WO2019162587A1 - Detection d'irregularites sur les routes - Google Patents

Detection d'irregularites sur les routes Download PDF

Info

Publication number
WO2019162587A1
WO2019162587A1 PCT/FR2019/050178 FR2019050178W WO2019162587A1 WO 2019162587 A1 WO2019162587 A1 WO 2019162587A1 FR 2019050178 W FR2019050178 W FR 2019050178W WO 2019162587 A1 WO2019162587 A1 WO 2019162587A1
Authority
WO
WIPO (PCT)
Prior art keywords
road
vehicle
irregularity
characteristic
processing unit
Prior art date
Application number
PCT/FR2019/050178
Other languages
English (en)
Inventor
Said Benane
Original Assignee
Psa Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Psa Automobiles Sa filed Critical Psa Automobiles Sa
Priority to EP19708132.6A priority Critical patent/EP3755595A1/fr
Publication of WO2019162587A1 publication Critical patent/WO2019162587A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/10Acceleration; Deceleration
    • B60G2400/102Acceleration; Deceleration vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/202Piston speed; Relative velocity between vehicle body and wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • B60G2400/252Stroke; Height; Displacement vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • B60G2400/61Load distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • B60G2400/821Uneven, rough road sensing affecting vehicle body vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2422/00Indexing codes relating to the special location or mounting of sensors
    • B60W2422/40Indexing codes relating to the special location or mounting of sensors on a damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. potholes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/55External transmission of data to or from the vehicle using telemetry

