unit 1302 notifies the server (not shown) operated by the specified manufacturer (hereinafter referred to as a housing information server) of the house series name included in the house identification information, so that the housing information server Receive and obtain detailed house design data. Such design data is, for example, BIM (Building Information Modeling) data.
 熱容量算出部1302は、住宅情報サーバから取得した設計データに基づいて、高度な計算により当該住宅の熱容量を算出する。熱容量算出部1302は、算出した熱容量を示す熱容量データを要求データの送信元の制御装置2Aに対して送信する。 The heat capacity calculation unit 1302 calculates the heat capacity of the house by advanced calculation based on the design data acquired from the house information server. The heat capacity calculation unit 1302 transmits heat capacity data indicating the calculated heat capacity to the control device 2A that is the transmission source of the request data.
 以上説明したように、実施の形態1の日射制御システムによれば、制御装置2Aは、クラウドサーバ13により算出された家屋Hの熱容量に基づいて、日射遮蔽装置6に対する制御のスケジュールを示す制御スケジュール245を決定する。クラウドサーバ13の熱容量算出部1302は、家屋Hの詳細な設計データを使用した高度な計算により、家屋Hの熱容量を算出する。このため、制御装置2Aは、家屋Hのより正確な熱容量に基づいて、制御スケジュール245を決定することができ、その結果、より一層の省エネルギー効果が期待できる。 As described above, according to the solar radiation control system of the first embodiment, the control device 2A shows the control schedule for the solar radiation shielding device 6 based on the heat capacity of the house H calculated by the cloud server 13. 245 is determined. The heat capacity calculation unit 1302 of the cloud server 13 calculates the heat capacity of the house H by advanced calculation using detailed design data of the house H. For this reason, 2 A of control apparatuses can determine the control schedule 245 based on the more exact heat capacity of the house H, As a result, the further energy saving effect can be anticipated.
 また、制御装置2Aが、クラウドサーバ13から熱容量データを取得するために必要となる住宅識別情報は、家屋Hのメーカ名と住宅シリーズ名で構成される簡易な情報である。このため、住宅に関する専門的な知識を有していない家屋Hのユーザであっても、容易に操作端末3を介して、かかる住宅識別情報を制御装置2Aに入力することができる。 Also, the house identification information necessary for the control device 2A to acquire the heat capacity data from the cloud server 13 is simple information composed of the manufacturer name of the house H and the house series name. For this reason, even the user of the house H who does not have the specialized knowledge about a house can input this house identification information into the control apparatus 2A via the operation terminal 3 easily.
 なお、本発明は、上記の各実施の形態に限定されず、本発明の要旨を逸脱しない範囲での種々の変更は勿論可能である。 It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
 例えば、制御装置2,2Aが、ユーザからの操作を受け付けるための入力デバイスと、ユーザに情報を提示するための表示デバイスの少なくとも何れかをさらに含んで構成されるようにしてもよい。 For example, the control devices 2 and 2A may further include at least one of an input device for receiving an operation from the user and a display device for presenting information to the user.
 また、エネルギー管理システム1,1Aにおいて、制御装置2,2Aの制御対象機器として、床暖房システム、床冷暖房システム、冷蔵庫、IH(Induction Heating)調理器、テレビ、給湯機等の様々な電気機器が含まれていてもよい。 In the energy management systems 1 and 1A, various electric devices such as a floor heating system, a floor cooling and heating system, a refrigerator, an IH (InductionInHeating) cooker, a television, and a water heater are controlled devices of the control devices 2 and 2A. It may be included.