Definitions

  • the invention relates to the field of the automobile and more particularly to the management and feedback of information on the quality of roads through the data collected by a vehicle.
  • the published patent document DE 10 2014 214 729 A1 discloses a system for detecting irregularities on a road traveled by a vehicle.
  • a sensor of the vehicle detects an irregularity
  • the vehicle sends this information, along with the position of the vehicle, to a database.
  • This is mainly the detection of a pothole.
  • This information is incomplete because to assess the quality of a road, the size (depth, width in the direction transverse to the road, length) of the irregularities is important, and in particular to relate to the speeds practiced / practicable on the road in question.
  • a speed bump is an irregularity of the road that must be tolerated in the city but an equivalent bump on a portion of the departmental road must not be tolerated.
  • the system described in the document mentioned above needs to be improved, and for this purpose, the information collected by the vehicle need to be processed more finely.
  • the invention aims to overcome at least one of the disadvantages of the state of the art mentioned above. More particularly, the invention aims to provide a vehicle, as well as a system and a method of processing the information collected by the vehicle that improves the interpretation that can be made irregularities of the road.
  • the invention relates to a motor vehicle comprising: a chassis; at least four wheels and their respective damping devices connecting each wheel to the chassis; and means for detecting irregularities of the road traveled by said vehicle; remarkable in that the irregularity detection means comprise sensors for the position, the speed and / or the acceleration of a characteristic point of each of the damping devices, the vehicle further comprising a unit for processing the irregularities. data detected by the detection means, the processing unit being programmed to determine, at any moment, a geometric surface characteristic of the position, speed and / or acceleration characteristic points, the processing unit being also programmed to determine an irregularity information of the road when said geometric surface varies over time, beyond a predetermined threshold.
  • the position, the velocity and the acceleration of the characteristic points can be measured in the three directions of the space, by means of known devices, for example accelerometers.
  • the parameters of the equation of the geometrical surface are tracked over time and when the derivative of the curve over time of one of these parameters exceeds (in absolute value) a threshold value, it means that the geometrical surface changes abruptly.
  • the threshold value can be fixed, obtained empirically during vehicle development, customizable, variable by learning, or variable depending on the context.
  • an irregularity is by definition an event different from the majority of the road that is traveled, so depending on the context, a small hump can be tolerable (on a broken forest path for example) while the same bump does not take place to be on the highway.
  • the geometric surface can therefore vary "gently", for example in curves or inclined road, without generating an identification of a non-existent irregularity.
  • Raad Irregularity Information means any type of data relating to the irregularity of the road.
  • the roughness information of the road may be information of presence of the irregularity, position information, type of irregularity, etc.
  • the detection means comprise weight sensors measuring the weight carried by each of the wheels, the processing unit being programmed to receive the weight data, and to deduce a weight relative displacement of the characteristic points and / or torsional moment of the frame around the longitudinal axis of the vehicle and passing through its center of gravity.
  • the characteristic geometrical surface is the average geometrical plane of the set of characteristic points.
  • a geometric plane is defined by three points.
  • the four characteristic points may be coplanar, if they are chosen to correspond to identical locations on each damper.
  • the four points are no longer coplanar.
  • an average plane which is the plane that minimizes the distances from each of the points to the plane, in the least squares sense.
  • the characteristic geometric surface is the elliptical paraboloid with less deviation from the characteristic points.
  • each characteristic point is the respective center of gravity of a wheel, or corresponds to a point which at all times has the same speed and acceleration in the three directions as the center of gravity of each wheel. , respectively.
  • the characteristic point can be theoretical, as is the center of gravity of a wheel, or physical.
  • Properly positioned sensors allow to deduce the position, speed and acceleration of such points. These sensors may for example be positioned on the suspension triangles, or on the rod or the body of the damper.
  • the processing unit consolidates the information over a given period of time before and after the detection of an irregularity in order to determine consolidated information over said period of time of the irregularity, in particular the length in the direction of the road.
  • the processing unit collects data from a camera to consolidate information related to the detection of an irregularity.
  • the cameras allow to observe the profile of the road or the nature of its coating. By combining the data from the camera, it is possible to avoid misinterpreting some of the car's vibrations as road irregularities. For example, it is possible to avoid interpreting as unevenness of the road the white stripes on the ground in relief, the speed bumps or the temporary irregularities (mud, snow, animal remains, etc.) that could occur. find on the road.
  • the vehicle's rearview camera can be used for this purpose.
  • the vehicle comprises communication means for sending the information relating to the irregularity detected towards a central server which collects data relating to road irregularities provided by several vehicles.
  • This information may, if necessary, be accompanied by the geolocation of the vehicle if it is equipped with a navigation system.
  • the invention also relates to a method for detecting irregularities of a road, the method being remarkable in that it comprises the following steps: detecting the position, speed and / or acceleration of a characteristic point associated with each of the wheels of a vehicle; the processing of the data thus detected, the processing operation comprising the determination, at any moment, of a geometric surface characteristic of the position, speed and / or acceleration of the characteristic points, and the identification, if the geometrical surface varies with course of time beyond a predetermined threshold of variation, an irregularity on the road.
  • the method may further include communicating data related to the detected irregularity to others.
  • the invention also relates to a system for detecting irregularities of a road
  • a system for detecting irregularities of a road comprising: a motor vehicle with a chassis, at least four wheels and their respective damping devices for connecting each wheel to the chassis, and means for detecting irregularities in the road traveled by the said vehicle; a central server collecting information on the irregularities of the road; and means of communication between the vehicle and the central server; remarkable in that the irregularity detection means comprise sensors for the position, the speed and / or the acceleration of a characteristic point of each of the damping devices; the detected data are sent in real time to the central server via the means of communication, accompanied by the geolocation of the car; the central server further comprising a data processing unit detected by the detection means, the processing unit being programmed to determine, at any moment, a geometric surface characteristic of the position, speed and / or acceleration of the characteristic points; and the processing unit is also programmed to determine an information of irregularity of the road when the geometric surface varies over time, beyond a predetermined threshold.
  • the system described here decentralizes the calculation operations by arranging the processing unit at the central server.
  • FIG. 2 describes a system according to the invention
  • FIG. 1 shows a vehicle 1 according to the invention.
  • the vehicle 1 has four wheels 2, 4, 6, 8, each linked to the chassis of the vehicle via a damping device.
  • the points E, F, G and H are points of each damper in which an accelerometer is arranged.
  • the accelerometers detect the movements of each of the wheels independently.
  • a processing unit 10 is provided. This collects the data sent by the accelerometers.
  • the vehicle has peripherals such as wireless communication means, a camera and / or a navigation system.
  • the peripherals can communicate with the processing unit 10.
  • Figure 1 illustrates the x, y, z axes and the center of gravity of the vehicle W.
  • FIG. 2 shows a system according to the invention.
  • the processing unit which collects the information from the accelerometers and identifies the presence of an irregularity is decentralized.
  • This is noted 210 and is integrated or communicates with a central server 200.
  • Communication means 120 between the vehicle 100 and the central server 200 are provided.
  • Figure 3a shows a geometric surface at a time when the vehicle is traveling on a portion of road without irregularity.
  • the points E, F, G and H are located at identical locations on each of the wheels, so that the four points are coplanar in the absence of irregularity.
  • the characteristic geometrical surface is the plane P passing through the four points E, F, G and H.
  • Figure 3b shows a geometric surface at a moment when the four points E, F, G and H are no longer coplanar.
  • the points E, F and G are in the same place (relative to the center of gravity W of the vehicle) as in Figure 2a but the right rear wheel moves vertically so that the point H is moved upwards.
  • the characteristic geometrical surface is the plane Q.
  • the points E, F, G and H are respectively distant from the plane Q by a value DE, AF, AG and DH.
  • a, b, c and d are no longer the same as for the plane P. If the variations of a, b, c and d are significant, that is to say above a certain threshold, it means that the displacement of the rear wheel is significant and that an irregularity on the road is obvious.
  • Step 1000 is the detection, at any moment, of the position, speed and / or acceleration of points E, F, G and H.
  • Step 2000 is the determination, at any time, of the parameters defining the characteristic geometrical surface.
  • the plane can be defined by the parameters a, b, c and d.
  • Step 3000 is the monitoring over time of the variations of the parameters a, b, c and d.
  • a threshold shown by the dotted line in FIG. 4 at step 3000
  • Step 4000 consists of the transmission from the processing unit to third parties of the information of the irregularity, accompanied if necessary by the geolocation of the vehicle at times t 1 and t 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Multimedia (AREA)
  • Traffic Control Systems (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