 また、実施の形態1において、熱容量算出部201は、家屋Hの壁に関する情報(以下、壁情報という。)に基づいて家屋Hの熱容量を算出してもよいし、家屋Hの天井に関する情報(以下、天井情報という。)に基づいて、家屋Hの熱容量を算出してもよい。この場合、情報受付部200は、工事担当者、家屋Hの住人等のユーザにより操作端末3を介して入力された壁情報又は天井情報を受け付け、熱容量算出部201は、壁又は天井の単位面積当たりの熱容量(kJ/(m・K))を家屋Hの熱容量として算出する。 In the first embodiment, the heat capacity calculation unit 201 may calculate the heat capacity of the house H based on information on the wall of the house H (hereinafter referred to as wall information), or information on the ceiling of the house H ( Hereinafter, the heat capacity of the house H may be calculated based on the ceiling information. In this case, the information receiving unit 200 receives wall information or ceiling information input via the operation terminal 3 by a user such as a construction worker or a resident of the house H, and the heat capacity calculating unit 201 is a unit area of the wall or ceiling. The heat capacity per unit (kJ / (m 2 · K)) is calculated as the heat capacity of the house H.
 また、実施の形態1において、情報受付部200は、工事担当者、家屋Hの住人等のユーザにより操作端末3を介して入力された家屋Hの熱容量情報を受け付け、受け付けた熱容量情報を熱容量データ242として二次記憶装置24に格納してもよい。 Moreover, in Embodiment 1, the information reception part 200 receives the heat capacity information of the house H input via the operation terminal 3 by users, such as a construction worker and the resident of the house H, and uses the received heat capacity information as heat capacity data. It may be stored in the secondary storage device 24 as 242.
 また、制御装置2,2Aは、二次記憶装置24に記憶される基本制御スケジュールテーブル243又は時間シフトテーブル244を編集するための操作環境を操作端末3を介してユーザに提供してもよい。 Further, the control devices 2 and 2A may provide the user with an operation environment for editing the basic control schedule table 243 or the time shift table 244 stored in the secondary storage device 24 via the operation terminal 3.
 また、家屋Hの熱容量の指標は、2段階又は4段階以上で示されてもよい。また、上記の各実施の形態では、基準熱容量を170kJ/(m・K)と例示したが、あくまで一例であり、基準熱容量として任意の値が設定可能である。 Moreover, the index of the heat capacity of the house H may be shown in two stages or four or more stages. In each of the above embodiments, the reference heat capacity is exemplified as 170 kJ / (m 2 · K). However, the reference heat capacity is merely an example, and an arbitrary value can be set as the reference heat capacity.
 また、制御装置2,2Aは、仮制御スケジュールのままで日射遮蔽装置6を制御した場合の総消費電力量を推定し、制御スケジュール245で日射遮蔽装置6を制御したことによる省エネ効果(例えば、削減電力量、削減額等)を操作端末3を介してユーザに提示してもよい。 Further, the control devices 2 and 2A estimate the total power consumption when the solar shading device 6 is controlled in the temporary control schedule, and the energy saving effect (for example, by controlling the solar shading device 6 with the control schedule 245) The amount of power reduction, the amount of reduction, etc.) may be presented to the user via the operation terminal 3.
 上記の各実施の形態では、プロセッサ20によって二次記憶装置24に記憶されている日射制御プログラム240,240Aが実行されることで、制御装置2,2Aの各機能部(図4,図11参照)が実現された。しかし、制御装置2,2Aの機能部の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組み合わせである。 In each of the above embodiments, the solar radiation control programs 240 and 240A stored in the secondary storage device 24 are executed by the processor 20, whereby each functional unit of the control devices 2 and 2A (see FIGS. 4 and 11). ) Has been realized. However, all or part of the functional units of the control devices 2 and 2A may be realized by dedicated hardware. The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated 、 Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
 上記の各実施の形態において、日射制御プログラム240,240Aは、CD-ROM(Compact Disc Read Only Memory)、DVD(Digital Versatile Disc)、光磁気ディスク(Magneto-Optical Disc)、USB(Universal Serial Bus)メモリ、メモリカード、HDD等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。そして、このように配布した日射制御プログラム240,240Aを特定の又は汎用のコンピュータにインストールすることによって、当該コンピュータを上記の各実施の形態における制御装置2,2Aとして機能させることも可能である。 In each of the embodiments described above, the solar radiation control programs 240 and 240A are a CD-ROM (Compact Disc Read Only Memory), a DVD (Digital Versatile Disc), a magneto-optical disc (Magneto-Optical Disc), and a USB (Universal Serial Bus). It is also possible to store and distribute in a computer-readable recording medium such as a memory, a memory card, or an HDD. Then, by installing the solar radiation control programs 240 and 240A distributed in this way on a specific or general-purpose computer, the computer can be caused to function as the control devices 2 and 2A in the above embodiments.
 また、日射制御プログラム240,240Aをインターネット上の図示しないサーバが有する記憶装置に格納しておき、当該サーバから制御装置2,2Aに日射制御プログラム240,240Aがダウンロードされるようにしてもよい。 Alternatively, the solar radiation control programs 240 and 240A may be stored in a storage device of a server (not shown) on the Internet, and the solar radiation control programs 240 and 240A may be downloaded from the server to the control devices 2 and 2A.
 本発明は、広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能である。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。 The present invention can be variously modified and modified without departing from the spirit and scope of the broad sense. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、宅内においてエネルギーを効率的に利用するためのシステム等に好適に採用され得る。 The present invention can be suitably employed in a system for efficiently using energy in a home.
 1,1A エネルギー管理システム、2,2A 制御装置、3 操作端末、4 電力計測装置、5 発電設備、6 日射遮蔽装置、7 エアコン、8 照明器、9 ルータ、10 気象事業者サーバ、11 商用電源、12 分電盤、13 クラウドサーバ、20,130 プロセッサ、21,131 通信インタフェース、22,132 ROM、23,133 RAM、24,134 二次記憶装置、25,135 バス、50 PVパネル、51 PV-PCS、200 情報受付部、201 熱容量算出部、202 日射量推定部、203 スケジュール決定部、204 日射遮蔽装置制御部、205 テーブル補正部、206 熱容量取得部、240,240A 日射制御プログラム、241 空調履歴DB、242 熱容量データ、243 基本制御スケジュールテーブル、244 時間シフトテーブル、245 制御スケジュール、1300 電力データ収集部、1301 電力管理情報通知部、1302 熱容量算出部 1,1A energy management system, 2,2A control device, 3 operation terminal, 4 power measurement device, 5 power generation facility, 6 solar radiation shielding device, 7 air conditioner, 8 illuminator, 9 router, 10 meteorological company server, 11 commercial power supply , 12 distribution board, 13 cloud server, 20, 130 processor, 21, 131 communication interface, 22, 132 ROM, 23, 133 RAM, 24, 134 secondary storage device, 25, 135 bus, 50 PV panel, 51 PV -PCS, 200 information reception unit, 201 heat capacity calculation unit, 202 solar radiation amount estimation unit, 203 schedule determination unit, 204 solar radiation shielding device control unit, 205 table correction unit, 206 heat capacity acquisition unit, 240, 240A solar radiation control program, 241 air conditioning History DB, 242 Heat capacity data Data, 243 basic control schedule table, 244 hours shift table, 245 control schedule, 1300 power data acquisition unit, 1301 the power management information notifying unit, 1302 heat capacity calculation unit