Véhicule automobile (1) comprenant des moyens de détection des irrégularités de la route parcourue par ledit véhicule; remarquable en ce que les moyens de détection des irrégularités comprennent des capteurs de la position, de la vitesse et/ou de l'accélération d'un point caractéristique (E, F, G, H) de chacun des dispositifs d'amortissement du véhicule,le véhicule comprenant en outre une unité de traitement (10) des données détectées par les moyens de détection, l'unité de traitement (10) étant programmée pour déterminer, à tout instant, une surface géométrique caractéristique de la position, vitesse et/ou accélération des points caractéristiques,l'unité de traitement (10) étant également programmée pour déterminer une information d'irrégularité de la route lorsque ladite surface géométrique varie au cours du temps, au-delà d'un seuil prédéterminé. L'invention porte également sur une méthode et un système d'identification des irrégularités de la route.

Description

DETECTION D’IRREGULARITES SUR LES ROUTES
L’invention a trait au domaine de l’automobile et plus particulièrement à la gestion et la remontée d’information sur la qualité des routes par le biais des données récoltées par un véhicule.
Le document de brevet publié DE 10 2014 214 729 A1 divulgue un système de détection d’irrégularités sur une route parcourue par un véhicule. Lorsqu’un capteur du véhicule détecte une irrégularité, le véhicule envoie cette information, accompagnée de la position du véhicule, à une banque de données. Il s’agit ici principalement de la détection d’un nid-de-poule. Cette information est incomplète car pour évaluer la qualité d’une route, la taille (profondeur, largeur dans la direction transversale à la route, longueur) des irrégularités est importante, et notamment à mettre en lien avec les vitesses pratiquées/praticables sur la route en question. Par exemple, un dos d’âne est une irrégularité de la route qui doit être tolérée en ville mais une bosse équivalente sur une portion de route départementale ne doit pas être tolérée. Ainsi, le système décrit dans le document mentionné ci-dessus nécessite d’être amélioré, et à cette fin, les informations recueillies par le véhicule nécessitent d’être traitées plus finement.
L’invention a pour objectif de pallier au moins un des inconvénients de l’état de la technique susmentionné. Plus particulièrement, l’invention a pour objectif de proposer un véhicule, ainsi qu’un système et une méthode de traitement des informations recueillies par le véhicule qui améliorent l’interprétation qui peut être faite des irrégularités de la route.
L’invention a pour objet un véhicule automobile comprenant : un châssis ; au moins quatre roues et leurs dispositifs d’amortissement respectifs reliant chaque roue au châssis ; et des moyens de détection des irrégularités de la route parcourue par ledit véhicule ; remarquable en ce que les moyens de détection des irrégularités comprennent des capteurs de la position, de la vitesse et/ou de l’accélération d’un point caractéristique de chacun des dispositifs d’amortissement, le véhicule comprenant en outre une unité de traitement des données détectées par les moyens de détection, l’unité de traitement étant programmée pour déterminer, à tout instant, une surface géométrique caractéristique de la position, vitesse et/ou accélération des points caractéristiques, l’unité de traitement étant également programmée pour déterminer une information d’irrégularité de la route lorsque ladite surface géométrique varie au cours du temps, au-delà d’un seuil prédéterminé.
La position, la vitesse et l’accélération des points caractéristiques peuvent être mesurées dans les trois directions de l’espace, au moyen de dispositifs connus, comme par exemple des accéléromètres.
La surface géométrique peut être une surface définie par une équation paramétrique du type f(x, y, z)=0 dans un repère qui par exemple trouve son origine au centre de gravité du véhicule et dont les axes sont parallèles aux axes longitudinal, transversal et vertical du véhicule. Les paramètres de l’équation de la surface géométrique sont suivis au cours du temps et lorsque la dérivée de la courbe au cours du temps d’un de ces paramètres dépasse (en valeur absolue) une valeur seuil, cela signifie que la surface géométrique change de façon abrupte. La valeur seuil peut être fixe, obtenue empiriquement lors du développement du véhicule, personnalisable, variable par apprentissage, ou variable en fonction du contexte. En effet, une irrégularité est par définition un événement différent de la majorité de la route qui est parcourue, donc selon le contexte, une petite bosse peut être tolérable (sur chemin forestier accidenté par exemple) alors que la même bosse n’a pas lieu d’être sur autoroute. Des variations des paramètres au cours du temps moins abrupts, c’est-à- dire une dérivée de ces paramètres qui reste (en valeur absolue) inférieure à une valeur seuil, sont un signe d’absence d’irrégularité sur la route. La surface géométrique peut donc bien varier « doucement », par exemple en courbe ou sur route inclinée, sans engendrer une identification d’une irrégularité inexistante.
On entend par « information d’irrégularité de la route » tout type de donnée relative à l’irrégularité de la route. Par exemple, l’information d’irrégularité de la route peut être une information de présence de l’irrégularité, une information de position, un type d’irrégularité, etc.
Selon un mode avantageux de l’invention, les moyens de détection comprennent des capteurs de poids mesurant le poids porté par chacune des roues, l’unité de traitement étant programmée pour recevoir les données de poids, et en déduire un déplacement relatif des points caractéristiques et/ou un moment de torsion du châssis autour de l’axe longitudinal du véhicule et passant par son centre de gravité.