Claims (10)

  1.  建物の内部空間へ入る日射を遮蔽する日射遮蔽装置と通信する通信手段と、
     前記日射遮蔽装置に対する制御のスケジュールを前記建物の熱容量に基づいて決定するスケジュール決定手段と、
     前記決定されたスケジュールに従って前記日射遮蔽装置を前記通信手段を介して制御する日射遮蔽装置制御手段と、を備える、制御装置。
    A communication means for communicating with a solar shading device that shields solar radiation entering the interior space of the building;
    Schedule determining means for determining a control schedule for the solar shading device based on the heat capacity of the building;
    A control device comprising: a solar shading device control means for controlling the solar shading device via the communication means according to the determined schedule.
  2.  ユーザにより操作端末を介して入力された、前記建物を構成する床、壁又は天井に関する情報を受け付ける第1情報受付手段と、
     前記第1情報受付手段により受け付けられた情報に基づいて、前記建物の熱容量を算出する熱容量算出手段と、をさらに備える、請求項1に記載の制御装置。
    First information receiving means for receiving information on a floor, a wall, or a ceiling constituting the building, which is input by a user via an operation terminal;
    The control device according to claim 1, further comprising: a heat capacity calculating unit that calculates a heat capacity of the building based on the information received by the first information receiving unit.
  3.  ユーザにより操作端末を介して入力された、前記建物を識別する情報を受け付ける第2情報受付手段と、
     前記第2情報受付手段により受け付けられた情報が格納された要求データをクラウドサーバに送信することで、前記クラウドサーバから、前記建物の熱容量を示すデータを取得する熱容量取得手段と、をさらに備える、請求項1に記載の制御装置。
    Second information receiving means for receiving information for identifying the building, which is input by the user via the operation terminal;
    Heat capacity acquisition means for acquiring data indicating the heat capacity of the building from the cloud server by transmitting request data in which the information received by the second information reception means is stored to the cloud server; The control device according to claim 1.
  4.  前記日射遮蔽装置に対する制御の基本スケジュールを記憶する基本スケジュール記憶手段をさらに備え、
     前記スケジュール決定手段は、前記建物の熱容量と、前記基本スケジュールとに基づいて、前記スケジュールを決定する、請求項1から3の何れか1項に記載の制御装置。
    Further comprising basic schedule storage means for storing a basic schedule of control for the solar shading device,
    The control device according to any one of claims 1 to 3, wherein the schedule determination unit determines the schedule based on a heat capacity of the building and the basic schedule.
  5.  前記スケジュール決定手段は、前記基本スケジュールに設定されている前記日射遮蔽装置の制御を変更する時刻を前記建物の熱容量に基づいてシフトすることで前記スケジュールを決定する、請求項4に記載の制御装置。 5. The control device according to claim 4, wherein the schedule determination unit determines the schedule by shifting a time for changing control of the solar shading device set in the basic schedule based on a heat capacity of the building. .
  6.  時間帯と、前記日射遮蔽装置の動作状態と、前記建物の熱容量の大きさに応じたシフト時間とを対応付けて設定した時間シフトテーブルを記憶する時間シフトテーブル記憶手段をさらに備え、
     前記スケジュール決定手段は、前記時間シフトテーブルを使用して前記基本スケジュールに設定されている前記時刻をシフトする、請求項5に記載の制御装置。
    A time shift table storing means for storing a time shift table in which a time zone, an operation state of the solar shading device, and a shift time according to the size of the heat capacity of the building are set in association with each other;
    The control device according to claim 5, wherein the schedule determination unit shifts the time set in the basic schedule using the time shift table.
  7.  前記時間シフトテーブルを前記建物の内部空間における空気状態の推移に基づいて補正するテーブル補正手段をさらに備える、請求項6に記載の制御装置。 The control device according to claim 6, further comprising table correction means for correcting the time shift table based on a transition of an air state in the internal space of the building.
  8.  制御装置と、建物の内部空間へ入る日射を遮蔽する日射遮蔽装置と、を備え、
     前記制御装置は、
     前記日射遮蔽装置と通信する通信手段と、
     前記日射遮蔽装置に対する制御のスケジュールを前記建物の熱容量に基づいて決定するスケジュール決定手段と、
     前記決定されたスケジュールに従って前記日射遮蔽装置を前記通信手段を介して制御する日射遮蔽装置制御手段と、を備える、日射制御システム。
    A control device, and a solar shading device that shields solar radiation entering the interior space of the building,
    The controller is
    Communication means for communicating with the solar shading device;
    Schedule determining means for determining a control schedule for the solar shading device based on the heat capacity of the building;
    A solar radiation control system comprising: solar radiation shielding device control means for controlling the solar radiation shielding device via the communication means according to the determined schedule.
  9.  建物の内部空間へ入る日射を遮蔽する日射遮蔽装置に対する制御のスケジュールを前記建物の熱容量に基づいて決定し、
     前記決定したスケジュールに従って前記日射遮蔽装置を制御する、日射制御方法。
    A control schedule for the solar shading device that shields solar radiation entering the interior space of the building is determined based on the heat capacity of the building,
    A solar control method for controlling the solar shading device according to the determined schedule.
  10.  建物の内部空間へ入る日射を遮蔽する日射遮蔽装置と通信する通信手段を備えたコンピュータを、
     前記日射遮蔽装置に対する制御のスケジュールを前記建物の熱容量に基づいて決定するスケジュール決定手段、
     前記決定されたスケジュールに従って前記日射遮蔽装置を前記通信手段を介して制御する日射遮蔽装置制御手段、として機能させるためのプログラム。
    A computer equipped with a communication means for communicating with a solar radiation shielding device that shields solar radiation entering the interior space of a building,
    Schedule determination means for determining a control schedule for the solar shading device based on a heat capacity of the building;
    A program for causing a solar shading device control unit to control the solar shading device via the communication unit according to the determined schedule.
PCT/JP2018/006360 2018-02-22 2018-02-22 Control device, sunlight control system, sunlight control method, and program WO2019163041A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/006360 WO2019163041A1 (en) 2018-02-22 2018-02-22 Control device, sunlight control system, sunlight control method, and program
JP2020501913A JP6991303B2 (en) 2018-02-22 2018-02-22 Control device, solar radiation control system, solar radiation control method and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006360 WO2019163041A1 (en) 2018-02-22 2018-02-22 Control device, sunlight control system, sunlight control method, and program