Il est possible à partir du système de navigation de la voiture de savoir si le véhicule évolue en ligne droite et donc de détecter si une torsion du châssis ou une répartition non équitable de la masse est due par exemple à une courbe sur la route plutôt qu’à un défaut sur la chaussée.
Selon un mode avantageux de l’invention, la surface géométrique caractéristique est le plan géométrique moyen de l’ensemble des points caractéristiques.
Un plan géométrique est défini par trois points. Lorsque le véhicule évolue sur une route rectiligne sans irrégularité, les quatre points caractéristiques peuvent être coplanaires, s’ils sont choisis pour correspondre à des endroits identiques sur chaque amortisseur. Par contre, en cas d’irrégularité sur la route, les quatre points ne sont plus coplanaires. Il est possible de définir un plan moyen qui est le plan qui minimise les distances de chacun des points au plan, au sens des moindres carrés. Un tel plan peut être défini par l’équation ax+by+cz+d=0, où a, b, c, et d sont définis à chaque instant pour que la somme des distances au carré des points caractéristiques au plan soit minimale. En suivant les variations des paramètres a, b, c et d au cours du temps, une irrégularité peut être détectée.
Selon un mode avantageux de l’invention, la surface géométrique caractéristique est le paraboloïde elliptique de moindre écart par rapport aux points caractéristiques.
De la même manière que pour un plan, le paraboloïde elliptique le plus proche des points caractéristiques peut être par exemple défini par une équation de la forme ax2 + by2 - z + d = 0, où a, b et d sont tels que la somme des distances au carré des points caractéristiques au paraboloïde est minimale.
Alternativement, d’autres quadriques ou d’autres méthodes de calcul de surface moyenne peuvent être utilisées. Pour suivre au cours du temps l’évolution de la surface il est simplement nécessaire que le type de surface et la méthode utilisée pour déterminer la surface à tout instant restent invariables. Selon un mode avantageux de l’invention, chaque point caractéristique est le centre de gravité respectif d’une roue, ou correspond à un point qui à tout instant a la même vitesse et accélération dans les trois directions que le centre de gravité de chaque roue, respectivement.
Le point caractéristique peut être théorique, comme l’est le centre de gravité d’une roue, ou physique. Des capteurs adéquatement positionnés permettent de déduire la position, vitesse et accélération de tels points. Ces capteurs peuvent par exemple être positionnés sur les triangles de suspension, ou sur la tige ou le corps de l’amortisseur.
Selon un mode avantageux de l’invention, l’unité de traitement consolide les informations sur une période donnée de temps précédant et suivant la détection d’une irrégularité afin de déterminer des informations consolidées sur ladite période de temps de l’irrégularité, notamment la longueur dans le sens de la route.
Ainsi, en analysant les données relevées pendant quelques instants (ou quelques mètres de route) avant et après la survenue d’une irrégularité, il est possible de compléter les informations relatives à cette irrégularité. L’étendue en longueur ou la répétition cyclique d’une irrégularité peut ainsi être mesurée.
Selon un mode avantageux de l’invention, l’unité de traitement recueille les données d’une caméra pour consolider les informations liées à la détection d’une irrégularité.
Les caméras permettent d’observer le profil de la route ou la nature de son revêtement. En combinant les données provenant de la caméra, il est possible d’éviter d’interpréter par erreur certaines vibrations de la voiture comme étant des irrégularités de la route. Par exemple, il est possible d’éviter d’interpréter comme irrégularité de la route les bandes blanches au sol en relief, les dos d’âne ou les irrégularités temporaires (boue, neige, dépouille d’animal, etc.) qui pourraient se trouver sur la route.
Par exemple, la caméra de recul du véhicule peut être utilisée à cette fin.
Selon un mode avantageux de l’invention, le véhicule comprend des moyens de communication pour envoyer les informations relatives à l’irrégularité détectée vers un serveur central qui collecte les données relatives aux irrégularités de la route fournies par plusieurs véhicules.
En consolidant les données envoyées par plusieurs véhicules, il est rapidement possible d’écarter les identifications erronées d’irrégularités. Il est aussi possible de prioriser les interventions de réparation de la chaussée en fonction du nombre de véhicule parcourant la route en question ou en fonction de la taille du défaut sur la chaussée.
Ces informations peuvent le cas échéant être accompagnées de la géolocalisation du véhicule si celui-ci est équipé d’un système de navigation.
L’invention a également pour objet une méthode de détection des irrégularités d’une route, la méthode étant remarquable en ce qu’elle comprend les étapes suivantes : la détection de la position, vitesse et/ou accélération d’un point caractéristique associé à chacune des roues d’un véhicule ; le traitement des données ainsi détectées, l’opération de traitement comprenant la détermination, à tout instant, d’une surface géométrique caractéristique de la position, vitesse et/ou accélération des points caractéristiques, et l’identification, si la surface géométrique varie au cours du temps au-delà d’un seuil de variation prédéterminé, d’une irrégularité sur la route.
La méthode peut comprendre en outre la communication de données liées à l’irrégularité ainsi détectée à des tiers.
L’invention a également pour objet un système de détection des irrégularités d’une route comprenant : un véhicule automobile avec un châssis, au moins quatre roues et leurs dispositifs d’amortissement respectifs pour relier chaque roue au châssis, et des moyens de détection des irrégularités de la route parcourue par ledit véhicule ; un serveur central recueillant les informations sur les irrégularités de la route ; et des moyens de communication entre le véhicule et le serveur central ; remarquable en ce que les moyens de détection des irrégularités comprennent des capteurs de la position, de la vitesse et/ou de l’accélération d’un point caractéristique de chacun des dispositifs d’amortissement ; les données détectées sont envoyées en temps réel au serveur central via les moyens de communication, accompagnées de la géolocalisation de la voiture ; le serveur central comprenant en outre une unité de traitement des données détectées par les moyens de détection, l’unité de traitement étant programmée pour déterminer, à tout instant, une surface géométrique caractéristique de la position, vitesse et/ou accélération des points caractéristiques ; et l’unité de traitement étant également programmée pour déterminer un inforamtion d’irrégularité de la route lorsque la surface géométrique varie au cours du temps, au- delà d’un seuil prédéterminé.
Contrairement au mode de réalisation du véhicule exposé plus haut où l’unité de traitement est implantée localement dans le véhicule, le système décrit ici décentralise les opérations de calcul en disposant l’unité de traitement au niveau du serveur central. Ces deux solutions alternatives viennent toutes deux résoudre le problème évoqué plus haut.
D’autres caractéristiques et avantages de la présente invention seront mieux compris à l’aide de la description et des dessins parmi lesquels :
- La figure 1 décrit un véhicule selon l’invention ;
- La figure 2 décrit un système selon l’invention ;
- Les figures 3a et 3b décrivent une surface géométrique caractéristique ;
- La figure 4 décrit la méthode selon l’invention.
La figure 1 montre un véhicule 1 selon l’invention. Le véhicule 1 dispose de quatre roues 2, 4, 6, 8, chacune liée au châssis du véhicule par l’intermédiaire d’un dispositif amortisseur. Les points E, F, G et H sont des points de chaque amortisseur en lesquels un accéléromètre est disposé. Les accéléromètres détectent les mouvements de chacune des roues indépendamment.
Une unité de traitement 10 est prévue. Celle-ci collecte les données envoyées par les accéléromètres.
Le véhicule dispose de périphériques 20 tels que des moyens de communication sans fil, une caméra et/ou un système de navigation. Les périphériques peuvent communiquer avec l’unité de traitement 10. La figure 1 illustre les axes x, y, z et le centre de gravité du véhicule W.
La figure 2 montre un système selon l’invention. Ici, contrairement à l’exemple de la figure 1 , l’unité de traitement qui collecte les informations des accéléromètres et identifie la présence d’une irrégularité est décentralisée. Celle-ci est notée 210 et elle est intégrée ou communique avec un serveur central 200. Des moyens de communication 120 entre le véhicule 100 et le serveur central 200 sont prévus.
La figure 3a montre une surface géométrique à un instant où le véhicule circule sur une portion de route sans irrégularité. Dans cet exemple, les points E, F, G et H sont situés à des endroits respectifs identiques sur chacune des roues, de telle sorte que les quatre points sont coplanaires en l’absence d’irrégularité. La surface géométrique caractéristique est dans cet exemple le plan P passant par les quatre points E, F, G et H. Le plan P a pour équation ax+by+cz+d=0 dans le repère (W, x, y, z).
La figure 3b montre une surface géométrique à un instant où les quatre points E, F, G et H ne sont plus coplanaires. Les points E, F et G sont au même endroit (par rapport au centre de gravité W du véhicule) que sur la figure 2a mais la roue arrière droite bouge verticalement de sorte que le point H est déplacé vers le haut. A cet instant, la surface géométrique caractéristique est le plan Q. Les points E, F, G et H sont respectivement distants du plan Q d’une valeur DE, AF, AG et DH. Le plan Q moyen peut être défini par l’équation ax+by+cz+d=0 où a, b, c et d sont tels que la somme (AE)2+(AF)2+(AG)2+(AH)2 soit la plus petite possible. Les valeurs de a, b, c et d ne sont plus les mêmes que pour le plan P. Si les variations de a, b, c et d sont significatives, c’est-à-dire supérieures à un certain seuil, cela signifie que le déplacement de la roue arrière est significatif et qu’une irrégularité sur la route est manifeste.
La figure 4 illustre la méthode selon l’invention. L’étape 1000 est la détection, à tout instant, de la position, vitesse et/ou accélération des points E, F, G et H.
L’étape 2000 est la détermination, à tout instant, des paramètres définissant la surface géométrique caractéristique. Dans l’exemple des figures 3a et 3b, le plan peut être défini par les paramètres a, b, c et d. L’étape 3000 est le suivi, au cours du temps des variations des paramètres a, b, c et d. Lorsque les variations (en valeur absolue) d’un ou plus des paramètres dépassent un seuil (matérialisé par la droite en pointillés sur la figure 4 à l’étape 3000), une irrégularité est identifiée. C’est ce qui se produit sur cet exemple aux instants ti et t2. L’étape 4000 consiste en la transmission depuis l’unité de traitement, à des tiers, de l’information de l’irrégularité, accompagnée le cas échéant de la géolocalisation du véhicule aux instants ti et t2.