Publications (1)

Publication Number Publication Date
WO2019163041A1 true WO2019163041A1 (en) 2019-08-29

Family

ID=67687015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006360 WO2019163041A1 (en) 2018-02-22 2018-02-22 Control device, sunlight control system, sunlight control method, and program

Country Status (2)

Country Link
JP (1) JP6991303B2 (en)
WO (1) WO2019163041A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299768A (en) * 1993-04-14 1994-10-25 Toso Co Ltd Electric blind control system
JP2009232517A (en) * 2008-03-19 2009-10-08 Panasonic Electric Works Co Ltd Demand control system
JP2012088049A (en) * 2012-01-18 2012-05-10 Asahi Kasei Homes Co System for estimating ventilation amount and temperature of building
JP2016004003A (en) * 2014-06-18 2016-01-12 キヤノン株式会社 Information processing device, control method thereof, program and storage medium
JP2017003192A (en) * 2015-06-10 2017-01-05 株式会社東芝 Energy management device, energy management method and energy management program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299768A (en) * 1993-04-14 1994-10-25 Toso Co Ltd Electric blind control system
JP2009232517A (en) * 2008-03-19 2009-10-08 Panasonic Electric Works Co Ltd Demand control system
JP2012088049A (en) * 2012-01-18 2012-05-10 Asahi Kasei Homes Co System for estimating ventilation amount and temperature of building
JP2016004003A (en) * 2014-06-18 2016-01-12 キヤノン株式会社 Information processing device, control method thereof, program and storage medium
JP2017003192A (en) * 2015-06-10 2017-01-05 株式会社東芝 Energy management device, energy management method and energy management program

Also Published As

Publication number Publication date
JPWO2019163041A1 (en) 2021-01-14
JP6991303B2 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
US20210200919A1 (en) System and method for building cooling optimization using periodic building fuel consumption with the aid of a digital computer
US20150345812A1 (en) Method and apparatus for selective componentized thermostatic controllable loads
US9817409B2 (en) Method and apparatus for distributed control of thermostatic electric loads using high-granularity energy usage data
JP5823085B1 (en) Water heater operation management device, water heater operation management system, and water heater operation management method
JP7146035B2 (en) Hot water supply system, boiling schedule creation device, boiling schedule creation method and program
US11859833B2 (en) Control device, control method for water heater, and program
US20190120804A1 (en) System and method for monitoring occupancy of a building using a tracer gas concentration monitoring device
US10332021B1 (en) System and method for estimating indoor temperature time series data of a building with the aid of a digital computer
Elhelw Analysis of energy management for heating, ventilating and air-conditioning systems
US10330330B2 (en) System and method for climate control in a building
JP7090466B2 (en) Controls, air conditioners, air conditioning systems, air conditioner control methods and programs
JP5705348B1 (en) Air conditioning system advice device
Colclough et al. The near Zero Energy Building standard and the Passivhaus standard–a case study
WO2019163041A1 (en) Control device, sunlight control system, sunlight control method, and program
JP6719669B2 (en) Control device, power management system, device control method and program
German et al. Residential mechanical precooling
JP2020186897A (en) Controller, air conditioner, air conditioning system, air conditioning control method and program
JP6689395B2 (en) Control device, power management system, power management method and program
US20190311283A1 (en) System And Method For Estimating Periodic Fuel Consumption for Cooling Of a Building With the Aid Of a Digital Computer
JP6325994B2 (en) Air conditioning system advice device
Sakuma et al. Building Thermal Performance Assessments Using Simple Sensors for the Green New Deal in Japan
Haberl An investigative analysis of an advanced trim and respond control strategy for variable air volume HVAC systems
JP2020106195A (en) Control device, air conditioner, air conditioning system, air conditioner control method and program
Butler et al. Measured Whole-House Performance of TaC Studios Test Home

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18907090

Country of ref document: EP

Kind code of ref document: A1