Claims

Revendications
1. Véhicule automobile (1 ) comprenant :
- un châssis ;
- au moins quatre roues (2, 4, 6, 8) et leurs dispositifs d’amortissement respectifs reliant chaque roue au châssis ; et
- des moyens de détection des irrégularités de la route parcourue par ledit véhicule ;
caractérisé en ce que
- les moyens de détection des irrégularités comprennent des capteurs de la position, de la vitesse et/ou de l’accélération d’un point caractéristique (E, F, G, H) de chacun des dispositifs d’amortissement,
- le véhicule (1 ) comprenant en outre une unité (10) de traitement des données détectées par les moyens de détection, l’unité de traitement (10) étant programmée pour déterminer, à tout instant, une surface géométrique (P, Q) caractéristique de la position, de la vitesse et/ou de l’accélération des points caractéristiques (E, F, G, Fl),
- l’unité de traitement (10) étant également programmée pour déterminer une information d'irrégularité de la route lorsque ladite surface géométrique (P, Q) varie au cours du temps, au-delà d’un seuil prédéterminé.
2. Véhicule selon la revendication 1 , caractérisé en ce que la surface géométrique caractéristique est le plan géométrique (P, Q) moyen de l’ensemble des points caractéristiques (E, F, G, Fl).
3. Véhicule selon la revendication 1 , caractérisé en ce que la surface géométrique caractéristique est le paraboloïde elliptique de moindre écart par rapport aux points caractéristiques (E, F, G, Fl).
4. Véhicule selon l’une des revendications 1 à 3, caractérisé en ce que chaque point caractéristique (E, F, G, Fl) est le centre de gravité respectif d’une roue (2, 4, 6, 8), ou correspond à un point qui à tout instant a la même vitesse et accélération dans les trois directions que le centre de gravité de chaque roue (2, 4, 6, 8), respectivement.
5. Véhicule selon l’une des revendications 1 à 4, caractérisé en ce que l’unité de traitement (10) consolide les informations sur une période donnée de temps précédant et suivant la détection d’une irrégularité afin de déterminer des informations consolidées sur ladite période donnée de temps de l’irrégularité, notamment la longueur dans le sens de la route.
6. Véhicule selon l’une des revendications 1 à 5, caractérisé en ce que l’unité de traitement (10) recueille les données d’une caméra pour consolider les informations liées à la détection d’une irrégularité.
7. Véhicule selon l’une des revendications 1 à 6, caractérisé en ce qu’il comprend des moyens de communication pour envoyer les informations relatives à l’irrégularité détectée vers un serveur central qui collecte les données relatives aux irrégularités de la route fournies par plusieurs véhicules.
8. Méthode de détection des irrégularités d’une route, la méthode étant caractérisée en ce qu’elle comprend les étapes suivantes :
- la détection (1000) de la position, de la vitesse et/ou de l’accélération d’un point caractéristique (E, F, G, H) associé à chacune des roues d’un véhicule (1 , 100) ;
- le traitement des données ainsi détectées, l’opération de traitement comprenant la détermination (2000), à tout instant, d’une surface géométrique (P, Q) caractéristique de la position, de la vitesse et/ou de l’accélération des points caractéristiques (E, F, G, Fl), et
- l’identification (4000), si la surface géométrique (P, Q) varie au cours du temps au-delà d’un seuil de variation prédéterminé, d’une irrégularité sur la route.
9. Système de détection des irrégularités d’une route comprenant :
- un véhicule automobile (100) avec un châssis, au moins quatre roues et leurs dispositifs d’amortissement respectifs pour relier chaque roue au châssis, et des moyens de détection des irrégularités de la route parcourue par ledit véhicule ;
- un serveur central (200) recueillant les informations sur les irrégularités de la route ; et
- des moyens de communication entre le véhicule (100) et le serveur central (200) ;
caractérisé en ce que
- les moyens de détection des irrégularités comprennent des capteurs de la position, de la vitesse et/ou de l’accélération d’un point caractéristique de chacun des dispositifs d’amortissement ;
- les données détectées sont envoyées en temps réel au serveur central (200) via les moyens de communication, accompagnées de la géolocalisation de la voiture ;
- le serveur central (200) comprenant en outre une unité de traitement (210) des données détectées par les moyens de détection, l’unité de traitement étant programmée pour déterminer, à tout instant, une surface géométrique caractéristique de la position, de la vitesse et/ou de l’accélération des points caractéristiques ;
et l’unité de traitement (210) étant également programmée pour déterminer une information d’irrégularité de la route lorsque la surface géométrique varie au cours du temps, au-delà d’un seuil prédéterminé.
PCT/FR2019/050178 2018-02-21 2019-01-28 Detection d'irregularites sur les routes WO2019162587A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19708132.6A EP3755595A1 (fr) 2018-02-21 2019-01-28 Detection d'irregularites sur les routes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851462 2018-02-21
FR1851462A FR3078154B1 (fr) 2018-02-21 2018-02-21 Detection d’irregularites sur les routes

Publications (1)

Publication Number Publication Date
WO2019162587A1 true WO2019162587A1 (fr) 2019-08-29

Family

ID=62816662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050178 WO2019162587A1 (fr) 2018-02-21 2019-01-28 Detection d'irregularites sur les routes

Country Status (3)

Country Link
EP (1) EP3755595A1 (fr)
FR (1) FR3078154B1 (fr)
WO (1) WO2019162587A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204127A1 (de) 2022-04-28 2023-11-02 Psa Automobiles Sa In Abhängigkeit eines Straßentyps adaptierte Fahrzeugkomponenten

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112784814B (zh) * 2021-02-10 2024-06-07 中联重科股份有限公司 车辆倒车入库的姿态识别方法及输送车倒车入库引导系统
FR3124437B1 (fr) * 2021-06-25 2023-10-13 Renault Sas Procédé de commande d’un véhicule muni d’au moins une suspension commandée par apprentissage.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201532A1 (de) * 2014-01-28 2015-07-30 Bayerische Motoren Werke Aktiengesellschaft Ermittlung der Fahrgeschwindigkeit eines Fahrzeugs
GB2525839A (en) * 2014-02-18 2015-11-11 Jaguar Land Rover Ltd Method of and system for collecting data relating to road irregularities
DE102014214729A1 (de) 2014-07-25 2016-01-28 Continental Teves Ag & Co. Ohg Schlaglocherkennung im Fahrzeug
FR3039690A1 (fr) * 2015-07-28 2017-02-03 Peugeot Citroen Automobiles Sa Dispositif pour estimer un indicateur d’etat d’une voie de circulation empruntee par un vehicule terrestre

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014201532A1 (de) * 2014-01-28 2015-07-30 Bayerische Motoren Werke Aktiengesellschaft Ermittlung der Fahrgeschwindigkeit eines Fahrzeugs
GB2525839A (en) * 2014-02-18 2015-11-11 Jaguar Land Rover Ltd Method of and system for collecting data relating to road irregularities
DE102014214729A1 (de) 2014-07-25 2016-01-28 Continental Teves Ag & Co. Ohg Schlaglocherkennung im Fahrzeug
FR3039690A1 (fr) * 2015-07-28 2017-02-03 Peugeot Citroen Automobiles Sa Dispositif pour estimer un indicateur d’etat d’une voie de circulation empruntee par un vehicule terrestre

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204127A1 (de) 2022-04-28 2023-11-02 Psa Automobiles Sa In Abhängigkeit eines Straßentyps adaptierte Fahrzeugkomponenten

Also Published As

Publication number Publication date
EP3755595A1 (fr) 2020-12-30
FR3078154B1 (fr) 2020-01-17
FR3078154A1 (fr) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2019162587A1 (fr) Detection d'irregularites sur les routes
ES2909331T3 (es) Método, sistema y producto de programa informático para la detección de irregularidades de corta duración en una superficie de carretera
EP3173306B1 (fr) Procédé et dispositif pour déterminer un type de route sur laquelle un véhicule roule
EP2219930B1 (fr) Dispositif de mesure de deplacement d'un vehicule autoguide
FI129919B (en) Control of the condition of the vehicle
EP1811479A1 (fr) Système magnétique de contrôle de trafic
EP3765818B1 (fr) Procédé de calibration d'un gyromètre équipant un véhicule
CA3072948A1 (fr) Dispositif de surveillance a distance d'une flotte de vehicules automobiles autonomes systeme de transport et procede de bridage associes
EP3875906A1 (fr) Procédé de détermination du type de voie empruntée par un véhicule automobile
EP3571466A1 (fr) Procédé et dispositif autonomes de détermination d'une assiette d'un véhicule automobile
EP3328668B1 (fr) Dispositif pour estimer un indicateur d'état d'une voie de circulation empruntée par un véhicule terrestre
FR3074726A1 (fr) Suspension active avec anticipation de chocs
EP4178842B1 (fr) Procédé de commande d'un véhicule automobile muni de moyens de conduite autonome
FR3037875A1 (fr) Procede de determination d'un indicateur de dangerosite de la conduite d'un vehicule
EP1804041A1 (fr) Méthode d'estimation en temps réel d'un effort avant et d'un effort arrière appliqués par le sol à un véhicule
Szczodrak et al. Road surface roughness estimation employing integrated position and acceleration sensor
FR2951676A1 (fr) Dispositif de protection d'un vehicule automobile
FR3088280A1 (fr) Construction par segmentation de voies virtuelles sur une chaussee
EP3830542B1 (fr) Methode d'animation d'un pneumatique sur un volant d'usure
FR2906211A1 (fr) Procede et dispositif de detection de l'etat de la route
FR2920047A3 (fr) Estimation de la pente de la route depuis un vehicule
WO2020193862A1 (fr) Amélioration de données cartographiques
EP3294600A1 (fr) Identification de l'inertie de lacet et de tangage de véhicule automobile
WO2021249809A1 (fr) Procede de calibration d'une camera et dispositif associe
EP3137859A1 (fr) Procede d'estimation optique de la masse d'un vehicule gare en pente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19708132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019708132

Country of ref document: EP

Effective date: 20200921